xtensa: fix high memory/reserved memory collision
[cris-mirror.git] / include / rdma / ib_verbs.h
blob73b2387e3f742490528696e97290990c9462d4f6
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <linux/socket.h>
52 #include <linux/irq_poll.h>
53 #include <uapi/linux/if_ether.h>
54 #include <net/ipv6.h>
55 #include <net/ip.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/netdevice.h>
60 #include <linux/if_link.h>
61 #include <linux/atomic.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/uaccess.h>
64 #include <linux/cgroup_rdma.h>
65 #include <uapi/rdma/ib_user_verbs.h>
66 #include <rdma/restrack.h>
68 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
70 extern struct workqueue_struct *ib_wq;
71 extern struct workqueue_struct *ib_comp_wq;
73 union ib_gid {
74 u8 raw[16];
75 struct {
76 __be64 subnet_prefix;
77 __be64 interface_id;
78 } global;
81 extern union ib_gid zgid;
83 enum ib_gid_type {
84 /* If link layer is Ethernet, this is RoCE V1 */
85 IB_GID_TYPE_IB = 0,
86 IB_GID_TYPE_ROCE = 0,
87 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
88 IB_GID_TYPE_SIZE
91 #define ROCE_V2_UDP_DPORT 4791
92 struct ib_gid_attr {
93 enum ib_gid_type gid_type;
94 struct net_device *ndev;
97 enum rdma_node_type {
98 /* IB values map to NodeInfo:NodeType. */
99 RDMA_NODE_IB_CA = 1,
100 RDMA_NODE_IB_SWITCH,
101 RDMA_NODE_IB_ROUTER,
102 RDMA_NODE_RNIC,
103 RDMA_NODE_USNIC,
104 RDMA_NODE_USNIC_UDP,
107 enum {
108 /* set the local administered indication */
109 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
112 enum rdma_transport_type {
113 RDMA_TRANSPORT_IB,
114 RDMA_TRANSPORT_IWARP,
115 RDMA_TRANSPORT_USNIC,
116 RDMA_TRANSPORT_USNIC_UDP
119 enum rdma_protocol_type {
120 RDMA_PROTOCOL_IB,
121 RDMA_PROTOCOL_IBOE,
122 RDMA_PROTOCOL_IWARP,
123 RDMA_PROTOCOL_USNIC_UDP
126 __attribute_const__ enum rdma_transport_type
127 rdma_node_get_transport(enum rdma_node_type node_type);
129 enum rdma_network_type {
130 RDMA_NETWORK_IB,
131 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
132 RDMA_NETWORK_IPV4,
133 RDMA_NETWORK_IPV6
136 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
138 if (network_type == RDMA_NETWORK_IPV4 ||
139 network_type == RDMA_NETWORK_IPV6)
140 return IB_GID_TYPE_ROCE_UDP_ENCAP;
142 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
143 return IB_GID_TYPE_IB;
146 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
147 union ib_gid *gid)
149 if (gid_type == IB_GID_TYPE_IB)
150 return RDMA_NETWORK_IB;
152 if (ipv6_addr_v4mapped((struct in6_addr *)gid))
153 return RDMA_NETWORK_IPV4;
154 else
155 return RDMA_NETWORK_IPV6;
158 enum rdma_link_layer {
159 IB_LINK_LAYER_UNSPECIFIED,
160 IB_LINK_LAYER_INFINIBAND,
161 IB_LINK_LAYER_ETHERNET,
164 enum ib_device_cap_flags {
165 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
166 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
167 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
168 IB_DEVICE_RAW_MULTI = (1 << 3),
169 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
170 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
171 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
172 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
173 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
174 /* Not in use, former INIT_TYPE = (1 << 9),*/
175 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
176 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
177 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
178 IB_DEVICE_SRQ_RESIZE = (1 << 13),
179 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
182 * This device supports a per-device lkey or stag that can be
183 * used without performing a memory registration for the local
184 * memory. Note that ULPs should never check this flag, but
185 * instead of use the local_dma_lkey flag in the ib_pd structure,
186 * which will always contain a usable lkey.
188 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
189 /* Reserved, old SEND_W_INV = (1 << 16),*/
190 IB_DEVICE_MEM_WINDOW = (1 << 17),
192 * Devices should set IB_DEVICE_UD_IP_SUM if they support
193 * insertion of UDP and TCP checksum on outgoing UD IPoIB
194 * messages and can verify the validity of checksum for
195 * incoming messages. Setting this flag implies that the
196 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
198 IB_DEVICE_UD_IP_CSUM = (1 << 18),
199 IB_DEVICE_UD_TSO = (1 << 19),
200 IB_DEVICE_XRC = (1 << 20),
203 * This device supports the IB "base memory management extension",
204 * which includes support for fast registrations (IB_WR_REG_MR,
205 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
206 * also be set by any iWarp device which must support FRs to comply
207 * to the iWarp verbs spec. iWarp devices also support the
208 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
209 * stag.
211 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
212 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
213 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
214 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
215 IB_DEVICE_RC_IP_CSUM = (1 << 25),
216 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
217 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
219 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
220 * support execution of WQEs that involve synchronization
221 * of I/O operations with single completion queue managed
222 * by hardware.
224 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
225 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
226 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
227 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
228 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
229 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
230 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
231 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
232 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35),
233 /* The device supports padding incoming writes to cacheline. */
234 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36),
237 enum ib_signature_prot_cap {
238 IB_PROT_T10DIF_TYPE_1 = 1,
239 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
240 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
243 enum ib_signature_guard_cap {
244 IB_GUARD_T10DIF_CRC = 1,
245 IB_GUARD_T10DIF_CSUM = 1 << 1,
248 enum ib_atomic_cap {
249 IB_ATOMIC_NONE,
250 IB_ATOMIC_HCA,
251 IB_ATOMIC_GLOB
254 enum ib_odp_general_cap_bits {
255 IB_ODP_SUPPORT = 1 << 0,
256 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
259 enum ib_odp_transport_cap_bits {
260 IB_ODP_SUPPORT_SEND = 1 << 0,
261 IB_ODP_SUPPORT_RECV = 1 << 1,
262 IB_ODP_SUPPORT_WRITE = 1 << 2,
263 IB_ODP_SUPPORT_READ = 1 << 3,
264 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
267 struct ib_odp_caps {
268 uint64_t general_caps;
269 struct {
270 uint32_t rc_odp_caps;
271 uint32_t uc_odp_caps;
272 uint32_t ud_odp_caps;
273 } per_transport_caps;
276 struct ib_rss_caps {
277 /* Corresponding bit will be set if qp type from
278 * 'enum ib_qp_type' is supported, e.g.
279 * supported_qpts |= 1 << IB_QPT_UD
281 u32 supported_qpts;
282 u32 max_rwq_indirection_tables;
283 u32 max_rwq_indirection_table_size;
286 enum ib_tm_cap_flags {
287 /* Support tag matching on RC transport */
288 IB_TM_CAP_RC = 1 << 0,
291 struct ib_tm_caps {
292 /* Max size of RNDV header */
293 u32 max_rndv_hdr_size;
294 /* Max number of entries in tag matching list */
295 u32 max_num_tags;
296 /* From enum ib_tm_cap_flags */
297 u32 flags;
298 /* Max number of outstanding list operations */
299 u32 max_ops;
300 /* Max number of SGE in tag matching entry */
301 u32 max_sge;
304 struct ib_cq_init_attr {
305 unsigned int cqe;
306 int comp_vector;
307 u32 flags;
310 enum ib_cq_attr_mask {
311 IB_CQ_MODERATE = 1 << 0,
314 struct ib_cq_caps {
315 u16 max_cq_moderation_count;
316 u16 max_cq_moderation_period;
319 struct ib_device_attr {
320 u64 fw_ver;
321 __be64 sys_image_guid;
322 u64 max_mr_size;
323 u64 page_size_cap;
324 u32 vendor_id;
325 u32 vendor_part_id;
326 u32 hw_ver;
327 int max_qp;
328 int max_qp_wr;
329 u64 device_cap_flags;
330 int max_sge;
331 int max_sge_rd;
332 int max_cq;
333 int max_cqe;
334 int max_mr;
335 int max_pd;
336 int max_qp_rd_atom;
337 int max_ee_rd_atom;
338 int max_res_rd_atom;
339 int max_qp_init_rd_atom;
340 int max_ee_init_rd_atom;
341 enum ib_atomic_cap atomic_cap;
342 enum ib_atomic_cap masked_atomic_cap;
343 int max_ee;
344 int max_rdd;
345 int max_mw;
346 int max_raw_ipv6_qp;
347 int max_raw_ethy_qp;
348 int max_mcast_grp;
349 int max_mcast_qp_attach;
350 int max_total_mcast_qp_attach;
351 int max_ah;
352 int max_fmr;
353 int max_map_per_fmr;
354 int max_srq;
355 int max_srq_wr;
356 int max_srq_sge;
357 unsigned int max_fast_reg_page_list_len;
358 u16 max_pkeys;
359 u8 local_ca_ack_delay;
360 int sig_prot_cap;
361 int sig_guard_cap;
362 struct ib_odp_caps odp_caps;
363 uint64_t timestamp_mask;
364 uint64_t hca_core_clock; /* in KHZ */
365 struct ib_rss_caps rss_caps;
366 u32 max_wq_type_rq;
367 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
368 struct ib_tm_caps tm_caps;
369 struct ib_cq_caps cq_caps;
372 enum ib_mtu {
373 IB_MTU_256 = 1,
374 IB_MTU_512 = 2,
375 IB_MTU_1024 = 3,
376 IB_MTU_2048 = 4,
377 IB_MTU_4096 = 5
380 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
382 switch (mtu) {
383 case IB_MTU_256: return 256;
384 case IB_MTU_512: return 512;
385 case IB_MTU_1024: return 1024;
386 case IB_MTU_2048: return 2048;
387 case IB_MTU_4096: return 4096;
388 default: return -1;
392 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
394 if (mtu >= 4096)
395 return IB_MTU_4096;
396 else if (mtu >= 2048)
397 return IB_MTU_2048;
398 else if (mtu >= 1024)
399 return IB_MTU_1024;
400 else if (mtu >= 512)
401 return IB_MTU_512;
402 else
403 return IB_MTU_256;
406 enum ib_port_state {
407 IB_PORT_NOP = 0,
408 IB_PORT_DOWN = 1,
409 IB_PORT_INIT = 2,
410 IB_PORT_ARMED = 3,
411 IB_PORT_ACTIVE = 4,
412 IB_PORT_ACTIVE_DEFER = 5
415 enum ib_port_cap_flags {
416 IB_PORT_SM = 1 << 1,
417 IB_PORT_NOTICE_SUP = 1 << 2,
418 IB_PORT_TRAP_SUP = 1 << 3,
419 IB_PORT_OPT_IPD_SUP = 1 << 4,
420 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
421 IB_PORT_SL_MAP_SUP = 1 << 6,
422 IB_PORT_MKEY_NVRAM = 1 << 7,
423 IB_PORT_PKEY_NVRAM = 1 << 8,
424 IB_PORT_LED_INFO_SUP = 1 << 9,
425 IB_PORT_SM_DISABLED = 1 << 10,
426 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
427 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
428 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
429 IB_PORT_CM_SUP = 1 << 16,
430 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
431 IB_PORT_REINIT_SUP = 1 << 18,
432 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
433 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
434 IB_PORT_DR_NOTICE_SUP = 1 << 21,
435 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
436 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
437 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
438 IB_PORT_CLIENT_REG_SUP = 1 << 25,
439 IB_PORT_IP_BASED_GIDS = 1 << 26,
442 enum ib_port_width {
443 IB_WIDTH_1X = 1,
444 IB_WIDTH_4X = 2,
445 IB_WIDTH_8X = 4,
446 IB_WIDTH_12X = 8
449 static inline int ib_width_enum_to_int(enum ib_port_width width)
451 switch (width) {
452 case IB_WIDTH_1X: return 1;
453 case IB_WIDTH_4X: return 4;
454 case IB_WIDTH_8X: return 8;
455 case IB_WIDTH_12X: return 12;
456 default: return -1;
460 enum ib_port_speed {
461 IB_SPEED_SDR = 1,
462 IB_SPEED_DDR = 2,
463 IB_SPEED_QDR = 4,
464 IB_SPEED_FDR10 = 8,
465 IB_SPEED_FDR = 16,
466 IB_SPEED_EDR = 32,
467 IB_SPEED_HDR = 64
471 * struct rdma_hw_stats
472 * @timestamp - Used by the core code to track when the last update was
473 * @lifespan - Used by the core code to determine how old the counters
474 * should be before being updated again. Stored in jiffies, defaults
475 * to 10 milliseconds, drivers can override the default be specifying
476 * their own value during their allocation routine.
477 * @name - Array of pointers to static names used for the counters in
478 * directory.
479 * @num_counters - How many hardware counters there are. If name is
480 * shorter than this number, a kernel oops will result. Driver authors
481 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
482 * in their code to prevent this.
483 * @value - Array of u64 counters that are accessed by the sysfs code and
484 * filled in by the drivers get_stats routine
486 struct rdma_hw_stats {
487 unsigned long timestamp;
488 unsigned long lifespan;
489 const char * const *names;
490 int num_counters;
491 u64 value[];
494 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
496 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
497 * for drivers.
498 * @names - Array of static const char *
499 * @num_counters - How many elements in array
500 * @lifespan - How many milliseconds between updates
502 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
503 const char * const *names, int num_counters,
504 unsigned long lifespan)
506 struct rdma_hw_stats *stats;
508 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
509 GFP_KERNEL);
510 if (!stats)
511 return NULL;
512 stats->names = names;
513 stats->num_counters = num_counters;
514 stats->lifespan = msecs_to_jiffies(lifespan);
516 return stats;
520 /* Define bits for the various functionality this port needs to be supported by
521 * the core.
523 /* Management 0x00000FFF */
524 #define RDMA_CORE_CAP_IB_MAD 0x00000001
525 #define RDMA_CORE_CAP_IB_SMI 0x00000002
526 #define RDMA_CORE_CAP_IB_CM 0x00000004
527 #define RDMA_CORE_CAP_IW_CM 0x00000008
528 #define RDMA_CORE_CAP_IB_SA 0x00000010
529 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
531 /* Address format 0x000FF000 */
532 #define RDMA_CORE_CAP_AF_IB 0x00001000
533 #define RDMA_CORE_CAP_ETH_AH 0x00002000
534 #define RDMA_CORE_CAP_OPA_AH 0x00004000
536 /* Protocol 0xFFF00000 */
537 #define RDMA_CORE_CAP_PROT_IB 0x00100000
538 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
539 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
540 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
541 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
542 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000
544 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
545 | RDMA_CORE_CAP_IB_MAD \
546 | RDMA_CORE_CAP_IB_SMI \
547 | RDMA_CORE_CAP_IB_CM \
548 | RDMA_CORE_CAP_IB_SA \
549 | RDMA_CORE_CAP_AF_IB)
550 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
551 | RDMA_CORE_CAP_IB_MAD \
552 | RDMA_CORE_CAP_IB_CM \
553 | RDMA_CORE_CAP_AF_IB \
554 | RDMA_CORE_CAP_ETH_AH)
555 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
556 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
557 | RDMA_CORE_CAP_IB_MAD \
558 | RDMA_CORE_CAP_IB_CM \
559 | RDMA_CORE_CAP_AF_IB \
560 | RDMA_CORE_CAP_ETH_AH)
561 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
562 | RDMA_CORE_CAP_IW_CM)
563 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
564 | RDMA_CORE_CAP_OPA_MAD)
566 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
568 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
570 struct ib_port_attr {
571 u64 subnet_prefix;
572 enum ib_port_state state;
573 enum ib_mtu max_mtu;
574 enum ib_mtu active_mtu;
575 int gid_tbl_len;
576 u32 port_cap_flags;
577 u32 max_msg_sz;
578 u32 bad_pkey_cntr;
579 u32 qkey_viol_cntr;
580 u16 pkey_tbl_len;
581 u32 sm_lid;
582 u32 lid;
583 u8 lmc;
584 u8 max_vl_num;
585 u8 sm_sl;
586 u8 subnet_timeout;
587 u8 init_type_reply;
588 u8 active_width;
589 u8 active_speed;
590 u8 phys_state;
591 bool grh_required;
594 enum ib_device_modify_flags {
595 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
596 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
599 #define IB_DEVICE_NODE_DESC_MAX 64
601 struct ib_device_modify {
602 u64 sys_image_guid;
603 char node_desc[IB_DEVICE_NODE_DESC_MAX];
606 enum ib_port_modify_flags {
607 IB_PORT_SHUTDOWN = 1,
608 IB_PORT_INIT_TYPE = (1<<2),
609 IB_PORT_RESET_QKEY_CNTR = (1<<3),
610 IB_PORT_OPA_MASK_CHG = (1<<4)
613 struct ib_port_modify {
614 u32 set_port_cap_mask;
615 u32 clr_port_cap_mask;
616 u8 init_type;
619 enum ib_event_type {
620 IB_EVENT_CQ_ERR,
621 IB_EVENT_QP_FATAL,
622 IB_EVENT_QP_REQ_ERR,
623 IB_EVENT_QP_ACCESS_ERR,
624 IB_EVENT_COMM_EST,
625 IB_EVENT_SQ_DRAINED,
626 IB_EVENT_PATH_MIG,
627 IB_EVENT_PATH_MIG_ERR,
628 IB_EVENT_DEVICE_FATAL,
629 IB_EVENT_PORT_ACTIVE,
630 IB_EVENT_PORT_ERR,
631 IB_EVENT_LID_CHANGE,
632 IB_EVENT_PKEY_CHANGE,
633 IB_EVENT_SM_CHANGE,
634 IB_EVENT_SRQ_ERR,
635 IB_EVENT_SRQ_LIMIT_REACHED,
636 IB_EVENT_QP_LAST_WQE_REACHED,
637 IB_EVENT_CLIENT_REREGISTER,
638 IB_EVENT_GID_CHANGE,
639 IB_EVENT_WQ_FATAL,
642 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
644 struct ib_event {
645 struct ib_device *device;
646 union {
647 struct ib_cq *cq;
648 struct ib_qp *qp;
649 struct ib_srq *srq;
650 struct ib_wq *wq;
651 u8 port_num;
652 } element;
653 enum ib_event_type event;
656 struct ib_event_handler {
657 struct ib_device *device;
658 void (*handler)(struct ib_event_handler *, struct ib_event *);
659 struct list_head list;
662 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
663 do { \
664 (_ptr)->device = _device; \
665 (_ptr)->handler = _handler; \
666 INIT_LIST_HEAD(&(_ptr)->list); \
667 } while (0)
669 struct ib_global_route {
670 union ib_gid dgid;
671 u32 flow_label;
672 u8 sgid_index;
673 u8 hop_limit;
674 u8 traffic_class;
677 struct ib_grh {
678 __be32 version_tclass_flow;
679 __be16 paylen;
680 u8 next_hdr;
681 u8 hop_limit;
682 union ib_gid sgid;
683 union ib_gid dgid;
686 union rdma_network_hdr {
687 struct ib_grh ibgrh;
688 struct {
689 /* The IB spec states that if it's IPv4, the header
690 * is located in the last 20 bytes of the header.
692 u8 reserved[20];
693 struct iphdr roce4grh;
697 #define IB_QPN_MASK 0xFFFFFF
699 enum {
700 IB_MULTICAST_QPN = 0xffffff
703 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
704 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
706 enum ib_ah_flags {
707 IB_AH_GRH = 1
710 enum ib_rate {
711 IB_RATE_PORT_CURRENT = 0,
712 IB_RATE_2_5_GBPS = 2,
713 IB_RATE_5_GBPS = 5,
714 IB_RATE_10_GBPS = 3,
715 IB_RATE_20_GBPS = 6,
716 IB_RATE_30_GBPS = 4,
717 IB_RATE_40_GBPS = 7,
718 IB_RATE_60_GBPS = 8,
719 IB_RATE_80_GBPS = 9,
720 IB_RATE_120_GBPS = 10,
721 IB_RATE_14_GBPS = 11,
722 IB_RATE_56_GBPS = 12,
723 IB_RATE_112_GBPS = 13,
724 IB_RATE_168_GBPS = 14,
725 IB_RATE_25_GBPS = 15,
726 IB_RATE_100_GBPS = 16,
727 IB_RATE_200_GBPS = 17,
728 IB_RATE_300_GBPS = 18
732 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
733 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
734 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
735 * @rate: rate to convert.
737 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
740 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
741 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
742 * @rate: rate to convert.
744 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
748 * enum ib_mr_type - memory region type
749 * @IB_MR_TYPE_MEM_REG: memory region that is used for
750 * normal registration
751 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
752 * signature operations (data-integrity
753 * capable regions)
754 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
755 * register any arbitrary sg lists (without
756 * the normal mr constraints - see
757 * ib_map_mr_sg)
759 enum ib_mr_type {
760 IB_MR_TYPE_MEM_REG,
761 IB_MR_TYPE_SIGNATURE,
762 IB_MR_TYPE_SG_GAPS,
766 * Signature types
767 * IB_SIG_TYPE_NONE: Unprotected.
768 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
770 enum ib_signature_type {
771 IB_SIG_TYPE_NONE,
772 IB_SIG_TYPE_T10_DIF,
776 * Signature T10-DIF block-guard types
777 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
778 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
780 enum ib_t10_dif_bg_type {
781 IB_T10DIF_CRC,
782 IB_T10DIF_CSUM
786 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
787 * domain.
788 * @bg_type: T10-DIF block guard type (CRC|CSUM)
789 * @pi_interval: protection information interval.
790 * @bg: seed of guard computation.
791 * @app_tag: application tag of guard block
792 * @ref_tag: initial guard block reference tag.
793 * @ref_remap: Indicate wethear the reftag increments each block
794 * @app_escape: Indicate to skip block check if apptag=0xffff
795 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
796 * @apptag_check_mask: check bitmask of application tag.
798 struct ib_t10_dif_domain {
799 enum ib_t10_dif_bg_type bg_type;
800 u16 pi_interval;
801 u16 bg;
802 u16 app_tag;
803 u32 ref_tag;
804 bool ref_remap;
805 bool app_escape;
806 bool ref_escape;
807 u16 apptag_check_mask;
811 * struct ib_sig_domain - Parameters for signature domain
812 * @sig_type: specific signauture type
813 * @sig: union of all signature domain attributes that may
814 * be used to set domain layout.
816 struct ib_sig_domain {
817 enum ib_signature_type sig_type;
818 union {
819 struct ib_t10_dif_domain dif;
820 } sig;
824 * struct ib_sig_attrs - Parameters for signature handover operation
825 * @check_mask: bitmask for signature byte check (8 bytes)
826 * @mem: memory domain layout desciptor.
827 * @wire: wire domain layout desciptor.
829 struct ib_sig_attrs {
830 u8 check_mask;
831 struct ib_sig_domain mem;
832 struct ib_sig_domain wire;
835 enum ib_sig_err_type {
836 IB_SIG_BAD_GUARD,
837 IB_SIG_BAD_REFTAG,
838 IB_SIG_BAD_APPTAG,
842 * struct ib_sig_err - signature error descriptor
844 struct ib_sig_err {
845 enum ib_sig_err_type err_type;
846 u32 expected;
847 u32 actual;
848 u64 sig_err_offset;
849 u32 key;
852 enum ib_mr_status_check {
853 IB_MR_CHECK_SIG_STATUS = 1,
857 * struct ib_mr_status - Memory region status container
859 * @fail_status: Bitmask of MR checks status. For each
860 * failed check a corresponding status bit is set.
861 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
862 * failure.
864 struct ib_mr_status {
865 u32 fail_status;
866 struct ib_sig_err sig_err;
870 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
871 * enum.
872 * @mult: multiple to convert.
874 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
876 enum rdma_ah_attr_type {
877 RDMA_AH_ATTR_TYPE_UNDEFINED,
878 RDMA_AH_ATTR_TYPE_IB,
879 RDMA_AH_ATTR_TYPE_ROCE,
880 RDMA_AH_ATTR_TYPE_OPA,
883 struct ib_ah_attr {
884 u16 dlid;
885 u8 src_path_bits;
888 struct roce_ah_attr {
889 u8 dmac[ETH_ALEN];
892 struct opa_ah_attr {
893 u32 dlid;
894 u8 src_path_bits;
895 bool make_grd;
898 struct rdma_ah_attr {
899 struct ib_global_route grh;
900 u8 sl;
901 u8 static_rate;
902 u8 port_num;
903 u8 ah_flags;
904 enum rdma_ah_attr_type type;
905 union {
906 struct ib_ah_attr ib;
907 struct roce_ah_attr roce;
908 struct opa_ah_attr opa;
912 enum ib_wc_status {
913 IB_WC_SUCCESS,
914 IB_WC_LOC_LEN_ERR,
915 IB_WC_LOC_QP_OP_ERR,
916 IB_WC_LOC_EEC_OP_ERR,
917 IB_WC_LOC_PROT_ERR,
918 IB_WC_WR_FLUSH_ERR,
919 IB_WC_MW_BIND_ERR,
920 IB_WC_BAD_RESP_ERR,
921 IB_WC_LOC_ACCESS_ERR,
922 IB_WC_REM_INV_REQ_ERR,
923 IB_WC_REM_ACCESS_ERR,
924 IB_WC_REM_OP_ERR,
925 IB_WC_RETRY_EXC_ERR,
926 IB_WC_RNR_RETRY_EXC_ERR,
927 IB_WC_LOC_RDD_VIOL_ERR,
928 IB_WC_REM_INV_RD_REQ_ERR,
929 IB_WC_REM_ABORT_ERR,
930 IB_WC_INV_EECN_ERR,
931 IB_WC_INV_EEC_STATE_ERR,
932 IB_WC_FATAL_ERR,
933 IB_WC_RESP_TIMEOUT_ERR,
934 IB_WC_GENERAL_ERR
937 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
939 enum ib_wc_opcode {
940 IB_WC_SEND,
941 IB_WC_RDMA_WRITE,
942 IB_WC_RDMA_READ,
943 IB_WC_COMP_SWAP,
944 IB_WC_FETCH_ADD,
945 IB_WC_LSO,
946 IB_WC_LOCAL_INV,
947 IB_WC_REG_MR,
948 IB_WC_MASKED_COMP_SWAP,
949 IB_WC_MASKED_FETCH_ADD,
951 * Set value of IB_WC_RECV so consumers can test if a completion is a
952 * receive by testing (opcode & IB_WC_RECV).
954 IB_WC_RECV = 1 << 7,
955 IB_WC_RECV_RDMA_WITH_IMM
958 enum ib_wc_flags {
959 IB_WC_GRH = 1,
960 IB_WC_WITH_IMM = (1<<1),
961 IB_WC_WITH_INVALIDATE = (1<<2),
962 IB_WC_IP_CSUM_OK = (1<<3),
963 IB_WC_WITH_SMAC = (1<<4),
964 IB_WC_WITH_VLAN = (1<<5),
965 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
968 struct ib_wc {
969 union {
970 u64 wr_id;
971 struct ib_cqe *wr_cqe;
973 enum ib_wc_status status;
974 enum ib_wc_opcode opcode;
975 u32 vendor_err;
976 u32 byte_len;
977 struct ib_qp *qp;
978 union {
979 __be32 imm_data;
980 u32 invalidate_rkey;
981 } ex;
982 u32 src_qp;
983 u32 slid;
984 int wc_flags;
985 u16 pkey_index;
986 u8 sl;
987 u8 dlid_path_bits;
988 u8 port_num; /* valid only for DR SMPs on switches */
989 u8 smac[ETH_ALEN];
990 u16 vlan_id;
991 u8 network_hdr_type;
994 enum ib_cq_notify_flags {
995 IB_CQ_SOLICITED = 1 << 0,
996 IB_CQ_NEXT_COMP = 1 << 1,
997 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
998 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1001 enum ib_srq_type {
1002 IB_SRQT_BASIC,
1003 IB_SRQT_XRC,
1004 IB_SRQT_TM,
1007 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1009 return srq_type == IB_SRQT_XRC ||
1010 srq_type == IB_SRQT_TM;
1013 enum ib_srq_attr_mask {
1014 IB_SRQ_MAX_WR = 1 << 0,
1015 IB_SRQ_LIMIT = 1 << 1,
1018 struct ib_srq_attr {
1019 u32 max_wr;
1020 u32 max_sge;
1021 u32 srq_limit;
1024 struct ib_srq_init_attr {
1025 void (*event_handler)(struct ib_event *, void *);
1026 void *srq_context;
1027 struct ib_srq_attr attr;
1028 enum ib_srq_type srq_type;
1030 struct {
1031 struct ib_cq *cq;
1032 union {
1033 struct {
1034 struct ib_xrcd *xrcd;
1035 } xrc;
1037 struct {
1038 u32 max_num_tags;
1039 } tag_matching;
1041 } ext;
1044 struct ib_qp_cap {
1045 u32 max_send_wr;
1046 u32 max_recv_wr;
1047 u32 max_send_sge;
1048 u32 max_recv_sge;
1049 u32 max_inline_data;
1052 * Maximum number of rdma_rw_ctx structures in flight at a time.
1053 * ib_create_qp() will calculate the right amount of neededed WRs
1054 * and MRs based on this.
1056 u32 max_rdma_ctxs;
1059 enum ib_sig_type {
1060 IB_SIGNAL_ALL_WR,
1061 IB_SIGNAL_REQ_WR
1064 enum ib_qp_type {
1066 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1067 * here (and in that order) since the MAD layer uses them as
1068 * indices into a 2-entry table.
1070 IB_QPT_SMI,
1071 IB_QPT_GSI,
1073 IB_QPT_RC,
1074 IB_QPT_UC,
1075 IB_QPT_UD,
1076 IB_QPT_RAW_IPV6,
1077 IB_QPT_RAW_ETHERTYPE,
1078 IB_QPT_RAW_PACKET = 8,
1079 IB_QPT_XRC_INI = 9,
1080 IB_QPT_XRC_TGT,
1081 IB_QPT_MAX,
1082 IB_QPT_DRIVER = 0xFF,
1083 /* Reserve a range for qp types internal to the low level driver.
1084 * These qp types will not be visible at the IB core layer, so the
1085 * IB_QPT_MAX usages should not be affected in the core layer
1087 IB_QPT_RESERVED1 = 0x1000,
1088 IB_QPT_RESERVED2,
1089 IB_QPT_RESERVED3,
1090 IB_QPT_RESERVED4,
1091 IB_QPT_RESERVED5,
1092 IB_QPT_RESERVED6,
1093 IB_QPT_RESERVED7,
1094 IB_QPT_RESERVED8,
1095 IB_QPT_RESERVED9,
1096 IB_QPT_RESERVED10,
1099 enum ib_qp_create_flags {
1100 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1101 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
1102 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1103 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1104 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
1105 IB_QP_CREATE_NETIF_QP = 1 << 5,
1106 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
1107 /* FREE = 1 << 7, */
1108 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
1109 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9,
1110 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
1111 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11,
1112 /* reserve bits 26-31 for low level drivers' internal use */
1113 IB_QP_CREATE_RESERVED_START = 1 << 26,
1114 IB_QP_CREATE_RESERVED_END = 1 << 31,
1118 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1119 * callback to destroy the passed in QP.
1122 struct ib_qp_init_attr {
1123 void (*event_handler)(struct ib_event *, void *);
1124 void *qp_context;
1125 struct ib_cq *send_cq;
1126 struct ib_cq *recv_cq;
1127 struct ib_srq *srq;
1128 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1129 struct ib_qp_cap cap;
1130 enum ib_sig_type sq_sig_type;
1131 enum ib_qp_type qp_type;
1132 enum ib_qp_create_flags create_flags;
1135 * Only needed for special QP types, or when using the RW API.
1137 u8 port_num;
1138 struct ib_rwq_ind_table *rwq_ind_tbl;
1139 u32 source_qpn;
1142 struct ib_qp_open_attr {
1143 void (*event_handler)(struct ib_event *, void *);
1144 void *qp_context;
1145 u32 qp_num;
1146 enum ib_qp_type qp_type;
1149 enum ib_rnr_timeout {
1150 IB_RNR_TIMER_655_36 = 0,
1151 IB_RNR_TIMER_000_01 = 1,
1152 IB_RNR_TIMER_000_02 = 2,
1153 IB_RNR_TIMER_000_03 = 3,
1154 IB_RNR_TIMER_000_04 = 4,
1155 IB_RNR_TIMER_000_06 = 5,
1156 IB_RNR_TIMER_000_08 = 6,
1157 IB_RNR_TIMER_000_12 = 7,
1158 IB_RNR_TIMER_000_16 = 8,
1159 IB_RNR_TIMER_000_24 = 9,
1160 IB_RNR_TIMER_000_32 = 10,
1161 IB_RNR_TIMER_000_48 = 11,
1162 IB_RNR_TIMER_000_64 = 12,
1163 IB_RNR_TIMER_000_96 = 13,
1164 IB_RNR_TIMER_001_28 = 14,
1165 IB_RNR_TIMER_001_92 = 15,
1166 IB_RNR_TIMER_002_56 = 16,
1167 IB_RNR_TIMER_003_84 = 17,
1168 IB_RNR_TIMER_005_12 = 18,
1169 IB_RNR_TIMER_007_68 = 19,
1170 IB_RNR_TIMER_010_24 = 20,
1171 IB_RNR_TIMER_015_36 = 21,
1172 IB_RNR_TIMER_020_48 = 22,
1173 IB_RNR_TIMER_030_72 = 23,
1174 IB_RNR_TIMER_040_96 = 24,
1175 IB_RNR_TIMER_061_44 = 25,
1176 IB_RNR_TIMER_081_92 = 26,
1177 IB_RNR_TIMER_122_88 = 27,
1178 IB_RNR_TIMER_163_84 = 28,
1179 IB_RNR_TIMER_245_76 = 29,
1180 IB_RNR_TIMER_327_68 = 30,
1181 IB_RNR_TIMER_491_52 = 31
1184 enum ib_qp_attr_mask {
1185 IB_QP_STATE = 1,
1186 IB_QP_CUR_STATE = (1<<1),
1187 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1188 IB_QP_ACCESS_FLAGS = (1<<3),
1189 IB_QP_PKEY_INDEX = (1<<4),
1190 IB_QP_PORT = (1<<5),
1191 IB_QP_QKEY = (1<<6),
1192 IB_QP_AV = (1<<7),
1193 IB_QP_PATH_MTU = (1<<8),
1194 IB_QP_TIMEOUT = (1<<9),
1195 IB_QP_RETRY_CNT = (1<<10),
1196 IB_QP_RNR_RETRY = (1<<11),
1197 IB_QP_RQ_PSN = (1<<12),
1198 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1199 IB_QP_ALT_PATH = (1<<14),
1200 IB_QP_MIN_RNR_TIMER = (1<<15),
1201 IB_QP_SQ_PSN = (1<<16),
1202 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1203 IB_QP_PATH_MIG_STATE = (1<<18),
1204 IB_QP_CAP = (1<<19),
1205 IB_QP_DEST_QPN = (1<<20),
1206 IB_QP_RESERVED1 = (1<<21),
1207 IB_QP_RESERVED2 = (1<<22),
1208 IB_QP_RESERVED3 = (1<<23),
1209 IB_QP_RESERVED4 = (1<<24),
1210 IB_QP_RATE_LIMIT = (1<<25),
1213 enum ib_qp_state {
1214 IB_QPS_RESET,
1215 IB_QPS_INIT,
1216 IB_QPS_RTR,
1217 IB_QPS_RTS,
1218 IB_QPS_SQD,
1219 IB_QPS_SQE,
1220 IB_QPS_ERR
1223 enum ib_mig_state {
1224 IB_MIG_MIGRATED,
1225 IB_MIG_REARM,
1226 IB_MIG_ARMED
1229 enum ib_mw_type {
1230 IB_MW_TYPE_1 = 1,
1231 IB_MW_TYPE_2 = 2
1234 struct ib_qp_attr {
1235 enum ib_qp_state qp_state;
1236 enum ib_qp_state cur_qp_state;
1237 enum ib_mtu path_mtu;
1238 enum ib_mig_state path_mig_state;
1239 u32 qkey;
1240 u32 rq_psn;
1241 u32 sq_psn;
1242 u32 dest_qp_num;
1243 int qp_access_flags;
1244 struct ib_qp_cap cap;
1245 struct rdma_ah_attr ah_attr;
1246 struct rdma_ah_attr alt_ah_attr;
1247 u16 pkey_index;
1248 u16 alt_pkey_index;
1249 u8 en_sqd_async_notify;
1250 u8 sq_draining;
1251 u8 max_rd_atomic;
1252 u8 max_dest_rd_atomic;
1253 u8 min_rnr_timer;
1254 u8 port_num;
1255 u8 timeout;
1256 u8 retry_cnt;
1257 u8 rnr_retry;
1258 u8 alt_port_num;
1259 u8 alt_timeout;
1260 u32 rate_limit;
1263 enum ib_wr_opcode {
1264 IB_WR_RDMA_WRITE,
1265 IB_WR_RDMA_WRITE_WITH_IMM,
1266 IB_WR_SEND,
1267 IB_WR_SEND_WITH_IMM,
1268 IB_WR_RDMA_READ,
1269 IB_WR_ATOMIC_CMP_AND_SWP,
1270 IB_WR_ATOMIC_FETCH_AND_ADD,
1271 IB_WR_LSO,
1272 IB_WR_SEND_WITH_INV,
1273 IB_WR_RDMA_READ_WITH_INV,
1274 IB_WR_LOCAL_INV,
1275 IB_WR_REG_MR,
1276 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1277 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1278 IB_WR_REG_SIG_MR,
1279 /* reserve values for low level drivers' internal use.
1280 * These values will not be used at all in the ib core layer.
1282 IB_WR_RESERVED1 = 0xf0,
1283 IB_WR_RESERVED2,
1284 IB_WR_RESERVED3,
1285 IB_WR_RESERVED4,
1286 IB_WR_RESERVED5,
1287 IB_WR_RESERVED6,
1288 IB_WR_RESERVED7,
1289 IB_WR_RESERVED8,
1290 IB_WR_RESERVED9,
1291 IB_WR_RESERVED10,
1294 enum ib_send_flags {
1295 IB_SEND_FENCE = 1,
1296 IB_SEND_SIGNALED = (1<<1),
1297 IB_SEND_SOLICITED = (1<<2),
1298 IB_SEND_INLINE = (1<<3),
1299 IB_SEND_IP_CSUM = (1<<4),
1301 /* reserve bits 26-31 for low level drivers' internal use */
1302 IB_SEND_RESERVED_START = (1 << 26),
1303 IB_SEND_RESERVED_END = (1 << 31),
1306 struct ib_sge {
1307 u64 addr;
1308 u32 length;
1309 u32 lkey;
1312 struct ib_cqe {
1313 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1316 struct ib_send_wr {
1317 struct ib_send_wr *next;
1318 union {
1319 u64 wr_id;
1320 struct ib_cqe *wr_cqe;
1322 struct ib_sge *sg_list;
1323 int num_sge;
1324 enum ib_wr_opcode opcode;
1325 int send_flags;
1326 union {
1327 __be32 imm_data;
1328 u32 invalidate_rkey;
1329 } ex;
1332 struct ib_rdma_wr {
1333 struct ib_send_wr wr;
1334 u64 remote_addr;
1335 u32 rkey;
1338 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1340 return container_of(wr, struct ib_rdma_wr, wr);
1343 struct ib_atomic_wr {
1344 struct ib_send_wr wr;
1345 u64 remote_addr;
1346 u64 compare_add;
1347 u64 swap;
1348 u64 compare_add_mask;
1349 u64 swap_mask;
1350 u32 rkey;
1353 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1355 return container_of(wr, struct ib_atomic_wr, wr);
1358 struct ib_ud_wr {
1359 struct ib_send_wr wr;
1360 struct ib_ah *ah;
1361 void *header;
1362 int hlen;
1363 int mss;
1364 u32 remote_qpn;
1365 u32 remote_qkey;
1366 u16 pkey_index; /* valid for GSI only */
1367 u8 port_num; /* valid for DR SMPs on switch only */
1370 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1372 return container_of(wr, struct ib_ud_wr, wr);
1375 struct ib_reg_wr {
1376 struct ib_send_wr wr;
1377 struct ib_mr *mr;
1378 u32 key;
1379 int access;
1382 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1384 return container_of(wr, struct ib_reg_wr, wr);
1387 struct ib_sig_handover_wr {
1388 struct ib_send_wr wr;
1389 struct ib_sig_attrs *sig_attrs;
1390 struct ib_mr *sig_mr;
1391 int access_flags;
1392 struct ib_sge *prot;
1395 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1397 return container_of(wr, struct ib_sig_handover_wr, wr);
1400 struct ib_recv_wr {
1401 struct ib_recv_wr *next;
1402 union {
1403 u64 wr_id;
1404 struct ib_cqe *wr_cqe;
1406 struct ib_sge *sg_list;
1407 int num_sge;
1410 enum ib_access_flags {
1411 IB_ACCESS_LOCAL_WRITE = 1,
1412 IB_ACCESS_REMOTE_WRITE = (1<<1),
1413 IB_ACCESS_REMOTE_READ = (1<<2),
1414 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
1415 IB_ACCESS_MW_BIND = (1<<4),
1416 IB_ZERO_BASED = (1<<5),
1417 IB_ACCESS_ON_DEMAND = (1<<6),
1418 IB_ACCESS_HUGETLB = (1<<7),
1422 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1423 * are hidden here instead of a uapi header!
1425 enum ib_mr_rereg_flags {
1426 IB_MR_REREG_TRANS = 1,
1427 IB_MR_REREG_PD = (1<<1),
1428 IB_MR_REREG_ACCESS = (1<<2),
1429 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1432 struct ib_fmr_attr {
1433 int max_pages;
1434 int max_maps;
1435 u8 page_shift;
1438 struct ib_umem;
1440 enum rdma_remove_reason {
1441 /* Userspace requested uobject deletion. Call could fail */
1442 RDMA_REMOVE_DESTROY,
1443 /* Context deletion. This call should delete the actual object itself */
1444 RDMA_REMOVE_CLOSE,
1445 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1446 RDMA_REMOVE_DRIVER_REMOVE,
1447 /* Context is being cleaned-up, but commit was just completed */
1448 RDMA_REMOVE_DURING_CLEANUP,
1451 struct ib_rdmacg_object {
1452 #ifdef CONFIG_CGROUP_RDMA
1453 struct rdma_cgroup *cg; /* owner rdma cgroup */
1454 #endif
1457 struct ib_ucontext {
1458 struct ib_device *device;
1459 struct ib_uverbs_file *ufile;
1460 int closing;
1462 /* locking the uobjects_list */
1463 struct mutex uobjects_lock;
1464 struct list_head uobjects;
1465 /* protects cleanup process from other actions */
1466 struct rw_semaphore cleanup_rwsem;
1467 enum rdma_remove_reason cleanup_reason;
1469 struct pid *tgid;
1470 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1471 struct rb_root_cached umem_tree;
1473 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1474 * mmu notifiers registration.
1476 struct rw_semaphore umem_rwsem;
1477 void (*invalidate_range)(struct ib_umem *umem,
1478 unsigned long start, unsigned long end);
1480 struct mmu_notifier mn;
1481 atomic_t notifier_count;
1482 /* A list of umems that don't have private mmu notifier counters yet. */
1483 struct list_head no_private_counters;
1484 int odp_mrs_count;
1485 #endif
1487 struct ib_rdmacg_object cg_obj;
1490 struct ib_uobject {
1491 u64 user_handle; /* handle given to us by userspace */
1492 struct ib_ucontext *context; /* associated user context */
1493 void *object; /* containing object */
1494 struct list_head list; /* link to context's list */
1495 struct ib_rdmacg_object cg_obj; /* rdmacg object */
1496 int id; /* index into kernel idr */
1497 struct kref ref;
1498 atomic_t usecnt; /* protects exclusive access */
1499 struct rcu_head rcu; /* kfree_rcu() overhead */
1501 const struct uverbs_obj_type *type;
1504 struct ib_uobject_file {
1505 struct ib_uobject uobj;
1506 /* ufile contains the lock between context release and file close */
1507 struct ib_uverbs_file *ufile;
1510 struct ib_udata {
1511 const void __user *inbuf;
1512 void __user *outbuf;
1513 size_t inlen;
1514 size_t outlen;
1517 struct ib_pd {
1518 u32 local_dma_lkey;
1519 u32 flags;
1520 struct ib_device *device;
1521 struct ib_uobject *uobject;
1522 atomic_t usecnt; /* count all resources */
1524 u32 unsafe_global_rkey;
1527 * Implementation details of the RDMA core, don't use in drivers:
1529 struct ib_mr *__internal_mr;
1530 struct rdma_restrack_entry res;
1533 struct ib_xrcd {
1534 struct ib_device *device;
1535 atomic_t usecnt; /* count all exposed resources */
1536 struct inode *inode;
1538 struct mutex tgt_qp_mutex;
1539 struct list_head tgt_qp_list;
1541 * Implementation details of the RDMA core, don't use in drivers:
1543 struct rdma_restrack_entry res;
1546 struct ib_ah {
1547 struct ib_device *device;
1548 struct ib_pd *pd;
1549 struct ib_uobject *uobject;
1550 enum rdma_ah_attr_type type;
1553 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1555 enum ib_poll_context {
1556 IB_POLL_DIRECT, /* caller context, no hw completions */
1557 IB_POLL_SOFTIRQ, /* poll from softirq context */
1558 IB_POLL_WORKQUEUE, /* poll from workqueue */
1561 struct ib_cq {
1562 struct ib_device *device;
1563 struct ib_uobject *uobject;
1564 ib_comp_handler comp_handler;
1565 void (*event_handler)(struct ib_event *, void *);
1566 void *cq_context;
1567 int cqe;
1568 atomic_t usecnt; /* count number of work queues */
1569 enum ib_poll_context poll_ctx;
1570 struct ib_wc *wc;
1571 union {
1572 struct irq_poll iop;
1573 struct work_struct work;
1576 * Implementation details of the RDMA core, don't use in drivers:
1578 struct rdma_restrack_entry res;
1581 struct ib_srq {
1582 struct ib_device *device;
1583 struct ib_pd *pd;
1584 struct ib_uobject *uobject;
1585 void (*event_handler)(struct ib_event *, void *);
1586 void *srq_context;
1587 enum ib_srq_type srq_type;
1588 atomic_t usecnt;
1590 struct {
1591 struct ib_cq *cq;
1592 union {
1593 struct {
1594 struct ib_xrcd *xrcd;
1595 u32 srq_num;
1596 } xrc;
1598 } ext;
1601 enum ib_raw_packet_caps {
1602 /* Strip cvlan from incoming packet and report it in the matching work
1603 * completion is supported.
1605 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
1606 /* Scatter FCS field of an incoming packet to host memory is supported.
1608 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
1609 /* Checksum offloads are supported (for both send and receive). */
1610 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
1611 /* When a packet is received for an RQ with no receive WQEs, the
1612 * packet processing is delayed.
1614 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3),
1617 enum ib_wq_type {
1618 IB_WQT_RQ
1621 enum ib_wq_state {
1622 IB_WQS_RESET,
1623 IB_WQS_RDY,
1624 IB_WQS_ERR
1627 struct ib_wq {
1628 struct ib_device *device;
1629 struct ib_uobject *uobject;
1630 void *wq_context;
1631 void (*event_handler)(struct ib_event *, void *);
1632 struct ib_pd *pd;
1633 struct ib_cq *cq;
1634 u32 wq_num;
1635 enum ib_wq_state state;
1636 enum ib_wq_type wq_type;
1637 atomic_t usecnt;
1640 enum ib_wq_flags {
1641 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0,
1642 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1,
1643 IB_WQ_FLAGS_DELAY_DROP = 1 << 2,
1644 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
1647 struct ib_wq_init_attr {
1648 void *wq_context;
1649 enum ib_wq_type wq_type;
1650 u32 max_wr;
1651 u32 max_sge;
1652 struct ib_cq *cq;
1653 void (*event_handler)(struct ib_event *, void *);
1654 u32 create_flags; /* Use enum ib_wq_flags */
1657 enum ib_wq_attr_mask {
1658 IB_WQ_STATE = 1 << 0,
1659 IB_WQ_CUR_STATE = 1 << 1,
1660 IB_WQ_FLAGS = 1 << 2,
1663 struct ib_wq_attr {
1664 enum ib_wq_state wq_state;
1665 enum ib_wq_state curr_wq_state;
1666 u32 flags; /* Use enum ib_wq_flags */
1667 u32 flags_mask; /* Use enum ib_wq_flags */
1670 struct ib_rwq_ind_table {
1671 struct ib_device *device;
1672 struct ib_uobject *uobject;
1673 atomic_t usecnt;
1674 u32 ind_tbl_num;
1675 u32 log_ind_tbl_size;
1676 struct ib_wq **ind_tbl;
1679 struct ib_rwq_ind_table_init_attr {
1680 u32 log_ind_tbl_size;
1681 /* Each entry is a pointer to Receive Work Queue */
1682 struct ib_wq **ind_tbl;
1685 enum port_pkey_state {
1686 IB_PORT_PKEY_NOT_VALID = 0,
1687 IB_PORT_PKEY_VALID = 1,
1688 IB_PORT_PKEY_LISTED = 2,
1691 struct ib_qp_security;
1693 struct ib_port_pkey {
1694 enum port_pkey_state state;
1695 u16 pkey_index;
1696 u8 port_num;
1697 struct list_head qp_list;
1698 struct list_head to_error_list;
1699 struct ib_qp_security *sec;
1702 struct ib_ports_pkeys {
1703 struct ib_port_pkey main;
1704 struct ib_port_pkey alt;
1707 struct ib_qp_security {
1708 struct ib_qp *qp;
1709 struct ib_device *dev;
1710 /* Hold this mutex when changing port and pkey settings. */
1711 struct mutex mutex;
1712 struct ib_ports_pkeys *ports_pkeys;
1713 /* A list of all open shared QP handles. Required to enforce security
1714 * properly for all users of a shared QP.
1716 struct list_head shared_qp_list;
1717 void *security;
1718 bool destroying;
1719 atomic_t error_list_count;
1720 struct completion error_complete;
1721 int error_comps_pending;
1725 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1726 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1728 struct ib_qp {
1729 struct ib_device *device;
1730 struct ib_pd *pd;
1731 struct ib_cq *send_cq;
1732 struct ib_cq *recv_cq;
1733 spinlock_t mr_lock;
1734 int mrs_used;
1735 struct list_head rdma_mrs;
1736 struct list_head sig_mrs;
1737 struct ib_srq *srq;
1738 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1739 struct list_head xrcd_list;
1741 /* count times opened, mcast attaches, flow attaches */
1742 atomic_t usecnt;
1743 struct list_head open_list;
1744 struct ib_qp *real_qp;
1745 struct ib_uobject *uobject;
1746 void (*event_handler)(struct ib_event *, void *);
1747 void *qp_context;
1748 u32 qp_num;
1749 u32 max_write_sge;
1750 u32 max_read_sge;
1751 enum ib_qp_type qp_type;
1752 struct ib_rwq_ind_table *rwq_ind_tbl;
1753 struct ib_qp_security *qp_sec;
1754 u8 port;
1757 * Implementation details of the RDMA core, don't use in drivers:
1759 struct rdma_restrack_entry res;
1762 struct ib_mr {
1763 struct ib_device *device;
1764 struct ib_pd *pd;
1765 u32 lkey;
1766 u32 rkey;
1767 u64 iova;
1768 u64 length;
1769 unsigned int page_size;
1770 bool need_inval;
1771 union {
1772 struct ib_uobject *uobject; /* user */
1773 struct list_head qp_entry; /* FR */
1777 struct ib_mw {
1778 struct ib_device *device;
1779 struct ib_pd *pd;
1780 struct ib_uobject *uobject;
1781 u32 rkey;
1782 enum ib_mw_type type;
1785 struct ib_fmr {
1786 struct ib_device *device;
1787 struct ib_pd *pd;
1788 struct list_head list;
1789 u32 lkey;
1790 u32 rkey;
1793 /* Supported steering options */
1794 enum ib_flow_attr_type {
1795 /* steering according to rule specifications */
1796 IB_FLOW_ATTR_NORMAL = 0x0,
1797 /* default unicast and multicast rule -
1798 * receive all Eth traffic which isn't steered to any QP
1800 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1801 /* default multicast rule -
1802 * receive all Eth multicast traffic which isn't steered to any QP
1804 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1805 /* sniffer rule - receive all port traffic */
1806 IB_FLOW_ATTR_SNIFFER = 0x3
1809 /* Supported steering header types */
1810 enum ib_flow_spec_type {
1811 /* L2 headers*/
1812 IB_FLOW_SPEC_ETH = 0x20,
1813 IB_FLOW_SPEC_IB = 0x22,
1814 /* L3 header*/
1815 IB_FLOW_SPEC_IPV4 = 0x30,
1816 IB_FLOW_SPEC_IPV6 = 0x31,
1817 /* L4 headers*/
1818 IB_FLOW_SPEC_TCP = 0x40,
1819 IB_FLOW_SPEC_UDP = 0x41,
1820 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
1821 IB_FLOW_SPEC_INNER = 0x100,
1822 /* Actions */
1823 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
1824 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
1826 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1827 #define IB_FLOW_SPEC_SUPPORT_LAYERS 8
1829 /* Flow steering rule priority is set according to it's domain.
1830 * Lower domain value means higher priority.
1832 enum ib_flow_domain {
1833 IB_FLOW_DOMAIN_USER,
1834 IB_FLOW_DOMAIN_ETHTOOL,
1835 IB_FLOW_DOMAIN_RFS,
1836 IB_FLOW_DOMAIN_NIC,
1837 IB_FLOW_DOMAIN_NUM /* Must be last */
1840 enum ib_flow_flags {
1841 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1842 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */
1845 struct ib_flow_eth_filter {
1846 u8 dst_mac[6];
1847 u8 src_mac[6];
1848 __be16 ether_type;
1849 __be16 vlan_tag;
1850 /* Must be last */
1851 u8 real_sz[0];
1854 struct ib_flow_spec_eth {
1855 u32 type;
1856 u16 size;
1857 struct ib_flow_eth_filter val;
1858 struct ib_flow_eth_filter mask;
1861 struct ib_flow_ib_filter {
1862 __be16 dlid;
1863 __u8 sl;
1864 /* Must be last */
1865 u8 real_sz[0];
1868 struct ib_flow_spec_ib {
1869 u32 type;
1870 u16 size;
1871 struct ib_flow_ib_filter val;
1872 struct ib_flow_ib_filter mask;
1875 /* IPv4 header flags */
1876 enum ib_ipv4_flags {
1877 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1878 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1879 last have this flag set */
1882 struct ib_flow_ipv4_filter {
1883 __be32 src_ip;
1884 __be32 dst_ip;
1885 u8 proto;
1886 u8 tos;
1887 u8 ttl;
1888 u8 flags;
1889 /* Must be last */
1890 u8 real_sz[0];
1893 struct ib_flow_spec_ipv4 {
1894 u32 type;
1895 u16 size;
1896 struct ib_flow_ipv4_filter val;
1897 struct ib_flow_ipv4_filter mask;
1900 struct ib_flow_ipv6_filter {
1901 u8 src_ip[16];
1902 u8 dst_ip[16];
1903 __be32 flow_label;
1904 u8 next_hdr;
1905 u8 traffic_class;
1906 u8 hop_limit;
1907 /* Must be last */
1908 u8 real_sz[0];
1911 struct ib_flow_spec_ipv6 {
1912 u32 type;
1913 u16 size;
1914 struct ib_flow_ipv6_filter val;
1915 struct ib_flow_ipv6_filter mask;
1918 struct ib_flow_tcp_udp_filter {
1919 __be16 dst_port;
1920 __be16 src_port;
1921 /* Must be last */
1922 u8 real_sz[0];
1925 struct ib_flow_spec_tcp_udp {
1926 u32 type;
1927 u16 size;
1928 struct ib_flow_tcp_udp_filter val;
1929 struct ib_flow_tcp_udp_filter mask;
1932 struct ib_flow_tunnel_filter {
1933 __be32 tunnel_id;
1934 u8 real_sz[0];
1937 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1938 * the tunnel_id from val has the vni value
1940 struct ib_flow_spec_tunnel {
1941 u32 type;
1942 u16 size;
1943 struct ib_flow_tunnel_filter val;
1944 struct ib_flow_tunnel_filter mask;
1947 struct ib_flow_spec_action_tag {
1948 enum ib_flow_spec_type type;
1949 u16 size;
1950 u32 tag_id;
1953 struct ib_flow_spec_action_drop {
1954 enum ib_flow_spec_type type;
1955 u16 size;
1958 union ib_flow_spec {
1959 struct {
1960 u32 type;
1961 u16 size;
1963 struct ib_flow_spec_eth eth;
1964 struct ib_flow_spec_ib ib;
1965 struct ib_flow_spec_ipv4 ipv4;
1966 struct ib_flow_spec_tcp_udp tcp_udp;
1967 struct ib_flow_spec_ipv6 ipv6;
1968 struct ib_flow_spec_tunnel tunnel;
1969 struct ib_flow_spec_action_tag flow_tag;
1970 struct ib_flow_spec_action_drop drop;
1973 struct ib_flow_attr {
1974 enum ib_flow_attr_type type;
1975 u16 size;
1976 u16 priority;
1977 u32 flags;
1978 u8 num_of_specs;
1979 u8 port;
1980 /* Following are the optional layers according to user request
1981 * struct ib_flow_spec_xxx
1982 * struct ib_flow_spec_yyy
1986 struct ib_flow {
1987 struct ib_qp *qp;
1988 struct ib_uobject *uobject;
1991 struct ib_mad_hdr;
1992 struct ib_grh;
1994 enum ib_process_mad_flags {
1995 IB_MAD_IGNORE_MKEY = 1,
1996 IB_MAD_IGNORE_BKEY = 2,
1997 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2000 enum ib_mad_result {
2001 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2002 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2003 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2004 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2007 struct ib_port_cache {
2008 u64 subnet_prefix;
2009 struct ib_pkey_cache *pkey;
2010 struct ib_gid_table *gid;
2011 u8 lmc;
2012 enum ib_port_state port_state;
2015 struct ib_cache {
2016 rwlock_t lock;
2017 struct ib_event_handler event_handler;
2018 struct ib_port_cache *ports;
2021 struct iw_cm_verbs;
2023 struct ib_port_immutable {
2024 int pkey_tbl_len;
2025 int gid_tbl_len;
2026 u32 core_cap_flags;
2027 u32 max_mad_size;
2030 /* rdma netdev type - specifies protocol type */
2031 enum rdma_netdev_t {
2032 RDMA_NETDEV_OPA_VNIC,
2033 RDMA_NETDEV_IPOIB,
2037 * struct rdma_netdev - rdma netdev
2038 * For cases where netstack interfacing is required.
2040 struct rdma_netdev {
2041 void *clnt_priv;
2042 struct ib_device *hca;
2043 u8 port_num;
2045 /* cleanup function must be specified */
2046 void (*free_rdma_netdev)(struct net_device *netdev);
2048 /* control functions */
2049 void (*set_id)(struct net_device *netdev, int id);
2050 /* send packet */
2051 int (*send)(struct net_device *dev, struct sk_buff *skb,
2052 struct ib_ah *address, u32 dqpn);
2053 /* multicast */
2054 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2055 union ib_gid *gid, u16 mlid,
2056 int set_qkey, u32 qkey);
2057 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2058 union ib_gid *gid, u16 mlid);
2061 struct ib_port_pkey_list {
2062 /* Lock to hold while modifying the list. */
2063 spinlock_t list_lock;
2064 struct list_head pkey_list;
2067 struct ib_device {
2068 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2069 struct device *dma_device;
2071 char name[IB_DEVICE_NAME_MAX];
2073 struct list_head event_handler_list;
2074 spinlock_t event_handler_lock;
2076 spinlock_t client_data_lock;
2077 struct list_head core_list;
2078 /* Access to the client_data_list is protected by the client_data_lock
2079 * spinlock and the lists_rwsem read-write semaphore */
2080 struct list_head client_data_list;
2082 struct ib_cache cache;
2084 * port_immutable is indexed by port number
2086 struct ib_port_immutable *port_immutable;
2088 int num_comp_vectors;
2090 struct ib_port_pkey_list *port_pkey_list;
2092 struct iw_cm_verbs *iwcm;
2095 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2096 * driver initialized data. The struct is kfree()'ed by the sysfs
2097 * core when the device is removed. A lifespan of -1 in the return
2098 * struct tells the core to set a default lifespan.
2100 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2101 u8 port_num);
2103 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2104 * @index - The index in the value array we wish to have updated, or
2105 * num_counters if we want all stats updated
2106 * Return codes -
2107 * < 0 - Error, no counters updated
2108 * index - Updated the single counter pointed to by index
2109 * num_counters - Updated all counters (will reset the timestamp
2110 * and prevent further calls for lifespan milliseconds)
2111 * Drivers are allowed to update all counters in leiu of just the
2112 * one given in index at their option
2114 int (*get_hw_stats)(struct ib_device *device,
2115 struct rdma_hw_stats *stats,
2116 u8 port, int index);
2117 int (*query_device)(struct ib_device *device,
2118 struct ib_device_attr *device_attr,
2119 struct ib_udata *udata);
2120 int (*query_port)(struct ib_device *device,
2121 u8 port_num,
2122 struct ib_port_attr *port_attr);
2123 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2124 u8 port_num);
2125 /* When calling get_netdev, the HW vendor's driver should return the
2126 * net device of device @device at port @port_num or NULL if such
2127 * a net device doesn't exist. The vendor driver should call dev_hold
2128 * on this net device. The HW vendor's device driver must guarantee
2129 * that this function returns NULL before the net device reaches
2130 * NETDEV_UNREGISTER_FINAL state.
2132 struct net_device *(*get_netdev)(struct ib_device *device,
2133 u8 port_num);
2134 int (*query_gid)(struct ib_device *device,
2135 u8 port_num, int index,
2136 union ib_gid *gid);
2137 /* When calling add_gid, the HW vendor's driver should
2138 * add the gid of device @device at gid index @index of
2139 * port @port_num to be @gid. Meta-info of that gid (for example,
2140 * the network device related to this gid is available
2141 * at @attr. @context allows the HW vendor driver to store extra
2142 * information together with a GID entry. The HW vendor may allocate
2143 * memory to contain this information and store it in @context when a
2144 * new GID entry is written to. Params are consistent until the next
2145 * call of add_gid or delete_gid. The function should return 0 on
2146 * success or error otherwise. The function could be called
2147 * concurrently for different ports. This function is only called
2148 * when roce_gid_table is used.
2150 int (*add_gid)(struct ib_device *device,
2151 u8 port_num,
2152 unsigned int index,
2153 const union ib_gid *gid,
2154 const struct ib_gid_attr *attr,
2155 void **context);
2156 /* When calling del_gid, the HW vendor's driver should delete the
2157 * gid of device @device at gid index @index of port @port_num.
2158 * Upon the deletion of a GID entry, the HW vendor must free any
2159 * allocated memory. The caller will clear @context afterwards.
2160 * This function is only called when roce_gid_table is used.
2162 int (*del_gid)(struct ib_device *device,
2163 u8 port_num,
2164 unsigned int index,
2165 void **context);
2166 int (*query_pkey)(struct ib_device *device,
2167 u8 port_num, u16 index, u16 *pkey);
2168 int (*modify_device)(struct ib_device *device,
2169 int device_modify_mask,
2170 struct ib_device_modify *device_modify);
2171 int (*modify_port)(struct ib_device *device,
2172 u8 port_num, int port_modify_mask,
2173 struct ib_port_modify *port_modify);
2174 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
2175 struct ib_udata *udata);
2176 int (*dealloc_ucontext)(struct ib_ucontext *context);
2177 int (*mmap)(struct ib_ucontext *context,
2178 struct vm_area_struct *vma);
2179 struct ib_pd * (*alloc_pd)(struct ib_device *device,
2180 struct ib_ucontext *context,
2181 struct ib_udata *udata);
2182 int (*dealloc_pd)(struct ib_pd *pd);
2183 struct ib_ah * (*create_ah)(struct ib_pd *pd,
2184 struct rdma_ah_attr *ah_attr,
2185 struct ib_udata *udata);
2186 int (*modify_ah)(struct ib_ah *ah,
2187 struct rdma_ah_attr *ah_attr);
2188 int (*query_ah)(struct ib_ah *ah,
2189 struct rdma_ah_attr *ah_attr);
2190 int (*destroy_ah)(struct ib_ah *ah);
2191 struct ib_srq * (*create_srq)(struct ib_pd *pd,
2192 struct ib_srq_init_attr *srq_init_attr,
2193 struct ib_udata *udata);
2194 int (*modify_srq)(struct ib_srq *srq,
2195 struct ib_srq_attr *srq_attr,
2196 enum ib_srq_attr_mask srq_attr_mask,
2197 struct ib_udata *udata);
2198 int (*query_srq)(struct ib_srq *srq,
2199 struct ib_srq_attr *srq_attr);
2200 int (*destroy_srq)(struct ib_srq *srq);
2201 int (*post_srq_recv)(struct ib_srq *srq,
2202 struct ib_recv_wr *recv_wr,
2203 struct ib_recv_wr **bad_recv_wr);
2204 struct ib_qp * (*create_qp)(struct ib_pd *pd,
2205 struct ib_qp_init_attr *qp_init_attr,
2206 struct ib_udata *udata);
2207 int (*modify_qp)(struct ib_qp *qp,
2208 struct ib_qp_attr *qp_attr,
2209 int qp_attr_mask,
2210 struct ib_udata *udata);
2211 int (*query_qp)(struct ib_qp *qp,
2212 struct ib_qp_attr *qp_attr,
2213 int qp_attr_mask,
2214 struct ib_qp_init_attr *qp_init_attr);
2215 int (*destroy_qp)(struct ib_qp *qp);
2216 int (*post_send)(struct ib_qp *qp,
2217 struct ib_send_wr *send_wr,
2218 struct ib_send_wr **bad_send_wr);
2219 int (*post_recv)(struct ib_qp *qp,
2220 struct ib_recv_wr *recv_wr,
2221 struct ib_recv_wr **bad_recv_wr);
2222 struct ib_cq * (*create_cq)(struct ib_device *device,
2223 const struct ib_cq_init_attr *attr,
2224 struct ib_ucontext *context,
2225 struct ib_udata *udata);
2226 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
2227 u16 cq_period);
2228 int (*destroy_cq)(struct ib_cq *cq);
2229 int (*resize_cq)(struct ib_cq *cq, int cqe,
2230 struct ib_udata *udata);
2231 int (*poll_cq)(struct ib_cq *cq, int num_entries,
2232 struct ib_wc *wc);
2233 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2234 int (*req_notify_cq)(struct ib_cq *cq,
2235 enum ib_cq_notify_flags flags);
2236 int (*req_ncomp_notif)(struct ib_cq *cq,
2237 int wc_cnt);
2238 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
2239 int mr_access_flags);
2240 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
2241 u64 start, u64 length,
2242 u64 virt_addr,
2243 int mr_access_flags,
2244 struct ib_udata *udata);
2245 int (*rereg_user_mr)(struct ib_mr *mr,
2246 int flags,
2247 u64 start, u64 length,
2248 u64 virt_addr,
2249 int mr_access_flags,
2250 struct ib_pd *pd,
2251 struct ib_udata *udata);
2252 int (*dereg_mr)(struct ib_mr *mr);
2253 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
2254 enum ib_mr_type mr_type,
2255 u32 max_num_sg);
2256 int (*map_mr_sg)(struct ib_mr *mr,
2257 struct scatterlist *sg,
2258 int sg_nents,
2259 unsigned int *sg_offset);
2260 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
2261 enum ib_mw_type type,
2262 struct ib_udata *udata);
2263 int (*dealloc_mw)(struct ib_mw *mw);
2264 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
2265 int mr_access_flags,
2266 struct ib_fmr_attr *fmr_attr);
2267 int (*map_phys_fmr)(struct ib_fmr *fmr,
2268 u64 *page_list, int list_len,
2269 u64 iova);
2270 int (*unmap_fmr)(struct list_head *fmr_list);
2271 int (*dealloc_fmr)(struct ib_fmr *fmr);
2272 int (*attach_mcast)(struct ib_qp *qp,
2273 union ib_gid *gid,
2274 u16 lid);
2275 int (*detach_mcast)(struct ib_qp *qp,
2276 union ib_gid *gid,
2277 u16 lid);
2278 int (*process_mad)(struct ib_device *device,
2279 int process_mad_flags,
2280 u8 port_num,
2281 const struct ib_wc *in_wc,
2282 const struct ib_grh *in_grh,
2283 const struct ib_mad_hdr *in_mad,
2284 size_t in_mad_size,
2285 struct ib_mad_hdr *out_mad,
2286 size_t *out_mad_size,
2287 u16 *out_mad_pkey_index);
2288 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
2289 struct ib_ucontext *ucontext,
2290 struct ib_udata *udata);
2291 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
2292 struct ib_flow * (*create_flow)(struct ib_qp *qp,
2293 struct ib_flow_attr
2294 *flow_attr,
2295 int domain);
2296 int (*destroy_flow)(struct ib_flow *flow_id);
2297 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2298 struct ib_mr_status *mr_status);
2299 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2300 void (*drain_rq)(struct ib_qp *qp);
2301 void (*drain_sq)(struct ib_qp *qp);
2302 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2303 int state);
2304 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2305 struct ifla_vf_info *ivf);
2306 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2307 struct ifla_vf_stats *stats);
2308 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2309 int type);
2310 struct ib_wq * (*create_wq)(struct ib_pd *pd,
2311 struct ib_wq_init_attr *init_attr,
2312 struct ib_udata *udata);
2313 int (*destroy_wq)(struct ib_wq *wq);
2314 int (*modify_wq)(struct ib_wq *wq,
2315 struct ib_wq_attr *attr,
2316 u32 wq_attr_mask,
2317 struct ib_udata *udata);
2318 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device,
2319 struct ib_rwq_ind_table_init_attr *init_attr,
2320 struct ib_udata *udata);
2321 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2323 * rdma netdev operation
2325 * Driver implementing alloc_rdma_netdev must return -EOPNOTSUPP if it
2326 * doesn't support the specified rdma netdev type.
2328 struct net_device *(*alloc_rdma_netdev)(
2329 struct ib_device *device,
2330 u8 port_num,
2331 enum rdma_netdev_t type,
2332 const char *name,
2333 unsigned char name_assign_type,
2334 void (*setup)(struct net_device *));
2336 struct module *owner;
2337 struct device dev;
2338 struct kobject *ports_parent;
2339 struct list_head port_list;
2341 enum {
2342 IB_DEV_UNINITIALIZED,
2343 IB_DEV_REGISTERED,
2344 IB_DEV_UNREGISTERED
2345 } reg_state;
2347 int uverbs_abi_ver;
2348 u64 uverbs_cmd_mask;
2349 u64 uverbs_ex_cmd_mask;
2351 char node_desc[IB_DEVICE_NODE_DESC_MAX];
2352 __be64 node_guid;
2353 u32 local_dma_lkey;
2354 u16 is_switch:1;
2355 u8 node_type;
2356 u8 phys_port_cnt;
2357 struct ib_device_attr attrs;
2358 struct attribute_group *hw_stats_ag;
2359 struct rdma_hw_stats *hw_stats;
2361 #ifdef CONFIG_CGROUP_RDMA
2362 struct rdmacg_device cg_device;
2363 #endif
2365 u32 index;
2367 * Implementation details of the RDMA core, don't use in drivers
2369 struct rdma_restrack_root res;
2372 * The following mandatory functions are used only at device
2373 * registration. Keep functions such as these at the end of this
2374 * structure to avoid cache line misses when accessing struct ib_device
2375 * in fast paths.
2377 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
2378 void (*get_dev_fw_str)(struct ib_device *, char *str);
2379 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2380 int comp_vector);
2382 struct uverbs_root_spec *specs_root;
2385 struct ib_client {
2386 char *name;
2387 void (*add) (struct ib_device *);
2388 void (*remove)(struct ib_device *, void *client_data);
2390 /* Returns the net_dev belonging to this ib_client and matching the
2391 * given parameters.
2392 * @dev: An RDMA device that the net_dev use for communication.
2393 * @port: A physical port number on the RDMA device.
2394 * @pkey: P_Key that the net_dev uses if applicable.
2395 * @gid: A GID that the net_dev uses to communicate.
2396 * @addr: An IP address the net_dev is configured with.
2397 * @client_data: The device's client data set by ib_set_client_data().
2399 * An ib_client that implements a net_dev on top of RDMA devices
2400 * (such as IP over IB) should implement this callback, allowing the
2401 * rdma_cm module to find the right net_dev for a given request.
2403 * The caller is responsible for calling dev_put on the returned
2404 * netdev. */
2405 struct net_device *(*get_net_dev_by_params)(
2406 struct ib_device *dev,
2407 u8 port,
2408 u16 pkey,
2409 const union ib_gid *gid,
2410 const struct sockaddr *addr,
2411 void *client_data);
2412 struct list_head list;
2415 struct ib_device *ib_alloc_device(size_t size);
2416 void ib_dealloc_device(struct ib_device *device);
2418 void ib_get_device_fw_str(struct ib_device *device, char *str);
2420 int ib_register_device(struct ib_device *device,
2421 int (*port_callback)(struct ib_device *,
2422 u8, struct kobject *));
2423 void ib_unregister_device(struct ib_device *device);
2425 int ib_register_client (struct ib_client *client);
2426 void ib_unregister_client(struct ib_client *client);
2428 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2429 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2430 void *data);
2432 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2434 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2437 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2439 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2442 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2443 size_t offset,
2444 size_t len)
2446 const void __user *p = udata->inbuf + offset;
2447 bool ret;
2448 u8 *buf;
2450 if (len > USHRT_MAX)
2451 return false;
2453 buf = memdup_user(p, len);
2454 if (IS_ERR(buf))
2455 return false;
2457 ret = !memchr_inv(buf, 0, len);
2458 kfree(buf);
2459 return ret;
2463 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2464 * contains all required attributes and no attributes not allowed for
2465 * the given QP state transition.
2466 * @cur_state: Current QP state
2467 * @next_state: Next QP state
2468 * @type: QP type
2469 * @mask: Mask of supplied QP attributes
2470 * @ll : link layer of port
2472 * This function is a helper function that a low-level driver's
2473 * modify_qp method can use to validate the consumer's input. It
2474 * checks that cur_state and next_state are valid QP states, that a
2475 * transition from cur_state to next_state is allowed by the IB spec,
2476 * and that the attribute mask supplied is allowed for the transition.
2478 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2479 enum ib_qp_type type, enum ib_qp_attr_mask mask,
2480 enum rdma_link_layer ll);
2482 void ib_register_event_handler(struct ib_event_handler *event_handler);
2483 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2484 void ib_dispatch_event(struct ib_event *event);
2486 int ib_query_port(struct ib_device *device,
2487 u8 port_num, struct ib_port_attr *port_attr);
2489 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2490 u8 port_num);
2493 * rdma_cap_ib_switch - Check if the device is IB switch
2494 * @device: Device to check
2496 * Device driver is responsible for setting is_switch bit on
2497 * in ib_device structure at init time.
2499 * Return: true if the device is IB switch.
2501 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2503 return device->is_switch;
2507 * rdma_start_port - Return the first valid port number for the device
2508 * specified
2510 * @device: Device to be checked
2512 * Return start port number
2514 static inline u8 rdma_start_port(const struct ib_device *device)
2516 return rdma_cap_ib_switch(device) ? 0 : 1;
2520 * rdma_end_port - Return the last valid port number for the device
2521 * specified
2523 * @device: Device to be checked
2525 * Return last port number
2527 static inline u8 rdma_end_port(const struct ib_device *device)
2529 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2532 static inline int rdma_is_port_valid(const struct ib_device *device,
2533 unsigned int port)
2535 return (port >= rdma_start_port(device) &&
2536 port <= rdma_end_port(device));
2539 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2541 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2544 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2546 return device->port_immutable[port_num].core_cap_flags &
2547 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2550 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2552 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2555 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2557 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2560 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2562 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2565 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2567 return rdma_protocol_ib(device, port_num) ||
2568 rdma_protocol_roce(device, port_num);
2571 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
2573 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET;
2576 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
2578 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC;
2582 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2583 * Management Datagrams.
2584 * @device: Device to check
2585 * @port_num: Port number to check
2587 * Management Datagrams (MAD) are a required part of the InfiniBand
2588 * specification and are supported on all InfiniBand devices. A slightly
2589 * extended version are also supported on OPA interfaces.
2591 * Return: true if the port supports sending/receiving of MAD packets.
2593 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2595 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2599 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2600 * Management Datagrams.
2601 * @device: Device to check
2602 * @port_num: Port number to check
2604 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2605 * datagrams with their own versions. These OPA MADs share many but not all of
2606 * the characteristics of InfiniBand MADs.
2608 * OPA MADs differ in the following ways:
2610 * 1) MADs are variable size up to 2K
2611 * IBTA defined MADs remain fixed at 256 bytes
2612 * 2) OPA SMPs must carry valid PKeys
2613 * 3) OPA SMP packets are a different format
2615 * Return: true if the port supports OPA MAD packet formats.
2617 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2619 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2620 == RDMA_CORE_CAP_OPA_MAD;
2624 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2625 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2626 * @device: Device to check
2627 * @port_num: Port number to check
2629 * Each InfiniBand node is required to provide a Subnet Management Agent
2630 * that the subnet manager can access. Prior to the fabric being fully
2631 * configured by the subnet manager, the SMA is accessed via a well known
2632 * interface called the Subnet Management Interface (SMI). This interface
2633 * uses directed route packets to communicate with the SM to get around the
2634 * chicken and egg problem of the SM needing to know what's on the fabric
2635 * in order to configure the fabric, and needing to configure the fabric in
2636 * order to send packets to the devices on the fabric. These directed
2637 * route packets do not need the fabric fully configured in order to reach
2638 * their destination. The SMI is the only method allowed to send
2639 * directed route packets on an InfiniBand fabric.
2641 * Return: true if the port provides an SMI.
2643 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2645 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2649 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2650 * Communication Manager.
2651 * @device: Device to check
2652 * @port_num: Port number to check
2654 * The InfiniBand Communication Manager is one of many pre-defined General
2655 * Service Agents (GSA) that are accessed via the General Service
2656 * Interface (GSI). It's role is to facilitate establishment of connections
2657 * between nodes as well as other management related tasks for established
2658 * connections.
2660 * Return: true if the port supports an IB CM (this does not guarantee that
2661 * a CM is actually running however).
2663 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2665 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2669 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2670 * Communication Manager.
2671 * @device: Device to check
2672 * @port_num: Port number to check
2674 * Similar to above, but specific to iWARP connections which have a different
2675 * managment protocol than InfiniBand.
2677 * Return: true if the port supports an iWARP CM (this does not guarantee that
2678 * a CM is actually running however).
2680 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2682 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2686 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2687 * Subnet Administration.
2688 * @device: Device to check
2689 * @port_num: Port number to check
2691 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2692 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2693 * fabrics, devices should resolve routes to other hosts by contacting the
2694 * SA to query the proper route.
2696 * Return: true if the port should act as a client to the fabric Subnet
2697 * Administration interface. This does not imply that the SA service is
2698 * running locally.
2700 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2702 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2706 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2707 * Multicast.
2708 * @device: Device to check
2709 * @port_num: Port number to check
2711 * InfiniBand multicast registration is more complex than normal IPv4 or
2712 * IPv6 multicast registration. Each Host Channel Adapter must register
2713 * with the Subnet Manager when it wishes to join a multicast group. It
2714 * should do so only once regardless of how many queue pairs it subscribes
2715 * to this group. And it should leave the group only after all queue pairs
2716 * attached to the group have been detached.
2718 * Return: true if the port must undertake the additional adminstrative
2719 * overhead of registering/unregistering with the SM and tracking of the
2720 * total number of queue pairs attached to the multicast group.
2722 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2724 return rdma_cap_ib_sa(device, port_num);
2728 * rdma_cap_af_ib - Check if the port of device has the capability
2729 * Native Infiniband Address.
2730 * @device: Device to check
2731 * @port_num: Port number to check
2733 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2734 * GID. RoCE uses a different mechanism, but still generates a GID via
2735 * a prescribed mechanism and port specific data.
2737 * Return: true if the port uses a GID address to identify devices on the
2738 * network.
2740 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2742 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2746 * rdma_cap_eth_ah - Check if the port of device has the capability
2747 * Ethernet Address Handle.
2748 * @device: Device to check
2749 * @port_num: Port number to check
2751 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2752 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2753 * port. Normally, packet headers are generated by the sending host
2754 * adapter, but when sending connectionless datagrams, we must manually
2755 * inject the proper headers for the fabric we are communicating over.
2757 * Return: true if we are running as a RoCE port and must force the
2758 * addition of a Global Route Header built from our Ethernet Address
2759 * Handle into our header list for connectionless packets.
2761 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2763 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2767 * rdma_cap_opa_ah - Check if the port of device supports
2768 * OPA Address handles
2769 * @device: Device to check
2770 * @port_num: Port number to check
2772 * Return: true if we are running on an OPA device which supports
2773 * the extended OPA addressing.
2775 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
2777 return (device->port_immutable[port_num].core_cap_flags &
2778 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
2782 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2784 * @device: Device
2785 * @port_num: Port number
2787 * This MAD size includes the MAD headers and MAD payload. No other headers
2788 * are included.
2790 * Return the max MAD size required by the Port. Will return 0 if the port
2791 * does not support MADs
2793 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2795 return device->port_immutable[port_num].max_mad_size;
2799 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2800 * @device: Device to check
2801 * @port_num: Port number to check
2803 * RoCE GID table mechanism manages the various GIDs for a device.
2805 * NOTE: if allocating the port's GID table has failed, this call will still
2806 * return true, but any RoCE GID table API will fail.
2808 * Return: true if the port uses RoCE GID table mechanism in order to manage
2809 * its GIDs.
2811 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2812 u8 port_num)
2814 return rdma_protocol_roce(device, port_num) &&
2815 device->add_gid && device->del_gid;
2819 * Check if the device supports READ W/ INVALIDATE.
2821 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2824 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
2825 * has support for it yet.
2827 return rdma_protocol_iwarp(dev, port_num);
2830 int ib_query_gid(struct ib_device *device,
2831 u8 port_num, int index, union ib_gid *gid,
2832 struct ib_gid_attr *attr);
2834 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2835 int state);
2836 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2837 struct ifla_vf_info *info);
2838 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2839 struct ifla_vf_stats *stats);
2840 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2841 int type);
2843 int ib_query_pkey(struct ib_device *device,
2844 u8 port_num, u16 index, u16 *pkey);
2846 int ib_modify_device(struct ib_device *device,
2847 int device_modify_mask,
2848 struct ib_device_modify *device_modify);
2850 int ib_modify_port(struct ib_device *device,
2851 u8 port_num, int port_modify_mask,
2852 struct ib_port_modify *port_modify);
2854 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2855 struct net_device *ndev, u8 *port_num, u16 *index);
2857 int ib_find_pkey(struct ib_device *device,
2858 u8 port_num, u16 pkey, u16 *index);
2860 enum ib_pd_flags {
2862 * Create a memory registration for all memory in the system and place
2863 * the rkey for it into pd->unsafe_global_rkey. This can be used by
2864 * ULPs to avoid the overhead of dynamic MRs.
2866 * This flag is generally considered unsafe and must only be used in
2867 * extremly trusted environments. Every use of it will log a warning
2868 * in the kernel log.
2870 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
2873 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
2874 const char *caller);
2875 #define ib_alloc_pd(device, flags) \
2876 __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
2877 void ib_dealloc_pd(struct ib_pd *pd);
2880 * rdma_create_ah - Creates an address handle for the given address vector.
2881 * @pd: The protection domain associated with the address handle.
2882 * @ah_attr: The attributes of the address vector.
2884 * The address handle is used to reference a local or global destination
2885 * in all UD QP post sends.
2887 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr);
2890 * rdma_create_user_ah - Creates an address handle for the given address vector.
2891 * It resolves destination mac address for ah attribute of RoCE type.
2892 * @pd: The protection domain associated with the address handle.
2893 * @ah_attr: The attributes of the address vector.
2894 * @udata: pointer to user's input output buffer information need by
2895 * provider driver.
2897 * It returns 0 on success and returns appropriate error code on error.
2898 * The address handle is used to reference a local or global destination
2899 * in all UD QP post sends.
2901 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
2902 struct rdma_ah_attr *ah_attr,
2903 struct ib_udata *udata);
2905 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
2906 * work completion.
2907 * @hdr: the L3 header to parse
2908 * @net_type: type of header to parse
2909 * @sgid: place to store source gid
2910 * @dgid: place to store destination gid
2912 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
2913 enum rdma_network_type net_type,
2914 union ib_gid *sgid, union ib_gid *dgid);
2917 * ib_get_rdma_header_version - Get the header version
2918 * @hdr: the L3 header to parse
2920 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
2923 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
2924 * work completion.
2925 * @device: Device on which the received message arrived.
2926 * @port_num: Port on which the received message arrived.
2927 * @wc: Work completion associated with the received message.
2928 * @grh: References the received global route header. This parameter is
2929 * ignored unless the work completion indicates that the GRH is valid.
2930 * @ah_attr: Returned attributes that can be used when creating an address
2931 * handle for replying to the message.
2933 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
2934 const struct ib_wc *wc, const struct ib_grh *grh,
2935 struct rdma_ah_attr *ah_attr);
2938 * ib_create_ah_from_wc - Creates an address handle associated with the
2939 * sender of the specified work completion.
2940 * @pd: The protection domain associated with the address handle.
2941 * @wc: Work completion information associated with a received message.
2942 * @grh: References the received global route header. This parameter is
2943 * ignored unless the work completion indicates that the GRH is valid.
2944 * @port_num: The outbound port number to associate with the address.
2946 * The address handle is used to reference a local or global destination
2947 * in all UD QP post sends.
2949 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2950 const struct ib_grh *grh, u8 port_num);
2953 * rdma_modify_ah - Modifies the address vector associated with an address
2954 * handle.
2955 * @ah: The address handle to modify.
2956 * @ah_attr: The new address vector attributes to associate with the
2957 * address handle.
2959 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2962 * rdma_query_ah - Queries the address vector associated with an address
2963 * handle.
2964 * @ah: The address handle to query.
2965 * @ah_attr: The address vector attributes associated with the address
2966 * handle.
2968 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2971 * rdma_destroy_ah - Destroys an address handle.
2972 * @ah: The address handle to destroy.
2974 int rdma_destroy_ah(struct ib_ah *ah);
2977 * ib_create_srq - Creates a SRQ associated with the specified protection
2978 * domain.
2979 * @pd: The protection domain associated with the SRQ.
2980 * @srq_init_attr: A list of initial attributes required to create the
2981 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2982 * the actual capabilities of the created SRQ.
2984 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2985 * requested size of the SRQ, and set to the actual values allocated
2986 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2987 * will always be at least as large as the requested values.
2989 struct ib_srq *ib_create_srq(struct ib_pd *pd,
2990 struct ib_srq_init_attr *srq_init_attr);
2993 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2994 * @srq: The SRQ to modify.
2995 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2996 * the current values of selected SRQ attributes are returned.
2997 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2998 * are being modified.
3000 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3001 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3002 * the number of receives queued drops below the limit.
3004 int ib_modify_srq(struct ib_srq *srq,
3005 struct ib_srq_attr *srq_attr,
3006 enum ib_srq_attr_mask srq_attr_mask);
3009 * ib_query_srq - Returns the attribute list and current values for the
3010 * specified SRQ.
3011 * @srq: The SRQ to query.
3012 * @srq_attr: The attributes of the specified SRQ.
3014 int ib_query_srq(struct ib_srq *srq,
3015 struct ib_srq_attr *srq_attr);
3018 * ib_destroy_srq - Destroys the specified SRQ.
3019 * @srq: The SRQ to destroy.
3021 int ib_destroy_srq(struct ib_srq *srq);
3024 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3025 * @srq: The SRQ to post the work request on.
3026 * @recv_wr: A list of work requests to post on the receive queue.
3027 * @bad_recv_wr: On an immediate failure, this parameter will reference
3028 * the work request that failed to be posted on the QP.
3030 static inline int ib_post_srq_recv(struct ib_srq *srq,
3031 struct ib_recv_wr *recv_wr,
3032 struct ib_recv_wr **bad_recv_wr)
3034 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
3038 * ib_create_qp - Creates a QP associated with the specified protection
3039 * domain.
3040 * @pd: The protection domain associated with the QP.
3041 * @qp_init_attr: A list of initial attributes required to create the
3042 * QP. If QP creation succeeds, then the attributes are updated to
3043 * the actual capabilities of the created QP.
3045 struct ib_qp *ib_create_qp(struct ib_pd *pd,
3046 struct ib_qp_init_attr *qp_init_attr);
3049 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3050 * @qp: The QP to modify.
3051 * @attr: On input, specifies the QP attributes to modify. On output,
3052 * the current values of selected QP attributes are returned.
3053 * @attr_mask: A bit-mask used to specify which attributes of the QP
3054 * are being modified.
3055 * @udata: pointer to user's input output buffer information
3056 * are being modified.
3057 * It returns 0 on success and returns appropriate error code on error.
3059 int ib_modify_qp_with_udata(struct ib_qp *qp,
3060 struct ib_qp_attr *attr,
3061 int attr_mask,
3062 struct ib_udata *udata);
3065 * ib_modify_qp - Modifies the attributes for the specified QP and then
3066 * transitions the QP to the given state.
3067 * @qp: The QP to modify.
3068 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3069 * the current values of selected QP attributes are returned.
3070 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3071 * are being modified.
3073 int ib_modify_qp(struct ib_qp *qp,
3074 struct ib_qp_attr *qp_attr,
3075 int qp_attr_mask);
3078 * ib_query_qp - Returns the attribute list and current values for the
3079 * specified QP.
3080 * @qp: The QP to query.
3081 * @qp_attr: The attributes of the specified QP.
3082 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3083 * @qp_init_attr: Additional attributes of the selected QP.
3085 * The qp_attr_mask may be used to limit the query to gathering only the
3086 * selected attributes.
3088 int ib_query_qp(struct ib_qp *qp,
3089 struct ib_qp_attr *qp_attr,
3090 int qp_attr_mask,
3091 struct ib_qp_init_attr *qp_init_attr);
3094 * ib_destroy_qp - Destroys the specified QP.
3095 * @qp: The QP to destroy.
3097 int ib_destroy_qp(struct ib_qp *qp);
3100 * ib_open_qp - Obtain a reference to an existing sharable QP.
3101 * @xrcd - XRC domain
3102 * @qp_open_attr: Attributes identifying the QP to open.
3104 * Returns a reference to a sharable QP.
3106 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3107 struct ib_qp_open_attr *qp_open_attr);
3110 * ib_close_qp - Release an external reference to a QP.
3111 * @qp: The QP handle to release
3113 * The opened QP handle is released by the caller. The underlying
3114 * shared QP is not destroyed until all internal references are released.
3116 int ib_close_qp(struct ib_qp *qp);
3119 * ib_post_send - Posts a list of work requests to the send queue of
3120 * the specified QP.
3121 * @qp: The QP to post the work request on.
3122 * @send_wr: A list of work requests to post on the send queue.
3123 * @bad_send_wr: On an immediate failure, this parameter will reference
3124 * the work request that failed to be posted on the QP.
3126 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3127 * error is returned, the QP state shall not be affected,
3128 * ib_post_send() will return an immediate error after queueing any
3129 * earlier work requests in the list.
3131 static inline int ib_post_send(struct ib_qp *qp,
3132 struct ib_send_wr *send_wr,
3133 struct ib_send_wr **bad_send_wr)
3135 return qp->device->post_send(qp, send_wr, bad_send_wr);
3139 * ib_post_recv - Posts a list of work requests to the receive queue of
3140 * the specified QP.
3141 * @qp: The QP to post the work request on.
3142 * @recv_wr: A list of work requests to post on the receive queue.
3143 * @bad_recv_wr: On an immediate failure, this parameter will reference
3144 * the work request that failed to be posted on the QP.
3146 static inline int ib_post_recv(struct ib_qp *qp,
3147 struct ib_recv_wr *recv_wr,
3148 struct ib_recv_wr **bad_recv_wr)
3150 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
3153 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private,
3154 int nr_cqe, int comp_vector,
3155 enum ib_poll_context poll_ctx, const char *caller);
3156 #define ib_alloc_cq(device, priv, nr_cqe, comp_vect, poll_ctx) \
3157 __ib_alloc_cq((device), (priv), (nr_cqe), (comp_vect), (poll_ctx), KBUILD_MODNAME)
3159 void ib_free_cq(struct ib_cq *cq);
3160 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3163 * ib_create_cq - Creates a CQ on the specified device.
3164 * @device: The device on which to create the CQ.
3165 * @comp_handler: A user-specified callback that is invoked when a
3166 * completion event occurs on the CQ.
3167 * @event_handler: A user-specified callback that is invoked when an
3168 * asynchronous event not associated with a completion occurs on the CQ.
3169 * @cq_context: Context associated with the CQ returned to the user via
3170 * the associated completion and event handlers.
3171 * @cq_attr: The attributes the CQ should be created upon.
3173 * Users can examine the cq structure to determine the actual CQ size.
3175 struct ib_cq *ib_create_cq(struct ib_device *device,
3176 ib_comp_handler comp_handler,
3177 void (*event_handler)(struct ib_event *, void *),
3178 void *cq_context,
3179 const struct ib_cq_init_attr *cq_attr);
3182 * ib_resize_cq - Modifies the capacity of the CQ.
3183 * @cq: The CQ to resize.
3184 * @cqe: The minimum size of the CQ.
3186 * Users can examine the cq structure to determine the actual CQ size.
3188 int ib_resize_cq(struct ib_cq *cq, int cqe);
3191 * rdma_set_cq_moderation - Modifies moderation params of the CQ
3192 * @cq: The CQ to modify.
3193 * @cq_count: number of CQEs that will trigger an event
3194 * @cq_period: max period of time in usec before triggering an event
3197 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3200 * ib_destroy_cq - Destroys the specified CQ.
3201 * @cq: The CQ to destroy.
3203 int ib_destroy_cq(struct ib_cq *cq);
3206 * ib_poll_cq - poll a CQ for completion(s)
3207 * @cq:the CQ being polled
3208 * @num_entries:maximum number of completions to return
3209 * @wc:array of at least @num_entries &struct ib_wc where completions
3210 * will be returned
3212 * Poll a CQ for (possibly multiple) completions. If the return value
3213 * is < 0, an error occurred. If the return value is >= 0, it is the
3214 * number of completions returned. If the return value is
3215 * non-negative and < num_entries, then the CQ was emptied.
3217 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3218 struct ib_wc *wc)
3220 return cq->device->poll_cq(cq, num_entries, wc);
3224 * ib_peek_cq - Returns the number of unreaped completions currently
3225 * on the specified CQ.
3226 * @cq: The CQ to peek.
3227 * @wc_cnt: A minimum number of unreaped completions to check for.
3229 * If the number of unreaped completions is greater than or equal to wc_cnt,
3230 * this function returns wc_cnt, otherwise, it returns the actual number of
3231 * unreaped completions.
3233 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
3236 * ib_req_notify_cq - Request completion notification on a CQ.
3237 * @cq: The CQ to generate an event for.
3238 * @flags:
3239 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3240 * to request an event on the next solicited event or next work
3241 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3242 * may also be |ed in to request a hint about missed events, as
3243 * described below.
3245 * Return Value:
3246 * < 0 means an error occurred while requesting notification
3247 * == 0 means notification was requested successfully, and if
3248 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3249 * were missed and it is safe to wait for another event. In
3250 * this case is it guaranteed that any work completions added
3251 * to the CQ since the last CQ poll will trigger a completion
3252 * notification event.
3253 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3254 * in. It means that the consumer must poll the CQ again to
3255 * make sure it is empty to avoid missing an event because of a
3256 * race between requesting notification and an entry being
3257 * added to the CQ. This return value means it is possible
3258 * (but not guaranteed) that a work completion has been added
3259 * to the CQ since the last poll without triggering a
3260 * completion notification event.
3262 static inline int ib_req_notify_cq(struct ib_cq *cq,
3263 enum ib_cq_notify_flags flags)
3265 return cq->device->req_notify_cq(cq, flags);
3269 * ib_req_ncomp_notif - Request completion notification when there are
3270 * at least the specified number of unreaped completions on the CQ.
3271 * @cq: The CQ to generate an event for.
3272 * @wc_cnt: The number of unreaped completions that should be on the
3273 * CQ before an event is generated.
3275 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3277 return cq->device->req_ncomp_notif ?
3278 cq->device->req_ncomp_notif(cq, wc_cnt) :
3279 -ENOSYS;
3283 * ib_dma_mapping_error - check a DMA addr for error
3284 * @dev: The device for which the dma_addr was created
3285 * @dma_addr: The DMA address to check
3287 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3289 return dma_mapping_error(dev->dma_device, dma_addr);
3293 * ib_dma_map_single - Map a kernel virtual address to DMA address
3294 * @dev: The device for which the dma_addr is to be created
3295 * @cpu_addr: The kernel virtual address
3296 * @size: The size of the region in bytes
3297 * @direction: The direction of the DMA
3299 static inline u64 ib_dma_map_single(struct ib_device *dev,
3300 void *cpu_addr, size_t size,
3301 enum dma_data_direction direction)
3303 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3307 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3308 * @dev: The device for which the DMA address was created
3309 * @addr: The DMA address
3310 * @size: The size of the region in bytes
3311 * @direction: The direction of the DMA
3313 static inline void ib_dma_unmap_single(struct ib_device *dev,
3314 u64 addr, size_t size,
3315 enum dma_data_direction direction)
3317 dma_unmap_single(dev->dma_device, addr, size, direction);
3321 * ib_dma_map_page - Map a physical page to DMA address
3322 * @dev: The device for which the dma_addr is to be created
3323 * @page: The page to be mapped
3324 * @offset: The offset within the page
3325 * @size: The size of the region in bytes
3326 * @direction: The direction of the DMA
3328 static inline u64 ib_dma_map_page(struct ib_device *dev,
3329 struct page *page,
3330 unsigned long offset,
3331 size_t size,
3332 enum dma_data_direction direction)
3334 return dma_map_page(dev->dma_device, page, offset, size, direction);
3338 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3339 * @dev: The device for which the DMA address was created
3340 * @addr: The DMA address
3341 * @size: The size of the region in bytes
3342 * @direction: The direction of the DMA
3344 static inline void ib_dma_unmap_page(struct ib_device *dev,
3345 u64 addr, size_t size,
3346 enum dma_data_direction direction)
3348 dma_unmap_page(dev->dma_device, addr, size, direction);
3352 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3353 * @dev: The device for which the DMA addresses are to be created
3354 * @sg: The array of scatter/gather entries
3355 * @nents: The number of scatter/gather entries
3356 * @direction: The direction of the DMA
3358 static inline int ib_dma_map_sg(struct ib_device *dev,
3359 struct scatterlist *sg, int nents,
3360 enum dma_data_direction direction)
3362 return dma_map_sg(dev->dma_device, sg, nents, direction);
3366 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3367 * @dev: The device for which the DMA addresses were created
3368 * @sg: The array of scatter/gather entries
3369 * @nents: The number of scatter/gather entries
3370 * @direction: The direction of the DMA
3372 static inline void ib_dma_unmap_sg(struct ib_device *dev,
3373 struct scatterlist *sg, int nents,
3374 enum dma_data_direction direction)
3376 dma_unmap_sg(dev->dma_device, sg, nents, direction);
3379 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3380 struct scatterlist *sg, int nents,
3381 enum dma_data_direction direction,
3382 unsigned long dma_attrs)
3384 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3385 dma_attrs);
3388 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3389 struct scatterlist *sg, int nents,
3390 enum dma_data_direction direction,
3391 unsigned long dma_attrs)
3393 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
3396 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3397 * @dev: The device for which the DMA addresses were created
3398 * @sg: The scatter/gather entry
3400 * Note: this function is obsolete. To do: change all occurrences of
3401 * ib_sg_dma_address() into sg_dma_address().
3403 static inline u64 ib_sg_dma_address(struct ib_device *dev,
3404 struct scatterlist *sg)
3406 return sg_dma_address(sg);
3410 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3411 * @dev: The device for which the DMA addresses were created
3412 * @sg: The scatter/gather entry
3414 * Note: this function is obsolete. To do: change all occurrences of
3415 * ib_sg_dma_len() into sg_dma_len().
3417 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3418 struct scatterlist *sg)
3420 return sg_dma_len(sg);
3424 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3425 * @dev: The device for which the DMA address was created
3426 * @addr: The DMA address
3427 * @size: The size of the region in bytes
3428 * @dir: The direction of the DMA
3430 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3431 u64 addr,
3432 size_t size,
3433 enum dma_data_direction dir)
3435 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
3439 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3440 * @dev: The device for which the DMA address was created
3441 * @addr: The DMA address
3442 * @size: The size of the region in bytes
3443 * @dir: The direction of the DMA
3445 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3446 u64 addr,
3447 size_t size,
3448 enum dma_data_direction dir)
3450 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
3454 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3455 * @dev: The device for which the DMA address is requested
3456 * @size: The size of the region to allocate in bytes
3457 * @dma_handle: A pointer for returning the DMA address of the region
3458 * @flag: memory allocator flags
3460 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3461 size_t size,
3462 dma_addr_t *dma_handle,
3463 gfp_t flag)
3465 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
3469 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3470 * @dev: The device for which the DMA addresses were allocated
3471 * @size: The size of the region
3472 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3473 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3475 static inline void ib_dma_free_coherent(struct ib_device *dev,
3476 size_t size, void *cpu_addr,
3477 dma_addr_t dma_handle)
3479 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3483 * ib_dereg_mr - Deregisters a memory region and removes it from the
3484 * HCA translation table.
3485 * @mr: The memory region to deregister.
3487 * This function can fail, if the memory region has memory windows bound to it.
3489 int ib_dereg_mr(struct ib_mr *mr);
3491 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3492 enum ib_mr_type mr_type,
3493 u32 max_num_sg);
3496 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3497 * R_Key and L_Key.
3498 * @mr - struct ib_mr pointer to be updated.
3499 * @newkey - new key to be used.
3501 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3503 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3504 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3508 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3509 * for calculating a new rkey for type 2 memory windows.
3510 * @rkey - the rkey to increment.
3512 static inline u32 ib_inc_rkey(u32 rkey)
3514 const u32 mask = 0x000000ff;
3515 return ((rkey + 1) & mask) | (rkey & ~mask);
3519 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3520 * @pd: The protection domain associated with the unmapped region.
3521 * @mr_access_flags: Specifies the memory access rights.
3522 * @fmr_attr: Attributes of the unmapped region.
3524 * A fast memory region must be mapped before it can be used as part of
3525 * a work request.
3527 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3528 int mr_access_flags,
3529 struct ib_fmr_attr *fmr_attr);
3532 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3533 * @fmr: The fast memory region to associate with the pages.
3534 * @page_list: An array of physical pages to map to the fast memory region.
3535 * @list_len: The number of pages in page_list.
3536 * @iova: The I/O virtual address to use with the mapped region.
3538 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3539 u64 *page_list, int list_len,
3540 u64 iova)
3542 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3546 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3547 * @fmr_list: A linked list of fast memory regions to unmap.
3549 int ib_unmap_fmr(struct list_head *fmr_list);
3552 * ib_dealloc_fmr - Deallocates a fast memory region.
3553 * @fmr: The fast memory region to deallocate.
3555 int ib_dealloc_fmr(struct ib_fmr *fmr);
3558 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3559 * @qp: QP to attach to the multicast group. The QP must be type
3560 * IB_QPT_UD.
3561 * @gid: Multicast group GID.
3562 * @lid: Multicast group LID in host byte order.
3564 * In order to send and receive multicast packets, subnet
3565 * administration must have created the multicast group and configured
3566 * the fabric appropriately. The port associated with the specified
3567 * QP must also be a member of the multicast group.
3569 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3572 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3573 * @qp: QP to detach from the multicast group.
3574 * @gid: Multicast group GID.
3575 * @lid: Multicast group LID in host byte order.
3577 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3580 * ib_alloc_xrcd - Allocates an XRC domain.
3581 * @device: The device on which to allocate the XRC domain.
3582 * @caller: Module name for kernel consumers
3584 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller);
3585 #define ib_alloc_xrcd(device) \
3586 __ib_alloc_xrcd((device), KBUILD_MODNAME)
3589 * ib_dealloc_xrcd - Deallocates an XRC domain.
3590 * @xrcd: The XRC domain to deallocate.
3592 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3594 struct ib_flow *ib_create_flow(struct ib_qp *qp,
3595 struct ib_flow_attr *flow_attr, int domain);
3596 int ib_destroy_flow(struct ib_flow *flow_id);
3598 static inline int ib_check_mr_access(int flags)
3601 * Local write permission is required if remote write or
3602 * remote atomic permission is also requested.
3604 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3605 !(flags & IB_ACCESS_LOCAL_WRITE))
3606 return -EINVAL;
3608 return 0;
3612 * ib_check_mr_status: lightweight check of MR status.
3613 * This routine may provide status checks on a selected
3614 * ib_mr. first use is for signature status check.
3616 * @mr: A memory region.
3617 * @check_mask: Bitmask of which checks to perform from
3618 * ib_mr_status_check enumeration.
3619 * @mr_status: The container of relevant status checks.
3620 * failed checks will be indicated in the status bitmask
3621 * and the relevant info shall be in the error item.
3623 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3624 struct ib_mr_status *mr_status);
3626 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3627 u16 pkey, const union ib_gid *gid,
3628 const struct sockaddr *addr);
3629 struct ib_wq *ib_create_wq(struct ib_pd *pd,
3630 struct ib_wq_init_attr *init_attr);
3631 int ib_destroy_wq(struct ib_wq *wq);
3632 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3633 u32 wq_attr_mask);
3634 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3635 struct ib_rwq_ind_table_init_attr*
3636 wq_ind_table_init_attr);
3637 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
3639 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3640 unsigned int *sg_offset, unsigned int page_size);
3642 static inline int
3643 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3644 unsigned int *sg_offset, unsigned int page_size)
3646 int n;
3648 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
3649 mr->iova = 0;
3651 return n;
3654 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
3655 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
3657 void ib_drain_rq(struct ib_qp *qp);
3658 void ib_drain_sq(struct ib_qp *qp);
3659 void ib_drain_qp(struct ib_qp *qp);
3661 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
3663 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
3665 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
3666 return attr->roce.dmac;
3667 return NULL;
3670 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
3672 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3673 attr->ib.dlid = (u16)dlid;
3674 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3675 attr->opa.dlid = dlid;
3678 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
3680 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3681 return attr->ib.dlid;
3682 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3683 return attr->opa.dlid;
3684 return 0;
3687 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
3689 attr->sl = sl;
3692 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
3694 return attr->sl;
3697 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
3698 u8 src_path_bits)
3700 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3701 attr->ib.src_path_bits = src_path_bits;
3702 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3703 attr->opa.src_path_bits = src_path_bits;
3706 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
3708 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3709 return attr->ib.src_path_bits;
3710 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3711 return attr->opa.src_path_bits;
3712 return 0;
3715 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
3716 bool make_grd)
3718 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3719 attr->opa.make_grd = make_grd;
3722 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
3724 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3725 return attr->opa.make_grd;
3726 return false;
3729 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
3731 attr->port_num = port_num;
3734 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
3736 return attr->port_num;
3739 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
3740 u8 static_rate)
3742 attr->static_rate = static_rate;
3745 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
3747 return attr->static_rate;
3750 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
3751 enum ib_ah_flags flag)
3753 attr->ah_flags = flag;
3756 static inline enum ib_ah_flags
3757 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
3759 return attr->ah_flags;
3762 static inline const struct ib_global_route
3763 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
3765 return &attr->grh;
3768 /*To retrieve and modify the grh */
3769 static inline struct ib_global_route
3770 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
3772 return &attr->grh;
3775 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
3777 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3779 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
3782 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
3783 __be64 prefix)
3785 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3787 grh->dgid.global.subnet_prefix = prefix;
3790 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
3791 __be64 if_id)
3793 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3795 grh->dgid.global.interface_id = if_id;
3798 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
3799 union ib_gid *dgid, u32 flow_label,
3800 u8 sgid_index, u8 hop_limit,
3801 u8 traffic_class)
3803 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3805 attr->ah_flags = IB_AH_GRH;
3806 if (dgid)
3807 grh->dgid = *dgid;
3808 grh->flow_label = flow_label;
3809 grh->sgid_index = sgid_index;
3810 grh->hop_limit = hop_limit;
3811 grh->traffic_class = traffic_class;
3815 * rdma_ah_find_type - Return address handle type.
3817 * @dev: Device to be checked
3818 * @port_num: Port number
3820 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
3821 u8 port_num)
3823 if (rdma_protocol_roce(dev, port_num))
3824 return RDMA_AH_ATTR_TYPE_ROCE;
3825 if (rdma_protocol_ib(dev, port_num)) {
3826 if (rdma_cap_opa_ah(dev, port_num))
3827 return RDMA_AH_ATTR_TYPE_OPA;
3828 return RDMA_AH_ATTR_TYPE_IB;
3831 return RDMA_AH_ATTR_TYPE_UNDEFINED;
3835 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
3836 * In the current implementation the only way to get
3837 * get the 32bit lid is from other sources for OPA.
3838 * For IB, lids will always be 16bits so cast the
3839 * value accordingly.
3841 * @lid: A 32bit LID
3843 static inline u16 ib_lid_cpu16(u32 lid)
3845 WARN_ON_ONCE(lid & 0xFFFF0000);
3846 return (u16)lid;
3850 * ib_lid_be16 - Return lid in 16bit BE encoding.
3852 * @lid: A 32bit LID
3854 static inline __be16 ib_lid_be16(u32 lid)
3856 WARN_ON_ONCE(lid & 0xFFFF0000);
3857 return cpu_to_be16((u16)lid);
3861 * ib_get_vector_affinity - Get the affinity mappings of a given completion
3862 * vector
3863 * @device: the rdma device
3864 * @comp_vector: index of completion vector
3866 * Returns NULL on failure, otherwise a corresponding cpu map of the
3867 * completion vector (returns all-cpus map if the device driver doesn't
3868 * implement get_vector_affinity).
3870 static inline const struct cpumask *
3871 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
3873 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
3874 !device->get_vector_affinity)
3875 return NULL;
3877 return device->get_vector_affinity(device, comp_vector);
3882 * rdma_roce_rescan_device - Rescan all of the network devices in the system
3883 * and add their gids, as needed, to the relevant RoCE devices.
3885 * @device: the rdma device
3887 void rdma_roce_rescan_device(struct ib_device *ibdev);
3889 #endif /* IB_VERBS_H */