2 * Definitions for the 'struct sk_buff' memory handlers.
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/bug.h>
21 #include <linux/cache.h>
22 #include <linux/rbtree.h>
23 #include <linux/socket.h>
24 #include <linux/refcount.h>
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <linux/sched/clock.h>
38 #include <net/flow_dissector.h>
39 #include <linux/splice.h>
40 #include <linux/in6.h>
41 #include <linux/if_packet.h>
44 /* The interface for checksum offload between the stack and networking drivers
47 * A. IP checksum related features
49 * Drivers advertise checksum offload capabilities in the features of a device.
50 * From the stack's point of view these are capabilities offered by the driver,
51 * a driver typically only advertises features that it is capable of offloading
54 * The checksum related features are:
56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
57 * IP (one's complement) checksum for any combination
58 * of protocols or protocol layering. The checksum is
59 * computed and set in a packet per the CHECKSUM_PARTIAL
60 * interface (see below).
62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63 * TCP or UDP packets over IPv4. These are specifically
64 * unencapsulated packets of the form IPv4|TCP or
65 * IPv4|UDP where the Protocol field in the IPv4 header
66 * is TCP or UDP. The IPv4 header may contain IP options
67 * This feature cannot be set in features for a device
68 * with NETIF_F_HW_CSUM also set. This feature is being
69 * DEPRECATED (see below).
71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72 * TCP or UDP packets over IPv6. These are specifically
73 * unencapsulated packets of the form IPv6|TCP or
74 * IPv4|UDP where the Next Header field in the IPv6
75 * header is either TCP or UDP. IPv6 extension headers
76 * are not supported with this feature. This feature
77 * cannot be set in features for a device with
78 * NETIF_F_HW_CSUM also set. This feature is being
79 * DEPRECATED (see below).
81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82 * This flag is used only used to disable the RX checksum
83 * feature for a device. The stack will accept receive
84 * checksum indication in packets received on a device
85 * regardless of whether NETIF_F_RXCSUM is set.
87 * B. Checksumming of received packets by device. Indication of checksum
88 * verification is in set skb->ip_summed. Possible values are:
92 * Device did not checksum this packet e.g. due to lack of capabilities.
93 * The packet contains full (though not verified) checksum in packet but
94 * not in skb->csum. Thus, skb->csum is undefined in this case.
96 * CHECKSUM_UNNECESSARY:
98 * The hardware you're dealing with doesn't calculate the full checksum
99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101 * if their checksums are okay. skb->csum is still undefined in this case
102 * though. A driver or device must never modify the checksum field in the
103 * packet even if checksum is verified.
105 * CHECKSUM_UNNECESSARY is applicable to following protocols:
106 * TCP: IPv6 and IPv4.
107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108 * zero UDP checksum for either IPv4 or IPv6, the networking stack
109 * may perform further validation in this case.
110 * GRE: only if the checksum is present in the header.
111 * SCTP: indicates the CRC in SCTP header has been validated.
112 * FCOE: indicates the CRC in FC frame has been validated.
114 * skb->csum_level indicates the number of consecutive checksums found in
115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117 * and a device is able to verify the checksums for UDP (possibly zero),
118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119 * two. If the device were only able to verify the UDP checksum and not
120 * GRE, either because it doesn't support GRE checksum of because GRE
121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122 * not considered in this case).
126 * This is the most generic way. The device supplied checksum of the _whole_
127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128 * hardware doesn't need to parse L3/L4 headers to implement this.
131 * - Even if device supports only some protocols, but is able to produce
132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
137 * A checksum is set up to be offloaded to a device as described in the
138 * output description for CHECKSUM_PARTIAL. This may occur on a packet
139 * received directly from another Linux OS, e.g., a virtualized Linux kernel
140 * on the same host, or it may be set in the input path in GRO or remote
141 * checksum offload. For the purposes of checksum verification, the checksum
142 * referred to by skb->csum_start + skb->csum_offset and any preceding
143 * checksums in the packet are considered verified. Any checksums in the
144 * packet that are after the checksum being offloaded are not considered to
147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148 * in the skb->ip_summed for a packet. Values are:
152 * The driver is required to checksum the packet as seen by hard_start_xmit()
153 * from skb->csum_start up to the end, and to record/write the checksum at
154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
155 * csum_start and csum_offset values are valid values given the length and
156 * offset of the packet, however they should not attempt to validate that the
157 * checksum refers to a legitimate transport layer checksum-- it is the
158 * purview of the stack to validate that csum_start and csum_offset are set
161 * When the stack requests checksum offload for a packet, the driver MUST
162 * ensure that the checksum is set correctly. A driver can either offload the
163 * checksum calculation to the device, or call skb_checksum_help (in the case
164 * that the device does not support offload for a particular checksum).
166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168 * checksum offload capability.
169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170 * on network device checksumming capabilities: if a packet does not match
171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
172 * csum_not_inet, see item D.) is called to resolve the checksum.
176 * The skb was already checksummed by the protocol, or a checksum is not
179 * CHECKSUM_UNNECESSARY:
181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
185 * Not used in checksum output. If a driver observes a packet with this value
186 * set in skbuff, if should treat as CHECKSUM_NONE being set.
188 * D. Non-IP checksum (CRC) offloads
190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191 * offloading the SCTP CRC in a packet. To perform this offload the stack
192 * will set set csum_start and csum_offset accordingly, set ip_summed to
193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195 * A driver that supports both IP checksum offload and SCTP CRC32c offload
196 * must verify which offload is configured for a packet by testing the
197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201 * offloading the FCOE CRC in a packet. To perform this offload the stack
202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203 * accordingly. Note the there is no indication in the skbuff that the
204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205 * both IP checksum offload and FCOE CRC offload must verify which offload
206 * is configured for a packet presumably by inspecting packet headers.
208 * E. Checksumming on output with GSO.
210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213 * part of the GSO operation is implied. If a checksum is being offloaded
214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215 * are set to refer to the outermost checksum being offload (two offloaded
216 * checksums are possible with UDP encapsulation).
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE 0
221 #define CHECKSUM_UNNECESSARY 1
222 #define CHECKSUM_COMPLETE 2
223 #define CHECKSUM_PARTIAL 3
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL 3
228 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X) \
230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) + \
238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
243 struct pipe_inode_info
;
247 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
248 struct nf_conntrack
{
253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
254 struct nf_bridge_info
{
257 BRNF_PROTO_UNCHANGED
,
265 struct net_device
*physindev
;
267 /* always valid & non-NULL from FORWARD on, for physdev match */
268 struct net_device
*physoutdev
;
270 /* prerouting: detect dnat in orig/reply direction */
272 struct in6_addr ipv6_daddr
;
274 /* after prerouting + nat detected: store original source
275 * mac since neigh resolution overwrites it, only used while
276 * skb is out in neigh layer.
278 char neigh_header
[8];
283 struct sk_buff_head
{
284 /* These two members must be first. */
285 struct sk_buff
*next
;
286 struct sk_buff
*prev
;
294 /* To allow 64K frame to be packed as single skb without frag_list we
295 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
296 * buffers which do not start on a page boundary.
298 * Since GRO uses frags we allocate at least 16 regardless of page
301 #if (65536/PAGE_SIZE + 1) < 16
302 #define MAX_SKB_FRAGS 16UL
304 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
306 extern int sysctl_max_skb_frags
;
308 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
309 * segment using its current segmentation instead.
311 #define GSO_BY_FRAGS 0xFFFF
313 typedef struct skb_frag_struct skb_frag_t
;
315 struct skb_frag_struct
{
319 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
328 static inline unsigned int skb_frag_size(const skb_frag_t
*frag
)
333 static inline void skb_frag_size_set(skb_frag_t
*frag
, unsigned int size
)
338 static inline void skb_frag_size_add(skb_frag_t
*frag
, int delta
)
343 static inline void skb_frag_size_sub(skb_frag_t
*frag
, int delta
)
348 static inline bool skb_frag_must_loop(struct page
*p
)
350 #if defined(CONFIG_HIGHMEM)
358 * skb_frag_foreach_page - loop over pages in a fragment
360 * @f: skb frag to operate on
361 * @f_off: offset from start of f->page.p
362 * @f_len: length from f_off to loop over
363 * @p: (temp var) current page
364 * @p_off: (temp var) offset from start of current page,
365 * non-zero only on first page.
366 * @p_len: (temp var) length in current page,
367 * < PAGE_SIZE only on first and last page.
368 * @copied: (temp var) length so far, excluding current p_len.
370 * A fragment can hold a compound page, in which case per-page
371 * operations, notably kmap_atomic, must be called for each
374 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
375 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
376 p_off = (f_off) & (PAGE_SIZE - 1), \
377 p_len = skb_frag_must_loop(p) ? \
378 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
381 copied += p_len, p++, p_off = 0, \
382 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
384 #define HAVE_HW_TIME_STAMP
387 * struct skb_shared_hwtstamps - hardware time stamps
388 * @hwtstamp: hardware time stamp transformed into duration
389 * since arbitrary point in time
391 * Software time stamps generated by ktime_get_real() are stored in
394 * hwtstamps can only be compared against other hwtstamps from
397 * This structure is attached to packets as part of the
398 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
400 struct skb_shared_hwtstamps
{
404 /* Definitions for tx_flags in struct skb_shared_info */
406 /* generate hardware time stamp */
407 SKBTX_HW_TSTAMP
= 1 << 0,
409 /* generate software time stamp when queueing packet to NIC */
410 SKBTX_SW_TSTAMP
= 1 << 1,
412 /* device driver is going to provide hardware time stamp */
413 SKBTX_IN_PROGRESS
= 1 << 2,
415 /* device driver supports TX zero-copy buffers */
416 SKBTX_DEV_ZEROCOPY
= 1 << 3,
418 /* generate wifi status information (where possible) */
419 SKBTX_WIFI_STATUS
= 1 << 4,
421 /* This indicates at least one fragment might be overwritten
422 * (as in vmsplice(), sendfile() ...)
423 * If we need to compute a TX checksum, we'll need to copy
424 * all frags to avoid possible bad checksum
426 SKBTX_SHARED_FRAG
= 1 << 5,
428 /* generate software time stamp when entering packet scheduling */
429 SKBTX_SCHED_TSTAMP
= 1 << 6,
432 #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
433 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
435 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
438 * The callback notifies userspace to release buffers when skb DMA is done in
439 * lower device, the skb last reference should be 0 when calling this.
440 * The zerocopy_success argument is true if zero copy transmit occurred,
441 * false on data copy or out of memory error caused by data copy attempt.
442 * The ctx field is used to track device context.
443 * The desc field is used to track userspace buffer index.
446 void (*callback
)(struct ubuf_info
*, bool zerocopy_success
);
462 struct user_struct
*user
;
467 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
469 struct ubuf_info
*sock_zerocopy_alloc(struct sock
*sk
, size_t size
);
470 struct ubuf_info
*sock_zerocopy_realloc(struct sock
*sk
, size_t size
,
471 struct ubuf_info
*uarg
);
473 static inline void sock_zerocopy_get(struct ubuf_info
*uarg
)
475 refcount_inc(&uarg
->refcnt
);
478 void sock_zerocopy_put(struct ubuf_info
*uarg
);
479 void sock_zerocopy_put_abort(struct ubuf_info
*uarg
);
481 void sock_zerocopy_callback(struct ubuf_info
*uarg
, bool success
);
483 int skb_zerocopy_iter_stream(struct sock
*sk
, struct sk_buff
*skb
,
484 struct msghdr
*msg
, int len
,
485 struct ubuf_info
*uarg
);
487 /* This data is invariant across clones and lives at
488 * the end of the header data, ie. at skb->end.
490 struct skb_shared_info
{
495 unsigned short gso_size
;
496 /* Warning: this field is not always filled in (UFO)! */
497 unsigned short gso_segs
;
498 struct sk_buff
*frag_list
;
499 struct skb_shared_hwtstamps hwtstamps
;
500 unsigned int gso_type
;
504 * Warning : all fields before dataref are cleared in __alloc_skb()
508 /* Intermediate layers must ensure that destructor_arg
509 * remains valid until skb destructor */
510 void * destructor_arg
;
512 /* must be last field, see pskb_expand_head() */
513 skb_frag_t frags
[MAX_SKB_FRAGS
];
516 /* We divide dataref into two halves. The higher 16 bits hold references
517 * to the payload part of skb->data. The lower 16 bits hold references to
518 * the entire skb->data. A clone of a headerless skb holds the length of
519 * the header in skb->hdr_len.
521 * All users must obey the rule that the skb->data reference count must be
522 * greater than or equal to the payload reference count.
524 * Holding a reference to the payload part means that the user does not
525 * care about modifications to the header part of skb->data.
527 #define SKB_DATAREF_SHIFT 16
528 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
532 SKB_FCLONE_UNAVAILABLE
, /* skb has no fclone (from head_cache) */
533 SKB_FCLONE_ORIG
, /* orig skb (from fclone_cache) */
534 SKB_FCLONE_CLONE
, /* companion fclone skb (from fclone_cache) */
538 SKB_GSO_TCPV4
= 1 << 0,
540 /* This indicates the skb is from an untrusted source. */
541 SKB_GSO_DODGY
= 1 << 1,
543 /* This indicates the tcp segment has CWR set. */
544 SKB_GSO_TCP_ECN
= 1 << 2,
546 SKB_GSO_TCP_FIXEDID
= 1 << 3,
548 SKB_GSO_TCPV6
= 1 << 4,
550 SKB_GSO_FCOE
= 1 << 5,
552 SKB_GSO_GRE
= 1 << 6,
554 SKB_GSO_GRE_CSUM
= 1 << 7,
556 SKB_GSO_IPXIP4
= 1 << 8,
558 SKB_GSO_IPXIP6
= 1 << 9,
560 SKB_GSO_UDP_TUNNEL
= 1 << 10,
562 SKB_GSO_UDP_TUNNEL_CSUM
= 1 << 11,
564 SKB_GSO_PARTIAL
= 1 << 12,
566 SKB_GSO_TUNNEL_REMCSUM
= 1 << 13,
568 SKB_GSO_SCTP
= 1 << 14,
570 SKB_GSO_ESP
= 1 << 15,
572 SKB_GSO_UDP
= 1 << 16,
575 #if BITS_PER_LONG > 32
576 #define NET_SKBUFF_DATA_USES_OFFSET 1
579 #ifdef NET_SKBUFF_DATA_USES_OFFSET
580 typedef unsigned int sk_buff_data_t
;
582 typedef unsigned char *sk_buff_data_t
;
586 * struct sk_buff - socket buffer
587 * @next: Next buffer in list
588 * @prev: Previous buffer in list
589 * @tstamp: Time we arrived/left
590 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
591 * @sk: Socket we are owned by
592 * @dev: Device we arrived on/are leaving by
593 * @cb: Control buffer. Free for use by every layer. Put private vars here
594 * @_skb_refdst: destination entry (with norefcount bit)
595 * @sp: the security path, used for xfrm
596 * @len: Length of actual data
597 * @data_len: Data length
598 * @mac_len: Length of link layer header
599 * @hdr_len: writable header length of cloned skb
600 * @csum: Checksum (must include start/offset pair)
601 * @csum_start: Offset from skb->head where checksumming should start
602 * @csum_offset: Offset from csum_start where checksum should be stored
603 * @priority: Packet queueing priority
604 * @ignore_df: allow local fragmentation
605 * @cloned: Head may be cloned (check refcnt to be sure)
606 * @ip_summed: Driver fed us an IP checksum
607 * @nohdr: Payload reference only, must not modify header
608 * @pkt_type: Packet class
609 * @fclone: skbuff clone status
610 * @ipvs_property: skbuff is owned by ipvs
611 * @tc_skip_classify: do not classify packet. set by IFB device
612 * @tc_at_ingress: used within tc_classify to distinguish in/egress
613 * @tc_redirected: packet was redirected by a tc action
614 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
615 * @peeked: this packet has been seen already, so stats have been
616 * done for it, don't do them again
617 * @nf_trace: netfilter packet trace flag
618 * @protocol: Packet protocol from driver
619 * @destructor: Destruct function
620 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
621 * @_nfct: Associated connection, if any (with nfctinfo bits)
622 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
623 * @skb_iif: ifindex of device we arrived on
624 * @tc_index: Traffic control index
625 * @hash: the packet hash
626 * @queue_mapping: Queue mapping for multiqueue devices
627 * @xmit_more: More SKBs are pending for this queue
628 * @ndisc_nodetype: router type (from link layer)
629 * @ooo_okay: allow the mapping of a socket to a queue to be changed
630 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
632 * @sw_hash: indicates hash was computed in software stack
633 * @wifi_acked_valid: wifi_acked was set
634 * @wifi_acked: whether frame was acked on wifi or not
635 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
636 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
637 * @dst_pending_confirm: need to confirm neighbour
638 * @napi_id: id of the NAPI struct this skb came from
639 * @secmark: security marking
640 * @mark: Generic packet mark
641 * @vlan_proto: vlan encapsulation protocol
642 * @vlan_tci: vlan tag control information
643 * @inner_protocol: Protocol (encapsulation)
644 * @inner_transport_header: Inner transport layer header (encapsulation)
645 * @inner_network_header: Network layer header (encapsulation)
646 * @inner_mac_header: Link layer header (encapsulation)
647 * @transport_header: Transport layer header
648 * @network_header: Network layer header
649 * @mac_header: Link layer header
650 * @tail: Tail pointer
652 * @head: Head of buffer
653 * @data: Data head pointer
654 * @truesize: Buffer size
655 * @users: User count - see {datagram,tcp}.c
661 /* These two members must be first. */
662 struct sk_buff
*next
;
663 struct sk_buff
*prev
;
666 struct net_device
*dev
;
667 /* Some protocols might use this space to store information,
668 * while device pointer would be NULL.
669 * UDP receive path is one user.
671 unsigned long dev_scratch
;
674 struct rb_node rbnode
; /* used in netem & tcp stack */
683 * This is the control buffer. It is free to use for every
684 * layer. Please put your private variables there. If you
685 * want to keep them across layers you have to do a skb_clone()
686 * first. This is owned by whoever has the skb queued ATM.
688 char cb
[48] __aligned(8);
692 unsigned long _skb_refdst
;
693 void (*destructor
)(struct sk_buff
*skb
);
695 struct list_head tcp_tsorted_anchor
;
701 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
704 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
705 struct nf_bridge_info
*nf_bridge
;
712 /* Following fields are _not_ copied in __copy_skb_header()
713 * Note that queue_mapping is here mostly to fill a hole.
717 /* if you move cloned around you also must adapt those constants */
718 #ifdef __BIG_ENDIAN_BITFIELD
719 #define CLONED_MASK (1 << 7)
721 #define CLONED_MASK 1
723 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
725 __u8 __cloned_offset
[0];
732 __unused
:1; /* one bit hole */
734 /* fields enclosed in headers_start/headers_end are copied
735 * using a single memcpy() in __copy_skb_header()
738 __u32 headers_start
[0];
741 /* if you move pkt_type around you also must adapt those constants */
742 #ifdef __BIG_ENDIAN_BITFIELD
743 #define PKT_TYPE_MAX (7 << 5)
745 #define PKT_TYPE_MAX 7
747 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
749 __u8 __pkt_type_offset
[0];
759 __u8 wifi_acked_valid
:1;
763 /* Indicates the inner headers are valid in the skbuff. */
764 __u8 encapsulation
:1;
765 __u8 encap_hdr_csum
:1;
767 __u8 csum_complete_sw
:1;
769 __u8 csum_not_inet
:1;
771 __u8 dst_pending_confirm
:1;
772 #ifdef CONFIG_IPV6_NDISC_NODETYPE
773 __u8 ndisc_nodetype
:2;
775 __u8 ipvs_property
:1;
776 __u8 inner_protocol_type
:1;
777 __u8 remcsum_offload
:1;
778 #ifdef CONFIG_NET_SWITCHDEV
779 __u8 offload_fwd_mark
:1;
780 __u8 offload_mr_fwd_mark
:1;
782 #ifdef CONFIG_NET_CLS_ACT
783 __u8 tc_skip_classify
:1;
784 __u8 tc_at_ingress
:1;
785 __u8 tc_redirected
:1;
786 __u8 tc_from_ingress
:1;
789 #ifdef CONFIG_NET_SCHED
790 __u16 tc_index
; /* traffic control index */
805 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
807 unsigned int napi_id
;
808 unsigned int sender_cpu
;
811 #ifdef CONFIG_NETWORK_SECMARK
817 __u32 reserved_tailroom
;
821 __be16 inner_protocol
;
825 __u16 inner_transport_header
;
826 __u16 inner_network_header
;
827 __u16 inner_mac_header
;
830 __u16 transport_header
;
831 __u16 network_header
;
835 __u32 headers_end
[0];
838 /* These elements must be at the end, see alloc_skb() for details. */
843 unsigned int truesize
;
849 * Handling routines are only of interest to the kernel
851 #include <linux/slab.h>
854 #define SKB_ALLOC_FCLONE 0x01
855 #define SKB_ALLOC_RX 0x02
856 #define SKB_ALLOC_NAPI 0x04
858 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
859 static inline bool skb_pfmemalloc(const struct sk_buff
*skb
)
861 return unlikely(skb
->pfmemalloc
);
865 * skb might have a dst pointer attached, refcounted or not.
866 * _skb_refdst low order bit is set if refcount was _not_ taken
868 #define SKB_DST_NOREF 1UL
869 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
871 #define SKB_NFCT_PTRMASK ~(7UL)
873 * skb_dst - returns skb dst_entry
876 * Returns skb dst_entry, regardless of reference taken or not.
878 static inline struct dst_entry
*skb_dst(const struct sk_buff
*skb
)
880 /* If refdst was not refcounted, check we still are in a
881 * rcu_read_lock section
883 WARN_ON((skb
->_skb_refdst
& SKB_DST_NOREF
) &&
884 !rcu_read_lock_held() &&
885 !rcu_read_lock_bh_held());
886 return (struct dst_entry
*)(skb
->_skb_refdst
& SKB_DST_PTRMASK
);
890 * skb_dst_set - sets skb dst
894 * Sets skb dst, assuming a reference was taken on dst and should
895 * be released by skb_dst_drop()
897 static inline void skb_dst_set(struct sk_buff
*skb
, struct dst_entry
*dst
)
899 skb
->_skb_refdst
= (unsigned long)dst
;
903 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
907 * Sets skb dst, assuming a reference was not taken on dst.
908 * If dst entry is cached, we do not take reference and dst_release
909 * will be avoided by refdst_drop. If dst entry is not cached, we take
910 * reference, so that last dst_release can destroy the dst immediately.
912 static inline void skb_dst_set_noref(struct sk_buff
*skb
, struct dst_entry
*dst
)
914 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
915 skb
->_skb_refdst
= (unsigned long)dst
| SKB_DST_NOREF
;
919 * skb_dst_is_noref - Test if skb dst isn't refcounted
922 static inline bool skb_dst_is_noref(const struct sk_buff
*skb
)
924 return (skb
->_skb_refdst
& SKB_DST_NOREF
) && skb_dst(skb
);
927 static inline struct rtable
*skb_rtable(const struct sk_buff
*skb
)
929 return (struct rtable
*)skb_dst(skb
);
932 /* For mangling skb->pkt_type from user space side from applications
933 * such as nft, tc, etc, we only allow a conservative subset of
934 * possible pkt_types to be set.
936 static inline bool skb_pkt_type_ok(u32 ptype
)
938 return ptype
<= PACKET_OTHERHOST
;
941 static inline unsigned int skb_napi_id(const struct sk_buff
*skb
)
943 #ifdef CONFIG_NET_RX_BUSY_POLL
950 /* decrement the reference count and return true if we can free the skb */
951 static inline bool skb_unref(struct sk_buff
*skb
)
955 if (likely(refcount_read(&skb
->users
) == 1))
957 else if (likely(!refcount_dec_and_test(&skb
->users
)))
963 void skb_release_head_state(struct sk_buff
*skb
);
964 void kfree_skb(struct sk_buff
*skb
);
965 void kfree_skb_list(struct sk_buff
*segs
);
966 void skb_tx_error(struct sk_buff
*skb
);
967 void consume_skb(struct sk_buff
*skb
);
968 void __consume_stateless_skb(struct sk_buff
*skb
);
969 void __kfree_skb(struct sk_buff
*skb
);
970 extern struct kmem_cache
*skbuff_head_cache
;
972 void kfree_skb_partial(struct sk_buff
*skb
, bool head_stolen
);
973 bool skb_try_coalesce(struct sk_buff
*to
, struct sk_buff
*from
,
974 bool *fragstolen
, int *delta_truesize
);
976 struct sk_buff
*__alloc_skb(unsigned int size
, gfp_t priority
, int flags
,
978 struct sk_buff
*__build_skb(void *data
, unsigned int frag_size
);
979 struct sk_buff
*build_skb(void *data
, unsigned int frag_size
);
980 static inline struct sk_buff
*alloc_skb(unsigned int size
,
983 return __alloc_skb(size
, priority
, 0, NUMA_NO_NODE
);
986 struct sk_buff
*alloc_skb_with_frags(unsigned long header_len
,
987 unsigned long data_len
,
992 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
993 struct sk_buff_fclones
{
998 refcount_t fclone_ref
;
1002 * skb_fclone_busy - check if fclone is busy
1006 * Returns true if skb is a fast clone, and its clone is not freed.
1007 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1008 * so we also check that this didnt happen.
1010 static inline bool skb_fclone_busy(const struct sock
*sk
,
1011 const struct sk_buff
*skb
)
1013 const struct sk_buff_fclones
*fclones
;
1015 fclones
= container_of(skb
, struct sk_buff_fclones
, skb1
);
1017 return skb
->fclone
== SKB_FCLONE_ORIG
&&
1018 refcount_read(&fclones
->fclone_ref
) > 1 &&
1019 fclones
->skb2
.sk
== sk
;
1022 static inline struct sk_buff
*alloc_skb_fclone(unsigned int size
,
1025 return __alloc_skb(size
, priority
, SKB_ALLOC_FCLONE
, NUMA_NO_NODE
);
1028 struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
);
1029 int skb_copy_ubufs(struct sk_buff
*skb
, gfp_t gfp_mask
);
1030 struct sk_buff
*skb_clone(struct sk_buff
*skb
, gfp_t priority
);
1031 struct sk_buff
*skb_copy(const struct sk_buff
*skb
, gfp_t priority
);
1032 struct sk_buff
*__pskb_copy_fclone(struct sk_buff
*skb
, int headroom
,
1033 gfp_t gfp_mask
, bool fclone
);
1034 static inline struct sk_buff
*__pskb_copy(struct sk_buff
*skb
, int headroom
,
1037 return __pskb_copy_fclone(skb
, headroom
, gfp_mask
, false);
1040 int pskb_expand_head(struct sk_buff
*skb
, int nhead
, int ntail
, gfp_t gfp_mask
);
1041 struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
,
1042 unsigned int headroom
);
1043 struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
, int newheadroom
,
1044 int newtailroom
, gfp_t priority
);
1045 int __must_check
skb_to_sgvec_nomark(struct sk_buff
*skb
, struct scatterlist
*sg
,
1046 int offset
, int len
);
1047 int __must_check
skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
,
1048 int offset
, int len
);
1049 int skb_cow_data(struct sk_buff
*skb
, int tailbits
, struct sk_buff
**trailer
);
1050 int __skb_pad(struct sk_buff
*skb
, int pad
, bool free_on_error
);
1053 * skb_pad - zero pad the tail of an skb
1054 * @skb: buffer to pad
1055 * @pad: space to pad
1057 * Ensure that a buffer is followed by a padding area that is zero
1058 * filled. Used by network drivers which may DMA or transfer data
1059 * beyond the buffer end onto the wire.
1061 * May return error in out of memory cases. The skb is freed on error.
1063 static inline int skb_pad(struct sk_buff
*skb
, int pad
)
1065 return __skb_pad(skb
, pad
, true);
1067 #define dev_kfree_skb(a) consume_skb(a)
1069 int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
1070 int getfrag(void *from
, char *to
, int offset
,
1071 int len
, int odd
, struct sk_buff
*skb
),
1072 void *from
, int length
);
1074 int skb_append_pagefrags(struct sk_buff
*skb
, struct page
*page
,
1075 int offset
, size_t size
);
1077 struct skb_seq_state
{
1081 __u32 stepped_offset
;
1082 struct sk_buff
*root_skb
;
1083 struct sk_buff
*cur_skb
;
1087 void skb_prepare_seq_read(struct sk_buff
*skb
, unsigned int from
,
1088 unsigned int to
, struct skb_seq_state
*st
);
1089 unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
1090 struct skb_seq_state
*st
);
1091 void skb_abort_seq_read(struct skb_seq_state
*st
);
1093 unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
1094 unsigned int to
, struct ts_config
*config
);
1097 * Packet hash types specify the type of hash in skb_set_hash.
1099 * Hash types refer to the protocol layer addresses which are used to
1100 * construct a packet's hash. The hashes are used to differentiate or identify
1101 * flows of the protocol layer for the hash type. Hash types are either
1102 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1104 * Properties of hashes:
1106 * 1) Two packets in different flows have different hash values
1107 * 2) Two packets in the same flow should have the same hash value
1109 * A hash at a higher layer is considered to be more specific. A driver should
1110 * set the most specific hash possible.
1112 * A driver cannot indicate a more specific hash than the layer at which a hash
1113 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1115 * A driver may indicate a hash level which is less specific than the
1116 * actual layer the hash was computed on. For instance, a hash computed
1117 * at L4 may be considered an L3 hash. This should only be done if the
1118 * driver can't unambiguously determine that the HW computed the hash at
1119 * the higher layer. Note that the "should" in the second property above
1122 enum pkt_hash_types
{
1123 PKT_HASH_TYPE_NONE
, /* Undefined type */
1124 PKT_HASH_TYPE_L2
, /* Input: src_MAC, dest_MAC */
1125 PKT_HASH_TYPE_L3
, /* Input: src_IP, dst_IP */
1126 PKT_HASH_TYPE_L4
, /* Input: src_IP, dst_IP, src_port, dst_port */
1129 static inline void skb_clear_hash(struct sk_buff
*skb
)
1136 static inline void skb_clear_hash_if_not_l4(struct sk_buff
*skb
)
1139 skb_clear_hash(skb
);
1143 __skb_set_hash(struct sk_buff
*skb
, __u32 hash
, bool is_sw
, bool is_l4
)
1145 skb
->l4_hash
= is_l4
;
1146 skb
->sw_hash
= is_sw
;
1151 skb_set_hash(struct sk_buff
*skb
, __u32 hash
, enum pkt_hash_types type
)
1153 /* Used by drivers to set hash from HW */
1154 __skb_set_hash(skb
, hash
, false, type
== PKT_HASH_TYPE_L4
);
1158 __skb_set_sw_hash(struct sk_buff
*skb
, __u32 hash
, bool is_l4
)
1160 __skb_set_hash(skb
, hash
, true, is_l4
);
1163 void __skb_get_hash(struct sk_buff
*skb
);
1164 u32
__skb_get_hash_symmetric(const struct sk_buff
*skb
);
1165 u32
skb_get_poff(const struct sk_buff
*skb
);
1166 u32
__skb_get_poff(const struct sk_buff
*skb
, void *data
,
1167 const struct flow_keys
*keys
, int hlen
);
1168 __be32
__skb_flow_get_ports(const struct sk_buff
*skb
, int thoff
, u8 ip_proto
,
1169 void *data
, int hlen_proto
);
1171 static inline __be32
skb_flow_get_ports(const struct sk_buff
*skb
,
1172 int thoff
, u8 ip_proto
)
1174 return __skb_flow_get_ports(skb
, thoff
, ip_proto
, NULL
, 0);
1177 void skb_flow_dissector_init(struct flow_dissector
*flow_dissector
,
1178 const struct flow_dissector_key
*key
,
1179 unsigned int key_count
);
1181 bool __skb_flow_dissect(const struct sk_buff
*skb
,
1182 struct flow_dissector
*flow_dissector
,
1183 void *target_container
,
1184 void *data
, __be16 proto
, int nhoff
, int hlen
,
1185 unsigned int flags
);
1187 static inline bool skb_flow_dissect(const struct sk_buff
*skb
,
1188 struct flow_dissector
*flow_dissector
,
1189 void *target_container
, unsigned int flags
)
1191 return __skb_flow_dissect(skb
, flow_dissector
, target_container
,
1192 NULL
, 0, 0, 0, flags
);
1195 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff
*skb
,
1196 struct flow_keys
*flow
,
1199 memset(flow
, 0, sizeof(*flow
));
1200 return __skb_flow_dissect(skb
, &flow_keys_dissector
, flow
,
1201 NULL
, 0, 0, 0, flags
);
1204 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys
*flow
,
1205 void *data
, __be16 proto
,
1206 int nhoff
, int hlen
,
1209 memset(flow
, 0, sizeof(*flow
));
1210 return __skb_flow_dissect(NULL
, &flow_keys_buf_dissector
, flow
,
1211 data
, proto
, nhoff
, hlen
, flags
);
1215 skb_flow_dissect_tunnel_info(const struct sk_buff
*skb
,
1216 struct flow_dissector
*flow_dissector
,
1217 void *target_container
);
1219 static inline __u32
skb_get_hash(struct sk_buff
*skb
)
1221 if (!skb
->l4_hash
&& !skb
->sw_hash
)
1222 __skb_get_hash(skb
);
1227 static inline __u32
skb_get_hash_flowi6(struct sk_buff
*skb
, const struct flowi6
*fl6
)
1229 if (!skb
->l4_hash
&& !skb
->sw_hash
) {
1230 struct flow_keys keys
;
1231 __u32 hash
= __get_hash_from_flowi6(fl6
, &keys
);
1233 __skb_set_sw_hash(skb
, hash
, flow_keys_have_l4(&keys
));
1239 __u32
skb_get_hash_perturb(const struct sk_buff
*skb
, u32 perturb
);
1241 static inline __u32
skb_get_hash_raw(const struct sk_buff
*skb
)
1246 static inline void skb_copy_hash(struct sk_buff
*to
, const struct sk_buff
*from
)
1248 to
->hash
= from
->hash
;
1249 to
->sw_hash
= from
->sw_hash
;
1250 to
->l4_hash
= from
->l4_hash
;
1253 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1254 static inline unsigned char *skb_end_pointer(const struct sk_buff
*skb
)
1256 return skb
->head
+ skb
->end
;
1259 static inline unsigned int skb_end_offset(const struct sk_buff
*skb
)
1264 static inline unsigned char *skb_end_pointer(const struct sk_buff
*skb
)
1269 static inline unsigned int skb_end_offset(const struct sk_buff
*skb
)
1271 return skb
->end
- skb
->head
;
1276 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1278 static inline struct skb_shared_hwtstamps
*skb_hwtstamps(struct sk_buff
*skb
)
1280 return &skb_shinfo(skb
)->hwtstamps
;
1283 static inline struct ubuf_info
*skb_zcopy(struct sk_buff
*skb
)
1285 bool is_zcopy
= skb
&& skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
;
1287 return is_zcopy
? skb_uarg(skb
) : NULL
;
1290 static inline void skb_zcopy_set(struct sk_buff
*skb
, struct ubuf_info
*uarg
)
1292 if (skb
&& uarg
&& !skb_zcopy(skb
)) {
1293 sock_zerocopy_get(uarg
);
1294 skb_shinfo(skb
)->destructor_arg
= uarg
;
1295 skb_shinfo(skb
)->tx_flags
|= SKBTX_ZEROCOPY_FRAG
;
1299 /* Release a reference on a zerocopy structure */
1300 static inline void skb_zcopy_clear(struct sk_buff
*skb
, bool zerocopy
)
1302 struct ubuf_info
*uarg
= skb_zcopy(skb
);
1305 if (uarg
->callback
== sock_zerocopy_callback
) {
1306 uarg
->zerocopy
= uarg
->zerocopy
&& zerocopy
;
1307 sock_zerocopy_put(uarg
);
1309 uarg
->callback(uarg
, zerocopy
);
1312 skb_shinfo(skb
)->tx_flags
&= ~SKBTX_ZEROCOPY_FRAG
;
1316 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1317 static inline void skb_zcopy_abort(struct sk_buff
*skb
)
1319 struct ubuf_info
*uarg
= skb_zcopy(skb
);
1322 sock_zerocopy_put_abort(uarg
);
1323 skb_shinfo(skb
)->tx_flags
&= ~SKBTX_ZEROCOPY_FRAG
;
1328 * skb_queue_empty - check if a queue is empty
1331 * Returns true if the queue is empty, false otherwise.
1333 static inline int skb_queue_empty(const struct sk_buff_head
*list
)
1335 return list
->next
== (const struct sk_buff
*) list
;
1339 * skb_queue_is_last - check if skb is the last entry in the queue
1343 * Returns true if @skb is the last buffer on the list.
1345 static inline bool skb_queue_is_last(const struct sk_buff_head
*list
,
1346 const struct sk_buff
*skb
)
1348 return skb
->next
== (const struct sk_buff
*) list
;
1352 * skb_queue_is_first - check if skb is the first entry in the queue
1356 * Returns true if @skb is the first buffer on the list.
1358 static inline bool skb_queue_is_first(const struct sk_buff_head
*list
,
1359 const struct sk_buff
*skb
)
1361 return skb
->prev
== (const struct sk_buff
*) list
;
1365 * skb_queue_next - return the next packet in the queue
1367 * @skb: current buffer
1369 * Return the next packet in @list after @skb. It is only valid to
1370 * call this if skb_queue_is_last() evaluates to false.
1372 static inline struct sk_buff
*skb_queue_next(const struct sk_buff_head
*list
,
1373 const struct sk_buff
*skb
)
1375 /* This BUG_ON may seem severe, but if we just return then we
1376 * are going to dereference garbage.
1378 BUG_ON(skb_queue_is_last(list
, skb
));
1383 * skb_queue_prev - return the prev packet in the queue
1385 * @skb: current buffer
1387 * Return the prev packet in @list before @skb. It is only valid to
1388 * call this if skb_queue_is_first() evaluates to false.
1390 static inline struct sk_buff
*skb_queue_prev(const struct sk_buff_head
*list
,
1391 const struct sk_buff
*skb
)
1393 /* This BUG_ON may seem severe, but if we just return then we
1394 * are going to dereference garbage.
1396 BUG_ON(skb_queue_is_first(list
, skb
));
1401 * skb_get - reference buffer
1402 * @skb: buffer to reference
1404 * Makes another reference to a socket buffer and returns a pointer
1407 static inline struct sk_buff
*skb_get(struct sk_buff
*skb
)
1409 refcount_inc(&skb
->users
);
1414 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1418 * skb_cloned - is the buffer a clone
1419 * @skb: buffer to check
1421 * Returns true if the buffer was generated with skb_clone() and is
1422 * one of multiple shared copies of the buffer. Cloned buffers are
1423 * shared data so must not be written to under normal circumstances.
1425 static inline int skb_cloned(const struct sk_buff
*skb
)
1427 return skb
->cloned
&&
1428 (atomic_read(&skb_shinfo(skb
)->dataref
) & SKB_DATAREF_MASK
) != 1;
1431 static inline int skb_unclone(struct sk_buff
*skb
, gfp_t pri
)
1433 might_sleep_if(gfpflags_allow_blocking(pri
));
1435 if (skb_cloned(skb
))
1436 return pskb_expand_head(skb
, 0, 0, pri
);
1442 * skb_header_cloned - is the header a clone
1443 * @skb: buffer to check
1445 * Returns true if modifying the header part of the buffer requires
1446 * the data to be copied.
1448 static inline int skb_header_cloned(const struct sk_buff
*skb
)
1455 dataref
= atomic_read(&skb_shinfo(skb
)->dataref
);
1456 dataref
= (dataref
& SKB_DATAREF_MASK
) - (dataref
>> SKB_DATAREF_SHIFT
);
1457 return dataref
!= 1;
1460 static inline int skb_header_unclone(struct sk_buff
*skb
, gfp_t pri
)
1462 might_sleep_if(gfpflags_allow_blocking(pri
));
1464 if (skb_header_cloned(skb
))
1465 return pskb_expand_head(skb
, 0, 0, pri
);
1471 * __skb_header_release - release reference to header
1472 * @skb: buffer to operate on
1474 static inline void __skb_header_release(struct sk_buff
*skb
)
1477 atomic_set(&skb_shinfo(skb
)->dataref
, 1 + (1 << SKB_DATAREF_SHIFT
));
1482 * skb_shared - is the buffer shared
1483 * @skb: buffer to check
1485 * Returns true if more than one person has a reference to this
1488 static inline int skb_shared(const struct sk_buff
*skb
)
1490 return refcount_read(&skb
->users
) != 1;
1494 * skb_share_check - check if buffer is shared and if so clone it
1495 * @skb: buffer to check
1496 * @pri: priority for memory allocation
1498 * If the buffer is shared the buffer is cloned and the old copy
1499 * drops a reference. A new clone with a single reference is returned.
1500 * If the buffer is not shared the original buffer is returned. When
1501 * being called from interrupt status or with spinlocks held pri must
1504 * NULL is returned on a memory allocation failure.
1506 static inline struct sk_buff
*skb_share_check(struct sk_buff
*skb
, gfp_t pri
)
1508 might_sleep_if(gfpflags_allow_blocking(pri
));
1509 if (skb_shared(skb
)) {
1510 struct sk_buff
*nskb
= skb_clone(skb
, pri
);
1522 * Copy shared buffers into a new sk_buff. We effectively do COW on
1523 * packets to handle cases where we have a local reader and forward
1524 * and a couple of other messy ones. The normal one is tcpdumping
1525 * a packet thats being forwarded.
1529 * skb_unshare - make a copy of a shared buffer
1530 * @skb: buffer to check
1531 * @pri: priority for memory allocation
1533 * If the socket buffer is a clone then this function creates a new
1534 * copy of the data, drops a reference count on the old copy and returns
1535 * the new copy with the reference count at 1. If the buffer is not a clone
1536 * the original buffer is returned. When called with a spinlock held or
1537 * from interrupt state @pri must be %GFP_ATOMIC
1539 * %NULL is returned on a memory allocation failure.
1541 static inline struct sk_buff
*skb_unshare(struct sk_buff
*skb
,
1544 might_sleep_if(gfpflags_allow_blocking(pri
));
1545 if (skb_cloned(skb
)) {
1546 struct sk_buff
*nskb
= skb_copy(skb
, pri
);
1548 /* Free our shared copy */
1559 * skb_peek - peek at the head of an &sk_buff_head
1560 * @list_: list to peek at
1562 * Peek an &sk_buff. Unlike most other operations you _MUST_
1563 * be careful with this one. A peek leaves the buffer on the
1564 * list and someone else may run off with it. You must hold
1565 * the appropriate locks or have a private queue to do this.
1567 * Returns %NULL for an empty list or a pointer to the head element.
1568 * The reference count is not incremented and the reference is therefore
1569 * volatile. Use with caution.
1571 static inline struct sk_buff
*skb_peek(const struct sk_buff_head
*list_
)
1573 struct sk_buff
*skb
= list_
->next
;
1575 if (skb
== (struct sk_buff
*)list_
)
1581 * skb_peek_next - peek skb following the given one from a queue
1582 * @skb: skb to start from
1583 * @list_: list to peek at
1585 * Returns %NULL when the end of the list is met or a pointer to the
1586 * next element. The reference count is not incremented and the
1587 * reference is therefore volatile. Use with caution.
1589 static inline struct sk_buff
*skb_peek_next(struct sk_buff
*skb
,
1590 const struct sk_buff_head
*list_
)
1592 struct sk_buff
*next
= skb
->next
;
1594 if (next
== (struct sk_buff
*)list_
)
1600 * skb_peek_tail - peek at the tail of an &sk_buff_head
1601 * @list_: list to peek at
1603 * Peek an &sk_buff. Unlike most other operations you _MUST_
1604 * be careful with this one. A peek leaves the buffer on the
1605 * list and someone else may run off with it. You must hold
1606 * the appropriate locks or have a private queue to do this.
1608 * Returns %NULL for an empty list or a pointer to the tail element.
1609 * The reference count is not incremented and the reference is therefore
1610 * volatile. Use with caution.
1612 static inline struct sk_buff
*skb_peek_tail(const struct sk_buff_head
*list_
)
1614 struct sk_buff
*skb
= list_
->prev
;
1616 if (skb
== (struct sk_buff
*)list_
)
1623 * skb_queue_len - get queue length
1624 * @list_: list to measure
1626 * Return the length of an &sk_buff queue.
1628 static inline __u32
skb_queue_len(const struct sk_buff_head
*list_
)
1634 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1635 * @list: queue to initialize
1637 * This initializes only the list and queue length aspects of
1638 * an sk_buff_head object. This allows to initialize the list
1639 * aspects of an sk_buff_head without reinitializing things like
1640 * the spinlock. It can also be used for on-stack sk_buff_head
1641 * objects where the spinlock is known to not be used.
1643 static inline void __skb_queue_head_init(struct sk_buff_head
*list
)
1645 list
->prev
= list
->next
= (struct sk_buff
*)list
;
1650 * This function creates a split out lock class for each invocation;
1651 * this is needed for now since a whole lot of users of the skb-queue
1652 * infrastructure in drivers have different locking usage (in hardirq)
1653 * than the networking core (in softirq only). In the long run either the
1654 * network layer or drivers should need annotation to consolidate the
1655 * main types of usage into 3 classes.
1657 static inline void skb_queue_head_init(struct sk_buff_head
*list
)
1659 spin_lock_init(&list
->lock
);
1660 __skb_queue_head_init(list
);
1663 static inline void skb_queue_head_init_class(struct sk_buff_head
*list
,
1664 struct lock_class_key
*class)
1666 skb_queue_head_init(list
);
1667 lockdep_set_class(&list
->lock
, class);
1671 * Insert an sk_buff on a list.
1673 * The "__skb_xxxx()" functions are the non-atomic ones that
1674 * can only be called with interrupts disabled.
1676 void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
,
1677 struct sk_buff_head
*list
);
1678 static inline void __skb_insert(struct sk_buff
*newsk
,
1679 struct sk_buff
*prev
, struct sk_buff
*next
,
1680 struct sk_buff_head
*list
)
1684 next
->prev
= prev
->next
= newsk
;
1688 static inline void __skb_queue_splice(const struct sk_buff_head
*list
,
1689 struct sk_buff
*prev
,
1690 struct sk_buff
*next
)
1692 struct sk_buff
*first
= list
->next
;
1693 struct sk_buff
*last
= list
->prev
;
1703 * skb_queue_splice - join two skb lists, this is designed for stacks
1704 * @list: the new list to add
1705 * @head: the place to add it in the first list
1707 static inline void skb_queue_splice(const struct sk_buff_head
*list
,
1708 struct sk_buff_head
*head
)
1710 if (!skb_queue_empty(list
)) {
1711 __skb_queue_splice(list
, (struct sk_buff
*) head
, head
->next
);
1712 head
->qlen
+= list
->qlen
;
1717 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1718 * @list: the new list to add
1719 * @head: the place to add it in the first list
1721 * The list at @list is reinitialised
1723 static inline void skb_queue_splice_init(struct sk_buff_head
*list
,
1724 struct sk_buff_head
*head
)
1726 if (!skb_queue_empty(list
)) {
1727 __skb_queue_splice(list
, (struct sk_buff
*) head
, head
->next
);
1728 head
->qlen
+= list
->qlen
;
1729 __skb_queue_head_init(list
);
1734 * skb_queue_splice_tail - join two skb lists, each list being a queue
1735 * @list: the new list to add
1736 * @head: the place to add it in the first list
1738 static inline void skb_queue_splice_tail(const struct sk_buff_head
*list
,
1739 struct sk_buff_head
*head
)
1741 if (!skb_queue_empty(list
)) {
1742 __skb_queue_splice(list
, head
->prev
, (struct sk_buff
*) head
);
1743 head
->qlen
+= list
->qlen
;
1748 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1749 * @list: the new list to add
1750 * @head: the place to add it in the first list
1752 * Each of the lists is a queue.
1753 * The list at @list is reinitialised
1755 static inline void skb_queue_splice_tail_init(struct sk_buff_head
*list
,
1756 struct sk_buff_head
*head
)
1758 if (!skb_queue_empty(list
)) {
1759 __skb_queue_splice(list
, head
->prev
, (struct sk_buff
*) head
);
1760 head
->qlen
+= list
->qlen
;
1761 __skb_queue_head_init(list
);
1766 * __skb_queue_after - queue a buffer at the list head
1767 * @list: list to use
1768 * @prev: place after this buffer
1769 * @newsk: buffer to queue
1771 * Queue a buffer int the middle of a list. This function takes no locks
1772 * and you must therefore hold required locks before calling it.
1774 * A buffer cannot be placed on two lists at the same time.
1776 static inline void __skb_queue_after(struct sk_buff_head
*list
,
1777 struct sk_buff
*prev
,
1778 struct sk_buff
*newsk
)
1780 __skb_insert(newsk
, prev
, prev
->next
, list
);
1783 void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
,
1784 struct sk_buff_head
*list
);
1786 static inline void __skb_queue_before(struct sk_buff_head
*list
,
1787 struct sk_buff
*next
,
1788 struct sk_buff
*newsk
)
1790 __skb_insert(newsk
, next
->prev
, next
, list
);
1794 * __skb_queue_head - queue a buffer at the list head
1795 * @list: list to use
1796 * @newsk: buffer to queue
1798 * Queue a buffer at the start of a list. This function takes no locks
1799 * and you must therefore hold required locks before calling it.
1801 * A buffer cannot be placed on two lists at the same time.
1803 void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
);
1804 static inline void __skb_queue_head(struct sk_buff_head
*list
,
1805 struct sk_buff
*newsk
)
1807 __skb_queue_after(list
, (struct sk_buff
*)list
, newsk
);
1811 * __skb_queue_tail - queue a buffer at the list tail
1812 * @list: list to use
1813 * @newsk: buffer to queue
1815 * Queue a buffer at the end of a list. This function takes no locks
1816 * and you must therefore hold required locks before calling it.
1818 * A buffer cannot be placed on two lists at the same time.
1820 void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
);
1821 static inline void __skb_queue_tail(struct sk_buff_head
*list
,
1822 struct sk_buff
*newsk
)
1824 __skb_queue_before(list
, (struct sk_buff
*)list
, newsk
);
1828 * remove sk_buff from list. _Must_ be called atomically, and with
1831 void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
);
1832 static inline void __skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
1834 struct sk_buff
*next
, *prev
;
1839 skb
->next
= skb
->prev
= NULL
;
1845 * __skb_dequeue - remove from the head of the queue
1846 * @list: list to dequeue from
1848 * Remove the head of the list. This function does not take any locks
1849 * so must be used with appropriate locks held only. The head item is
1850 * returned or %NULL if the list is empty.
1852 struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
);
1853 static inline struct sk_buff
*__skb_dequeue(struct sk_buff_head
*list
)
1855 struct sk_buff
*skb
= skb_peek(list
);
1857 __skb_unlink(skb
, list
);
1862 * __skb_dequeue_tail - remove from the tail of the queue
1863 * @list: list to dequeue from
1865 * Remove the tail of the list. This function does not take any locks
1866 * so must be used with appropriate locks held only. The tail item is
1867 * returned or %NULL if the list is empty.
1869 struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
);
1870 static inline struct sk_buff
*__skb_dequeue_tail(struct sk_buff_head
*list
)
1872 struct sk_buff
*skb
= skb_peek_tail(list
);
1874 __skb_unlink(skb
, list
);
1879 static inline bool skb_is_nonlinear(const struct sk_buff
*skb
)
1881 return skb
->data_len
;
1884 static inline unsigned int skb_headlen(const struct sk_buff
*skb
)
1886 return skb
->len
- skb
->data_len
;
1889 static inline unsigned int __skb_pagelen(const struct sk_buff
*skb
)
1891 unsigned int i
, len
= 0;
1893 for (i
= skb_shinfo(skb
)->nr_frags
- 1; (int)i
>= 0; i
--)
1894 len
+= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1898 static inline unsigned int skb_pagelen(const struct sk_buff
*skb
)
1900 return skb_headlen(skb
) + __skb_pagelen(skb
);
1904 * __skb_fill_page_desc - initialise a paged fragment in an skb
1905 * @skb: buffer containing fragment to be initialised
1906 * @i: paged fragment index to initialise
1907 * @page: the page to use for this fragment
1908 * @off: the offset to the data with @page
1909 * @size: the length of the data
1911 * Initialises the @i'th fragment of @skb to point to &size bytes at
1912 * offset @off within @page.
1914 * Does not take any additional reference on the fragment.
1916 static inline void __skb_fill_page_desc(struct sk_buff
*skb
, int i
,
1917 struct page
*page
, int off
, int size
)
1919 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1922 * Propagate page pfmemalloc to the skb if we can. The problem is
1923 * that not all callers have unique ownership of the page but rely
1924 * on page_is_pfmemalloc doing the right thing(tm).
1926 frag
->page
.p
= page
;
1927 frag
->page_offset
= off
;
1928 skb_frag_size_set(frag
, size
);
1930 page
= compound_head(page
);
1931 if (page_is_pfmemalloc(page
))
1932 skb
->pfmemalloc
= true;
1936 * skb_fill_page_desc - initialise a paged fragment in an skb
1937 * @skb: buffer containing fragment to be initialised
1938 * @i: paged fragment index to initialise
1939 * @page: the page to use for this fragment
1940 * @off: the offset to the data with @page
1941 * @size: the length of the data
1943 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1944 * @skb to point to @size bytes at offset @off within @page. In
1945 * addition updates @skb such that @i is the last fragment.
1947 * Does not take any additional reference on the fragment.
1949 static inline void skb_fill_page_desc(struct sk_buff
*skb
, int i
,
1950 struct page
*page
, int off
, int size
)
1952 __skb_fill_page_desc(skb
, i
, page
, off
, size
);
1953 skb_shinfo(skb
)->nr_frags
= i
+ 1;
1956 void skb_add_rx_frag(struct sk_buff
*skb
, int i
, struct page
*page
, int off
,
1957 int size
, unsigned int truesize
);
1959 void skb_coalesce_rx_frag(struct sk_buff
*skb
, int i
, int size
,
1960 unsigned int truesize
);
1962 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1963 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1964 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1966 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1967 static inline unsigned char *skb_tail_pointer(const struct sk_buff
*skb
)
1969 return skb
->head
+ skb
->tail
;
1972 static inline void skb_reset_tail_pointer(struct sk_buff
*skb
)
1974 skb
->tail
= skb
->data
- skb
->head
;
1977 static inline void skb_set_tail_pointer(struct sk_buff
*skb
, const int offset
)
1979 skb_reset_tail_pointer(skb
);
1980 skb
->tail
+= offset
;
1983 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1984 static inline unsigned char *skb_tail_pointer(const struct sk_buff
*skb
)
1989 static inline void skb_reset_tail_pointer(struct sk_buff
*skb
)
1991 skb
->tail
= skb
->data
;
1994 static inline void skb_set_tail_pointer(struct sk_buff
*skb
, const int offset
)
1996 skb
->tail
= skb
->data
+ offset
;
1999 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2002 * Add data to an sk_buff
2004 void *pskb_put(struct sk_buff
*skb
, struct sk_buff
*tail
, int len
);
2005 void *skb_put(struct sk_buff
*skb
, unsigned int len
);
2006 static inline void *__skb_put(struct sk_buff
*skb
, unsigned int len
)
2008 void *tmp
= skb_tail_pointer(skb
);
2009 SKB_LINEAR_ASSERT(skb
);
2015 static inline void *__skb_put_zero(struct sk_buff
*skb
, unsigned int len
)
2017 void *tmp
= __skb_put(skb
, len
);
2019 memset(tmp
, 0, len
);
2023 static inline void *__skb_put_data(struct sk_buff
*skb
, const void *data
,
2026 void *tmp
= __skb_put(skb
, len
);
2028 memcpy(tmp
, data
, len
);
2032 static inline void __skb_put_u8(struct sk_buff
*skb
, u8 val
)
2034 *(u8
*)__skb_put(skb
, 1) = val
;
2037 static inline void *skb_put_zero(struct sk_buff
*skb
, unsigned int len
)
2039 void *tmp
= skb_put(skb
, len
);
2041 memset(tmp
, 0, len
);
2046 static inline void *skb_put_data(struct sk_buff
*skb
, const void *data
,
2049 void *tmp
= skb_put(skb
, len
);
2051 memcpy(tmp
, data
, len
);
2056 static inline void skb_put_u8(struct sk_buff
*skb
, u8 val
)
2058 *(u8
*)skb_put(skb
, 1) = val
;
2061 void *skb_push(struct sk_buff
*skb
, unsigned int len
);
2062 static inline void *__skb_push(struct sk_buff
*skb
, unsigned int len
)
2069 void *skb_pull(struct sk_buff
*skb
, unsigned int len
);
2070 static inline void *__skb_pull(struct sk_buff
*skb
, unsigned int len
)
2073 BUG_ON(skb
->len
< skb
->data_len
);
2074 return skb
->data
+= len
;
2077 static inline void *skb_pull_inline(struct sk_buff
*skb
, unsigned int len
)
2079 return unlikely(len
> skb
->len
) ? NULL
: __skb_pull(skb
, len
);
2082 void *__pskb_pull_tail(struct sk_buff
*skb
, int delta
);
2084 static inline void *__pskb_pull(struct sk_buff
*skb
, unsigned int len
)
2086 if (len
> skb_headlen(skb
) &&
2087 !__pskb_pull_tail(skb
, len
- skb_headlen(skb
)))
2090 return skb
->data
+= len
;
2093 static inline void *pskb_pull(struct sk_buff
*skb
, unsigned int len
)
2095 return unlikely(len
> skb
->len
) ? NULL
: __pskb_pull(skb
, len
);
2098 static inline int pskb_may_pull(struct sk_buff
*skb
, unsigned int len
)
2100 if (likely(len
<= skb_headlen(skb
)))
2102 if (unlikely(len
> skb
->len
))
2104 return __pskb_pull_tail(skb
, len
- skb_headlen(skb
)) != NULL
;
2107 void skb_condense(struct sk_buff
*skb
);
2110 * skb_headroom - bytes at buffer head
2111 * @skb: buffer to check
2113 * Return the number of bytes of free space at the head of an &sk_buff.
2115 static inline unsigned int skb_headroom(const struct sk_buff
*skb
)
2117 return skb
->data
- skb
->head
;
2121 * skb_tailroom - bytes at buffer end
2122 * @skb: buffer to check
2124 * Return the number of bytes of free space at the tail of an sk_buff
2126 static inline int skb_tailroom(const struct sk_buff
*skb
)
2128 return skb_is_nonlinear(skb
) ? 0 : skb
->end
- skb
->tail
;
2132 * skb_availroom - bytes at buffer end
2133 * @skb: buffer to check
2135 * Return the number of bytes of free space at the tail of an sk_buff
2136 * allocated by sk_stream_alloc()
2138 static inline int skb_availroom(const struct sk_buff
*skb
)
2140 if (skb_is_nonlinear(skb
))
2143 return skb
->end
- skb
->tail
- skb
->reserved_tailroom
;
2147 * skb_reserve - adjust headroom
2148 * @skb: buffer to alter
2149 * @len: bytes to move
2151 * Increase the headroom of an empty &sk_buff by reducing the tail
2152 * room. This is only allowed for an empty buffer.
2154 static inline void skb_reserve(struct sk_buff
*skb
, int len
)
2161 * skb_tailroom_reserve - adjust reserved_tailroom
2162 * @skb: buffer to alter
2163 * @mtu: maximum amount of headlen permitted
2164 * @needed_tailroom: minimum amount of reserved_tailroom
2166 * Set reserved_tailroom so that headlen can be as large as possible but
2167 * not larger than mtu and tailroom cannot be smaller than
2169 * The required headroom should already have been reserved before using
2172 static inline void skb_tailroom_reserve(struct sk_buff
*skb
, unsigned int mtu
,
2173 unsigned int needed_tailroom
)
2175 SKB_LINEAR_ASSERT(skb
);
2176 if (mtu
< skb_tailroom(skb
) - needed_tailroom
)
2177 /* use at most mtu */
2178 skb
->reserved_tailroom
= skb_tailroom(skb
) - mtu
;
2180 /* use up to all available space */
2181 skb
->reserved_tailroom
= needed_tailroom
;
2184 #define ENCAP_TYPE_ETHER 0
2185 #define ENCAP_TYPE_IPPROTO 1
2187 static inline void skb_set_inner_protocol(struct sk_buff
*skb
,
2190 skb
->inner_protocol
= protocol
;
2191 skb
->inner_protocol_type
= ENCAP_TYPE_ETHER
;
2194 static inline void skb_set_inner_ipproto(struct sk_buff
*skb
,
2197 skb
->inner_ipproto
= ipproto
;
2198 skb
->inner_protocol_type
= ENCAP_TYPE_IPPROTO
;
2201 static inline void skb_reset_inner_headers(struct sk_buff
*skb
)
2203 skb
->inner_mac_header
= skb
->mac_header
;
2204 skb
->inner_network_header
= skb
->network_header
;
2205 skb
->inner_transport_header
= skb
->transport_header
;
2208 static inline void skb_reset_mac_len(struct sk_buff
*skb
)
2210 skb
->mac_len
= skb
->network_header
- skb
->mac_header
;
2213 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2216 return skb
->head
+ skb
->inner_transport_header
;
2219 static inline int skb_inner_transport_offset(const struct sk_buff
*skb
)
2221 return skb_inner_transport_header(skb
) - skb
->data
;
2224 static inline void skb_reset_inner_transport_header(struct sk_buff
*skb
)
2226 skb
->inner_transport_header
= skb
->data
- skb
->head
;
2229 static inline void skb_set_inner_transport_header(struct sk_buff
*skb
,
2232 skb_reset_inner_transport_header(skb
);
2233 skb
->inner_transport_header
+= offset
;
2236 static inline unsigned char *skb_inner_network_header(const struct sk_buff
*skb
)
2238 return skb
->head
+ skb
->inner_network_header
;
2241 static inline void skb_reset_inner_network_header(struct sk_buff
*skb
)
2243 skb
->inner_network_header
= skb
->data
- skb
->head
;
2246 static inline void skb_set_inner_network_header(struct sk_buff
*skb
,
2249 skb_reset_inner_network_header(skb
);
2250 skb
->inner_network_header
+= offset
;
2253 static inline unsigned char *skb_inner_mac_header(const struct sk_buff
*skb
)
2255 return skb
->head
+ skb
->inner_mac_header
;
2258 static inline void skb_reset_inner_mac_header(struct sk_buff
*skb
)
2260 skb
->inner_mac_header
= skb
->data
- skb
->head
;
2263 static inline void skb_set_inner_mac_header(struct sk_buff
*skb
,
2266 skb_reset_inner_mac_header(skb
);
2267 skb
->inner_mac_header
+= offset
;
2269 static inline bool skb_transport_header_was_set(const struct sk_buff
*skb
)
2271 return skb
->transport_header
!= (typeof(skb
->transport_header
))~0U;
2274 static inline unsigned char *skb_transport_header(const struct sk_buff
*skb
)
2276 return skb
->head
+ skb
->transport_header
;
2279 static inline void skb_reset_transport_header(struct sk_buff
*skb
)
2281 skb
->transport_header
= skb
->data
- skb
->head
;
2284 static inline void skb_set_transport_header(struct sk_buff
*skb
,
2287 skb_reset_transport_header(skb
);
2288 skb
->transport_header
+= offset
;
2291 static inline unsigned char *skb_network_header(const struct sk_buff
*skb
)
2293 return skb
->head
+ skb
->network_header
;
2296 static inline void skb_reset_network_header(struct sk_buff
*skb
)
2298 skb
->network_header
= skb
->data
- skb
->head
;
2301 static inline void skb_set_network_header(struct sk_buff
*skb
, const int offset
)
2303 skb_reset_network_header(skb
);
2304 skb
->network_header
+= offset
;
2307 static inline unsigned char *skb_mac_header(const struct sk_buff
*skb
)
2309 return skb
->head
+ skb
->mac_header
;
2312 static inline int skb_mac_offset(const struct sk_buff
*skb
)
2314 return skb_mac_header(skb
) - skb
->data
;
2317 static inline u32
skb_mac_header_len(const struct sk_buff
*skb
)
2319 return skb
->network_header
- skb
->mac_header
;
2322 static inline int skb_mac_header_was_set(const struct sk_buff
*skb
)
2324 return skb
->mac_header
!= (typeof(skb
->mac_header
))~0U;
2327 static inline void skb_reset_mac_header(struct sk_buff
*skb
)
2329 skb
->mac_header
= skb
->data
- skb
->head
;
2332 static inline void skb_set_mac_header(struct sk_buff
*skb
, const int offset
)
2334 skb_reset_mac_header(skb
);
2335 skb
->mac_header
+= offset
;
2338 static inline void skb_pop_mac_header(struct sk_buff
*skb
)
2340 skb
->mac_header
= skb
->network_header
;
2343 static inline void skb_probe_transport_header(struct sk_buff
*skb
,
2344 const int offset_hint
)
2346 struct flow_keys keys
;
2348 if (skb_transport_header_was_set(skb
))
2350 else if (skb_flow_dissect_flow_keys(skb
, &keys
, 0))
2351 skb_set_transport_header(skb
, keys
.control
.thoff
);
2353 skb_set_transport_header(skb
, offset_hint
);
2356 static inline void skb_mac_header_rebuild(struct sk_buff
*skb
)
2358 if (skb_mac_header_was_set(skb
)) {
2359 const unsigned char *old_mac
= skb_mac_header(skb
);
2361 skb_set_mac_header(skb
, -skb
->mac_len
);
2362 memmove(skb_mac_header(skb
), old_mac
, skb
->mac_len
);
2366 static inline int skb_checksum_start_offset(const struct sk_buff
*skb
)
2368 return skb
->csum_start
- skb_headroom(skb
);
2371 static inline unsigned char *skb_checksum_start(const struct sk_buff
*skb
)
2373 return skb
->head
+ skb
->csum_start
;
2376 static inline int skb_transport_offset(const struct sk_buff
*skb
)
2378 return skb_transport_header(skb
) - skb
->data
;
2381 static inline u32
skb_network_header_len(const struct sk_buff
*skb
)
2383 return skb
->transport_header
- skb
->network_header
;
2386 static inline u32
skb_inner_network_header_len(const struct sk_buff
*skb
)
2388 return skb
->inner_transport_header
- skb
->inner_network_header
;
2391 static inline int skb_network_offset(const struct sk_buff
*skb
)
2393 return skb_network_header(skb
) - skb
->data
;
2396 static inline int skb_inner_network_offset(const struct sk_buff
*skb
)
2398 return skb_inner_network_header(skb
) - skb
->data
;
2401 static inline int pskb_network_may_pull(struct sk_buff
*skb
, unsigned int len
)
2403 return pskb_may_pull(skb
, skb_network_offset(skb
) + len
);
2407 * CPUs often take a performance hit when accessing unaligned memory
2408 * locations. The actual performance hit varies, it can be small if the
2409 * hardware handles it or large if we have to take an exception and fix it
2412 * Since an ethernet header is 14 bytes network drivers often end up with
2413 * the IP header at an unaligned offset. The IP header can be aligned by
2414 * shifting the start of the packet by 2 bytes. Drivers should do this
2417 * skb_reserve(skb, NET_IP_ALIGN);
2419 * The downside to this alignment of the IP header is that the DMA is now
2420 * unaligned. On some architectures the cost of an unaligned DMA is high
2421 * and this cost outweighs the gains made by aligning the IP header.
2423 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2426 #ifndef NET_IP_ALIGN
2427 #define NET_IP_ALIGN 2
2431 * The networking layer reserves some headroom in skb data (via
2432 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2433 * the header has to grow. In the default case, if the header has to grow
2434 * 32 bytes or less we avoid the reallocation.
2436 * Unfortunately this headroom changes the DMA alignment of the resulting
2437 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2438 * on some architectures. An architecture can override this value,
2439 * perhaps setting it to a cacheline in size (since that will maintain
2440 * cacheline alignment of the DMA). It must be a power of 2.
2442 * Various parts of the networking layer expect at least 32 bytes of
2443 * headroom, you should not reduce this.
2445 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2446 * to reduce average number of cache lines per packet.
2447 * get_rps_cpus() for example only access one 64 bytes aligned block :
2448 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2451 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2454 int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
);
2456 static inline void __skb_set_length(struct sk_buff
*skb
, unsigned int len
)
2458 if (unlikely(skb_is_nonlinear(skb
))) {
2463 skb_set_tail_pointer(skb
, len
);
2466 static inline void __skb_trim(struct sk_buff
*skb
, unsigned int len
)
2468 __skb_set_length(skb
, len
);
2471 void skb_trim(struct sk_buff
*skb
, unsigned int len
);
2473 static inline int __pskb_trim(struct sk_buff
*skb
, unsigned int len
)
2476 return ___pskb_trim(skb
, len
);
2477 __skb_trim(skb
, len
);
2481 static inline int pskb_trim(struct sk_buff
*skb
, unsigned int len
)
2483 return (len
< skb
->len
) ? __pskb_trim(skb
, len
) : 0;
2487 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2488 * @skb: buffer to alter
2491 * This is identical to pskb_trim except that the caller knows that
2492 * the skb is not cloned so we should never get an error due to out-
2495 static inline void pskb_trim_unique(struct sk_buff
*skb
, unsigned int len
)
2497 int err
= pskb_trim(skb
, len
);
2501 static inline int __skb_grow(struct sk_buff
*skb
, unsigned int len
)
2503 unsigned int diff
= len
- skb
->len
;
2505 if (skb_tailroom(skb
) < diff
) {
2506 int ret
= pskb_expand_head(skb
, 0, diff
- skb_tailroom(skb
),
2511 __skb_set_length(skb
, len
);
2516 * skb_orphan - orphan a buffer
2517 * @skb: buffer to orphan
2519 * If a buffer currently has an owner then we call the owner's
2520 * destructor function and make the @skb unowned. The buffer continues
2521 * to exist but is no longer charged to its former owner.
2523 static inline void skb_orphan(struct sk_buff
*skb
)
2525 if (skb
->destructor
) {
2526 skb
->destructor(skb
);
2527 skb
->destructor
= NULL
;
2535 * skb_orphan_frags - orphan the frags contained in a buffer
2536 * @skb: buffer to orphan frags from
2537 * @gfp_mask: allocation mask for replacement pages
2539 * For each frag in the SKB which needs a destructor (i.e. has an
2540 * owner) create a copy of that frag and release the original
2541 * page by calling the destructor.
2543 static inline int skb_orphan_frags(struct sk_buff
*skb
, gfp_t gfp_mask
)
2545 if (likely(!skb_zcopy(skb
)))
2547 if (skb_uarg(skb
)->callback
== sock_zerocopy_callback
)
2549 return skb_copy_ubufs(skb
, gfp_mask
);
2552 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2553 static inline int skb_orphan_frags_rx(struct sk_buff
*skb
, gfp_t gfp_mask
)
2555 if (likely(!skb_zcopy(skb
)))
2557 return skb_copy_ubufs(skb
, gfp_mask
);
2561 * __skb_queue_purge - empty a list
2562 * @list: list to empty
2564 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2565 * the list and one reference dropped. This function does not take the
2566 * list lock and the caller must hold the relevant locks to use it.
2568 void skb_queue_purge(struct sk_buff_head
*list
);
2569 static inline void __skb_queue_purge(struct sk_buff_head
*list
)
2571 struct sk_buff
*skb
;
2572 while ((skb
= __skb_dequeue(list
)) != NULL
)
2576 void skb_rbtree_purge(struct rb_root
*root
);
2578 void *netdev_alloc_frag(unsigned int fragsz
);
2580 struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
, unsigned int length
,
2584 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2585 * @dev: network device to receive on
2586 * @length: length to allocate
2588 * Allocate a new &sk_buff and assign it a usage count of one. The
2589 * buffer has unspecified headroom built in. Users should allocate
2590 * the headroom they think they need without accounting for the
2591 * built in space. The built in space is used for optimisations.
2593 * %NULL is returned if there is no free memory. Although this function
2594 * allocates memory it can be called from an interrupt.
2596 static inline struct sk_buff
*netdev_alloc_skb(struct net_device
*dev
,
2597 unsigned int length
)
2599 return __netdev_alloc_skb(dev
, length
, GFP_ATOMIC
);
2602 /* legacy helper around __netdev_alloc_skb() */
2603 static inline struct sk_buff
*__dev_alloc_skb(unsigned int length
,
2606 return __netdev_alloc_skb(NULL
, length
, gfp_mask
);
2609 /* legacy helper around netdev_alloc_skb() */
2610 static inline struct sk_buff
*dev_alloc_skb(unsigned int length
)
2612 return netdev_alloc_skb(NULL
, length
);
2616 static inline struct sk_buff
*__netdev_alloc_skb_ip_align(struct net_device
*dev
,
2617 unsigned int length
, gfp_t gfp
)
2619 struct sk_buff
*skb
= __netdev_alloc_skb(dev
, length
+ NET_IP_ALIGN
, gfp
);
2621 if (NET_IP_ALIGN
&& skb
)
2622 skb_reserve(skb
, NET_IP_ALIGN
);
2626 static inline struct sk_buff
*netdev_alloc_skb_ip_align(struct net_device
*dev
,
2627 unsigned int length
)
2629 return __netdev_alloc_skb_ip_align(dev
, length
, GFP_ATOMIC
);
2632 static inline void skb_free_frag(void *addr
)
2634 page_frag_free(addr
);
2637 void *napi_alloc_frag(unsigned int fragsz
);
2638 struct sk_buff
*__napi_alloc_skb(struct napi_struct
*napi
,
2639 unsigned int length
, gfp_t gfp_mask
);
2640 static inline struct sk_buff
*napi_alloc_skb(struct napi_struct
*napi
,
2641 unsigned int length
)
2643 return __napi_alloc_skb(napi
, length
, GFP_ATOMIC
);
2645 void napi_consume_skb(struct sk_buff
*skb
, int budget
);
2647 void __kfree_skb_flush(void);
2648 void __kfree_skb_defer(struct sk_buff
*skb
);
2651 * __dev_alloc_pages - allocate page for network Rx
2652 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2653 * @order: size of the allocation
2655 * Allocate a new page.
2657 * %NULL is returned if there is no free memory.
2659 static inline struct page
*__dev_alloc_pages(gfp_t gfp_mask
,
2662 /* This piece of code contains several assumptions.
2663 * 1. This is for device Rx, therefor a cold page is preferred.
2664 * 2. The expectation is the user wants a compound page.
2665 * 3. If requesting a order 0 page it will not be compound
2666 * due to the check to see if order has a value in prep_new_page
2667 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2668 * code in gfp_to_alloc_flags that should be enforcing this.
2670 gfp_mask
|= __GFP_COMP
| __GFP_MEMALLOC
;
2672 return alloc_pages_node(NUMA_NO_NODE
, gfp_mask
, order
);
2675 static inline struct page
*dev_alloc_pages(unsigned int order
)
2677 return __dev_alloc_pages(GFP_ATOMIC
| __GFP_NOWARN
, order
);
2681 * __dev_alloc_page - allocate a page for network Rx
2682 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2684 * Allocate a new page.
2686 * %NULL is returned if there is no free memory.
2688 static inline struct page
*__dev_alloc_page(gfp_t gfp_mask
)
2690 return __dev_alloc_pages(gfp_mask
, 0);
2693 static inline struct page
*dev_alloc_page(void)
2695 return dev_alloc_pages(0);
2699 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2700 * @page: The page that was allocated from skb_alloc_page
2701 * @skb: The skb that may need pfmemalloc set
2703 static inline void skb_propagate_pfmemalloc(struct page
*page
,
2704 struct sk_buff
*skb
)
2706 if (page_is_pfmemalloc(page
))
2707 skb
->pfmemalloc
= true;
2711 * skb_frag_page - retrieve the page referred to by a paged fragment
2712 * @frag: the paged fragment
2714 * Returns the &struct page associated with @frag.
2716 static inline struct page
*skb_frag_page(const skb_frag_t
*frag
)
2718 return frag
->page
.p
;
2722 * __skb_frag_ref - take an addition reference on a paged fragment.
2723 * @frag: the paged fragment
2725 * Takes an additional reference on the paged fragment @frag.
2727 static inline void __skb_frag_ref(skb_frag_t
*frag
)
2729 get_page(skb_frag_page(frag
));
2733 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2735 * @f: the fragment offset.
2737 * Takes an additional reference on the @f'th paged fragment of @skb.
2739 static inline void skb_frag_ref(struct sk_buff
*skb
, int f
)
2741 __skb_frag_ref(&skb_shinfo(skb
)->frags
[f
]);
2745 * __skb_frag_unref - release a reference on a paged fragment.
2746 * @frag: the paged fragment
2748 * Releases a reference on the paged fragment @frag.
2750 static inline void __skb_frag_unref(skb_frag_t
*frag
)
2752 put_page(skb_frag_page(frag
));
2756 * skb_frag_unref - release a reference on a paged fragment of an skb.
2758 * @f: the fragment offset
2760 * Releases a reference on the @f'th paged fragment of @skb.
2762 static inline void skb_frag_unref(struct sk_buff
*skb
, int f
)
2764 __skb_frag_unref(&skb_shinfo(skb
)->frags
[f
]);
2768 * skb_frag_address - gets the address of the data contained in a paged fragment
2769 * @frag: the paged fragment buffer
2771 * Returns the address of the data within @frag. The page must already
2774 static inline void *skb_frag_address(const skb_frag_t
*frag
)
2776 return page_address(skb_frag_page(frag
)) + frag
->page_offset
;
2780 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2781 * @frag: the paged fragment buffer
2783 * Returns the address of the data within @frag. Checks that the page
2784 * is mapped and returns %NULL otherwise.
2786 static inline void *skb_frag_address_safe(const skb_frag_t
*frag
)
2788 void *ptr
= page_address(skb_frag_page(frag
));
2792 return ptr
+ frag
->page_offset
;
2796 * __skb_frag_set_page - sets the page contained in a paged fragment
2797 * @frag: the paged fragment
2798 * @page: the page to set
2800 * Sets the fragment @frag to contain @page.
2802 static inline void __skb_frag_set_page(skb_frag_t
*frag
, struct page
*page
)
2804 frag
->page
.p
= page
;
2808 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2810 * @f: the fragment offset
2811 * @page: the page to set
2813 * Sets the @f'th fragment of @skb to contain @page.
2815 static inline void skb_frag_set_page(struct sk_buff
*skb
, int f
,
2818 __skb_frag_set_page(&skb_shinfo(skb
)->frags
[f
], page
);
2821 bool skb_page_frag_refill(unsigned int sz
, struct page_frag
*pfrag
, gfp_t prio
);
2824 * skb_frag_dma_map - maps a paged fragment via the DMA API
2825 * @dev: the device to map the fragment to
2826 * @frag: the paged fragment to map
2827 * @offset: the offset within the fragment (starting at the
2828 * fragment's own offset)
2829 * @size: the number of bytes to map
2830 * @dir: the direction of the mapping (``PCI_DMA_*``)
2832 * Maps the page associated with @frag to @device.
2834 static inline dma_addr_t
skb_frag_dma_map(struct device
*dev
,
2835 const skb_frag_t
*frag
,
2836 size_t offset
, size_t size
,
2837 enum dma_data_direction dir
)
2839 return dma_map_page(dev
, skb_frag_page(frag
),
2840 frag
->page_offset
+ offset
, size
, dir
);
2843 static inline struct sk_buff
*pskb_copy(struct sk_buff
*skb
,
2846 return __pskb_copy(skb
, skb_headroom(skb
), gfp_mask
);
2850 static inline struct sk_buff
*pskb_copy_for_clone(struct sk_buff
*skb
,
2853 return __pskb_copy_fclone(skb
, skb_headroom(skb
), gfp_mask
, true);
2858 * skb_clone_writable - is the header of a clone writable
2859 * @skb: buffer to check
2860 * @len: length up to which to write
2862 * Returns true if modifying the header part of the cloned buffer
2863 * does not requires the data to be copied.
2865 static inline int skb_clone_writable(const struct sk_buff
*skb
, unsigned int len
)
2867 return !skb_header_cloned(skb
) &&
2868 skb_headroom(skb
) + len
<= skb
->hdr_len
;
2871 static inline int skb_try_make_writable(struct sk_buff
*skb
,
2872 unsigned int write_len
)
2874 return skb_cloned(skb
) && !skb_clone_writable(skb
, write_len
) &&
2875 pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2878 static inline int __skb_cow(struct sk_buff
*skb
, unsigned int headroom
,
2883 if (headroom
> skb_headroom(skb
))
2884 delta
= headroom
- skb_headroom(skb
);
2886 if (delta
|| cloned
)
2887 return pskb_expand_head(skb
, ALIGN(delta
, NET_SKB_PAD
), 0,
2893 * skb_cow - copy header of skb when it is required
2894 * @skb: buffer to cow
2895 * @headroom: needed headroom
2897 * If the skb passed lacks sufficient headroom or its data part
2898 * is shared, data is reallocated. If reallocation fails, an error
2899 * is returned and original skb is not changed.
2901 * The result is skb with writable area skb->head...skb->tail
2902 * and at least @headroom of space at head.
2904 static inline int skb_cow(struct sk_buff
*skb
, unsigned int headroom
)
2906 return __skb_cow(skb
, headroom
, skb_cloned(skb
));
2910 * skb_cow_head - skb_cow but only making the head writable
2911 * @skb: buffer to cow
2912 * @headroom: needed headroom
2914 * This function is identical to skb_cow except that we replace the
2915 * skb_cloned check by skb_header_cloned. It should be used when
2916 * you only need to push on some header and do not need to modify
2919 static inline int skb_cow_head(struct sk_buff
*skb
, unsigned int headroom
)
2921 return __skb_cow(skb
, headroom
, skb_header_cloned(skb
));
2925 * skb_padto - pad an skbuff up to a minimal size
2926 * @skb: buffer to pad
2927 * @len: minimal length
2929 * Pads up a buffer to ensure the trailing bytes exist and are
2930 * blanked. If the buffer already contains sufficient data it
2931 * is untouched. Otherwise it is extended. Returns zero on
2932 * success. The skb is freed on error.
2934 static inline int skb_padto(struct sk_buff
*skb
, unsigned int len
)
2936 unsigned int size
= skb
->len
;
2937 if (likely(size
>= len
))
2939 return skb_pad(skb
, len
- size
);
2943 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2944 * @skb: buffer to pad
2945 * @len: minimal length
2946 * @free_on_error: free buffer on error
2948 * Pads up a buffer to ensure the trailing bytes exist and are
2949 * blanked. If the buffer already contains sufficient data it
2950 * is untouched. Otherwise it is extended. Returns zero on
2951 * success. The skb is freed on error if @free_on_error is true.
2953 static inline int __skb_put_padto(struct sk_buff
*skb
, unsigned int len
,
2956 unsigned int size
= skb
->len
;
2958 if (unlikely(size
< len
)) {
2960 if (__skb_pad(skb
, len
, free_on_error
))
2962 __skb_put(skb
, len
);
2968 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2969 * @skb: buffer to pad
2970 * @len: minimal length
2972 * Pads up a buffer to ensure the trailing bytes exist and are
2973 * blanked. If the buffer already contains sufficient data it
2974 * is untouched. Otherwise it is extended. Returns zero on
2975 * success. The skb is freed on error.
2977 static inline int skb_put_padto(struct sk_buff
*skb
, unsigned int len
)
2979 return __skb_put_padto(skb
, len
, true);
2982 static inline int skb_add_data(struct sk_buff
*skb
,
2983 struct iov_iter
*from
, int copy
)
2985 const int off
= skb
->len
;
2987 if (skb
->ip_summed
== CHECKSUM_NONE
) {
2989 if (csum_and_copy_from_iter_full(skb_put(skb
, copy
), copy
,
2991 skb
->csum
= csum_block_add(skb
->csum
, csum
, off
);
2994 } else if (copy_from_iter_full(skb_put(skb
, copy
), copy
, from
))
2997 __skb_trim(skb
, off
);
3001 static inline bool skb_can_coalesce(struct sk_buff
*skb
, int i
,
3002 const struct page
*page
, int off
)
3007 const struct skb_frag_struct
*frag
= &skb_shinfo(skb
)->frags
[i
- 1];
3009 return page
== skb_frag_page(frag
) &&
3010 off
== frag
->page_offset
+ skb_frag_size(frag
);
3015 static inline int __skb_linearize(struct sk_buff
*skb
)
3017 return __pskb_pull_tail(skb
, skb
->data_len
) ? 0 : -ENOMEM
;
3021 * skb_linearize - convert paged skb to linear one
3022 * @skb: buffer to linarize
3024 * If there is no free memory -ENOMEM is returned, otherwise zero
3025 * is returned and the old skb data released.
3027 static inline int skb_linearize(struct sk_buff
*skb
)
3029 return skb_is_nonlinear(skb
) ? __skb_linearize(skb
) : 0;
3033 * skb_has_shared_frag - can any frag be overwritten
3034 * @skb: buffer to test
3036 * Return true if the skb has at least one frag that might be modified
3037 * by an external entity (as in vmsplice()/sendfile())
3039 static inline bool skb_has_shared_frag(const struct sk_buff
*skb
)
3041 return skb_is_nonlinear(skb
) &&
3042 skb_shinfo(skb
)->tx_flags
& SKBTX_SHARED_FRAG
;
3046 * skb_linearize_cow - make sure skb is linear and writable
3047 * @skb: buffer to process
3049 * If there is no free memory -ENOMEM is returned, otherwise zero
3050 * is returned and the old skb data released.
3052 static inline int skb_linearize_cow(struct sk_buff
*skb
)
3054 return skb_is_nonlinear(skb
) || skb_cloned(skb
) ?
3055 __skb_linearize(skb
) : 0;
3058 static __always_inline
void
3059 __skb_postpull_rcsum(struct sk_buff
*skb
, const void *start
, unsigned int len
,
3062 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
3063 skb
->csum
= csum_block_sub(skb
->csum
,
3064 csum_partial(start
, len
, 0), off
);
3065 else if (skb
->ip_summed
== CHECKSUM_PARTIAL
&&
3066 skb_checksum_start_offset(skb
) < 0)
3067 skb
->ip_summed
= CHECKSUM_NONE
;
3071 * skb_postpull_rcsum - update checksum for received skb after pull
3072 * @skb: buffer to update
3073 * @start: start of data before pull
3074 * @len: length of data pulled
3076 * After doing a pull on a received packet, you need to call this to
3077 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3078 * CHECKSUM_NONE so that it can be recomputed from scratch.
3080 static inline void skb_postpull_rcsum(struct sk_buff
*skb
,
3081 const void *start
, unsigned int len
)
3083 __skb_postpull_rcsum(skb
, start
, len
, 0);
3086 static __always_inline
void
3087 __skb_postpush_rcsum(struct sk_buff
*skb
, const void *start
, unsigned int len
,
3090 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
3091 skb
->csum
= csum_block_add(skb
->csum
,
3092 csum_partial(start
, len
, 0), off
);
3096 * skb_postpush_rcsum - update checksum for received skb after push
3097 * @skb: buffer to update
3098 * @start: start of data after push
3099 * @len: length of data pushed
3101 * After doing a push on a received packet, you need to call this to
3102 * update the CHECKSUM_COMPLETE checksum.
3104 static inline void skb_postpush_rcsum(struct sk_buff
*skb
,
3105 const void *start
, unsigned int len
)
3107 __skb_postpush_rcsum(skb
, start
, len
, 0);
3110 void *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
);
3113 * skb_push_rcsum - push skb and update receive checksum
3114 * @skb: buffer to update
3115 * @len: length of data pulled
3117 * This function performs an skb_push on the packet and updates
3118 * the CHECKSUM_COMPLETE checksum. It should be used on
3119 * receive path processing instead of skb_push unless you know
3120 * that the checksum difference is zero (e.g., a valid IP header)
3121 * or you are setting ip_summed to CHECKSUM_NONE.
3123 static inline void *skb_push_rcsum(struct sk_buff
*skb
, unsigned int len
)
3126 skb_postpush_rcsum(skb
, skb
->data
, len
);
3131 * pskb_trim_rcsum - trim received skb and update checksum
3132 * @skb: buffer to trim
3135 * This is exactly the same as pskb_trim except that it ensures the
3136 * checksum of received packets are still valid after the operation.
3139 static inline int pskb_trim_rcsum(struct sk_buff
*skb
, unsigned int len
)
3141 if (likely(len
>= skb
->len
))
3143 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
3144 skb
->ip_summed
= CHECKSUM_NONE
;
3145 return __pskb_trim(skb
, len
);
3148 static inline int __skb_trim_rcsum(struct sk_buff
*skb
, unsigned int len
)
3150 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
3151 skb
->ip_summed
= CHECKSUM_NONE
;
3152 __skb_trim(skb
, len
);
3156 static inline int __skb_grow_rcsum(struct sk_buff
*skb
, unsigned int len
)
3158 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
3159 skb
->ip_summed
= CHECKSUM_NONE
;
3160 return __skb_grow(skb
, len
);
3163 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3164 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3165 #define skb_rb_last(root) rb_to_skb(rb_last(root))
3166 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3167 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3169 #define skb_queue_walk(queue, skb) \
3170 for (skb = (queue)->next; \
3171 skb != (struct sk_buff *)(queue); \
3174 #define skb_queue_walk_safe(queue, skb, tmp) \
3175 for (skb = (queue)->next, tmp = skb->next; \
3176 skb != (struct sk_buff *)(queue); \
3177 skb = tmp, tmp = skb->next)
3179 #define skb_queue_walk_from(queue, skb) \
3180 for (; skb != (struct sk_buff *)(queue); \
3183 #define skb_rbtree_walk(skb, root) \
3184 for (skb = skb_rb_first(root); skb != NULL; \
3185 skb = skb_rb_next(skb))
3187 #define skb_rbtree_walk_from(skb) \
3188 for (; skb != NULL; \
3189 skb = skb_rb_next(skb))
3191 #define skb_rbtree_walk_from_safe(skb, tmp) \
3192 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3195 #define skb_queue_walk_from_safe(queue, skb, tmp) \
3196 for (tmp = skb->next; \
3197 skb != (struct sk_buff *)(queue); \
3198 skb = tmp, tmp = skb->next)
3200 #define skb_queue_reverse_walk(queue, skb) \
3201 for (skb = (queue)->prev; \
3202 skb != (struct sk_buff *)(queue); \
3205 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3206 for (skb = (queue)->prev, tmp = skb->prev; \
3207 skb != (struct sk_buff *)(queue); \
3208 skb = tmp, tmp = skb->prev)
3210 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3211 for (tmp = skb->prev; \
3212 skb != (struct sk_buff *)(queue); \
3213 skb = tmp, tmp = skb->prev)
3215 static inline bool skb_has_frag_list(const struct sk_buff
*skb
)
3217 return skb_shinfo(skb
)->frag_list
!= NULL
;
3220 static inline void skb_frag_list_init(struct sk_buff
*skb
)
3222 skb_shinfo(skb
)->frag_list
= NULL
;
3225 #define skb_walk_frags(skb, iter) \
3226 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3229 int __skb_wait_for_more_packets(struct sock
*sk
, int *err
, long *timeo_p
,
3230 const struct sk_buff
*skb
);
3231 struct sk_buff
*__skb_try_recv_from_queue(struct sock
*sk
,
3232 struct sk_buff_head
*queue
,
3234 void (*destructor
)(struct sock
*sk
,
3235 struct sk_buff
*skb
),
3236 int *peeked
, int *off
, int *err
,
3237 struct sk_buff
**last
);
3238 struct sk_buff
*__skb_try_recv_datagram(struct sock
*sk
, unsigned flags
,
3239 void (*destructor
)(struct sock
*sk
,
3240 struct sk_buff
*skb
),
3241 int *peeked
, int *off
, int *err
,
3242 struct sk_buff
**last
);
3243 struct sk_buff
*__skb_recv_datagram(struct sock
*sk
, unsigned flags
,
3244 void (*destructor
)(struct sock
*sk
,
3245 struct sk_buff
*skb
),
3246 int *peeked
, int *off
, int *err
);
3247 struct sk_buff
*skb_recv_datagram(struct sock
*sk
, unsigned flags
, int noblock
,
3249 __poll_t
datagram_poll(struct file
*file
, struct socket
*sock
,
3250 struct poll_table_struct
*wait
);
3251 int skb_copy_datagram_iter(const struct sk_buff
*from
, int offset
,
3252 struct iov_iter
*to
, int size
);
3253 static inline int skb_copy_datagram_msg(const struct sk_buff
*from
, int offset
,
3254 struct msghdr
*msg
, int size
)
3256 return skb_copy_datagram_iter(from
, offset
, &msg
->msg_iter
, size
);
3258 int skb_copy_and_csum_datagram_msg(struct sk_buff
*skb
, int hlen
,
3259 struct msghdr
*msg
);
3260 int skb_copy_datagram_from_iter(struct sk_buff
*skb
, int offset
,
3261 struct iov_iter
*from
, int len
);
3262 int zerocopy_sg_from_iter(struct sk_buff
*skb
, struct iov_iter
*frm
);
3263 void skb_free_datagram(struct sock
*sk
, struct sk_buff
*skb
);
3264 void __skb_free_datagram_locked(struct sock
*sk
, struct sk_buff
*skb
, int len
);
3265 static inline void skb_free_datagram_locked(struct sock
*sk
,
3266 struct sk_buff
*skb
)
3268 __skb_free_datagram_locked(sk
, skb
, 0);
3270 int skb_kill_datagram(struct sock
*sk
, struct sk_buff
*skb
, unsigned int flags
);
3271 int skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
, int len
);
3272 int skb_store_bits(struct sk_buff
*skb
, int offset
, const void *from
, int len
);
3273 __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
, int offset
, u8
*to
,
3274 int len
, __wsum csum
);
3275 int skb_splice_bits(struct sk_buff
*skb
, struct sock
*sk
, unsigned int offset
,
3276 struct pipe_inode_info
*pipe
, unsigned int len
,
3277 unsigned int flags
);
3278 int skb_send_sock_locked(struct sock
*sk
, struct sk_buff
*skb
, int offset
,
3280 int skb_send_sock(struct sock
*sk
, struct sk_buff
*skb
, int offset
, int len
);
3281 void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
);
3282 unsigned int skb_zerocopy_headlen(const struct sk_buff
*from
);
3283 int skb_zerocopy(struct sk_buff
*to
, struct sk_buff
*from
,
3285 void skb_split(struct sk_buff
*skb
, struct sk_buff
*skb1
, const u32 len
);
3286 int skb_shift(struct sk_buff
*tgt
, struct sk_buff
*skb
, int shiftlen
);
3287 void skb_scrub_packet(struct sk_buff
*skb
, bool xnet
);
3288 unsigned int skb_gso_transport_seglen(const struct sk_buff
*skb
);
3289 bool skb_gso_validate_mtu(const struct sk_buff
*skb
, unsigned int mtu
);
3290 bool skb_gso_validate_mac_len(const struct sk_buff
*skb
, unsigned int len
);
3291 struct sk_buff
*skb_segment(struct sk_buff
*skb
, netdev_features_t features
);
3292 struct sk_buff
*skb_vlan_untag(struct sk_buff
*skb
);
3293 int skb_ensure_writable(struct sk_buff
*skb
, int write_len
);
3294 int __skb_vlan_pop(struct sk_buff
*skb
, u16
*vlan_tci
);
3295 int skb_vlan_pop(struct sk_buff
*skb
);
3296 int skb_vlan_push(struct sk_buff
*skb
, __be16 vlan_proto
, u16 vlan_tci
);
3297 struct sk_buff
*pskb_extract(struct sk_buff
*skb
, int off
, int to_copy
,
3300 static inline int memcpy_from_msg(void *data
, struct msghdr
*msg
, int len
)
3302 return copy_from_iter_full(data
, len
, &msg
->msg_iter
) ? 0 : -EFAULT
;
3305 static inline int memcpy_to_msg(struct msghdr
*msg
, void *data
, int len
)
3307 return copy_to_iter(data
, len
, &msg
->msg_iter
) == len
? 0 : -EFAULT
;
3310 struct skb_checksum_ops
{
3311 __wsum (*update
)(const void *mem
, int len
, __wsum wsum
);
3312 __wsum (*combine
)(__wsum csum
, __wsum csum2
, int offset
, int len
);
3315 extern const struct skb_checksum_ops
*crc32c_csum_stub __read_mostly
;
3317 __wsum
__skb_checksum(const struct sk_buff
*skb
, int offset
, int len
,
3318 __wsum csum
, const struct skb_checksum_ops
*ops
);
3319 __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
, int len
,
3322 static inline void * __must_check
3323 __skb_header_pointer(const struct sk_buff
*skb
, int offset
,
3324 int len
, void *data
, int hlen
, void *buffer
)
3326 if (hlen
- offset
>= len
)
3327 return data
+ offset
;
3330 skb_copy_bits(skb
, offset
, buffer
, len
) < 0)
3336 static inline void * __must_check
3337 skb_header_pointer(const struct sk_buff
*skb
, int offset
, int len
, void *buffer
)
3339 return __skb_header_pointer(skb
, offset
, len
, skb
->data
,
3340 skb_headlen(skb
), buffer
);
3344 * skb_needs_linearize - check if we need to linearize a given skb
3345 * depending on the given device features.
3346 * @skb: socket buffer to check
3347 * @features: net device features
3349 * Returns true if either:
3350 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3351 * 2. skb is fragmented and the device does not support SG.
3353 static inline bool skb_needs_linearize(struct sk_buff
*skb
,
3354 netdev_features_t features
)
3356 return skb_is_nonlinear(skb
) &&
3357 ((skb_has_frag_list(skb
) && !(features
& NETIF_F_FRAGLIST
)) ||
3358 (skb_shinfo(skb
)->nr_frags
&& !(features
& NETIF_F_SG
)));
3361 static inline void skb_copy_from_linear_data(const struct sk_buff
*skb
,
3363 const unsigned int len
)
3365 memcpy(to
, skb
->data
, len
);
3368 static inline void skb_copy_from_linear_data_offset(const struct sk_buff
*skb
,
3369 const int offset
, void *to
,
3370 const unsigned int len
)
3372 memcpy(to
, skb
->data
+ offset
, len
);
3375 static inline void skb_copy_to_linear_data(struct sk_buff
*skb
,
3377 const unsigned int len
)
3379 memcpy(skb
->data
, from
, len
);
3382 static inline void skb_copy_to_linear_data_offset(struct sk_buff
*skb
,
3385 const unsigned int len
)
3387 memcpy(skb
->data
+ offset
, from
, len
);
3390 void skb_init(void);
3392 static inline ktime_t
skb_get_ktime(const struct sk_buff
*skb
)
3398 * skb_get_timestamp - get timestamp from a skb
3399 * @skb: skb to get stamp from
3400 * @stamp: pointer to struct timeval to store stamp in
3402 * Timestamps are stored in the skb as offsets to a base timestamp.
3403 * This function converts the offset back to a struct timeval and stores
3406 static inline void skb_get_timestamp(const struct sk_buff
*skb
,
3407 struct timeval
*stamp
)
3409 *stamp
= ktime_to_timeval(skb
->tstamp
);
3412 static inline void skb_get_timestampns(const struct sk_buff
*skb
,
3413 struct timespec
*stamp
)
3415 *stamp
= ktime_to_timespec(skb
->tstamp
);
3418 static inline void __net_timestamp(struct sk_buff
*skb
)
3420 skb
->tstamp
= ktime_get_real();
3423 static inline ktime_t
net_timedelta(ktime_t t
)
3425 return ktime_sub(ktime_get_real(), t
);
3428 static inline ktime_t
net_invalid_timestamp(void)
3433 static inline u8
skb_metadata_len(const struct sk_buff
*skb
)
3435 return skb_shinfo(skb
)->meta_len
;
3438 static inline void *skb_metadata_end(const struct sk_buff
*skb
)
3440 return skb_mac_header(skb
);
3443 static inline bool __skb_metadata_differs(const struct sk_buff
*skb_a
,
3444 const struct sk_buff
*skb_b
,
3447 const void *a
= skb_metadata_end(skb_a
);
3448 const void *b
= skb_metadata_end(skb_b
);
3449 /* Using more efficient varaiant than plain call to memcmp(). */
3450 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3454 #define __it(x, op) (x -= sizeof(u##op))
3455 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3456 case 32: diffs
|= __it_diff(a
, b
, 64);
3457 case 24: diffs
|= __it_diff(a
, b
, 64);
3458 case 16: diffs
|= __it_diff(a
, b
, 64);
3459 case 8: diffs
|= __it_diff(a
, b
, 64);
3461 case 28: diffs
|= __it_diff(a
, b
, 64);
3462 case 20: diffs
|= __it_diff(a
, b
, 64);
3463 case 12: diffs
|= __it_diff(a
, b
, 64);
3464 case 4: diffs
|= __it_diff(a
, b
, 32);
3469 return memcmp(a
- meta_len
, b
- meta_len
, meta_len
);
3473 static inline bool skb_metadata_differs(const struct sk_buff
*skb_a
,
3474 const struct sk_buff
*skb_b
)
3476 u8 len_a
= skb_metadata_len(skb_a
);
3477 u8 len_b
= skb_metadata_len(skb_b
);
3479 if (!(len_a
| len_b
))
3482 return len_a
!= len_b
?
3483 true : __skb_metadata_differs(skb_a
, skb_b
, len_a
);
3486 static inline void skb_metadata_set(struct sk_buff
*skb
, u8 meta_len
)
3488 skb_shinfo(skb
)->meta_len
= meta_len
;
3491 static inline void skb_metadata_clear(struct sk_buff
*skb
)
3493 skb_metadata_set(skb
, 0);
3496 struct sk_buff
*skb_clone_sk(struct sk_buff
*skb
);
3498 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3500 void skb_clone_tx_timestamp(struct sk_buff
*skb
);
3501 bool skb_defer_rx_timestamp(struct sk_buff
*skb
);
3503 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3505 static inline void skb_clone_tx_timestamp(struct sk_buff
*skb
)
3509 static inline bool skb_defer_rx_timestamp(struct sk_buff
*skb
)
3514 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3517 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3519 * PHY drivers may accept clones of transmitted packets for
3520 * timestamping via their phy_driver.txtstamp method. These drivers
3521 * must call this function to return the skb back to the stack with a
3524 * @skb: clone of the the original outgoing packet
3525 * @hwtstamps: hardware time stamps
3528 void skb_complete_tx_timestamp(struct sk_buff
*skb
,
3529 struct skb_shared_hwtstamps
*hwtstamps
);
3531 void __skb_tstamp_tx(struct sk_buff
*orig_skb
,
3532 struct skb_shared_hwtstamps
*hwtstamps
,
3533 struct sock
*sk
, int tstype
);
3536 * skb_tstamp_tx - queue clone of skb with send time stamps
3537 * @orig_skb: the original outgoing packet
3538 * @hwtstamps: hardware time stamps, may be NULL if not available
3540 * If the skb has a socket associated, then this function clones the
3541 * skb (thus sharing the actual data and optional structures), stores
3542 * the optional hardware time stamping information (if non NULL) or
3543 * generates a software time stamp (otherwise), then queues the clone
3544 * to the error queue of the socket. Errors are silently ignored.
3546 void skb_tstamp_tx(struct sk_buff
*orig_skb
,
3547 struct skb_shared_hwtstamps
*hwtstamps
);
3550 * skb_tx_timestamp() - Driver hook for transmit timestamping
3552 * Ethernet MAC Drivers should call this function in their hard_xmit()
3553 * function immediately before giving the sk_buff to the MAC hardware.
3555 * Specifically, one should make absolutely sure that this function is
3556 * called before TX completion of this packet can trigger. Otherwise
3557 * the packet could potentially already be freed.
3559 * @skb: A socket buffer.
3561 static inline void skb_tx_timestamp(struct sk_buff
*skb
)
3563 skb_clone_tx_timestamp(skb
);
3564 if (skb_shinfo(skb
)->tx_flags
& SKBTX_SW_TSTAMP
)
3565 skb_tstamp_tx(skb
, NULL
);
3569 * skb_complete_wifi_ack - deliver skb with wifi status
3571 * @skb: the original outgoing packet
3572 * @acked: ack status
3575 void skb_complete_wifi_ack(struct sk_buff
*skb
, bool acked
);
3577 __sum16
__skb_checksum_complete_head(struct sk_buff
*skb
, int len
);
3578 __sum16
__skb_checksum_complete(struct sk_buff
*skb
);
3580 static inline int skb_csum_unnecessary(const struct sk_buff
*skb
)
3582 return ((skb
->ip_summed
== CHECKSUM_UNNECESSARY
) ||
3584 (skb
->ip_summed
== CHECKSUM_PARTIAL
&&
3585 skb_checksum_start_offset(skb
) >= 0));
3589 * skb_checksum_complete - Calculate checksum of an entire packet
3590 * @skb: packet to process
3592 * This function calculates the checksum over the entire packet plus
3593 * the value of skb->csum. The latter can be used to supply the
3594 * checksum of a pseudo header as used by TCP/UDP. It returns the
3597 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3598 * this function can be used to verify that checksum on received
3599 * packets. In that case the function should return zero if the
3600 * checksum is correct. In particular, this function will return zero
3601 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3602 * hardware has already verified the correctness of the checksum.
3604 static inline __sum16
skb_checksum_complete(struct sk_buff
*skb
)
3606 return skb_csum_unnecessary(skb
) ?
3607 0 : __skb_checksum_complete(skb
);
3610 static inline void __skb_decr_checksum_unnecessary(struct sk_buff
*skb
)
3612 if (skb
->ip_summed
== CHECKSUM_UNNECESSARY
) {
3613 if (skb
->csum_level
== 0)
3614 skb
->ip_summed
= CHECKSUM_NONE
;
3620 static inline void __skb_incr_checksum_unnecessary(struct sk_buff
*skb
)
3622 if (skb
->ip_summed
== CHECKSUM_UNNECESSARY
) {
3623 if (skb
->csum_level
< SKB_MAX_CSUM_LEVEL
)
3625 } else if (skb
->ip_summed
== CHECKSUM_NONE
) {
3626 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3627 skb
->csum_level
= 0;
3631 /* Check if we need to perform checksum complete validation.
3633 * Returns true if checksum complete is needed, false otherwise
3634 * (either checksum is unnecessary or zero checksum is allowed).
3636 static inline bool __skb_checksum_validate_needed(struct sk_buff
*skb
,
3640 if (skb_csum_unnecessary(skb
) || (zero_okay
&& !check
)) {
3641 skb
->csum_valid
= 1;
3642 __skb_decr_checksum_unnecessary(skb
);
3649 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3652 #define CHECKSUM_BREAK 76
3654 /* Unset checksum-complete
3656 * Unset checksum complete can be done when packet is being modified
3657 * (uncompressed for instance) and checksum-complete value is
3660 static inline void skb_checksum_complete_unset(struct sk_buff
*skb
)
3662 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
3663 skb
->ip_summed
= CHECKSUM_NONE
;
3666 /* Validate (init) checksum based on checksum complete.
3669 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3670 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3671 * checksum is stored in skb->csum for use in __skb_checksum_complete
3672 * non-zero: value of invalid checksum
3675 static inline __sum16
__skb_checksum_validate_complete(struct sk_buff
*skb
,
3679 if (skb
->ip_summed
== CHECKSUM_COMPLETE
) {
3680 if (!csum_fold(csum_add(psum
, skb
->csum
))) {
3681 skb
->csum_valid
= 1;
3688 if (complete
|| skb
->len
<= CHECKSUM_BREAK
) {
3691 csum
= __skb_checksum_complete(skb
);
3692 skb
->csum_valid
= !csum
;
3699 static inline __wsum
null_compute_pseudo(struct sk_buff
*skb
, int proto
)
3704 /* Perform checksum validate (init). Note that this is a macro since we only
3705 * want to calculate the pseudo header which is an input function if necessary.
3706 * First we try to validate without any computation (checksum unnecessary) and
3707 * then calculate based on checksum complete calling the function to compute
3711 * 0: checksum is validated or try to in skb_checksum_complete
3712 * non-zero: value of invalid checksum
3714 #define __skb_checksum_validate(skb, proto, complete, \
3715 zero_okay, check, compute_pseudo) \
3717 __sum16 __ret = 0; \
3718 skb->csum_valid = 0; \
3719 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3720 __ret = __skb_checksum_validate_complete(skb, \
3721 complete, compute_pseudo(skb, proto)); \
3725 #define skb_checksum_init(skb, proto, compute_pseudo) \
3726 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3728 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3729 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3731 #define skb_checksum_validate(skb, proto, compute_pseudo) \
3732 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3734 #define skb_checksum_validate_zero_check(skb, proto, check, \
3736 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3738 #define skb_checksum_simple_validate(skb) \
3739 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3741 static inline bool __skb_checksum_convert_check(struct sk_buff
*skb
)
3743 return (skb
->ip_summed
== CHECKSUM_NONE
&& skb
->csum_valid
);
3746 static inline void __skb_checksum_convert(struct sk_buff
*skb
,
3747 __sum16 check
, __wsum pseudo
)
3749 skb
->csum
= ~pseudo
;
3750 skb
->ip_summed
= CHECKSUM_COMPLETE
;
3753 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3755 if (__skb_checksum_convert_check(skb)) \
3756 __skb_checksum_convert(skb, check, \
3757 compute_pseudo(skb, proto)); \
3760 static inline void skb_remcsum_adjust_partial(struct sk_buff
*skb
, void *ptr
,
3761 u16 start
, u16 offset
)
3763 skb
->ip_summed
= CHECKSUM_PARTIAL
;
3764 skb
->csum_start
= ((unsigned char *)ptr
+ start
) - skb
->head
;
3765 skb
->csum_offset
= offset
- start
;
3768 /* Update skbuf and packet to reflect the remote checksum offload operation.
3769 * When called, ptr indicates the starting point for skb->csum when
3770 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3771 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3773 static inline void skb_remcsum_process(struct sk_buff
*skb
, void *ptr
,
3774 int start
, int offset
, bool nopartial
)
3779 skb_remcsum_adjust_partial(skb
, ptr
, start
, offset
);
3783 if (unlikely(skb
->ip_summed
!= CHECKSUM_COMPLETE
)) {
3784 __skb_checksum_complete(skb
);
3785 skb_postpull_rcsum(skb
, skb
->data
, ptr
- (void *)skb
->data
);
3788 delta
= remcsum_adjust(ptr
, skb
->csum
, start
, offset
);
3790 /* Adjust skb->csum since we changed the packet */
3791 skb
->csum
= csum_add(skb
->csum
, delta
);
3794 static inline struct nf_conntrack
*skb_nfct(const struct sk_buff
*skb
)
3796 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3797 return (void *)(skb
->_nfct
& SKB_NFCT_PTRMASK
);
3803 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3804 void nf_conntrack_destroy(struct nf_conntrack
*nfct
);
3805 static inline void nf_conntrack_put(struct nf_conntrack
*nfct
)
3807 if (nfct
&& atomic_dec_and_test(&nfct
->use
))
3808 nf_conntrack_destroy(nfct
);
3810 static inline void nf_conntrack_get(struct nf_conntrack
*nfct
)
3813 atomic_inc(&nfct
->use
);
3816 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3817 static inline void nf_bridge_put(struct nf_bridge_info
*nf_bridge
)
3819 if (nf_bridge
&& refcount_dec_and_test(&nf_bridge
->use
))
3822 static inline void nf_bridge_get(struct nf_bridge_info
*nf_bridge
)
3825 refcount_inc(&nf_bridge
->use
);
3827 #endif /* CONFIG_BRIDGE_NETFILTER */
3828 static inline void nf_reset(struct sk_buff
*skb
)
3830 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3831 nf_conntrack_put(skb_nfct(skb
));
3834 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3835 nf_bridge_put(skb
->nf_bridge
);
3836 skb
->nf_bridge
= NULL
;
3840 static inline void nf_reset_trace(struct sk_buff
*skb
)
3842 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3847 static inline void ipvs_reset(struct sk_buff
*skb
)
3849 #if IS_ENABLED(CONFIG_IP_VS)
3850 skb
->ipvs_property
= 0;
3854 /* Note: This doesn't put any conntrack and bridge info in dst. */
3855 static inline void __nf_copy(struct sk_buff
*dst
, const struct sk_buff
*src
,
3858 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3859 dst
->_nfct
= src
->_nfct
;
3860 nf_conntrack_get(skb_nfct(src
));
3862 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3863 dst
->nf_bridge
= src
->nf_bridge
;
3864 nf_bridge_get(src
->nf_bridge
);
3866 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3868 dst
->nf_trace
= src
->nf_trace
;
3872 static inline void nf_copy(struct sk_buff
*dst
, const struct sk_buff
*src
)
3874 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3875 nf_conntrack_put(skb_nfct(dst
));
3877 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3878 nf_bridge_put(dst
->nf_bridge
);
3880 __nf_copy(dst
, src
, true);
3883 #ifdef CONFIG_NETWORK_SECMARK
3884 static inline void skb_copy_secmark(struct sk_buff
*to
, const struct sk_buff
*from
)
3886 to
->secmark
= from
->secmark
;
3889 static inline void skb_init_secmark(struct sk_buff
*skb
)
3894 static inline void skb_copy_secmark(struct sk_buff
*to
, const struct sk_buff
*from
)
3897 static inline void skb_init_secmark(struct sk_buff
*skb
)
3901 static inline bool skb_irq_freeable(const struct sk_buff
*skb
)
3903 return !skb
->destructor
&&
3904 #if IS_ENABLED(CONFIG_XFRM)
3908 !skb
->_skb_refdst
&&
3909 !skb_has_frag_list(skb
);
3912 static inline void skb_set_queue_mapping(struct sk_buff
*skb
, u16 queue_mapping
)
3914 skb
->queue_mapping
= queue_mapping
;
3917 static inline u16
skb_get_queue_mapping(const struct sk_buff
*skb
)
3919 return skb
->queue_mapping
;
3922 static inline void skb_copy_queue_mapping(struct sk_buff
*to
, const struct sk_buff
*from
)
3924 to
->queue_mapping
= from
->queue_mapping
;
3927 static inline void skb_record_rx_queue(struct sk_buff
*skb
, u16 rx_queue
)
3929 skb
->queue_mapping
= rx_queue
+ 1;
3932 static inline u16
skb_get_rx_queue(const struct sk_buff
*skb
)
3934 return skb
->queue_mapping
- 1;
3937 static inline bool skb_rx_queue_recorded(const struct sk_buff
*skb
)
3939 return skb
->queue_mapping
!= 0;
3942 static inline void skb_set_dst_pending_confirm(struct sk_buff
*skb
, u32 val
)
3944 skb
->dst_pending_confirm
= val
;
3947 static inline bool skb_get_dst_pending_confirm(const struct sk_buff
*skb
)
3949 return skb
->dst_pending_confirm
!= 0;
3952 static inline struct sec_path
*skb_sec_path(struct sk_buff
*skb
)
3961 /* Keeps track of mac header offset relative to skb->head.
3962 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3963 * For non-tunnel skb it points to skb_mac_header() and for
3964 * tunnel skb it points to outer mac header.
3965 * Keeps track of level of encapsulation of network headers.
3976 #define SKB_SGO_CB_OFFSET 32
3977 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3979 static inline int skb_tnl_header_len(const struct sk_buff
*inner_skb
)
3981 return (skb_mac_header(inner_skb
) - inner_skb
->head
) -
3982 SKB_GSO_CB(inner_skb
)->mac_offset
;
3985 static inline int gso_pskb_expand_head(struct sk_buff
*skb
, int extra
)
3987 int new_headroom
, headroom
;
3990 headroom
= skb_headroom(skb
);
3991 ret
= pskb_expand_head(skb
, extra
, 0, GFP_ATOMIC
);
3995 new_headroom
= skb_headroom(skb
);
3996 SKB_GSO_CB(skb
)->mac_offset
+= (new_headroom
- headroom
);
4000 static inline void gso_reset_checksum(struct sk_buff
*skb
, __wsum res
)
4002 /* Do not update partial checksums if remote checksum is enabled. */
4003 if (skb
->remcsum_offload
)
4006 SKB_GSO_CB(skb
)->csum
= res
;
4007 SKB_GSO_CB(skb
)->csum_start
= skb_checksum_start(skb
) - skb
->head
;
4010 /* Compute the checksum for a gso segment. First compute the checksum value
4011 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4012 * then add in skb->csum (checksum from csum_start to end of packet).
4013 * skb->csum and csum_start are then updated to reflect the checksum of the
4014 * resultant packet starting from the transport header-- the resultant checksum
4015 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4018 static inline __sum16
gso_make_checksum(struct sk_buff
*skb
, __wsum res
)
4020 unsigned char *csum_start
= skb_transport_header(skb
);
4021 int plen
= (skb
->head
+ SKB_GSO_CB(skb
)->csum_start
) - csum_start
;
4022 __wsum partial
= SKB_GSO_CB(skb
)->csum
;
4024 SKB_GSO_CB(skb
)->csum
= res
;
4025 SKB_GSO_CB(skb
)->csum_start
= csum_start
- skb
->head
;
4027 return csum_fold(csum_partial(csum_start
, plen
, partial
));
4030 static inline bool skb_is_gso(const struct sk_buff
*skb
)
4032 return skb_shinfo(skb
)->gso_size
;
4035 /* Note: Should be called only if skb_is_gso(skb) is true */
4036 static inline bool skb_is_gso_v6(const struct sk_buff
*skb
)
4038 return skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
;
4041 static inline void skb_gso_reset(struct sk_buff
*skb
)
4043 skb_shinfo(skb
)->gso_size
= 0;
4044 skb_shinfo(skb
)->gso_segs
= 0;
4045 skb_shinfo(skb
)->gso_type
= 0;
4048 void __skb_warn_lro_forwarding(const struct sk_buff
*skb
);
4050 static inline bool skb_warn_if_lro(const struct sk_buff
*skb
)
4052 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4053 * wanted then gso_type will be set. */
4054 const struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
4056 if (skb_is_nonlinear(skb
) && shinfo
->gso_size
!= 0 &&
4057 unlikely(shinfo
->gso_type
== 0)) {
4058 __skb_warn_lro_forwarding(skb
);
4064 static inline void skb_forward_csum(struct sk_buff
*skb
)
4066 /* Unfortunately we don't support this one. Any brave souls? */
4067 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
4068 skb
->ip_summed
= CHECKSUM_NONE
;
4072 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4073 * @skb: skb to check
4075 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4076 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4077 * use this helper, to document places where we make this assertion.
4079 static inline void skb_checksum_none_assert(const struct sk_buff
*skb
)
4082 BUG_ON(skb
->ip_summed
!= CHECKSUM_NONE
);
4086 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
);
4088 int skb_checksum_setup(struct sk_buff
*skb
, bool recalculate
);
4089 struct sk_buff
*skb_checksum_trimmed(struct sk_buff
*skb
,
4090 unsigned int transport_len
,
4091 __sum16(*skb_chkf
)(struct sk_buff
*skb
));
4094 * skb_head_is_locked - Determine if the skb->head is locked down
4095 * @skb: skb to check
4097 * The head on skbs build around a head frag can be removed if they are
4098 * not cloned. This function returns true if the skb head is locked down
4099 * due to either being allocated via kmalloc, or by being a clone with
4100 * multiple references to the head.
4102 static inline bool skb_head_is_locked(const struct sk_buff
*skb
)
4104 return !skb
->head_frag
|| skb_cloned(skb
);
4108 * skb_gso_network_seglen - Return length of individual segments of a gso packet
4112 * skb_gso_network_seglen is used to determine the real size of the
4113 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4115 * The MAC/L2 header is not accounted for.
4117 static inline unsigned int skb_gso_network_seglen(const struct sk_buff
*skb
)
4119 unsigned int hdr_len
= skb_transport_header(skb
) -
4120 skb_network_header(skb
);
4121 return hdr_len
+ skb_gso_transport_seglen(skb
);
4125 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
4129 * skb_gso_mac_seglen is used to determine the real size of the
4130 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
4131 * headers (TCP/UDP).
4133 static inline unsigned int skb_gso_mac_seglen(const struct sk_buff
*skb
)
4135 unsigned int hdr_len
= skb_transport_header(skb
) - skb_mac_header(skb
);
4136 return hdr_len
+ skb_gso_transport_seglen(skb
);
4139 /* Local Checksum Offload.
4140 * Compute outer checksum based on the assumption that the
4141 * inner checksum will be offloaded later.
4142 * See Documentation/networking/checksum-offloads.txt for
4143 * explanation of how this works.
4144 * Fill in outer checksum adjustment (e.g. with sum of outer
4145 * pseudo-header) before calling.
4146 * Also ensure that inner checksum is in linear data area.
4148 static inline __wsum
lco_csum(struct sk_buff
*skb
)
4150 unsigned char *csum_start
= skb_checksum_start(skb
);
4151 unsigned char *l4_hdr
= skb_transport_header(skb
);
4154 /* Start with complement of inner checksum adjustment */
4155 partial
= ~csum_unfold(*(__force __sum16
*)(csum_start
+
4158 /* Add in checksum of our headers (incl. outer checksum
4159 * adjustment filled in by caller) and return result.
4161 return csum_partial(l4_hdr
, csum_start
- l4_hdr
, partial
);
4164 #endif /* __KERNEL__ */
4165 #endif /* _LINUX_SKBUFF_H */