xtensa: fix high memory/reserved memory collision
[cris-mirror.git] / include / linux / mm.h
blobad06d42adb1a2602094f894b69ed182cbac978fe
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
5 #include <linux/errno.h>
7 #ifdef __KERNEL__
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page_ref.h>
27 #include <linux/memremap.h>
29 struct mempolicy;
30 struct anon_vma;
31 struct anon_vma_chain;
32 struct file_ra_state;
33 struct user_struct;
34 struct writeback_control;
35 struct bdi_writeback;
37 void init_mm_internals(void);
39 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
40 extern unsigned long max_mapnr;
42 static inline void set_max_mapnr(unsigned long limit)
44 max_mapnr = limit;
46 #else
47 static inline void set_max_mapnr(unsigned long limit) { }
48 #endif
50 extern unsigned long totalram_pages;
51 extern void * high_memory;
52 extern int page_cluster;
54 #ifdef CONFIG_SYSCTL
55 extern int sysctl_legacy_va_layout;
56 #else
57 #define sysctl_legacy_va_layout 0
58 #endif
60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
61 extern const int mmap_rnd_bits_min;
62 extern const int mmap_rnd_bits_max;
63 extern int mmap_rnd_bits __read_mostly;
64 #endif
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
66 extern const int mmap_rnd_compat_bits_min;
67 extern const int mmap_rnd_compat_bits_max;
68 extern int mmap_rnd_compat_bits __read_mostly;
69 #endif
71 #include <asm/page.h>
72 #include <asm/pgtable.h>
73 #include <asm/processor.h>
75 #ifndef __pa_symbol
76 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
77 #endif
79 #ifndef page_to_virt
80 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
81 #endif
83 #ifndef lm_alias
84 #define lm_alias(x) __va(__pa_symbol(x))
85 #endif
88 * To prevent common memory management code establishing
89 * a zero page mapping on a read fault.
90 * This macro should be defined within <asm/pgtable.h>.
91 * s390 does this to prevent multiplexing of hardware bits
92 * related to the physical page in case of virtualization.
94 #ifndef mm_forbids_zeropage
95 #define mm_forbids_zeropage(X) (0)
96 #endif
99 * On some architectures it is expensive to call memset() for small sizes.
100 * Those architectures should provide their own implementation of "struct page"
101 * zeroing by defining this macro in <asm/pgtable.h>.
103 #ifndef mm_zero_struct_page
104 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
105 #endif
108 * Default maximum number of active map areas, this limits the number of vmas
109 * per mm struct. Users can overwrite this number by sysctl but there is a
110 * problem.
112 * When a program's coredump is generated as ELF format, a section is created
113 * per a vma. In ELF, the number of sections is represented in unsigned short.
114 * This means the number of sections should be smaller than 65535 at coredump.
115 * Because the kernel adds some informative sections to a image of program at
116 * generating coredump, we need some margin. The number of extra sections is
117 * 1-3 now and depends on arch. We use "5" as safe margin, here.
119 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
120 * not a hard limit any more. Although some userspace tools can be surprised by
121 * that.
123 #define MAPCOUNT_ELF_CORE_MARGIN (5)
124 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
126 extern int sysctl_max_map_count;
128 extern unsigned long sysctl_user_reserve_kbytes;
129 extern unsigned long sysctl_admin_reserve_kbytes;
131 extern int sysctl_overcommit_memory;
132 extern int sysctl_overcommit_ratio;
133 extern unsigned long sysctl_overcommit_kbytes;
135 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
136 size_t *, loff_t *);
137 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
138 size_t *, loff_t *);
140 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
142 /* to align the pointer to the (next) page boundary */
143 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
145 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
146 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
149 * Linux kernel virtual memory manager primitives.
150 * The idea being to have a "virtual" mm in the same way
151 * we have a virtual fs - giving a cleaner interface to the
152 * mm details, and allowing different kinds of memory mappings
153 * (from shared memory to executable loading to arbitrary
154 * mmap() functions).
157 extern struct kmem_cache *vm_area_cachep;
159 #ifndef CONFIG_MMU
160 extern struct rb_root nommu_region_tree;
161 extern struct rw_semaphore nommu_region_sem;
163 extern unsigned int kobjsize(const void *objp);
164 #endif
167 * vm_flags in vm_area_struct, see mm_types.h.
168 * When changing, update also include/trace/events/mmflags.h
170 #define VM_NONE 0x00000000
172 #define VM_READ 0x00000001 /* currently active flags */
173 #define VM_WRITE 0x00000002
174 #define VM_EXEC 0x00000004
175 #define VM_SHARED 0x00000008
177 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
178 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
179 #define VM_MAYWRITE 0x00000020
180 #define VM_MAYEXEC 0x00000040
181 #define VM_MAYSHARE 0x00000080
183 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
184 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
185 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
186 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
187 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
189 #define VM_LOCKED 0x00002000
190 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
192 /* Used by sys_madvise() */
193 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
194 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
196 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
197 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
198 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
199 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
200 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
201 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
202 #define VM_SYNC 0x00800000 /* Synchronous page faults */
203 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
204 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
205 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
207 #ifdef CONFIG_MEM_SOFT_DIRTY
208 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
209 #else
210 # define VM_SOFTDIRTY 0
211 #endif
213 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
214 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
215 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
216 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
218 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
219 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
220 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
221 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
222 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
223 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
224 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
225 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
226 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
227 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
228 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
229 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
231 #if defined(CONFIG_X86)
232 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
233 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
234 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
235 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
236 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
237 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
238 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
239 #endif
240 #elif defined(CONFIG_PPC)
241 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
242 #elif defined(CONFIG_PARISC)
243 # define VM_GROWSUP VM_ARCH_1
244 #elif defined(CONFIG_METAG)
245 # define VM_GROWSUP VM_ARCH_1
246 #elif defined(CONFIG_IA64)
247 # define VM_GROWSUP VM_ARCH_1
248 #elif !defined(CONFIG_MMU)
249 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
250 #endif
252 #if defined(CONFIG_X86_INTEL_MPX)
253 /* MPX specific bounds table or bounds directory */
254 # define VM_MPX VM_HIGH_ARCH_4
255 #else
256 # define VM_MPX VM_NONE
257 #endif
259 #ifndef VM_GROWSUP
260 # define VM_GROWSUP VM_NONE
261 #endif
263 /* Bits set in the VMA until the stack is in its final location */
264 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
266 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
267 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
268 #endif
270 #ifdef CONFIG_STACK_GROWSUP
271 #define VM_STACK VM_GROWSUP
272 #else
273 #define VM_STACK VM_GROWSDOWN
274 #endif
276 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
279 * Special vmas that are non-mergable, non-mlock()able.
280 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
282 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
284 /* This mask defines which mm->def_flags a process can inherit its parent */
285 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
287 /* This mask is used to clear all the VMA flags used by mlock */
288 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
291 * mapping from the currently active vm_flags protection bits (the
292 * low four bits) to a page protection mask..
294 extern pgprot_t protection_map[16];
296 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
297 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
298 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
299 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
300 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
301 #define FAULT_FLAG_TRIED 0x20 /* Second try */
302 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
303 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
304 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
306 #define FAULT_FLAG_TRACE \
307 { FAULT_FLAG_WRITE, "WRITE" }, \
308 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
309 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
310 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
311 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
312 { FAULT_FLAG_TRIED, "TRIED" }, \
313 { FAULT_FLAG_USER, "USER" }, \
314 { FAULT_FLAG_REMOTE, "REMOTE" }, \
315 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
318 * vm_fault is filled by the the pagefault handler and passed to the vma's
319 * ->fault function. The vma's ->fault is responsible for returning a bitmask
320 * of VM_FAULT_xxx flags that give details about how the fault was handled.
322 * MM layer fills up gfp_mask for page allocations but fault handler might
323 * alter it if its implementation requires a different allocation context.
325 * pgoff should be used in favour of virtual_address, if possible.
327 struct vm_fault {
328 struct vm_area_struct *vma; /* Target VMA */
329 unsigned int flags; /* FAULT_FLAG_xxx flags */
330 gfp_t gfp_mask; /* gfp mask to be used for allocations */
331 pgoff_t pgoff; /* Logical page offset based on vma */
332 unsigned long address; /* Faulting virtual address */
333 pmd_t *pmd; /* Pointer to pmd entry matching
334 * the 'address' */
335 pud_t *pud; /* Pointer to pud entry matching
336 * the 'address'
338 pte_t orig_pte; /* Value of PTE at the time of fault */
340 struct page *cow_page; /* Page handler may use for COW fault */
341 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
342 struct page *page; /* ->fault handlers should return a
343 * page here, unless VM_FAULT_NOPAGE
344 * is set (which is also implied by
345 * VM_FAULT_ERROR).
347 /* These three entries are valid only while holding ptl lock */
348 pte_t *pte; /* Pointer to pte entry matching
349 * the 'address'. NULL if the page
350 * table hasn't been allocated.
352 spinlock_t *ptl; /* Page table lock.
353 * Protects pte page table if 'pte'
354 * is not NULL, otherwise pmd.
356 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
357 * vm_ops->map_pages() calls
358 * alloc_set_pte() from atomic context.
359 * do_fault_around() pre-allocates
360 * page table to avoid allocation from
361 * atomic context.
365 /* page entry size for vm->huge_fault() */
366 enum page_entry_size {
367 PE_SIZE_PTE = 0,
368 PE_SIZE_PMD,
369 PE_SIZE_PUD,
373 * These are the virtual MM functions - opening of an area, closing and
374 * unmapping it (needed to keep files on disk up-to-date etc), pointer
375 * to the functions called when a no-page or a wp-page exception occurs.
377 struct vm_operations_struct {
378 void (*open)(struct vm_area_struct * area);
379 void (*close)(struct vm_area_struct * area);
380 int (*split)(struct vm_area_struct * area, unsigned long addr);
381 int (*mremap)(struct vm_area_struct * area);
382 int (*fault)(struct vm_fault *vmf);
383 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
384 void (*map_pages)(struct vm_fault *vmf,
385 pgoff_t start_pgoff, pgoff_t end_pgoff);
387 /* notification that a previously read-only page is about to become
388 * writable, if an error is returned it will cause a SIGBUS */
389 int (*page_mkwrite)(struct vm_fault *vmf);
391 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
392 int (*pfn_mkwrite)(struct vm_fault *vmf);
394 /* called by access_process_vm when get_user_pages() fails, typically
395 * for use by special VMAs that can switch between memory and hardware
397 int (*access)(struct vm_area_struct *vma, unsigned long addr,
398 void *buf, int len, int write);
400 /* Called by the /proc/PID/maps code to ask the vma whether it
401 * has a special name. Returning non-NULL will also cause this
402 * vma to be dumped unconditionally. */
403 const char *(*name)(struct vm_area_struct *vma);
405 #ifdef CONFIG_NUMA
407 * set_policy() op must add a reference to any non-NULL @new mempolicy
408 * to hold the policy upon return. Caller should pass NULL @new to
409 * remove a policy and fall back to surrounding context--i.e. do not
410 * install a MPOL_DEFAULT policy, nor the task or system default
411 * mempolicy.
413 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
416 * get_policy() op must add reference [mpol_get()] to any policy at
417 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
418 * in mm/mempolicy.c will do this automatically.
419 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
420 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
421 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
422 * must return NULL--i.e., do not "fallback" to task or system default
423 * policy.
425 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
426 unsigned long addr);
427 #endif
429 * Called by vm_normal_page() for special PTEs to find the
430 * page for @addr. This is useful if the default behavior
431 * (using pte_page()) would not find the correct page.
433 struct page *(*find_special_page)(struct vm_area_struct *vma,
434 unsigned long addr);
437 struct mmu_gather;
438 struct inode;
440 #define page_private(page) ((page)->private)
441 #define set_page_private(page, v) ((page)->private = (v))
443 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
444 static inline int pmd_devmap(pmd_t pmd)
446 return 0;
448 static inline int pud_devmap(pud_t pud)
450 return 0;
452 static inline int pgd_devmap(pgd_t pgd)
454 return 0;
456 #endif
459 * FIXME: take this include out, include page-flags.h in
460 * files which need it (119 of them)
462 #include <linux/page-flags.h>
463 #include <linux/huge_mm.h>
466 * Methods to modify the page usage count.
468 * What counts for a page usage:
469 * - cache mapping (page->mapping)
470 * - private data (page->private)
471 * - page mapped in a task's page tables, each mapping
472 * is counted separately
474 * Also, many kernel routines increase the page count before a critical
475 * routine so they can be sure the page doesn't go away from under them.
479 * Drop a ref, return true if the refcount fell to zero (the page has no users)
481 static inline int put_page_testzero(struct page *page)
483 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
484 return page_ref_dec_and_test(page);
488 * Try to grab a ref unless the page has a refcount of zero, return false if
489 * that is the case.
490 * This can be called when MMU is off so it must not access
491 * any of the virtual mappings.
493 static inline int get_page_unless_zero(struct page *page)
495 return page_ref_add_unless(page, 1, 0);
498 extern int page_is_ram(unsigned long pfn);
500 enum {
501 REGION_INTERSECTS,
502 REGION_DISJOINT,
503 REGION_MIXED,
506 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
507 unsigned long desc);
509 /* Support for virtually mapped pages */
510 struct page *vmalloc_to_page(const void *addr);
511 unsigned long vmalloc_to_pfn(const void *addr);
514 * Determine if an address is within the vmalloc range
516 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
517 * is no special casing required.
519 static inline bool is_vmalloc_addr(const void *x)
521 #ifdef CONFIG_MMU
522 unsigned long addr = (unsigned long)x;
524 return addr >= VMALLOC_START && addr < VMALLOC_END;
525 #else
526 return false;
527 #endif
529 #ifdef CONFIG_MMU
530 extern int is_vmalloc_or_module_addr(const void *x);
531 #else
532 static inline int is_vmalloc_or_module_addr(const void *x)
534 return 0;
536 #endif
538 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
539 static inline void *kvmalloc(size_t size, gfp_t flags)
541 return kvmalloc_node(size, flags, NUMA_NO_NODE);
543 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
545 return kvmalloc_node(size, flags | __GFP_ZERO, node);
547 static inline void *kvzalloc(size_t size, gfp_t flags)
549 return kvmalloc(size, flags | __GFP_ZERO);
552 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
554 if (size != 0 && n > SIZE_MAX / size)
555 return NULL;
557 return kvmalloc(n * size, flags);
560 extern void kvfree(const void *addr);
562 static inline atomic_t *compound_mapcount_ptr(struct page *page)
564 return &page[1].compound_mapcount;
567 static inline int compound_mapcount(struct page *page)
569 VM_BUG_ON_PAGE(!PageCompound(page), page);
570 page = compound_head(page);
571 return atomic_read(compound_mapcount_ptr(page)) + 1;
575 * The atomic page->_mapcount, starts from -1: so that transitions
576 * both from it and to it can be tracked, using atomic_inc_and_test
577 * and atomic_add_negative(-1).
579 static inline void page_mapcount_reset(struct page *page)
581 atomic_set(&(page)->_mapcount, -1);
584 int __page_mapcount(struct page *page);
586 static inline int page_mapcount(struct page *page)
588 VM_BUG_ON_PAGE(PageSlab(page), page);
590 if (unlikely(PageCompound(page)))
591 return __page_mapcount(page);
592 return atomic_read(&page->_mapcount) + 1;
595 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
596 int total_mapcount(struct page *page);
597 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
598 #else
599 static inline int total_mapcount(struct page *page)
601 return page_mapcount(page);
603 static inline int page_trans_huge_mapcount(struct page *page,
604 int *total_mapcount)
606 int mapcount = page_mapcount(page);
607 if (total_mapcount)
608 *total_mapcount = mapcount;
609 return mapcount;
611 #endif
613 static inline struct page *virt_to_head_page(const void *x)
615 struct page *page = virt_to_page(x);
617 return compound_head(page);
620 void __put_page(struct page *page);
622 void put_pages_list(struct list_head *pages);
624 void split_page(struct page *page, unsigned int order);
627 * Compound pages have a destructor function. Provide a
628 * prototype for that function and accessor functions.
629 * These are _only_ valid on the head of a compound page.
631 typedef void compound_page_dtor(struct page *);
633 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
634 enum compound_dtor_id {
635 NULL_COMPOUND_DTOR,
636 COMPOUND_PAGE_DTOR,
637 #ifdef CONFIG_HUGETLB_PAGE
638 HUGETLB_PAGE_DTOR,
639 #endif
640 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
641 TRANSHUGE_PAGE_DTOR,
642 #endif
643 NR_COMPOUND_DTORS,
645 extern compound_page_dtor * const compound_page_dtors[];
647 static inline void set_compound_page_dtor(struct page *page,
648 enum compound_dtor_id compound_dtor)
650 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
651 page[1].compound_dtor = compound_dtor;
654 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
656 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
657 return compound_page_dtors[page[1].compound_dtor];
660 static inline unsigned int compound_order(struct page *page)
662 if (!PageHead(page))
663 return 0;
664 return page[1].compound_order;
667 static inline void set_compound_order(struct page *page, unsigned int order)
669 page[1].compound_order = order;
672 void free_compound_page(struct page *page);
674 #ifdef CONFIG_MMU
676 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
677 * servicing faults for write access. In the normal case, do always want
678 * pte_mkwrite. But get_user_pages can cause write faults for mappings
679 * that do not have writing enabled, when used by access_process_vm.
681 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
683 if (likely(vma->vm_flags & VM_WRITE))
684 pte = pte_mkwrite(pte);
685 return pte;
688 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
689 struct page *page);
690 int finish_fault(struct vm_fault *vmf);
691 int finish_mkwrite_fault(struct vm_fault *vmf);
692 #endif
695 * Multiple processes may "see" the same page. E.g. for untouched
696 * mappings of /dev/null, all processes see the same page full of
697 * zeroes, and text pages of executables and shared libraries have
698 * only one copy in memory, at most, normally.
700 * For the non-reserved pages, page_count(page) denotes a reference count.
701 * page_count() == 0 means the page is free. page->lru is then used for
702 * freelist management in the buddy allocator.
703 * page_count() > 0 means the page has been allocated.
705 * Pages are allocated by the slab allocator in order to provide memory
706 * to kmalloc and kmem_cache_alloc. In this case, the management of the
707 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
708 * unless a particular usage is carefully commented. (the responsibility of
709 * freeing the kmalloc memory is the caller's, of course).
711 * A page may be used by anyone else who does a __get_free_page().
712 * In this case, page_count still tracks the references, and should only
713 * be used through the normal accessor functions. The top bits of page->flags
714 * and page->virtual store page management information, but all other fields
715 * are unused and could be used privately, carefully. The management of this
716 * page is the responsibility of the one who allocated it, and those who have
717 * subsequently been given references to it.
719 * The other pages (we may call them "pagecache pages") are completely
720 * managed by the Linux memory manager: I/O, buffers, swapping etc.
721 * The following discussion applies only to them.
723 * A pagecache page contains an opaque `private' member, which belongs to the
724 * page's address_space. Usually, this is the address of a circular list of
725 * the page's disk buffers. PG_private must be set to tell the VM to call
726 * into the filesystem to release these pages.
728 * A page may belong to an inode's memory mapping. In this case, page->mapping
729 * is the pointer to the inode, and page->index is the file offset of the page,
730 * in units of PAGE_SIZE.
732 * If pagecache pages are not associated with an inode, they are said to be
733 * anonymous pages. These may become associated with the swapcache, and in that
734 * case PG_swapcache is set, and page->private is an offset into the swapcache.
736 * In either case (swapcache or inode backed), the pagecache itself holds one
737 * reference to the page. Setting PG_private should also increment the
738 * refcount. The each user mapping also has a reference to the page.
740 * The pagecache pages are stored in a per-mapping radix tree, which is
741 * rooted at mapping->page_tree, and indexed by offset.
742 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
743 * lists, we instead now tag pages as dirty/writeback in the radix tree.
745 * All pagecache pages may be subject to I/O:
746 * - inode pages may need to be read from disk,
747 * - inode pages which have been modified and are MAP_SHARED may need
748 * to be written back to the inode on disk,
749 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
750 * modified may need to be swapped out to swap space and (later) to be read
751 * back into memory.
755 * The zone field is never updated after free_area_init_core()
756 * sets it, so none of the operations on it need to be atomic.
759 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
760 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
761 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
762 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
763 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
766 * Define the bit shifts to access each section. For non-existent
767 * sections we define the shift as 0; that plus a 0 mask ensures
768 * the compiler will optimise away reference to them.
770 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
771 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
772 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
773 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
775 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
776 #ifdef NODE_NOT_IN_PAGE_FLAGS
777 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
778 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
779 SECTIONS_PGOFF : ZONES_PGOFF)
780 #else
781 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
782 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
783 NODES_PGOFF : ZONES_PGOFF)
784 #endif
786 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
788 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
789 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
790 #endif
792 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
793 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
794 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
795 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
796 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
798 static inline enum zone_type page_zonenum(const struct page *page)
800 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
803 #ifdef CONFIG_ZONE_DEVICE
804 static inline bool is_zone_device_page(const struct page *page)
806 return page_zonenum(page) == ZONE_DEVICE;
808 #else
809 static inline bool is_zone_device_page(const struct page *page)
811 return false;
813 #endif
815 #if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
816 void put_zone_device_private_or_public_page(struct page *page);
817 DECLARE_STATIC_KEY_FALSE(device_private_key);
818 #define IS_HMM_ENABLED static_branch_unlikely(&device_private_key)
819 static inline bool is_device_private_page(const struct page *page);
820 static inline bool is_device_public_page(const struct page *page);
821 #else /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
822 static inline void put_zone_device_private_or_public_page(struct page *page)
825 #define IS_HMM_ENABLED 0
826 static inline bool is_device_private_page(const struct page *page)
828 return false;
830 static inline bool is_device_public_page(const struct page *page)
832 return false;
834 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
837 static inline void get_page(struct page *page)
839 page = compound_head(page);
841 * Getting a normal page or the head of a compound page
842 * requires to already have an elevated page->_refcount.
844 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
845 page_ref_inc(page);
848 static inline void put_page(struct page *page)
850 page = compound_head(page);
853 * For private device pages we need to catch refcount transition from
854 * 2 to 1, when refcount reach one it means the private device page is
855 * free and we need to inform the device driver through callback. See
856 * include/linux/memremap.h and HMM for details.
858 if (IS_HMM_ENABLED && unlikely(is_device_private_page(page) ||
859 unlikely(is_device_public_page(page)))) {
860 put_zone_device_private_or_public_page(page);
861 return;
864 if (put_page_testzero(page))
865 __put_page(page);
868 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
869 #define SECTION_IN_PAGE_FLAGS
870 #endif
873 * The identification function is mainly used by the buddy allocator for
874 * determining if two pages could be buddies. We are not really identifying
875 * the zone since we could be using the section number id if we do not have
876 * node id available in page flags.
877 * We only guarantee that it will return the same value for two combinable
878 * pages in a zone.
880 static inline int page_zone_id(struct page *page)
882 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
885 static inline int zone_to_nid(struct zone *zone)
887 #ifdef CONFIG_NUMA
888 return zone->node;
889 #else
890 return 0;
891 #endif
894 #ifdef NODE_NOT_IN_PAGE_FLAGS
895 extern int page_to_nid(const struct page *page);
896 #else
897 static inline int page_to_nid(const struct page *page)
899 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
901 #endif
903 #ifdef CONFIG_NUMA_BALANCING
904 static inline int cpu_pid_to_cpupid(int cpu, int pid)
906 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
909 static inline int cpupid_to_pid(int cpupid)
911 return cpupid & LAST__PID_MASK;
914 static inline int cpupid_to_cpu(int cpupid)
916 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
919 static inline int cpupid_to_nid(int cpupid)
921 return cpu_to_node(cpupid_to_cpu(cpupid));
924 static inline bool cpupid_pid_unset(int cpupid)
926 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
929 static inline bool cpupid_cpu_unset(int cpupid)
931 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
934 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
936 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
939 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
940 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
941 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
943 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
946 static inline int page_cpupid_last(struct page *page)
948 return page->_last_cpupid;
950 static inline void page_cpupid_reset_last(struct page *page)
952 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
954 #else
955 static inline int page_cpupid_last(struct page *page)
957 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
960 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
962 static inline void page_cpupid_reset_last(struct page *page)
964 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
966 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
967 #else /* !CONFIG_NUMA_BALANCING */
968 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
970 return page_to_nid(page); /* XXX */
973 static inline int page_cpupid_last(struct page *page)
975 return page_to_nid(page); /* XXX */
978 static inline int cpupid_to_nid(int cpupid)
980 return -1;
983 static inline int cpupid_to_pid(int cpupid)
985 return -1;
988 static inline int cpupid_to_cpu(int cpupid)
990 return -1;
993 static inline int cpu_pid_to_cpupid(int nid, int pid)
995 return -1;
998 static inline bool cpupid_pid_unset(int cpupid)
1000 return 1;
1003 static inline void page_cpupid_reset_last(struct page *page)
1007 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1009 return false;
1011 #endif /* CONFIG_NUMA_BALANCING */
1013 static inline struct zone *page_zone(const struct page *page)
1015 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1018 static inline pg_data_t *page_pgdat(const struct page *page)
1020 return NODE_DATA(page_to_nid(page));
1023 #ifdef SECTION_IN_PAGE_FLAGS
1024 static inline void set_page_section(struct page *page, unsigned long section)
1026 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1027 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1030 static inline unsigned long page_to_section(const struct page *page)
1032 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1034 #endif
1036 static inline void set_page_zone(struct page *page, enum zone_type zone)
1038 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1039 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1042 static inline void set_page_node(struct page *page, unsigned long node)
1044 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1045 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1048 static inline void set_page_links(struct page *page, enum zone_type zone,
1049 unsigned long node, unsigned long pfn)
1051 set_page_zone(page, zone);
1052 set_page_node(page, node);
1053 #ifdef SECTION_IN_PAGE_FLAGS
1054 set_page_section(page, pfn_to_section_nr(pfn));
1055 #endif
1058 #ifdef CONFIG_MEMCG
1059 static inline struct mem_cgroup *page_memcg(struct page *page)
1061 return page->mem_cgroup;
1063 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1065 WARN_ON_ONCE(!rcu_read_lock_held());
1066 return READ_ONCE(page->mem_cgroup);
1068 #else
1069 static inline struct mem_cgroup *page_memcg(struct page *page)
1071 return NULL;
1073 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1075 WARN_ON_ONCE(!rcu_read_lock_held());
1076 return NULL;
1078 #endif
1081 * Some inline functions in vmstat.h depend on page_zone()
1083 #include <linux/vmstat.h>
1085 static __always_inline void *lowmem_page_address(const struct page *page)
1087 return page_to_virt(page);
1090 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1091 #define HASHED_PAGE_VIRTUAL
1092 #endif
1094 #if defined(WANT_PAGE_VIRTUAL)
1095 static inline void *page_address(const struct page *page)
1097 return page->virtual;
1099 static inline void set_page_address(struct page *page, void *address)
1101 page->virtual = address;
1103 #define page_address_init() do { } while(0)
1104 #endif
1106 #if defined(HASHED_PAGE_VIRTUAL)
1107 void *page_address(const struct page *page);
1108 void set_page_address(struct page *page, void *virtual);
1109 void page_address_init(void);
1110 #endif
1112 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1113 #define page_address(page) lowmem_page_address(page)
1114 #define set_page_address(page, address) do { } while(0)
1115 #define page_address_init() do { } while(0)
1116 #endif
1118 extern void *page_rmapping(struct page *page);
1119 extern struct anon_vma *page_anon_vma(struct page *page);
1120 extern struct address_space *page_mapping(struct page *page);
1122 extern struct address_space *__page_file_mapping(struct page *);
1124 static inline
1125 struct address_space *page_file_mapping(struct page *page)
1127 if (unlikely(PageSwapCache(page)))
1128 return __page_file_mapping(page);
1130 return page->mapping;
1133 extern pgoff_t __page_file_index(struct page *page);
1136 * Return the pagecache index of the passed page. Regular pagecache pages
1137 * use ->index whereas swapcache pages use swp_offset(->private)
1139 static inline pgoff_t page_index(struct page *page)
1141 if (unlikely(PageSwapCache(page)))
1142 return __page_file_index(page);
1143 return page->index;
1146 bool page_mapped(struct page *page);
1147 struct address_space *page_mapping(struct page *page);
1150 * Return true only if the page has been allocated with
1151 * ALLOC_NO_WATERMARKS and the low watermark was not
1152 * met implying that the system is under some pressure.
1154 static inline bool page_is_pfmemalloc(struct page *page)
1157 * Page index cannot be this large so this must be
1158 * a pfmemalloc page.
1160 return page->index == -1UL;
1164 * Only to be called by the page allocator on a freshly allocated
1165 * page.
1167 static inline void set_page_pfmemalloc(struct page *page)
1169 page->index = -1UL;
1172 static inline void clear_page_pfmemalloc(struct page *page)
1174 page->index = 0;
1178 * Different kinds of faults, as returned by handle_mm_fault().
1179 * Used to decide whether a process gets delivered SIGBUS or
1180 * just gets major/minor fault counters bumped up.
1183 #define VM_FAULT_OOM 0x0001
1184 #define VM_FAULT_SIGBUS 0x0002
1185 #define VM_FAULT_MAJOR 0x0004
1186 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1187 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1188 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1189 #define VM_FAULT_SIGSEGV 0x0040
1191 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1192 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1193 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1194 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1195 #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
1196 #define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
1197 * and needs fsync() to complete (for
1198 * synchronous page faults in DAX) */
1200 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1201 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1202 VM_FAULT_FALLBACK)
1204 #define VM_FAULT_RESULT_TRACE \
1205 { VM_FAULT_OOM, "OOM" }, \
1206 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1207 { VM_FAULT_MAJOR, "MAJOR" }, \
1208 { VM_FAULT_WRITE, "WRITE" }, \
1209 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1210 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1211 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1212 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1213 { VM_FAULT_LOCKED, "LOCKED" }, \
1214 { VM_FAULT_RETRY, "RETRY" }, \
1215 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1216 { VM_FAULT_DONE_COW, "DONE_COW" }, \
1217 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
1219 /* Encode hstate index for a hwpoisoned large page */
1220 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1221 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1224 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1226 extern void pagefault_out_of_memory(void);
1228 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1231 * Flags passed to show_mem() and show_free_areas() to suppress output in
1232 * various contexts.
1234 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1236 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1238 extern bool can_do_mlock(void);
1239 extern int user_shm_lock(size_t, struct user_struct *);
1240 extern void user_shm_unlock(size_t, struct user_struct *);
1243 * Parameter block passed down to zap_pte_range in exceptional cases.
1245 struct zap_details {
1246 struct address_space *check_mapping; /* Check page->mapping if set */
1247 pgoff_t first_index; /* Lowest page->index to unmap */
1248 pgoff_t last_index; /* Highest page->index to unmap */
1251 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1252 pte_t pte, bool with_public_device);
1253 #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1255 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1256 pmd_t pmd);
1258 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1259 unsigned long size);
1260 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1261 unsigned long size);
1262 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1263 unsigned long start, unsigned long end);
1266 * mm_walk - callbacks for walk_page_range
1267 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1268 * this handler should only handle pud_trans_huge() puds.
1269 * the pmd_entry or pte_entry callbacks will be used for
1270 * regular PUDs.
1271 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1272 * this handler is required to be able to handle
1273 * pmd_trans_huge() pmds. They may simply choose to
1274 * split_huge_page() instead of handling it explicitly.
1275 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1276 * @pte_hole: if set, called for each hole at all levels
1277 * @hugetlb_entry: if set, called for each hugetlb entry
1278 * @test_walk: caller specific callback function to determine whether
1279 * we walk over the current vma or not. Returning 0
1280 * value means "do page table walk over the current vma,"
1281 * and a negative one means "abort current page table walk
1282 * right now." 1 means "skip the current vma."
1283 * @mm: mm_struct representing the target process of page table walk
1284 * @vma: vma currently walked (NULL if walking outside vmas)
1285 * @private: private data for callbacks' usage
1287 * (see the comment on walk_page_range() for more details)
1289 struct mm_walk {
1290 int (*pud_entry)(pud_t *pud, unsigned long addr,
1291 unsigned long next, struct mm_walk *walk);
1292 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1293 unsigned long next, struct mm_walk *walk);
1294 int (*pte_entry)(pte_t *pte, unsigned long addr,
1295 unsigned long next, struct mm_walk *walk);
1296 int (*pte_hole)(unsigned long addr, unsigned long next,
1297 struct mm_walk *walk);
1298 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1299 unsigned long addr, unsigned long next,
1300 struct mm_walk *walk);
1301 int (*test_walk)(unsigned long addr, unsigned long next,
1302 struct mm_walk *walk);
1303 struct mm_struct *mm;
1304 struct vm_area_struct *vma;
1305 void *private;
1308 int walk_page_range(unsigned long addr, unsigned long end,
1309 struct mm_walk *walk);
1310 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1311 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1312 unsigned long end, unsigned long floor, unsigned long ceiling);
1313 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1314 struct vm_area_struct *vma);
1315 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1316 unsigned long *start, unsigned long *end,
1317 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1318 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1319 unsigned long *pfn);
1320 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1321 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1322 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1323 void *buf, int len, int write);
1325 extern void truncate_pagecache(struct inode *inode, loff_t new);
1326 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1327 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1328 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1329 int truncate_inode_page(struct address_space *mapping, struct page *page);
1330 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1331 int invalidate_inode_page(struct page *page);
1333 #ifdef CONFIG_MMU
1334 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1335 unsigned int flags);
1336 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1337 unsigned long address, unsigned int fault_flags,
1338 bool *unlocked);
1339 void unmap_mapping_pages(struct address_space *mapping,
1340 pgoff_t start, pgoff_t nr, bool even_cows);
1341 void unmap_mapping_range(struct address_space *mapping,
1342 loff_t const holebegin, loff_t const holelen, int even_cows);
1343 #else
1344 static inline int handle_mm_fault(struct vm_area_struct *vma,
1345 unsigned long address, unsigned int flags)
1347 /* should never happen if there's no MMU */
1348 BUG();
1349 return VM_FAULT_SIGBUS;
1351 static inline int fixup_user_fault(struct task_struct *tsk,
1352 struct mm_struct *mm, unsigned long address,
1353 unsigned int fault_flags, bool *unlocked)
1355 /* should never happen if there's no MMU */
1356 BUG();
1357 return -EFAULT;
1359 static inline void unmap_mapping_pages(struct address_space *mapping,
1360 pgoff_t start, pgoff_t nr, bool even_cows) { }
1361 static inline void unmap_mapping_range(struct address_space *mapping,
1362 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1363 #endif
1365 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1366 loff_t const holebegin, loff_t const holelen)
1368 unmap_mapping_range(mapping, holebegin, holelen, 0);
1371 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1372 void *buf, int len, unsigned int gup_flags);
1373 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1374 void *buf, int len, unsigned int gup_flags);
1375 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1376 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1378 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1379 unsigned long start, unsigned long nr_pages,
1380 unsigned int gup_flags, struct page **pages,
1381 struct vm_area_struct **vmas, int *locked);
1382 long get_user_pages(unsigned long start, unsigned long nr_pages,
1383 unsigned int gup_flags, struct page **pages,
1384 struct vm_area_struct **vmas);
1385 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1386 unsigned int gup_flags, struct page **pages, int *locked);
1387 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1388 struct page **pages, unsigned int gup_flags);
1389 #ifdef CONFIG_FS_DAX
1390 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1391 unsigned int gup_flags, struct page **pages,
1392 struct vm_area_struct **vmas);
1393 #else
1394 static inline long get_user_pages_longterm(unsigned long start,
1395 unsigned long nr_pages, unsigned int gup_flags,
1396 struct page **pages, struct vm_area_struct **vmas)
1398 return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1400 #endif /* CONFIG_FS_DAX */
1402 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1403 struct page **pages);
1405 /* Container for pinned pfns / pages */
1406 struct frame_vector {
1407 unsigned int nr_allocated; /* Number of frames we have space for */
1408 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1409 bool got_ref; /* Did we pin pages by getting page ref? */
1410 bool is_pfns; /* Does array contain pages or pfns? */
1411 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1412 * pfns_vector_pages() or pfns_vector_pfns()
1413 * for access */
1416 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1417 void frame_vector_destroy(struct frame_vector *vec);
1418 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1419 unsigned int gup_flags, struct frame_vector *vec);
1420 void put_vaddr_frames(struct frame_vector *vec);
1421 int frame_vector_to_pages(struct frame_vector *vec);
1422 void frame_vector_to_pfns(struct frame_vector *vec);
1424 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1426 return vec->nr_frames;
1429 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1431 if (vec->is_pfns) {
1432 int err = frame_vector_to_pages(vec);
1434 if (err)
1435 return ERR_PTR(err);
1437 return (struct page **)(vec->ptrs);
1440 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1442 if (!vec->is_pfns)
1443 frame_vector_to_pfns(vec);
1444 return (unsigned long *)(vec->ptrs);
1447 struct kvec;
1448 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1449 struct page **pages);
1450 int get_kernel_page(unsigned long start, int write, struct page **pages);
1451 struct page *get_dump_page(unsigned long addr);
1453 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1454 extern void do_invalidatepage(struct page *page, unsigned int offset,
1455 unsigned int length);
1457 int __set_page_dirty_nobuffers(struct page *page);
1458 int __set_page_dirty_no_writeback(struct page *page);
1459 int redirty_page_for_writepage(struct writeback_control *wbc,
1460 struct page *page);
1461 void account_page_dirtied(struct page *page, struct address_space *mapping);
1462 void account_page_cleaned(struct page *page, struct address_space *mapping,
1463 struct bdi_writeback *wb);
1464 int set_page_dirty(struct page *page);
1465 int set_page_dirty_lock(struct page *page);
1466 void __cancel_dirty_page(struct page *page);
1467 static inline void cancel_dirty_page(struct page *page)
1469 /* Avoid atomic ops, locking, etc. when not actually needed. */
1470 if (PageDirty(page))
1471 __cancel_dirty_page(page);
1473 int clear_page_dirty_for_io(struct page *page);
1475 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1477 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1479 return !vma->vm_ops;
1482 #ifdef CONFIG_SHMEM
1484 * The vma_is_shmem is not inline because it is used only by slow
1485 * paths in userfault.
1487 bool vma_is_shmem(struct vm_area_struct *vma);
1488 #else
1489 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1490 #endif
1492 int vma_is_stack_for_current(struct vm_area_struct *vma);
1494 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1495 unsigned long old_addr, struct vm_area_struct *new_vma,
1496 unsigned long new_addr, unsigned long len,
1497 bool need_rmap_locks);
1498 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1499 unsigned long end, pgprot_t newprot,
1500 int dirty_accountable, int prot_numa);
1501 extern int mprotect_fixup(struct vm_area_struct *vma,
1502 struct vm_area_struct **pprev, unsigned long start,
1503 unsigned long end, unsigned long newflags);
1506 * doesn't attempt to fault and will return short.
1508 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1509 struct page **pages);
1511 * per-process(per-mm_struct) statistics.
1513 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1515 long val = atomic_long_read(&mm->rss_stat.count[member]);
1517 #ifdef SPLIT_RSS_COUNTING
1519 * counter is updated in asynchronous manner and may go to minus.
1520 * But it's never be expected number for users.
1522 if (val < 0)
1523 val = 0;
1524 #endif
1525 return (unsigned long)val;
1528 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1530 atomic_long_add(value, &mm->rss_stat.count[member]);
1533 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1535 atomic_long_inc(&mm->rss_stat.count[member]);
1538 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1540 atomic_long_dec(&mm->rss_stat.count[member]);
1543 /* Optimized variant when page is already known not to be PageAnon */
1544 static inline int mm_counter_file(struct page *page)
1546 if (PageSwapBacked(page))
1547 return MM_SHMEMPAGES;
1548 return MM_FILEPAGES;
1551 static inline int mm_counter(struct page *page)
1553 if (PageAnon(page))
1554 return MM_ANONPAGES;
1555 return mm_counter_file(page);
1558 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1560 return get_mm_counter(mm, MM_FILEPAGES) +
1561 get_mm_counter(mm, MM_ANONPAGES) +
1562 get_mm_counter(mm, MM_SHMEMPAGES);
1565 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1567 return max(mm->hiwater_rss, get_mm_rss(mm));
1570 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1572 return max(mm->hiwater_vm, mm->total_vm);
1575 static inline void update_hiwater_rss(struct mm_struct *mm)
1577 unsigned long _rss = get_mm_rss(mm);
1579 if ((mm)->hiwater_rss < _rss)
1580 (mm)->hiwater_rss = _rss;
1583 static inline void update_hiwater_vm(struct mm_struct *mm)
1585 if (mm->hiwater_vm < mm->total_vm)
1586 mm->hiwater_vm = mm->total_vm;
1589 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1591 mm->hiwater_rss = get_mm_rss(mm);
1594 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1595 struct mm_struct *mm)
1597 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1599 if (*maxrss < hiwater_rss)
1600 *maxrss = hiwater_rss;
1603 #if defined(SPLIT_RSS_COUNTING)
1604 void sync_mm_rss(struct mm_struct *mm);
1605 #else
1606 static inline void sync_mm_rss(struct mm_struct *mm)
1609 #endif
1611 #ifndef __HAVE_ARCH_PTE_DEVMAP
1612 static inline int pte_devmap(pte_t pte)
1614 return 0;
1616 #endif
1618 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1620 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1621 spinlock_t **ptl);
1622 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1623 spinlock_t **ptl)
1625 pte_t *ptep;
1626 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1627 return ptep;
1630 #ifdef __PAGETABLE_P4D_FOLDED
1631 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1632 unsigned long address)
1634 return 0;
1636 #else
1637 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1638 #endif
1640 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1641 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1642 unsigned long address)
1644 return 0;
1646 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1647 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1649 #else
1650 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1652 static inline void mm_inc_nr_puds(struct mm_struct *mm)
1654 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1657 static inline void mm_dec_nr_puds(struct mm_struct *mm)
1659 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1661 #endif
1663 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1664 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1665 unsigned long address)
1667 return 0;
1670 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1671 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1673 #else
1674 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1676 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1678 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1681 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1683 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1685 #endif
1687 #ifdef CONFIG_MMU
1688 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1690 atomic_long_set(&mm->pgtables_bytes, 0);
1693 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1695 return atomic_long_read(&mm->pgtables_bytes);
1698 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1700 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1703 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1705 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1707 #else
1709 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1710 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1712 return 0;
1715 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1716 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1717 #endif
1719 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1720 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1723 * The following ifdef needed to get the 4level-fixup.h header to work.
1724 * Remove it when 4level-fixup.h has been removed.
1726 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1728 #ifndef __ARCH_HAS_5LEVEL_HACK
1729 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1730 unsigned long address)
1732 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1733 NULL : p4d_offset(pgd, address);
1736 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1737 unsigned long address)
1739 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1740 NULL : pud_offset(p4d, address);
1742 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1744 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1746 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1747 NULL: pmd_offset(pud, address);
1749 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1751 #if USE_SPLIT_PTE_PTLOCKS
1752 #if ALLOC_SPLIT_PTLOCKS
1753 void __init ptlock_cache_init(void);
1754 extern bool ptlock_alloc(struct page *page);
1755 extern void ptlock_free(struct page *page);
1757 static inline spinlock_t *ptlock_ptr(struct page *page)
1759 return page->ptl;
1761 #else /* ALLOC_SPLIT_PTLOCKS */
1762 static inline void ptlock_cache_init(void)
1766 static inline bool ptlock_alloc(struct page *page)
1768 return true;
1771 static inline void ptlock_free(struct page *page)
1775 static inline spinlock_t *ptlock_ptr(struct page *page)
1777 return &page->ptl;
1779 #endif /* ALLOC_SPLIT_PTLOCKS */
1781 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1783 return ptlock_ptr(pmd_page(*pmd));
1786 static inline bool ptlock_init(struct page *page)
1789 * prep_new_page() initialize page->private (and therefore page->ptl)
1790 * with 0. Make sure nobody took it in use in between.
1792 * It can happen if arch try to use slab for page table allocation:
1793 * slab code uses page->slab_cache, which share storage with page->ptl.
1795 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1796 if (!ptlock_alloc(page))
1797 return false;
1798 spin_lock_init(ptlock_ptr(page));
1799 return true;
1802 /* Reset page->mapping so free_pages_check won't complain. */
1803 static inline void pte_lock_deinit(struct page *page)
1805 page->mapping = NULL;
1806 ptlock_free(page);
1809 #else /* !USE_SPLIT_PTE_PTLOCKS */
1811 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1813 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1815 return &mm->page_table_lock;
1817 static inline void ptlock_cache_init(void) {}
1818 static inline bool ptlock_init(struct page *page) { return true; }
1819 static inline void pte_lock_deinit(struct page *page) {}
1820 #endif /* USE_SPLIT_PTE_PTLOCKS */
1822 static inline void pgtable_init(void)
1824 ptlock_cache_init();
1825 pgtable_cache_init();
1828 static inline bool pgtable_page_ctor(struct page *page)
1830 if (!ptlock_init(page))
1831 return false;
1832 inc_zone_page_state(page, NR_PAGETABLE);
1833 return true;
1836 static inline void pgtable_page_dtor(struct page *page)
1838 pte_lock_deinit(page);
1839 dec_zone_page_state(page, NR_PAGETABLE);
1842 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1843 ({ \
1844 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1845 pte_t *__pte = pte_offset_map(pmd, address); \
1846 *(ptlp) = __ptl; \
1847 spin_lock(__ptl); \
1848 __pte; \
1851 #define pte_unmap_unlock(pte, ptl) do { \
1852 spin_unlock(ptl); \
1853 pte_unmap(pte); \
1854 } while (0)
1856 #define pte_alloc(mm, pmd, address) \
1857 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1859 #define pte_alloc_map(mm, pmd, address) \
1860 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1862 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1863 (pte_alloc(mm, pmd, address) ? \
1864 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1866 #define pte_alloc_kernel(pmd, address) \
1867 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1868 NULL: pte_offset_kernel(pmd, address))
1870 #if USE_SPLIT_PMD_PTLOCKS
1872 static struct page *pmd_to_page(pmd_t *pmd)
1874 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1875 return virt_to_page((void *)((unsigned long) pmd & mask));
1878 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1880 return ptlock_ptr(pmd_to_page(pmd));
1883 static inline bool pgtable_pmd_page_ctor(struct page *page)
1885 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1886 page->pmd_huge_pte = NULL;
1887 #endif
1888 return ptlock_init(page);
1891 static inline void pgtable_pmd_page_dtor(struct page *page)
1893 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1894 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1895 #endif
1896 ptlock_free(page);
1899 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1901 #else
1903 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1905 return &mm->page_table_lock;
1908 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1909 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1911 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1913 #endif
1915 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1917 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1918 spin_lock(ptl);
1919 return ptl;
1923 * No scalability reason to split PUD locks yet, but follow the same pattern
1924 * as the PMD locks to make it easier if we decide to. The VM should not be
1925 * considered ready to switch to split PUD locks yet; there may be places
1926 * which need to be converted from page_table_lock.
1928 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1930 return &mm->page_table_lock;
1933 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1935 spinlock_t *ptl = pud_lockptr(mm, pud);
1937 spin_lock(ptl);
1938 return ptl;
1941 extern void __init pagecache_init(void);
1942 extern void free_area_init(unsigned long * zones_size);
1943 extern void free_area_init_node(int nid, unsigned long * zones_size,
1944 unsigned long zone_start_pfn, unsigned long *zholes_size);
1945 extern void free_initmem(void);
1948 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1949 * into the buddy system. The freed pages will be poisoned with pattern
1950 * "poison" if it's within range [0, UCHAR_MAX].
1951 * Return pages freed into the buddy system.
1953 extern unsigned long free_reserved_area(void *start, void *end,
1954 int poison, char *s);
1956 #ifdef CONFIG_HIGHMEM
1958 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1959 * and totalram_pages.
1961 extern void free_highmem_page(struct page *page);
1962 #endif
1964 extern void adjust_managed_page_count(struct page *page, long count);
1965 extern void mem_init_print_info(const char *str);
1967 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
1969 /* Free the reserved page into the buddy system, so it gets managed. */
1970 static inline void __free_reserved_page(struct page *page)
1972 ClearPageReserved(page);
1973 init_page_count(page);
1974 __free_page(page);
1977 static inline void free_reserved_page(struct page *page)
1979 __free_reserved_page(page);
1980 adjust_managed_page_count(page, 1);
1983 static inline void mark_page_reserved(struct page *page)
1985 SetPageReserved(page);
1986 adjust_managed_page_count(page, -1);
1990 * Default method to free all the __init memory into the buddy system.
1991 * The freed pages will be poisoned with pattern "poison" if it's within
1992 * range [0, UCHAR_MAX].
1993 * Return pages freed into the buddy system.
1995 static inline unsigned long free_initmem_default(int poison)
1997 extern char __init_begin[], __init_end[];
1999 return free_reserved_area(&__init_begin, &__init_end,
2000 poison, "unused kernel");
2003 static inline unsigned long get_num_physpages(void)
2005 int nid;
2006 unsigned long phys_pages = 0;
2008 for_each_online_node(nid)
2009 phys_pages += node_present_pages(nid);
2011 return phys_pages;
2014 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2016 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2017 * zones, allocate the backing mem_map and account for memory holes in a more
2018 * architecture independent manner. This is a substitute for creating the
2019 * zone_sizes[] and zholes_size[] arrays and passing them to
2020 * free_area_init_node()
2022 * An architecture is expected to register range of page frames backed by
2023 * physical memory with memblock_add[_node]() before calling
2024 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2025 * usage, an architecture is expected to do something like
2027 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2028 * max_highmem_pfn};
2029 * for_each_valid_physical_page_range()
2030 * memblock_add_node(base, size, nid)
2031 * free_area_init_nodes(max_zone_pfns);
2033 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2034 * registered physical page range. Similarly
2035 * sparse_memory_present_with_active_regions() calls memory_present() for
2036 * each range when SPARSEMEM is enabled.
2038 * See mm/page_alloc.c for more information on each function exposed by
2039 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2041 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2042 unsigned long node_map_pfn_alignment(void);
2043 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2044 unsigned long end_pfn);
2045 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2046 unsigned long end_pfn);
2047 extern void get_pfn_range_for_nid(unsigned int nid,
2048 unsigned long *start_pfn, unsigned long *end_pfn);
2049 extern unsigned long find_min_pfn_with_active_regions(void);
2050 extern void free_bootmem_with_active_regions(int nid,
2051 unsigned long max_low_pfn);
2052 extern void sparse_memory_present_with_active_regions(int nid);
2054 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2056 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2057 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2058 static inline int __early_pfn_to_nid(unsigned long pfn,
2059 struct mminit_pfnnid_cache *state)
2061 return 0;
2063 #else
2064 /* please see mm/page_alloc.c */
2065 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2066 /* there is a per-arch backend function. */
2067 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2068 struct mminit_pfnnid_cache *state);
2069 #endif
2071 #ifdef CONFIG_HAVE_MEMBLOCK
2072 void zero_resv_unavail(void);
2073 #else
2074 static inline void zero_resv_unavail(void) {}
2075 #endif
2077 extern void set_dma_reserve(unsigned long new_dma_reserve);
2078 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2079 enum memmap_context, struct vmem_altmap *);
2080 extern void setup_per_zone_wmarks(void);
2081 extern int __meminit init_per_zone_wmark_min(void);
2082 extern void mem_init(void);
2083 extern void __init mmap_init(void);
2084 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2085 extern long si_mem_available(void);
2086 extern void si_meminfo(struct sysinfo * val);
2087 extern void si_meminfo_node(struct sysinfo *val, int nid);
2088 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2089 extern unsigned long arch_reserved_kernel_pages(void);
2090 #endif
2092 extern __printf(3, 4)
2093 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2095 extern void setup_per_cpu_pageset(void);
2097 extern void zone_pcp_update(struct zone *zone);
2098 extern void zone_pcp_reset(struct zone *zone);
2100 /* page_alloc.c */
2101 extern int min_free_kbytes;
2102 extern int watermark_scale_factor;
2104 /* nommu.c */
2105 extern atomic_long_t mmap_pages_allocated;
2106 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2108 /* interval_tree.c */
2109 void vma_interval_tree_insert(struct vm_area_struct *node,
2110 struct rb_root_cached *root);
2111 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2112 struct vm_area_struct *prev,
2113 struct rb_root_cached *root);
2114 void vma_interval_tree_remove(struct vm_area_struct *node,
2115 struct rb_root_cached *root);
2116 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2117 unsigned long start, unsigned long last);
2118 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2119 unsigned long start, unsigned long last);
2121 #define vma_interval_tree_foreach(vma, root, start, last) \
2122 for (vma = vma_interval_tree_iter_first(root, start, last); \
2123 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2125 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2126 struct rb_root_cached *root);
2127 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2128 struct rb_root_cached *root);
2129 struct anon_vma_chain *
2130 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2131 unsigned long start, unsigned long last);
2132 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2133 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2134 #ifdef CONFIG_DEBUG_VM_RB
2135 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2136 #endif
2138 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2139 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2140 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2142 /* mmap.c */
2143 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2144 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2145 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2146 struct vm_area_struct *expand);
2147 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2148 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2150 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2152 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2153 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2154 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2155 struct mempolicy *, struct vm_userfaultfd_ctx);
2156 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2157 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2158 unsigned long addr, int new_below);
2159 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2160 unsigned long addr, int new_below);
2161 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2162 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2163 struct rb_node **, struct rb_node *);
2164 extern void unlink_file_vma(struct vm_area_struct *);
2165 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2166 unsigned long addr, unsigned long len, pgoff_t pgoff,
2167 bool *need_rmap_locks);
2168 extern void exit_mmap(struct mm_struct *);
2170 static inline int check_data_rlimit(unsigned long rlim,
2171 unsigned long new,
2172 unsigned long start,
2173 unsigned long end_data,
2174 unsigned long start_data)
2176 if (rlim < RLIM_INFINITY) {
2177 if (((new - start) + (end_data - start_data)) > rlim)
2178 return -ENOSPC;
2181 return 0;
2184 extern int mm_take_all_locks(struct mm_struct *mm);
2185 extern void mm_drop_all_locks(struct mm_struct *mm);
2187 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2188 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2189 extern struct file *get_task_exe_file(struct task_struct *task);
2191 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2192 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2194 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2195 const struct vm_special_mapping *sm);
2196 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2197 unsigned long addr, unsigned long len,
2198 unsigned long flags,
2199 const struct vm_special_mapping *spec);
2200 /* This is an obsolete alternative to _install_special_mapping. */
2201 extern int install_special_mapping(struct mm_struct *mm,
2202 unsigned long addr, unsigned long len,
2203 unsigned long flags, struct page **pages);
2205 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2207 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2208 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2209 struct list_head *uf);
2210 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2211 unsigned long len, unsigned long prot, unsigned long flags,
2212 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2213 struct list_head *uf);
2214 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2215 struct list_head *uf);
2217 static inline unsigned long
2218 do_mmap_pgoff(struct file *file, unsigned long addr,
2219 unsigned long len, unsigned long prot, unsigned long flags,
2220 unsigned long pgoff, unsigned long *populate,
2221 struct list_head *uf)
2223 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2226 #ifdef CONFIG_MMU
2227 extern int __mm_populate(unsigned long addr, unsigned long len,
2228 int ignore_errors);
2229 static inline void mm_populate(unsigned long addr, unsigned long len)
2231 /* Ignore errors */
2232 (void) __mm_populate(addr, len, 1);
2234 #else
2235 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2236 #endif
2238 /* These take the mm semaphore themselves */
2239 extern int __must_check vm_brk(unsigned long, unsigned long);
2240 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2241 extern int vm_munmap(unsigned long, size_t);
2242 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2243 unsigned long, unsigned long,
2244 unsigned long, unsigned long);
2246 struct vm_unmapped_area_info {
2247 #define VM_UNMAPPED_AREA_TOPDOWN 1
2248 unsigned long flags;
2249 unsigned long length;
2250 unsigned long low_limit;
2251 unsigned long high_limit;
2252 unsigned long align_mask;
2253 unsigned long align_offset;
2256 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2257 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2260 * Search for an unmapped address range.
2262 * We are looking for a range that:
2263 * - does not intersect with any VMA;
2264 * - is contained within the [low_limit, high_limit) interval;
2265 * - is at least the desired size.
2266 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2268 static inline unsigned long
2269 vm_unmapped_area(struct vm_unmapped_area_info *info)
2271 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2272 return unmapped_area_topdown(info);
2273 else
2274 return unmapped_area(info);
2277 /* truncate.c */
2278 extern void truncate_inode_pages(struct address_space *, loff_t);
2279 extern void truncate_inode_pages_range(struct address_space *,
2280 loff_t lstart, loff_t lend);
2281 extern void truncate_inode_pages_final(struct address_space *);
2283 /* generic vm_area_ops exported for stackable file systems */
2284 extern int filemap_fault(struct vm_fault *vmf);
2285 extern void filemap_map_pages(struct vm_fault *vmf,
2286 pgoff_t start_pgoff, pgoff_t end_pgoff);
2287 extern int filemap_page_mkwrite(struct vm_fault *vmf);
2289 /* mm/page-writeback.c */
2290 int __must_check write_one_page(struct page *page);
2291 void task_dirty_inc(struct task_struct *tsk);
2293 /* readahead.c */
2294 #define VM_MAX_READAHEAD 128 /* kbytes */
2295 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2297 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2298 pgoff_t offset, unsigned long nr_to_read);
2300 void page_cache_sync_readahead(struct address_space *mapping,
2301 struct file_ra_state *ra,
2302 struct file *filp,
2303 pgoff_t offset,
2304 unsigned long size);
2306 void page_cache_async_readahead(struct address_space *mapping,
2307 struct file_ra_state *ra,
2308 struct file *filp,
2309 struct page *pg,
2310 pgoff_t offset,
2311 unsigned long size);
2313 extern unsigned long stack_guard_gap;
2314 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2315 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2317 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2318 extern int expand_downwards(struct vm_area_struct *vma,
2319 unsigned long address);
2320 #if VM_GROWSUP
2321 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2322 #else
2323 #define expand_upwards(vma, address) (0)
2324 #endif
2326 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2327 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2328 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2329 struct vm_area_struct **pprev);
2331 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2332 NULL if none. Assume start_addr < end_addr. */
2333 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2335 struct vm_area_struct * vma = find_vma(mm,start_addr);
2337 if (vma && end_addr <= vma->vm_start)
2338 vma = NULL;
2339 return vma;
2342 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2344 unsigned long vm_start = vma->vm_start;
2346 if (vma->vm_flags & VM_GROWSDOWN) {
2347 vm_start -= stack_guard_gap;
2348 if (vm_start > vma->vm_start)
2349 vm_start = 0;
2351 return vm_start;
2354 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2356 unsigned long vm_end = vma->vm_end;
2358 if (vma->vm_flags & VM_GROWSUP) {
2359 vm_end += stack_guard_gap;
2360 if (vm_end < vma->vm_end)
2361 vm_end = -PAGE_SIZE;
2363 return vm_end;
2366 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2368 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2371 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2372 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2373 unsigned long vm_start, unsigned long vm_end)
2375 struct vm_area_struct *vma = find_vma(mm, vm_start);
2377 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2378 vma = NULL;
2380 return vma;
2383 #ifdef CONFIG_MMU
2384 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2385 void vma_set_page_prot(struct vm_area_struct *vma);
2386 #else
2387 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2389 return __pgprot(0);
2391 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2393 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2395 #endif
2397 #ifdef CONFIG_NUMA_BALANCING
2398 unsigned long change_prot_numa(struct vm_area_struct *vma,
2399 unsigned long start, unsigned long end);
2400 #endif
2402 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2403 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2404 unsigned long pfn, unsigned long size, pgprot_t);
2405 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2406 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2407 unsigned long pfn);
2408 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2409 unsigned long pfn, pgprot_t pgprot);
2410 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2411 pfn_t pfn);
2412 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
2413 pfn_t pfn);
2414 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2417 struct page *follow_page_mask(struct vm_area_struct *vma,
2418 unsigned long address, unsigned int foll_flags,
2419 unsigned int *page_mask);
2421 static inline struct page *follow_page(struct vm_area_struct *vma,
2422 unsigned long address, unsigned int foll_flags)
2424 unsigned int unused_page_mask;
2425 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2428 #define FOLL_WRITE 0x01 /* check pte is writable */
2429 #define FOLL_TOUCH 0x02 /* mark page accessed */
2430 #define FOLL_GET 0x04 /* do get_page on page */
2431 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2432 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2433 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2434 * and return without waiting upon it */
2435 #define FOLL_POPULATE 0x40 /* fault in page */
2436 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2437 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2438 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2439 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2440 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2441 #define FOLL_MLOCK 0x1000 /* lock present pages */
2442 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2443 #define FOLL_COW 0x4000 /* internal GUP flag */
2445 static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
2447 if (vm_fault & VM_FAULT_OOM)
2448 return -ENOMEM;
2449 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2450 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2451 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2452 return -EFAULT;
2453 return 0;
2456 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2457 void *data);
2458 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2459 unsigned long size, pte_fn_t fn, void *data);
2462 #ifdef CONFIG_PAGE_POISONING
2463 extern bool page_poisoning_enabled(void);
2464 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2465 extern bool page_is_poisoned(struct page *page);
2466 #else
2467 static inline bool page_poisoning_enabled(void) { return false; }
2468 static inline void kernel_poison_pages(struct page *page, int numpages,
2469 int enable) { }
2470 static inline bool page_is_poisoned(struct page *page) { return false; }
2471 #endif
2473 #ifdef CONFIG_DEBUG_PAGEALLOC
2474 extern bool _debug_pagealloc_enabled;
2475 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2477 static inline bool debug_pagealloc_enabled(void)
2479 return _debug_pagealloc_enabled;
2482 static inline void
2483 kernel_map_pages(struct page *page, int numpages, int enable)
2485 if (!debug_pagealloc_enabled())
2486 return;
2488 __kernel_map_pages(page, numpages, enable);
2490 #ifdef CONFIG_HIBERNATION
2491 extern bool kernel_page_present(struct page *page);
2492 #endif /* CONFIG_HIBERNATION */
2493 #else /* CONFIG_DEBUG_PAGEALLOC */
2494 static inline void
2495 kernel_map_pages(struct page *page, int numpages, int enable) {}
2496 #ifdef CONFIG_HIBERNATION
2497 static inline bool kernel_page_present(struct page *page) { return true; }
2498 #endif /* CONFIG_HIBERNATION */
2499 static inline bool debug_pagealloc_enabled(void)
2501 return false;
2503 #endif /* CONFIG_DEBUG_PAGEALLOC */
2505 #ifdef __HAVE_ARCH_GATE_AREA
2506 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2507 extern int in_gate_area_no_mm(unsigned long addr);
2508 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2509 #else
2510 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2512 return NULL;
2514 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2515 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2517 return 0;
2519 #endif /* __HAVE_ARCH_GATE_AREA */
2521 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2523 #ifdef CONFIG_SYSCTL
2524 extern int sysctl_drop_caches;
2525 int drop_caches_sysctl_handler(struct ctl_table *, int,
2526 void __user *, size_t *, loff_t *);
2527 #endif
2529 void drop_slab(void);
2530 void drop_slab_node(int nid);
2532 #ifndef CONFIG_MMU
2533 #define randomize_va_space 0
2534 #else
2535 extern int randomize_va_space;
2536 #endif
2538 const char * arch_vma_name(struct vm_area_struct *vma);
2539 void print_vma_addr(char *prefix, unsigned long rip);
2541 void sparse_mem_maps_populate_node(struct page **map_map,
2542 unsigned long pnum_begin,
2543 unsigned long pnum_end,
2544 unsigned long map_count,
2545 int nodeid);
2547 struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2548 struct vmem_altmap *altmap);
2549 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2550 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2551 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2552 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2553 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2554 void *vmemmap_alloc_block(unsigned long size, int node);
2555 struct vmem_altmap;
2556 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2557 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2558 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2559 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2560 int node);
2561 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2562 struct vmem_altmap *altmap);
2563 void vmemmap_populate_print_last(void);
2564 #ifdef CONFIG_MEMORY_HOTPLUG
2565 void vmemmap_free(unsigned long start, unsigned long end,
2566 struct vmem_altmap *altmap);
2567 #endif
2568 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2569 unsigned long nr_pages);
2571 enum mf_flags {
2572 MF_COUNT_INCREASED = 1 << 0,
2573 MF_ACTION_REQUIRED = 1 << 1,
2574 MF_MUST_KILL = 1 << 2,
2575 MF_SOFT_OFFLINE = 1 << 3,
2577 extern int memory_failure(unsigned long pfn, int flags);
2578 extern void memory_failure_queue(unsigned long pfn, int flags);
2579 extern int unpoison_memory(unsigned long pfn);
2580 extern int get_hwpoison_page(struct page *page);
2581 #define put_hwpoison_page(page) put_page(page)
2582 extern int sysctl_memory_failure_early_kill;
2583 extern int sysctl_memory_failure_recovery;
2584 extern void shake_page(struct page *p, int access);
2585 extern atomic_long_t num_poisoned_pages;
2586 extern int soft_offline_page(struct page *page, int flags);
2590 * Error handlers for various types of pages.
2592 enum mf_result {
2593 MF_IGNORED, /* Error: cannot be handled */
2594 MF_FAILED, /* Error: handling failed */
2595 MF_DELAYED, /* Will be handled later */
2596 MF_RECOVERED, /* Successfully recovered */
2599 enum mf_action_page_type {
2600 MF_MSG_KERNEL,
2601 MF_MSG_KERNEL_HIGH_ORDER,
2602 MF_MSG_SLAB,
2603 MF_MSG_DIFFERENT_COMPOUND,
2604 MF_MSG_POISONED_HUGE,
2605 MF_MSG_HUGE,
2606 MF_MSG_FREE_HUGE,
2607 MF_MSG_UNMAP_FAILED,
2608 MF_MSG_DIRTY_SWAPCACHE,
2609 MF_MSG_CLEAN_SWAPCACHE,
2610 MF_MSG_DIRTY_MLOCKED_LRU,
2611 MF_MSG_CLEAN_MLOCKED_LRU,
2612 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2613 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2614 MF_MSG_DIRTY_LRU,
2615 MF_MSG_CLEAN_LRU,
2616 MF_MSG_TRUNCATED_LRU,
2617 MF_MSG_BUDDY,
2618 MF_MSG_BUDDY_2ND,
2619 MF_MSG_UNKNOWN,
2622 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2623 extern void clear_huge_page(struct page *page,
2624 unsigned long addr_hint,
2625 unsigned int pages_per_huge_page);
2626 extern void copy_user_huge_page(struct page *dst, struct page *src,
2627 unsigned long addr, struct vm_area_struct *vma,
2628 unsigned int pages_per_huge_page);
2629 extern long copy_huge_page_from_user(struct page *dst_page,
2630 const void __user *usr_src,
2631 unsigned int pages_per_huge_page,
2632 bool allow_pagefault);
2633 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2635 extern struct page_ext_operations debug_guardpage_ops;
2637 #ifdef CONFIG_DEBUG_PAGEALLOC
2638 extern unsigned int _debug_guardpage_minorder;
2639 extern bool _debug_guardpage_enabled;
2641 static inline unsigned int debug_guardpage_minorder(void)
2643 return _debug_guardpage_minorder;
2646 static inline bool debug_guardpage_enabled(void)
2648 return _debug_guardpage_enabled;
2651 static inline bool page_is_guard(struct page *page)
2653 struct page_ext *page_ext;
2655 if (!debug_guardpage_enabled())
2656 return false;
2658 page_ext = lookup_page_ext(page);
2659 if (unlikely(!page_ext))
2660 return false;
2662 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2664 #else
2665 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2666 static inline bool debug_guardpage_enabled(void) { return false; }
2667 static inline bool page_is_guard(struct page *page) { return false; }
2668 #endif /* CONFIG_DEBUG_PAGEALLOC */
2670 #if MAX_NUMNODES > 1
2671 void __init setup_nr_node_ids(void);
2672 #else
2673 static inline void setup_nr_node_ids(void) {}
2674 #endif
2676 #endif /* __KERNEL__ */
2677 #endif /* _LINUX_MM_H */