xtensa: fix high memory/reserved memory collision
[cris-mirror.git] / include / linux / usb.h
blob0173597e59aa55c6e6841c452ce772a4ed9cd1ed
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_USB_H
3 #define __LINUX_USB_H
5 #include <linux/mod_devicetable.h>
6 #include <linux/usb/ch9.h>
8 #define USB_MAJOR 180
9 #define USB_DEVICE_MAJOR 189
12 #ifdef __KERNEL__
14 #include <linux/errno.h> /* for -ENODEV */
15 #include <linux/delay.h> /* for mdelay() */
16 #include <linux/interrupt.h> /* for in_interrupt() */
17 #include <linux/list.h> /* for struct list_head */
18 #include <linux/kref.h> /* for struct kref */
19 #include <linux/device.h> /* for struct device */
20 #include <linux/fs.h> /* for struct file_operations */
21 #include <linux/completion.h> /* for struct completion */
22 #include <linux/sched.h> /* for current && schedule_timeout */
23 #include <linux/mutex.h> /* for struct mutex */
24 #include <linux/pm_runtime.h> /* for runtime PM */
26 struct usb_device;
27 struct usb_driver;
28 struct wusb_dev;
30 /*-------------------------------------------------------------------------*/
33 * Host-side wrappers for standard USB descriptors ... these are parsed
34 * from the data provided by devices. Parsing turns them from a flat
35 * sequence of descriptors into a hierarchy:
37 * - devices have one (usually) or more configs;
38 * - configs have one (often) or more interfaces;
39 * - interfaces have one (usually) or more settings;
40 * - each interface setting has zero or (usually) more endpoints.
41 * - a SuperSpeed endpoint has a companion descriptor
43 * And there might be other descriptors mixed in with those.
45 * Devices may also have class-specific or vendor-specific descriptors.
48 struct ep_device;
50 /**
51 * struct usb_host_endpoint - host-side endpoint descriptor and queue
52 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
53 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
54 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
55 * @urb_list: urbs queued to this endpoint; maintained by usbcore
56 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
57 * with one or more transfer descriptors (TDs) per urb
58 * @ep_dev: ep_device for sysfs info
59 * @extra: descriptors following this endpoint in the configuration
60 * @extralen: how many bytes of "extra" are valid
61 * @enabled: URBs may be submitted to this endpoint
62 * @streams: number of USB-3 streams allocated on the endpoint
64 * USB requests are always queued to a given endpoint, identified by a
65 * descriptor within an active interface in a given USB configuration.
67 struct usb_host_endpoint {
68 struct usb_endpoint_descriptor desc;
69 struct usb_ss_ep_comp_descriptor ss_ep_comp;
70 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp;
71 struct list_head urb_list;
72 void *hcpriv;
73 struct ep_device *ep_dev; /* For sysfs info */
75 unsigned char *extra; /* Extra descriptors */
76 int extralen;
77 int enabled;
78 int streams;
81 /* host-side wrapper for one interface setting's parsed descriptors */
82 struct usb_host_interface {
83 struct usb_interface_descriptor desc;
85 int extralen;
86 unsigned char *extra; /* Extra descriptors */
88 /* array of desc.bNumEndpoints endpoints associated with this
89 * interface setting. these will be in no particular order.
91 struct usb_host_endpoint *endpoint;
93 char *string; /* iInterface string, if present */
96 enum usb_interface_condition {
97 USB_INTERFACE_UNBOUND = 0,
98 USB_INTERFACE_BINDING,
99 USB_INTERFACE_BOUND,
100 USB_INTERFACE_UNBINDING,
103 int __must_check
104 usb_find_common_endpoints(struct usb_host_interface *alt,
105 struct usb_endpoint_descriptor **bulk_in,
106 struct usb_endpoint_descriptor **bulk_out,
107 struct usb_endpoint_descriptor **int_in,
108 struct usb_endpoint_descriptor **int_out);
110 int __must_check
111 usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
112 struct usb_endpoint_descriptor **bulk_in,
113 struct usb_endpoint_descriptor **bulk_out,
114 struct usb_endpoint_descriptor **int_in,
115 struct usb_endpoint_descriptor **int_out);
117 static inline int __must_check
118 usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
119 struct usb_endpoint_descriptor **bulk_in)
121 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
124 static inline int __must_check
125 usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
126 struct usb_endpoint_descriptor **bulk_out)
128 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
131 static inline int __must_check
132 usb_find_int_in_endpoint(struct usb_host_interface *alt,
133 struct usb_endpoint_descriptor **int_in)
135 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
138 static inline int __must_check
139 usb_find_int_out_endpoint(struct usb_host_interface *alt,
140 struct usb_endpoint_descriptor **int_out)
142 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
145 static inline int __must_check
146 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
147 struct usb_endpoint_descriptor **bulk_in)
149 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
152 static inline int __must_check
153 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
154 struct usb_endpoint_descriptor **bulk_out)
156 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
159 static inline int __must_check
160 usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
161 struct usb_endpoint_descriptor **int_in)
163 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
166 static inline int __must_check
167 usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
168 struct usb_endpoint_descriptor **int_out)
170 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
174 * struct usb_interface - what usb device drivers talk to
175 * @altsetting: array of interface structures, one for each alternate
176 * setting that may be selected. Each one includes a set of
177 * endpoint configurations. They will be in no particular order.
178 * @cur_altsetting: the current altsetting.
179 * @num_altsetting: number of altsettings defined.
180 * @intf_assoc: interface association descriptor
181 * @minor: the minor number assigned to this interface, if this
182 * interface is bound to a driver that uses the USB major number.
183 * If this interface does not use the USB major, this field should
184 * be unused. The driver should set this value in the probe()
185 * function of the driver, after it has been assigned a minor
186 * number from the USB core by calling usb_register_dev().
187 * @condition: binding state of the interface: not bound, binding
188 * (in probe()), bound to a driver, or unbinding (in disconnect())
189 * @sysfs_files_created: sysfs attributes exist
190 * @ep_devs_created: endpoint child pseudo-devices exist
191 * @unregistering: flag set when the interface is being unregistered
192 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
193 * capability during autosuspend.
194 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
195 * has been deferred.
196 * @needs_binding: flag set when the driver should be re-probed or unbound
197 * following a reset or suspend operation it doesn't support.
198 * @authorized: This allows to (de)authorize individual interfaces instead
199 * a whole device in contrast to the device authorization.
200 * @dev: driver model's view of this device
201 * @usb_dev: if an interface is bound to the USB major, this will point
202 * to the sysfs representation for that device.
203 * @pm_usage_cnt: PM usage counter for this interface
204 * @reset_ws: Used for scheduling resets from atomic context.
205 * @resetting_device: USB core reset the device, so use alt setting 0 as
206 * current; needs bandwidth alloc after reset.
208 * USB device drivers attach to interfaces on a physical device. Each
209 * interface encapsulates a single high level function, such as feeding
210 * an audio stream to a speaker or reporting a change in a volume control.
211 * Many USB devices only have one interface. The protocol used to talk to
212 * an interface's endpoints can be defined in a usb "class" specification,
213 * or by a product's vendor. The (default) control endpoint is part of
214 * every interface, but is never listed among the interface's descriptors.
216 * The driver that is bound to the interface can use standard driver model
217 * calls such as dev_get_drvdata() on the dev member of this structure.
219 * Each interface may have alternate settings. The initial configuration
220 * of a device sets altsetting 0, but the device driver can change
221 * that setting using usb_set_interface(). Alternate settings are often
222 * used to control the use of periodic endpoints, such as by having
223 * different endpoints use different amounts of reserved USB bandwidth.
224 * All standards-conformant USB devices that use isochronous endpoints
225 * will use them in non-default settings.
227 * The USB specification says that alternate setting numbers must run from
228 * 0 to one less than the total number of alternate settings. But some
229 * devices manage to mess this up, and the structures aren't necessarily
230 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
231 * look up an alternate setting in the altsetting array based on its number.
233 struct usb_interface {
234 /* array of alternate settings for this interface,
235 * stored in no particular order */
236 struct usb_host_interface *altsetting;
238 struct usb_host_interface *cur_altsetting; /* the currently
239 * active alternate setting */
240 unsigned num_altsetting; /* number of alternate settings */
242 /* If there is an interface association descriptor then it will list
243 * the associated interfaces */
244 struct usb_interface_assoc_descriptor *intf_assoc;
246 int minor; /* minor number this interface is
247 * bound to */
248 enum usb_interface_condition condition; /* state of binding */
249 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
250 unsigned ep_devs_created:1; /* endpoint "devices" exist */
251 unsigned unregistering:1; /* unregistration is in progress */
252 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
253 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
254 unsigned needs_binding:1; /* needs delayed unbind/rebind */
255 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
256 unsigned authorized:1; /* used for interface authorization */
258 struct device dev; /* interface specific device info */
259 struct device *usb_dev;
260 atomic_t pm_usage_cnt; /* usage counter for autosuspend */
261 struct work_struct reset_ws; /* for resets in atomic context */
263 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
265 static inline void *usb_get_intfdata(struct usb_interface *intf)
267 return dev_get_drvdata(&intf->dev);
270 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
272 dev_set_drvdata(&intf->dev, data);
275 struct usb_interface *usb_get_intf(struct usb_interface *intf);
276 void usb_put_intf(struct usb_interface *intf);
278 /* Hard limit */
279 #define USB_MAXENDPOINTS 30
280 /* this maximum is arbitrary */
281 #define USB_MAXINTERFACES 32
282 #define USB_MAXIADS (USB_MAXINTERFACES/2)
285 * USB Resume Timer: Every Host controller driver should drive the resume
286 * signalling on the bus for the amount of time defined by this macro.
288 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
290 * Note that the USB Specification states we should drive resume for *at least*
291 * 20 ms, but it doesn't give an upper bound. This creates two possible
292 * situations which we want to avoid:
294 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
295 * us to fail USB Electrical Tests, thus failing Certification
297 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
298 * and while we can argue that's against the USB Specification, we don't have
299 * control over which devices a certification laboratory will be using for
300 * certification. If CertLab uses a device which was tested against Windows and
301 * that happens to have relaxed resume signalling rules, we might fall into
302 * situations where we fail interoperability and electrical tests.
304 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
305 * should cope with both LPJ calibration errors and devices not following every
306 * detail of the USB Specification.
308 #define USB_RESUME_TIMEOUT 40 /* ms */
311 * struct usb_interface_cache - long-term representation of a device interface
312 * @num_altsetting: number of altsettings defined.
313 * @ref: reference counter.
314 * @altsetting: variable-length array of interface structures, one for
315 * each alternate setting that may be selected. Each one includes a
316 * set of endpoint configurations. They will be in no particular order.
318 * These structures persist for the lifetime of a usb_device, unlike
319 * struct usb_interface (which persists only as long as its configuration
320 * is installed). The altsetting arrays can be accessed through these
321 * structures at any time, permitting comparison of configurations and
322 * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
324 struct usb_interface_cache {
325 unsigned num_altsetting; /* number of alternate settings */
326 struct kref ref; /* reference counter */
328 /* variable-length array of alternate settings for this interface,
329 * stored in no particular order */
330 struct usb_host_interface altsetting[0];
332 #define ref_to_usb_interface_cache(r) \
333 container_of(r, struct usb_interface_cache, ref)
334 #define altsetting_to_usb_interface_cache(a) \
335 container_of(a, struct usb_interface_cache, altsetting[0])
338 * struct usb_host_config - representation of a device's configuration
339 * @desc: the device's configuration descriptor.
340 * @string: pointer to the cached version of the iConfiguration string, if
341 * present for this configuration.
342 * @intf_assoc: list of any interface association descriptors in this config
343 * @interface: array of pointers to usb_interface structures, one for each
344 * interface in the configuration. The number of interfaces is stored
345 * in desc.bNumInterfaces. These pointers are valid only while the
346 * the configuration is active.
347 * @intf_cache: array of pointers to usb_interface_cache structures, one
348 * for each interface in the configuration. These structures exist
349 * for the entire life of the device.
350 * @extra: pointer to buffer containing all extra descriptors associated
351 * with this configuration (those preceding the first interface
352 * descriptor).
353 * @extralen: length of the extra descriptors buffer.
355 * USB devices may have multiple configurations, but only one can be active
356 * at any time. Each encapsulates a different operational environment;
357 * for example, a dual-speed device would have separate configurations for
358 * full-speed and high-speed operation. The number of configurations
359 * available is stored in the device descriptor as bNumConfigurations.
361 * A configuration can contain multiple interfaces. Each corresponds to
362 * a different function of the USB device, and all are available whenever
363 * the configuration is active. The USB standard says that interfaces
364 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
365 * of devices get this wrong. In addition, the interface array is not
366 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
367 * look up an interface entry based on its number.
369 * Device drivers should not attempt to activate configurations. The choice
370 * of which configuration to install is a policy decision based on such
371 * considerations as available power, functionality provided, and the user's
372 * desires (expressed through userspace tools). However, drivers can call
373 * usb_reset_configuration() to reinitialize the current configuration and
374 * all its interfaces.
376 struct usb_host_config {
377 struct usb_config_descriptor desc;
379 char *string; /* iConfiguration string, if present */
381 /* List of any Interface Association Descriptors in this
382 * configuration. */
383 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
385 /* the interfaces associated with this configuration,
386 * stored in no particular order */
387 struct usb_interface *interface[USB_MAXINTERFACES];
389 /* Interface information available even when this is not the
390 * active configuration */
391 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
393 unsigned char *extra; /* Extra descriptors */
394 int extralen;
397 /* USB2.0 and USB3.0 device BOS descriptor set */
398 struct usb_host_bos {
399 struct usb_bos_descriptor *desc;
401 /* wireless cap descriptor is handled by wusb */
402 struct usb_ext_cap_descriptor *ext_cap;
403 struct usb_ss_cap_descriptor *ss_cap;
404 struct usb_ssp_cap_descriptor *ssp_cap;
405 struct usb_ss_container_id_descriptor *ss_id;
406 struct usb_ptm_cap_descriptor *ptm_cap;
409 int __usb_get_extra_descriptor(char *buffer, unsigned size,
410 unsigned char type, void **ptr);
411 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
412 __usb_get_extra_descriptor((ifpoint)->extra, \
413 (ifpoint)->extralen, \
414 type, (void **)ptr)
416 /* ----------------------------------------------------------------------- */
418 /* USB device number allocation bitmap */
419 struct usb_devmap {
420 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
424 * Allocated per bus (tree of devices) we have:
426 struct usb_bus {
427 struct device *controller; /* host/master side hardware */
428 struct device *sysdev; /* as seen from firmware or bus */
429 int busnum; /* Bus number (in order of reg) */
430 const char *bus_name; /* stable id (PCI slot_name etc) */
431 u8 uses_dma; /* Does the host controller use DMA? */
432 u8 uses_pio_for_control; /*
433 * Does the host controller use PIO
434 * for control transfers?
436 u8 otg_port; /* 0, or number of OTG/HNP port */
437 unsigned is_b_host:1; /* true during some HNP roleswitches */
438 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
439 unsigned no_stop_on_short:1; /*
440 * Quirk: some controllers don't stop
441 * the ep queue on a short transfer
442 * with the URB_SHORT_NOT_OK flag set.
444 unsigned no_sg_constraint:1; /* no sg constraint */
445 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
447 int devnum_next; /* Next open device number in
448 * round-robin allocation */
449 struct mutex devnum_next_mutex; /* devnum_next mutex */
451 struct usb_devmap devmap; /* device address allocation map */
452 struct usb_device *root_hub; /* Root hub */
453 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
455 int bandwidth_allocated; /* on this bus: how much of the time
456 * reserved for periodic (intr/iso)
457 * requests is used, on average?
458 * Units: microseconds/frame.
459 * Limits: Full/low speed reserve 90%,
460 * while high speed reserves 80%.
462 int bandwidth_int_reqs; /* number of Interrupt requests */
463 int bandwidth_isoc_reqs; /* number of Isoc. requests */
465 unsigned resuming_ports; /* bit array: resuming root-hub ports */
467 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
468 struct mon_bus *mon_bus; /* non-null when associated */
469 int monitored; /* non-zero when monitored */
470 #endif
473 struct usb_dev_state;
475 /* ----------------------------------------------------------------------- */
477 struct usb_tt;
479 enum usb_device_removable {
480 USB_DEVICE_REMOVABLE_UNKNOWN = 0,
481 USB_DEVICE_REMOVABLE,
482 USB_DEVICE_FIXED,
485 enum usb_port_connect_type {
486 USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
487 USB_PORT_CONNECT_TYPE_HOT_PLUG,
488 USB_PORT_CONNECT_TYPE_HARD_WIRED,
489 USB_PORT_NOT_USED,
493 * USB 2.0 Link Power Management (LPM) parameters.
495 struct usb2_lpm_parameters {
496 /* Best effort service latency indicate how long the host will drive
497 * resume on an exit from L1.
499 unsigned int besl;
501 /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
502 * When the timer counts to zero, the parent hub will initiate a LPM
503 * transition to L1.
505 int timeout;
509 * USB 3.0 Link Power Management (LPM) parameters.
511 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
512 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
513 * All three are stored in nanoseconds.
515 struct usb3_lpm_parameters {
517 * Maximum exit latency (MEL) for the host to send a packet to the
518 * device (either a Ping for isoc endpoints, or a data packet for
519 * interrupt endpoints), the hubs to decode the packet, and for all hubs
520 * in the path to transition the links to U0.
522 unsigned int mel;
524 * Maximum exit latency for a device-initiated LPM transition to bring
525 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
526 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
528 unsigned int pel;
531 * The System Exit Latency (SEL) includes PEL, and three other
532 * latencies. After a device initiates a U0 transition, it will take
533 * some time from when the device sends the ERDY to when it will finally
534 * receive the data packet. Basically, SEL should be the worse-case
535 * latency from when a device starts initiating a U0 transition to when
536 * it will get data.
538 unsigned int sel;
540 * The idle timeout value that is currently programmed into the parent
541 * hub for this device. When the timer counts to zero, the parent hub
542 * will initiate an LPM transition to either U1 or U2.
544 int timeout;
548 * struct usb_device - kernel's representation of a USB device
549 * @devnum: device number; address on a USB bus
550 * @devpath: device ID string for use in messages (e.g., /port/...)
551 * @route: tree topology hex string for use with xHCI
552 * @state: device state: configured, not attached, etc.
553 * @speed: device speed: high/full/low (or error)
554 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
555 * @ttport: device port on that tt hub
556 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
557 * @parent: our hub, unless we're the root
558 * @bus: bus we're part of
559 * @ep0: endpoint 0 data (default control pipe)
560 * @dev: generic device interface
561 * @descriptor: USB device descriptor
562 * @bos: USB device BOS descriptor set
563 * @config: all of the device's configs
564 * @actconfig: the active configuration
565 * @ep_in: array of IN endpoints
566 * @ep_out: array of OUT endpoints
567 * @rawdescriptors: raw descriptors for each config
568 * @bus_mA: Current available from the bus
569 * @portnum: parent port number (origin 1)
570 * @level: number of USB hub ancestors
571 * @can_submit: URBs may be submitted
572 * @persist_enabled: USB_PERSIST enabled for this device
573 * @have_langid: whether string_langid is valid
574 * @authorized: policy has said we can use it;
575 * (user space) policy determines if we authorize this device to be
576 * used or not. By default, wired USB devices are authorized.
577 * WUSB devices are not, until we authorize them from user space.
578 * FIXME -- complete doc
579 * @authenticated: Crypto authentication passed
580 * @wusb: device is Wireless USB
581 * @lpm_capable: device supports LPM
582 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
583 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
584 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
585 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
586 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
587 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
588 * @string_langid: language ID for strings
589 * @product: iProduct string, if present (static)
590 * @manufacturer: iManufacturer string, if present (static)
591 * @serial: iSerialNumber string, if present (static)
592 * @filelist: usbfs files that are open to this device
593 * @maxchild: number of ports if hub
594 * @quirks: quirks of the whole device
595 * @urbnum: number of URBs submitted for the whole device
596 * @active_duration: total time device is not suspended
597 * @connect_time: time device was first connected
598 * @do_remote_wakeup: remote wakeup should be enabled
599 * @reset_resume: needs reset instead of resume
600 * @port_is_suspended: the upstream port is suspended (L2 or U3)
601 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
602 * specific data for the device.
603 * @slot_id: Slot ID assigned by xHCI
604 * @removable: Device can be physically removed from this port
605 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
606 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
607 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
608 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
609 * to keep track of the number of functions that require USB 3.0 Link Power
610 * Management to be disabled for this usb_device. This count should only
611 * be manipulated by those functions, with the bandwidth_mutex is held.
612 * @hub_delay: cached value consisting of:
613 * parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
615 * Will be used as wValue for SetIsochDelay requests.
617 * Notes:
618 * Usbcore drivers should not set usbdev->state directly. Instead use
619 * usb_set_device_state().
621 struct usb_device {
622 int devnum;
623 char devpath[16];
624 u32 route;
625 enum usb_device_state state;
626 enum usb_device_speed speed;
628 struct usb_tt *tt;
629 int ttport;
631 unsigned int toggle[2];
633 struct usb_device *parent;
634 struct usb_bus *bus;
635 struct usb_host_endpoint ep0;
637 struct device dev;
639 struct usb_device_descriptor descriptor;
640 struct usb_host_bos *bos;
641 struct usb_host_config *config;
643 struct usb_host_config *actconfig;
644 struct usb_host_endpoint *ep_in[16];
645 struct usb_host_endpoint *ep_out[16];
647 char **rawdescriptors;
649 unsigned short bus_mA;
650 u8 portnum;
651 u8 level;
653 unsigned can_submit:1;
654 unsigned persist_enabled:1;
655 unsigned have_langid:1;
656 unsigned authorized:1;
657 unsigned authenticated:1;
658 unsigned wusb:1;
659 unsigned lpm_capable:1;
660 unsigned usb2_hw_lpm_capable:1;
661 unsigned usb2_hw_lpm_besl_capable:1;
662 unsigned usb2_hw_lpm_enabled:1;
663 unsigned usb2_hw_lpm_allowed:1;
664 unsigned usb3_lpm_u1_enabled:1;
665 unsigned usb3_lpm_u2_enabled:1;
666 int string_langid;
668 /* static strings from the device */
669 char *product;
670 char *manufacturer;
671 char *serial;
673 struct list_head filelist;
675 int maxchild;
677 u32 quirks;
678 atomic_t urbnum;
680 unsigned long active_duration;
682 #ifdef CONFIG_PM
683 unsigned long connect_time;
685 unsigned do_remote_wakeup:1;
686 unsigned reset_resume:1;
687 unsigned port_is_suspended:1;
688 #endif
689 struct wusb_dev *wusb_dev;
690 int slot_id;
691 enum usb_device_removable removable;
692 struct usb2_lpm_parameters l1_params;
693 struct usb3_lpm_parameters u1_params;
694 struct usb3_lpm_parameters u2_params;
695 unsigned lpm_disable_count;
697 u16 hub_delay;
699 #define to_usb_device(d) container_of(d, struct usb_device, dev)
701 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
703 return to_usb_device(intf->dev.parent);
706 extern struct usb_device *usb_get_dev(struct usb_device *dev);
707 extern void usb_put_dev(struct usb_device *dev);
708 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
709 int port1);
712 * usb_hub_for_each_child - iterate over all child devices on the hub
713 * @hdev: USB device belonging to the usb hub
714 * @port1: portnum associated with child device
715 * @child: child device pointer
717 #define usb_hub_for_each_child(hdev, port1, child) \
718 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
719 port1 <= hdev->maxchild; \
720 child = usb_hub_find_child(hdev, ++port1)) \
721 if (!child) continue; else
723 /* USB device locking */
724 #define usb_lock_device(udev) device_lock(&(udev)->dev)
725 #define usb_unlock_device(udev) device_unlock(&(udev)->dev)
726 #define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev)
727 #define usb_trylock_device(udev) device_trylock(&(udev)->dev)
728 extern int usb_lock_device_for_reset(struct usb_device *udev,
729 const struct usb_interface *iface);
731 /* USB port reset for device reinitialization */
732 extern int usb_reset_device(struct usb_device *dev);
733 extern void usb_queue_reset_device(struct usb_interface *dev);
735 #ifdef CONFIG_ACPI
736 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
737 bool enable);
738 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
739 #else
740 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
741 bool enable) { return 0; }
742 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
743 { return true; }
744 #endif
746 /* USB autosuspend and autoresume */
747 #ifdef CONFIG_PM
748 extern void usb_enable_autosuspend(struct usb_device *udev);
749 extern void usb_disable_autosuspend(struct usb_device *udev);
751 extern int usb_autopm_get_interface(struct usb_interface *intf);
752 extern void usb_autopm_put_interface(struct usb_interface *intf);
753 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
754 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
755 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
756 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
758 static inline void usb_mark_last_busy(struct usb_device *udev)
760 pm_runtime_mark_last_busy(&udev->dev);
763 #else
765 static inline int usb_enable_autosuspend(struct usb_device *udev)
766 { return 0; }
767 static inline int usb_disable_autosuspend(struct usb_device *udev)
768 { return 0; }
770 static inline int usb_autopm_get_interface(struct usb_interface *intf)
771 { return 0; }
772 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
773 { return 0; }
775 static inline void usb_autopm_put_interface(struct usb_interface *intf)
777 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
779 static inline void usb_autopm_get_interface_no_resume(
780 struct usb_interface *intf)
782 static inline void usb_autopm_put_interface_no_suspend(
783 struct usb_interface *intf)
785 static inline void usb_mark_last_busy(struct usb_device *udev)
787 #endif
789 extern int usb_disable_lpm(struct usb_device *udev);
790 extern void usb_enable_lpm(struct usb_device *udev);
791 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
792 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
793 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
795 extern int usb_disable_ltm(struct usb_device *udev);
796 extern void usb_enable_ltm(struct usb_device *udev);
798 static inline bool usb_device_supports_ltm(struct usb_device *udev)
800 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
801 return false;
802 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
805 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
807 return udev && udev->bus && udev->bus->no_sg_constraint;
811 /*-------------------------------------------------------------------------*/
813 /* for drivers using iso endpoints */
814 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
816 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
817 extern int usb_alloc_streams(struct usb_interface *interface,
818 struct usb_host_endpoint **eps, unsigned int num_eps,
819 unsigned int num_streams, gfp_t mem_flags);
821 /* Reverts a group of bulk endpoints back to not using stream IDs. */
822 extern int usb_free_streams(struct usb_interface *interface,
823 struct usb_host_endpoint **eps, unsigned int num_eps,
824 gfp_t mem_flags);
826 /* used these for multi-interface device registration */
827 extern int usb_driver_claim_interface(struct usb_driver *driver,
828 struct usb_interface *iface, void *priv);
831 * usb_interface_claimed - returns true iff an interface is claimed
832 * @iface: the interface being checked
834 * Return: %true (nonzero) iff the interface is claimed, else %false
835 * (zero).
837 * Note:
838 * Callers must own the driver model's usb bus readlock. So driver
839 * probe() entries don't need extra locking, but other call contexts
840 * may need to explicitly claim that lock.
843 static inline int usb_interface_claimed(struct usb_interface *iface)
845 return (iface->dev.driver != NULL);
848 extern void usb_driver_release_interface(struct usb_driver *driver,
849 struct usb_interface *iface);
850 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
851 const struct usb_device_id *id);
852 extern int usb_match_one_id(struct usb_interface *interface,
853 const struct usb_device_id *id);
855 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
856 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
857 int minor);
858 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
859 unsigned ifnum);
860 extern struct usb_host_interface *usb_altnum_to_altsetting(
861 const struct usb_interface *intf, unsigned int altnum);
862 extern struct usb_host_interface *usb_find_alt_setting(
863 struct usb_host_config *config,
864 unsigned int iface_num,
865 unsigned int alt_num);
867 /* port claiming functions */
868 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
869 struct usb_dev_state *owner);
870 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
871 struct usb_dev_state *owner);
874 * usb_make_path - returns stable device path in the usb tree
875 * @dev: the device whose path is being constructed
876 * @buf: where to put the string
877 * @size: how big is "buf"?
879 * Return: Length of the string (> 0) or negative if size was too small.
881 * Note:
882 * This identifier is intended to be "stable", reflecting physical paths in
883 * hardware such as physical bus addresses for host controllers or ports on
884 * USB hubs. That makes it stay the same until systems are physically
885 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
886 * controllers. Adding and removing devices, including virtual root hubs
887 * in host controller driver modules, does not change these path identifiers;
888 * neither does rebooting or re-enumerating. These are more useful identifiers
889 * than changeable ("unstable") ones like bus numbers or device addresses.
891 * With a partial exception for devices connected to USB 2.0 root hubs, these
892 * identifiers are also predictable. So long as the device tree isn't changed,
893 * plugging any USB device into a given hub port always gives it the same path.
894 * Because of the use of "companion" controllers, devices connected to ports on
895 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
896 * high speed, and a different one if they are full or low speed.
898 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
900 int actual;
901 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
902 dev->devpath);
903 return (actual >= (int)size) ? -1 : actual;
906 /*-------------------------------------------------------------------------*/
908 #define USB_DEVICE_ID_MATCH_DEVICE \
909 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
910 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
911 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
912 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
913 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
914 #define USB_DEVICE_ID_MATCH_DEV_INFO \
915 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
916 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
917 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
918 #define USB_DEVICE_ID_MATCH_INT_INFO \
919 (USB_DEVICE_ID_MATCH_INT_CLASS | \
920 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
921 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
924 * USB_DEVICE - macro used to describe a specific usb device
925 * @vend: the 16 bit USB Vendor ID
926 * @prod: the 16 bit USB Product ID
928 * This macro is used to create a struct usb_device_id that matches a
929 * specific device.
931 #define USB_DEVICE(vend, prod) \
932 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
933 .idVendor = (vend), \
934 .idProduct = (prod)
936 * USB_DEVICE_VER - describe a specific usb device with a version range
937 * @vend: the 16 bit USB Vendor ID
938 * @prod: the 16 bit USB Product ID
939 * @lo: the bcdDevice_lo value
940 * @hi: the bcdDevice_hi value
942 * This macro is used to create a struct usb_device_id that matches a
943 * specific device, with a version range.
945 #define USB_DEVICE_VER(vend, prod, lo, hi) \
946 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
947 .idVendor = (vend), \
948 .idProduct = (prod), \
949 .bcdDevice_lo = (lo), \
950 .bcdDevice_hi = (hi)
953 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
954 * @vend: the 16 bit USB Vendor ID
955 * @prod: the 16 bit USB Product ID
956 * @cl: bInterfaceClass value
958 * This macro is used to create a struct usb_device_id that matches a
959 * specific interface class of devices.
961 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
962 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
963 USB_DEVICE_ID_MATCH_INT_CLASS, \
964 .idVendor = (vend), \
965 .idProduct = (prod), \
966 .bInterfaceClass = (cl)
969 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
970 * @vend: the 16 bit USB Vendor ID
971 * @prod: the 16 bit USB Product ID
972 * @pr: bInterfaceProtocol value
974 * This macro is used to create a struct usb_device_id that matches a
975 * specific interface protocol of devices.
977 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
978 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
979 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
980 .idVendor = (vend), \
981 .idProduct = (prod), \
982 .bInterfaceProtocol = (pr)
985 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
986 * @vend: the 16 bit USB Vendor ID
987 * @prod: the 16 bit USB Product ID
988 * @num: bInterfaceNumber value
990 * This macro is used to create a struct usb_device_id that matches a
991 * specific interface number of devices.
993 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
994 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
995 USB_DEVICE_ID_MATCH_INT_NUMBER, \
996 .idVendor = (vend), \
997 .idProduct = (prod), \
998 .bInterfaceNumber = (num)
1001 * USB_DEVICE_INFO - macro used to describe a class of usb devices
1002 * @cl: bDeviceClass value
1003 * @sc: bDeviceSubClass value
1004 * @pr: bDeviceProtocol value
1006 * This macro is used to create a struct usb_device_id that matches a
1007 * specific class of devices.
1009 #define USB_DEVICE_INFO(cl, sc, pr) \
1010 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1011 .bDeviceClass = (cl), \
1012 .bDeviceSubClass = (sc), \
1013 .bDeviceProtocol = (pr)
1016 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1017 * @cl: bInterfaceClass value
1018 * @sc: bInterfaceSubClass value
1019 * @pr: bInterfaceProtocol value
1021 * This macro is used to create a struct usb_device_id that matches a
1022 * specific class of interfaces.
1024 #define USB_INTERFACE_INFO(cl, sc, pr) \
1025 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1026 .bInterfaceClass = (cl), \
1027 .bInterfaceSubClass = (sc), \
1028 .bInterfaceProtocol = (pr)
1031 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1032 * @vend: the 16 bit USB Vendor ID
1033 * @prod: the 16 bit USB Product ID
1034 * @cl: bInterfaceClass value
1035 * @sc: bInterfaceSubClass value
1036 * @pr: bInterfaceProtocol value
1038 * This macro is used to create a struct usb_device_id that matches a
1039 * specific device with a specific class of interfaces.
1041 * This is especially useful when explicitly matching devices that have
1042 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1044 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1045 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1046 | USB_DEVICE_ID_MATCH_DEVICE, \
1047 .idVendor = (vend), \
1048 .idProduct = (prod), \
1049 .bInterfaceClass = (cl), \
1050 .bInterfaceSubClass = (sc), \
1051 .bInterfaceProtocol = (pr)
1054 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1055 * @vend: the 16 bit USB Vendor ID
1056 * @cl: bInterfaceClass value
1057 * @sc: bInterfaceSubClass value
1058 * @pr: bInterfaceProtocol value
1060 * This macro is used to create a struct usb_device_id that matches a
1061 * specific vendor with a specific class of interfaces.
1063 * This is especially useful when explicitly matching devices that have
1064 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1066 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1067 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1068 | USB_DEVICE_ID_MATCH_VENDOR, \
1069 .idVendor = (vend), \
1070 .bInterfaceClass = (cl), \
1071 .bInterfaceSubClass = (sc), \
1072 .bInterfaceProtocol = (pr)
1074 /* ----------------------------------------------------------------------- */
1076 /* Stuff for dynamic usb ids */
1077 struct usb_dynids {
1078 spinlock_t lock;
1079 struct list_head list;
1082 struct usb_dynid {
1083 struct list_head node;
1084 struct usb_device_id id;
1087 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1088 const struct usb_device_id *id_table,
1089 struct device_driver *driver,
1090 const char *buf, size_t count);
1092 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1095 * struct usbdrv_wrap - wrapper for driver-model structure
1096 * @driver: The driver-model core driver structure.
1097 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1099 struct usbdrv_wrap {
1100 struct device_driver driver;
1101 int for_devices;
1105 * struct usb_driver - identifies USB interface driver to usbcore
1106 * @name: The driver name should be unique among USB drivers,
1107 * and should normally be the same as the module name.
1108 * @probe: Called to see if the driver is willing to manage a particular
1109 * interface on a device. If it is, probe returns zero and uses
1110 * usb_set_intfdata() to associate driver-specific data with the
1111 * interface. It may also use usb_set_interface() to specify the
1112 * appropriate altsetting. If unwilling to manage the interface,
1113 * return -ENODEV, if genuine IO errors occurred, an appropriate
1114 * negative errno value.
1115 * @disconnect: Called when the interface is no longer accessible, usually
1116 * because its device has been (or is being) disconnected or the
1117 * driver module is being unloaded.
1118 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1119 * the "usbfs" filesystem. This lets devices provide ways to
1120 * expose information to user space regardless of where they
1121 * do (or don't) show up otherwise in the filesystem.
1122 * @suspend: Called when the device is going to be suspended by the
1123 * system either from system sleep or runtime suspend context. The
1124 * return value will be ignored in system sleep context, so do NOT
1125 * try to continue using the device if suspend fails in this case.
1126 * Instead, let the resume or reset-resume routine recover from
1127 * the failure.
1128 * @resume: Called when the device is being resumed by the system.
1129 * @reset_resume: Called when the suspended device has been reset instead
1130 * of being resumed.
1131 * @pre_reset: Called by usb_reset_device() when the device is about to be
1132 * reset. This routine must not return until the driver has no active
1133 * URBs for the device, and no more URBs may be submitted until the
1134 * post_reset method is called.
1135 * @post_reset: Called by usb_reset_device() after the device
1136 * has been reset
1137 * @id_table: USB drivers use ID table to support hotplugging.
1138 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
1139 * or your driver's probe function will never get called.
1140 * @dynids: used internally to hold the list of dynamically added device
1141 * ids for this driver.
1142 * @drvwrap: Driver-model core structure wrapper.
1143 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1144 * added to this driver by preventing the sysfs file from being created.
1145 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1146 * for interfaces bound to this driver.
1147 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1148 * endpoints before calling the driver's disconnect method.
1149 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1150 * to initiate lower power link state transitions when an idle timeout
1151 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
1153 * USB interface drivers must provide a name, probe() and disconnect()
1154 * methods, and an id_table. Other driver fields are optional.
1156 * The id_table is used in hotplugging. It holds a set of descriptors,
1157 * and specialized data may be associated with each entry. That table
1158 * is used by both user and kernel mode hotplugging support.
1160 * The probe() and disconnect() methods are called in a context where
1161 * they can sleep, but they should avoid abusing the privilege. Most
1162 * work to connect to a device should be done when the device is opened,
1163 * and undone at the last close. The disconnect code needs to address
1164 * concurrency issues with respect to open() and close() methods, as
1165 * well as forcing all pending I/O requests to complete (by unlinking
1166 * them as necessary, and blocking until the unlinks complete).
1168 struct usb_driver {
1169 const char *name;
1171 int (*probe) (struct usb_interface *intf,
1172 const struct usb_device_id *id);
1174 void (*disconnect) (struct usb_interface *intf);
1176 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1177 void *buf);
1179 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1180 int (*resume) (struct usb_interface *intf);
1181 int (*reset_resume)(struct usb_interface *intf);
1183 int (*pre_reset)(struct usb_interface *intf);
1184 int (*post_reset)(struct usb_interface *intf);
1186 const struct usb_device_id *id_table;
1188 struct usb_dynids dynids;
1189 struct usbdrv_wrap drvwrap;
1190 unsigned int no_dynamic_id:1;
1191 unsigned int supports_autosuspend:1;
1192 unsigned int disable_hub_initiated_lpm:1;
1193 unsigned int soft_unbind:1;
1195 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1198 * struct usb_device_driver - identifies USB device driver to usbcore
1199 * @name: The driver name should be unique among USB drivers,
1200 * and should normally be the same as the module name.
1201 * @probe: Called to see if the driver is willing to manage a particular
1202 * device. If it is, probe returns zero and uses dev_set_drvdata()
1203 * to associate driver-specific data with the device. If unwilling
1204 * to manage the device, return a negative errno value.
1205 * @disconnect: Called when the device is no longer accessible, usually
1206 * because it has been (or is being) disconnected or the driver's
1207 * module is being unloaded.
1208 * @suspend: Called when the device is going to be suspended by the system.
1209 * @resume: Called when the device is being resumed by the system.
1210 * @drvwrap: Driver-model core structure wrapper.
1211 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1212 * for devices bound to this driver.
1214 * USB drivers must provide all the fields listed above except drvwrap.
1216 struct usb_device_driver {
1217 const char *name;
1219 int (*probe) (struct usb_device *udev);
1220 void (*disconnect) (struct usb_device *udev);
1222 int (*suspend) (struct usb_device *udev, pm_message_t message);
1223 int (*resume) (struct usb_device *udev, pm_message_t message);
1224 struct usbdrv_wrap drvwrap;
1225 unsigned int supports_autosuspend:1;
1227 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1228 drvwrap.driver)
1230 extern struct bus_type usb_bus_type;
1233 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1234 * @name: the usb class device name for this driver. Will show up in sysfs.
1235 * @devnode: Callback to provide a naming hint for a possible
1236 * device node to create.
1237 * @fops: pointer to the struct file_operations of this driver.
1238 * @minor_base: the start of the minor range for this driver.
1240 * This structure is used for the usb_register_dev() and
1241 * usb_deregister_dev() functions, to consolidate a number of the
1242 * parameters used for them.
1244 struct usb_class_driver {
1245 char *name;
1246 char *(*devnode)(struct device *dev, umode_t *mode);
1247 const struct file_operations *fops;
1248 int minor_base;
1252 * use these in module_init()/module_exit()
1253 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1255 extern int usb_register_driver(struct usb_driver *, struct module *,
1256 const char *);
1258 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1259 #define usb_register(driver) \
1260 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1262 extern void usb_deregister(struct usb_driver *);
1265 * module_usb_driver() - Helper macro for registering a USB driver
1266 * @__usb_driver: usb_driver struct
1268 * Helper macro for USB drivers which do not do anything special in module
1269 * init/exit. This eliminates a lot of boilerplate. Each module may only
1270 * use this macro once, and calling it replaces module_init() and module_exit()
1272 #define module_usb_driver(__usb_driver) \
1273 module_driver(__usb_driver, usb_register, \
1274 usb_deregister)
1276 extern int usb_register_device_driver(struct usb_device_driver *,
1277 struct module *);
1278 extern void usb_deregister_device_driver(struct usb_device_driver *);
1280 extern int usb_register_dev(struct usb_interface *intf,
1281 struct usb_class_driver *class_driver);
1282 extern void usb_deregister_dev(struct usb_interface *intf,
1283 struct usb_class_driver *class_driver);
1285 extern int usb_disabled(void);
1287 /* ----------------------------------------------------------------------- */
1290 * URB support, for asynchronous request completions
1294 * urb->transfer_flags:
1296 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1298 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1299 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired
1300 * slot in the schedule */
1301 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1302 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1303 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1304 * needed */
1305 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1307 /* The following flags are used internally by usbcore and HCDs */
1308 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1309 #define URB_DIR_OUT 0
1310 #define URB_DIR_MASK URB_DIR_IN
1312 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1313 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1314 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1315 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1316 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1317 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1318 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1319 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1321 struct usb_iso_packet_descriptor {
1322 unsigned int offset;
1323 unsigned int length; /* expected length */
1324 unsigned int actual_length;
1325 int status;
1328 struct urb;
1330 struct usb_anchor {
1331 struct list_head urb_list;
1332 wait_queue_head_t wait;
1333 spinlock_t lock;
1334 atomic_t suspend_wakeups;
1335 unsigned int poisoned:1;
1338 static inline void init_usb_anchor(struct usb_anchor *anchor)
1340 memset(anchor, 0, sizeof(*anchor));
1341 INIT_LIST_HEAD(&anchor->urb_list);
1342 init_waitqueue_head(&anchor->wait);
1343 spin_lock_init(&anchor->lock);
1346 typedef void (*usb_complete_t)(struct urb *);
1349 * struct urb - USB Request Block
1350 * @urb_list: For use by current owner of the URB.
1351 * @anchor_list: membership in the list of an anchor
1352 * @anchor: to anchor URBs to a common mooring
1353 * @ep: Points to the endpoint's data structure. Will eventually
1354 * replace @pipe.
1355 * @pipe: Holds endpoint number, direction, type, and more.
1356 * Create these values with the eight macros available;
1357 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1358 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1359 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1360 * numbers range from zero to fifteen. Note that "in" endpoint two
1361 * is a different endpoint (and pipe) from "out" endpoint two.
1362 * The current configuration controls the existence, type, and
1363 * maximum packet size of any given endpoint.
1364 * @stream_id: the endpoint's stream ID for bulk streams
1365 * @dev: Identifies the USB device to perform the request.
1366 * @status: This is read in non-iso completion functions to get the
1367 * status of the particular request. ISO requests only use it
1368 * to tell whether the URB was unlinked; detailed status for
1369 * each frame is in the fields of the iso_frame-desc.
1370 * @transfer_flags: A variety of flags may be used to affect how URB
1371 * submission, unlinking, or operation are handled. Different
1372 * kinds of URB can use different flags.
1373 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1374 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1375 * (however, do not leave garbage in transfer_buffer even then).
1376 * This buffer must be suitable for DMA; allocate it with
1377 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1378 * of this buffer will be modified. This buffer is used for the data
1379 * stage of control transfers.
1380 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1381 * the device driver is saying that it provided this DMA address,
1382 * which the host controller driver should use in preference to the
1383 * transfer_buffer.
1384 * @sg: scatter gather buffer list, the buffer size of each element in
1385 * the list (except the last) must be divisible by the endpoint's
1386 * max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1387 * @num_mapped_sgs: (internal) number of mapped sg entries
1388 * @num_sgs: number of entries in the sg list
1389 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1390 * be broken up into chunks according to the current maximum packet
1391 * size for the endpoint, which is a function of the configuration
1392 * and is encoded in the pipe. When the length is zero, neither
1393 * transfer_buffer nor transfer_dma is used.
1394 * @actual_length: This is read in non-iso completion functions, and
1395 * it tells how many bytes (out of transfer_buffer_length) were
1396 * transferred. It will normally be the same as requested, unless
1397 * either an error was reported or a short read was performed.
1398 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1399 * short reads be reported as errors.
1400 * @setup_packet: Only used for control transfers, this points to eight bytes
1401 * of setup data. Control transfers always start by sending this data
1402 * to the device. Then transfer_buffer is read or written, if needed.
1403 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1404 * this field; setup_packet must point to a valid buffer.
1405 * @start_frame: Returns the initial frame for isochronous transfers.
1406 * @number_of_packets: Lists the number of ISO transfer buffers.
1407 * @interval: Specifies the polling interval for interrupt or isochronous
1408 * transfers. The units are frames (milliseconds) for full and low
1409 * speed devices, and microframes (1/8 millisecond) for highspeed
1410 * and SuperSpeed devices.
1411 * @error_count: Returns the number of ISO transfers that reported errors.
1412 * @context: For use in completion functions. This normally points to
1413 * request-specific driver context.
1414 * @complete: Completion handler. This URB is passed as the parameter to the
1415 * completion function. The completion function may then do what
1416 * it likes with the URB, including resubmitting or freeing it.
1417 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1418 * collect the transfer status for each buffer.
1420 * This structure identifies USB transfer requests. URBs must be allocated by
1421 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1422 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1423 * are submitted using usb_submit_urb(), and pending requests may be canceled
1424 * using usb_unlink_urb() or usb_kill_urb().
1426 * Data Transfer Buffers:
1428 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1429 * taken from the general page pool. That is provided by transfer_buffer
1430 * (control requests also use setup_packet), and host controller drivers
1431 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1432 * mapping operations can be expensive on some platforms (perhaps using a dma
1433 * bounce buffer or talking to an IOMMU),
1434 * although they're cheap on commodity x86 and ppc hardware.
1436 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1437 * which tells the host controller driver that no such mapping is needed for
1438 * the transfer_buffer since
1439 * the device driver is DMA-aware. For example, a device driver might
1440 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1441 * When this transfer flag is provided, host controller drivers will
1442 * attempt to use the dma address found in the transfer_dma
1443 * field rather than determining a dma address themselves.
1445 * Note that transfer_buffer must still be set if the controller
1446 * does not support DMA (as indicated by bus.uses_dma) and when talking
1447 * to root hub. If you have to trasfer between highmem zone and the device
1448 * on such controller, create a bounce buffer or bail out with an error.
1449 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1450 * capable, assign NULL to it, so that usbmon knows not to use the value.
1451 * The setup_packet must always be set, so it cannot be located in highmem.
1453 * Initialization:
1455 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1456 * zero), and complete fields. All URBs must also initialize
1457 * transfer_buffer and transfer_buffer_length. They may provide the
1458 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1459 * to be treated as errors; that flag is invalid for write requests.
1461 * Bulk URBs may
1462 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1463 * should always terminate with a short packet, even if it means adding an
1464 * extra zero length packet.
1466 * Control URBs must provide a valid pointer in the setup_packet field.
1467 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1468 * beforehand.
1470 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1471 * or, for highspeed devices, 125 microsecond units)
1472 * to poll for transfers. After the URB has been submitted, the interval
1473 * field reflects how the transfer was actually scheduled.
1474 * The polling interval may be more frequent than requested.
1475 * For example, some controllers have a maximum interval of 32 milliseconds,
1476 * while others support intervals of up to 1024 milliseconds.
1477 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1478 * endpoints, as well as high speed interrupt endpoints, the encoding of
1479 * the transfer interval in the endpoint descriptor is logarithmic.
1480 * Device drivers must convert that value to linear units themselves.)
1482 * If an isochronous endpoint queue isn't already running, the host
1483 * controller will schedule a new URB to start as soon as bandwidth
1484 * utilization allows. If the queue is running then a new URB will be
1485 * scheduled to start in the first transfer slot following the end of the
1486 * preceding URB, if that slot has not already expired. If the slot has
1487 * expired (which can happen when IRQ delivery is delayed for a long time),
1488 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag
1489 * is clear then the URB will be scheduled to start in the expired slot,
1490 * implying that some of its packets will not be transferred; if the flag
1491 * is set then the URB will be scheduled in the first unexpired slot,
1492 * breaking the queue's synchronization. Upon URB completion, the
1493 * start_frame field will be set to the (micro)frame number in which the
1494 * transfer was scheduled. Ranges for frame counter values are HC-specific
1495 * and can go from as low as 256 to as high as 65536 frames.
1497 * Isochronous URBs have a different data transfer model, in part because
1498 * the quality of service is only "best effort". Callers provide specially
1499 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1500 * at the end. Each such packet is an individual ISO transfer. Isochronous
1501 * URBs are normally queued, submitted by drivers to arrange that
1502 * transfers are at least double buffered, and then explicitly resubmitted
1503 * in completion handlers, so
1504 * that data (such as audio or video) streams at as constant a rate as the
1505 * host controller scheduler can support.
1507 * Completion Callbacks:
1509 * The completion callback is made in_interrupt(), and one of the first
1510 * things that a completion handler should do is check the status field.
1511 * The status field is provided for all URBs. It is used to report
1512 * unlinked URBs, and status for all non-ISO transfers. It should not
1513 * be examined before the URB is returned to the completion handler.
1515 * The context field is normally used to link URBs back to the relevant
1516 * driver or request state.
1518 * When the completion callback is invoked for non-isochronous URBs, the
1519 * actual_length field tells how many bytes were transferred. This field
1520 * is updated even when the URB terminated with an error or was unlinked.
1522 * ISO transfer status is reported in the status and actual_length fields
1523 * of the iso_frame_desc array, and the number of errors is reported in
1524 * error_count. Completion callbacks for ISO transfers will normally
1525 * (re)submit URBs to ensure a constant transfer rate.
1527 * Note that even fields marked "public" should not be touched by the driver
1528 * when the urb is owned by the hcd, that is, since the call to
1529 * usb_submit_urb() till the entry into the completion routine.
1531 struct urb {
1532 /* private: usb core and host controller only fields in the urb */
1533 struct kref kref; /* reference count of the URB */
1534 void *hcpriv; /* private data for host controller */
1535 atomic_t use_count; /* concurrent submissions counter */
1536 atomic_t reject; /* submissions will fail */
1537 int unlinked; /* unlink error code */
1539 /* public: documented fields in the urb that can be used by drivers */
1540 struct list_head urb_list; /* list head for use by the urb's
1541 * current owner */
1542 struct list_head anchor_list; /* the URB may be anchored */
1543 struct usb_anchor *anchor;
1544 struct usb_device *dev; /* (in) pointer to associated device */
1545 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1546 unsigned int pipe; /* (in) pipe information */
1547 unsigned int stream_id; /* (in) stream ID */
1548 int status; /* (return) non-ISO status */
1549 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1550 void *transfer_buffer; /* (in) associated data buffer */
1551 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1552 struct scatterlist *sg; /* (in) scatter gather buffer list */
1553 int num_mapped_sgs; /* (internal) mapped sg entries */
1554 int num_sgs; /* (in) number of entries in the sg list */
1555 u32 transfer_buffer_length; /* (in) data buffer length */
1556 u32 actual_length; /* (return) actual transfer length */
1557 unsigned char *setup_packet; /* (in) setup packet (control only) */
1558 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1559 int start_frame; /* (modify) start frame (ISO) */
1560 int number_of_packets; /* (in) number of ISO packets */
1561 int interval; /* (modify) transfer interval
1562 * (INT/ISO) */
1563 int error_count; /* (return) number of ISO errors */
1564 void *context; /* (in) context for completion */
1565 usb_complete_t complete; /* (in) completion routine */
1566 struct usb_iso_packet_descriptor iso_frame_desc[0];
1567 /* (in) ISO ONLY */
1570 /* ----------------------------------------------------------------------- */
1573 * usb_fill_control_urb - initializes a control urb
1574 * @urb: pointer to the urb to initialize.
1575 * @dev: pointer to the struct usb_device for this urb.
1576 * @pipe: the endpoint pipe
1577 * @setup_packet: pointer to the setup_packet buffer
1578 * @transfer_buffer: pointer to the transfer buffer
1579 * @buffer_length: length of the transfer buffer
1580 * @complete_fn: pointer to the usb_complete_t function
1581 * @context: what to set the urb context to.
1583 * Initializes a control urb with the proper information needed to submit
1584 * it to a device.
1586 static inline void usb_fill_control_urb(struct urb *urb,
1587 struct usb_device *dev,
1588 unsigned int pipe,
1589 unsigned char *setup_packet,
1590 void *transfer_buffer,
1591 int buffer_length,
1592 usb_complete_t complete_fn,
1593 void *context)
1595 urb->dev = dev;
1596 urb->pipe = pipe;
1597 urb->setup_packet = setup_packet;
1598 urb->transfer_buffer = transfer_buffer;
1599 urb->transfer_buffer_length = buffer_length;
1600 urb->complete = complete_fn;
1601 urb->context = context;
1605 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1606 * @urb: pointer to the urb to initialize.
1607 * @dev: pointer to the struct usb_device for this urb.
1608 * @pipe: the endpoint pipe
1609 * @transfer_buffer: pointer to the transfer buffer
1610 * @buffer_length: length of the transfer buffer
1611 * @complete_fn: pointer to the usb_complete_t function
1612 * @context: what to set the urb context to.
1614 * Initializes a bulk urb with the proper information needed to submit it
1615 * to a device.
1617 static inline void usb_fill_bulk_urb(struct urb *urb,
1618 struct usb_device *dev,
1619 unsigned int pipe,
1620 void *transfer_buffer,
1621 int buffer_length,
1622 usb_complete_t complete_fn,
1623 void *context)
1625 urb->dev = dev;
1626 urb->pipe = pipe;
1627 urb->transfer_buffer = transfer_buffer;
1628 urb->transfer_buffer_length = buffer_length;
1629 urb->complete = complete_fn;
1630 urb->context = context;
1634 * usb_fill_int_urb - macro to help initialize a interrupt urb
1635 * @urb: pointer to the urb to initialize.
1636 * @dev: pointer to the struct usb_device for this urb.
1637 * @pipe: the endpoint pipe
1638 * @transfer_buffer: pointer to the transfer buffer
1639 * @buffer_length: length of the transfer buffer
1640 * @complete_fn: pointer to the usb_complete_t function
1641 * @context: what to set the urb context to.
1642 * @interval: what to set the urb interval to, encoded like
1643 * the endpoint descriptor's bInterval value.
1645 * Initializes a interrupt urb with the proper information needed to submit
1646 * it to a device.
1648 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1649 * encoding of the endpoint interval, and express polling intervals in
1650 * microframes (eight per millisecond) rather than in frames (one per
1651 * millisecond).
1653 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1654 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1655 * through to the host controller, rather than being translated into microframe
1656 * units.
1658 static inline void usb_fill_int_urb(struct urb *urb,
1659 struct usb_device *dev,
1660 unsigned int pipe,
1661 void *transfer_buffer,
1662 int buffer_length,
1663 usb_complete_t complete_fn,
1664 void *context,
1665 int interval)
1667 urb->dev = dev;
1668 urb->pipe = pipe;
1669 urb->transfer_buffer = transfer_buffer;
1670 urb->transfer_buffer_length = buffer_length;
1671 urb->complete = complete_fn;
1672 urb->context = context;
1674 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1675 /* make sure interval is within allowed range */
1676 interval = clamp(interval, 1, 16);
1678 urb->interval = 1 << (interval - 1);
1679 } else {
1680 urb->interval = interval;
1683 urb->start_frame = -1;
1686 extern void usb_init_urb(struct urb *urb);
1687 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1688 extern void usb_free_urb(struct urb *urb);
1689 #define usb_put_urb usb_free_urb
1690 extern struct urb *usb_get_urb(struct urb *urb);
1691 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1692 extern int usb_unlink_urb(struct urb *urb);
1693 extern void usb_kill_urb(struct urb *urb);
1694 extern void usb_poison_urb(struct urb *urb);
1695 extern void usb_unpoison_urb(struct urb *urb);
1696 extern void usb_block_urb(struct urb *urb);
1697 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1698 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1699 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1700 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1701 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1702 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1703 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1704 extern void usb_unanchor_urb(struct urb *urb);
1705 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1706 unsigned int timeout);
1707 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1708 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1709 extern int usb_anchor_empty(struct usb_anchor *anchor);
1711 #define usb_unblock_urb usb_unpoison_urb
1714 * usb_urb_dir_in - check if an URB describes an IN transfer
1715 * @urb: URB to be checked
1717 * Return: 1 if @urb describes an IN transfer (device-to-host),
1718 * otherwise 0.
1720 static inline int usb_urb_dir_in(struct urb *urb)
1722 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1726 * usb_urb_dir_out - check if an URB describes an OUT transfer
1727 * @urb: URB to be checked
1729 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1730 * otherwise 0.
1732 static inline int usb_urb_dir_out(struct urb *urb)
1734 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1737 int usb_urb_ep_type_check(const struct urb *urb);
1739 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1740 gfp_t mem_flags, dma_addr_t *dma);
1741 void usb_free_coherent(struct usb_device *dev, size_t size,
1742 void *addr, dma_addr_t dma);
1744 #if 0
1745 struct urb *usb_buffer_map(struct urb *urb);
1746 void usb_buffer_dmasync(struct urb *urb);
1747 void usb_buffer_unmap(struct urb *urb);
1748 #endif
1750 struct scatterlist;
1751 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1752 struct scatterlist *sg, int nents);
1753 #if 0
1754 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1755 struct scatterlist *sg, int n_hw_ents);
1756 #endif
1757 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1758 struct scatterlist *sg, int n_hw_ents);
1760 /*-------------------------------------------------------------------*
1761 * SYNCHRONOUS CALL SUPPORT *
1762 *-------------------------------------------------------------------*/
1764 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1765 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1766 void *data, __u16 size, int timeout);
1767 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1768 void *data, int len, int *actual_length, int timeout);
1769 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1770 void *data, int len, int *actual_length,
1771 int timeout);
1773 /* wrappers around usb_control_msg() for the most common standard requests */
1774 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1775 unsigned char descindex, void *buf, int size);
1776 extern int usb_get_status(struct usb_device *dev,
1777 int recip, int type, int target, void *data);
1779 static inline int usb_get_std_status(struct usb_device *dev,
1780 int recip, int target, void *data)
1782 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1783 data);
1786 static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1788 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1789 0, data);
1792 extern int usb_string(struct usb_device *dev, int index,
1793 char *buf, size_t size);
1795 /* wrappers that also update important state inside usbcore */
1796 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1797 extern int usb_reset_configuration(struct usb_device *dev);
1798 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1799 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1801 /* this request isn't really synchronous, but it belongs with the others */
1802 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1804 /* choose and set configuration for device */
1805 extern int usb_choose_configuration(struct usb_device *udev);
1806 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1809 * timeouts, in milliseconds, used for sending/receiving control messages
1810 * they typically complete within a few frames (msec) after they're issued
1811 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1812 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1814 #define USB_CTRL_GET_TIMEOUT 5000
1815 #define USB_CTRL_SET_TIMEOUT 5000
1819 * struct usb_sg_request - support for scatter/gather I/O
1820 * @status: zero indicates success, else negative errno
1821 * @bytes: counts bytes transferred.
1823 * These requests are initialized using usb_sg_init(), and then are used
1824 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1825 * members of the request object aren't for driver access.
1827 * The status and bytecount values are valid only after usb_sg_wait()
1828 * returns. If the status is zero, then the bytecount matches the total
1829 * from the request.
1831 * After an error completion, drivers may need to clear a halt condition
1832 * on the endpoint.
1834 struct usb_sg_request {
1835 int status;
1836 size_t bytes;
1838 /* private:
1839 * members below are private to usbcore,
1840 * and are not provided for driver access!
1842 spinlock_t lock;
1844 struct usb_device *dev;
1845 int pipe;
1847 int entries;
1848 struct urb **urbs;
1850 int count;
1851 struct completion complete;
1854 int usb_sg_init(
1855 struct usb_sg_request *io,
1856 struct usb_device *dev,
1857 unsigned pipe,
1858 unsigned period,
1859 struct scatterlist *sg,
1860 int nents,
1861 size_t length,
1862 gfp_t mem_flags
1864 void usb_sg_cancel(struct usb_sg_request *io);
1865 void usb_sg_wait(struct usb_sg_request *io);
1868 /* ----------------------------------------------------------------------- */
1871 * For various legacy reasons, Linux has a small cookie that's paired with
1872 * a struct usb_device to identify an endpoint queue. Queue characteristics
1873 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1874 * an unsigned int encoded as:
1876 * - direction: bit 7 (0 = Host-to-Device [Out],
1877 * 1 = Device-to-Host [In] ...
1878 * like endpoint bEndpointAddress)
1879 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1880 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1881 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1882 * 10 = control, 11 = bulk)
1884 * Given the device address and endpoint descriptor, pipes are redundant.
1887 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1888 /* (yet ... they're the values used by usbfs) */
1889 #define PIPE_ISOCHRONOUS 0
1890 #define PIPE_INTERRUPT 1
1891 #define PIPE_CONTROL 2
1892 #define PIPE_BULK 3
1894 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1895 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1897 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1898 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1900 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1901 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1902 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1903 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1904 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1906 static inline unsigned int __create_pipe(struct usb_device *dev,
1907 unsigned int endpoint)
1909 return (dev->devnum << 8) | (endpoint << 15);
1912 /* Create various pipes... */
1913 #define usb_sndctrlpipe(dev, endpoint) \
1914 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1915 #define usb_rcvctrlpipe(dev, endpoint) \
1916 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1917 #define usb_sndisocpipe(dev, endpoint) \
1918 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1919 #define usb_rcvisocpipe(dev, endpoint) \
1920 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1921 #define usb_sndbulkpipe(dev, endpoint) \
1922 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1923 #define usb_rcvbulkpipe(dev, endpoint) \
1924 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1925 #define usb_sndintpipe(dev, endpoint) \
1926 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1927 #define usb_rcvintpipe(dev, endpoint) \
1928 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1930 static inline struct usb_host_endpoint *
1931 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1933 struct usb_host_endpoint **eps;
1934 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1935 return eps[usb_pipeendpoint(pipe)];
1938 /*-------------------------------------------------------------------------*/
1940 static inline __u16
1941 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1943 struct usb_host_endpoint *ep;
1944 unsigned epnum = usb_pipeendpoint(pipe);
1946 if (is_out) {
1947 WARN_ON(usb_pipein(pipe));
1948 ep = udev->ep_out[epnum];
1949 } else {
1950 WARN_ON(usb_pipeout(pipe));
1951 ep = udev->ep_in[epnum];
1953 if (!ep)
1954 return 0;
1956 /* NOTE: only 0x07ff bits are for packet size... */
1957 return usb_endpoint_maxp(&ep->desc);
1960 /* ----------------------------------------------------------------------- */
1962 /* translate USB error codes to codes user space understands */
1963 static inline int usb_translate_errors(int error_code)
1965 switch (error_code) {
1966 case 0:
1967 case -ENOMEM:
1968 case -ENODEV:
1969 case -EOPNOTSUPP:
1970 return error_code;
1971 default:
1972 return -EIO;
1976 /* Events from the usb core */
1977 #define USB_DEVICE_ADD 0x0001
1978 #define USB_DEVICE_REMOVE 0x0002
1979 #define USB_BUS_ADD 0x0003
1980 #define USB_BUS_REMOVE 0x0004
1981 extern void usb_register_notify(struct notifier_block *nb);
1982 extern void usb_unregister_notify(struct notifier_block *nb);
1984 /* debugfs stuff */
1985 extern struct dentry *usb_debug_root;
1987 /* LED triggers */
1988 enum usb_led_event {
1989 USB_LED_EVENT_HOST = 0,
1990 USB_LED_EVENT_GADGET = 1,
1993 #ifdef CONFIG_USB_LED_TRIG
1994 extern void usb_led_activity(enum usb_led_event ev);
1995 #else
1996 static inline void usb_led_activity(enum usb_led_event ev) {}
1997 #endif
1999 #endif /* __KERNEL__ */
2001 #endif