1 /* SPDX-License-Identifier: GPL-2.0 */
3 * Macros for manipulating and testing page->flags
9 #include <linux/types.h>
10 #include <linux/bug.h>
11 #include <linux/mmdebug.h>
12 #ifndef __GENERATING_BOUNDS_H
13 #include <linux/mm_types.h>
14 #include <generated/bounds.h>
15 #endif /* !__GENERATING_BOUNDS_H */
18 * Various page->flags bits:
20 * PG_reserved is set for special pages, which can never be swapped out. Some
21 * of them might not even exist...
23 * The PG_private bitflag is set on pagecache pages if they contain filesystem
24 * specific data (which is normally at page->private). It can be used by
25 * private allocations for its own usage.
27 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
28 * and cleared when writeback _starts_ or when read _completes_. PG_writeback
29 * is set before writeback starts and cleared when it finishes.
31 * PG_locked also pins a page in pagecache, and blocks truncation of the file
34 * page_waitqueue(page) is a wait queue of all tasks waiting for the page
37 * PG_uptodate tells whether the page's contents is valid. When a read
38 * completes, the page becomes uptodate, unless a disk I/O error happened.
40 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
41 * file-backed pagecache (see mm/vmscan.c).
43 * PG_error is set to indicate that an I/O error occurred on this page.
45 * PG_arch_1 is an architecture specific page state bit. The generic code
46 * guarantees that this bit is cleared for a page when it first is entered into
49 * PG_hwpoison indicates that a page got corrupted in hardware and contains
50 * data with incorrect ECC bits that triggered a machine check. Accessing is
51 * not safe since it may cause another machine check. Don't touch!
55 * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break
56 * locked- and dirty-page accounting.
58 * The page flags field is split into two parts, the main flags area
59 * which extends from the low bits upwards, and the fields area which
60 * extends from the high bits downwards.
62 * | FIELD | ... | FLAGS |
66 * The fields area is reserved for fields mapping zone, node (for NUMA) and
67 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
68 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
71 PG_locked
, /* Page is locked. Don't touch. */
78 PG_waiters
, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
80 PG_owner_priv_1
, /* Owner use. If pagecache, fs may use*/
83 PG_private
, /* If pagecache, has fs-private data */
84 PG_private_2
, /* If pagecache, has fs aux data */
85 PG_writeback
, /* Page is under writeback */
86 PG_head
, /* A head page */
87 PG_mappedtodisk
, /* Has blocks allocated on-disk */
88 PG_reclaim
, /* To be reclaimed asap */
89 PG_swapbacked
, /* Page is backed by RAM/swap */
90 PG_unevictable
, /* Page is "unevictable" */
92 PG_mlocked
, /* Page is vma mlocked */
94 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
95 PG_uncached
, /* Page has been mapped as uncached */
97 #ifdef CONFIG_MEMORY_FAILURE
98 PG_hwpoison
, /* hardware poisoned page. Don't touch */
100 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
107 PG_checked
= PG_owner_priv_1
,
110 PG_swapcache
= PG_owner_priv_1
, /* Swap page: swp_entry_t in private */
112 /* Two page bits are conscripted by FS-Cache to maintain local caching
113 * state. These bits are set on pages belonging to the netfs's inodes
114 * when those inodes are being locally cached.
116 PG_fscache
= PG_private_2
, /* page backed by cache */
119 /* Pinned in Xen as a read-only pagetable page. */
120 PG_pinned
= PG_owner_priv_1
,
121 /* Pinned as part of domain save (see xen_mm_pin_all()). */
122 PG_savepinned
= PG_dirty
,
123 /* Has a grant mapping of another (foreign) domain's page. */
124 PG_foreign
= PG_owner_priv_1
,
127 PG_slob_free
= PG_private
,
129 /* Compound pages. Stored in first tail page's flags */
130 PG_double_map
= PG_private_2
,
132 /* non-lru isolated movable page */
133 PG_isolated
= PG_reclaim
,
136 #ifndef __GENERATING_BOUNDS_H
138 struct page
; /* forward declaration */
140 static inline struct page
*compound_head(struct page
*page
)
142 unsigned long head
= READ_ONCE(page
->compound_head
);
144 if (unlikely(head
& 1))
145 return (struct page
*) (head
- 1);
149 static __always_inline
int PageTail(struct page
*page
)
151 return READ_ONCE(page
->compound_head
) & 1;
154 static __always_inline
int PageCompound(struct page
*page
)
156 return test_bit(PG_head
, &page
->flags
) || PageTail(page
);
160 * Page flags policies wrt compound pages
163 * the page flag is relevant for small, head and tail pages.
166 * for compound page all operations related to the page flag applied to
170 * for compound page, callers only ever operate on the head page.
173 * modifications of the page flag must be done on small or head pages,
174 * checks can be done on tail pages too.
177 * the page flag is not relevant for compound pages.
179 #define PF_ANY(page, enforce) page
180 #define PF_HEAD(page, enforce) compound_head(page)
181 #define PF_ONLY_HEAD(page, enforce) ({ \
182 VM_BUG_ON_PGFLAGS(PageTail(page), page); \
184 #define PF_NO_TAIL(page, enforce) ({ \
185 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \
186 compound_head(page);})
187 #define PF_NO_COMPOUND(page, enforce) ({ \
188 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \
192 * Macros to create function definitions for page flags
194 #define TESTPAGEFLAG(uname, lname, policy) \
195 static __always_inline int Page##uname(struct page *page) \
196 { return test_bit(PG_##lname, &policy(page, 0)->flags); }
198 #define SETPAGEFLAG(uname, lname, policy) \
199 static __always_inline void SetPage##uname(struct page *page) \
200 { set_bit(PG_##lname, &policy(page, 1)->flags); }
202 #define CLEARPAGEFLAG(uname, lname, policy) \
203 static __always_inline void ClearPage##uname(struct page *page) \
204 { clear_bit(PG_##lname, &policy(page, 1)->flags); }
206 #define __SETPAGEFLAG(uname, lname, policy) \
207 static __always_inline void __SetPage##uname(struct page *page) \
208 { __set_bit(PG_##lname, &policy(page, 1)->flags); }
210 #define __CLEARPAGEFLAG(uname, lname, policy) \
211 static __always_inline void __ClearPage##uname(struct page *page) \
212 { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
214 #define TESTSETFLAG(uname, lname, policy) \
215 static __always_inline int TestSetPage##uname(struct page *page) \
216 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
218 #define TESTCLEARFLAG(uname, lname, policy) \
219 static __always_inline int TestClearPage##uname(struct page *page) \
220 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
222 #define PAGEFLAG(uname, lname, policy) \
223 TESTPAGEFLAG(uname, lname, policy) \
224 SETPAGEFLAG(uname, lname, policy) \
225 CLEARPAGEFLAG(uname, lname, policy)
227 #define __PAGEFLAG(uname, lname, policy) \
228 TESTPAGEFLAG(uname, lname, policy) \
229 __SETPAGEFLAG(uname, lname, policy) \
230 __CLEARPAGEFLAG(uname, lname, policy)
232 #define TESTSCFLAG(uname, lname, policy) \
233 TESTSETFLAG(uname, lname, policy) \
234 TESTCLEARFLAG(uname, lname, policy)
236 #define TESTPAGEFLAG_FALSE(uname) \
237 static inline int Page##uname(const struct page *page) { return 0; }
239 #define SETPAGEFLAG_NOOP(uname) \
240 static inline void SetPage##uname(struct page *page) { }
242 #define CLEARPAGEFLAG_NOOP(uname) \
243 static inline void ClearPage##uname(struct page *page) { }
245 #define __CLEARPAGEFLAG_NOOP(uname) \
246 static inline void __ClearPage##uname(struct page *page) { }
248 #define TESTSETFLAG_FALSE(uname) \
249 static inline int TestSetPage##uname(struct page *page) { return 0; }
251 #define TESTCLEARFLAG_FALSE(uname) \
252 static inline int TestClearPage##uname(struct page *page) { return 0; }
254 #define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \
255 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
257 #define TESTSCFLAG_FALSE(uname) \
258 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
260 __PAGEFLAG(Locked
, locked
, PF_NO_TAIL
)
261 PAGEFLAG(Waiters
, waiters
, PF_ONLY_HEAD
) __CLEARPAGEFLAG(Waiters
, waiters
, PF_ONLY_HEAD
)
262 PAGEFLAG(Error
, error
, PF_NO_COMPOUND
) TESTCLEARFLAG(Error
, error
, PF_NO_COMPOUND
)
263 PAGEFLAG(Referenced
, referenced
, PF_HEAD
)
264 TESTCLEARFLAG(Referenced
, referenced
, PF_HEAD
)
265 __SETPAGEFLAG(Referenced
, referenced
, PF_HEAD
)
266 PAGEFLAG(Dirty
, dirty
, PF_HEAD
) TESTSCFLAG(Dirty
, dirty
, PF_HEAD
)
267 __CLEARPAGEFLAG(Dirty
, dirty
, PF_HEAD
)
268 PAGEFLAG(LRU
, lru
, PF_HEAD
) __CLEARPAGEFLAG(LRU
, lru
, PF_HEAD
)
269 PAGEFLAG(Active
, active
, PF_HEAD
) __CLEARPAGEFLAG(Active
, active
, PF_HEAD
)
270 TESTCLEARFLAG(Active
, active
, PF_HEAD
)
271 __PAGEFLAG(Slab
, slab
, PF_NO_TAIL
)
272 __PAGEFLAG(SlobFree
, slob_free
, PF_NO_TAIL
)
273 PAGEFLAG(Checked
, checked
, PF_NO_COMPOUND
) /* Used by some filesystems */
276 PAGEFLAG(Pinned
, pinned
, PF_NO_COMPOUND
)
277 TESTSCFLAG(Pinned
, pinned
, PF_NO_COMPOUND
)
278 PAGEFLAG(SavePinned
, savepinned
, PF_NO_COMPOUND
);
279 PAGEFLAG(Foreign
, foreign
, PF_NO_COMPOUND
);
281 PAGEFLAG(Reserved
, reserved
, PF_NO_COMPOUND
)
282 __CLEARPAGEFLAG(Reserved
, reserved
, PF_NO_COMPOUND
)
283 PAGEFLAG(SwapBacked
, swapbacked
, PF_NO_TAIL
)
284 __CLEARPAGEFLAG(SwapBacked
, swapbacked
, PF_NO_TAIL
)
285 __SETPAGEFLAG(SwapBacked
, swapbacked
, PF_NO_TAIL
)
288 * Private page markings that may be used by the filesystem that owns the page
289 * for its own purposes.
290 * - PG_private and PG_private_2 cause releasepage() and co to be invoked
292 PAGEFLAG(Private
, private, PF_ANY
) __SETPAGEFLAG(Private
, private, PF_ANY
)
293 __CLEARPAGEFLAG(Private
, private, PF_ANY
)
294 PAGEFLAG(Private2
, private_2
, PF_ANY
) TESTSCFLAG(Private2
, private_2
, PF_ANY
)
295 PAGEFLAG(OwnerPriv1
, owner_priv_1
, PF_ANY
)
296 TESTCLEARFLAG(OwnerPriv1
, owner_priv_1
, PF_ANY
)
299 * Only test-and-set exist for PG_writeback. The unconditional operators are
300 * risky: they bypass page accounting.
302 TESTPAGEFLAG(Writeback
, writeback
, PF_NO_TAIL
)
303 TESTSCFLAG(Writeback
, writeback
, PF_NO_TAIL
)
304 PAGEFLAG(MappedToDisk
, mappedtodisk
, PF_NO_TAIL
)
306 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
307 PAGEFLAG(Reclaim
, reclaim
, PF_NO_TAIL
)
308 TESTCLEARFLAG(Reclaim
, reclaim
, PF_NO_TAIL
)
309 PAGEFLAG(Readahead
, reclaim
, PF_NO_COMPOUND
)
310 TESTCLEARFLAG(Readahead
, reclaim
, PF_NO_COMPOUND
)
312 #ifdef CONFIG_HIGHMEM
314 * Must use a macro here due to header dependency issues. page_zone() is not
315 * available at this point.
317 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
319 PAGEFLAG_FALSE(HighMem
)
323 static __always_inline
int PageSwapCache(struct page
*page
)
325 #ifdef CONFIG_THP_SWAP
326 page
= compound_head(page
);
328 return PageSwapBacked(page
) && test_bit(PG_swapcache
, &page
->flags
);
331 SETPAGEFLAG(SwapCache
, swapcache
, PF_NO_TAIL
)
332 CLEARPAGEFLAG(SwapCache
, swapcache
, PF_NO_TAIL
)
334 PAGEFLAG_FALSE(SwapCache
)
337 PAGEFLAG(Unevictable
, unevictable
, PF_HEAD
)
338 __CLEARPAGEFLAG(Unevictable
, unevictable
, PF_HEAD
)
339 TESTCLEARFLAG(Unevictable
, unevictable
, PF_HEAD
)
342 PAGEFLAG(Mlocked
, mlocked
, PF_NO_TAIL
)
343 __CLEARPAGEFLAG(Mlocked
, mlocked
, PF_NO_TAIL
)
344 TESTSCFLAG(Mlocked
, mlocked
, PF_NO_TAIL
)
346 PAGEFLAG_FALSE(Mlocked
) __CLEARPAGEFLAG_NOOP(Mlocked
)
347 TESTSCFLAG_FALSE(Mlocked
)
350 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
351 PAGEFLAG(Uncached
, uncached
, PF_NO_COMPOUND
)
353 PAGEFLAG_FALSE(Uncached
)
356 #ifdef CONFIG_MEMORY_FAILURE
357 PAGEFLAG(HWPoison
, hwpoison
, PF_ANY
)
358 TESTSCFLAG(HWPoison
, hwpoison
, PF_ANY
)
359 #define __PG_HWPOISON (1UL << PG_hwpoison)
361 PAGEFLAG_FALSE(HWPoison
)
362 #define __PG_HWPOISON 0
365 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
366 TESTPAGEFLAG(Young
, young
, PF_ANY
)
367 SETPAGEFLAG(Young
, young
, PF_ANY
)
368 TESTCLEARFLAG(Young
, young
, PF_ANY
)
369 PAGEFLAG(Idle
, idle
, PF_ANY
)
373 * On an anonymous page mapped into a user virtual memory area,
374 * page->mapping points to its anon_vma, not to a struct address_space;
375 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
377 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
378 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
379 * bit; and then page->mapping points, not to an anon_vma, but to a private
380 * structure which KSM associates with that merged page. See ksm.h.
382 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
383 * page and then page->mapping points a struct address_space.
385 * Please note that, confusingly, "page_mapping" refers to the inode
386 * address_space which maps the page from disk; whereas "page_mapped"
387 * refers to user virtual address space into which the page is mapped.
389 #define PAGE_MAPPING_ANON 0x1
390 #define PAGE_MAPPING_MOVABLE 0x2
391 #define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
392 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
394 static __always_inline
int PageMappingFlags(struct page
*page
)
396 return ((unsigned long)page
->mapping
& PAGE_MAPPING_FLAGS
) != 0;
399 static __always_inline
int PageAnon(struct page
*page
)
401 page
= compound_head(page
);
402 return ((unsigned long)page
->mapping
& PAGE_MAPPING_ANON
) != 0;
405 static __always_inline
int __PageMovable(struct page
*page
)
407 return ((unsigned long)page
->mapping
& PAGE_MAPPING_FLAGS
) ==
408 PAGE_MAPPING_MOVABLE
;
413 * A KSM page is one of those write-protected "shared pages" or "merged pages"
414 * which KSM maps into multiple mms, wherever identical anonymous page content
415 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any
416 * anon_vma, but to that page's node of the stable tree.
418 static __always_inline
int PageKsm(struct page
*page
)
420 page
= compound_head(page
);
421 return ((unsigned long)page
->mapping
& PAGE_MAPPING_FLAGS
) ==
425 TESTPAGEFLAG_FALSE(Ksm
)
428 u64
stable_page_flags(struct page
*page
);
430 static inline int PageUptodate(struct page
*page
)
433 page
= compound_head(page
);
434 ret
= test_bit(PG_uptodate
, &(page
)->flags
);
436 * Must ensure that the data we read out of the page is loaded
437 * _after_ we've loaded page->flags to check for PageUptodate.
438 * We can skip the barrier if the page is not uptodate, because
439 * we wouldn't be reading anything from it.
441 * See SetPageUptodate() for the other side of the story.
449 static __always_inline
void __SetPageUptodate(struct page
*page
)
451 VM_BUG_ON_PAGE(PageTail(page
), page
);
453 __set_bit(PG_uptodate
, &page
->flags
);
456 static __always_inline
void SetPageUptodate(struct page
*page
)
458 VM_BUG_ON_PAGE(PageTail(page
), page
);
460 * Memory barrier must be issued before setting the PG_uptodate bit,
461 * so that all previous stores issued in order to bring the page
462 * uptodate are actually visible before PageUptodate becomes true.
465 set_bit(PG_uptodate
, &page
->flags
);
468 CLEARPAGEFLAG(Uptodate
, uptodate
, PF_NO_TAIL
)
470 int test_clear_page_writeback(struct page
*page
);
471 int __test_set_page_writeback(struct page
*page
, bool keep_write
);
473 #define test_set_page_writeback(page) \
474 __test_set_page_writeback(page, false)
475 #define test_set_page_writeback_keepwrite(page) \
476 __test_set_page_writeback(page, true)
478 static inline void set_page_writeback(struct page
*page
)
480 test_set_page_writeback(page
);
483 static inline void set_page_writeback_keepwrite(struct page
*page
)
485 test_set_page_writeback_keepwrite(page
);
488 __PAGEFLAG(Head
, head
, PF_ANY
) CLEARPAGEFLAG(Head
, head
, PF_ANY
)
490 static __always_inline
void set_compound_head(struct page
*page
, struct page
*head
)
492 WRITE_ONCE(page
->compound_head
, (unsigned long)head
+ 1);
495 static __always_inline
void clear_compound_head(struct page
*page
)
497 WRITE_ONCE(page
->compound_head
, 0);
500 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
501 static inline void ClearPageCompound(struct page
*page
)
503 BUG_ON(!PageHead(page
));
508 #define PG_head_mask ((1UL << PG_head))
510 #ifdef CONFIG_HUGETLB_PAGE
511 int PageHuge(struct page
*page
);
512 int PageHeadHuge(struct page
*page
);
513 bool page_huge_active(struct page
*page
);
515 TESTPAGEFLAG_FALSE(Huge
)
516 TESTPAGEFLAG_FALSE(HeadHuge
)
518 static inline bool page_huge_active(struct page
*page
)
525 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
527 * PageHuge() only returns true for hugetlbfs pages, but not for
528 * normal or transparent huge pages.
530 * PageTransHuge() returns true for both transparent huge and
531 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
532 * called only in the core VM paths where hugetlbfs pages can't exist.
534 static inline int PageTransHuge(struct page
*page
)
536 VM_BUG_ON_PAGE(PageTail(page
), page
);
537 return PageHead(page
);
541 * PageTransCompound returns true for both transparent huge pages
542 * and hugetlbfs pages, so it should only be called when it's known
543 * that hugetlbfs pages aren't involved.
545 static inline int PageTransCompound(struct page
*page
)
547 return PageCompound(page
);
551 * PageTransCompoundMap is the same as PageTransCompound, but it also
552 * guarantees the primary MMU has the entire compound page mapped
553 * through pmd_trans_huge, which in turn guarantees the secondary MMUs
554 * can also map the entire compound page. This allows the secondary
555 * MMUs to call get_user_pages() only once for each compound page and
556 * to immediately map the entire compound page with a single secondary
557 * MMU fault. If there will be a pmd split later, the secondary MMUs
558 * will get an update through the MMU notifier invalidation through
561 * Unlike PageTransCompound, this is safe to be called only while
562 * split_huge_pmd() cannot run from under us, like if protected by the
563 * MMU notifier, otherwise it may result in page->_mapcount < 0 false
566 static inline int PageTransCompoundMap(struct page
*page
)
568 return PageTransCompound(page
) && atomic_read(&page
->_mapcount
) < 0;
572 * PageTransTail returns true for both transparent huge pages
573 * and hugetlbfs pages, so it should only be called when it's known
574 * that hugetlbfs pages aren't involved.
576 static inline int PageTransTail(struct page
*page
)
578 return PageTail(page
);
582 * PageDoubleMap indicates that the compound page is mapped with PTEs as well
585 * This is required for optimization of rmap operations for THP: we can postpone
586 * per small page mapcount accounting (and its overhead from atomic operations)
587 * until the first PMD split.
589 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
590 * by one. This reference will go away with last compound_mapcount.
592 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
594 static inline int PageDoubleMap(struct page
*page
)
596 return PageHead(page
) && test_bit(PG_double_map
, &page
[1].flags
);
599 static inline void SetPageDoubleMap(struct page
*page
)
601 VM_BUG_ON_PAGE(!PageHead(page
), page
);
602 set_bit(PG_double_map
, &page
[1].flags
);
605 static inline void ClearPageDoubleMap(struct page
*page
)
607 VM_BUG_ON_PAGE(!PageHead(page
), page
);
608 clear_bit(PG_double_map
, &page
[1].flags
);
610 static inline int TestSetPageDoubleMap(struct page
*page
)
612 VM_BUG_ON_PAGE(!PageHead(page
), page
);
613 return test_and_set_bit(PG_double_map
, &page
[1].flags
);
616 static inline int TestClearPageDoubleMap(struct page
*page
)
618 VM_BUG_ON_PAGE(!PageHead(page
), page
);
619 return test_and_clear_bit(PG_double_map
, &page
[1].flags
);
623 TESTPAGEFLAG_FALSE(TransHuge
)
624 TESTPAGEFLAG_FALSE(TransCompound
)
625 TESTPAGEFLAG_FALSE(TransCompoundMap
)
626 TESTPAGEFLAG_FALSE(TransTail
)
627 PAGEFLAG_FALSE(DoubleMap
)
628 TESTSETFLAG_FALSE(DoubleMap
)
629 TESTCLEARFLAG_FALSE(DoubleMap
)
633 * For pages that are never mapped to userspace, page->mapcount may be
634 * used for storing extra information about page type. Any value used
635 * for this purpose must be <= -2, but it's better start not too close
636 * to -2 so that an underflow of the page_mapcount() won't be mistaken
637 * for a special page.
639 #define PAGE_MAPCOUNT_OPS(uname, lname) \
640 static __always_inline int Page##uname(struct page *page) \
642 return atomic_read(&page->_mapcount) == \
643 PAGE_##lname##_MAPCOUNT_VALUE; \
645 static __always_inline void __SetPage##uname(struct page *page) \
647 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); \
648 atomic_set(&page->_mapcount, PAGE_##lname##_MAPCOUNT_VALUE); \
650 static __always_inline void __ClearPage##uname(struct page *page) \
652 VM_BUG_ON_PAGE(!Page##uname(page), page); \
653 atomic_set(&page->_mapcount, -1); \
657 * PageBuddy() indicate that the page is free and in the buddy system
658 * (see mm/page_alloc.c).
660 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
661 PAGE_MAPCOUNT_OPS(Buddy
, BUDDY
)
664 * PageBalloon() is set on pages that are on the balloon page list
665 * (see mm/balloon_compaction.c).
667 #define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
668 PAGE_MAPCOUNT_OPS(Balloon
, BALLOON
)
671 * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on
672 * pages allocated with __GFP_ACCOUNT. It gets cleared on page free.
674 #define PAGE_KMEMCG_MAPCOUNT_VALUE (-512)
675 PAGE_MAPCOUNT_OPS(Kmemcg
, KMEMCG
)
677 extern bool is_free_buddy_page(struct page
*page
);
679 __PAGEFLAG(Isolated
, isolated
, PF_ANY
);
682 * If network-based swap is enabled, sl*b must keep track of whether pages
683 * were allocated from pfmemalloc reserves.
685 static inline int PageSlabPfmemalloc(struct page
*page
)
687 VM_BUG_ON_PAGE(!PageSlab(page
), page
);
688 return PageActive(page
);
691 static inline void SetPageSlabPfmemalloc(struct page
*page
)
693 VM_BUG_ON_PAGE(!PageSlab(page
), page
);
697 static inline void __ClearPageSlabPfmemalloc(struct page
*page
)
699 VM_BUG_ON_PAGE(!PageSlab(page
), page
);
700 __ClearPageActive(page
);
703 static inline void ClearPageSlabPfmemalloc(struct page
*page
)
705 VM_BUG_ON_PAGE(!PageSlab(page
), page
);
706 ClearPageActive(page
);
710 #define __PG_MLOCKED (1UL << PG_mlocked)
712 #define __PG_MLOCKED 0
716 * Flags checked when a page is freed. Pages being freed should not have
717 * these flags set. It they are, there is a problem.
719 #define PAGE_FLAGS_CHECK_AT_FREE \
720 (1UL << PG_lru | 1UL << PG_locked | \
721 1UL << PG_private | 1UL << PG_private_2 | \
722 1UL << PG_writeback | 1UL << PG_reserved | \
723 1UL << PG_slab | 1UL << PG_active | \
724 1UL << PG_unevictable | __PG_MLOCKED)
727 * Flags checked when a page is prepped for return by the page allocator.
728 * Pages being prepped should not have these flags set. It they are set,
729 * there has been a kernel bug or struct page corruption.
731 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
732 * alloc-free cycle to prevent from reusing the page.
734 #define PAGE_FLAGS_CHECK_AT_PREP \
735 (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
737 #define PAGE_FLAGS_PRIVATE \
738 (1UL << PG_private | 1UL << PG_private_2)
740 * page_has_private - Determine if page has private stuff
741 * @page: The page to be checked
743 * Determine if a page has private stuff, indicating that release routines
744 * should be invoked upon it.
746 static inline int page_has_private(struct page
*page
)
748 return !!(page
->flags
& PAGE_FLAGS_PRIVATE
);
755 #undef PF_NO_COMPOUND
756 #endif /* !__GENERATING_BOUNDS_H */
758 #endif /* PAGE_FLAGS_H */