xtensa: fix high memory/reserved memory collision
[cris-mirror.git] / include / rdma / rdma_cm.h
blob6538a5cc27b6a2031f96fc2611fb3ea210743088
1 /*
2 * Copyright (c) 2005 Voltaire Inc. All rights reserved.
3 * Copyright (c) 2005 Intel Corporation. All rights reserved.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
34 #if !defined(RDMA_CM_H)
35 #define RDMA_CM_H
37 #include <linux/socket.h>
38 #include <linux/in6.h>
39 #include <rdma/ib_addr.h>
40 #include <rdma/ib_sa.h>
43 * Upon receiving a device removal event, users must destroy the associated
44 * RDMA identifier and release all resources allocated with the device.
46 enum rdma_cm_event_type {
47 RDMA_CM_EVENT_ADDR_RESOLVED,
48 RDMA_CM_EVENT_ADDR_ERROR,
49 RDMA_CM_EVENT_ROUTE_RESOLVED,
50 RDMA_CM_EVENT_ROUTE_ERROR,
51 RDMA_CM_EVENT_CONNECT_REQUEST,
52 RDMA_CM_EVENT_CONNECT_RESPONSE,
53 RDMA_CM_EVENT_CONNECT_ERROR,
54 RDMA_CM_EVENT_UNREACHABLE,
55 RDMA_CM_EVENT_REJECTED,
56 RDMA_CM_EVENT_ESTABLISHED,
57 RDMA_CM_EVENT_DISCONNECTED,
58 RDMA_CM_EVENT_DEVICE_REMOVAL,
59 RDMA_CM_EVENT_MULTICAST_JOIN,
60 RDMA_CM_EVENT_MULTICAST_ERROR,
61 RDMA_CM_EVENT_ADDR_CHANGE,
62 RDMA_CM_EVENT_TIMEWAIT_EXIT
65 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event);
67 enum rdma_port_space {
68 RDMA_PS_SDP = 0x0001,
69 RDMA_PS_IPOIB = 0x0002,
70 RDMA_PS_IB = 0x013F,
71 RDMA_PS_TCP = 0x0106,
72 RDMA_PS_UDP = 0x0111,
75 #define RDMA_IB_IP_PS_MASK 0xFFFFFFFFFFFF0000ULL
76 #define RDMA_IB_IP_PS_TCP 0x0000000001060000ULL
77 #define RDMA_IB_IP_PS_UDP 0x0000000001110000ULL
78 #define RDMA_IB_IP_PS_IB 0x00000000013F0000ULL
80 struct rdma_addr {
81 struct sockaddr_storage src_addr;
82 struct sockaddr_storage dst_addr;
83 struct rdma_dev_addr dev_addr;
86 struct rdma_route {
87 struct rdma_addr addr;
88 struct sa_path_rec *path_rec;
89 int num_paths;
92 struct rdma_conn_param {
93 const void *private_data;
94 u8 private_data_len;
95 u8 responder_resources;
96 u8 initiator_depth;
97 u8 flow_control;
98 u8 retry_count; /* ignored when accepting */
99 u8 rnr_retry_count;
100 /* Fields below ignored if a QP is created on the rdma_cm_id. */
101 u8 srq;
102 u32 qp_num;
103 u32 qkey;
106 struct rdma_ud_param {
107 const void *private_data;
108 u8 private_data_len;
109 struct rdma_ah_attr ah_attr;
110 u32 qp_num;
111 u32 qkey;
114 struct rdma_cm_event {
115 enum rdma_cm_event_type event;
116 int status;
117 union {
118 struct rdma_conn_param conn;
119 struct rdma_ud_param ud;
120 } param;
123 enum rdma_cm_state {
124 RDMA_CM_IDLE,
125 RDMA_CM_ADDR_QUERY,
126 RDMA_CM_ADDR_RESOLVED,
127 RDMA_CM_ROUTE_QUERY,
128 RDMA_CM_ROUTE_RESOLVED,
129 RDMA_CM_CONNECT,
130 RDMA_CM_DISCONNECT,
131 RDMA_CM_ADDR_BOUND,
132 RDMA_CM_LISTEN,
133 RDMA_CM_DEVICE_REMOVAL,
134 RDMA_CM_DESTROYING
137 struct rdma_cm_id;
140 * rdma_cm_event_handler - Callback used to report user events.
142 * Notes: Users may not call rdma_destroy_id from this callback to destroy
143 * the passed in id, or a corresponding listen id. Returning a
144 * non-zero value from the callback will destroy the passed in id.
146 typedef int (*rdma_cm_event_handler)(struct rdma_cm_id *id,
147 struct rdma_cm_event *event);
149 struct rdma_cm_id {
150 struct ib_device *device;
151 void *context;
152 struct ib_qp *qp;
153 rdma_cm_event_handler event_handler;
154 struct rdma_route route;
155 enum rdma_port_space ps;
156 enum ib_qp_type qp_type;
157 u8 port_num;
161 * rdma_create_id - Create an RDMA identifier.
163 * @net: The network namespace in which to create the new id.
164 * @event_handler: User callback invoked to report events associated with the
165 * returned rdma_id.
166 * @context: User specified context associated with the id.
167 * @ps: RDMA port space.
168 * @qp_type: type of queue pair associated with the id.
170 * The id holds a reference on the network namespace until it is destroyed.
172 struct rdma_cm_id *rdma_create_id(struct net *net,
173 rdma_cm_event_handler event_handler,
174 void *context, enum rdma_port_space ps,
175 enum ib_qp_type qp_type);
178 * rdma_destroy_id - Destroys an RDMA identifier.
180 * @id: RDMA identifier.
182 * Note: calling this function has the effect of canceling in-flight
183 * asynchronous operations associated with the id.
185 void rdma_destroy_id(struct rdma_cm_id *id);
188 * rdma_bind_addr - Bind an RDMA identifier to a source address and
189 * associated RDMA device, if needed.
191 * @id: RDMA identifier.
192 * @addr: Local address information. Wildcard values are permitted.
194 * This associates a source address with the RDMA identifier before calling
195 * rdma_listen. If a specific local address is given, the RDMA identifier will
196 * be bound to a local RDMA device.
198 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr);
201 * rdma_resolve_addr - Resolve destination and optional source addresses
202 * from IP addresses to an RDMA address. If successful, the specified
203 * rdma_cm_id will be bound to a local device.
205 * @id: RDMA identifier.
206 * @src_addr: Source address information. This parameter may be NULL.
207 * @dst_addr: Destination address information.
208 * @timeout_ms: Time to wait for resolution to complete.
210 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
211 struct sockaddr *dst_addr, int timeout_ms);
214 * rdma_resolve_route - Resolve the RDMA address bound to the RDMA identifier
215 * into route information needed to establish a connection.
217 * This is called on the client side of a connection.
218 * Users must have first called rdma_resolve_addr to resolve a dst_addr
219 * into an RDMA address before calling this routine.
221 int rdma_resolve_route(struct rdma_cm_id *id, int timeout_ms);
224 * rdma_create_qp - Allocate a QP and associate it with the specified RDMA
225 * identifier.
227 * QPs allocated to an rdma_cm_id will automatically be transitioned by the CMA
228 * through their states.
230 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd,
231 struct ib_qp_init_attr *qp_init_attr);
234 * rdma_destroy_qp - Deallocate the QP associated with the specified RDMA
235 * identifier.
237 * Users must destroy any QP associated with an RDMA identifier before
238 * destroying the RDMA ID.
240 void rdma_destroy_qp(struct rdma_cm_id *id);
243 * rdma_init_qp_attr - Initializes the QP attributes for use in transitioning
244 * to a specified QP state.
245 * @id: Communication identifier associated with the QP attributes to
246 * initialize.
247 * @qp_attr: On input, specifies the desired QP state. On output, the
248 * mandatory and desired optional attributes will be set in order to
249 * modify the QP to the specified state.
250 * @qp_attr_mask: The QP attribute mask that may be used to transition the
251 * QP to the specified state.
253 * Users must set the @qp_attr->qp_state to the desired QP state. This call
254 * will set all required attributes for the given transition, along with
255 * known optional attributes. Users may override the attributes returned from
256 * this call before calling ib_modify_qp.
258 * Users that wish to have their QP automatically transitioned through its
259 * states can associate a QP with the rdma_cm_id by calling rdma_create_qp().
261 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr,
262 int *qp_attr_mask);
265 * rdma_connect - Initiate an active connection request.
266 * @id: Connection identifier to connect.
267 * @conn_param: Connection information used for connected QPs.
269 * Users must have resolved a route for the rdma_cm_id to connect with
270 * by having called rdma_resolve_route before calling this routine.
272 * This call will either connect to a remote QP or obtain remote QP
273 * information for unconnected rdma_cm_id's. The actual operation is
274 * based on the rdma_cm_id's port space.
276 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param);
279 * rdma_listen - This function is called by the passive side to
280 * listen for incoming connection requests.
282 * Users must have bound the rdma_cm_id to a local address by calling
283 * rdma_bind_addr before calling this routine.
285 int rdma_listen(struct rdma_cm_id *id, int backlog);
288 * rdma_accept - Called to accept a connection request or response.
289 * @id: Connection identifier associated with the request.
290 * @conn_param: Information needed to establish the connection. This must be
291 * provided if accepting a connection request. If accepting a connection
292 * response, this parameter must be NULL.
294 * Typically, this routine is only called by the listener to accept a connection
295 * request. It must also be called on the active side of a connection if the
296 * user is performing their own QP transitions.
298 * In the case of error, a reject message is sent to the remote side and the
299 * state of the qp associated with the id is modified to error, such that any
300 * previously posted receive buffers would be flushed.
302 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param);
305 * rdma_notify - Notifies the RDMA CM of an asynchronous event that has
306 * occurred on the connection.
307 * @id: Connection identifier to transition to established.
308 * @event: Asynchronous event.
310 * This routine should be invoked by users to notify the CM of relevant
311 * communication events. Events that should be reported to the CM and
312 * when to report them are:
314 * IB_EVENT_COMM_EST - Used when a message is received on a connected
315 * QP before an RTU has been received.
317 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event);
320 * rdma_reject - Called to reject a connection request or response.
322 int rdma_reject(struct rdma_cm_id *id, const void *private_data,
323 u8 private_data_len);
326 * rdma_disconnect - This function disconnects the associated QP and
327 * transitions it into the error state.
329 int rdma_disconnect(struct rdma_cm_id *id);
332 * rdma_join_multicast - Join the multicast group specified by the given
333 * address.
334 * @id: Communication identifier associated with the request.
335 * @addr: Multicast address identifying the group to join.
336 * @join_state: Multicast JoinState bitmap requested by port.
337 * Bitmap is based on IB_SA_MCMEMBER_REC_JOIN_STATE bits.
338 * @context: User-defined context associated with the join request, returned
339 * to the user through the private_data pointer in multicast events.
341 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr,
342 u8 join_state, void *context);
345 * rdma_leave_multicast - Leave the multicast group specified by the given
346 * address.
348 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr);
351 * rdma_set_service_type - Set the type of service associated with a
352 * connection identifier.
353 * @id: Communication identifier to associated with service type.
354 * @tos: Type of service.
356 * The type of service is interpretted as a differentiated service
357 * field (RFC 2474). The service type should be specified before
358 * performing route resolution, as existing communication on the
359 * connection identifier may be unaffected. The type of service
360 * requested may not be supported by the network to all destinations.
362 void rdma_set_service_type(struct rdma_cm_id *id, int tos);
365 * rdma_set_reuseaddr - Allow the reuse of local addresses when binding
366 * the rdma_cm_id.
367 * @id: Communication identifier to configure.
368 * @reuse: Value indicating if the bound address is reusable.
370 * Reuse must be set before an address is bound to the id.
372 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse);
375 * rdma_set_afonly - Specify that listens are restricted to the
376 * bound address family only.
377 * @id: Communication identifer to configure.
378 * @afonly: Value indicating if listens are restricted.
380 * Must be set before identifier is in the listening state.
382 int rdma_set_afonly(struct rdma_cm_id *id, int afonly);
385 * rdma_get_service_id - Return the IB service ID for a specified address.
386 * @id: Communication identifier associated with the address.
387 * @addr: Address for the service ID.
389 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr);
392 * rdma_reject_msg - return a pointer to a reject message string.
393 * @id: Communication identifier that received the REJECT event.
394 * @reason: Value returned in the REJECT event status field.
396 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id,
397 int reason);
399 * rdma_is_consumer_reject - return true if the consumer rejected the connect
400 * request.
401 * @id: Communication identifier that received the REJECT event.
402 * @reason: Value returned in the REJECT event status field.
404 bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason);
407 * rdma_consumer_reject_data - return the consumer reject private data and
408 * length, if any.
409 * @id: Communication identifier that received the REJECT event.
410 * @ev: RDMA CM reject event.
411 * @data_len: Pointer to the resulting length of the consumer data.
413 const void *rdma_consumer_reject_data(struct rdma_cm_id *id,
414 struct rdma_cm_event *ev, u8 *data_len);
417 * rdma_read_gids - Return the SGID and DGID used for establishing
418 * connection. This can be used after rdma_resolve_addr()
419 * on client side. This can be use on new connection
420 * on server side. This is applicable to IB, RoCE, iWarp.
421 * If cm_id is not bound yet to the RDMA device, it doesn't
422 * copy and SGID or DGID to the given pointers.
423 * @id: Communication identifier whose GIDs are queried.
424 * @sgid: Pointer to SGID where SGID will be returned. It is optional.
425 * @dgid: Pointer to DGID where DGID will be returned. It is optional.
426 * Note: This API should not be used by any new ULPs or new code.
427 * Instead, users interested in querying GIDs should refer to path record
428 * of the rdma_cm_id to query the GIDs.
429 * This API is provided for compatibility for existing users.
432 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid,
433 union ib_gid *dgid);
435 #endif /* RDMA_CM_H */