xtensa: fix high memory/reserved memory collision
[cris-mirror.git] / fs / ubifs / tnc.c
blobba3d0e0f86151e533d98fb656910665a0da61e3c
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
24 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
25 * the UBIFS B-tree.
27 * At the moment the locking rules of the TNC tree are quite simple and
28 * straightforward. We just have a mutex and lock it when we traverse the
29 * tree. If a znode is not in memory, we read it from flash while still having
30 * the mutex locked.
33 #include <linux/crc32.h>
34 #include <linux/slab.h>
35 #include "ubifs.h"
37 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
38 int len, int lnum, int offs);
39 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
40 struct ubifs_zbranch *zbr, void *node);
43 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
44 * @NAME_LESS: name corresponding to the first argument is less than second
45 * @NAME_MATCHES: names match
46 * @NAME_GREATER: name corresponding to the second argument is greater than
47 * first
48 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
50 * These constants were introduce to improve readability.
52 enum {
53 NAME_LESS = 0,
54 NAME_MATCHES = 1,
55 NAME_GREATER = 2,
56 NOT_ON_MEDIA = 3,
59 /**
60 * insert_old_idx - record an index node obsoleted since the last commit start.
61 * @c: UBIFS file-system description object
62 * @lnum: LEB number of obsoleted index node
63 * @offs: offset of obsoleted index node
65 * Returns %0 on success, and a negative error code on failure.
67 * For recovery, there must always be a complete intact version of the index on
68 * flash at all times. That is called the "old index". It is the index as at the
69 * time of the last successful commit. Many of the index nodes in the old index
70 * may be dirty, but they must not be erased until the next successful commit
71 * (at which point that index becomes the old index).
73 * That means that the garbage collection and the in-the-gaps method of
74 * committing must be able to determine if an index node is in the old index.
75 * Most of the old index nodes can be found by looking up the TNC using the
76 * 'lookup_znode()' function. However, some of the old index nodes may have
77 * been deleted from the current index or may have been changed so much that
78 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
79 * That is what this function does. The RB-tree is ordered by LEB number and
80 * offset because they uniquely identify the old index node.
82 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
84 struct ubifs_old_idx *old_idx, *o;
85 struct rb_node **p, *parent = NULL;
87 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
88 if (unlikely(!old_idx))
89 return -ENOMEM;
90 old_idx->lnum = lnum;
91 old_idx->offs = offs;
93 p = &c->old_idx.rb_node;
94 while (*p) {
95 parent = *p;
96 o = rb_entry(parent, struct ubifs_old_idx, rb);
97 if (lnum < o->lnum)
98 p = &(*p)->rb_left;
99 else if (lnum > o->lnum)
100 p = &(*p)->rb_right;
101 else if (offs < o->offs)
102 p = &(*p)->rb_left;
103 else if (offs > o->offs)
104 p = &(*p)->rb_right;
105 else {
106 ubifs_err(c, "old idx added twice!");
107 kfree(old_idx);
108 return 0;
111 rb_link_node(&old_idx->rb, parent, p);
112 rb_insert_color(&old_idx->rb, &c->old_idx);
113 return 0;
117 * insert_old_idx_znode - record a znode obsoleted since last commit start.
118 * @c: UBIFS file-system description object
119 * @znode: znode of obsoleted index node
121 * Returns %0 on success, and a negative error code on failure.
123 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
125 if (znode->parent) {
126 struct ubifs_zbranch *zbr;
128 zbr = &znode->parent->zbranch[znode->iip];
129 if (zbr->len)
130 return insert_old_idx(c, zbr->lnum, zbr->offs);
131 } else
132 if (c->zroot.len)
133 return insert_old_idx(c, c->zroot.lnum,
134 c->zroot.offs);
135 return 0;
139 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
140 * @c: UBIFS file-system description object
141 * @znode: znode of obsoleted index node
143 * Returns %0 on success, and a negative error code on failure.
145 static int ins_clr_old_idx_znode(struct ubifs_info *c,
146 struct ubifs_znode *znode)
148 int err;
150 if (znode->parent) {
151 struct ubifs_zbranch *zbr;
153 zbr = &znode->parent->zbranch[znode->iip];
154 if (zbr->len) {
155 err = insert_old_idx(c, zbr->lnum, zbr->offs);
156 if (err)
157 return err;
158 zbr->lnum = 0;
159 zbr->offs = 0;
160 zbr->len = 0;
162 } else
163 if (c->zroot.len) {
164 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
165 if (err)
166 return err;
167 c->zroot.lnum = 0;
168 c->zroot.offs = 0;
169 c->zroot.len = 0;
171 return 0;
175 * destroy_old_idx - destroy the old_idx RB-tree.
176 * @c: UBIFS file-system description object
178 * During start commit, the old_idx RB-tree is used to avoid overwriting index
179 * nodes that were in the index last commit but have since been deleted. This
180 * is necessary for recovery i.e. the old index must be kept intact until the
181 * new index is successfully written. The old-idx RB-tree is used for the
182 * in-the-gaps method of writing index nodes and is destroyed every commit.
184 void destroy_old_idx(struct ubifs_info *c)
186 struct ubifs_old_idx *old_idx, *n;
188 rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
189 kfree(old_idx);
191 c->old_idx = RB_ROOT;
195 * copy_znode - copy a dirty znode.
196 * @c: UBIFS file-system description object
197 * @znode: znode to copy
199 * A dirty znode being committed may not be changed, so it is copied.
201 static struct ubifs_znode *copy_znode(struct ubifs_info *c,
202 struct ubifs_znode *znode)
204 struct ubifs_znode *zn;
206 zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS);
207 if (unlikely(!zn))
208 return ERR_PTR(-ENOMEM);
210 zn->cnext = NULL;
211 __set_bit(DIRTY_ZNODE, &zn->flags);
212 __clear_bit(COW_ZNODE, &zn->flags);
214 ubifs_assert(!ubifs_zn_obsolete(znode));
215 __set_bit(OBSOLETE_ZNODE, &znode->flags);
217 if (znode->level != 0) {
218 int i;
219 const int n = zn->child_cnt;
221 /* The children now have new parent */
222 for (i = 0; i < n; i++) {
223 struct ubifs_zbranch *zbr = &zn->zbranch[i];
225 if (zbr->znode)
226 zbr->znode->parent = zn;
230 atomic_long_inc(&c->dirty_zn_cnt);
231 return zn;
235 * add_idx_dirt - add dirt due to a dirty znode.
236 * @c: UBIFS file-system description object
237 * @lnum: LEB number of index node
238 * @dirt: size of index node
240 * This function updates lprops dirty space and the new size of the index.
242 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
244 c->calc_idx_sz -= ALIGN(dirt, 8);
245 return ubifs_add_dirt(c, lnum, dirt);
249 * dirty_cow_znode - ensure a znode is not being committed.
250 * @c: UBIFS file-system description object
251 * @zbr: branch of znode to check
253 * Returns dirtied znode on success or negative error code on failure.
255 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
256 struct ubifs_zbranch *zbr)
258 struct ubifs_znode *znode = zbr->znode;
259 struct ubifs_znode *zn;
260 int err;
262 if (!ubifs_zn_cow(znode)) {
263 /* znode is not being committed */
264 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
265 atomic_long_inc(&c->dirty_zn_cnt);
266 atomic_long_dec(&c->clean_zn_cnt);
267 atomic_long_dec(&ubifs_clean_zn_cnt);
268 err = add_idx_dirt(c, zbr->lnum, zbr->len);
269 if (unlikely(err))
270 return ERR_PTR(err);
272 return znode;
275 zn = copy_znode(c, znode);
276 if (IS_ERR(zn))
277 return zn;
279 if (zbr->len) {
280 err = insert_old_idx(c, zbr->lnum, zbr->offs);
281 if (unlikely(err))
282 return ERR_PTR(err);
283 err = add_idx_dirt(c, zbr->lnum, zbr->len);
284 } else
285 err = 0;
287 zbr->znode = zn;
288 zbr->lnum = 0;
289 zbr->offs = 0;
290 zbr->len = 0;
292 if (unlikely(err))
293 return ERR_PTR(err);
294 return zn;
298 * lnc_add - add a leaf node to the leaf node cache.
299 * @c: UBIFS file-system description object
300 * @zbr: zbranch of leaf node
301 * @node: leaf node
303 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
304 * purpose of the leaf node cache is to save re-reading the same leaf node over
305 * and over again. Most things are cached by VFS, however the file system must
306 * cache directory entries for readdir and for resolving hash collisions. The
307 * present implementation of the leaf node cache is extremely simple, and
308 * allows for error returns that are not used but that may be needed if a more
309 * complex implementation is created.
311 * Note, this function does not add the @node object to LNC directly, but
312 * allocates a copy of the object and adds the copy to LNC. The reason for this
313 * is that @node has been allocated outside of the TNC subsystem and will be
314 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
315 * may be changed at any time, e.g. freed by the shrinker.
317 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
318 const void *node)
320 int err;
321 void *lnc_node;
322 const struct ubifs_dent_node *dent = node;
324 ubifs_assert(!zbr->leaf);
325 ubifs_assert(zbr->len != 0);
326 ubifs_assert(is_hash_key(c, &zbr->key));
328 err = ubifs_validate_entry(c, dent);
329 if (err) {
330 dump_stack();
331 ubifs_dump_node(c, dent);
332 return err;
335 lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
336 if (!lnc_node)
337 /* We don't have to have the cache, so no error */
338 return 0;
340 zbr->leaf = lnc_node;
341 return 0;
345 * lnc_add_directly - add a leaf node to the leaf-node-cache.
346 * @c: UBIFS file-system description object
347 * @zbr: zbranch of leaf node
348 * @node: leaf node
350 * This function is similar to 'lnc_add()', but it does not create a copy of
351 * @node but inserts @node to TNC directly.
353 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
354 void *node)
356 int err;
358 ubifs_assert(!zbr->leaf);
359 ubifs_assert(zbr->len != 0);
361 err = ubifs_validate_entry(c, node);
362 if (err) {
363 dump_stack();
364 ubifs_dump_node(c, node);
365 return err;
368 zbr->leaf = node;
369 return 0;
373 * lnc_free - remove a leaf node from the leaf node cache.
374 * @zbr: zbranch of leaf node
375 * @node: leaf node
377 static void lnc_free(struct ubifs_zbranch *zbr)
379 if (!zbr->leaf)
380 return;
381 kfree(zbr->leaf);
382 zbr->leaf = NULL;
386 * tnc_read_hashed_node - read a "hashed" leaf node.
387 * @c: UBIFS file-system description object
388 * @zbr: key and position of the node
389 * @node: node is returned here
391 * This function reads a "hashed" node defined by @zbr from the leaf node cache
392 * (in it is there) or from the hash media, in which case the node is also
393 * added to LNC. Returns zero in case of success or a negative negative error
394 * code in case of failure.
396 static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
397 void *node)
399 int err;
401 ubifs_assert(is_hash_key(c, &zbr->key));
403 if (zbr->leaf) {
404 /* Read from the leaf node cache */
405 ubifs_assert(zbr->len != 0);
406 memcpy(node, zbr->leaf, zbr->len);
407 return 0;
410 if (c->replaying) {
411 err = fallible_read_node(c, &zbr->key, zbr, node);
413 * When the node was not found, return -ENOENT, 0 otherwise.
414 * Negative return codes stay as-is.
416 if (err == 0)
417 err = -ENOENT;
418 else if (err == 1)
419 err = 0;
420 } else {
421 err = ubifs_tnc_read_node(c, zbr, node);
423 if (err)
424 return err;
426 /* Add the node to the leaf node cache */
427 err = lnc_add(c, zbr, node);
428 return err;
432 * try_read_node - read a node if it is a node.
433 * @c: UBIFS file-system description object
434 * @buf: buffer to read to
435 * @type: node type
436 * @len: node length (not aligned)
437 * @lnum: LEB number of node to read
438 * @offs: offset of node to read
440 * This function tries to read a node of known type and length, checks it and
441 * stores it in @buf. This function returns %1 if a node is present and %0 if
442 * a node is not present. A negative error code is returned for I/O errors.
443 * This function performs that same function as ubifs_read_node except that
444 * it does not require that there is actually a node present and instead
445 * the return code indicates if a node was read.
447 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
448 * is true (it is controlled by corresponding mount option). However, if
449 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
450 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
451 * because during mounting or re-mounting from R/O mode to R/W mode we may read
452 * journal nodes (when replying the journal or doing the recovery) and the
453 * journal nodes may potentially be corrupted, so checking is required.
455 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
456 int len, int lnum, int offs)
458 int err, node_len;
459 struct ubifs_ch *ch = buf;
460 uint32_t crc, node_crc;
462 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
464 err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
465 if (err) {
466 ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
467 type, lnum, offs, err);
468 return err;
471 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
472 return 0;
474 if (ch->node_type != type)
475 return 0;
477 node_len = le32_to_cpu(ch->len);
478 if (node_len != len)
479 return 0;
481 if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
482 !c->remounting_rw)
483 return 1;
485 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
486 node_crc = le32_to_cpu(ch->crc);
487 if (crc != node_crc)
488 return 0;
490 return 1;
494 * fallible_read_node - try to read a leaf node.
495 * @c: UBIFS file-system description object
496 * @key: key of node to read
497 * @zbr: position of node
498 * @node: node returned
500 * This function tries to read a node and returns %1 if the node is read, %0
501 * if the node is not present, and a negative error code in the case of error.
503 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
504 struct ubifs_zbranch *zbr, void *node)
506 int ret;
508 dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
510 ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
511 zbr->offs);
512 if (ret == 1) {
513 union ubifs_key node_key;
514 struct ubifs_dent_node *dent = node;
516 /* All nodes have key in the same place */
517 key_read(c, &dent->key, &node_key);
518 if (keys_cmp(c, key, &node_key) != 0)
519 ret = 0;
521 if (ret == 0 && c->replaying)
522 dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
523 zbr->lnum, zbr->offs, zbr->len);
524 return ret;
528 * matches_name - determine if a direntry or xattr entry matches a given name.
529 * @c: UBIFS file-system description object
530 * @zbr: zbranch of dent
531 * @nm: name to match
533 * This function checks if xentry/direntry referred by zbranch @zbr matches name
534 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
535 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
536 * of failure, a negative error code is returned.
538 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
539 const struct fscrypt_name *nm)
541 struct ubifs_dent_node *dent;
542 int nlen, err;
544 /* If possible, match against the dent in the leaf node cache */
545 if (!zbr->leaf) {
546 dent = kmalloc(zbr->len, GFP_NOFS);
547 if (!dent)
548 return -ENOMEM;
550 err = ubifs_tnc_read_node(c, zbr, dent);
551 if (err)
552 goto out_free;
554 /* Add the node to the leaf node cache */
555 err = lnc_add_directly(c, zbr, dent);
556 if (err)
557 goto out_free;
558 } else
559 dent = zbr->leaf;
561 nlen = le16_to_cpu(dent->nlen);
562 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
563 if (err == 0) {
564 if (nlen == fname_len(nm))
565 return NAME_MATCHES;
566 else if (nlen < fname_len(nm))
567 return NAME_LESS;
568 else
569 return NAME_GREATER;
570 } else if (err < 0)
571 return NAME_LESS;
572 else
573 return NAME_GREATER;
575 out_free:
576 kfree(dent);
577 return err;
581 * get_znode - get a TNC znode that may not be loaded yet.
582 * @c: UBIFS file-system description object
583 * @znode: parent znode
584 * @n: znode branch slot number
586 * This function returns the znode or a negative error code.
588 static struct ubifs_znode *get_znode(struct ubifs_info *c,
589 struct ubifs_znode *znode, int n)
591 struct ubifs_zbranch *zbr;
593 zbr = &znode->zbranch[n];
594 if (zbr->znode)
595 znode = zbr->znode;
596 else
597 znode = ubifs_load_znode(c, zbr, znode, n);
598 return znode;
602 * tnc_next - find next TNC entry.
603 * @c: UBIFS file-system description object
604 * @zn: znode is passed and returned here
605 * @n: znode branch slot number is passed and returned here
607 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
608 * no next entry, or a negative error code otherwise.
610 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
612 struct ubifs_znode *znode = *zn;
613 int nn = *n;
615 nn += 1;
616 if (nn < znode->child_cnt) {
617 *n = nn;
618 return 0;
620 while (1) {
621 struct ubifs_znode *zp;
623 zp = znode->parent;
624 if (!zp)
625 return -ENOENT;
626 nn = znode->iip + 1;
627 znode = zp;
628 if (nn < znode->child_cnt) {
629 znode = get_znode(c, znode, nn);
630 if (IS_ERR(znode))
631 return PTR_ERR(znode);
632 while (znode->level != 0) {
633 znode = get_znode(c, znode, 0);
634 if (IS_ERR(znode))
635 return PTR_ERR(znode);
637 nn = 0;
638 break;
641 *zn = znode;
642 *n = nn;
643 return 0;
647 * tnc_prev - find previous TNC entry.
648 * @c: UBIFS file-system description object
649 * @zn: znode is returned here
650 * @n: znode branch slot number is passed and returned here
652 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
653 * there is no next entry, or a negative error code otherwise.
655 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
657 struct ubifs_znode *znode = *zn;
658 int nn = *n;
660 if (nn > 0) {
661 *n = nn - 1;
662 return 0;
664 while (1) {
665 struct ubifs_znode *zp;
667 zp = znode->parent;
668 if (!zp)
669 return -ENOENT;
670 nn = znode->iip - 1;
671 znode = zp;
672 if (nn >= 0) {
673 znode = get_znode(c, znode, nn);
674 if (IS_ERR(znode))
675 return PTR_ERR(znode);
676 while (znode->level != 0) {
677 nn = znode->child_cnt - 1;
678 znode = get_znode(c, znode, nn);
679 if (IS_ERR(znode))
680 return PTR_ERR(znode);
682 nn = znode->child_cnt - 1;
683 break;
686 *zn = znode;
687 *n = nn;
688 return 0;
692 * resolve_collision - resolve a collision.
693 * @c: UBIFS file-system description object
694 * @key: key of a directory or extended attribute entry
695 * @zn: znode is returned here
696 * @n: zbranch number is passed and returned here
697 * @nm: name of the entry
699 * This function is called for "hashed" keys to make sure that the found key
700 * really corresponds to the looked up node (directory or extended attribute
701 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
702 * %0 is returned if @nm is not found and @zn and @n are set to the previous
703 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
704 * This means that @n may be set to %-1 if the leftmost key in @zn is the
705 * previous one. A negative error code is returned on failures.
707 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
708 struct ubifs_znode **zn, int *n,
709 const struct fscrypt_name *nm)
711 int err;
713 err = matches_name(c, &(*zn)->zbranch[*n], nm);
714 if (unlikely(err < 0))
715 return err;
716 if (err == NAME_MATCHES)
717 return 1;
719 if (err == NAME_GREATER) {
720 /* Look left */
721 while (1) {
722 err = tnc_prev(c, zn, n);
723 if (err == -ENOENT) {
724 ubifs_assert(*n == 0);
725 *n = -1;
726 return 0;
728 if (err < 0)
729 return err;
730 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
732 * We have found the branch after which we would
733 * like to insert, but inserting in this znode
734 * may still be wrong. Consider the following 3
735 * znodes, in the case where we are resolving a
736 * collision with Key2.
738 * znode zp
739 * ----------------------
740 * level 1 | Key0 | Key1 |
741 * -----------------------
742 * | |
743 * znode za | | znode zb
744 * ------------ ------------
745 * level 0 | Key0 | | Key2 |
746 * ------------ ------------
748 * The lookup finds Key2 in znode zb. Lets say
749 * there is no match and the name is greater so
750 * we look left. When we find Key0, we end up
751 * here. If we return now, we will insert into
752 * znode za at slot n = 1. But that is invalid
753 * according to the parent's keys. Key2 must
754 * be inserted into znode zb.
756 * Note, this problem is not relevant for the
757 * case when we go right, because
758 * 'tnc_insert()' would correct the parent key.
760 if (*n == (*zn)->child_cnt - 1) {
761 err = tnc_next(c, zn, n);
762 if (err) {
763 /* Should be impossible */
764 ubifs_assert(0);
765 if (err == -ENOENT)
766 err = -EINVAL;
767 return err;
769 ubifs_assert(*n == 0);
770 *n = -1;
772 return 0;
774 err = matches_name(c, &(*zn)->zbranch[*n], nm);
775 if (err < 0)
776 return err;
777 if (err == NAME_LESS)
778 return 0;
779 if (err == NAME_MATCHES)
780 return 1;
781 ubifs_assert(err == NAME_GREATER);
783 } else {
784 int nn = *n;
785 struct ubifs_znode *znode = *zn;
787 /* Look right */
788 while (1) {
789 err = tnc_next(c, &znode, &nn);
790 if (err == -ENOENT)
791 return 0;
792 if (err < 0)
793 return err;
794 if (keys_cmp(c, &znode->zbranch[nn].key, key))
795 return 0;
796 err = matches_name(c, &znode->zbranch[nn], nm);
797 if (err < 0)
798 return err;
799 if (err == NAME_GREATER)
800 return 0;
801 *zn = znode;
802 *n = nn;
803 if (err == NAME_MATCHES)
804 return 1;
805 ubifs_assert(err == NAME_LESS);
811 * fallible_matches_name - determine if a dent matches a given name.
812 * @c: UBIFS file-system description object
813 * @zbr: zbranch of dent
814 * @nm: name to match
816 * This is a "fallible" version of 'matches_name()' function which does not
817 * panic if the direntry/xentry referred by @zbr does not exist on the media.
819 * This function checks if xentry/direntry referred by zbranch @zbr matches name
820 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
821 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
822 * if xentry/direntry referred by @zbr does not exist on the media. A negative
823 * error code is returned in case of failure.
825 static int fallible_matches_name(struct ubifs_info *c,
826 struct ubifs_zbranch *zbr,
827 const struct fscrypt_name *nm)
829 struct ubifs_dent_node *dent;
830 int nlen, err;
832 /* If possible, match against the dent in the leaf node cache */
833 if (!zbr->leaf) {
834 dent = kmalloc(zbr->len, GFP_NOFS);
835 if (!dent)
836 return -ENOMEM;
838 err = fallible_read_node(c, &zbr->key, zbr, dent);
839 if (err < 0)
840 goto out_free;
841 if (err == 0) {
842 /* The node was not present */
843 err = NOT_ON_MEDIA;
844 goto out_free;
846 ubifs_assert(err == 1);
848 err = lnc_add_directly(c, zbr, dent);
849 if (err)
850 goto out_free;
851 } else
852 dent = zbr->leaf;
854 nlen = le16_to_cpu(dent->nlen);
855 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
856 if (err == 0) {
857 if (nlen == fname_len(nm))
858 return NAME_MATCHES;
859 else if (nlen < fname_len(nm))
860 return NAME_LESS;
861 else
862 return NAME_GREATER;
863 } else if (err < 0)
864 return NAME_LESS;
865 else
866 return NAME_GREATER;
868 out_free:
869 kfree(dent);
870 return err;
874 * fallible_resolve_collision - resolve a collision even if nodes are missing.
875 * @c: UBIFS file-system description object
876 * @key: key
877 * @zn: znode is returned here
878 * @n: branch number is passed and returned here
879 * @nm: name of directory entry
880 * @adding: indicates caller is adding a key to the TNC
882 * This is a "fallible" version of the 'resolve_collision()' function which
883 * does not panic if one of the nodes referred to by TNC does not exist on the
884 * media. This may happen when replaying the journal if a deleted node was
885 * Garbage-collected and the commit was not done. A branch that refers to a node
886 * that is not present is called a dangling branch. The following are the return
887 * codes for this function:
888 * o if @nm was found, %1 is returned and @zn and @n are set to the found
889 * branch;
890 * o if we are @adding and @nm was not found, %0 is returned;
891 * o if we are not @adding and @nm was not found, but a dangling branch was
892 * found, then %1 is returned and @zn and @n are set to the dangling branch;
893 * o a negative error code is returned in case of failure.
895 static int fallible_resolve_collision(struct ubifs_info *c,
896 const union ubifs_key *key,
897 struct ubifs_znode **zn, int *n,
898 const struct fscrypt_name *nm,
899 int adding)
901 struct ubifs_znode *o_znode = NULL, *znode = *zn;
902 int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
904 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
905 if (unlikely(cmp < 0))
906 return cmp;
907 if (cmp == NAME_MATCHES)
908 return 1;
909 if (cmp == NOT_ON_MEDIA) {
910 o_znode = znode;
911 o_n = nn;
913 * We are unlucky and hit a dangling branch straight away.
914 * Now we do not really know where to go to find the needed
915 * branch - to the left or to the right. Well, let's try left.
917 unsure = 1;
918 } else if (!adding)
919 unsure = 1; /* Remove a dangling branch wherever it is */
921 if (cmp == NAME_GREATER || unsure) {
922 /* Look left */
923 while (1) {
924 err = tnc_prev(c, zn, n);
925 if (err == -ENOENT) {
926 ubifs_assert(*n == 0);
927 *n = -1;
928 break;
930 if (err < 0)
931 return err;
932 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
933 /* See comments in 'resolve_collision()' */
934 if (*n == (*zn)->child_cnt - 1) {
935 err = tnc_next(c, zn, n);
936 if (err) {
937 /* Should be impossible */
938 ubifs_assert(0);
939 if (err == -ENOENT)
940 err = -EINVAL;
941 return err;
943 ubifs_assert(*n == 0);
944 *n = -1;
946 break;
948 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
949 if (err < 0)
950 return err;
951 if (err == NAME_MATCHES)
952 return 1;
953 if (err == NOT_ON_MEDIA) {
954 o_znode = *zn;
955 o_n = *n;
956 continue;
958 if (!adding)
959 continue;
960 if (err == NAME_LESS)
961 break;
962 else
963 unsure = 0;
967 if (cmp == NAME_LESS || unsure) {
968 /* Look right */
969 *zn = znode;
970 *n = nn;
971 while (1) {
972 err = tnc_next(c, &znode, &nn);
973 if (err == -ENOENT)
974 break;
975 if (err < 0)
976 return err;
977 if (keys_cmp(c, &znode->zbranch[nn].key, key))
978 break;
979 err = fallible_matches_name(c, &znode->zbranch[nn], nm);
980 if (err < 0)
981 return err;
982 if (err == NAME_GREATER)
983 break;
984 *zn = znode;
985 *n = nn;
986 if (err == NAME_MATCHES)
987 return 1;
988 if (err == NOT_ON_MEDIA) {
989 o_znode = znode;
990 o_n = nn;
995 /* Never match a dangling branch when adding */
996 if (adding || !o_znode)
997 return 0;
999 dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
1000 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
1001 o_znode->zbranch[o_n].len);
1002 *zn = o_znode;
1003 *n = o_n;
1004 return 1;
1008 * matches_position - determine if a zbranch matches a given position.
1009 * @zbr: zbranch of dent
1010 * @lnum: LEB number of dent to match
1011 * @offs: offset of dent to match
1013 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1015 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1017 if (zbr->lnum == lnum && zbr->offs == offs)
1018 return 1;
1019 else
1020 return 0;
1024 * resolve_collision_directly - resolve a collision directly.
1025 * @c: UBIFS file-system description object
1026 * @key: key of directory entry
1027 * @zn: znode is passed and returned here
1028 * @n: zbranch number is passed and returned here
1029 * @lnum: LEB number of dent node to match
1030 * @offs: offset of dent node to match
1032 * This function is used for "hashed" keys to make sure the found directory or
1033 * extended attribute entry node is what was looked for. It is used when the
1034 * flash address of the right node is known (@lnum:@offs) which makes it much
1035 * easier to resolve collisions (no need to read entries and match full
1036 * names). This function returns %1 and sets @zn and @n if the collision is
1037 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1038 * previous directory entry. Otherwise a negative error code is returned.
1040 static int resolve_collision_directly(struct ubifs_info *c,
1041 const union ubifs_key *key,
1042 struct ubifs_znode **zn, int *n,
1043 int lnum, int offs)
1045 struct ubifs_znode *znode;
1046 int nn, err;
1048 znode = *zn;
1049 nn = *n;
1050 if (matches_position(&znode->zbranch[nn], lnum, offs))
1051 return 1;
1053 /* Look left */
1054 while (1) {
1055 err = tnc_prev(c, &znode, &nn);
1056 if (err == -ENOENT)
1057 break;
1058 if (err < 0)
1059 return err;
1060 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1061 break;
1062 if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1063 *zn = znode;
1064 *n = nn;
1065 return 1;
1069 /* Look right */
1070 znode = *zn;
1071 nn = *n;
1072 while (1) {
1073 err = tnc_next(c, &znode, &nn);
1074 if (err == -ENOENT)
1075 return 0;
1076 if (err < 0)
1077 return err;
1078 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1079 return 0;
1080 *zn = znode;
1081 *n = nn;
1082 if (matches_position(&znode->zbranch[nn], lnum, offs))
1083 return 1;
1088 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1089 * @c: UBIFS file-system description object
1090 * @znode: znode to dirty
1092 * If we do not have a unique key that resides in a znode, then we cannot
1093 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1094 * This function records the path back to the last dirty ancestor, and then
1095 * dirties the znodes on that path.
1097 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1098 struct ubifs_znode *znode)
1100 struct ubifs_znode *zp;
1101 int *path = c->bottom_up_buf, p = 0;
1103 ubifs_assert(c->zroot.znode);
1104 ubifs_assert(znode);
1105 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1106 kfree(c->bottom_up_buf);
1107 c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1108 GFP_NOFS);
1109 if (!c->bottom_up_buf)
1110 return ERR_PTR(-ENOMEM);
1111 path = c->bottom_up_buf;
1113 if (c->zroot.znode->level) {
1114 /* Go up until parent is dirty */
1115 while (1) {
1116 int n;
1118 zp = znode->parent;
1119 if (!zp)
1120 break;
1121 n = znode->iip;
1122 ubifs_assert(p < c->zroot.znode->level);
1123 path[p++] = n;
1124 if (!zp->cnext && ubifs_zn_dirty(znode))
1125 break;
1126 znode = zp;
1130 /* Come back down, dirtying as we go */
1131 while (1) {
1132 struct ubifs_zbranch *zbr;
1134 zp = znode->parent;
1135 if (zp) {
1136 ubifs_assert(path[p - 1] >= 0);
1137 ubifs_assert(path[p - 1] < zp->child_cnt);
1138 zbr = &zp->zbranch[path[--p]];
1139 znode = dirty_cow_znode(c, zbr);
1140 } else {
1141 ubifs_assert(znode == c->zroot.znode);
1142 znode = dirty_cow_znode(c, &c->zroot);
1144 if (IS_ERR(znode) || !p)
1145 break;
1146 ubifs_assert(path[p - 1] >= 0);
1147 ubifs_assert(path[p - 1] < znode->child_cnt);
1148 znode = znode->zbranch[path[p - 1]].znode;
1151 return znode;
1155 * ubifs_lookup_level0 - search for zero-level znode.
1156 * @c: UBIFS file-system description object
1157 * @key: key to lookup
1158 * @zn: znode is returned here
1159 * @n: znode branch slot number is returned here
1161 * This function looks up the TNC tree and search for zero-level znode which
1162 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1163 * cases:
1164 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1165 * is returned and slot number of the matched branch is stored in @n;
1166 * o not exact match, which means that zero-level znode does not contain
1167 * @key, then %0 is returned and slot number of the closest branch is stored
1168 * in @n;
1169 * o @key is so small that it is even less than the lowest key of the
1170 * leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1172 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1173 * function reads corresponding indexing nodes and inserts them to TNC. In
1174 * case of failure, a negative error code is returned.
1176 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1177 struct ubifs_znode **zn, int *n)
1179 int err, exact;
1180 struct ubifs_znode *znode;
1181 unsigned long time = get_seconds();
1183 dbg_tnck(key, "search key ");
1184 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
1186 znode = c->zroot.znode;
1187 if (unlikely(!znode)) {
1188 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1189 if (IS_ERR(znode))
1190 return PTR_ERR(znode);
1193 znode->time = time;
1195 while (1) {
1196 struct ubifs_zbranch *zbr;
1198 exact = ubifs_search_zbranch(c, znode, key, n);
1200 if (znode->level == 0)
1201 break;
1203 if (*n < 0)
1204 *n = 0;
1205 zbr = &znode->zbranch[*n];
1207 if (zbr->znode) {
1208 znode->time = time;
1209 znode = zbr->znode;
1210 continue;
1213 /* znode is not in TNC cache, load it from the media */
1214 znode = ubifs_load_znode(c, zbr, znode, *n);
1215 if (IS_ERR(znode))
1216 return PTR_ERR(znode);
1219 *zn = znode;
1220 if (exact || !is_hash_key(c, key) || *n != -1) {
1221 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1222 return exact;
1226 * Here is a tricky place. We have not found the key and this is a
1227 * "hashed" key, which may collide. The rest of the code deals with
1228 * situations like this:
1230 * | 3 | 5 |
1231 * / \
1232 * | 3 | 5 | | 6 | 7 | (x)
1234 * Or more a complex example:
1236 * | 1 | 5 |
1237 * / \
1238 * | 1 | 3 | | 5 | 8 |
1239 * \ /
1240 * | 5 | 5 | | 6 | 7 | (x)
1242 * In the examples, if we are looking for key "5", we may reach nodes
1243 * marked with "(x)". In this case what we have do is to look at the
1244 * left and see if there is "5" key there. If there is, we have to
1245 * return it.
1247 * Note, this whole situation is possible because we allow to have
1248 * elements which are equivalent to the next key in the parent in the
1249 * children of current znode. For example, this happens if we split a
1250 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1251 * like this:
1252 * | 3 | 5 |
1253 * / \
1254 * | 3 | 5 | | 5 | 6 | 7 |
1256 * And this becomes what is at the first "picture" after key "5" marked
1257 * with "^" is removed. What could be done is we could prohibit
1258 * splitting in the middle of the colliding sequence. Also, when
1259 * removing the leftmost key, we would have to correct the key of the
1260 * parent node, which would introduce additional complications. Namely,
1261 * if we changed the leftmost key of the parent znode, the garbage
1262 * collector would be unable to find it (GC is doing this when GC'ing
1263 * indexing LEBs). Although we already have an additional RB-tree where
1264 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1265 * after the commit. But anyway, this does not look easy to implement
1266 * so we did not try this.
1268 err = tnc_prev(c, &znode, n);
1269 if (err == -ENOENT) {
1270 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1271 *n = -1;
1272 return 0;
1274 if (unlikely(err < 0))
1275 return err;
1276 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1277 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1278 *n = -1;
1279 return 0;
1282 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1283 *zn = znode;
1284 return 1;
1288 * lookup_level0_dirty - search for zero-level znode dirtying.
1289 * @c: UBIFS file-system description object
1290 * @key: key to lookup
1291 * @zn: znode is returned here
1292 * @n: znode branch slot number is returned here
1294 * This function looks up the TNC tree and search for zero-level znode which
1295 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1296 * cases:
1297 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1298 * is returned and slot number of the matched branch is stored in @n;
1299 * o not exact match, which means that zero-level znode does not contain @key
1300 * then %0 is returned and slot number of the closed branch is stored in
1301 * @n;
1302 * o @key is so small that it is even less than the lowest key of the
1303 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1305 * Additionally all znodes in the path from the root to the located zero-level
1306 * znode are marked as dirty.
1308 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1309 * function reads corresponding indexing nodes and inserts them to TNC. In
1310 * case of failure, a negative error code is returned.
1312 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1313 struct ubifs_znode **zn, int *n)
1315 int err, exact;
1316 struct ubifs_znode *znode;
1317 unsigned long time = get_seconds();
1319 dbg_tnck(key, "search and dirty key ");
1321 znode = c->zroot.znode;
1322 if (unlikely(!znode)) {
1323 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1324 if (IS_ERR(znode))
1325 return PTR_ERR(znode);
1328 znode = dirty_cow_znode(c, &c->zroot);
1329 if (IS_ERR(znode))
1330 return PTR_ERR(znode);
1332 znode->time = time;
1334 while (1) {
1335 struct ubifs_zbranch *zbr;
1337 exact = ubifs_search_zbranch(c, znode, key, n);
1339 if (znode->level == 0)
1340 break;
1342 if (*n < 0)
1343 *n = 0;
1344 zbr = &znode->zbranch[*n];
1346 if (zbr->znode) {
1347 znode->time = time;
1348 znode = dirty_cow_znode(c, zbr);
1349 if (IS_ERR(znode))
1350 return PTR_ERR(znode);
1351 continue;
1354 /* znode is not in TNC cache, load it from the media */
1355 znode = ubifs_load_znode(c, zbr, znode, *n);
1356 if (IS_ERR(znode))
1357 return PTR_ERR(znode);
1358 znode = dirty_cow_znode(c, zbr);
1359 if (IS_ERR(znode))
1360 return PTR_ERR(znode);
1363 *zn = znode;
1364 if (exact || !is_hash_key(c, key) || *n != -1) {
1365 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1366 return exact;
1370 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1371 * code.
1373 err = tnc_prev(c, &znode, n);
1374 if (err == -ENOENT) {
1375 *n = -1;
1376 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1377 return 0;
1379 if (unlikely(err < 0))
1380 return err;
1381 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1382 *n = -1;
1383 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1384 return 0;
1387 if (znode->cnext || !ubifs_zn_dirty(znode)) {
1388 znode = dirty_cow_bottom_up(c, znode);
1389 if (IS_ERR(znode))
1390 return PTR_ERR(znode);
1393 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1394 *zn = znode;
1395 return 1;
1399 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1400 * @c: UBIFS file-system description object
1401 * @lnum: LEB number
1402 * @gc_seq1: garbage collection sequence number
1404 * This function determines if @lnum may have been garbage collected since
1405 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1406 * %0 is returned.
1408 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1410 int gc_seq2, gced_lnum;
1412 gced_lnum = c->gced_lnum;
1413 smp_rmb();
1414 gc_seq2 = c->gc_seq;
1415 /* Same seq means no GC */
1416 if (gc_seq1 == gc_seq2)
1417 return 0;
1418 /* Different by more than 1 means we don't know */
1419 if (gc_seq1 + 1 != gc_seq2)
1420 return 1;
1422 * We have seen the sequence number has increased by 1. Now we need to
1423 * be sure we read the right LEB number, so read it again.
1425 smp_rmb();
1426 if (gced_lnum != c->gced_lnum)
1427 return 1;
1428 /* Finally we can check lnum */
1429 if (gced_lnum == lnum)
1430 return 1;
1431 return 0;
1435 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1436 * @c: UBIFS file-system description object
1437 * @key: node key to lookup
1438 * @node: the node is returned here
1439 * @lnum: LEB number is returned here
1440 * @offs: offset is returned here
1442 * This function looks up and reads node with key @key. The caller has to make
1443 * sure the @node buffer is large enough to fit the node. Returns zero in case
1444 * of success, %-ENOENT if the node was not found, and a negative error code in
1445 * case of failure. The node location can be returned in @lnum and @offs.
1447 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1448 void *node, int *lnum, int *offs)
1450 int found, n, err, safely = 0, gc_seq1;
1451 struct ubifs_znode *znode;
1452 struct ubifs_zbranch zbr, *zt;
1454 again:
1455 mutex_lock(&c->tnc_mutex);
1456 found = ubifs_lookup_level0(c, key, &znode, &n);
1457 if (!found) {
1458 err = -ENOENT;
1459 goto out;
1460 } else if (found < 0) {
1461 err = found;
1462 goto out;
1464 zt = &znode->zbranch[n];
1465 if (lnum) {
1466 *lnum = zt->lnum;
1467 *offs = zt->offs;
1469 if (is_hash_key(c, key)) {
1471 * In this case the leaf node cache gets used, so we pass the
1472 * address of the zbranch and keep the mutex locked
1474 err = tnc_read_hashed_node(c, zt, node);
1475 goto out;
1477 if (safely) {
1478 err = ubifs_tnc_read_node(c, zt, node);
1479 goto out;
1481 /* Drop the TNC mutex prematurely and race with garbage collection */
1482 zbr = znode->zbranch[n];
1483 gc_seq1 = c->gc_seq;
1484 mutex_unlock(&c->tnc_mutex);
1486 if (ubifs_get_wbuf(c, zbr.lnum)) {
1487 /* We do not GC journal heads */
1488 err = ubifs_tnc_read_node(c, &zbr, node);
1489 return err;
1492 err = fallible_read_node(c, key, &zbr, node);
1493 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1495 * The node may have been GC'ed out from under us so try again
1496 * while keeping the TNC mutex locked.
1498 safely = 1;
1499 goto again;
1501 return 0;
1503 out:
1504 mutex_unlock(&c->tnc_mutex);
1505 return err;
1509 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1510 * @c: UBIFS file-system description object
1511 * @bu: bulk-read parameters and results
1513 * Lookup consecutive data node keys for the same inode that reside
1514 * consecutively in the same LEB. This function returns zero in case of success
1515 * and a negative error code in case of failure.
1517 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1518 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1519 * maximum possible amount of nodes for bulk-read.
1521 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1523 int n, err = 0, lnum = -1, uninitialized_var(offs);
1524 int uninitialized_var(len);
1525 unsigned int block = key_block(c, &bu->key);
1526 struct ubifs_znode *znode;
1528 bu->cnt = 0;
1529 bu->blk_cnt = 0;
1530 bu->eof = 0;
1532 mutex_lock(&c->tnc_mutex);
1533 /* Find first key */
1534 err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1535 if (err < 0)
1536 goto out;
1537 if (err) {
1538 /* Key found */
1539 len = znode->zbranch[n].len;
1540 /* The buffer must be big enough for at least 1 node */
1541 if (len > bu->buf_len) {
1542 err = -EINVAL;
1543 goto out;
1545 /* Add this key */
1546 bu->zbranch[bu->cnt++] = znode->zbranch[n];
1547 bu->blk_cnt += 1;
1548 lnum = znode->zbranch[n].lnum;
1549 offs = ALIGN(znode->zbranch[n].offs + len, 8);
1551 while (1) {
1552 struct ubifs_zbranch *zbr;
1553 union ubifs_key *key;
1554 unsigned int next_block;
1556 /* Find next key */
1557 err = tnc_next(c, &znode, &n);
1558 if (err)
1559 goto out;
1560 zbr = &znode->zbranch[n];
1561 key = &zbr->key;
1562 /* See if there is another data key for this file */
1563 if (key_inum(c, key) != key_inum(c, &bu->key) ||
1564 key_type(c, key) != UBIFS_DATA_KEY) {
1565 err = -ENOENT;
1566 goto out;
1568 if (lnum < 0) {
1569 /* First key found */
1570 lnum = zbr->lnum;
1571 offs = ALIGN(zbr->offs + zbr->len, 8);
1572 len = zbr->len;
1573 if (len > bu->buf_len) {
1574 err = -EINVAL;
1575 goto out;
1577 } else {
1579 * The data nodes must be in consecutive positions in
1580 * the same LEB.
1582 if (zbr->lnum != lnum || zbr->offs != offs)
1583 goto out;
1584 offs += ALIGN(zbr->len, 8);
1585 len = ALIGN(len, 8) + zbr->len;
1586 /* Must not exceed buffer length */
1587 if (len > bu->buf_len)
1588 goto out;
1590 /* Allow for holes */
1591 next_block = key_block(c, key);
1592 bu->blk_cnt += (next_block - block - 1);
1593 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1594 goto out;
1595 block = next_block;
1596 /* Add this key */
1597 bu->zbranch[bu->cnt++] = *zbr;
1598 bu->blk_cnt += 1;
1599 /* See if we have room for more */
1600 if (bu->cnt >= UBIFS_MAX_BULK_READ)
1601 goto out;
1602 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1603 goto out;
1605 out:
1606 if (err == -ENOENT) {
1607 bu->eof = 1;
1608 err = 0;
1610 bu->gc_seq = c->gc_seq;
1611 mutex_unlock(&c->tnc_mutex);
1612 if (err)
1613 return err;
1615 * An enormous hole could cause bulk-read to encompass too many
1616 * page cache pages, so limit the number here.
1618 if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1619 bu->blk_cnt = UBIFS_MAX_BULK_READ;
1621 * Ensure that bulk-read covers a whole number of page cache
1622 * pages.
1624 if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1625 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1626 return 0;
1627 if (bu->eof) {
1628 /* At the end of file we can round up */
1629 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1630 return 0;
1632 /* Exclude data nodes that do not make up a whole page cache page */
1633 block = key_block(c, &bu->key) + bu->blk_cnt;
1634 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1635 while (bu->cnt) {
1636 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1637 break;
1638 bu->cnt -= 1;
1640 return 0;
1644 * read_wbuf - bulk-read from a LEB with a wbuf.
1645 * @wbuf: wbuf that may overlap the read
1646 * @buf: buffer into which to read
1647 * @len: read length
1648 * @lnum: LEB number from which to read
1649 * @offs: offset from which to read
1651 * This functions returns %0 on success or a negative error code on failure.
1653 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1654 int offs)
1656 const struct ubifs_info *c = wbuf->c;
1657 int rlen, overlap;
1659 dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1660 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1661 ubifs_assert(!(offs & 7) && offs < c->leb_size);
1662 ubifs_assert(offs + len <= c->leb_size);
1664 spin_lock(&wbuf->lock);
1665 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1666 if (!overlap) {
1667 /* We may safely unlock the write-buffer and read the data */
1668 spin_unlock(&wbuf->lock);
1669 return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1672 /* Don't read under wbuf */
1673 rlen = wbuf->offs - offs;
1674 if (rlen < 0)
1675 rlen = 0;
1677 /* Copy the rest from the write-buffer */
1678 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1679 spin_unlock(&wbuf->lock);
1681 if (rlen > 0)
1682 /* Read everything that goes before write-buffer */
1683 return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1685 return 0;
1689 * validate_data_node - validate data nodes for bulk-read.
1690 * @c: UBIFS file-system description object
1691 * @buf: buffer containing data node to validate
1692 * @zbr: zbranch of data node to validate
1694 * This functions returns %0 on success or a negative error code on failure.
1696 static int validate_data_node(struct ubifs_info *c, void *buf,
1697 struct ubifs_zbranch *zbr)
1699 union ubifs_key key1;
1700 struct ubifs_ch *ch = buf;
1701 int err, len;
1703 if (ch->node_type != UBIFS_DATA_NODE) {
1704 ubifs_err(c, "bad node type (%d but expected %d)",
1705 ch->node_type, UBIFS_DATA_NODE);
1706 goto out_err;
1709 err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1710 if (err) {
1711 ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
1712 goto out;
1715 len = le32_to_cpu(ch->len);
1716 if (len != zbr->len) {
1717 ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
1718 goto out_err;
1721 /* Make sure the key of the read node is correct */
1722 key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1723 if (!keys_eq(c, &zbr->key, &key1)) {
1724 ubifs_err(c, "bad key in node at LEB %d:%d",
1725 zbr->lnum, zbr->offs);
1726 dbg_tnck(&zbr->key, "looked for key ");
1727 dbg_tnck(&key1, "found node's key ");
1728 goto out_err;
1731 return 0;
1733 out_err:
1734 err = -EINVAL;
1735 out:
1736 ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1737 ubifs_dump_node(c, buf);
1738 dump_stack();
1739 return err;
1743 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1744 * @c: UBIFS file-system description object
1745 * @bu: bulk-read parameters and results
1747 * This functions reads and validates the data nodes that were identified by the
1748 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1749 * -EAGAIN to indicate a race with GC, or another negative error code on
1750 * failure.
1752 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1754 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1755 struct ubifs_wbuf *wbuf;
1756 void *buf;
1758 len = bu->zbranch[bu->cnt - 1].offs;
1759 len += bu->zbranch[bu->cnt - 1].len - offs;
1760 if (len > bu->buf_len) {
1761 ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
1762 return -EINVAL;
1765 /* Do the read */
1766 wbuf = ubifs_get_wbuf(c, lnum);
1767 if (wbuf)
1768 err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1769 else
1770 err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1772 /* Check for a race with GC */
1773 if (maybe_leb_gced(c, lnum, bu->gc_seq))
1774 return -EAGAIN;
1776 if (err && err != -EBADMSG) {
1777 ubifs_err(c, "failed to read from LEB %d:%d, error %d",
1778 lnum, offs, err);
1779 dump_stack();
1780 dbg_tnck(&bu->key, "key ");
1781 return err;
1784 /* Validate the nodes read */
1785 buf = bu->buf;
1786 for (i = 0; i < bu->cnt; i++) {
1787 err = validate_data_node(c, buf, &bu->zbranch[i]);
1788 if (err)
1789 return err;
1790 buf = buf + ALIGN(bu->zbranch[i].len, 8);
1793 return 0;
1797 * do_lookup_nm- look up a "hashed" node.
1798 * @c: UBIFS file-system description object
1799 * @key: node key to lookup
1800 * @node: the node is returned here
1801 * @nm: node name
1803 * This function looks up and reads a node which contains name hash in the key.
1804 * Since the hash may have collisions, there may be many nodes with the same
1805 * key, so we have to sequentially look to all of them until the needed one is
1806 * found. This function returns zero in case of success, %-ENOENT if the node
1807 * was not found, and a negative error code in case of failure.
1809 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1810 void *node, const struct fscrypt_name *nm)
1812 int found, n, err;
1813 struct ubifs_znode *znode;
1815 dbg_tnck(key, "key ");
1816 mutex_lock(&c->tnc_mutex);
1817 found = ubifs_lookup_level0(c, key, &znode, &n);
1818 if (!found) {
1819 err = -ENOENT;
1820 goto out_unlock;
1821 } else if (found < 0) {
1822 err = found;
1823 goto out_unlock;
1826 ubifs_assert(n >= 0);
1828 err = resolve_collision(c, key, &znode, &n, nm);
1829 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1830 if (unlikely(err < 0))
1831 goto out_unlock;
1832 if (err == 0) {
1833 err = -ENOENT;
1834 goto out_unlock;
1837 err = tnc_read_hashed_node(c, &znode->zbranch[n], node);
1839 out_unlock:
1840 mutex_unlock(&c->tnc_mutex);
1841 return err;
1845 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1846 * @c: UBIFS file-system description object
1847 * @key: node key to lookup
1848 * @node: the node is returned here
1849 * @nm: node name
1851 * This function looks up and reads a node which contains name hash in the key.
1852 * Since the hash may have collisions, there may be many nodes with the same
1853 * key, so we have to sequentially look to all of them until the needed one is
1854 * found. This function returns zero in case of success, %-ENOENT if the node
1855 * was not found, and a negative error code in case of failure.
1857 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1858 void *node, const struct fscrypt_name *nm)
1860 int err, len;
1861 const struct ubifs_dent_node *dent = node;
1864 * We assume that in most of the cases there are no name collisions and
1865 * 'ubifs_tnc_lookup()' returns us the right direntry.
1867 err = ubifs_tnc_lookup(c, key, node);
1868 if (err)
1869 return err;
1871 len = le16_to_cpu(dent->nlen);
1872 if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len))
1873 return 0;
1876 * Unluckily, there are hash collisions and we have to iterate over
1877 * them look at each direntry with colliding name hash sequentially.
1880 return do_lookup_nm(c, key, node, nm);
1883 static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key,
1884 struct ubifs_dent_node *dent, uint32_t cookie,
1885 struct ubifs_znode **zn, int *n)
1887 int err;
1888 struct ubifs_znode *znode = *zn;
1889 struct ubifs_zbranch *zbr;
1890 union ubifs_key *dkey;
1892 for (;;) {
1893 zbr = &znode->zbranch[*n];
1894 dkey = &zbr->key;
1896 if (key_inum(c, dkey) != key_inum(c, key) ||
1897 key_type(c, dkey) != key_type(c, key)) {
1898 return -ENOENT;
1901 err = tnc_read_hashed_node(c, zbr, dent);
1902 if (err)
1903 return err;
1905 if (key_hash(c, key) == key_hash(c, dkey) &&
1906 le32_to_cpu(dent->cookie) == cookie) {
1907 *zn = znode;
1908 return 0;
1911 err = tnc_next(c, &znode, n);
1912 if (err)
1913 return err;
1917 static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1918 struct ubifs_dent_node *dent, uint32_t cookie)
1920 int n, err;
1921 struct ubifs_znode *znode;
1922 union ubifs_key start_key;
1924 ubifs_assert(is_hash_key(c, key));
1926 lowest_dent_key(c, &start_key, key_inum(c, key));
1928 mutex_lock(&c->tnc_mutex);
1929 err = ubifs_lookup_level0(c, &start_key, &znode, &n);
1930 if (unlikely(err < 0))
1931 goto out_unlock;
1933 err = search_dh_cookie(c, key, dent, cookie, &znode, &n);
1935 out_unlock:
1936 mutex_unlock(&c->tnc_mutex);
1937 return err;
1941 * ubifs_tnc_lookup_dh - look up a "double hashed" node.
1942 * @c: UBIFS file-system description object
1943 * @key: node key to lookup
1944 * @node: the node is returned here
1945 * @cookie: node cookie for collision resolution
1947 * This function looks up and reads a node which contains name hash in the key.
1948 * Since the hash may have collisions, there may be many nodes with the same
1949 * key, so we have to sequentially look to all of them until the needed one
1950 * with the same cookie value is found.
1951 * This function returns zero in case of success, %-ENOENT if the node
1952 * was not found, and a negative error code in case of failure.
1954 int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1955 void *node, uint32_t cookie)
1957 int err;
1958 const struct ubifs_dent_node *dent = node;
1960 if (!c->double_hash)
1961 return -EOPNOTSUPP;
1964 * We assume that in most of the cases there are no name collisions and
1965 * 'ubifs_tnc_lookup()' returns us the right direntry.
1967 err = ubifs_tnc_lookup(c, key, node);
1968 if (err)
1969 return err;
1971 if (le32_to_cpu(dent->cookie) == cookie)
1972 return 0;
1975 * Unluckily, there are hash collisions and we have to iterate over
1976 * them look at each direntry with colliding name hash sequentially.
1978 return do_lookup_dh(c, key, node, cookie);
1982 * correct_parent_keys - correct parent znodes' keys.
1983 * @c: UBIFS file-system description object
1984 * @znode: znode to correct parent znodes for
1986 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1987 * zbranch changes, keys of parent znodes have to be corrected. This helper
1988 * function is called in such situations and corrects the keys if needed.
1990 static void correct_parent_keys(const struct ubifs_info *c,
1991 struct ubifs_znode *znode)
1993 union ubifs_key *key, *key1;
1995 ubifs_assert(znode->parent);
1996 ubifs_assert(znode->iip == 0);
1998 key = &znode->zbranch[0].key;
1999 key1 = &znode->parent->zbranch[0].key;
2001 while (keys_cmp(c, key, key1) < 0) {
2002 key_copy(c, key, key1);
2003 znode = znode->parent;
2004 znode->alt = 1;
2005 if (!znode->parent || znode->iip)
2006 break;
2007 key1 = &znode->parent->zbranch[0].key;
2012 * insert_zbranch - insert a zbranch into a znode.
2013 * @znode: znode into which to insert
2014 * @zbr: zbranch to insert
2015 * @n: slot number to insert to
2017 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
2018 * znode's array of zbranches and keeps zbranches consolidated, so when a new
2019 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
2020 * slot, zbranches starting from @n have to be moved right.
2022 static void insert_zbranch(struct ubifs_znode *znode,
2023 const struct ubifs_zbranch *zbr, int n)
2025 int i;
2027 ubifs_assert(ubifs_zn_dirty(znode));
2029 if (znode->level) {
2030 for (i = znode->child_cnt; i > n; i--) {
2031 znode->zbranch[i] = znode->zbranch[i - 1];
2032 if (znode->zbranch[i].znode)
2033 znode->zbranch[i].znode->iip = i;
2035 if (zbr->znode)
2036 zbr->znode->iip = n;
2037 } else
2038 for (i = znode->child_cnt; i > n; i--)
2039 znode->zbranch[i] = znode->zbranch[i - 1];
2041 znode->zbranch[n] = *zbr;
2042 znode->child_cnt += 1;
2045 * After inserting at slot zero, the lower bound of the key range of
2046 * this znode may have changed. If this znode is subsequently split
2047 * then the upper bound of the key range may change, and furthermore
2048 * it could change to be lower than the original lower bound. If that
2049 * happens, then it will no longer be possible to find this znode in the
2050 * TNC using the key from the index node on flash. That is bad because
2051 * if it is not found, we will assume it is obsolete and may overwrite
2052 * it. Then if there is an unclean unmount, we will start using the
2053 * old index which will be broken.
2055 * So we first mark znodes that have insertions at slot zero, and then
2056 * if they are split we add their lnum/offs to the old_idx tree.
2058 if (n == 0)
2059 znode->alt = 1;
2063 * tnc_insert - insert a node into TNC.
2064 * @c: UBIFS file-system description object
2065 * @znode: znode to insert into
2066 * @zbr: branch to insert
2067 * @n: slot number to insert new zbranch to
2069 * This function inserts a new node described by @zbr into znode @znode. If
2070 * znode does not have a free slot for new zbranch, it is split. Parent znodes
2071 * are splat as well if needed. Returns zero in case of success or a negative
2072 * error code in case of failure.
2074 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
2075 struct ubifs_zbranch *zbr, int n)
2077 struct ubifs_znode *zn, *zi, *zp;
2078 int i, keep, move, appending = 0;
2079 union ubifs_key *key = &zbr->key, *key1;
2081 ubifs_assert(n >= 0 && n <= c->fanout);
2083 /* Implement naive insert for now */
2084 again:
2085 zp = znode->parent;
2086 if (znode->child_cnt < c->fanout) {
2087 ubifs_assert(n != c->fanout);
2088 dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
2090 insert_zbranch(znode, zbr, n);
2092 /* Ensure parent's key is correct */
2093 if (n == 0 && zp && znode->iip == 0)
2094 correct_parent_keys(c, znode);
2096 return 0;
2100 * Unfortunately, @znode does not have more empty slots and we have to
2101 * split it.
2103 dbg_tnck(key, "splitting level %d, key ", znode->level);
2105 if (znode->alt)
2107 * We can no longer be sure of finding this znode by key, so we
2108 * record it in the old_idx tree.
2110 ins_clr_old_idx_znode(c, znode);
2112 zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2113 if (!zn)
2114 return -ENOMEM;
2115 zn->parent = zp;
2116 zn->level = znode->level;
2118 /* Decide where to split */
2119 if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2120 /* Try not to split consecutive data keys */
2121 if (n == c->fanout) {
2122 key1 = &znode->zbranch[n - 1].key;
2123 if (key_inum(c, key1) == key_inum(c, key) &&
2124 key_type(c, key1) == UBIFS_DATA_KEY)
2125 appending = 1;
2126 } else
2127 goto check_split;
2128 } else if (appending && n != c->fanout) {
2129 /* Try not to split consecutive data keys */
2130 appending = 0;
2131 check_split:
2132 if (n >= (c->fanout + 1) / 2) {
2133 key1 = &znode->zbranch[0].key;
2134 if (key_inum(c, key1) == key_inum(c, key) &&
2135 key_type(c, key1) == UBIFS_DATA_KEY) {
2136 key1 = &znode->zbranch[n].key;
2137 if (key_inum(c, key1) != key_inum(c, key) ||
2138 key_type(c, key1) != UBIFS_DATA_KEY) {
2139 keep = n;
2140 move = c->fanout - keep;
2141 zi = znode;
2142 goto do_split;
2148 if (appending) {
2149 keep = c->fanout;
2150 move = 0;
2151 } else {
2152 keep = (c->fanout + 1) / 2;
2153 move = c->fanout - keep;
2157 * Although we don't at present, we could look at the neighbors and see
2158 * if we can move some zbranches there.
2161 if (n < keep) {
2162 /* Insert into existing znode */
2163 zi = znode;
2164 move += 1;
2165 keep -= 1;
2166 } else {
2167 /* Insert into new znode */
2168 zi = zn;
2169 n -= keep;
2170 /* Re-parent */
2171 if (zn->level != 0)
2172 zbr->znode->parent = zn;
2175 do_split:
2177 __set_bit(DIRTY_ZNODE, &zn->flags);
2178 atomic_long_inc(&c->dirty_zn_cnt);
2180 zn->child_cnt = move;
2181 znode->child_cnt = keep;
2183 dbg_tnc("moving %d, keeping %d", move, keep);
2185 /* Move zbranch */
2186 for (i = 0; i < move; i++) {
2187 zn->zbranch[i] = znode->zbranch[keep + i];
2188 /* Re-parent */
2189 if (zn->level != 0)
2190 if (zn->zbranch[i].znode) {
2191 zn->zbranch[i].znode->parent = zn;
2192 zn->zbranch[i].znode->iip = i;
2196 /* Insert new key and branch */
2197 dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2199 insert_zbranch(zi, zbr, n);
2201 /* Insert new znode (produced by spitting) into the parent */
2202 if (zp) {
2203 if (n == 0 && zi == znode && znode->iip == 0)
2204 correct_parent_keys(c, znode);
2206 /* Locate insertion point */
2207 n = znode->iip + 1;
2209 /* Tail recursion */
2210 zbr->key = zn->zbranch[0].key;
2211 zbr->znode = zn;
2212 zbr->lnum = 0;
2213 zbr->offs = 0;
2214 zbr->len = 0;
2215 znode = zp;
2217 goto again;
2220 /* We have to split root znode */
2221 dbg_tnc("creating new zroot at level %d", znode->level + 1);
2223 zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2224 if (!zi)
2225 return -ENOMEM;
2227 zi->child_cnt = 2;
2228 zi->level = znode->level + 1;
2230 __set_bit(DIRTY_ZNODE, &zi->flags);
2231 atomic_long_inc(&c->dirty_zn_cnt);
2233 zi->zbranch[0].key = znode->zbranch[0].key;
2234 zi->zbranch[0].znode = znode;
2235 zi->zbranch[0].lnum = c->zroot.lnum;
2236 zi->zbranch[0].offs = c->zroot.offs;
2237 zi->zbranch[0].len = c->zroot.len;
2238 zi->zbranch[1].key = zn->zbranch[0].key;
2239 zi->zbranch[1].znode = zn;
2241 c->zroot.lnum = 0;
2242 c->zroot.offs = 0;
2243 c->zroot.len = 0;
2244 c->zroot.znode = zi;
2246 zn->parent = zi;
2247 zn->iip = 1;
2248 znode->parent = zi;
2249 znode->iip = 0;
2251 return 0;
2255 * ubifs_tnc_add - add a node to TNC.
2256 * @c: UBIFS file-system description object
2257 * @key: key to add
2258 * @lnum: LEB number of node
2259 * @offs: node offset
2260 * @len: node length
2262 * This function adds a node with key @key to TNC. The node may be new or it may
2263 * obsolete some existing one. Returns %0 on success or negative error code on
2264 * failure.
2266 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2267 int offs, int len)
2269 int found, n, err = 0;
2270 struct ubifs_znode *znode;
2272 mutex_lock(&c->tnc_mutex);
2273 dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2274 found = lookup_level0_dirty(c, key, &znode, &n);
2275 if (!found) {
2276 struct ubifs_zbranch zbr;
2278 zbr.znode = NULL;
2279 zbr.lnum = lnum;
2280 zbr.offs = offs;
2281 zbr.len = len;
2282 key_copy(c, key, &zbr.key);
2283 err = tnc_insert(c, znode, &zbr, n + 1);
2284 } else if (found == 1) {
2285 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2287 lnc_free(zbr);
2288 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2289 zbr->lnum = lnum;
2290 zbr->offs = offs;
2291 zbr->len = len;
2292 } else
2293 err = found;
2294 if (!err)
2295 err = dbg_check_tnc(c, 0);
2296 mutex_unlock(&c->tnc_mutex);
2298 return err;
2302 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2303 * @c: UBIFS file-system description object
2304 * @key: key to add
2305 * @old_lnum: LEB number of old node
2306 * @old_offs: old node offset
2307 * @lnum: LEB number of node
2308 * @offs: node offset
2309 * @len: node length
2311 * This function replaces a node with key @key in the TNC only if the old node
2312 * is found. This function is called by garbage collection when node are moved.
2313 * Returns %0 on success or negative error code on failure.
2315 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2316 int old_lnum, int old_offs, int lnum, int offs, int len)
2318 int found, n, err = 0;
2319 struct ubifs_znode *znode;
2321 mutex_lock(&c->tnc_mutex);
2322 dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2323 old_offs, lnum, offs, len);
2324 found = lookup_level0_dirty(c, key, &znode, &n);
2325 if (found < 0) {
2326 err = found;
2327 goto out_unlock;
2330 if (found == 1) {
2331 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2333 found = 0;
2334 if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2335 lnc_free(zbr);
2336 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2337 if (err)
2338 goto out_unlock;
2339 zbr->lnum = lnum;
2340 zbr->offs = offs;
2341 zbr->len = len;
2342 found = 1;
2343 } else if (is_hash_key(c, key)) {
2344 found = resolve_collision_directly(c, key, &znode, &n,
2345 old_lnum, old_offs);
2346 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2347 found, znode, n, old_lnum, old_offs);
2348 if (found < 0) {
2349 err = found;
2350 goto out_unlock;
2353 if (found) {
2354 /* Ensure the znode is dirtied */
2355 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2356 znode = dirty_cow_bottom_up(c, znode);
2357 if (IS_ERR(znode)) {
2358 err = PTR_ERR(znode);
2359 goto out_unlock;
2362 zbr = &znode->zbranch[n];
2363 lnc_free(zbr);
2364 err = ubifs_add_dirt(c, zbr->lnum,
2365 zbr->len);
2366 if (err)
2367 goto out_unlock;
2368 zbr->lnum = lnum;
2369 zbr->offs = offs;
2370 zbr->len = len;
2375 if (!found)
2376 err = ubifs_add_dirt(c, lnum, len);
2378 if (!err)
2379 err = dbg_check_tnc(c, 0);
2381 out_unlock:
2382 mutex_unlock(&c->tnc_mutex);
2383 return err;
2387 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2388 * @c: UBIFS file-system description object
2389 * @key: key to add
2390 * @lnum: LEB number of node
2391 * @offs: node offset
2392 * @len: node length
2393 * @nm: node name
2395 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2396 * may have collisions, like directory entry keys.
2398 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2399 int lnum, int offs, int len,
2400 const struct fscrypt_name *nm)
2402 int found, n, err = 0;
2403 struct ubifs_znode *znode;
2405 mutex_lock(&c->tnc_mutex);
2406 dbg_tnck(key, "LEB %d:%d, key ", lnum, offs);
2407 found = lookup_level0_dirty(c, key, &znode, &n);
2408 if (found < 0) {
2409 err = found;
2410 goto out_unlock;
2413 if (found == 1) {
2414 if (c->replaying)
2415 found = fallible_resolve_collision(c, key, &znode, &n,
2416 nm, 1);
2417 else
2418 found = resolve_collision(c, key, &znode, &n, nm);
2419 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2420 if (found < 0) {
2421 err = found;
2422 goto out_unlock;
2425 /* Ensure the znode is dirtied */
2426 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2427 znode = dirty_cow_bottom_up(c, znode);
2428 if (IS_ERR(znode)) {
2429 err = PTR_ERR(znode);
2430 goto out_unlock;
2434 if (found == 1) {
2435 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2437 lnc_free(zbr);
2438 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2439 zbr->lnum = lnum;
2440 zbr->offs = offs;
2441 zbr->len = len;
2442 goto out_unlock;
2446 if (!found) {
2447 struct ubifs_zbranch zbr;
2449 zbr.znode = NULL;
2450 zbr.lnum = lnum;
2451 zbr.offs = offs;
2452 zbr.len = len;
2453 key_copy(c, key, &zbr.key);
2454 err = tnc_insert(c, znode, &zbr, n + 1);
2455 if (err)
2456 goto out_unlock;
2457 if (c->replaying) {
2459 * We did not find it in the index so there may be a
2460 * dangling branch still in the index. So we remove it
2461 * by passing 'ubifs_tnc_remove_nm()' the same key but
2462 * an unmatchable name.
2464 struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } };
2466 err = dbg_check_tnc(c, 0);
2467 mutex_unlock(&c->tnc_mutex);
2468 if (err)
2469 return err;
2470 return ubifs_tnc_remove_nm(c, key, &noname);
2474 out_unlock:
2475 if (!err)
2476 err = dbg_check_tnc(c, 0);
2477 mutex_unlock(&c->tnc_mutex);
2478 return err;
2482 * tnc_delete - delete a znode form TNC.
2483 * @c: UBIFS file-system description object
2484 * @znode: znode to delete from
2485 * @n: zbranch slot number to delete
2487 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2488 * case of success and a negative error code in case of failure.
2490 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2492 struct ubifs_zbranch *zbr;
2493 struct ubifs_znode *zp;
2494 int i, err;
2496 /* Delete without merge for now */
2497 ubifs_assert(znode->level == 0);
2498 ubifs_assert(n >= 0 && n < c->fanout);
2499 dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2501 zbr = &znode->zbranch[n];
2502 lnc_free(zbr);
2504 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2505 if (err) {
2506 ubifs_dump_znode(c, znode);
2507 return err;
2510 /* We do not "gap" zbranch slots */
2511 for (i = n; i < znode->child_cnt - 1; i++)
2512 znode->zbranch[i] = znode->zbranch[i + 1];
2513 znode->child_cnt -= 1;
2515 if (znode->child_cnt > 0)
2516 return 0;
2519 * This was the last zbranch, we have to delete this znode from the
2520 * parent.
2523 do {
2524 ubifs_assert(!ubifs_zn_obsolete(znode));
2525 ubifs_assert(ubifs_zn_dirty(znode));
2527 zp = znode->parent;
2528 n = znode->iip;
2530 atomic_long_dec(&c->dirty_zn_cnt);
2532 err = insert_old_idx_znode(c, znode);
2533 if (err)
2534 return err;
2536 if (znode->cnext) {
2537 __set_bit(OBSOLETE_ZNODE, &znode->flags);
2538 atomic_long_inc(&c->clean_zn_cnt);
2539 atomic_long_inc(&ubifs_clean_zn_cnt);
2540 } else
2541 kfree(znode);
2542 znode = zp;
2543 } while (znode->child_cnt == 1); /* while removing last child */
2545 /* Remove from znode, entry n - 1 */
2546 znode->child_cnt -= 1;
2547 ubifs_assert(znode->level != 0);
2548 for (i = n; i < znode->child_cnt; i++) {
2549 znode->zbranch[i] = znode->zbranch[i + 1];
2550 if (znode->zbranch[i].znode)
2551 znode->zbranch[i].znode->iip = i;
2555 * If this is the root and it has only 1 child then
2556 * collapse the tree.
2558 if (!znode->parent) {
2559 while (znode->child_cnt == 1 && znode->level != 0) {
2560 zp = znode;
2561 zbr = &znode->zbranch[0];
2562 znode = get_znode(c, znode, 0);
2563 if (IS_ERR(znode))
2564 return PTR_ERR(znode);
2565 znode = dirty_cow_znode(c, zbr);
2566 if (IS_ERR(znode))
2567 return PTR_ERR(znode);
2568 znode->parent = NULL;
2569 znode->iip = 0;
2570 if (c->zroot.len) {
2571 err = insert_old_idx(c, c->zroot.lnum,
2572 c->zroot.offs);
2573 if (err)
2574 return err;
2576 c->zroot.lnum = zbr->lnum;
2577 c->zroot.offs = zbr->offs;
2578 c->zroot.len = zbr->len;
2579 c->zroot.znode = znode;
2580 ubifs_assert(!ubifs_zn_obsolete(zp));
2581 ubifs_assert(ubifs_zn_dirty(zp));
2582 atomic_long_dec(&c->dirty_zn_cnt);
2584 if (zp->cnext) {
2585 __set_bit(OBSOLETE_ZNODE, &zp->flags);
2586 atomic_long_inc(&c->clean_zn_cnt);
2587 atomic_long_inc(&ubifs_clean_zn_cnt);
2588 } else
2589 kfree(zp);
2593 return 0;
2597 * ubifs_tnc_remove - remove an index entry of a node.
2598 * @c: UBIFS file-system description object
2599 * @key: key of node
2601 * Returns %0 on success or negative error code on failure.
2603 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2605 int found, n, err = 0;
2606 struct ubifs_znode *znode;
2608 mutex_lock(&c->tnc_mutex);
2609 dbg_tnck(key, "key ");
2610 found = lookup_level0_dirty(c, key, &znode, &n);
2611 if (found < 0) {
2612 err = found;
2613 goto out_unlock;
2615 if (found == 1)
2616 err = tnc_delete(c, znode, n);
2617 if (!err)
2618 err = dbg_check_tnc(c, 0);
2620 out_unlock:
2621 mutex_unlock(&c->tnc_mutex);
2622 return err;
2626 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2627 * @c: UBIFS file-system description object
2628 * @key: key of node
2629 * @nm: directory entry name
2631 * Returns %0 on success or negative error code on failure.
2633 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2634 const struct fscrypt_name *nm)
2636 int n, err;
2637 struct ubifs_znode *znode;
2639 mutex_lock(&c->tnc_mutex);
2640 dbg_tnck(key, "key ");
2641 err = lookup_level0_dirty(c, key, &znode, &n);
2642 if (err < 0)
2643 goto out_unlock;
2645 if (err) {
2646 if (c->replaying)
2647 err = fallible_resolve_collision(c, key, &znode, &n,
2648 nm, 0);
2649 else
2650 err = resolve_collision(c, key, &znode, &n, nm);
2651 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2652 if (err < 0)
2653 goto out_unlock;
2654 if (err) {
2655 /* Ensure the znode is dirtied */
2656 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2657 znode = dirty_cow_bottom_up(c, znode);
2658 if (IS_ERR(znode)) {
2659 err = PTR_ERR(znode);
2660 goto out_unlock;
2663 err = tnc_delete(c, znode, n);
2667 out_unlock:
2668 if (!err)
2669 err = dbg_check_tnc(c, 0);
2670 mutex_unlock(&c->tnc_mutex);
2671 return err;
2675 * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node.
2676 * @c: UBIFS file-system description object
2677 * @key: key of node
2678 * @cookie: node cookie for collision resolution
2680 * Returns %0 on success or negative error code on failure.
2682 int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key,
2683 uint32_t cookie)
2685 int n, err;
2686 struct ubifs_znode *znode;
2687 struct ubifs_dent_node *dent;
2688 struct ubifs_zbranch *zbr;
2690 if (!c->double_hash)
2691 return -EOPNOTSUPP;
2693 mutex_lock(&c->tnc_mutex);
2694 err = lookup_level0_dirty(c, key, &znode, &n);
2695 if (err <= 0)
2696 goto out_unlock;
2698 zbr = &znode->zbranch[n];
2699 dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
2700 if (!dent) {
2701 err = -ENOMEM;
2702 goto out_unlock;
2705 err = tnc_read_hashed_node(c, zbr, dent);
2706 if (err)
2707 goto out_free;
2709 /* If the cookie does not match, we're facing a hash collision. */
2710 if (le32_to_cpu(dent->cookie) != cookie) {
2711 union ubifs_key start_key;
2713 lowest_dent_key(c, &start_key, key_inum(c, key));
2715 err = ubifs_lookup_level0(c, &start_key, &znode, &n);
2716 if (unlikely(err < 0))
2717 goto out_free;
2719 err = search_dh_cookie(c, key, dent, cookie, &znode, &n);
2720 if (err)
2721 goto out_free;
2724 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2725 znode = dirty_cow_bottom_up(c, znode);
2726 if (IS_ERR(znode)) {
2727 err = PTR_ERR(znode);
2728 goto out_free;
2731 err = tnc_delete(c, znode, n);
2733 out_free:
2734 kfree(dent);
2735 out_unlock:
2736 if (!err)
2737 err = dbg_check_tnc(c, 0);
2738 mutex_unlock(&c->tnc_mutex);
2739 return err;
2743 * key_in_range - determine if a key falls within a range of keys.
2744 * @c: UBIFS file-system description object
2745 * @key: key to check
2746 * @from_key: lowest key in range
2747 * @to_key: highest key in range
2749 * This function returns %1 if the key is in range and %0 otherwise.
2751 static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2752 union ubifs_key *from_key, union ubifs_key *to_key)
2754 if (keys_cmp(c, key, from_key) < 0)
2755 return 0;
2756 if (keys_cmp(c, key, to_key) > 0)
2757 return 0;
2758 return 1;
2762 * ubifs_tnc_remove_range - remove index entries in range.
2763 * @c: UBIFS file-system description object
2764 * @from_key: lowest key to remove
2765 * @to_key: highest key to remove
2767 * This function removes index entries starting at @from_key and ending at
2768 * @to_key. This function returns zero in case of success and a negative error
2769 * code in case of failure.
2771 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2772 union ubifs_key *to_key)
2774 int i, n, k, err = 0;
2775 struct ubifs_znode *znode;
2776 union ubifs_key *key;
2778 mutex_lock(&c->tnc_mutex);
2779 while (1) {
2780 /* Find first level 0 znode that contains keys to remove */
2781 err = ubifs_lookup_level0(c, from_key, &znode, &n);
2782 if (err < 0)
2783 goto out_unlock;
2785 if (err)
2786 key = from_key;
2787 else {
2788 err = tnc_next(c, &znode, &n);
2789 if (err == -ENOENT) {
2790 err = 0;
2791 goto out_unlock;
2793 if (err < 0)
2794 goto out_unlock;
2795 key = &znode->zbranch[n].key;
2796 if (!key_in_range(c, key, from_key, to_key)) {
2797 err = 0;
2798 goto out_unlock;
2802 /* Ensure the znode is dirtied */
2803 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2804 znode = dirty_cow_bottom_up(c, znode);
2805 if (IS_ERR(znode)) {
2806 err = PTR_ERR(znode);
2807 goto out_unlock;
2811 /* Remove all keys in range except the first */
2812 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2813 key = &znode->zbranch[i].key;
2814 if (!key_in_range(c, key, from_key, to_key))
2815 break;
2816 lnc_free(&znode->zbranch[i]);
2817 err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2818 znode->zbranch[i].len);
2819 if (err) {
2820 ubifs_dump_znode(c, znode);
2821 goto out_unlock;
2823 dbg_tnck(key, "removing key ");
2825 if (k) {
2826 for (i = n + 1 + k; i < znode->child_cnt; i++)
2827 znode->zbranch[i - k] = znode->zbranch[i];
2828 znode->child_cnt -= k;
2831 /* Now delete the first */
2832 err = tnc_delete(c, znode, n);
2833 if (err)
2834 goto out_unlock;
2837 out_unlock:
2838 if (!err)
2839 err = dbg_check_tnc(c, 0);
2840 mutex_unlock(&c->tnc_mutex);
2841 return err;
2845 * ubifs_tnc_remove_ino - remove an inode from TNC.
2846 * @c: UBIFS file-system description object
2847 * @inum: inode number to remove
2849 * This function remove inode @inum and all the extended attributes associated
2850 * with the anode from TNC and returns zero in case of success or a negative
2851 * error code in case of failure.
2853 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2855 union ubifs_key key1, key2;
2856 struct ubifs_dent_node *xent, *pxent = NULL;
2857 struct fscrypt_name nm = {0};
2859 dbg_tnc("ino %lu", (unsigned long)inum);
2862 * Walk all extended attribute entries and remove them together with
2863 * corresponding extended attribute inodes.
2865 lowest_xent_key(c, &key1, inum);
2866 while (1) {
2867 ino_t xattr_inum;
2868 int err;
2870 xent = ubifs_tnc_next_ent(c, &key1, &nm);
2871 if (IS_ERR(xent)) {
2872 err = PTR_ERR(xent);
2873 if (err == -ENOENT)
2874 break;
2875 return err;
2878 xattr_inum = le64_to_cpu(xent->inum);
2879 dbg_tnc("xent '%s', ino %lu", xent->name,
2880 (unsigned long)xattr_inum);
2882 ubifs_evict_xattr_inode(c, xattr_inum);
2884 fname_name(&nm) = xent->name;
2885 fname_len(&nm) = le16_to_cpu(xent->nlen);
2886 err = ubifs_tnc_remove_nm(c, &key1, &nm);
2887 if (err) {
2888 kfree(xent);
2889 return err;
2892 lowest_ino_key(c, &key1, xattr_inum);
2893 highest_ino_key(c, &key2, xattr_inum);
2894 err = ubifs_tnc_remove_range(c, &key1, &key2);
2895 if (err) {
2896 kfree(xent);
2897 return err;
2900 kfree(pxent);
2901 pxent = xent;
2902 key_read(c, &xent->key, &key1);
2905 kfree(pxent);
2906 lowest_ino_key(c, &key1, inum);
2907 highest_ino_key(c, &key2, inum);
2909 return ubifs_tnc_remove_range(c, &key1, &key2);
2913 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2914 * @c: UBIFS file-system description object
2915 * @key: key of last entry
2916 * @nm: name of last entry found or %NULL
2918 * This function finds and reads the next directory or extended attribute entry
2919 * after the given key (@key) if there is one. @nm is used to resolve
2920 * collisions.
2922 * If the name of the current entry is not known and only the key is known,
2923 * @nm->name has to be %NULL. In this case the semantics of this function is a
2924 * little bit different and it returns the entry corresponding to this key, not
2925 * the next one. If the key was not found, the closest "right" entry is
2926 * returned.
2928 * If the fist entry has to be found, @key has to contain the lowest possible
2929 * key value for this inode and @name has to be %NULL.
2931 * This function returns the found directory or extended attribute entry node
2932 * in case of success, %-ENOENT is returned if no entry was found, and a
2933 * negative error code is returned in case of failure.
2935 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2936 union ubifs_key *key,
2937 const struct fscrypt_name *nm)
2939 int n, err, type = key_type(c, key);
2940 struct ubifs_znode *znode;
2941 struct ubifs_dent_node *dent;
2942 struct ubifs_zbranch *zbr;
2943 union ubifs_key *dkey;
2945 dbg_tnck(key, "key ");
2946 ubifs_assert(is_hash_key(c, key));
2948 mutex_lock(&c->tnc_mutex);
2949 err = ubifs_lookup_level0(c, key, &znode, &n);
2950 if (unlikely(err < 0))
2951 goto out_unlock;
2953 if (fname_len(nm) > 0) {
2954 if (err) {
2955 /* Handle collisions */
2956 if (c->replaying)
2957 err = fallible_resolve_collision(c, key, &znode, &n,
2958 nm, 0);
2959 else
2960 err = resolve_collision(c, key, &znode, &n, nm);
2961 dbg_tnc("rc returned %d, znode %p, n %d",
2962 err, znode, n);
2963 if (unlikely(err < 0))
2964 goto out_unlock;
2967 /* Now find next entry */
2968 err = tnc_next(c, &znode, &n);
2969 if (unlikely(err))
2970 goto out_unlock;
2971 } else {
2973 * The full name of the entry was not given, in which case the
2974 * behavior of this function is a little different and it
2975 * returns current entry, not the next one.
2977 if (!err) {
2979 * However, the given key does not exist in the TNC
2980 * tree and @znode/@n variables contain the closest
2981 * "preceding" element. Switch to the next one.
2983 err = tnc_next(c, &znode, &n);
2984 if (err)
2985 goto out_unlock;
2989 zbr = &znode->zbranch[n];
2990 dent = kmalloc(zbr->len, GFP_NOFS);
2991 if (unlikely(!dent)) {
2992 err = -ENOMEM;
2993 goto out_unlock;
2997 * The above 'tnc_next()' call could lead us to the next inode, check
2998 * this.
3000 dkey = &zbr->key;
3001 if (key_inum(c, dkey) != key_inum(c, key) ||
3002 key_type(c, dkey) != type) {
3003 err = -ENOENT;
3004 goto out_free;
3007 err = tnc_read_hashed_node(c, zbr, dent);
3008 if (unlikely(err))
3009 goto out_free;
3011 mutex_unlock(&c->tnc_mutex);
3012 return dent;
3014 out_free:
3015 kfree(dent);
3016 out_unlock:
3017 mutex_unlock(&c->tnc_mutex);
3018 return ERR_PTR(err);
3022 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
3023 * @c: UBIFS file-system description object
3025 * Destroy left-over obsolete znodes from a failed commit.
3027 static void tnc_destroy_cnext(struct ubifs_info *c)
3029 struct ubifs_znode *cnext;
3031 if (!c->cnext)
3032 return;
3033 ubifs_assert(c->cmt_state == COMMIT_BROKEN);
3034 cnext = c->cnext;
3035 do {
3036 struct ubifs_znode *znode = cnext;
3038 cnext = cnext->cnext;
3039 if (ubifs_zn_obsolete(znode))
3040 kfree(znode);
3041 } while (cnext && cnext != c->cnext);
3045 * ubifs_tnc_close - close TNC subsystem and free all related resources.
3046 * @c: UBIFS file-system description object
3048 void ubifs_tnc_close(struct ubifs_info *c)
3050 tnc_destroy_cnext(c);
3051 if (c->zroot.znode) {
3052 long n, freed;
3054 n = atomic_long_read(&c->clean_zn_cnt);
3055 freed = ubifs_destroy_tnc_subtree(c->zroot.znode);
3056 ubifs_assert(freed == n);
3057 atomic_long_sub(n, &ubifs_clean_zn_cnt);
3059 kfree(c->gap_lebs);
3060 kfree(c->ilebs);
3061 destroy_old_idx(c);
3065 * left_znode - get the znode to the left.
3066 * @c: UBIFS file-system description object
3067 * @znode: znode
3069 * This function returns a pointer to the znode to the left of @znode or NULL if
3070 * there is not one. A negative error code is returned on failure.
3072 static struct ubifs_znode *left_znode(struct ubifs_info *c,
3073 struct ubifs_znode *znode)
3075 int level = znode->level;
3077 while (1) {
3078 int n = znode->iip - 1;
3080 /* Go up until we can go left */
3081 znode = znode->parent;
3082 if (!znode)
3083 return NULL;
3084 if (n >= 0) {
3085 /* Now go down the rightmost branch to 'level' */
3086 znode = get_znode(c, znode, n);
3087 if (IS_ERR(znode))
3088 return znode;
3089 while (znode->level != level) {
3090 n = znode->child_cnt - 1;
3091 znode = get_znode(c, znode, n);
3092 if (IS_ERR(znode))
3093 return znode;
3095 break;
3098 return znode;
3102 * right_znode - get the znode to the right.
3103 * @c: UBIFS file-system description object
3104 * @znode: znode
3106 * This function returns a pointer to the znode to the right of @znode or NULL
3107 * if there is not one. A negative error code is returned on failure.
3109 static struct ubifs_znode *right_znode(struct ubifs_info *c,
3110 struct ubifs_znode *znode)
3112 int level = znode->level;
3114 while (1) {
3115 int n = znode->iip + 1;
3117 /* Go up until we can go right */
3118 znode = znode->parent;
3119 if (!znode)
3120 return NULL;
3121 if (n < znode->child_cnt) {
3122 /* Now go down the leftmost branch to 'level' */
3123 znode = get_znode(c, znode, n);
3124 if (IS_ERR(znode))
3125 return znode;
3126 while (znode->level != level) {
3127 znode = get_znode(c, znode, 0);
3128 if (IS_ERR(znode))
3129 return znode;
3131 break;
3134 return znode;
3138 * lookup_znode - find a particular indexing node from TNC.
3139 * @c: UBIFS file-system description object
3140 * @key: index node key to lookup
3141 * @level: index node level
3142 * @lnum: index node LEB number
3143 * @offs: index node offset
3145 * This function searches an indexing node by its first key @key and its
3146 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
3147 * nodes it traverses to TNC. This function is called for indexing nodes which
3148 * were found on the media by scanning, for example when garbage-collecting or
3149 * when doing in-the-gaps commit. This means that the indexing node which is
3150 * looked for does not have to have exactly the same leftmost key @key, because
3151 * the leftmost key may have been changed, in which case TNC will contain a
3152 * dirty znode which still refers the same @lnum:@offs. This function is clever
3153 * enough to recognize such indexing nodes.
3155 * Note, if a znode was deleted or changed too much, then this function will
3156 * not find it. For situations like this UBIFS has the old index RB-tree
3157 * (indexed by @lnum:@offs).
3159 * This function returns a pointer to the znode found or %NULL if it is not
3160 * found. A negative error code is returned on failure.
3162 static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
3163 union ubifs_key *key, int level,
3164 int lnum, int offs)
3166 struct ubifs_znode *znode, *zn;
3167 int n, nn;
3169 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
3172 * The arguments have probably been read off flash, so don't assume
3173 * they are valid.
3175 if (level < 0)
3176 return ERR_PTR(-EINVAL);
3178 /* Get the root znode */
3179 znode = c->zroot.znode;
3180 if (!znode) {
3181 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3182 if (IS_ERR(znode))
3183 return znode;
3185 /* Check if it is the one we are looking for */
3186 if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3187 return znode;
3188 /* Descend to the parent level i.e. (level + 1) */
3189 if (level >= znode->level)
3190 return NULL;
3191 while (1) {
3192 ubifs_search_zbranch(c, znode, key, &n);
3193 if (n < 0) {
3195 * We reached a znode where the leftmost key is greater
3196 * than the key we are searching for. This is the same
3197 * situation as the one described in a huge comment at
3198 * the end of the 'ubifs_lookup_level0()' function. And
3199 * for exactly the same reasons we have to try to look
3200 * left before giving up.
3202 znode = left_znode(c, znode);
3203 if (!znode)
3204 return NULL;
3205 if (IS_ERR(znode))
3206 return znode;
3207 ubifs_search_zbranch(c, znode, key, &n);
3208 ubifs_assert(n >= 0);
3210 if (znode->level == level + 1)
3211 break;
3212 znode = get_znode(c, znode, n);
3213 if (IS_ERR(znode))
3214 return znode;
3216 /* Check if the child is the one we are looking for */
3217 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3218 return get_znode(c, znode, n);
3219 /* If the key is unique, there is nowhere else to look */
3220 if (!is_hash_key(c, key))
3221 return NULL;
3223 * The key is not unique and so may be also in the znodes to either
3224 * side.
3226 zn = znode;
3227 nn = n;
3228 /* Look left */
3229 while (1) {
3230 /* Move one branch to the left */
3231 if (n)
3232 n -= 1;
3233 else {
3234 znode = left_znode(c, znode);
3235 if (!znode)
3236 break;
3237 if (IS_ERR(znode))
3238 return znode;
3239 n = znode->child_cnt - 1;
3241 /* Check it */
3242 if (znode->zbranch[n].lnum == lnum &&
3243 znode->zbranch[n].offs == offs)
3244 return get_znode(c, znode, n);
3245 /* Stop if the key is less than the one we are looking for */
3246 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3247 break;
3249 /* Back to the middle */
3250 znode = zn;
3251 n = nn;
3252 /* Look right */
3253 while (1) {
3254 /* Move one branch to the right */
3255 if (++n >= znode->child_cnt) {
3256 znode = right_znode(c, znode);
3257 if (!znode)
3258 break;
3259 if (IS_ERR(znode))
3260 return znode;
3261 n = 0;
3263 /* Check it */
3264 if (znode->zbranch[n].lnum == lnum &&
3265 znode->zbranch[n].offs == offs)
3266 return get_znode(c, znode, n);
3267 /* Stop if the key is greater than the one we are looking for */
3268 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3269 break;
3271 return NULL;
3275 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3276 * @c: UBIFS file-system description object
3277 * @key: key of index node
3278 * @level: index node level
3279 * @lnum: LEB number of index node
3280 * @offs: offset of index node
3282 * This function returns %0 if the index node is not referred to in the TNC, %1
3283 * if the index node is referred to in the TNC and the corresponding znode is
3284 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3285 * znode is clean, and a negative error code in case of failure.
3287 * Note, the @key argument has to be the key of the first child. Also note,
3288 * this function relies on the fact that 0:0 is never a valid LEB number and
3289 * offset for a main-area node.
3291 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3292 int lnum, int offs)
3294 struct ubifs_znode *znode;
3296 znode = lookup_znode(c, key, level, lnum, offs);
3297 if (!znode)
3298 return 0;
3299 if (IS_ERR(znode))
3300 return PTR_ERR(znode);
3302 return ubifs_zn_dirty(znode) ? 1 : 2;
3306 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3307 * @c: UBIFS file-system description object
3308 * @key: node key
3309 * @lnum: node LEB number
3310 * @offs: node offset
3312 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3313 * not, and a negative error code in case of failure.
3315 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3316 * and offset for a main-area node.
3318 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3319 int lnum, int offs)
3321 struct ubifs_zbranch *zbr;
3322 struct ubifs_znode *znode, *zn;
3323 int n, found, err, nn;
3324 const int unique = !is_hash_key(c, key);
3326 found = ubifs_lookup_level0(c, key, &znode, &n);
3327 if (found < 0)
3328 return found; /* Error code */
3329 if (!found)
3330 return 0;
3331 zbr = &znode->zbranch[n];
3332 if (lnum == zbr->lnum && offs == zbr->offs)
3333 return 1; /* Found it */
3334 if (unique)
3335 return 0;
3337 * Because the key is not unique, we have to look left
3338 * and right as well
3340 zn = znode;
3341 nn = n;
3342 /* Look left */
3343 while (1) {
3344 err = tnc_prev(c, &znode, &n);
3345 if (err == -ENOENT)
3346 break;
3347 if (err)
3348 return err;
3349 if (keys_cmp(c, key, &znode->zbranch[n].key))
3350 break;
3351 zbr = &znode->zbranch[n];
3352 if (lnum == zbr->lnum && offs == zbr->offs)
3353 return 1; /* Found it */
3355 /* Look right */
3356 znode = zn;
3357 n = nn;
3358 while (1) {
3359 err = tnc_next(c, &znode, &n);
3360 if (err) {
3361 if (err == -ENOENT)
3362 return 0;
3363 return err;
3365 if (keys_cmp(c, key, &znode->zbranch[n].key))
3366 break;
3367 zbr = &znode->zbranch[n];
3368 if (lnum == zbr->lnum && offs == zbr->offs)
3369 return 1; /* Found it */
3371 return 0;
3375 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3376 * @c: UBIFS file-system description object
3377 * @key: node key
3378 * @level: index node level (if it is an index node)
3379 * @lnum: node LEB number
3380 * @offs: node offset
3381 * @is_idx: non-zero if the node is an index node
3383 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3384 * negative error code in case of failure. For index nodes, @key has to be the
3385 * key of the first child. An index node is considered to be in the TNC only if
3386 * the corresponding znode is clean or has not been loaded.
3388 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3389 int lnum, int offs, int is_idx)
3391 int err;
3393 mutex_lock(&c->tnc_mutex);
3394 if (is_idx) {
3395 err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3396 if (err < 0)
3397 goto out_unlock;
3398 if (err == 1)
3399 /* The index node was found but it was dirty */
3400 err = 0;
3401 else if (err == 2)
3402 /* The index node was found and it was clean */
3403 err = 1;
3404 else
3405 BUG_ON(err != 0);
3406 } else
3407 err = is_leaf_node_in_tnc(c, key, lnum, offs);
3409 out_unlock:
3410 mutex_unlock(&c->tnc_mutex);
3411 return err;
3415 * ubifs_dirty_idx_node - dirty an index node.
3416 * @c: UBIFS file-system description object
3417 * @key: index node key
3418 * @level: index node level
3419 * @lnum: index node LEB number
3420 * @offs: index node offset
3422 * This function loads and dirties an index node so that it can be garbage
3423 * collected. The @key argument has to be the key of the first child. This
3424 * function relies on the fact that 0:0 is never a valid LEB number and offset
3425 * for a main-area node. Returns %0 on success and a negative error code on
3426 * failure.
3428 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3429 int lnum, int offs)
3431 struct ubifs_znode *znode;
3432 int err = 0;
3434 mutex_lock(&c->tnc_mutex);
3435 znode = lookup_znode(c, key, level, lnum, offs);
3436 if (!znode)
3437 goto out_unlock;
3438 if (IS_ERR(znode)) {
3439 err = PTR_ERR(znode);
3440 goto out_unlock;
3442 znode = dirty_cow_bottom_up(c, znode);
3443 if (IS_ERR(znode)) {
3444 err = PTR_ERR(znode);
3445 goto out_unlock;
3448 out_unlock:
3449 mutex_unlock(&c->tnc_mutex);
3450 return err;
3454 * dbg_check_inode_size - check if inode size is correct.
3455 * @c: UBIFS file-system description object
3456 * @inum: inode number
3457 * @size: inode size
3459 * This function makes sure that the inode size (@size) is correct and it does
3460 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3461 * if it has a data page beyond @size, and other negative error code in case of
3462 * other errors.
3464 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3465 loff_t size)
3467 int err, n;
3468 union ubifs_key from_key, to_key, *key;
3469 struct ubifs_znode *znode;
3470 unsigned int block;
3472 if (!S_ISREG(inode->i_mode))
3473 return 0;
3474 if (!dbg_is_chk_gen(c))
3475 return 0;
3477 block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3478 data_key_init(c, &from_key, inode->i_ino, block);
3479 highest_data_key(c, &to_key, inode->i_ino);
3481 mutex_lock(&c->tnc_mutex);
3482 err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3483 if (err < 0)
3484 goto out_unlock;
3486 if (err) {
3487 key = &from_key;
3488 goto out_dump;
3491 err = tnc_next(c, &znode, &n);
3492 if (err == -ENOENT) {
3493 err = 0;
3494 goto out_unlock;
3496 if (err < 0)
3497 goto out_unlock;
3499 ubifs_assert(err == 0);
3500 key = &znode->zbranch[n].key;
3501 if (!key_in_range(c, key, &from_key, &to_key))
3502 goto out_unlock;
3504 out_dump:
3505 block = key_block(c, key);
3506 ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
3507 (unsigned long)inode->i_ino, size,
3508 ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3509 mutex_unlock(&c->tnc_mutex);
3510 ubifs_dump_inode(c, inode);
3511 dump_stack();
3512 return -EINVAL;
3514 out_unlock:
3515 mutex_unlock(&c->tnc_mutex);
3516 return err;