xtensa: fix high memory/reserved memory collision
[cris-mirror.git] / include / crypto / hash.h
blob2d1849dffb807ec1806cbc2f86a8f6d42a53a9c7
1 /*
2 * Hash: Hash algorithms under the crypto API
3 *
4 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
13 #ifndef _CRYPTO_HASH_H
14 #define _CRYPTO_HASH_H
16 #include <linux/crypto.h>
17 #include <linux/string.h>
19 struct crypto_ahash;
21 /**
22 * DOC: Message Digest Algorithm Definitions
24 * These data structures define modular message digest algorithm
25 * implementations, managed via crypto_register_ahash(),
26 * crypto_register_shash(), crypto_unregister_ahash() and
27 * crypto_unregister_shash().
30 /**
31 * struct hash_alg_common - define properties of message digest
32 * @digestsize: Size of the result of the transformation. A buffer of this size
33 * must be available to the @final and @finup calls, so they can
34 * store the resulting hash into it. For various predefined sizes,
35 * search include/crypto/ using
36 * git grep _DIGEST_SIZE include/crypto.
37 * @statesize: Size of the block for partial state of the transformation. A
38 * buffer of this size must be passed to the @export function as it
39 * will save the partial state of the transformation into it. On the
40 * other side, the @import function will load the state from a
41 * buffer of this size as well.
42 * @base: Start of data structure of cipher algorithm. The common data
43 * structure of crypto_alg contains information common to all ciphers.
44 * The hash_alg_common data structure now adds the hash-specific
45 * information.
47 struct hash_alg_common {
48 unsigned int digestsize;
49 unsigned int statesize;
51 struct crypto_alg base;
54 struct ahash_request {
55 struct crypto_async_request base;
57 unsigned int nbytes;
58 struct scatterlist *src;
59 u8 *result;
61 /* This field may only be used by the ahash API code. */
62 void *priv;
64 void *__ctx[] CRYPTO_MINALIGN_ATTR;
67 #define AHASH_REQUEST_ON_STACK(name, ahash) \
68 char __##name##_desc[sizeof(struct ahash_request) + \
69 crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \
70 struct ahash_request *name = (void *)__##name##_desc
72 /**
73 * struct ahash_alg - asynchronous message digest definition
74 * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the
75 * state of the HASH transformation at the beginning. This shall fill in
76 * the internal structures used during the entire duration of the whole
77 * transformation. No data processing happens at this point.
78 * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This
79 * function actually pushes blocks of data from upper layers into the
80 * driver, which then passes those to the hardware as seen fit. This
81 * function must not finalize the HASH transformation by calculating the
82 * final message digest as this only adds more data into the
83 * transformation. This function shall not modify the transformation
84 * context, as this function may be called in parallel with the same
85 * transformation object. Data processing can happen synchronously
86 * [SHASH] or asynchronously [AHASH] at this point.
87 * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the
88 * transformation and retrieves the resulting hash from the driver and
89 * pushes it back to upper layers. No data processing happens at this
90 * point unless hardware requires it to finish the transformation
91 * (then the data buffered by the device driver is processed).
92 * @finup: **[optional]** Combination of @update and @final. This function is effectively a
93 * combination of @update and @final calls issued in sequence. As some
94 * hardware cannot do @update and @final separately, this callback was
95 * added to allow such hardware to be used at least by IPsec. Data
96 * processing can happen synchronously [SHASH] or asynchronously [AHASH]
97 * at this point.
98 * @digest: Combination of @init and @update and @final. This function
99 * effectively behaves as the entire chain of operations, @init,
100 * @update and @final issued in sequence. Just like @finup, this was
101 * added for hardware which cannot do even the @finup, but can only do
102 * the whole transformation in one run. Data processing can happen
103 * synchronously [SHASH] or asynchronously [AHASH] at this point.
104 * @setkey: Set optional key used by the hashing algorithm. Intended to push
105 * optional key used by the hashing algorithm from upper layers into
106 * the driver. This function can store the key in the transformation
107 * context or can outright program it into the hardware. In the former
108 * case, one must be careful to program the key into the hardware at
109 * appropriate time and one must be careful that .setkey() can be
110 * called multiple times during the existence of the transformation
111 * object. Not all hashing algorithms do implement this function as it
112 * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
113 * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
114 * this function. This function must be called before any other of the
115 * @init, @update, @final, @finup, @digest is called. No data
116 * processing happens at this point.
117 * @export: Export partial state of the transformation. This function dumps the
118 * entire state of the ongoing transformation into a provided block of
119 * data so it can be @import 'ed back later on. This is useful in case
120 * you want to save partial result of the transformation after
121 * processing certain amount of data and reload this partial result
122 * multiple times later on for multiple re-use. No data processing
123 * happens at this point.
124 * @import: Import partial state of the transformation. This function loads the
125 * entire state of the ongoing transformation from a provided block of
126 * data so the transformation can continue from this point onward. No
127 * data processing happens at this point.
128 * @halg: see struct hash_alg_common
130 struct ahash_alg {
131 int (*init)(struct ahash_request *req);
132 int (*update)(struct ahash_request *req);
133 int (*final)(struct ahash_request *req);
134 int (*finup)(struct ahash_request *req);
135 int (*digest)(struct ahash_request *req);
136 int (*export)(struct ahash_request *req, void *out);
137 int (*import)(struct ahash_request *req, const void *in);
138 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
139 unsigned int keylen);
141 struct hash_alg_common halg;
144 struct shash_desc {
145 struct crypto_shash *tfm;
146 u32 flags;
148 void *__ctx[] CRYPTO_MINALIGN_ATTR;
151 #define SHASH_DESC_ON_STACK(shash, ctx) \
152 char __##shash##_desc[sizeof(struct shash_desc) + \
153 crypto_shash_descsize(ctx)] CRYPTO_MINALIGN_ATTR; \
154 struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
157 * struct shash_alg - synchronous message digest definition
158 * @init: see struct ahash_alg
159 * @update: see struct ahash_alg
160 * @final: see struct ahash_alg
161 * @finup: see struct ahash_alg
162 * @digest: see struct ahash_alg
163 * @export: see struct ahash_alg
164 * @import: see struct ahash_alg
165 * @setkey: see struct ahash_alg
166 * @digestsize: see struct ahash_alg
167 * @statesize: see struct ahash_alg
168 * @descsize: Size of the operational state for the message digest. This state
169 * size is the memory size that needs to be allocated for
170 * shash_desc.__ctx
171 * @base: internally used
173 struct shash_alg {
174 int (*init)(struct shash_desc *desc);
175 int (*update)(struct shash_desc *desc, const u8 *data,
176 unsigned int len);
177 int (*final)(struct shash_desc *desc, u8 *out);
178 int (*finup)(struct shash_desc *desc, const u8 *data,
179 unsigned int len, u8 *out);
180 int (*digest)(struct shash_desc *desc, const u8 *data,
181 unsigned int len, u8 *out);
182 int (*export)(struct shash_desc *desc, void *out);
183 int (*import)(struct shash_desc *desc, const void *in);
184 int (*setkey)(struct crypto_shash *tfm, const u8 *key,
185 unsigned int keylen);
187 unsigned int descsize;
189 /* These fields must match hash_alg_common. */
190 unsigned int digestsize
191 __attribute__ ((aligned(__alignof__(struct hash_alg_common))));
192 unsigned int statesize;
194 struct crypto_alg base;
197 struct crypto_ahash {
198 int (*init)(struct ahash_request *req);
199 int (*update)(struct ahash_request *req);
200 int (*final)(struct ahash_request *req);
201 int (*finup)(struct ahash_request *req);
202 int (*digest)(struct ahash_request *req);
203 int (*export)(struct ahash_request *req, void *out);
204 int (*import)(struct ahash_request *req, const void *in);
205 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
206 unsigned int keylen);
208 unsigned int reqsize;
209 struct crypto_tfm base;
212 struct crypto_shash {
213 unsigned int descsize;
214 struct crypto_tfm base;
218 * DOC: Asynchronous Message Digest API
220 * The asynchronous message digest API is used with the ciphers of type
221 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
223 * The asynchronous cipher operation discussion provided for the
224 * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well.
227 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
229 return container_of(tfm, struct crypto_ahash, base);
233 * crypto_alloc_ahash() - allocate ahash cipher handle
234 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
235 * ahash cipher
236 * @type: specifies the type of the cipher
237 * @mask: specifies the mask for the cipher
239 * Allocate a cipher handle for an ahash. The returned struct
240 * crypto_ahash is the cipher handle that is required for any subsequent
241 * API invocation for that ahash.
243 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
244 * of an error, PTR_ERR() returns the error code.
246 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
247 u32 mask);
249 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
251 return &tfm->base;
255 * crypto_free_ahash() - zeroize and free the ahash handle
256 * @tfm: cipher handle to be freed
258 static inline void crypto_free_ahash(struct crypto_ahash *tfm)
260 crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
264 * crypto_has_ahash() - Search for the availability of an ahash.
265 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
266 * ahash
267 * @type: specifies the type of the ahash
268 * @mask: specifies the mask for the ahash
270 * Return: true when the ahash is known to the kernel crypto API; false
271 * otherwise
273 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
275 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
277 return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
280 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
282 return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
285 static inline unsigned int crypto_ahash_alignmask(
286 struct crypto_ahash *tfm)
288 return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
292 * crypto_ahash_blocksize() - obtain block size for cipher
293 * @tfm: cipher handle
295 * The block size for the message digest cipher referenced with the cipher
296 * handle is returned.
298 * Return: block size of cipher
300 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
302 return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
305 static inline struct hash_alg_common *__crypto_hash_alg_common(
306 struct crypto_alg *alg)
308 return container_of(alg, struct hash_alg_common, base);
311 static inline struct hash_alg_common *crypto_hash_alg_common(
312 struct crypto_ahash *tfm)
314 return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
318 * crypto_ahash_digestsize() - obtain message digest size
319 * @tfm: cipher handle
321 * The size for the message digest created by the message digest cipher
322 * referenced with the cipher handle is returned.
325 * Return: message digest size of cipher
327 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
329 return crypto_hash_alg_common(tfm)->digestsize;
333 * crypto_ahash_statesize() - obtain size of the ahash state
334 * @tfm: cipher handle
336 * Return the size of the ahash state. With the crypto_ahash_export()
337 * function, the caller can export the state into a buffer whose size is
338 * defined with this function.
340 * Return: size of the ahash state
342 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
344 return crypto_hash_alg_common(tfm)->statesize;
347 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
349 return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
352 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
354 crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
357 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
359 crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
363 * crypto_ahash_reqtfm() - obtain cipher handle from request
364 * @req: asynchronous request handle that contains the reference to the ahash
365 * cipher handle
367 * Return the ahash cipher handle that is registered with the asynchronous
368 * request handle ahash_request.
370 * Return: ahash cipher handle
372 static inline struct crypto_ahash *crypto_ahash_reqtfm(
373 struct ahash_request *req)
375 return __crypto_ahash_cast(req->base.tfm);
379 * crypto_ahash_reqsize() - obtain size of the request data structure
380 * @tfm: cipher handle
382 * Return: size of the request data
384 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
386 return tfm->reqsize;
389 static inline void *ahash_request_ctx(struct ahash_request *req)
391 return req->__ctx;
395 * crypto_ahash_setkey - set key for cipher handle
396 * @tfm: cipher handle
397 * @key: buffer holding the key
398 * @keylen: length of the key in bytes
400 * The caller provided key is set for the ahash cipher. The cipher
401 * handle must point to a keyed hash in order for this function to succeed.
403 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
405 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
406 unsigned int keylen);
409 * crypto_ahash_finup() - update and finalize message digest
410 * @req: reference to the ahash_request handle that holds all information
411 * needed to perform the cipher operation
413 * This function is a "short-hand" for the function calls of
414 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
415 * meaning as discussed for those separate functions.
417 * Return: see crypto_ahash_final()
419 int crypto_ahash_finup(struct ahash_request *req);
422 * crypto_ahash_final() - calculate message digest
423 * @req: reference to the ahash_request handle that holds all information
424 * needed to perform the cipher operation
426 * Finalize the message digest operation and create the message digest
427 * based on all data added to the cipher handle. The message digest is placed
428 * into the output buffer registered with the ahash_request handle.
430 * Return:
431 * 0 if the message digest was successfully calculated;
432 * -EINPROGRESS if data is feeded into hardware (DMA) or queued for later;
433 * -EBUSY if queue is full and request should be resubmitted later;
434 * other < 0 if an error occurred
436 int crypto_ahash_final(struct ahash_request *req);
439 * crypto_ahash_digest() - calculate message digest for a buffer
440 * @req: reference to the ahash_request handle that holds all information
441 * needed to perform the cipher operation
443 * This function is a "short-hand" for the function calls of crypto_ahash_init,
444 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
445 * meaning as discussed for those separate three functions.
447 * Return: see crypto_ahash_final()
449 int crypto_ahash_digest(struct ahash_request *req);
452 * crypto_ahash_export() - extract current message digest state
453 * @req: reference to the ahash_request handle whose state is exported
454 * @out: output buffer of sufficient size that can hold the hash state
456 * This function exports the hash state of the ahash_request handle into the
457 * caller-allocated output buffer out which must have sufficient size (e.g. by
458 * calling crypto_ahash_statesize()).
460 * Return: 0 if the export was successful; < 0 if an error occurred
462 static inline int crypto_ahash_export(struct ahash_request *req, void *out)
464 return crypto_ahash_reqtfm(req)->export(req, out);
468 * crypto_ahash_import() - import message digest state
469 * @req: reference to ahash_request handle the state is imported into
470 * @in: buffer holding the state
472 * This function imports the hash state into the ahash_request handle from the
473 * input buffer. That buffer should have been generated with the
474 * crypto_ahash_export function.
476 * Return: 0 if the import was successful; < 0 if an error occurred
478 static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
480 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
482 if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
483 return -ENOKEY;
485 return tfm->import(req, in);
489 * crypto_ahash_init() - (re)initialize message digest handle
490 * @req: ahash_request handle that already is initialized with all necessary
491 * data using the ahash_request_* API functions
493 * The call (re-)initializes the message digest referenced by the ahash_request
494 * handle. Any potentially existing state created by previous operations is
495 * discarded.
497 * Return: see crypto_ahash_final()
499 static inline int crypto_ahash_init(struct ahash_request *req)
501 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
503 if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
504 return -ENOKEY;
506 return tfm->init(req);
510 * crypto_ahash_update() - add data to message digest for processing
511 * @req: ahash_request handle that was previously initialized with the
512 * crypto_ahash_init call.
514 * Updates the message digest state of the &ahash_request handle. The input data
515 * is pointed to by the scatter/gather list registered in the &ahash_request
516 * handle
518 * Return: see crypto_ahash_final()
520 static inline int crypto_ahash_update(struct ahash_request *req)
522 return crypto_ahash_reqtfm(req)->update(req);
526 * DOC: Asynchronous Hash Request Handle
528 * The &ahash_request data structure contains all pointers to data
529 * required for the asynchronous cipher operation. This includes the cipher
530 * handle (which can be used by multiple &ahash_request instances), pointer
531 * to plaintext and the message digest output buffer, asynchronous callback
532 * function, etc. It acts as a handle to the ahash_request_* API calls in a
533 * similar way as ahash handle to the crypto_ahash_* API calls.
537 * ahash_request_set_tfm() - update cipher handle reference in request
538 * @req: request handle to be modified
539 * @tfm: cipher handle that shall be added to the request handle
541 * Allow the caller to replace the existing ahash handle in the request
542 * data structure with a different one.
544 static inline void ahash_request_set_tfm(struct ahash_request *req,
545 struct crypto_ahash *tfm)
547 req->base.tfm = crypto_ahash_tfm(tfm);
551 * ahash_request_alloc() - allocate request data structure
552 * @tfm: cipher handle to be registered with the request
553 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
555 * Allocate the request data structure that must be used with the ahash
556 * message digest API calls. During
557 * the allocation, the provided ahash handle
558 * is registered in the request data structure.
560 * Return: allocated request handle in case of success, or NULL if out of memory
562 static inline struct ahash_request *ahash_request_alloc(
563 struct crypto_ahash *tfm, gfp_t gfp)
565 struct ahash_request *req;
567 req = kmalloc(sizeof(struct ahash_request) +
568 crypto_ahash_reqsize(tfm), gfp);
570 if (likely(req))
571 ahash_request_set_tfm(req, tfm);
573 return req;
577 * ahash_request_free() - zeroize and free the request data structure
578 * @req: request data structure cipher handle to be freed
580 static inline void ahash_request_free(struct ahash_request *req)
582 kzfree(req);
585 static inline void ahash_request_zero(struct ahash_request *req)
587 memzero_explicit(req, sizeof(*req) +
588 crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
591 static inline struct ahash_request *ahash_request_cast(
592 struct crypto_async_request *req)
594 return container_of(req, struct ahash_request, base);
598 * ahash_request_set_callback() - set asynchronous callback function
599 * @req: request handle
600 * @flags: specify zero or an ORing of the flags
601 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
602 * increase the wait queue beyond the initial maximum size;
603 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
604 * @compl: callback function pointer to be registered with the request handle
605 * @data: The data pointer refers to memory that is not used by the kernel
606 * crypto API, but provided to the callback function for it to use. Here,
607 * the caller can provide a reference to memory the callback function can
608 * operate on. As the callback function is invoked asynchronously to the
609 * related functionality, it may need to access data structures of the
610 * related functionality which can be referenced using this pointer. The
611 * callback function can access the memory via the "data" field in the
612 * &crypto_async_request data structure provided to the callback function.
614 * This function allows setting the callback function that is triggered once
615 * the cipher operation completes.
617 * The callback function is registered with the &ahash_request handle and
618 * must comply with the following template::
620 * void callback_function(struct crypto_async_request *req, int error)
622 static inline void ahash_request_set_callback(struct ahash_request *req,
623 u32 flags,
624 crypto_completion_t compl,
625 void *data)
627 req->base.complete = compl;
628 req->base.data = data;
629 req->base.flags = flags;
633 * ahash_request_set_crypt() - set data buffers
634 * @req: ahash_request handle to be updated
635 * @src: source scatter/gather list
636 * @result: buffer that is filled with the message digest -- the caller must
637 * ensure that the buffer has sufficient space by, for example, calling
638 * crypto_ahash_digestsize()
639 * @nbytes: number of bytes to process from the source scatter/gather list
641 * By using this call, the caller references the source scatter/gather list.
642 * The source scatter/gather list points to the data the message digest is to
643 * be calculated for.
645 static inline void ahash_request_set_crypt(struct ahash_request *req,
646 struct scatterlist *src, u8 *result,
647 unsigned int nbytes)
649 req->src = src;
650 req->nbytes = nbytes;
651 req->result = result;
655 * DOC: Synchronous Message Digest API
657 * The synchronous message digest API is used with the ciphers of type
658 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
660 * The message digest API is able to maintain state information for the
661 * caller.
663 * The synchronous message digest API can store user-related context in in its
664 * shash_desc request data structure.
668 * crypto_alloc_shash() - allocate message digest handle
669 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
670 * message digest cipher
671 * @type: specifies the type of the cipher
672 * @mask: specifies the mask for the cipher
674 * Allocate a cipher handle for a message digest. The returned &struct
675 * crypto_shash is the cipher handle that is required for any subsequent
676 * API invocation for that message digest.
678 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
679 * of an error, PTR_ERR() returns the error code.
681 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
682 u32 mask);
684 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
686 return &tfm->base;
690 * crypto_free_shash() - zeroize and free the message digest handle
691 * @tfm: cipher handle to be freed
693 static inline void crypto_free_shash(struct crypto_shash *tfm)
695 crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
698 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
700 return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
703 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
705 return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
708 static inline unsigned int crypto_shash_alignmask(
709 struct crypto_shash *tfm)
711 return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
715 * crypto_shash_blocksize() - obtain block size for cipher
716 * @tfm: cipher handle
718 * The block size for the message digest cipher referenced with the cipher
719 * handle is returned.
721 * Return: block size of cipher
723 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
725 return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
728 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
730 return container_of(alg, struct shash_alg, base);
733 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
735 return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
739 * crypto_shash_digestsize() - obtain message digest size
740 * @tfm: cipher handle
742 * The size for the message digest created by the message digest cipher
743 * referenced with the cipher handle is returned.
745 * Return: digest size of cipher
747 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
749 return crypto_shash_alg(tfm)->digestsize;
752 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
754 return crypto_shash_alg(tfm)->statesize;
757 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
759 return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
762 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
764 crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
767 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
769 crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
773 * crypto_shash_descsize() - obtain the operational state size
774 * @tfm: cipher handle
776 * The size of the operational state the cipher needs during operation is
777 * returned for the hash referenced with the cipher handle. This size is
778 * required to calculate the memory requirements to allow the caller allocating
779 * sufficient memory for operational state.
781 * The operational state is defined with struct shash_desc where the size of
782 * that data structure is to be calculated as
783 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
785 * Return: size of the operational state
787 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
789 return tfm->descsize;
792 static inline void *shash_desc_ctx(struct shash_desc *desc)
794 return desc->__ctx;
798 * crypto_shash_setkey() - set key for message digest
799 * @tfm: cipher handle
800 * @key: buffer holding the key
801 * @keylen: length of the key in bytes
803 * The caller provided key is set for the keyed message digest cipher. The
804 * cipher handle must point to a keyed message digest cipher in order for this
805 * function to succeed.
807 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
809 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
810 unsigned int keylen);
813 * crypto_shash_digest() - calculate message digest for buffer
814 * @desc: see crypto_shash_final()
815 * @data: see crypto_shash_update()
816 * @len: see crypto_shash_update()
817 * @out: see crypto_shash_final()
819 * This function is a "short-hand" for the function calls of crypto_shash_init,
820 * crypto_shash_update and crypto_shash_final. The parameters have the same
821 * meaning as discussed for those separate three functions.
823 * Return: 0 if the message digest creation was successful; < 0 if an error
824 * occurred
826 int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
827 unsigned int len, u8 *out);
830 * crypto_shash_export() - extract operational state for message digest
831 * @desc: reference to the operational state handle whose state is exported
832 * @out: output buffer of sufficient size that can hold the hash state
834 * This function exports the hash state of the operational state handle into the
835 * caller-allocated output buffer out which must have sufficient size (e.g. by
836 * calling crypto_shash_descsize).
838 * Return: 0 if the export creation was successful; < 0 if an error occurred
840 static inline int crypto_shash_export(struct shash_desc *desc, void *out)
842 return crypto_shash_alg(desc->tfm)->export(desc, out);
846 * crypto_shash_import() - import operational state
847 * @desc: reference to the operational state handle the state imported into
848 * @in: buffer holding the state
850 * This function imports the hash state into the operational state handle from
851 * the input buffer. That buffer should have been generated with the
852 * crypto_ahash_export function.
854 * Return: 0 if the import was successful; < 0 if an error occurred
856 static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
858 struct crypto_shash *tfm = desc->tfm;
860 if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
861 return -ENOKEY;
863 return crypto_shash_alg(tfm)->import(desc, in);
867 * crypto_shash_init() - (re)initialize message digest
868 * @desc: operational state handle that is already filled
870 * The call (re-)initializes the message digest referenced by the
871 * operational state handle. Any potentially existing state created by
872 * previous operations is discarded.
874 * Return: 0 if the message digest initialization was successful; < 0 if an
875 * error occurred
877 static inline int crypto_shash_init(struct shash_desc *desc)
879 struct crypto_shash *tfm = desc->tfm;
881 if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
882 return -ENOKEY;
884 return crypto_shash_alg(tfm)->init(desc);
888 * crypto_shash_update() - add data to message digest for processing
889 * @desc: operational state handle that is already initialized
890 * @data: input data to be added to the message digest
891 * @len: length of the input data
893 * Updates the message digest state of the operational state handle.
895 * Return: 0 if the message digest update was successful; < 0 if an error
896 * occurred
898 int crypto_shash_update(struct shash_desc *desc, const u8 *data,
899 unsigned int len);
902 * crypto_shash_final() - calculate message digest
903 * @desc: operational state handle that is already filled with data
904 * @out: output buffer filled with the message digest
906 * Finalize the message digest operation and create the message digest
907 * based on all data added to the cipher handle. The message digest is placed
908 * into the output buffer. The caller must ensure that the output buffer is
909 * large enough by using crypto_shash_digestsize.
911 * Return: 0 if the message digest creation was successful; < 0 if an error
912 * occurred
914 int crypto_shash_final(struct shash_desc *desc, u8 *out);
917 * crypto_shash_finup() - calculate message digest of buffer
918 * @desc: see crypto_shash_final()
919 * @data: see crypto_shash_update()
920 * @len: see crypto_shash_update()
921 * @out: see crypto_shash_final()
923 * This function is a "short-hand" for the function calls of
924 * crypto_shash_update and crypto_shash_final. The parameters have the same
925 * meaning as discussed for those separate functions.
927 * Return: 0 if the message digest creation was successful; < 0 if an error
928 * occurred
930 int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
931 unsigned int len, u8 *out);
933 static inline void shash_desc_zero(struct shash_desc *desc)
935 memzero_explicit(desc,
936 sizeof(*desc) + crypto_shash_descsize(desc->tfm));
939 #endif /* _CRYPTO_HASH_H */