xtensa: fix high memory/reserved memory collision
[cris-mirror.git] / kernel / events / core.c
blob96db9ae5d5af751edd61189407aa064d591b54dd
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
54 #include "internal.h"
56 #include <asm/irq_regs.h>
58 typedef int (*remote_function_f)(void *);
60 struct remote_function_call {
61 struct task_struct *p;
62 remote_function_f func;
63 void *info;
64 int ret;
67 static void remote_function(void *data)
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
72 if (p) {
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
84 return;
87 tfc->ret = tfc->func(tfc->info);
90 /**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
106 struct remote_function_call data = {
107 .p = p,
108 .func = func,
109 .info = info,
110 .ret = -EAGAIN,
112 int ret;
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
120 return ret;
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
128 * Calls the function @func on the remote cpu.
130 * returns: @func return value or -ENXIO when the cpu is offline
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
134 struct remote_function_call data = {
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
141 smp_call_function_single(cpu, remote_function, &data, 1);
143 return data.ret;
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
168 #define TASK_TOMBSTONE ((void *)-1L)
170 static bool is_kernel_event(struct perf_event *event)
172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
176 * On task ctx scheduling...
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
182 * This however results in two special cases:
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
197 struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
203 static int event_function(void *info)
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
207 struct perf_event_context *ctx = event->ctx;
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 int ret = 0;
212 lockdep_assert_irqs_disabled();
214 perf_ctx_lock(cpuctx, task_ctx);
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
219 if (ctx->task) {
220 if (ctx->task != current) {
221 ret = -ESRCH;
222 goto unlock;
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
232 WARN_ON_ONCE(!ctx->is_active);
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
242 efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 perf_ctx_unlock(cpuctx, task_ctx);
246 return ret;
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
251 struct perf_event_context *ctx = event->ctx;
252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
259 if (!event->parent) {
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
265 lockdep_assert_held(&ctx->mutex);
268 if (!task) {
269 cpu_function_call(event->cpu, event_function, &efs);
270 return;
273 if (task == TASK_TOMBSTONE)
274 return;
276 again:
277 if (!task_function_call(task, event_function, &efs))
278 return;
280 raw_spin_lock_irq(&ctx->lock);
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
285 task = ctx->task;
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
294 func(event, NULL, ctx, data);
295 raw_spin_unlock_irq(&ctx->lock);
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
309 lockdep_assert_irqs_disabled();
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
315 task_ctx = ctx;
318 perf_ctx_lock(cpuctx, task_ctx);
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
324 if (task) {
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
341 func(event, cpuctx, ctx, data);
342 unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
352 * branch priv levels that need permission checks
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
358 enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
361 EVENT_TIME = 0x4,
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
395 * perf event paranoia level:
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
398 * 1 - disallow cpu events for unpriv
399 * 2 - disallow kernel profiling for unpriv
401 int sysctl_perf_event_paranoid __read_mostly = 2;
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
407 * max perf event sample rate
409 #define DEFAULT_MAX_SAMPLE_RATE 100000
410 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
415 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
418 static int perf_sample_allowed_ns __read_mostly =
419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
421 static void update_perf_cpu_limits(void)
423 u64 tmp = perf_sample_period_ns;
425 tmp *= sysctl_perf_cpu_time_max_percent;
426 tmp = div_u64(tmp, 100);
427 if (!tmp)
428 tmp = 1;
430 WRITE_ONCE(perf_sample_allowed_ns, tmp);
433 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436 void __user *buffer, size_t *lenp,
437 loff_t *ppos)
439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
441 if (ret || !write)
442 return ret;
445 * If throttling is disabled don't allow the write:
447 if (sysctl_perf_cpu_time_max_percent == 100 ||
448 sysctl_perf_cpu_time_max_percent == 0)
449 return -EINVAL;
451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 update_perf_cpu_limits();
455 return 0;
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 void __user *buffer, size_t *lenp,
462 loff_t *ppos)
464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466 if (ret || !write)
467 return ret;
469 if (sysctl_perf_cpu_time_max_percent == 100 ||
470 sysctl_perf_cpu_time_max_percent == 0) {
471 printk(KERN_WARNING
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns, 0);
474 } else {
475 update_perf_cpu_limits();
478 return 0;
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
490 static u64 __report_avg;
491 static u64 __report_allowed;
493 static void perf_duration_warn(struct irq_work *w)
495 printk_ratelimited(KERN_INFO
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg, __report_allowed,
499 sysctl_perf_event_sample_rate);
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504 void perf_sample_event_took(u64 sample_len_ns)
506 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 u64 running_len;
508 u64 avg_len;
509 u32 max;
511 if (max_len == 0)
512 return;
514 /* Decay the counter by 1 average sample. */
515 running_len = __this_cpu_read(running_sample_length);
516 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 running_len += sample_len_ns;
518 __this_cpu_write(running_sample_length, running_len);
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 * from having to maintain a count.
525 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 if (avg_len <= max_len)
527 return;
529 __report_avg = avg_len;
530 __report_allowed = max_len;
533 * Compute a throttle threshold 25% below the current duration.
535 avg_len += avg_len / 4;
536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 if (avg_len < max)
538 max /= (u32)avg_len;
539 else
540 max = 1;
542 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 WRITE_ONCE(max_samples_per_tick, max);
545 sysctl_perf_event_sample_rate = max * HZ;
546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
548 if (!irq_work_queue(&perf_duration_work)) {
549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550 "kernel.perf_event_max_sample_rate to %d\n",
551 __report_avg, __report_allowed,
552 sysctl_perf_event_sample_rate);
556 static atomic64_t perf_event_id;
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 enum event_type_t event_type);
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562 enum event_type_t event_type,
563 struct task_struct *task);
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
568 void __weak perf_event_print_debug(void) { }
570 extern __weak const char *perf_pmu_name(void)
572 return "pmu";
575 static inline u64 perf_clock(void)
577 return local_clock();
580 static inline u64 perf_event_clock(struct perf_event *event)
582 return event->clock();
586 * State based event timekeeping...
588 * The basic idea is to use event->state to determine which (if any) time
589 * fields to increment with the current delta. This means we only need to
590 * update timestamps when we change state or when they are explicitly requested
591 * (read).
593 * Event groups make things a little more complicated, but not terribly so. The
594 * rules for a group are that if the group leader is OFF the entire group is
595 * OFF, irrespecive of what the group member states are. This results in
596 * __perf_effective_state().
598 * A futher ramification is that when a group leader flips between OFF and
599 * !OFF, we need to update all group member times.
602 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603 * need to make sure the relevant context time is updated before we try and
604 * update our timestamps.
607 static __always_inline enum perf_event_state
608 __perf_effective_state(struct perf_event *event)
610 struct perf_event *leader = event->group_leader;
612 if (leader->state <= PERF_EVENT_STATE_OFF)
613 return leader->state;
615 return event->state;
618 static __always_inline void
619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621 enum perf_event_state state = __perf_effective_state(event);
622 u64 delta = now - event->tstamp;
624 *enabled = event->total_time_enabled;
625 if (state >= PERF_EVENT_STATE_INACTIVE)
626 *enabled += delta;
628 *running = event->total_time_running;
629 if (state >= PERF_EVENT_STATE_ACTIVE)
630 *running += delta;
633 static void perf_event_update_time(struct perf_event *event)
635 u64 now = perf_event_time(event);
637 __perf_update_times(event, now, &event->total_time_enabled,
638 &event->total_time_running);
639 event->tstamp = now;
642 static void perf_event_update_sibling_time(struct perf_event *leader)
644 struct perf_event *sibling;
646 list_for_each_entry(sibling, &leader->sibling_list, group_entry)
647 perf_event_update_time(sibling);
650 static void
651 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653 if (event->state == state)
654 return;
656 perf_event_update_time(event);
658 * If a group leader gets enabled/disabled all its siblings
659 * are affected too.
661 if ((event->state < 0) ^ (state < 0))
662 perf_event_update_sibling_time(event);
664 WRITE_ONCE(event->state, state);
667 #ifdef CONFIG_CGROUP_PERF
669 static inline bool
670 perf_cgroup_match(struct perf_event *event)
672 struct perf_event_context *ctx = event->ctx;
673 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675 /* @event doesn't care about cgroup */
676 if (!event->cgrp)
677 return true;
679 /* wants specific cgroup scope but @cpuctx isn't associated with any */
680 if (!cpuctx->cgrp)
681 return false;
684 * Cgroup scoping is recursive. An event enabled for a cgroup is
685 * also enabled for all its descendant cgroups. If @cpuctx's
686 * cgroup is a descendant of @event's (the test covers identity
687 * case), it's a match.
689 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690 event->cgrp->css.cgroup);
693 static inline void perf_detach_cgroup(struct perf_event *event)
695 css_put(&event->cgrp->css);
696 event->cgrp = NULL;
699 static inline int is_cgroup_event(struct perf_event *event)
701 return event->cgrp != NULL;
704 static inline u64 perf_cgroup_event_time(struct perf_event *event)
706 struct perf_cgroup_info *t;
708 t = per_cpu_ptr(event->cgrp->info, event->cpu);
709 return t->time;
712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714 struct perf_cgroup_info *info;
715 u64 now;
717 now = perf_clock();
719 info = this_cpu_ptr(cgrp->info);
721 info->time += now - info->timestamp;
722 info->timestamp = now;
725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
728 if (cgrp_out)
729 __update_cgrp_time(cgrp_out);
732 static inline void update_cgrp_time_from_event(struct perf_event *event)
734 struct perf_cgroup *cgrp;
737 * ensure we access cgroup data only when needed and
738 * when we know the cgroup is pinned (css_get)
740 if (!is_cgroup_event(event))
741 return;
743 cgrp = perf_cgroup_from_task(current, event->ctx);
745 * Do not update time when cgroup is not active
747 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
748 __update_cgrp_time(event->cgrp);
751 static inline void
752 perf_cgroup_set_timestamp(struct task_struct *task,
753 struct perf_event_context *ctx)
755 struct perf_cgroup *cgrp;
756 struct perf_cgroup_info *info;
759 * ctx->lock held by caller
760 * ensure we do not access cgroup data
761 * unless we have the cgroup pinned (css_get)
763 if (!task || !ctx->nr_cgroups)
764 return;
766 cgrp = perf_cgroup_from_task(task, ctx);
767 info = this_cpu_ptr(cgrp->info);
768 info->timestamp = ctx->timestamp;
771 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
773 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
774 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
777 * reschedule events based on the cgroup constraint of task.
779 * mode SWOUT : schedule out everything
780 * mode SWIN : schedule in based on cgroup for next
782 static void perf_cgroup_switch(struct task_struct *task, int mode)
784 struct perf_cpu_context *cpuctx;
785 struct list_head *list;
786 unsigned long flags;
789 * Disable interrupts and preemption to avoid this CPU's
790 * cgrp_cpuctx_entry to change under us.
792 local_irq_save(flags);
794 list = this_cpu_ptr(&cgrp_cpuctx_list);
795 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
796 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
798 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
799 perf_pmu_disable(cpuctx->ctx.pmu);
801 if (mode & PERF_CGROUP_SWOUT) {
802 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
804 * must not be done before ctxswout due
805 * to event_filter_match() in event_sched_out()
807 cpuctx->cgrp = NULL;
810 if (mode & PERF_CGROUP_SWIN) {
811 WARN_ON_ONCE(cpuctx->cgrp);
813 * set cgrp before ctxsw in to allow
814 * event_filter_match() to not have to pass
815 * task around
816 * we pass the cpuctx->ctx to perf_cgroup_from_task()
817 * because cgorup events are only per-cpu
819 cpuctx->cgrp = perf_cgroup_from_task(task,
820 &cpuctx->ctx);
821 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
823 perf_pmu_enable(cpuctx->ctx.pmu);
824 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
827 local_irq_restore(flags);
830 static inline void perf_cgroup_sched_out(struct task_struct *task,
831 struct task_struct *next)
833 struct perf_cgroup *cgrp1;
834 struct perf_cgroup *cgrp2 = NULL;
836 rcu_read_lock();
838 * we come here when we know perf_cgroup_events > 0
839 * we do not need to pass the ctx here because we know
840 * we are holding the rcu lock
842 cgrp1 = perf_cgroup_from_task(task, NULL);
843 cgrp2 = perf_cgroup_from_task(next, NULL);
846 * only schedule out current cgroup events if we know
847 * that we are switching to a different cgroup. Otherwise,
848 * do no touch the cgroup events.
850 if (cgrp1 != cgrp2)
851 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
853 rcu_read_unlock();
856 static inline void perf_cgroup_sched_in(struct task_struct *prev,
857 struct task_struct *task)
859 struct perf_cgroup *cgrp1;
860 struct perf_cgroup *cgrp2 = NULL;
862 rcu_read_lock();
864 * we come here when we know perf_cgroup_events > 0
865 * we do not need to pass the ctx here because we know
866 * we are holding the rcu lock
868 cgrp1 = perf_cgroup_from_task(task, NULL);
869 cgrp2 = perf_cgroup_from_task(prev, NULL);
872 * only need to schedule in cgroup events if we are changing
873 * cgroup during ctxsw. Cgroup events were not scheduled
874 * out of ctxsw out if that was not the case.
876 if (cgrp1 != cgrp2)
877 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
879 rcu_read_unlock();
882 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
883 struct perf_event_attr *attr,
884 struct perf_event *group_leader)
886 struct perf_cgroup *cgrp;
887 struct cgroup_subsys_state *css;
888 struct fd f = fdget(fd);
889 int ret = 0;
891 if (!f.file)
892 return -EBADF;
894 css = css_tryget_online_from_dir(f.file->f_path.dentry,
895 &perf_event_cgrp_subsys);
896 if (IS_ERR(css)) {
897 ret = PTR_ERR(css);
898 goto out;
901 cgrp = container_of(css, struct perf_cgroup, css);
902 event->cgrp = cgrp;
905 * all events in a group must monitor
906 * the same cgroup because a task belongs
907 * to only one perf cgroup at a time
909 if (group_leader && group_leader->cgrp != cgrp) {
910 perf_detach_cgroup(event);
911 ret = -EINVAL;
913 out:
914 fdput(f);
915 return ret;
918 static inline void
919 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
921 struct perf_cgroup_info *t;
922 t = per_cpu_ptr(event->cgrp->info, event->cpu);
923 event->shadow_ctx_time = now - t->timestamp;
927 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
928 * cleared when last cgroup event is removed.
930 static inline void
931 list_update_cgroup_event(struct perf_event *event,
932 struct perf_event_context *ctx, bool add)
934 struct perf_cpu_context *cpuctx;
935 struct list_head *cpuctx_entry;
937 if (!is_cgroup_event(event))
938 return;
940 if (add && ctx->nr_cgroups++)
941 return;
942 else if (!add && --ctx->nr_cgroups)
943 return;
945 * Because cgroup events are always per-cpu events,
946 * this will always be called from the right CPU.
948 cpuctx = __get_cpu_context(ctx);
949 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
950 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
951 if (add) {
952 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
954 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
955 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
956 cpuctx->cgrp = cgrp;
957 } else {
958 list_del(cpuctx_entry);
959 cpuctx->cgrp = NULL;
963 #else /* !CONFIG_CGROUP_PERF */
965 static inline bool
966 perf_cgroup_match(struct perf_event *event)
968 return true;
971 static inline void perf_detach_cgroup(struct perf_event *event)
974 static inline int is_cgroup_event(struct perf_event *event)
976 return 0;
979 static inline void update_cgrp_time_from_event(struct perf_event *event)
983 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
987 static inline void perf_cgroup_sched_out(struct task_struct *task,
988 struct task_struct *next)
992 static inline void perf_cgroup_sched_in(struct task_struct *prev,
993 struct task_struct *task)
997 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
998 struct perf_event_attr *attr,
999 struct perf_event *group_leader)
1001 return -EINVAL;
1004 static inline void
1005 perf_cgroup_set_timestamp(struct task_struct *task,
1006 struct perf_event_context *ctx)
1010 void
1011 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1015 static inline void
1016 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1020 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1022 return 0;
1025 static inline void
1026 list_update_cgroup_event(struct perf_event *event,
1027 struct perf_event_context *ctx, bool add)
1031 #endif
1034 * set default to be dependent on timer tick just
1035 * like original code
1037 #define PERF_CPU_HRTIMER (1000 / HZ)
1039 * function must be called with interrupts disabled
1041 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1043 struct perf_cpu_context *cpuctx;
1044 int rotations = 0;
1046 lockdep_assert_irqs_disabled();
1048 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1049 rotations = perf_rotate_context(cpuctx);
1051 raw_spin_lock(&cpuctx->hrtimer_lock);
1052 if (rotations)
1053 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1054 else
1055 cpuctx->hrtimer_active = 0;
1056 raw_spin_unlock(&cpuctx->hrtimer_lock);
1058 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1061 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1063 struct hrtimer *timer = &cpuctx->hrtimer;
1064 struct pmu *pmu = cpuctx->ctx.pmu;
1065 u64 interval;
1067 /* no multiplexing needed for SW PMU */
1068 if (pmu->task_ctx_nr == perf_sw_context)
1069 return;
1072 * check default is sane, if not set then force to
1073 * default interval (1/tick)
1075 interval = pmu->hrtimer_interval_ms;
1076 if (interval < 1)
1077 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1079 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1081 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1082 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1083 timer->function = perf_mux_hrtimer_handler;
1086 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1088 struct hrtimer *timer = &cpuctx->hrtimer;
1089 struct pmu *pmu = cpuctx->ctx.pmu;
1090 unsigned long flags;
1092 /* not for SW PMU */
1093 if (pmu->task_ctx_nr == perf_sw_context)
1094 return 0;
1096 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1097 if (!cpuctx->hrtimer_active) {
1098 cpuctx->hrtimer_active = 1;
1099 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1100 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1102 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1104 return 0;
1107 void perf_pmu_disable(struct pmu *pmu)
1109 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1110 if (!(*count)++)
1111 pmu->pmu_disable(pmu);
1114 void perf_pmu_enable(struct pmu *pmu)
1116 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1117 if (!--(*count))
1118 pmu->pmu_enable(pmu);
1121 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1124 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1125 * perf_event_task_tick() are fully serialized because they're strictly cpu
1126 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1127 * disabled, while perf_event_task_tick is called from IRQ context.
1129 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1131 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1133 lockdep_assert_irqs_disabled();
1135 WARN_ON(!list_empty(&ctx->active_ctx_list));
1137 list_add(&ctx->active_ctx_list, head);
1140 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1142 lockdep_assert_irqs_disabled();
1144 WARN_ON(list_empty(&ctx->active_ctx_list));
1146 list_del_init(&ctx->active_ctx_list);
1149 static void get_ctx(struct perf_event_context *ctx)
1151 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1154 static void free_ctx(struct rcu_head *head)
1156 struct perf_event_context *ctx;
1158 ctx = container_of(head, struct perf_event_context, rcu_head);
1159 kfree(ctx->task_ctx_data);
1160 kfree(ctx);
1163 static void put_ctx(struct perf_event_context *ctx)
1165 if (atomic_dec_and_test(&ctx->refcount)) {
1166 if (ctx->parent_ctx)
1167 put_ctx(ctx->parent_ctx);
1168 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1169 put_task_struct(ctx->task);
1170 call_rcu(&ctx->rcu_head, free_ctx);
1175 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1176 * perf_pmu_migrate_context() we need some magic.
1178 * Those places that change perf_event::ctx will hold both
1179 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1181 * Lock ordering is by mutex address. There are two other sites where
1182 * perf_event_context::mutex nests and those are:
1184 * - perf_event_exit_task_context() [ child , 0 ]
1185 * perf_event_exit_event()
1186 * put_event() [ parent, 1 ]
1188 * - perf_event_init_context() [ parent, 0 ]
1189 * inherit_task_group()
1190 * inherit_group()
1191 * inherit_event()
1192 * perf_event_alloc()
1193 * perf_init_event()
1194 * perf_try_init_event() [ child , 1 ]
1196 * While it appears there is an obvious deadlock here -- the parent and child
1197 * nesting levels are inverted between the two. This is in fact safe because
1198 * life-time rules separate them. That is an exiting task cannot fork, and a
1199 * spawning task cannot (yet) exit.
1201 * But remember that that these are parent<->child context relations, and
1202 * migration does not affect children, therefore these two orderings should not
1203 * interact.
1205 * The change in perf_event::ctx does not affect children (as claimed above)
1206 * because the sys_perf_event_open() case will install a new event and break
1207 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1208 * concerned with cpuctx and that doesn't have children.
1210 * The places that change perf_event::ctx will issue:
1212 * perf_remove_from_context();
1213 * synchronize_rcu();
1214 * perf_install_in_context();
1216 * to affect the change. The remove_from_context() + synchronize_rcu() should
1217 * quiesce the event, after which we can install it in the new location. This
1218 * means that only external vectors (perf_fops, prctl) can perturb the event
1219 * while in transit. Therefore all such accessors should also acquire
1220 * perf_event_context::mutex to serialize against this.
1222 * However; because event->ctx can change while we're waiting to acquire
1223 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1224 * function.
1226 * Lock order:
1227 * cred_guard_mutex
1228 * task_struct::perf_event_mutex
1229 * perf_event_context::mutex
1230 * perf_event::child_mutex;
1231 * perf_event_context::lock
1232 * perf_event::mmap_mutex
1233 * mmap_sem
1235 * cpu_hotplug_lock
1236 * pmus_lock
1237 * cpuctx->mutex / perf_event_context::mutex
1239 static struct perf_event_context *
1240 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1242 struct perf_event_context *ctx;
1244 again:
1245 rcu_read_lock();
1246 ctx = READ_ONCE(event->ctx);
1247 if (!atomic_inc_not_zero(&ctx->refcount)) {
1248 rcu_read_unlock();
1249 goto again;
1251 rcu_read_unlock();
1253 mutex_lock_nested(&ctx->mutex, nesting);
1254 if (event->ctx != ctx) {
1255 mutex_unlock(&ctx->mutex);
1256 put_ctx(ctx);
1257 goto again;
1260 return ctx;
1263 static inline struct perf_event_context *
1264 perf_event_ctx_lock(struct perf_event *event)
1266 return perf_event_ctx_lock_nested(event, 0);
1269 static void perf_event_ctx_unlock(struct perf_event *event,
1270 struct perf_event_context *ctx)
1272 mutex_unlock(&ctx->mutex);
1273 put_ctx(ctx);
1277 * This must be done under the ctx->lock, such as to serialize against
1278 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1279 * calling scheduler related locks and ctx->lock nests inside those.
1281 static __must_check struct perf_event_context *
1282 unclone_ctx(struct perf_event_context *ctx)
1284 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1286 lockdep_assert_held(&ctx->lock);
1288 if (parent_ctx)
1289 ctx->parent_ctx = NULL;
1290 ctx->generation++;
1292 return parent_ctx;
1295 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1296 enum pid_type type)
1298 u32 nr;
1300 * only top level events have the pid namespace they were created in
1302 if (event->parent)
1303 event = event->parent;
1305 nr = __task_pid_nr_ns(p, type, event->ns);
1306 /* avoid -1 if it is idle thread or runs in another ns */
1307 if (!nr && !pid_alive(p))
1308 nr = -1;
1309 return nr;
1312 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1314 return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1317 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1319 return perf_event_pid_type(event, p, PIDTYPE_PID);
1323 * If we inherit events we want to return the parent event id
1324 * to userspace.
1326 static u64 primary_event_id(struct perf_event *event)
1328 u64 id = event->id;
1330 if (event->parent)
1331 id = event->parent->id;
1333 return id;
1337 * Get the perf_event_context for a task and lock it.
1339 * This has to cope with with the fact that until it is locked,
1340 * the context could get moved to another task.
1342 static struct perf_event_context *
1343 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1345 struct perf_event_context *ctx;
1347 retry:
1349 * One of the few rules of preemptible RCU is that one cannot do
1350 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1351 * part of the read side critical section was irqs-enabled -- see
1352 * rcu_read_unlock_special().
1354 * Since ctx->lock nests under rq->lock we must ensure the entire read
1355 * side critical section has interrupts disabled.
1357 local_irq_save(*flags);
1358 rcu_read_lock();
1359 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1360 if (ctx) {
1362 * If this context is a clone of another, it might
1363 * get swapped for another underneath us by
1364 * perf_event_task_sched_out, though the
1365 * rcu_read_lock() protects us from any context
1366 * getting freed. Lock the context and check if it
1367 * got swapped before we could get the lock, and retry
1368 * if so. If we locked the right context, then it
1369 * can't get swapped on us any more.
1371 raw_spin_lock(&ctx->lock);
1372 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1373 raw_spin_unlock(&ctx->lock);
1374 rcu_read_unlock();
1375 local_irq_restore(*flags);
1376 goto retry;
1379 if (ctx->task == TASK_TOMBSTONE ||
1380 !atomic_inc_not_zero(&ctx->refcount)) {
1381 raw_spin_unlock(&ctx->lock);
1382 ctx = NULL;
1383 } else {
1384 WARN_ON_ONCE(ctx->task != task);
1387 rcu_read_unlock();
1388 if (!ctx)
1389 local_irq_restore(*flags);
1390 return ctx;
1394 * Get the context for a task and increment its pin_count so it
1395 * can't get swapped to another task. This also increments its
1396 * reference count so that the context can't get freed.
1398 static struct perf_event_context *
1399 perf_pin_task_context(struct task_struct *task, int ctxn)
1401 struct perf_event_context *ctx;
1402 unsigned long flags;
1404 ctx = perf_lock_task_context(task, ctxn, &flags);
1405 if (ctx) {
1406 ++ctx->pin_count;
1407 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1409 return ctx;
1412 static void perf_unpin_context(struct perf_event_context *ctx)
1414 unsigned long flags;
1416 raw_spin_lock_irqsave(&ctx->lock, flags);
1417 --ctx->pin_count;
1418 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1422 * Update the record of the current time in a context.
1424 static void update_context_time(struct perf_event_context *ctx)
1426 u64 now = perf_clock();
1428 ctx->time += now - ctx->timestamp;
1429 ctx->timestamp = now;
1432 static u64 perf_event_time(struct perf_event *event)
1434 struct perf_event_context *ctx = event->ctx;
1436 if (is_cgroup_event(event))
1437 return perf_cgroup_event_time(event);
1439 return ctx ? ctx->time : 0;
1442 static enum event_type_t get_event_type(struct perf_event *event)
1444 struct perf_event_context *ctx = event->ctx;
1445 enum event_type_t event_type;
1447 lockdep_assert_held(&ctx->lock);
1450 * It's 'group type', really, because if our group leader is
1451 * pinned, so are we.
1453 if (event->group_leader != event)
1454 event = event->group_leader;
1456 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1457 if (!ctx->task)
1458 event_type |= EVENT_CPU;
1460 return event_type;
1463 static struct list_head *
1464 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1466 if (event->attr.pinned)
1467 return &ctx->pinned_groups;
1468 else
1469 return &ctx->flexible_groups;
1473 * Add a event from the lists for its context.
1474 * Must be called with ctx->mutex and ctx->lock held.
1476 static void
1477 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1479 lockdep_assert_held(&ctx->lock);
1481 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1482 event->attach_state |= PERF_ATTACH_CONTEXT;
1484 event->tstamp = perf_event_time(event);
1487 * If we're a stand alone event or group leader, we go to the context
1488 * list, group events are kept attached to the group so that
1489 * perf_group_detach can, at all times, locate all siblings.
1491 if (event->group_leader == event) {
1492 struct list_head *list;
1494 event->group_caps = event->event_caps;
1496 list = ctx_group_list(event, ctx);
1497 list_add_tail(&event->group_entry, list);
1500 list_update_cgroup_event(event, ctx, true);
1502 list_add_rcu(&event->event_entry, &ctx->event_list);
1503 ctx->nr_events++;
1504 if (event->attr.inherit_stat)
1505 ctx->nr_stat++;
1507 ctx->generation++;
1511 * Initialize event state based on the perf_event_attr::disabled.
1513 static inline void perf_event__state_init(struct perf_event *event)
1515 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1516 PERF_EVENT_STATE_INACTIVE;
1519 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1521 int entry = sizeof(u64); /* value */
1522 int size = 0;
1523 int nr = 1;
1525 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1526 size += sizeof(u64);
1528 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1529 size += sizeof(u64);
1531 if (event->attr.read_format & PERF_FORMAT_ID)
1532 entry += sizeof(u64);
1534 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1535 nr += nr_siblings;
1536 size += sizeof(u64);
1539 size += entry * nr;
1540 event->read_size = size;
1543 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1545 struct perf_sample_data *data;
1546 u16 size = 0;
1548 if (sample_type & PERF_SAMPLE_IP)
1549 size += sizeof(data->ip);
1551 if (sample_type & PERF_SAMPLE_ADDR)
1552 size += sizeof(data->addr);
1554 if (sample_type & PERF_SAMPLE_PERIOD)
1555 size += sizeof(data->period);
1557 if (sample_type & PERF_SAMPLE_WEIGHT)
1558 size += sizeof(data->weight);
1560 if (sample_type & PERF_SAMPLE_READ)
1561 size += event->read_size;
1563 if (sample_type & PERF_SAMPLE_DATA_SRC)
1564 size += sizeof(data->data_src.val);
1566 if (sample_type & PERF_SAMPLE_TRANSACTION)
1567 size += sizeof(data->txn);
1569 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1570 size += sizeof(data->phys_addr);
1572 event->header_size = size;
1576 * Called at perf_event creation and when events are attached/detached from a
1577 * group.
1579 static void perf_event__header_size(struct perf_event *event)
1581 __perf_event_read_size(event,
1582 event->group_leader->nr_siblings);
1583 __perf_event_header_size(event, event->attr.sample_type);
1586 static void perf_event__id_header_size(struct perf_event *event)
1588 struct perf_sample_data *data;
1589 u64 sample_type = event->attr.sample_type;
1590 u16 size = 0;
1592 if (sample_type & PERF_SAMPLE_TID)
1593 size += sizeof(data->tid_entry);
1595 if (sample_type & PERF_SAMPLE_TIME)
1596 size += sizeof(data->time);
1598 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1599 size += sizeof(data->id);
1601 if (sample_type & PERF_SAMPLE_ID)
1602 size += sizeof(data->id);
1604 if (sample_type & PERF_SAMPLE_STREAM_ID)
1605 size += sizeof(data->stream_id);
1607 if (sample_type & PERF_SAMPLE_CPU)
1608 size += sizeof(data->cpu_entry);
1610 event->id_header_size = size;
1613 static bool perf_event_validate_size(struct perf_event *event)
1616 * The values computed here will be over-written when we actually
1617 * attach the event.
1619 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1620 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1621 perf_event__id_header_size(event);
1624 * Sum the lot; should not exceed the 64k limit we have on records.
1625 * Conservative limit to allow for callchains and other variable fields.
1627 if (event->read_size + event->header_size +
1628 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1629 return false;
1631 return true;
1634 static void perf_group_attach(struct perf_event *event)
1636 struct perf_event *group_leader = event->group_leader, *pos;
1638 lockdep_assert_held(&event->ctx->lock);
1641 * We can have double attach due to group movement in perf_event_open.
1643 if (event->attach_state & PERF_ATTACH_GROUP)
1644 return;
1646 event->attach_state |= PERF_ATTACH_GROUP;
1648 if (group_leader == event)
1649 return;
1651 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1653 group_leader->group_caps &= event->event_caps;
1655 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1656 group_leader->nr_siblings++;
1658 perf_event__header_size(group_leader);
1660 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1661 perf_event__header_size(pos);
1665 * Remove a event from the lists for its context.
1666 * Must be called with ctx->mutex and ctx->lock held.
1668 static void
1669 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1671 WARN_ON_ONCE(event->ctx != ctx);
1672 lockdep_assert_held(&ctx->lock);
1675 * We can have double detach due to exit/hot-unplug + close.
1677 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1678 return;
1680 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1682 list_update_cgroup_event(event, ctx, false);
1684 ctx->nr_events--;
1685 if (event->attr.inherit_stat)
1686 ctx->nr_stat--;
1688 list_del_rcu(&event->event_entry);
1690 if (event->group_leader == event)
1691 list_del_init(&event->group_entry);
1694 * If event was in error state, then keep it
1695 * that way, otherwise bogus counts will be
1696 * returned on read(). The only way to get out
1697 * of error state is by explicit re-enabling
1698 * of the event
1700 if (event->state > PERF_EVENT_STATE_OFF)
1701 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1703 ctx->generation++;
1706 static void perf_group_detach(struct perf_event *event)
1708 struct perf_event *sibling, *tmp;
1709 struct list_head *list = NULL;
1711 lockdep_assert_held(&event->ctx->lock);
1714 * We can have double detach due to exit/hot-unplug + close.
1716 if (!(event->attach_state & PERF_ATTACH_GROUP))
1717 return;
1719 event->attach_state &= ~PERF_ATTACH_GROUP;
1722 * If this is a sibling, remove it from its group.
1724 if (event->group_leader != event) {
1725 list_del_init(&event->group_entry);
1726 event->group_leader->nr_siblings--;
1727 goto out;
1730 if (!list_empty(&event->group_entry))
1731 list = &event->group_entry;
1734 * If this was a group event with sibling events then
1735 * upgrade the siblings to singleton events by adding them
1736 * to whatever list we are on.
1738 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1739 if (list)
1740 list_move_tail(&sibling->group_entry, list);
1741 sibling->group_leader = sibling;
1743 /* Inherit group flags from the previous leader */
1744 sibling->group_caps = event->group_caps;
1746 WARN_ON_ONCE(sibling->ctx != event->ctx);
1749 out:
1750 perf_event__header_size(event->group_leader);
1752 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1753 perf_event__header_size(tmp);
1756 static bool is_orphaned_event(struct perf_event *event)
1758 return event->state == PERF_EVENT_STATE_DEAD;
1761 static inline int __pmu_filter_match(struct perf_event *event)
1763 struct pmu *pmu = event->pmu;
1764 return pmu->filter_match ? pmu->filter_match(event) : 1;
1768 * Check whether we should attempt to schedule an event group based on
1769 * PMU-specific filtering. An event group can consist of HW and SW events,
1770 * potentially with a SW leader, so we must check all the filters, to
1771 * determine whether a group is schedulable:
1773 static inline int pmu_filter_match(struct perf_event *event)
1775 struct perf_event *child;
1777 if (!__pmu_filter_match(event))
1778 return 0;
1780 list_for_each_entry(child, &event->sibling_list, group_entry) {
1781 if (!__pmu_filter_match(child))
1782 return 0;
1785 return 1;
1788 static inline int
1789 event_filter_match(struct perf_event *event)
1791 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1792 perf_cgroup_match(event) && pmu_filter_match(event);
1795 static void
1796 event_sched_out(struct perf_event *event,
1797 struct perf_cpu_context *cpuctx,
1798 struct perf_event_context *ctx)
1800 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1802 WARN_ON_ONCE(event->ctx != ctx);
1803 lockdep_assert_held(&ctx->lock);
1805 if (event->state != PERF_EVENT_STATE_ACTIVE)
1806 return;
1808 perf_pmu_disable(event->pmu);
1810 event->pmu->del(event, 0);
1811 event->oncpu = -1;
1813 if (event->pending_disable) {
1814 event->pending_disable = 0;
1815 state = PERF_EVENT_STATE_OFF;
1817 perf_event_set_state(event, state);
1819 if (!is_software_event(event))
1820 cpuctx->active_oncpu--;
1821 if (!--ctx->nr_active)
1822 perf_event_ctx_deactivate(ctx);
1823 if (event->attr.freq && event->attr.sample_freq)
1824 ctx->nr_freq--;
1825 if (event->attr.exclusive || !cpuctx->active_oncpu)
1826 cpuctx->exclusive = 0;
1828 perf_pmu_enable(event->pmu);
1831 static void
1832 group_sched_out(struct perf_event *group_event,
1833 struct perf_cpu_context *cpuctx,
1834 struct perf_event_context *ctx)
1836 struct perf_event *event;
1838 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
1839 return;
1841 perf_pmu_disable(ctx->pmu);
1843 event_sched_out(group_event, cpuctx, ctx);
1846 * Schedule out siblings (if any):
1848 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1849 event_sched_out(event, cpuctx, ctx);
1851 perf_pmu_enable(ctx->pmu);
1853 if (group_event->attr.exclusive)
1854 cpuctx->exclusive = 0;
1857 #define DETACH_GROUP 0x01UL
1860 * Cross CPU call to remove a performance event
1862 * We disable the event on the hardware level first. After that we
1863 * remove it from the context list.
1865 static void
1866 __perf_remove_from_context(struct perf_event *event,
1867 struct perf_cpu_context *cpuctx,
1868 struct perf_event_context *ctx,
1869 void *info)
1871 unsigned long flags = (unsigned long)info;
1873 if (ctx->is_active & EVENT_TIME) {
1874 update_context_time(ctx);
1875 update_cgrp_time_from_cpuctx(cpuctx);
1878 event_sched_out(event, cpuctx, ctx);
1879 if (flags & DETACH_GROUP)
1880 perf_group_detach(event);
1881 list_del_event(event, ctx);
1883 if (!ctx->nr_events && ctx->is_active) {
1884 ctx->is_active = 0;
1885 if (ctx->task) {
1886 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1887 cpuctx->task_ctx = NULL;
1893 * Remove the event from a task's (or a CPU's) list of events.
1895 * If event->ctx is a cloned context, callers must make sure that
1896 * every task struct that event->ctx->task could possibly point to
1897 * remains valid. This is OK when called from perf_release since
1898 * that only calls us on the top-level context, which can't be a clone.
1899 * When called from perf_event_exit_task, it's OK because the
1900 * context has been detached from its task.
1902 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1904 struct perf_event_context *ctx = event->ctx;
1906 lockdep_assert_held(&ctx->mutex);
1908 event_function_call(event, __perf_remove_from_context, (void *)flags);
1911 * The above event_function_call() can NO-OP when it hits
1912 * TASK_TOMBSTONE. In that case we must already have been detached
1913 * from the context (by perf_event_exit_event()) but the grouping
1914 * might still be in-tact.
1916 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1917 if ((flags & DETACH_GROUP) &&
1918 (event->attach_state & PERF_ATTACH_GROUP)) {
1920 * Since in that case we cannot possibly be scheduled, simply
1921 * detach now.
1923 raw_spin_lock_irq(&ctx->lock);
1924 perf_group_detach(event);
1925 raw_spin_unlock_irq(&ctx->lock);
1930 * Cross CPU call to disable a performance event
1932 static void __perf_event_disable(struct perf_event *event,
1933 struct perf_cpu_context *cpuctx,
1934 struct perf_event_context *ctx,
1935 void *info)
1937 if (event->state < PERF_EVENT_STATE_INACTIVE)
1938 return;
1940 if (ctx->is_active & EVENT_TIME) {
1941 update_context_time(ctx);
1942 update_cgrp_time_from_event(event);
1945 if (event == event->group_leader)
1946 group_sched_out(event, cpuctx, ctx);
1947 else
1948 event_sched_out(event, cpuctx, ctx);
1950 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1954 * Disable a event.
1956 * If event->ctx is a cloned context, callers must make sure that
1957 * every task struct that event->ctx->task could possibly point to
1958 * remains valid. This condition is satisifed when called through
1959 * perf_event_for_each_child or perf_event_for_each because they
1960 * hold the top-level event's child_mutex, so any descendant that
1961 * goes to exit will block in perf_event_exit_event().
1963 * When called from perf_pending_event it's OK because event->ctx
1964 * is the current context on this CPU and preemption is disabled,
1965 * hence we can't get into perf_event_task_sched_out for this context.
1967 static void _perf_event_disable(struct perf_event *event)
1969 struct perf_event_context *ctx = event->ctx;
1971 raw_spin_lock_irq(&ctx->lock);
1972 if (event->state <= PERF_EVENT_STATE_OFF) {
1973 raw_spin_unlock_irq(&ctx->lock);
1974 return;
1976 raw_spin_unlock_irq(&ctx->lock);
1978 event_function_call(event, __perf_event_disable, NULL);
1981 void perf_event_disable_local(struct perf_event *event)
1983 event_function_local(event, __perf_event_disable, NULL);
1987 * Strictly speaking kernel users cannot create groups and therefore this
1988 * interface does not need the perf_event_ctx_lock() magic.
1990 void perf_event_disable(struct perf_event *event)
1992 struct perf_event_context *ctx;
1994 ctx = perf_event_ctx_lock(event);
1995 _perf_event_disable(event);
1996 perf_event_ctx_unlock(event, ctx);
1998 EXPORT_SYMBOL_GPL(perf_event_disable);
2000 void perf_event_disable_inatomic(struct perf_event *event)
2002 event->pending_disable = 1;
2003 irq_work_queue(&event->pending);
2006 static void perf_set_shadow_time(struct perf_event *event,
2007 struct perf_event_context *ctx)
2010 * use the correct time source for the time snapshot
2012 * We could get by without this by leveraging the
2013 * fact that to get to this function, the caller
2014 * has most likely already called update_context_time()
2015 * and update_cgrp_time_xx() and thus both timestamp
2016 * are identical (or very close). Given that tstamp is,
2017 * already adjusted for cgroup, we could say that:
2018 * tstamp - ctx->timestamp
2019 * is equivalent to
2020 * tstamp - cgrp->timestamp.
2022 * Then, in perf_output_read(), the calculation would
2023 * work with no changes because:
2024 * - event is guaranteed scheduled in
2025 * - no scheduled out in between
2026 * - thus the timestamp would be the same
2028 * But this is a bit hairy.
2030 * So instead, we have an explicit cgroup call to remain
2031 * within the time time source all along. We believe it
2032 * is cleaner and simpler to understand.
2034 if (is_cgroup_event(event))
2035 perf_cgroup_set_shadow_time(event, event->tstamp);
2036 else
2037 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2040 #define MAX_INTERRUPTS (~0ULL)
2042 static void perf_log_throttle(struct perf_event *event, int enable);
2043 static void perf_log_itrace_start(struct perf_event *event);
2045 static int
2046 event_sched_in(struct perf_event *event,
2047 struct perf_cpu_context *cpuctx,
2048 struct perf_event_context *ctx)
2050 int ret = 0;
2052 lockdep_assert_held(&ctx->lock);
2054 if (event->state <= PERF_EVENT_STATE_OFF)
2055 return 0;
2057 WRITE_ONCE(event->oncpu, smp_processor_id());
2059 * Order event::oncpu write to happen before the ACTIVE state is
2060 * visible. This allows perf_event_{stop,read}() to observe the correct
2061 * ->oncpu if it sees ACTIVE.
2063 smp_wmb();
2064 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2067 * Unthrottle events, since we scheduled we might have missed several
2068 * ticks already, also for a heavily scheduling task there is little
2069 * guarantee it'll get a tick in a timely manner.
2071 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2072 perf_log_throttle(event, 1);
2073 event->hw.interrupts = 0;
2076 perf_pmu_disable(event->pmu);
2078 perf_set_shadow_time(event, ctx);
2080 perf_log_itrace_start(event);
2082 if (event->pmu->add(event, PERF_EF_START)) {
2083 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2084 event->oncpu = -1;
2085 ret = -EAGAIN;
2086 goto out;
2089 if (!is_software_event(event))
2090 cpuctx->active_oncpu++;
2091 if (!ctx->nr_active++)
2092 perf_event_ctx_activate(ctx);
2093 if (event->attr.freq && event->attr.sample_freq)
2094 ctx->nr_freq++;
2096 if (event->attr.exclusive)
2097 cpuctx->exclusive = 1;
2099 out:
2100 perf_pmu_enable(event->pmu);
2102 return ret;
2105 static int
2106 group_sched_in(struct perf_event *group_event,
2107 struct perf_cpu_context *cpuctx,
2108 struct perf_event_context *ctx)
2110 struct perf_event *event, *partial_group = NULL;
2111 struct pmu *pmu = ctx->pmu;
2113 if (group_event->state == PERF_EVENT_STATE_OFF)
2114 return 0;
2116 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2118 if (event_sched_in(group_event, cpuctx, ctx)) {
2119 pmu->cancel_txn(pmu);
2120 perf_mux_hrtimer_restart(cpuctx);
2121 return -EAGAIN;
2125 * Schedule in siblings as one group (if any):
2127 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2128 if (event_sched_in(event, cpuctx, ctx)) {
2129 partial_group = event;
2130 goto group_error;
2134 if (!pmu->commit_txn(pmu))
2135 return 0;
2137 group_error:
2139 * Groups can be scheduled in as one unit only, so undo any
2140 * partial group before returning:
2141 * The events up to the failed event are scheduled out normally.
2143 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2144 if (event == partial_group)
2145 break;
2147 event_sched_out(event, cpuctx, ctx);
2149 event_sched_out(group_event, cpuctx, ctx);
2151 pmu->cancel_txn(pmu);
2153 perf_mux_hrtimer_restart(cpuctx);
2155 return -EAGAIN;
2159 * Work out whether we can put this event group on the CPU now.
2161 static int group_can_go_on(struct perf_event *event,
2162 struct perf_cpu_context *cpuctx,
2163 int can_add_hw)
2166 * Groups consisting entirely of software events can always go on.
2168 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2169 return 1;
2171 * If an exclusive group is already on, no other hardware
2172 * events can go on.
2174 if (cpuctx->exclusive)
2175 return 0;
2177 * If this group is exclusive and there are already
2178 * events on the CPU, it can't go on.
2180 if (event->attr.exclusive && cpuctx->active_oncpu)
2181 return 0;
2183 * Otherwise, try to add it if all previous groups were able
2184 * to go on.
2186 return can_add_hw;
2189 static void add_event_to_ctx(struct perf_event *event,
2190 struct perf_event_context *ctx)
2192 list_add_event(event, ctx);
2193 perf_group_attach(event);
2196 static void ctx_sched_out(struct perf_event_context *ctx,
2197 struct perf_cpu_context *cpuctx,
2198 enum event_type_t event_type);
2199 static void
2200 ctx_sched_in(struct perf_event_context *ctx,
2201 struct perf_cpu_context *cpuctx,
2202 enum event_type_t event_type,
2203 struct task_struct *task);
2205 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2206 struct perf_event_context *ctx,
2207 enum event_type_t event_type)
2209 if (!cpuctx->task_ctx)
2210 return;
2212 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2213 return;
2215 ctx_sched_out(ctx, cpuctx, event_type);
2218 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2219 struct perf_event_context *ctx,
2220 struct task_struct *task)
2222 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2223 if (ctx)
2224 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2225 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2226 if (ctx)
2227 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2231 * We want to maintain the following priority of scheduling:
2232 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2233 * - task pinned (EVENT_PINNED)
2234 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2235 * - task flexible (EVENT_FLEXIBLE).
2237 * In order to avoid unscheduling and scheduling back in everything every
2238 * time an event is added, only do it for the groups of equal priority and
2239 * below.
2241 * This can be called after a batch operation on task events, in which case
2242 * event_type is a bit mask of the types of events involved. For CPU events,
2243 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2245 static void ctx_resched(struct perf_cpu_context *cpuctx,
2246 struct perf_event_context *task_ctx,
2247 enum event_type_t event_type)
2249 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2250 bool cpu_event = !!(event_type & EVENT_CPU);
2253 * If pinned groups are involved, flexible groups also need to be
2254 * scheduled out.
2256 if (event_type & EVENT_PINNED)
2257 event_type |= EVENT_FLEXIBLE;
2259 perf_pmu_disable(cpuctx->ctx.pmu);
2260 if (task_ctx)
2261 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2264 * Decide which cpu ctx groups to schedule out based on the types
2265 * of events that caused rescheduling:
2266 * - EVENT_CPU: schedule out corresponding groups;
2267 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2268 * - otherwise, do nothing more.
2270 if (cpu_event)
2271 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2272 else if (ctx_event_type & EVENT_PINNED)
2273 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2275 perf_event_sched_in(cpuctx, task_ctx, current);
2276 perf_pmu_enable(cpuctx->ctx.pmu);
2280 * Cross CPU call to install and enable a performance event
2282 * Very similar to remote_function() + event_function() but cannot assume that
2283 * things like ctx->is_active and cpuctx->task_ctx are set.
2285 static int __perf_install_in_context(void *info)
2287 struct perf_event *event = info;
2288 struct perf_event_context *ctx = event->ctx;
2289 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2290 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2291 bool reprogram = true;
2292 int ret = 0;
2294 raw_spin_lock(&cpuctx->ctx.lock);
2295 if (ctx->task) {
2296 raw_spin_lock(&ctx->lock);
2297 task_ctx = ctx;
2299 reprogram = (ctx->task == current);
2302 * If the task is running, it must be running on this CPU,
2303 * otherwise we cannot reprogram things.
2305 * If its not running, we don't care, ctx->lock will
2306 * serialize against it becoming runnable.
2308 if (task_curr(ctx->task) && !reprogram) {
2309 ret = -ESRCH;
2310 goto unlock;
2313 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2314 } else if (task_ctx) {
2315 raw_spin_lock(&task_ctx->lock);
2318 if (reprogram) {
2319 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2320 add_event_to_ctx(event, ctx);
2321 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2322 } else {
2323 add_event_to_ctx(event, ctx);
2326 unlock:
2327 perf_ctx_unlock(cpuctx, task_ctx);
2329 return ret;
2333 * Attach a performance event to a context.
2335 * Very similar to event_function_call, see comment there.
2337 static void
2338 perf_install_in_context(struct perf_event_context *ctx,
2339 struct perf_event *event,
2340 int cpu)
2342 struct task_struct *task = READ_ONCE(ctx->task);
2344 lockdep_assert_held(&ctx->mutex);
2346 if (event->cpu != -1)
2347 event->cpu = cpu;
2350 * Ensures that if we can observe event->ctx, both the event and ctx
2351 * will be 'complete'. See perf_iterate_sb_cpu().
2353 smp_store_release(&event->ctx, ctx);
2355 if (!task) {
2356 cpu_function_call(cpu, __perf_install_in_context, event);
2357 return;
2361 * Should not happen, we validate the ctx is still alive before calling.
2363 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2364 return;
2367 * Installing events is tricky because we cannot rely on ctx->is_active
2368 * to be set in case this is the nr_events 0 -> 1 transition.
2370 * Instead we use task_curr(), which tells us if the task is running.
2371 * However, since we use task_curr() outside of rq::lock, we can race
2372 * against the actual state. This means the result can be wrong.
2374 * If we get a false positive, we retry, this is harmless.
2376 * If we get a false negative, things are complicated. If we are after
2377 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2378 * value must be correct. If we're before, it doesn't matter since
2379 * perf_event_context_sched_in() will program the counter.
2381 * However, this hinges on the remote context switch having observed
2382 * our task->perf_event_ctxp[] store, such that it will in fact take
2383 * ctx::lock in perf_event_context_sched_in().
2385 * We do this by task_function_call(), if the IPI fails to hit the task
2386 * we know any future context switch of task must see the
2387 * perf_event_ctpx[] store.
2391 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2392 * task_cpu() load, such that if the IPI then does not find the task
2393 * running, a future context switch of that task must observe the
2394 * store.
2396 smp_mb();
2397 again:
2398 if (!task_function_call(task, __perf_install_in_context, event))
2399 return;
2401 raw_spin_lock_irq(&ctx->lock);
2402 task = ctx->task;
2403 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2405 * Cannot happen because we already checked above (which also
2406 * cannot happen), and we hold ctx->mutex, which serializes us
2407 * against perf_event_exit_task_context().
2409 raw_spin_unlock_irq(&ctx->lock);
2410 return;
2413 * If the task is not running, ctx->lock will avoid it becoming so,
2414 * thus we can safely install the event.
2416 if (task_curr(task)) {
2417 raw_spin_unlock_irq(&ctx->lock);
2418 goto again;
2420 add_event_to_ctx(event, ctx);
2421 raw_spin_unlock_irq(&ctx->lock);
2425 * Cross CPU call to enable a performance event
2427 static void __perf_event_enable(struct perf_event *event,
2428 struct perf_cpu_context *cpuctx,
2429 struct perf_event_context *ctx,
2430 void *info)
2432 struct perf_event *leader = event->group_leader;
2433 struct perf_event_context *task_ctx;
2435 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2436 event->state <= PERF_EVENT_STATE_ERROR)
2437 return;
2439 if (ctx->is_active)
2440 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2442 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2444 if (!ctx->is_active)
2445 return;
2447 if (!event_filter_match(event)) {
2448 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2449 return;
2453 * If the event is in a group and isn't the group leader,
2454 * then don't put it on unless the group is on.
2456 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2457 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2458 return;
2461 task_ctx = cpuctx->task_ctx;
2462 if (ctx->task)
2463 WARN_ON_ONCE(task_ctx != ctx);
2465 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2469 * Enable a event.
2471 * If event->ctx is a cloned context, callers must make sure that
2472 * every task struct that event->ctx->task could possibly point to
2473 * remains valid. This condition is satisfied when called through
2474 * perf_event_for_each_child or perf_event_for_each as described
2475 * for perf_event_disable.
2477 static void _perf_event_enable(struct perf_event *event)
2479 struct perf_event_context *ctx = event->ctx;
2481 raw_spin_lock_irq(&ctx->lock);
2482 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2483 event->state < PERF_EVENT_STATE_ERROR) {
2484 raw_spin_unlock_irq(&ctx->lock);
2485 return;
2489 * If the event is in error state, clear that first.
2491 * That way, if we see the event in error state below, we know that it
2492 * has gone back into error state, as distinct from the task having
2493 * been scheduled away before the cross-call arrived.
2495 if (event->state == PERF_EVENT_STATE_ERROR)
2496 event->state = PERF_EVENT_STATE_OFF;
2497 raw_spin_unlock_irq(&ctx->lock);
2499 event_function_call(event, __perf_event_enable, NULL);
2503 * See perf_event_disable();
2505 void perf_event_enable(struct perf_event *event)
2507 struct perf_event_context *ctx;
2509 ctx = perf_event_ctx_lock(event);
2510 _perf_event_enable(event);
2511 perf_event_ctx_unlock(event, ctx);
2513 EXPORT_SYMBOL_GPL(perf_event_enable);
2515 struct stop_event_data {
2516 struct perf_event *event;
2517 unsigned int restart;
2520 static int __perf_event_stop(void *info)
2522 struct stop_event_data *sd = info;
2523 struct perf_event *event = sd->event;
2525 /* if it's already INACTIVE, do nothing */
2526 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2527 return 0;
2529 /* matches smp_wmb() in event_sched_in() */
2530 smp_rmb();
2533 * There is a window with interrupts enabled before we get here,
2534 * so we need to check again lest we try to stop another CPU's event.
2536 if (READ_ONCE(event->oncpu) != smp_processor_id())
2537 return -EAGAIN;
2539 event->pmu->stop(event, PERF_EF_UPDATE);
2542 * May race with the actual stop (through perf_pmu_output_stop()),
2543 * but it is only used for events with AUX ring buffer, and such
2544 * events will refuse to restart because of rb::aux_mmap_count==0,
2545 * see comments in perf_aux_output_begin().
2547 * Since this is happening on a event-local CPU, no trace is lost
2548 * while restarting.
2550 if (sd->restart)
2551 event->pmu->start(event, 0);
2553 return 0;
2556 static int perf_event_stop(struct perf_event *event, int restart)
2558 struct stop_event_data sd = {
2559 .event = event,
2560 .restart = restart,
2562 int ret = 0;
2564 do {
2565 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2566 return 0;
2568 /* matches smp_wmb() in event_sched_in() */
2569 smp_rmb();
2572 * We only want to restart ACTIVE events, so if the event goes
2573 * inactive here (event->oncpu==-1), there's nothing more to do;
2574 * fall through with ret==-ENXIO.
2576 ret = cpu_function_call(READ_ONCE(event->oncpu),
2577 __perf_event_stop, &sd);
2578 } while (ret == -EAGAIN);
2580 return ret;
2584 * In order to contain the amount of racy and tricky in the address filter
2585 * configuration management, it is a two part process:
2587 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2588 * we update the addresses of corresponding vmas in
2589 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2590 * (p2) when an event is scheduled in (pmu::add), it calls
2591 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2592 * if the generation has changed since the previous call.
2594 * If (p1) happens while the event is active, we restart it to force (p2).
2596 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2597 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2598 * ioctl;
2599 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2600 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2601 * for reading;
2602 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2603 * of exec.
2605 void perf_event_addr_filters_sync(struct perf_event *event)
2607 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2609 if (!has_addr_filter(event))
2610 return;
2612 raw_spin_lock(&ifh->lock);
2613 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2614 event->pmu->addr_filters_sync(event);
2615 event->hw.addr_filters_gen = event->addr_filters_gen;
2617 raw_spin_unlock(&ifh->lock);
2619 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2621 static int _perf_event_refresh(struct perf_event *event, int refresh)
2624 * not supported on inherited events
2626 if (event->attr.inherit || !is_sampling_event(event))
2627 return -EINVAL;
2629 atomic_add(refresh, &event->event_limit);
2630 _perf_event_enable(event);
2632 return 0;
2636 * See perf_event_disable()
2638 int perf_event_refresh(struct perf_event *event, int refresh)
2640 struct perf_event_context *ctx;
2641 int ret;
2643 ctx = perf_event_ctx_lock(event);
2644 ret = _perf_event_refresh(event, refresh);
2645 perf_event_ctx_unlock(event, ctx);
2647 return ret;
2649 EXPORT_SYMBOL_GPL(perf_event_refresh);
2651 static void ctx_sched_out(struct perf_event_context *ctx,
2652 struct perf_cpu_context *cpuctx,
2653 enum event_type_t event_type)
2655 int is_active = ctx->is_active;
2656 struct perf_event *event;
2658 lockdep_assert_held(&ctx->lock);
2660 if (likely(!ctx->nr_events)) {
2662 * See __perf_remove_from_context().
2664 WARN_ON_ONCE(ctx->is_active);
2665 if (ctx->task)
2666 WARN_ON_ONCE(cpuctx->task_ctx);
2667 return;
2670 ctx->is_active &= ~event_type;
2671 if (!(ctx->is_active & EVENT_ALL))
2672 ctx->is_active = 0;
2674 if (ctx->task) {
2675 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2676 if (!ctx->is_active)
2677 cpuctx->task_ctx = NULL;
2681 * Always update time if it was set; not only when it changes.
2682 * Otherwise we can 'forget' to update time for any but the last
2683 * context we sched out. For example:
2685 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2686 * ctx_sched_out(.event_type = EVENT_PINNED)
2688 * would only update time for the pinned events.
2690 if (is_active & EVENT_TIME) {
2691 /* update (and stop) ctx time */
2692 update_context_time(ctx);
2693 update_cgrp_time_from_cpuctx(cpuctx);
2696 is_active ^= ctx->is_active; /* changed bits */
2698 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2699 return;
2701 perf_pmu_disable(ctx->pmu);
2702 if (is_active & EVENT_PINNED) {
2703 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2704 group_sched_out(event, cpuctx, ctx);
2707 if (is_active & EVENT_FLEXIBLE) {
2708 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2709 group_sched_out(event, cpuctx, ctx);
2711 perf_pmu_enable(ctx->pmu);
2715 * Test whether two contexts are equivalent, i.e. whether they have both been
2716 * cloned from the same version of the same context.
2718 * Equivalence is measured using a generation number in the context that is
2719 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2720 * and list_del_event().
2722 static int context_equiv(struct perf_event_context *ctx1,
2723 struct perf_event_context *ctx2)
2725 lockdep_assert_held(&ctx1->lock);
2726 lockdep_assert_held(&ctx2->lock);
2728 /* Pinning disables the swap optimization */
2729 if (ctx1->pin_count || ctx2->pin_count)
2730 return 0;
2732 /* If ctx1 is the parent of ctx2 */
2733 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2734 return 1;
2736 /* If ctx2 is the parent of ctx1 */
2737 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2738 return 1;
2741 * If ctx1 and ctx2 have the same parent; we flatten the parent
2742 * hierarchy, see perf_event_init_context().
2744 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2745 ctx1->parent_gen == ctx2->parent_gen)
2746 return 1;
2748 /* Unmatched */
2749 return 0;
2752 static void __perf_event_sync_stat(struct perf_event *event,
2753 struct perf_event *next_event)
2755 u64 value;
2757 if (!event->attr.inherit_stat)
2758 return;
2761 * Update the event value, we cannot use perf_event_read()
2762 * because we're in the middle of a context switch and have IRQs
2763 * disabled, which upsets smp_call_function_single(), however
2764 * we know the event must be on the current CPU, therefore we
2765 * don't need to use it.
2767 if (event->state == PERF_EVENT_STATE_ACTIVE)
2768 event->pmu->read(event);
2770 perf_event_update_time(event);
2773 * In order to keep per-task stats reliable we need to flip the event
2774 * values when we flip the contexts.
2776 value = local64_read(&next_event->count);
2777 value = local64_xchg(&event->count, value);
2778 local64_set(&next_event->count, value);
2780 swap(event->total_time_enabled, next_event->total_time_enabled);
2781 swap(event->total_time_running, next_event->total_time_running);
2784 * Since we swizzled the values, update the user visible data too.
2786 perf_event_update_userpage(event);
2787 perf_event_update_userpage(next_event);
2790 static void perf_event_sync_stat(struct perf_event_context *ctx,
2791 struct perf_event_context *next_ctx)
2793 struct perf_event *event, *next_event;
2795 if (!ctx->nr_stat)
2796 return;
2798 update_context_time(ctx);
2800 event = list_first_entry(&ctx->event_list,
2801 struct perf_event, event_entry);
2803 next_event = list_first_entry(&next_ctx->event_list,
2804 struct perf_event, event_entry);
2806 while (&event->event_entry != &ctx->event_list &&
2807 &next_event->event_entry != &next_ctx->event_list) {
2809 __perf_event_sync_stat(event, next_event);
2811 event = list_next_entry(event, event_entry);
2812 next_event = list_next_entry(next_event, event_entry);
2816 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2817 struct task_struct *next)
2819 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2820 struct perf_event_context *next_ctx;
2821 struct perf_event_context *parent, *next_parent;
2822 struct perf_cpu_context *cpuctx;
2823 int do_switch = 1;
2825 if (likely(!ctx))
2826 return;
2828 cpuctx = __get_cpu_context(ctx);
2829 if (!cpuctx->task_ctx)
2830 return;
2832 rcu_read_lock();
2833 next_ctx = next->perf_event_ctxp[ctxn];
2834 if (!next_ctx)
2835 goto unlock;
2837 parent = rcu_dereference(ctx->parent_ctx);
2838 next_parent = rcu_dereference(next_ctx->parent_ctx);
2840 /* If neither context have a parent context; they cannot be clones. */
2841 if (!parent && !next_parent)
2842 goto unlock;
2844 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2846 * Looks like the two contexts are clones, so we might be
2847 * able to optimize the context switch. We lock both
2848 * contexts and check that they are clones under the
2849 * lock (including re-checking that neither has been
2850 * uncloned in the meantime). It doesn't matter which
2851 * order we take the locks because no other cpu could
2852 * be trying to lock both of these tasks.
2854 raw_spin_lock(&ctx->lock);
2855 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2856 if (context_equiv(ctx, next_ctx)) {
2857 WRITE_ONCE(ctx->task, next);
2858 WRITE_ONCE(next_ctx->task, task);
2860 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2863 * RCU_INIT_POINTER here is safe because we've not
2864 * modified the ctx and the above modification of
2865 * ctx->task and ctx->task_ctx_data are immaterial
2866 * since those values are always verified under
2867 * ctx->lock which we're now holding.
2869 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2870 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2872 do_switch = 0;
2874 perf_event_sync_stat(ctx, next_ctx);
2876 raw_spin_unlock(&next_ctx->lock);
2877 raw_spin_unlock(&ctx->lock);
2879 unlock:
2880 rcu_read_unlock();
2882 if (do_switch) {
2883 raw_spin_lock(&ctx->lock);
2884 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2885 raw_spin_unlock(&ctx->lock);
2889 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2891 void perf_sched_cb_dec(struct pmu *pmu)
2893 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2895 this_cpu_dec(perf_sched_cb_usages);
2897 if (!--cpuctx->sched_cb_usage)
2898 list_del(&cpuctx->sched_cb_entry);
2902 void perf_sched_cb_inc(struct pmu *pmu)
2904 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2906 if (!cpuctx->sched_cb_usage++)
2907 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2909 this_cpu_inc(perf_sched_cb_usages);
2913 * This function provides the context switch callback to the lower code
2914 * layer. It is invoked ONLY when the context switch callback is enabled.
2916 * This callback is relevant even to per-cpu events; for example multi event
2917 * PEBS requires this to provide PID/TID information. This requires we flush
2918 * all queued PEBS records before we context switch to a new task.
2920 static void perf_pmu_sched_task(struct task_struct *prev,
2921 struct task_struct *next,
2922 bool sched_in)
2924 struct perf_cpu_context *cpuctx;
2925 struct pmu *pmu;
2927 if (prev == next)
2928 return;
2930 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2931 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2933 if (WARN_ON_ONCE(!pmu->sched_task))
2934 continue;
2936 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2937 perf_pmu_disable(pmu);
2939 pmu->sched_task(cpuctx->task_ctx, sched_in);
2941 perf_pmu_enable(pmu);
2942 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2946 static void perf_event_switch(struct task_struct *task,
2947 struct task_struct *next_prev, bool sched_in);
2949 #define for_each_task_context_nr(ctxn) \
2950 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2953 * Called from scheduler to remove the events of the current task,
2954 * with interrupts disabled.
2956 * We stop each event and update the event value in event->count.
2958 * This does not protect us against NMI, but disable()
2959 * sets the disabled bit in the control field of event _before_
2960 * accessing the event control register. If a NMI hits, then it will
2961 * not restart the event.
2963 void __perf_event_task_sched_out(struct task_struct *task,
2964 struct task_struct *next)
2966 int ctxn;
2968 if (__this_cpu_read(perf_sched_cb_usages))
2969 perf_pmu_sched_task(task, next, false);
2971 if (atomic_read(&nr_switch_events))
2972 perf_event_switch(task, next, false);
2974 for_each_task_context_nr(ctxn)
2975 perf_event_context_sched_out(task, ctxn, next);
2978 * if cgroup events exist on this CPU, then we need
2979 * to check if we have to switch out PMU state.
2980 * cgroup event are system-wide mode only
2982 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2983 perf_cgroup_sched_out(task, next);
2987 * Called with IRQs disabled
2989 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2990 enum event_type_t event_type)
2992 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2995 static void
2996 ctx_pinned_sched_in(struct perf_event_context *ctx,
2997 struct perf_cpu_context *cpuctx)
2999 struct perf_event *event;
3001 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3002 if (event->state <= PERF_EVENT_STATE_OFF)
3003 continue;
3004 if (!event_filter_match(event))
3005 continue;
3007 if (group_can_go_on(event, cpuctx, 1))
3008 group_sched_in(event, cpuctx, ctx);
3011 * If this pinned group hasn't been scheduled,
3012 * put it in error state.
3014 if (event->state == PERF_EVENT_STATE_INACTIVE)
3015 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3019 static void
3020 ctx_flexible_sched_in(struct perf_event_context *ctx,
3021 struct perf_cpu_context *cpuctx)
3023 struct perf_event *event;
3024 int can_add_hw = 1;
3026 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3027 /* Ignore events in OFF or ERROR state */
3028 if (event->state <= PERF_EVENT_STATE_OFF)
3029 continue;
3031 * Listen to the 'cpu' scheduling filter constraint
3032 * of events:
3034 if (!event_filter_match(event))
3035 continue;
3037 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3038 if (group_sched_in(event, cpuctx, ctx))
3039 can_add_hw = 0;
3044 static void
3045 ctx_sched_in(struct perf_event_context *ctx,
3046 struct perf_cpu_context *cpuctx,
3047 enum event_type_t event_type,
3048 struct task_struct *task)
3050 int is_active = ctx->is_active;
3051 u64 now;
3053 lockdep_assert_held(&ctx->lock);
3055 if (likely(!ctx->nr_events))
3056 return;
3058 ctx->is_active |= (event_type | EVENT_TIME);
3059 if (ctx->task) {
3060 if (!is_active)
3061 cpuctx->task_ctx = ctx;
3062 else
3063 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3066 is_active ^= ctx->is_active; /* changed bits */
3068 if (is_active & EVENT_TIME) {
3069 /* start ctx time */
3070 now = perf_clock();
3071 ctx->timestamp = now;
3072 perf_cgroup_set_timestamp(task, ctx);
3076 * First go through the list and put on any pinned groups
3077 * in order to give them the best chance of going on.
3079 if (is_active & EVENT_PINNED)
3080 ctx_pinned_sched_in(ctx, cpuctx);
3082 /* Then walk through the lower prio flexible groups */
3083 if (is_active & EVENT_FLEXIBLE)
3084 ctx_flexible_sched_in(ctx, cpuctx);
3087 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3088 enum event_type_t event_type,
3089 struct task_struct *task)
3091 struct perf_event_context *ctx = &cpuctx->ctx;
3093 ctx_sched_in(ctx, cpuctx, event_type, task);
3096 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3097 struct task_struct *task)
3099 struct perf_cpu_context *cpuctx;
3101 cpuctx = __get_cpu_context(ctx);
3102 if (cpuctx->task_ctx == ctx)
3103 return;
3105 perf_ctx_lock(cpuctx, ctx);
3107 * We must check ctx->nr_events while holding ctx->lock, such
3108 * that we serialize against perf_install_in_context().
3110 if (!ctx->nr_events)
3111 goto unlock;
3113 perf_pmu_disable(ctx->pmu);
3115 * We want to keep the following priority order:
3116 * cpu pinned (that don't need to move), task pinned,
3117 * cpu flexible, task flexible.
3119 * However, if task's ctx is not carrying any pinned
3120 * events, no need to flip the cpuctx's events around.
3122 if (!list_empty(&ctx->pinned_groups))
3123 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3124 perf_event_sched_in(cpuctx, ctx, task);
3125 perf_pmu_enable(ctx->pmu);
3127 unlock:
3128 perf_ctx_unlock(cpuctx, ctx);
3132 * Called from scheduler to add the events of the current task
3133 * with interrupts disabled.
3135 * We restore the event value and then enable it.
3137 * This does not protect us against NMI, but enable()
3138 * sets the enabled bit in the control field of event _before_
3139 * accessing the event control register. If a NMI hits, then it will
3140 * keep the event running.
3142 void __perf_event_task_sched_in(struct task_struct *prev,
3143 struct task_struct *task)
3145 struct perf_event_context *ctx;
3146 int ctxn;
3149 * If cgroup events exist on this CPU, then we need to check if we have
3150 * to switch in PMU state; cgroup event are system-wide mode only.
3152 * Since cgroup events are CPU events, we must schedule these in before
3153 * we schedule in the task events.
3155 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3156 perf_cgroup_sched_in(prev, task);
3158 for_each_task_context_nr(ctxn) {
3159 ctx = task->perf_event_ctxp[ctxn];
3160 if (likely(!ctx))
3161 continue;
3163 perf_event_context_sched_in(ctx, task);
3166 if (atomic_read(&nr_switch_events))
3167 perf_event_switch(task, prev, true);
3169 if (__this_cpu_read(perf_sched_cb_usages))
3170 perf_pmu_sched_task(prev, task, true);
3173 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3175 u64 frequency = event->attr.sample_freq;
3176 u64 sec = NSEC_PER_SEC;
3177 u64 divisor, dividend;
3179 int count_fls, nsec_fls, frequency_fls, sec_fls;
3181 count_fls = fls64(count);
3182 nsec_fls = fls64(nsec);
3183 frequency_fls = fls64(frequency);
3184 sec_fls = 30;
3187 * We got @count in @nsec, with a target of sample_freq HZ
3188 * the target period becomes:
3190 * @count * 10^9
3191 * period = -------------------
3192 * @nsec * sample_freq
3197 * Reduce accuracy by one bit such that @a and @b converge
3198 * to a similar magnitude.
3200 #define REDUCE_FLS(a, b) \
3201 do { \
3202 if (a##_fls > b##_fls) { \
3203 a >>= 1; \
3204 a##_fls--; \
3205 } else { \
3206 b >>= 1; \
3207 b##_fls--; \
3209 } while (0)
3212 * Reduce accuracy until either term fits in a u64, then proceed with
3213 * the other, so that finally we can do a u64/u64 division.
3215 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3216 REDUCE_FLS(nsec, frequency);
3217 REDUCE_FLS(sec, count);
3220 if (count_fls + sec_fls > 64) {
3221 divisor = nsec * frequency;
3223 while (count_fls + sec_fls > 64) {
3224 REDUCE_FLS(count, sec);
3225 divisor >>= 1;
3228 dividend = count * sec;
3229 } else {
3230 dividend = count * sec;
3232 while (nsec_fls + frequency_fls > 64) {
3233 REDUCE_FLS(nsec, frequency);
3234 dividend >>= 1;
3237 divisor = nsec * frequency;
3240 if (!divisor)
3241 return dividend;
3243 return div64_u64(dividend, divisor);
3246 static DEFINE_PER_CPU(int, perf_throttled_count);
3247 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3249 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3251 struct hw_perf_event *hwc = &event->hw;
3252 s64 period, sample_period;
3253 s64 delta;
3255 period = perf_calculate_period(event, nsec, count);
3257 delta = (s64)(period - hwc->sample_period);
3258 delta = (delta + 7) / 8; /* low pass filter */
3260 sample_period = hwc->sample_period + delta;
3262 if (!sample_period)
3263 sample_period = 1;
3265 hwc->sample_period = sample_period;
3267 if (local64_read(&hwc->period_left) > 8*sample_period) {
3268 if (disable)
3269 event->pmu->stop(event, PERF_EF_UPDATE);
3271 local64_set(&hwc->period_left, 0);
3273 if (disable)
3274 event->pmu->start(event, PERF_EF_RELOAD);
3279 * combine freq adjustment with unthrottling to avoid two passes over the
3280 * events. At the same time, make sure, having freq events does not change
3281 * the rate of unthrottling as that would introduce bias.
3283 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3284 int needs_unthr)
3286 struct perf_event *event;
3287 struct hw_perf_event *hwc;
3288 u64 now, period = TICK_NSEC;
3289 s64 delta;
3292 * only need to iterate over all events iff:
3293 * - context have events in frequency mode (needs freq adjust)
3294 * - there are events to unthrottle on this cpu
3296 if (!(ctx->nr_freq || needs_unthr))
3297 return;
3299 raw_spin_lock(&ctx->lock);
3300 perf_pmu_disable(ctx->pmu);
3302 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3303 if (event->state != PERF_EVENT_STATE_ACTIVE)
3304 continue;
3306 if (!event_filter_match(event))
3307 continue;
3309 perf_pmu_disable(event->pmu);
3311 hwc = &event->hw;
3313 if (hwc->interrupts == MAX_INTERRUPTS) {
3314 hwc->interrupts = 0;
3315 perf_log_throttle(event, 1);
3316 event->pmu->start(event, 0);
3319 if (!event->attr.freq || !event->attr.sample_freq)
3320 goto next;
3323 * stop the event and update event->count
3325 event->pmu->stop(event, PERF_EF_UPDATE);
3327 now = local64_read(&event->count);
3328 delta = now - hwc->freq_count_stamp;
3329 hwc->freq_count_stamp = now;
3332 * restart the event
3333 * reload only if value has changed
3334 * we have stopped the event so tell that
3335 * to perf_adjust_period() to avoid stopping it
3336 * twice.
3338 if (delta > 0)
3339 perf_adjust_period(event, period, delta, false);
3341 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3342 next:
3343 perf_pmu_enable(event->pmu);
3346 perf_pmu_enable(ctx->pmu);
3347 raw_spin_unlock(&ctx->lock);
3351 * Round-robin a context's events:
3353 static void rotate_ctx(struct perf_event_context *ctx)
3356 * Rotate the first entry last of non-pinned groups. Rotation might be
3357 * disabled by the inheritance code.
3359 if (!ctx->rotate_disable)
3360 list_rotate_left(&ctx->flexible_groups);
3363 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3365 struct perf_event_context *ctx = NULL;
3366 int rotate = 0;
3368 if (cpuctx->ctx.nr_events) {
3369 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3370 rotate = 1;
3373 ctx = cpuctx->task_ctx;
3374 if (ctx && ctx->nr_events) {
3375 if (ctx->nr_events != ctx->nr_active)
3376 rotate = 1;
3379 if (!rotate)
3380 goto done;
3382 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3383 perf_pmu_disable(cpuctx->ctx.pmu);
3385 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3386 if (ctx)
3387 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3389 rotate_ctx(&cpuctx->ctx);
3390 if (ctx)
3391 rotate_ctx(ctx);
3393 perf_event_sched_in(cpuctx, ctx, current);
3395 perf_pmu_enable(cpuctx->ctx.pmu);
3396 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3397 done:
3399 return rotate;
3402 void perf_event_task_tick(void)
3404 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3405 struct perf_event_context *ctx, *tmp;
3406 int throttled;
3408 lockdep_assert_irqs_disabled();
3410 __this_cpu_inc(perf_throttled_seq);
3411 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3412 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3414 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3415 perf_adjust_freq_unthr_context(ctx, throttled);
3418 static int event_enable_on_exec(struct perf_event *event,
3419 struct perf_event_context *ctx)
3421 if (!event->attr.enable_on_exec)
3422 return 0;
3424 event->attr.enable_on_exec = 0;
3425 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3426 return 0;
3428 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3430 return 1;
3434 * Enable all of a task's events that have been marked enable-on-exec.
3435 * This expects task == current.
3437 static void perf_event_enable_on_exec(int ctxn)
3439 struct perf_event_context *ctx, *clone_ctx = NULL;
3440 enum event_type_t event_type = 0;
3441 struct perf_cpu_context *cpuctx;
3442 struct perf_event *event;
3443 unsigned long flags;
3444 int enabled = 0;
3446 local_irq_save(flags);
3447 ctx = current->perf_event_ctxp[ctxn];
3448 if (!ctx || !ctx->nr_events)
3449 goto out;
3451 cpuctx = __get_cpu_context(ctx);
3452 perf_ctx_lock(cpuctx, ctx);
3453 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3454 list_for_each_entry(event, &ctx->event_list, event_entry) {
3455 enabled |= event_enable_on_exec(event, ctx);
3456 event_type |= get_event_type(event);
3460 * Unclone and reschedule this context if we enabled any event.
3462 if (enabled) {
3463 clone_ctx = unclone_ctx(ctx);
3464 ctx_resched(cpuctx, ctx, event_type);
3465 } else {
3466 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3468 perf_ctx_unlock(cpuctx, ctx);
3470 out:
3471 local_irq_restore(flags);
3473 if (clone_ctx)
3474 put_ctx(clone_ctx);
3477 struct perf_read_data {
3478 struct perf_event *event;
3479 bool group;
3480 int ret;
3483 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3485 u16 local_pkg, event_pkg;
3487 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3488 int local_cpu = smp_processor_id();
3490 event_pkg = topology_physical_package_id(event_cpu);
3491 local_pkg = topology_physical_package_id(local_cpu);
3493 if (event_pkg == local_pkg)
3494 return local_cpu;
3497 return event_cpu;
3501 * Cross CPU call to read the hardware event
3503 static void __perf_event_read(void *info)
3505 struct perf_read_data *data = info;
3506 struct perf_event *sub, *event = data->event;
3507 struct perf_event_context *ctx = event->ctx;
3508 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3509 struct pmu *pmu = event->pmu;
3512 * If this is a task context, we need to check whether it is
3513 * the current task context of this cpu. If not it has been
3514 * scheduled out before the smp call arrived. In that case
3515 * event->count would have been updated to a recent sample
3516 * when the event was scheduled out.
3518 if (ctx->task && cpuctx->task_ctx != ctx)
3519 return;
3521 raw_spin_lock(&ctx->lock);
3522 if (ctx->is_active & EVENT_TIME) {
3523 update_context_time(ctx);
3524 update_cgrp_time_from_event(event);
3527 perf_event_update_time(event);
3528 if (data->group)
3529 perf_event_update_sibling_time(event);
3531 if (event->state != PERF_EVENT_STATE_ACTIVE)
3532 goto unlock;
3534 if (!data->group) {
3535 pmu->read(event);
3536 data->ret = 0;
3537 goto unlock;
3540 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3542 pmu->read(event);
3544 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3545 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3547 * Use sibling's PMU rather than @event's since
3548 * sibling could be on different (eg: software) PMU.
3550 sub->pmu->read(sub);
3554 data->ret = pmu->commit_txn(pmu);
3556 unlock:
3557 raw_spin_unlock(&ctx->lock);
3560 static inline u64 perf_event_count(struct perf_event *event)
3562 return local64_read(&event->count) + atomic64_read(&event->child_count);
3566 * NMI-safe method to read a local event, that is an event that
3567 * is:
3568 * - either for the current task, or for this CPU
3569 * - does not have inherit set, for inherited task events
3570 * will not be local and we cannot read them atomically
3571 * - must not have a pmu::count method
3573 int perf_event_read_local(struct perf_event *event, u64 *value,
3574 u64 *enabled, u64 *running)
3576 unsigned long flags;
3577 int ret = 0;
3580 * Disabling interrupts avoids all counter scheduling (context
3581 * switches, timer based rotation and IPIs).
3583 local_irq_save(flags);
3586 * It must not be an event with inherit set, we cannot read
3587 * all child counters from atomic context.
3589 if (event->attr.inherit) {
3590 ret = -EOPNOTSUPP;
3591 goto out;
3594 /* If this is a per-task event, it must be for current */
3595 if ((event->attach_state & PERF_ATTACH_TASK) &&
3596 event->hw.target != current) {
3597 ret = -EINVAL;
3598 goto out;
3601 /* If this is a per-CPU event, it must be for this CPU */
3602 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3603 event->cpu != smp_processor_id()) {
3604 ret = -EINVAL;
3605 goto out;
3609 * If the event is currently on this CPU, its either a per-task event,
3610 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3611 * oncpu == -1).
3613 if (event->oncpu == smp_processor_id())
3614 event->pmu->read(event);
3616 *value = local64_read(&event->count);
3617 if (enabled || running) {
3618 u64 now = event->shadow_ctx_time + perf_clock();
3619 u64 __enabled, __running;
3621 __perf_update_times(event, now, &__enabled, &__running);
3622 if (enabled)
3623 *enabled = __enabled;
3624 if (running)
3625 *running = __running;
3627 out:
3628 local_irq_restore(flags);
3630 return ret;
3633 static int perf_event_read(struct perf_event *event, bool group)
3635 enum perf_event_state state = READ_ONCE(event->state);
3636 int event_cpu, ret = 0;
3639 * If event is enabled and currently active on a CPU, update the
3640 * value in the event structure:
3642 again:
3643 if (state == PERF_EVENT_STATE_ACTIVE) {
3644 struct perf_read_data data;
3647 * Orders the ->state and ->oncpu loads such that if we see
3648 * ACTIVE we must also see the right ->oncpu.
3650 * Matches the smp_wmb() from event_sched_in().
3652 smp_rmb();
3654 event_cpu = READ_ONCE(event->oncpu);
3655 if ((unsigned)event_cpu >= nr_cpu_ids)
3656 return 0;
3658 data = (struct perf_read_data){
3659 .event = event,
3660 .group = group,
3661 .ret = 0,
3664 preempt_disable();
3665 event_cpu = __perf_event_read_cpu(event, event_cpu);
3668 * Purposely ignore the smp_call_function_single() return
3669 * value.
3671 * If event_cpu isn't a valid CPU it means the event got
3672 * scheduled out and that will have updated the event count.
3674 * Therefore, either way, we'll have an up-to-date event count
3675 * after this.
3677 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3678 preempt_enable();
3679 ret = data.ret;
3681 } else if (state == PERF_EVENT_STATE_INACTIVE) {
3682 struct perf_event_context *ctx = event->ctx;
3683 unsigned long flags;
3685 raw_spin_lock_irqsave(&ctx->lock, flags);
3686 state = event->state;
3687 if (state != PERF_EVENT_STATE_INACTIVE) {
3688 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3689 goto again;
3693 * May read while context is not active (e.g., thread is
3694 * blocked), in that case we cannot update context time
3696 if (ctx->is_active & EVENT_TIME) {
3697 update_context_time(ctx);
3698 update_cgrp_time_from_event(event);
3701 perf_event_update_time(event);
3702 if (group)
3703 perf_event_update_sibling_time(event);
3704 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3707 return ret;
3711 * Initialize the perf_event context in a task_struct:
3713 static void __perf_event_init_context(struct perf_event_context *ctx)
3715 raw_spin_lock_init(&ctx->lock);
3716 mutex_init(&ctx->mutex);
3717 INIT_LIST_HEAD(&ctx->active_ctx_list);
3718 INIT_LIST_HEAD(&ctx->pinned_groups);
3719 INIT_LIST_HEAD(&ctx->flexible_groups);
3720 INIT_LIST_HEAD(&ctx->event_list);
3721 atomic_set(&ctx->refcount, 1);
3724 static struct perf_event_context *
3725 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3727 struct perf_event_context *ctx;
3729 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3730 if (!ctx)
3731 return NULL;
3733 __perf_event_init_context(ctx);
3734 if (task) {
3735 ctx->task = task;
3736 get_task_struct(task);
3738 ctx->pmu = pmu;
3740 return ctx;
3743 static struct task_struct *
3744 find_lively_task_by_vpid(pid_t vpid)
3746 struct task_struct *task;
3748 rcu_read_lock();
3749 if (!vpid)
3750 task = current;
3751 else
3752 task = find_task_by_vpid(vpid);
3753 if (task)
3754 get_task_struct(task);
3755 rcu_read_unlock();
3757 if (!task)
3758 return ERR_PTR(-ESRCH);
3760 return task;
3764 * Returns a matching context with refcount and pincount.
3766 static struct perf_event_context *
3767 find_get_context(struct pmu *pmu, struct task_struct *task,
3768 struct perf_event *event)
3770 struct perf_event_context *ctx, *clone_ctx = NULL;
3771 struct perf_cpu_context *cpuctx;
3772 void *task_ctx_data = NULL;
3773 unsigned long flags;
3774 int ctxn, err;
3775 int cpu = event->cpu;
3777 if (!task) {
3778 /* Must be root to operate on a CPU event: */
3779 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3780 return ERR_PTR(-EACCES);
3782 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3783 ctx = &cpuctx->ctx;
3784 get_ctx(ctx);
3785 ++ctx->pin_count;
3787 return ctx;
3790 err = -EINVAL;
3791 ctxn = pmu->task_ctx_nr;
3792 if (ctxn < 0)
3793 goto errout;
3795 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3796 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3797 if (!task_ctx_data) {
3798 err = -ENOMEM;
3799 goto errout;
3803 retry:
3804 ctx = perf_lock_task_context(task, ctxn, &flags);
3805 if (ctx) {
3806 clone_ctx = unclone_ctx(ctx);
3807 ++ctx->pin_count;
3809 if (task_ctx_data && !ctx->task_ctx_data) {
3810 ctx->task_ctx_data = task_ctx_data;
3811 task_ctx_data = NULL;
3813 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3815 if (clone_ctx)
3816 put_ctx(clone_ctx);
3817 } else {
3818 ctx = alloc_perf_context(pmu, task);
3819 err = -ENOMEM;
3820 if (!ctx)
3821 goto errout;
3823 if (task_ctx_data) {
3824 ctx->task_ctx_data = task_ctx_data;
3825 task_ctx_data = NULL;
3828 err = 0;
3829 mutex_lock(&task->perf_event_mutex);
3831 * If it has already passed perf_event_exit_task().
3832 * we must see PF_EXITING, it takes this mutex too.
3834 if (task->flags & PF_EXITING)
3835 err = -ESRCH;
3836 else if (task->perf_event_ctxp[ctxn])
3837 err = -EAGAIN;
3838 else {
3839 get_ctx(ctx);
3840 ++ctx->pin_count;
3841 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3843 mutex_unlock(&task->perf_event_mutex);
3845 if (unlikely(err)) {
3846 put_ctx(ctx);
3848 if (err == -EAGAIN)
3849 goto retry;
3850 goto errout;
3854 kfree(task_ctx_data);
3855 return ctx;
3857 errout:
3858 kfree(task_ctx_data);
3859 return ERR_PTR(err);
3862 static void perf_event_free_filter(struct perf_event *event);
3863 static void perf_event_free_bpf_prog(struct perf_event *event);
3865 static void free_event_rcu(struct rcu_head *head)
3867 struct perf_event *event;
3869 event = container_of(head, struct perf_event, rcu_head);
3870 if (event->ns)
3871 put_pid_ns(event->ns);
3872 perf_event_free_filter(event);
3873 kfree(event);
3876 static void ring_buffer_attach(struct perf_event *event,
3877 struct ring_buffer *rb);
3879 static void detach_sb_event(struct perf_event *event)
3881 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3883 raw_spin_lock(&pel->lock);
3884 list_del_rcu(&event->sb_list);
3885 raw_spin_unlock(&pel->lock);
3888 static bool is_sb_event(struct perf_event *event)
3890 struct perf_event_attr *attr = &event->attr;
3892 if (event->parent)
3893 return false;
3895 if (event->attach_state & PERF_ATTACH_TASK)
3896 return false;
3898 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3899 attr->comm || attr->comm_exec ||
3900 attr->task ||
3901 attr->context_switch)
3902 return true;
3903 return false;
3906 static void unaccount_pmu_sb_event(struct perf_event *event)
3908 if (is_sb_event(event))
3909 detach_sb_event(event);
3912 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3914 if (event->parent)
3915 return;
3917 if (is_cgroup_event(event))
3918 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3921 #ifdef CONFIG_NO_HZ_FULL
3922 static DEFINE_SPINLOCK(nr_freq_lock);
3923 #endif
3925 static void unaccount_freq_event_nohz(void)
3927 #ifdef CONFIG_NO_HZ_FULL
3928 spin_lock(&nr_freq_lock);
3929 if (atomic_dec_and_test(&nr_freq_events))
3930 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3931 spin_unlock(&nr_freq_lock);
3932 #endif
3935 static void unaccount_freq_event(void)
3937 if (tick_nohz_full_enabled())
3938 unaccount_freq_event_nohz();
3939 else
3940 atomic_dec(&nr_freq_events);
3943 static void unaccount_event(struct perf_event *event)
3945 bool dec = false;
3947 if (event->parent)
3948 return;
3950 if (event->attach_state & PERF_ATTACH_TASK)
3951 dec = true;
3952 if (event->attr.mmap || event->attr.mmap_data)
3953 atomic_dec(&nr_mmap_events);
3954 if (event->attr.comm)
3955 atomic_dec(&nr_comm_events);
3956 if (event->attr.namespaces)
3957 atomic_dec(&nr_namespaces_events);
3958 if (event->attr.task)
3959 atomic_dec(&nr_task_events);
3960 if (event->attr.freq)
3961 unaccount_freq_event();
3962 if (event->attr.context_switch) {
3963 dec = true;
3964 atomic_dec(&nr_switch_events);
3966 if (is_cgroup_event(event))
3967 dec = true;
3968 if (has_branch_stack(event))
3969 dec = true;
3971 if (dec) {
3972 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3973 schedule_delayed_work(&perf_sched_work, HZ);
3976 unaccount_event_cpu(event, event->cpu);
3978 unaccount_pmu_sb_event(event);
3981 static void perf_sched_delayed(struct work_struct *work)
3983 mutex_lock(&perf_sched_mutex);
3984 if (atomic_dec_and_test(&perf_sched_count))
3985 static_branch_disable(&perf_sched_events);
3986 mutex_unlock(&perf_sched_mutex);
3990 * The following implement mutual exclusion of events on "exclusive" pmus
3991 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3992 * at a time, so we disallow creating events that might conflict, namely:
3994 * 1) cpu-wide events in the presence of per-task events,
3995 * 2) per-task events in the presence of cpu-wide events,
3996 * 3) two matching events on the same context.
3998 * The former two cases are handled in the allocation path (perf_event_alloc(),
3999 * _free_event()), the latter -- before the first perf_install_in_context().
4001 static int exclusive_event_init(struct perf_event *event)
4003 struct pmu *pmu = event->pmu;
4005 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4006 return 0;
4009 * Prevent co-existence of per-task and cpu-wide events on the
4010 * same exclusive pmu.
4012 * Negative pmu::exclusive_cnt means there are cpu-wide
4013 * events on this "exclusive" pmu, positive means there are
4014 * per-task events.
4016 * Since this is called in perf_event_alloc() path, event::ctx
4017 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4018 * to mean "per-task event", because unlike other attach states it
4019 * never gets cleared.
4021 if (event->attach_state & PERF_ATTACH_TASK) {
4022 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4023 return -EBUSY;
4024 } else {
4025 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4026 return -EBUSY;
4029 return 0;
4032 static void exclusive_event_destroy(struct perf_event *event)
4034 struct pmu *pmu = event->pmu;
4036 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4037 return;
4039 /* see comment in exclusive_event_init() */
4040 if (event->attach_state & PERF_ATTACH_TASK)
4041 atomic_dec(&pmu->exclusive_cnt);
4042 else
4043 atomic_inc(&pmu->exclusive_cnt);
4046 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4048 if ((e1->pmu == e2->pmu) &&
4049 (e1->cpu == e2->cpu ||
4050 e1->cpu == -1 ||
4051 e2->cpu == -1))
4052 return true;
4053 return false;
4056 /* Called under the same ctx::mutex as perf_install_in_context() */
4057 static bool exclusive_event_installable(struct perf_event *event,
4058 struct perf_event_context *ctx)
4060 struct perf_event *iter_event;
4061 struct pmu *pmu = event->pmu;
4063 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4064 return true;
4066 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4067 if (exclusive_event_match(iter_event, event))
4068 return false;
4071 return true;
4074 static void perf_addr_filters_splice(struct perf_event *event,
4075 struct list_head *head);
4077 static void _free_event(struct perf_event *event)
4079 irq_work_sync(&event->pending);
4081 unaccount_event(event);
4083 if (event->rb) {
4085 * Can happen when we close an event with re-directed output.
4087 * Since we have a 0 refcount, perf_mmap_close() will skip
4088 * over us; possibly making our ring_buffer_put() the last.
4090 mutex_lock(&event->mmap_mutex);
4091 ring_buffer_attach(event, NULL);
4092 mutex_unlock(&event->mmap_mutex);
4095 if (is_cgroup_event(event))
4096 perf_detach_cgroup(event);
4098 if (!event->parent) {
4099 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4100 put_callchain_buffers();
4103 perf_event_free_bpf_prog(event);
4104 perf_addr_filters_splice(event, NULL);
4105 kfree(event->addr_filters_offs);
4107 if (event->destroy)
4108 event->destroy(event);
4110 if (event->ctx)
4111 put_ctx(event->ctx);
4113 exclusive_event_destroy(event);
4114 module_put(event->pmu->module);
4116 call_rcu(&event->rcu_head, free_event_rcu);
4120 * Used to free events which have a known refcount of 1, such as in error paths
4121 * where the event isn't exposed yet and inherited events.
4123 static void free_event(struct perf_event *event)
4125 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4126 "unexpected event refcount: %ld; ptr=%p\n",
4127 atomic_long_read(&event->refcount), event)) {
4128 /* leak to avoid use-after-free */
4129 return;
4132 _free_event(event);
4136 * Remove user event from the owner task.
4138 static void perf_remove_from_owner(struct perf_event *event)
4140 struct task_struct *owner;
4142 rcu_read_lock();
4144 * Matches the smp_store_release() in perf_event_exit_task(). If we
4145 * observe !owner it means the list deletion is complete and we can
4146 * indeed free this event, otherwise we need to serialize on
4147 * owner->perf_event_mutex.
4149 owner = READ_ONCE(event->owner);
4150 if (owner) {
4152 * Since delayed_put_task_struct() also drops the last
4153 * task reference we can safely take a new reference
4154 * while holding the rcu_read_lock().
4156 get_task_struct(owner);
4158 rcu_read_unlock();
4160 if (owner) {
4162 * If we're here through perf_event_exit_task() we're already
4163 * holding ctx->mutex which would be an inversion wrt. the
4164 * normal lock order.
4166 * However we can safely take this lock because its the child
4167 * ctx->mutex.
4169 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4172 * We have to re-check the event->owner field, if it is cleared
4173 * we raced with perf_event_exit_task(), acquiring the mutex
4174 * ensured they're done, and we can proceed with freeing the
4175 * event.
4177 if (event->owner) {
4178 list_del_init(&event->owner_entry);
4179 smp_store_release(&event->owner, NULL);
4181 mutex_unlock(&owner->perf_event_mutex);
4182 put_task_struct(owner);
4186 static void put_event(struct perf_event *event)
4188 if (!atomic_long_dec_and_test(&event->refcount))
4189 return;
4191 _free_event(event);
4195 * Kill an event dead; while event:refcount will preserve the event
4196 * object, it will not preserve its functionality. Once the last 'user'
4197 * gives up the object, we'll destroy the thing.
4199 int perf_event_release_kernel(struct perf_event *event)
4201 struct perf_event_context *ctx = event->ctx;
4202 struct perf_event *child, *tmp;
4203 LIST_HEAD(free_list);
4206 * If we got here through err_file: fput(event_file); we will not have
4207 * attached to a context yet.
4209 if (!ctx) {
4210 WARN_ON_ONCE(event->attach_state &
4211 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4212 goto no_ctx;
4215 if (!is_kernel_event(event))
4216 perf_remove_from_owner(event);
4218 ctx = perf_event_ctx_lock(event);
4219 WARN_ON_ONCE(ctx->parent_ctx);
4220 perf_remove_from_context(event, DETACH_GROUP);
4222 raw_spin_lock_irq(&ctx->lock);
4224 * Mark this event as STATE_DEAD, there is no external reference to it
4225 * anymore.
4227 * Anybody acquiring event->child_mutex after the below loop _must_
4228 * also see this, most importantly inherit_event() which will avoid
4229 * placing more children on the list.
4231 * Thus this guarantees that we will in fact observe and kill _ALL_
4232 * child events.
4234 event->state = PERF_EVENT_STATE_DEAD;
4235 raw_spin_unlock_irq(&ctx->lock);
4237 perf_event_ctx_unlock(event, ctx);
4239 again:
4240 mutex_lock(&event->child_mutex);
4241 list_for_each_entry(child, &event->child_list, child_list) {
4244 * Cannot change, child events are not migrated, see the
4245 * comment with perf_event_ctx_lock_nested().
4247 ctx = READ_ONCE(child->ctx);
4249 * Since child_mutex nests inside ctx::mutex, we must jump
4250 * through hoops. We start by grabbing a reference on the ctx.
4252 * Since the event cannot get freed while we hold the
4253 * child_mutex, the context must also exist and have a !0
4254 * reference count.
4256 get_ctx(ctx);
4259 * Now that we have a ctx ref, we can drop child_mutex, and
4260 * acquire ctx::mutex without fear of it going away. Then we
4261 * can re-acquire child_mutex.
4263 mutex_unlock(&event->child_mutex);
4264 mutex_lock(&ctx->mutex);
4265 mutex_lock(&event->child_mutex);
4268 * Now that we hold ctx::mutex and child_mutex, revalidate our
4269 * state, if child is still the first entry, it didn't get freed
4270 * and we can continue doing so.
4272 tmp = list_first_entry_or_null(&event->child_list,
4273 struct perf_event, child_list);
4274 if (tmp == child) {
4275 perf_remove_from_context(child, DETACH_GROUP);
4276 list_move(&child->child_list, &free_list);
4278 * This matches the refcount bump in inherit_event();
4279 * this can't be the last reference.
4281 put_event(event);
4284 mutex_unlock(&event->child_mutex);
4285 mutex_unlock(&ctx->mutex);
4286 put_ctx(ctx);
4287 goto again;
4289 mutex_unlock(&event->child_mutex);
4291 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4292 list_del(&child->child_list);
4293 free_event(child);
4296 no_ctx:
4297 put_event(event); /* Must be the 'last' reference */
4298 return 0;
4300 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4303 * Called when the last reference to the file is gone.
4305 static int perf_release(struct inode *inode, struct file *file)
4307 perf_event_release_kernel(file->private_data);
4308 return 0;
4311 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4313 struct perf_event *child;
4314 u64 total = 0;
4316 *enabled = 0;
4317 *running = 0;
4319 mutex_lock(&event->child_mutex);
4321 (void)perf_event_read(event, false);
4322 total += perf_event_count(event);
4324 *enabled += event->total_time_enabled +
4325 atomic64_read(&event->child_total_time_enabled);
4326 *running += event->total_time_running +
4327 atomic64_read(&event->child_total_time_running);
4329 list_for_each_entry(child, &event->child_list, child_list) {
4330 (void)perf_event_read(child, false);
4331 total += perf_event_count(child);
4332 *enabled += child->total_time_enabled;
4333 *running += child->total_time_running;
4335 mutex_unlock(&event->child_mutex);
4337 return total;
4340 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4342 struct perf_event_context *ctx;
4343 u64 count;
4345 ctx = perf_event_ctx_lock(event);
4346 count = __perf_event_read_value(event, enabled, running);
4347 perf_event_ctx_unlock(event, ctx);
4349 return count;
4351 EXPORT_SYMBOL_GPL(perf_event_read_value);
4353 static int __perf_read_group_add(struct perf_event *leader,
4354 u64 read_format, u64 *values)
4356 struct perf_event_context *ctx = leader->ctx;
4357 struct perf_event *sub;
4358 unsigned long flags;
4359 int n = 1; /* skip @nr */
4360 int ret;
4362 ret = perf_event_read(leader, true);
4363 if (ret)
4364 return ret;
4366 raw_spin_lock_irqsave(&ctx->lock, flags);
4369 * Since we co-schedule groups, {enabled,running} times of siblings
4370 * will be identical to those of the leader, so we only publish one
4371 * set.
4373 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4374 values[n++] += leader->total_time_enabled +
4375 atomic64_read(&leader->child_total_time_enabled);
4378 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4379 values[n++] += leader->total_time_running +
4380 atomic64_read(&leader->child_total_time_running);
4384 * Write {count,id} tuples for every sibling.
4386 values[n++] += perf_event_count(leader);
4387 if (read_format & PERF_FORMAT_ID)
4388 values[n++] = primary_event_id(leader);
4390 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4391 values[n++] += perf_event_count(sub);
4392 if (read_format & PERF_FORMAT_ID)
4393 values[n++] = primary_event_id(sub);
4396 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4397 return 0;
4400 static int perf_read_group(struct perf_event *event,
4401 u64 read_format, char __user *buf)
4403 struct perf_event *leader = event->group_leader, *child;
4404 struct perf_event_context *ctx = leader->ctx;
4405 int ret;
4406 u64 *values;
4408 lockdep_assert_held(&ctx->mutex);
4410 values = kzalloc(event->read_size, GFP_KERNEL);
4411 if (!values)
4412 return -ENOMEM;
4414 values[0] = 1 + leader->nr_siblings;
4417 * By locking the child_mutex of the leader we effectively
4418 * lock the child list of all siblings.. XXX explain how.
4420 mutex_lock(&leader->child_mutex);
4422 ret = __perf_read_group_add(leader, read_format, values);
4423 if (ret)
4424 goto unlock;
4426 list_for_each_entry(child, &leader->child_list, child_list) {
4427 ret = __perf_read_group_add(child, read_format, values);
4428 if (ret)
4429 goto unlock;
4432 mutex_unlock(&leader->child_mutex);
4434 ret = event->read_size;
4435 if (copy_to_user(buf, values, event->read_size))
4436 ret = -EFAULT;
4437 goto out;
4439 unlock:
4440 mutex_unlock(&leader->child_mutex);
4441 out:
4442 kfree(values);
4443 return ret;
4446 static int perf_read_one(struct perf_event *event,
4447 u64 read_format, char __user *buf)
4449 u64 enabled, running;
4450 u64 values[4];
4451 int n = 0;
4453 values[n++] = __perf_event_read_value(event, &enabled, &running);
4454 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4455 values[n++] = enabled;
4456 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4457 values[n++] = running;
4458 if (read_format & PERF_FORMAT_ID)
4459 values[n++] = primary_event_id(event);
4461 if (copy_to_user(buf, values, n * sizeof(u64)))
4462 return -EFAULT;
4464 return n * sizeof(u64);
4467 static bool is_event_hup(struct perf_event *event)
4469 bool no_children;
4471 if (event->state > PERF_EVENT_STATE_EXIT)
4472 return false;
4474 mutex_lock(&event->child_mutex);
4475 no_children = list_empty(&event->child_list);
4476 mutex_unlock(&event->child_mutex);
4477 return no_children;
4481 * Read the performance event - simple non blocking version for now
4483 static ssize_t
4484 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4486 u64 read_format = event->attr.read_format;
4487 int ret;
4490 * Return end-of-file for a read on a event that is in
4491 * error state (i.e. because it was pinned but it couldn't be
4492 * scheduled on to the CPU at some point).
4494 if (event->state == PERF_EVENT_STATE_ERROR)
4495 return 0;
4497 if (count < event->read_size)
4498 return -ENOSPC;
4500 WARN_ON_ONCE(event->ctx->parent_ctx);
4501 if (read_format & PERF_FORMAT_GROUP)
4502 ret = perf_read_group(event, read_format, buf);
4503 else
4504 ret = perf_read_one(event, read_format, buf);
4506 return ret;
4509 static ssize_t
4510 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4512 struct perf_event *event = file->private_data;
4513 struct perf_event_context *ctx;
4514 int ret;
4516 ctx = perf_event_ctx_lock(event);
4517 ret = __perf_read(event, buf, count);
4518 perf_event_ctx_unlock(event, ctx);
4520 return ret;
4523 static __poll_t perf_poll(struct file *file, poll_table *wait)
4525 struct perf_event *event = file->private_data;
4526 struct ring_buffer *rb;
4527 __poll_t events = EPOLLHUP;
4529 poll_wait(file, &event->waitq, wait);
4531 if (is_event_hup(event))
4532 return events;
4535 * Pin the event->rb by taking event->mmap_mutex; otherwise
4536 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4538 mutex_lock(&event->mmap_mutex);
4539 rb = event->rb;
4540 if (rb)
4541 events = atomic_xchg(&rb->poll, 0);
4542 mutex_unlock(&event->mmap_mutex);
4543 return events;
4546 static void _perf_event_reset(struct perf_event *event)
4548 (void)perf_event_read(event, false);
4549 local64_set(&event->count, 0);
4550 perf_event_update_userpage(event);
4554 * Holding the top-level event's child_mutex means that any
4555 * descendant process that has inherited this event will block
4556 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4557 * task existence requirements of perf_event_enable/disable.
4559 static void perf_event_for_each_child(struct perf_event *event,
4560 void (*func)(struct perf_event *))
4562 struct perf_event *child;
4564 WARN_ON_ONCE(event->ctx->parent_ctx);
4566 mutex_lock(&event->child_mutex);
4567 func(event);
4568 list_for_each_entry(child, &event->child_list, child_list)
4569 func(child);
4570 mutex_unlock(&event->child_mutex);
4573 static void perf_event_for_each(struct perf_event *event,
4574 void (*func)(struct perf_event *))
4576 struct perf_event_context *ctx = event->ctx;
4577 struct perf_event *sibling;
4579 lockdep_assert_held(&ctx->mutex);
4581 event = event->group_leader;
4583 perf_event_for_each_child(event, func);
4584 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4585 perf_event_for_each_child(sibling, func);
4588 static void __perf_event_period(struct perf_event *event,
4589 struct perf_cpu_context *cpuctx,
4590 struct perf_event_context *ctx,
4591 void *info)
4593 u64 value = *((u64 *)info);
4594 bool active;
4596 if (event->attr.freq) {
4597 event->attr.sample_freq = value;
4598 } else {
4599 event->attr.sample_period = value;
4600 event->hw.sample_period = value;
4603 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4604 if (active) {
4605 perf_pmu_disable(ctx->pmu);
4607 * We could be throttled; unthrottle now to avoid the tick
4608 * trying to unthrottle while we already re-started the event.
4610 if (event->hw.interrupts == MAX_INTERRUPTS) {
4611 event->hw.interrupts = 0;
4612 perf_log_throttle(event, 1);
4614 event->pmu->stop(event, PERF_EF_UPDATE);
4617 local64_set(&event->hw.period_left, 0);
4619 if (active) {
4620 event->pmu->start(event, PERF_EF_RELOAD);
4621 perf_pmu_enable(ctx->pmu);
4625 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4627 u64 value;
4629 if (!is_sampling_event(event))
4630 return -EINVAL;
4632 if (copy_from_user(&value, arg, sizeof(value)))
4633 return -EFAULT;
4635 if (!value)
4636 return -EINVAL;
4638 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4639 return -EINVAL;
4641 event_function_call(event, __perf_event_period, &value);
4643 return 0;
4646 static const struct file_operations perf_fops;
4648 static inline int perf_fget_light(int fd, struct fd *p)
4650 struct fd f = fdget(fd);
4651 if (!f.file)
4652 return -EBADF;
4654 if (f.file->f_op != &perf_fops) {
4655 fdput(f);
4656 return -EBADF;
4658 *p = f;
4659 return 0;
4662 static int perf_event_set_output(struct perf_event *event,
4663 struct perf_event *output_event);
4664 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4665 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4667 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4669 void (*func)(struct perf_event *);
4670 u32 flags = arg;
4672 switch (cmd) {
4673 case PERF_EVENT_IOC_ENABLE:
4674 func = _perf_event_enable;
4675 break;
4676 case PERF_EVENT_IOC_DISABLE:
4677 func = _perf_event_disable;
4678 break;
4679 case PERF_EVENT_IOC_RESET:
4680 func = _perf_event_reset;
4681 break;
4683 case PERF_EVENT_IOC_REFRESH:
4684 return _perf_event_refresh(event, arg);
4686 case PERF_EVENT_IOC_PERIOD:
4687 return perf_event_period(event, (u64 __user *)arg);
4689 case PERF_EVENT_IOC_ID:
4691 u64 id = primary_event_id(event);
4693 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4694 return -EFAULT;
4695 return 0;
4698 case PERF_EVENT_IOC_SET_OUTPUT:
4700 int ret;
4701 if (arg != -1) {
4702 struct perf_event *output_event;
4703 struct fd output;
4704 ret = perf_fget_light(arg, &output);
4705 if (ret)
4706 return ret;
4707 output_event = output.file->private_data;
4708 ret = perf_event_set_output(event, output_event);
4709 fdput(output);
4710 } else {
4711 ret = perf_event_set_output(event, NULL);
4713 return ret;
4716 case PERF_EVENT_IOC_SET_FILTER:
4717 return perf_event_set_filter(event, (void __user *)arg);
4719 case PERF_EVENT_IOC_SET_BPF:
4720 return perf_event_set_bpf_prog(event, arg);
4722 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4723 struct ring_buffer *rb;
4725 rcu_read_lock();
4726 rb = rcu_dereference(event->rb);
4727 if (!rb || !rb->nr_pages) {
4728 rcu_read_unlock();
4729 return -EINVAL;
4731 rb_toggle_paused(rb, !!arg);
4732 rcu_read_unlock();
4733 return 0;
4736 case PERF_EVENT_IOC_QUERY_BPF:
4737 return perf_event_query_prog_array(event, (void __user *)arg);
4738 default:
4739 return -ENOTTY;
4742 if (flags & PERF_IOC_FLAG_GROUP)
4743 perf_event_for_each(event, func);
4744 else
4745 perf_event_for_each_child(event, func);
4747 return 0;
4750 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4752 struct perf_event *event = file->private_data;
4753 struct perf_event_context *ctx;
4754 long ret;
4756 ctx = perf_event_ctx_lock(event);
4757 ret = _perf_ioctl(event, cmd, arg);
4758 perf_event_ctx_unlock(event, ctx);
4760 return ret;
4763 #ifdef CONFIG_COMPAT
4764 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4765 unsigned long arg)
4767 switch (_IOC_NR(cmd)) {
4768 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4769 case _IOC_NR(PERF_EVENT_IOC_ID):
4770 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4771 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4772 cmd &= ~IOCSIZE_MASK;
4773 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4775 break;
4777 return perf_ioctl(file, cmd, arg);
4779 #else
4780 # define perf_compat_ioctl NULL
4781 #endif
4783 int perf_event_task_enable(void)
4785 struct perf_event_context *ctx;
4786 struct perf_event *event;
4788 mutex_lock(&current->perf_event_mutex);
4789 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4790 ctx = perf_event_ctx_lock(event);
4791 perf_event_for_each_child(event, _perf_event_enable);
4792 perf_event_ctx_unlock(event, ctx);
4794 mutex_unlock(&current->perf_event_mutex);
4796 return 0;
4799 int perf_event_task_disable(void)
4801 struct perf_event_context *ctx;
4802 struct perf_event *event;
4804 mutex_lock(&current->perf_event_mutex);
4805 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4806 ctx = perf_event_ctx_lock(event);
4807 perf_event_for_each_child(event, _perf_event_disable);
4808 perf_event_ctx_unlock(event, ctx);
4810 mutex_unlock(&current->perf_event_mutex);
4812 return 0;
4815 static int perf_event_index(struct perf_event *event)
4817 if (event->hw.state & PERF_HES_STOPPED)
4818 return 0;
4820 if (event->state != PERF_EVENT_STATE_ACTIVE)
4821 return 0;
4823 return event->pmu->event_idx(event);
4826 static void calc_timer_values(struct perf_event *event,
4827 u64 *now,
4828 u64 *enabled,
4829 u64 *running)
4831 u64 ctx_time;
4833 *now = perf_clock();
4834 ctx_time = event->shadow_ctx_time + *now;
4835 __perf_update_times(event, ctx_time, enabled, running);
4838 static void perf_event_init_userpage(struct perf_event *event)
4840 struct perf_event_mmap_page *userpg;
4841 struct ring_buffer *rb;
4843 rcu_read_lock();
4844 rb = rcu_dereference(event->rb);
4845 if (!rb)
4846 goto unlock;
4848 userpg = rb->user_page;
4850 /* Allow new userspace to detect that bit 0 is deprecated */
4851 userpg->cap_bit0_is_deprecated = 1;
4852 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4853 userpg->data_offset = PAGE_SIZE;
4854 userpg->data_size = perf_data_size(rb);
4856 unlock:
4857 rcu_read_unlock();
4860 void __weak arch_perf_update_userpage(
4861 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4866 * Callers need to ensure there can be no nesting of this function, otherwise
4867 * the seqlock logic goes bad. We can not serialize this because the arch
4868 * code calls this from NMI context.
4870 void perf_event_update_userpage(struct perf_event *event)
4872 struct perf_event_mmap_page *userpg;
4873 struct ring_buffer *rb;
4874 u64 enabled, running, now;
4876 rcu_read_lock();
4877 rb = rcu_dereference(event->rb);
4878 if (!rb)
4879 goto unlock;
4882 * compute total_time_enabled, total_time_running
4883 * based on snapshot values taken when the event
4884 * was last scheduled in.
4886 * we cannot simply called update_context_time()
4887 * because of locking issue as we can be called in
4888 * NMI context
4890 calc_timer_values(event, &now, &enabled, &running);
4892 userpg = rb->user_page;
4894 * Disable preemption so as to not let the corresponding user-space
4895 * spin too long if we get preempted.
4897 preempt_disable();
4898 ++userpg->lock;
4899 barrier();
4900 userpg->index = perf_event_index(event);
4901 userpg->offset = perf_event_count(event);
4902 if (userpg->index)
4903 userpg->offset -= local64_read(&event->hw.prev_count);
4905 userpg->time_enabled = enabled +
4906 atomic64_read(&event->child_total_time_enabled);
4908 userpg->time_running = running +
4909 atomic64_read(&event->child_total_time_running);
4911 arch_perf_update_userpage(event, userpg, now);
4913 barrier();
4914 ++userpg->lock;
4915 preempt_enable();
4916 unlock:
4917 rcu_read_unlock();
4919 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
4921 static int perf_mmap_fault(struct vm_fault *vmf)
4923 struct perf_event *event = vmf->vma->vm_file->private_data;
4924 struct ring_buffer *rb;
4925 int ret = VM_FAULT_SIGBUS;
4927 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4928 if (vmf->pgoff == 0)
4929 ret = 0;
4930 return ret;
4933 rcu_read_lock();
4934 rb = rcu_dereference(event->rb);
4935 if (!rb)
4936 goto unlock;
4938 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4939 goto unlock;
4941 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4942 if (!vmf->page)
4943 goto unlock;
4945 get_page(vmf->page);
4946 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4947 vmf->page->index = vmf->pgoff;
4949 ret = 0;
4950 unlock:
4951 rcu_read_unlock();
4953 return ret;
4956 static void ring_buffer_attach(struct perf_event *event,
4957 struct ring_buffer *rb)
4959 struct ring_buffer *old_rb = NULL;
4960 unsigned long flags;
4962 if (event->rb) {
4964 * Should be impossible, we set this when removing
4965 * event->rb_entry and wait/clear when adding event->rb_entry.
4967 WARN_ON_ONCE(event->rcu_pending);
4969 old_rb = event->rb;
4970 spin_lock_irqsave(&old_rb->event_lock, flags);
4971 list_del_rcu(&event->rb_entry);
4972 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4974 event->rcu_batches = get_state_synchronize_rcu();
4975 event->rcu_pending = 1;
4978 if (rb) {
4979 if (event->rcu_pending) {
4980 cond_synchronize_rcu(event->rcu_batches);
4981 event->rcu_pending = 0;
4984 spin_lock_irqsave(&rb->event_lock, flags);
4985 list_add_rcu(&event->rb_entry, &rb->event_list);
4986 spin_unlock_irqrestore(&rb->event_lock, flags);
4990 * Avoid racing with perf_mmap_close(AUX): stop the event
4991 * before swizzling the event::rb pointer; if it's getting
4992 * unmapped, its aux_mmap_count will be 0 and it won't
4993 * restart. See the comment in __perf_pmu_output_stop().
4995 * Data will inevitably be lost when set_output is done in
4996 * mid-air, but then again, whoever does it like this is
4997 * not in for the data anyway.
4999 if (has_aux(event))
5000 perf_event_stop(event, 0);
5002 rcu_assign_pointer(event->rb, rb);
5004 if (old_rb) {
5005 ring_buffer_put(old_rb);
5007 * Since we detached before setting the new rb, so that we
5008 * could attach the new rb, we could have missed a wakeup.
5009 * Provide it now.
5011 wake_up_all(&event->waitq);
5015 static void ring_buffer_wakeup(struct perf_event *event)
5017 struct ring_buffer *rb;
5019 rcu_read_lock();
5020 rb = rcu_dereference(event->rb);
5021 if (rb) {
5022 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5023 wake_up_all(&event->waitq);
5025 rcu_read_unlock();
5028 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5030 struct ring_buffer *rb;
5032 rcu_read_lock();
5033 rb = rcu_dereference(event->rb);
5034 if (rb) {
5035 if (!atomic_inc_not_zero(&rb->refcount))
5036 rb = NULL;
5038 rcu_read_unlock();
5040 return rb;
5043 void ring_buffer_put(struct ring_buffer *rb)
5045 if (!atomic_dec_and_test(&rb->refcount))
5046 return;
5048 WARN_ON_ONCE(!list_empty(&rb->event_list));
5050 call_rcu(&rb->rcu_head, rb_free_rcu);
5053 static void perf_mmap_open(struct vm_area_struct *vma)
5055 struct perf_event *event = vma->vm_file->private_data;
5057 atomic_inc(&event->mmap_count);
5058 atomic_inc(&event->rb->mmap_count);
5060 if (vma->vm_pgoff)
5061 atomic_inc(&event->rb->aux_mmap_count);
5063 if (event->pmu->event_mapped)
5064 event->pmu->event_mapped(event, vma->vm_mm);
5067 static void perf_pmu_output_stop(struct perf_event *event);
5070 * A buffer can be mmap()ed multiple times; either directly through the same
5071 * event, or through other events by use of perf_event_set_output().
5073 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5074 * the buffer here, where we still have a VM context. This means we need
5075 * to detach all events redirecting to us.
5077 static void perf_mmap_close(struct vm_area_struct *vma)
5079 struct perf_event *event = vma->vm_file->private_data;
5081 struct ring_buffer *rb = ring_buffer_get(event);
5082 struct user_struct *mmap_user = rb->mmap_user;
5083 int mmap_locked = rb->mmap_locked;
5084 unsigned long size = perf_data_size(rb);
5086 if (event->pmu->event_unmapped)
5087 event->pmu->event_unmapped(event, vma->vm_mm);
5090 * rb->aux_mmap_count will always drop before rb->mmap_count and
5091 * event->mmap_count, so it is ok to use event->mmap_mutex to
5092 * serialize with perf_mmap here.
5094 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5095 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5097 * Stop all AUX events that are writing to this buffer,
5098 * so that we can free its AUX pages and corresponding PMU
5099 * data. Note that after rb::aux_mmap_count dropped to zero,
5100 * they won't start any more (see perf_aux_output_begin()).
5102 perf_pmu_output_stop(event);
5104 /* now it's safe to free the pages */
5105 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5106 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5108 /* this has to be the last one */
5109 rb_free_aux(rb);
5110 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5112 mutex_unlock(&event->mmap_mutex);
5115 atomic_dec(&rb->mmap_count);
5117 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5118 goto out_put;
5120 ring_buffer_attach(event, NULL);
5121 mutex_unlock(&event->mmap_mutex);
5123 /* If there's still other mmap()s of this buffer, we're done. */
5124 if (atomic_read(&rb->mmap_count))
5125 goto out_put;
5128 * No other mmap()s, detach from all other events that might redirect
5129 * into the now unreachable buffer. Somewhat complicated by the
5130 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5132 again:
5133 rcu_read_lock();
5134 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5135 if (!atomic_long_inc_not_zero(&event->refcount)) {
5137 * This event is en-route to free_event() which will
5138 * detach it and remove it from the list.
5140 continue;
5142 rcu_read_unlock();
5144 mutex_lock(&event->mmap_mutex);
5146 * Check we didn't race with perf_event_set_output() which can
5147 * swizzle the rb from under us while we were waiting to
5148 * acquire mmap_mutex.
5150 * If we find a different rb; ignore this event, a next
5151 * iteration will no longer find it on the list. We have to
5152 * still restart the iteration to make sure we're not now
5153 * iterating the wrong list.
5155 if (event->rb == rb)
5156 ring_buffer_attach(event, NULL);
5158 mutex_unlock(&event->mmap_mutex);
5159 put_event(event);
5162 * Restart the iteration; either we're on the wrong list or
5163 * destroyed its integrity by doing a deletion.
5165 goto again;
5167 rcu_read_unlock();
5170 * It could be there's still a few 0-ref events on the list; they'll
5171 * get cleaned up by free_event() -- they'll also still have their
5172 * ref on the rb and will free it whenever they are done with it.
5174 * Aside from that, this buffer is 'fully' detached and unmapped,
5175 * undo the VM accounting.
5178 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5179 vma->vm_mm->pinned_vm -= mmap_locked;
5180 free_uid(mmap_user);
5182 out_put:
5183 ring_buffer_put(rb); /* could be last */
5186 static const struct vm_operations_struct perf_mmap_vmops = {
5187 .open = perf_mmap_open,
5188 .close = perf_mmap_close, /* non mergable */
5189 .fault = perf_mmap_fault,
5190 .page_mkwrite = perf_mmap_fault,
5193 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5195 struct perf_event *event = file->private_data;
5196 unsigned long user_locked, user_lock_limit;
5197 struct user_struct *user = current_user();
5198 unsigned long locked, lock_limit;
5199 struct ring_buffer *rb = NULL;
5200 unsigned long vma_size;
5201 unsigned long nr_pages;
5202 long user_extra = 0, extra = 0;
5203 int ret = 0, flags = 0;
5206 * Don't allow mmap() of inherited per-task counters. This would
5207 * create a performance issue due to all children writing to the
5208 * same rb.
5210 if (event->cpu == -1 && event->attr.inherit)
5211 return -EINVAL;
5213 if (!(vma->vm_flags & VM_SHARED))
5214 return -EINVAL;
5216 vma_size = vma->vm_end - vma->vm_start;
5218 if (vma->vm_pgoff == 0) {
5219 nr_pages = (vma_size / PAGE_SIZE) - 1;
5220 } else {
5222 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5223 * mapped, all subsequent mappings should have the same size
5224 * and offset. Must be above the normal perf buffer.
5226 u64 aux_offset, aux_size;
5228 if (!event->rb)
5229 return -EINVAL;
5231 nr_pages = vma_size / PAGE_SIZE;
5233 mutex_lock(&event->mmap_mutex);
5234 ret = -EINVAL;
5236 rb = event->rb;
5237 if (!rb)
5238 goto aux_unlock;
5240 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5241 aux_size = READ_ONCE(rb->user_page->aux_size);
5243 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5244 goto aux_unlock;
5246 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5247 goto aux_unlock;
5249 /* already mapped with a different offset */
5250 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5251 goto aux_unlock;
5253 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5254 goto aux_unlock;
5256 /* already mapped with a different size */
5257 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5258 goto aux_unlock;
5260 if (!is_power_of_2(nr_pages))
5261 goto aux_unlock;
5263 if (!atomic_inc_not_zero(&rb->mmap_count))
5264 goto aux_unlock;
5266 if (rb_has_aux(rb)) {
5267 atomic_inc(&rb->aux_mmap_count);
5268 ret = 0;
5269 goto unlock;
5272 atomic_set(&rb->aux_mmap_count, 1);
5273 user_extra = nr_pages;
5275 goto accounting;
5279 * If we have rb pages ensure they're a power-of-two number, so we
5280 * can do bitmasks instead of modulo.
5282 if (nr_pages != 0 && !is_power_of_2(nr_pages))
5283 return -EINVAL;
5285 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5286 return -EINVAL;
5288 WARN_ON_ONCE(event->ctx->parent_ctx);
5289 again:
5290 mutex_lock(&event->mmap_mutex);
5291 if (event->rb) {
5292 if (event->rb->nr_pages != nr_pages) {
5293 ret = -EINVAL;
5294 goto unlock;
5297 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5299 * Raced against perf_mmap_close() through
5300 * perf_event_set_output(). Try again, hope for better
5301 * luck.
5303 mutex_unlock(&event->mmap_mutex);
5304 goto again;
5307 goto unlock;
5310 user_extra = nr_pages + 1;
5312 accounting:
5313 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5316 * Increase the limit linearly with more CPUs:
5318 user_lock_limit *= num_online_cpus();
5320 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5322 if (user_locked > user_lock_limit)
5323 extra = user_locked - user_lock_limit;
5325 lock_limit = rlimit(RLIMIT_MEMLOCK);
5326 lock_limit >>= PAGE_SHIFT;
5327 locked = vma->vm_mm->pinned_vm + extra;
5329 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5330 !capable(CAP_IPC_LOCK)) {
5331 ret = -EPERM;
5332 goto unlock;
5335 WARN_ON(!rb && event->rb);
5337 if (vma->vm_flags & VM_WRITE)
5338 flags |= RING_BUFFER_WRITABLE;
5340 if (!rb) {
5341 rb = rb_alloc(nr_pages,
5342 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5343 event->cpu, flags);
5345 if (!rb) {
5346 ret = -ENOMEM;
5347 goto unlock;
5350 atomic_set(&rb->mmap_count, 1);
5351 rb->mmap_user = get_current_user();
5352 rb->mmap_locked = extra;
5354 ring_buffer_attach(event, rb);
5356 perf_event_init_userpage(event);
5357 perf_event_update_userpage(event);
5358 } else {
5359 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5360 event->attr.aux_watermark, flags);
5361 if (!ret)
5362 rb->aux_mmap_locked = extra;
5365 unlock:
5366 if (!ret) {
5367 atomic_long_add(user_extra, &user->locked_vm);
5368 vma->vm_mm->pinned_vm += extra;
5370 atomic_inc(&event->mmap_count);
5371 } else if (rb) {
5372 atomic_dec(&rb->mmap_count);
5374 aux_unlock:
5375 mutex_unlock(&event->mmap_mutex);
5378 * Since pinned accounting is per vm we cannot allow fork() to copy our
5379 * vma.
5381 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5382 vma->vm_ops = &perf_mmap_vmops;
5384 if (event->pmu->event_mapped)
5385 event->pmu->event_mapped(event, vma->vm_mm);
5387 return ret;
5390 static int perf_fasync(int fd, struct file *filp, int on)
5392 struct inode *inode = file_inode(filp);
5393 struct perf_event *event = filp->private_data;
5394 int retval;
5396 inode_lock(inode);
5397 retval = fasync_helper(fd, filp, on, &event->fasync);
5398 inode_unlock(inode);
5400 if (retval < 0)
5401 return retval;
5403 return 0;
5406 static const struct file_operations perf_fops = {
5407 .llseek = no_llseek,
5408 .release = perf_release,
5409 .read = perf_read,
5410 .poll = perf_poll,
5411 .unlocked_ioctl = perf_ioctl,
5412 .compat_ioctl = perf_compat_ioctl,
5413 .mmap = perf_mmap,
5414 .fasync = perf_fasync,
5418 * Perf event wakeup
5420 * If there's data, ensure we set the poll() state and publish everything
5421 * to user-space before waking everybody up.
5424 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5426 /* only the parent has fasync state */
5427 if (event->parent)
5428 event = event->parent;
5429 return &event->fasync;
5432 void perf_event_wakeup(struct perf_event *event)
5434 ring_buffer_wakeup(event);
5436 if (event->pending_kill) {
5437 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5438 event->pending_kill = 0;
5442 static void perf_pending_event(struct irq_work *entry)
5444 struct perf_event *event = container_of(entry,
5445 struct perf_event, pending);
5446 int rctx;
5448 rctx = perf_swevent_get_recursion_context();
5450 * If we 'fail' here, that's OK, it means recursion is already disabled
5451 * and we won't recurse 'further'.
5454 if (event->pending_disable) {
5455 event->pending_disable = 0;
5456 perf_event_disable_local(event);
5459 if (event->pending_wakeup) {
5460 event->pending_wakeup = 0;
5461 perf_event_wakeup(event);
5464 if (rctx >= 0)
5465 perf_swevent_put_recursion_context(rctx);
5469 * We assume there is only KVM supporting the callbacks.
5470 * Later on, we might change it to a list if there is
5471 * another virtualization implementation supporting the callbacks.
5473 struct perf_guest_info_callbacks *perf_guest_cbs;
5475 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5477 perf_guest_cbs = cbs;
5478 return 0;
5480 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5482 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5484 perf_guest_cbs = NULL;
5485 return 0;
5487 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5489 static void
5490 perf_output_sample_regs(struct perf_output_handle *handle,
5491 struct pt_regs *regs, u64 mask)
5493 int bit;
5494 DECLARE_BITMAP(_mask, 64);
5496 bitmap_from_u64(_mask, mask);
5497 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5498 u64 val;
5500 val = perf_reg_value(regs, bit);
5501 perf_output_put(handle, val);
5505 static void perf_sample_regs_user(struct perf_regs *regs_user,
5506 struct pt_regs *regs,
5507 struct pt_regs *regs_user_copy)
5509 if (user_mode(regs)) {
5510 regs_user->abi = perf_reg_abi(current);
5511 regs_user->regs = regs;
5512 } else if (current->mm) {
5513 perf_get_regs_user(regs_user, regs, regs_user_copy);
5514 } else {
5515 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5516 regs_user->regs = NULL;
5520 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5521 struct pt_regs *regs)
5523 regs_intr->regs = regs;
5524 regs_intr->abi = perf_reg_abi(current);
5529 * Get remaining task size from user stack pointer.
5531 * It'd be better to take stack vma map and limit this more
5532 * precisly, but there's no way to get it safely under interrupt,
5533 * so using TASK_SIZE as limit.
5535 static u64 perf_ustack_task_size(struct pt_regs *regs)
5537 unsigned long addr = perf_user_stack_pointer(regs);
5539 if (!addr || addr >= TASK_SIZE)
5540 return 0;
5542 return TASK_SIZE - addr;
5545 static u16
5546 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5547 struct pt_regs *regs)
5549 u64 task_size;
5551 /* No regs, no stack pointer, no dump. */
5552 if (!regs)
5553 return 0;
5556 * Check if we fit in with the requested stack size into the:
5557 * - TASK_SIZE
5558 * If we don't, we limit the size to the TASK_SIZE.
5560 * - remaining sample size
5561 * If we don't, we customize the stack size to
5562 * fit in to the remaining sample size.
5565 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5566 stack_size = min(stack_size, (u16) task_size);
5568 /* Current header size plus static size and dynamic size. */
5569 header_size += 2 * sizeof(u64);
5571 /* Do we fit in with the current stack dump size? */
5572 if ((u16) (header_size + stack_size) < header_size) {
5574 * If we overflow the maximum size for the sample,
5575 * we customize the stack dump size to fit in.
5577 stack_size = USHRT_MAX - header_size - sizeof(u64);
5578 stack_size = round_up(stack_size, sizeof(u64));
5581 return stack_size;
5584 static void
5585 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5586 struct pt_regs *regs)
5588 /* Case of a kernel thread, nothing to dump */
5589 if (!regs) {
5590 u64 size = 0;
5591 perf_output_put(handle, size);
5592 } else {
5593 unsigned long sp;
5594 unsigned int rem;
5595 u64 dyn_size;
5598 * We dump:
5599 * static size
5600 * - the size requested by user or the best one we can fit
5601 * in to the sample max size
5602 * data
5603 * - user stack dump data
5604 * dynamic size
5605 * - the actual dumped size
5608 /* Static size. */
5609 perf_output_put(handle, dump_size);
5611 /* Data. */
5612 sp = perf_user_stack_pointer(regs);
5613 rem = __output_copy_user(handle, (void *) sp, dump_size);
5614 dyn_size = dump_size - rem;
5616 perf_output_skip(handle, rem);
5618 /* Dynamic size. */
5619 perf_output_put(handle, dyn_size);
5623 static void __perf_event_header__init_id(struct perf_event_header *header,
5624 struct perf_sample_data *data,
5625 struct perf_event *event)
5627 u64 sample_type = event->attr.sample_type;
5629 data->type = sample_type;
5630 header->size += event->id_header_size;
5632 if (sample_type & PERF_SAMPLE_TID) {
5633 /* namespace issues */
5634 data->tid_entry.pid = perf_event_pid(event, current);
5635 data->tid_entry.tid = perf_event_tid(event, current);
5638 if (sample_type & PERF_SAMPLE_TIME)
5639 data->time = perf_event_clock(event);
5641 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5642 data->id = primary_event_id(event);
5644 if (sample_type & PERF_SAMPLE_STREAM_ID)
5645 data->stream_id = event->id;
5647 if (sample_type & PERF_SAMPLE_CPU) {
5648 data->cpu_entry.cpu = raw_smp_processor_id();
5649 data->cpu_entry.reserved = 0;
5653 void perf_event_header__init_id(struct perf_event_header *header,
5654 struct perf_sample_data *data,
5655 struct perf_event *event)
5657 if (event->attr.sample_id_all)
5658 __perf_event_header__init_id(header, data, event);
5661 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5662 struct perf_sample_data *data)
5664 u64 sample_type = data->type;
5666 if (sample_type & PERF_SAMPLE_TID)
5667 perf_output_put(handle, data->tid_entry);
5669 if (sample_type & PERF_SAMPLE_TIME)
5670 perf_output_put(handle, data->time);
5672 if (sample_type & PERF_SAMPLE_ID)
5673 perf_output_put(handle, data->id);
5675 if (sample_type & PERF_SAMPLE_STREAM_ID)
5676 perf_output_put(handle, data->stream_id);
5678 if (sample_type & PERF_SAMPLE_CPU)
5679 perf_output_put(handle, data->cpu_entry);
5681 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5682 perf_output_put(handle, data->id);
5685 void perf_event__output_id_sample(struct perf_event *event,
5686 struct perf_output_handle *handle,
5687 struct perf_sample_data *sample)
5689 if (event->attr.sample_id_all)
5690 __perf_event__output_id_sample(handle, sample);
5693 static void perf_output_read_one(struct perf_output_handle *handle,
5694 struct perf_event *event,
5695 u64 enabled, u64 running)
5697 u64 read_format = event->attr.read_format;
5698 u64 values[4];
5699 int n = 0;
5701 values[n++] = perf_event_count(event);
5702 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5703 values[n++] = enabled +
5704 atomic64_read(&event->child_total_time_enabled);
5706 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5707 values[n++] = running +
5708 atomic64_read(&event->child_total_time_running);
5710 if (read_format & PERF_FORMAT_ID)
5711 values[n++] = primary_event_id(event);
5713 __output_copy(handle, values, n * sizeof(u64));
5716 static void perf_output_read_group(struct perf_output_handle *handle,
5717 struct perf_event *event,
5718 u64 enabled, u64 running)
5720 struct perf_event *leader = event->group_leader, *sub;
5721 u64 read_format = event->attr.read_format;
5722 u64 values[5];
5723 int n = 0;
5725 values[n++] = 1 + leader->nr_siblings;
5727 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5728 values[n++] = enabled;
5730 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5731 values[n++] = running;
5733 if (leader != event)
5734 leader->pmu->read(leader);
5736 values[n++] = perf_event_count(leader);
5737 if (read_format & PERF_FORMAT_ID)
5738 values[n++] = primary_event_id(leader);
5740 __output_copy(handle, values, n * sizeof(u64));
5742 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5743 n = 0;
5745 if ((sub != event) &&
5746 (sub->state == PERF_EVENT_STATE_ACTIVE))
5747 sub->pmu->read(sub);
5749 values[n++] = perf_event_count(sub);
5750 if (read_format & PERF_FORMAT_ID)
5751 values[n++] = primary_event_id(sub);
5753 __output_copy(handle, values, n * sizeof(u64));
5757 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5758 PERF_FORMAT_TOTAL_TIME_RUNNING)
5761 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5763 * The problem is that its both hard and excessively expensive to iterate the
5764 * child list, not to mention that its impossible to IPI the children running
5765 * on another CPU, from interrupt/NMI context.
5767 static void perf_output_read(struct perf_output_handle *handle,
5768 struct perf_event *event)
5770 u64 enabled = 0, running = 0, now;
5771 u64 read_format = event->attr.read_format;
5774 * compute total_time_enabled, total_time_running
5775 * based on snapshot values taken when the event
5776 * was last scheduled in.
5778 * we cannot simply called update_context_time()
5779 * because of locking issue as we are called in
5780 * NMI context
5782 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5783 calc_timer_values(event, &now, &enabled, &running);
5785 if (event->attr.read_format & PERF_FORMAT_GROUP)
5786 perf_output_read_group(handle, event, enabled, running);
5787 else
5788 perf_output_read_one(handle, event, enabled, running);
5791 void perf_output_sample(struct perf_output_handle *handle,
5792 struct perf_event_header *header,
5793 struct perf_sample_data *data,
5794 struct perf_event *event)
5796 u64 sample_type = data->type;
5798 perf_output_put(handle, *header);
5800 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5801 perf_output_put(handle, data->id);
5803 if (sample_type & PERF_SAMPLE_IP)
5804 perf_output_put(handle, data->ip);
5806 if (sample_type & PERF_SAMPLE_TID)
5807 perf_output_put(handle, data->tid_entry);
5809 if (sample_type & PERF_SAMPLE_TIME)
5810 perf_output_put(handle, data->time);
5812 if (sample_type & PERF_SAMPLE_ADDR)
5813 perf_output_put(handle, data->addr);
5815 if (sample_type & PERF_SAMPLE_ID)
5816 perf_output_put(handle, data->id);
5818 if (sample_type & PERF_SAMPLE_STREAM_ID)
5819 perf_output_put(handle, data->stream_id);
5821 if (sample_type & PERF_SAMPLE_CPU)
5822 perf_output_put(handle, data->cpu_entry);
5824 if (sample_type & PERF_SAMPLE_PERIOD)
5825 perf_output_put(handle, data->period);
5827 if (sample_type & PERF_SAMPLE_READ)
5828 perf_output_read(handle, event);
5830 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5831 int size = 1;
5833 size += data->callchain->nr;
5834 size *= sizeof(u64);
5835 __output_copy(handle, data->callchain, size);
5838 if (sample_type & PERF_SAMPLE_RAW) {
5839 struct perf_raw_record *raw = data->raw;
5841 if (raw) {
5842 struct perf_raw_frag *frag = &raw->frag;
5844 perf_output_put(handle, raw->size);
5845 do {
5846 if (frag->copy) {
5847 __output_custom(handle, frag->copy,
5848 frag->data, frag->size);
5849 } else {
5850 __output_copy(handle, frag->data,
5851 frag->size);
5853 if (perf_raw_frag_last(frag))
5854 break;
5855 frag = frag->next;
5856 } while (1);
5857 if (frag->pad)
5858 __output_skip(handle, NULL, frag->pad);
5859 } else {
5860 struct {
5861 u32 size;
5862 u32 data;
5863 } raw = {
5864 .size = sizeof(u32),
5865 .data = 0,
5867 perf_output_put(handle, raw);
5871 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5872 if (data->br_stack) {
5873 size_t size;
5875 size = data->br_stack->nr
5876 * sizeof(struct perf_branch_entry);
5878 perf_output_put(handle, data->br_stack->nr);
5879 perf_output_copy(handle, data->br_stack->entries, size);
5880 } else {
5882 * we always store at least the value of nr
5884 u64 nr = 0;
5885 perf_output_put(handle, nr);
5889 if (sample_type & PERF_SAMPLE_REGS_USER) {
5890 u64 abi = data->regs_user.abi;
5893 * If there are no regs to dump, notice it through
5894 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5896 perf_output_put(handle, abi);
5898 if (abi) {
5899 u64 mask = event->attr.sample_regs_user;
5900 perf_output_sample_regs(handle,
5901 data->regs_user.regs,
5902 mask);
5906 if (sample_type & PERF_SAMPLE_STACK_USER) {
5907 perf_output_sample_ustack(handle,
5908 data->stack_user_size,
5909 data->regs_user.regs);
5912 if (sample_type & PERF_SAMPLE_WEIGHT)
5913 perf_output_put(handle, data->weight);
5915 if (sample_type & PERF_SAMPLE_DATA_SRC)
5916 perf_output_put(handle, data->data_src.val);
5918 if (sample_type & PERF_SAMPLE_TRANSACTION)
5919 perf_output_put(handle, data->txn);
5921 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5922 u64 abi = data->regs_intr.abi;
5924 * If there are no regs to dump, notice it through
5925 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5927 perf_output_put(handle, abi);
5929 if (abi) {
5930 u64 mask = event->attr.sample_regs_intr;
5932 perf_output_sample_regs(handle,
5933 data->regs_intr.regs,
5934 mask);
5938 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
5939 perf_output_put(handle, data->phys_addr);
5941 if (!event->attr.watermark) {
5942 int wakeup_events = event->attr.wakeup_events;
5944 if (wakeup_events) {
5945 struct ring_buffer *rb = handle->rb;
5946 int events = local_inc_return(&rb->events);
5948 if (events >= wakeup_events) {
5949 local_sub(wakeup_events, &rb->events);
5950 local_inc(&rb->wakeup);
5956 static u64 perf_virt_to_phys(u64 virt)
5958 u64 phys_addr = 0;
5959 struct page *p = NULL;
5961 if (!virt)
5962 return 0;
5964 if (virt >= TASK_SIZE) {
5965 /* If it's vmalloc()d memory, leave phys_addr as 0 */
5966 if (virt_addr_valid((void *)(uintptr_t)virt) &&
5967 !(virt >= VMALLOC_START && virt < VMALLOC_END))
5968 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
5969 } else {
5971 * Walking the pages tables for user address.
5972 * Interrupts are disabled, so it prevents any tear down
5973 * of the page tables.
5974 * Try IRQ-safe __get_user_pages_fast first.
5975 * If failed, leave phys_addr as 0.
5977 if ((current->mm != NULL) &&
5978 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
5979 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
5981 if (p)
5982 put_page(p);
5985 return phys_addr;
5988 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
5990 static struct perf_callchain_entry *
5991 perf_callchain(struct perf_event *event, struct pt_regs *regs)
5993 bool kernel = !event->attr.exclude_callchain_kernel;
5994 bool user = !event->attr.exclude_callchain_user;
5995 /* Disallow cross-task user callchains. */
5996 bool crosstask = event->ctx->task && event->ctx->task != current;
5997 const u32 max_stack = event->attr.sample_max_stack;
5998 struct perf_callchain_entry *callchain;
6000 if (!kernel && !user)
6001 return &__empty_callchain;
6003 callchain = get_perf_callchain(regs, 0, kernel, user,
6004 max_stack, crosstask, true);
6005 return callchain ?: &__empty_callchain;
6008 void perf_prepare_sample(struct perf_event_header *header,
6009 struct perf_sample_data *data,
6010 struct perf_event *event,
6011 struct pt_regs *regs)
6013 u64 sample_type = event->attr.sample_type;
6015 header->type = PERF_RECORD_SAMPLE;
6016 header->size = sizeof(*header) + event->header_size;
6018 header->misc = 0;
6019 header->misc |= perf_misc_flags(regs);
6021 __perf_event_header__init_id(header, data, event);
6023 if (sample_type & PERF_SAMPLE_IP)
6024 data->ip = perf_instruction_pointer(regs);
6026 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6027 int size = 1;
6029 data->callchain = perf_callchain(event, regs);
6030 size += data->callchain->nr;
6032 header->size += size * sizeof(u64);
6035 if (sample_type & PERF_SAMPLE_RAW) {
6036 struct perf_raw_record *raw = data->raw;
6037 int size;
6039 if (raw) {
6040 struct perf_raw_frag *frag = &raw->frag;
6041 u32 sum = 0;
6043 do {
6044 sum += frag->size;
6045 if (perf_raw_frag_last(frag))
6046 break;
6047 frag = frag->next;
6048 } while (1);
6050 size = round_up(sum + sizeof(u32), sizeof(u64));
6051 raw->size = size - sizeof(u32);
6052 frag->pad = raw->size - sum;
6053 } else {
6054 size = sizeof(u64);
6057 header->size += size;
6060 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6061 int size = sizeof(u64); /* nr */
6062 if (data->br_stack) {
6063 size += data->br_stack->nr
6064 * sizeof(struct perf_branch_entry);
6066 header->size += size;
6069 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6070 perf_sample_regs_user(&data->regs_user, regs,
6071 &data->regs_user_copy);
6073 if (sample_type & PERF_SAMPLE_REGS_USER) {
6074 /* regs dump ABI info */
6075 int size = sizeof(u64);
6077 if (data->regs_user.regs) {
6078 u64 mask = event->attr.sample_regs_user;
6079 size += hweight64(mask) * sizeof(u64);
6082 header->size += size;
6085 if (sample_type & PERF_SAMPLE_STACK_USER) {
6087 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6088 * processed as the last one or have additional check added
6089 * in case new sample type is added, because we could eat
6090 * up the rest of the sample size.
6092 u16 stack_size = event->attr.sample_stack_user;
6093 u16 size = sizeof(u64);
6095 stack_size = perf_sample_ustack_size(stack_size, header->size,
6096 data->regs_user.regs);
6099 * If there is something to dump, add space for the dump
6100 * itself and for the field that tells the dynamic size,
6101 * which is how many have been actually dumped.
6103 if (stack_size)
6104 size += sizeof(u64) + stack_size;
6106 data->stack_user_size = stack_size;
6107 header->size += size;
6110 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6111 /* regs dump ABI info */
6112 int size = sizeof(u64);
6114 perf_sample_regs_intr(&data->regs_intr, regs);
6116 if (data->regs_intr.regs) {
6117 u64 mask = event->attr.sample_regs_intr;
6119 size += hweight64(mask) * sizeof(u64);
6122 header->size += size;
6125 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6126 data->phys_addr = perf_virt_to_phys(data->addr);
6129 static void __always_inline
6130 __perf_event_output(struct perf_event *event,
6131 struct perf_sample_data *data,
6132 struct pt_regs *regs,
6133 int (*output_begin)(struct perf_output_handle *,
6134 struct perf_event *,
6135 unsigned int))
6137 struct perf_output_handle handle;
6138 struct perf_event_header header;
6140 /* protect the callchain buffers */
6141 rcu_read_lock();
6143 perf_prepare_sample(&header, data, event, regs);
6145 if (output_begin(&handle, event, header.size))
6146 goto exit;
6148 perf_output_sample(&handle, &header, data, event);
6150 perf_output_end(&handle);
6152 exit:
6153 rcu_read_unlock();
6156 void
6157 perf_event_output_forward(struct perf_event *event,
6158 struct perf_sample_data *data,
6159 struct pt_regs *regs)
6161 __perf_event_output(event, data, regs, perf_output_begin_forward);
6164 void
6165 perf_event_output_backward(struct perf_event *event,
6166 struct perf_sample_data *data,
6167 struct pt_regs *regs)
6169 __perf_event_output(event, data, regs, perf_output_begin_backward);
6172 void
6173 perf_event_output(struct perf_event *event,
6174 struct perf_sample_data *data,
6175 struct pt_regs *regs)
6177 __perf_event_output(event, data, regs, perf_output_begin);
6181 * read event_id
6184 struct perf_read_event {
6185 struct perf_event_header header;
6187 u32 pid;
6188 u32 tid;
6191 static void
6192 perf_event_read_event(struct perf_event *event,
6193 struct task_struct *task)
6195 struct perf_output_handle handle;
6196 struct perf_sample_data sample;
6197 struct perf_read_event read_event = {
6198 .header = {
6199 .type = PERF_RECORD_READ,
6200 .misc = 0,
6201 .size = sizeof(read_event) + event->read_size,
6203 .pid = perf_event_pid(event, task),
6204 .tid = perf_event_tid(event, task),
6206 int ret;
6208 perf_event_header__init_id(&read_event.header, &sample, event);
6209 ret = perf_output_begin(&handle, event, read_event.header.size);
6210 if (ret)
6211 return;
6213 perf_output_put(&handle, read_event);
6214 perf_output_read(&handle, event);
6215 perf_event__output_id_sample(event, &handle, &sample);
6217 perf_output_end(&handle);
6220 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6222 static void
6223 perf_iterate_ctx(struct perf_event_context *ctx,
6224 perf_iterate_f output,
6225 void *data, bool all)
6227 struct perf_event *event;
6229 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6230 if (!all) {
6231 if (event->state < PERF_EVENT_STATE_INACTIVE)
6232 continue;
6233 if (!event_filter_match(event))
6234 continue;
6237 output(event, data);
6241 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6243 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6244 struct perf_event *event;
6246 list_for_each_entry_rcu(event, &pel->list, sb_list) {
6248 * Skip events that are not fully formed yet; ensure that
6249 * if we observe event->ctx, both event and ctx will be
6250 * complete enough. See perf_install_in_context().
6252 if (!smp_load_acquire(&event->ctx))
6253 continue;
6255 if (event->state < PERF_EVENT_STATE_INACTIVE)
6256 continue;
6257 if (!event_filter_match(event))
6258 continue;
6259 output(event, data);
6264 * Iterate all events that need to receive side-band events.
6266 * For new callers; ensure that account_pmu_sb_event() includes
6267 * your event, otherwise it might not get delivered.
6269 static void
6270 perf_iterate_sb(perf_iterate_f output, void *data,
6271 struct perf_event_context *task_ctx)
6273 struct perf_event_context *ctx;
6274 int ctxn;
6276 rcu_read_lock();
6277 preempt_disable();
6280 * If we have task_ctx != NULL we only notify the task context itself.
6281 * The task_ctx is set only for EXIT events before releasing task
6282 * context.
6284 if (task_ctx) {
6285 perf_iterate_ctx(task_ctx, output, data, false);
6286 goto done;
6289 perf_iterate_sb_cpu(output, data);
6291 for_each_task_context_nr(ctxn) {
6292 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6293 if (ctx)
6294 perf_iterate_ctx(ctx, output, data, false);
6296 done:
6297 preempt_enable();
6298 rcu_read_unlock();
6302 * Clear all file-based filters at exec, they'll have to be
6303 * re-instated when/if these objects are mmapped again.
6305 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6307 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6308 struct perf_addr_filter *filter;
6309 unsigned int restart = 0, count = 0;
6310 unsigned long flags;
6312 if (!has_addr_filter(event))
6313 return;
6315 raw_spin_lock_irqsave(&ifh->lock, flags);
6316 list_for_each_entry(filter, &ifh->list, entry) {
6317 if (filter->inode) {
6318 event->addr_filters_offs[count] = 0;
6319 restart++;
6322 count++;
6325 if (restart)
6326 event->addr_filters_gen++;
6327 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6329 if (restart)
6330 perf_event_stop(event, 1);
6333 void perf_event_exec(void)
6335 struct perf_event_context *ctx;
6336 int ctxn;
6338 rcu_read_lock();
6339 for_each_task_context_nr(ctxn) {
6340 ctx = current->perf_event_ctxp[ctxn];
6341 if (!ctx)
6342 continue;
6344 perf_event_enable_on_exec(ctxn);
6346 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6347 true);
6349 rcu_read_unlock();
6352 struct remote_output {
6353 struct ring_buffer *rb;
6354 int err;
6357 static void __perf_event_output_stop(struct perf_event *event, void *data)
6359 struct perf_event *parent = event->parent;
6360 struct remote_output *ro = data;
6361 struct ring_buffer *rb = ro->rb;
6362 struct stop_event_data sd = {
6363 .event = event,
6366 if (!has_aux(event))
6367 return;
6369 if (!parent)
6370 parent = event;
6373 * In case of inheritance, it will be the parent that links to the
6374 * ring-buffer, but it will be the child that's actually using it.
6376 * We are using event::rb to determine if the event should be stopped,
6377 * however this may race with ring_buffer_attach() (through set_output),
6378 * which will make us skip the event that actually needs to be stopped.
6379 * So ring_buffer_attach() has to stop an aux event before re-assigning
6380 * its rb pointer.
6382 if (rcu_dereference(parent->rb) == rb)
6383 ro->err = __perf_event_stop(&sd);
6386 static int __perf_pmu_output_stop(void *info)
6388 struct perf_event *event = info;
6389 struct pmu *pmu = event->pmu;
6390 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6391 struct remote_output ro = {
6392 .rb = event->rb,
6395 rcu_read_lock();
6396 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6397 if (cpuctx->task_ctx)
6398 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6399 &ro, false);
6400 rcu_read_unlock();
6402 return ro.err;
6405 static void perf_pmu_output_stop(struct perf_event *event)
6407 struct perf_event *iter;
6408 int err, cpu;
6410 restart:
6411 rcu_read_lock();
6412 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6414 * For per-CPU events, we need to make sure that neither they
6415 * nor their children are running; for cpu==-1 events it's
6416 * sufficient to stop the event itself if it's active, since
6417 * it can't have children.
6419 cpu = iter->cpu;
6420 if (cpu == -1)
6421 cpu = READ_ONCE(iter->oncpu);
6423 if (cpu == -1)
6424 continue;
6426 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6427 if (err == -EAGAIN) {
6428 rcu_read_unlock();
6429 goto restart;
6432 rcu_read_unlock();
6436 * task tracking -- fork/exit
6438 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6441 struct perf_task_event {
6442 struct task_struct *task;
6443 struct perf_event_context *task_ctx;
6445 struct {
6446 struct perf_event_header header;
6448 u32 pid;
6449 u32 ppid;
6450 u32 tid;
6451 u32 ptid;
6452 u64 time;
6453 } event_id;
6456 static int perf_event_task_match(struct perf_event *event)
6458 return event->attr.comm || event->attr.mmap ||
6459 event->attr.mmap2 || event->attr.mmap_data ||
6460 event->attr.task;
6463 static void perf_event_task_output(struct perf_event *event,
6464 void *data)
6466 struct perf_task_event *task_event = data;
6467 struct perf_output_handle handle;
6468 struct perf_sample_data sample;
6469 struct task_struct *task = task_event->task;
6470 int ret, size = task_event->event_id.header.size;
6472 if (!perf_event_task_match(event))
6473 return;
6475 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6477 ret = perf_output_begin(&handle, event,
6478 task_event->event_id.header.size);
6479 if (ret)
6480 goto out;
6482 task_event->event_id.pid = perf_event_pid(event, task);
6483 task_event->event_id.ppid = perf_event_pid(event, current);
6485 task_event->event_id.tid = perf_event_tid(event, task);
6486 task_event->event_id.ptid = perf_event_tid(event, current);
6488 task_event->event_id.time = perf_event_clock(event);
6490 perf_output_put(&handle, task_event->event_id);
6492 perf_event__output_id_sample(event, &handle, &sample);
6494 perf_output_end(&handle);
6495 out:
6496 task_event->event_id.header.size = size;
6499 static void perf_event_task(struct task_struct *task,
6500 struct perf_event_context *task_ctx,
6501 int new)
6503 struct perf_task_event task_event;
6505 if (!atomic_read(&nr_comm_events) &&
6506 !atomic_read(&nr_mmap_events) &&
6507 !atomic_read(&nr_task_events))
6508 return;
6510 task_event = (struct perf_task_event){
6511 .task = task,
6512 .task_ctx = task_ctx,
6513 .event_id = {
6514 .header = {
6515 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6516 .misc = 0,
6517 .size = sizeof(task_event.event_id),
6519 /* .pid */
6520 /* .ppid */
6521 /* .tid */
6522 /* .ptid */
6523 /* .time */
6527 perf_iterate_sb(perf_event_task_output,
6528 &task_event,
6529 task_ctx);
6532 void perf_event_fork(struct task_struct *task)
6534 perf_event_task(task, NULL, 1);
6535 perf_event_namespaces(task);
6539 * comm tracking
6542 struct perf_comm_event {
6543 struct task_struct *task;
6544 char *comm;
6545 int comm_size;
6547 struct {
6548 struct perf_event_header header;
6550 u32 pid;
6551 u32 tid;
6552 } event_id;
6555 static int perf_event_comm_match(struct perf_event *event)
6557 return event->attr.comm;
6560 static void perf_event_comm_output(struct perf_event *event,
6561 void *data)
6563 struct perf_comm_event *comm_event = data;
6564 struct perf_output_handle handle;
6565 struct perf_sample_data sample;
6566 int size = comm_event->event_id.header.size;
6567 int ret;
6569 if (!perf_event_comm_match(event))
6570 return;
6572 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6573 ret = perf_output_begin(&handle, event,
6574 comm_event->event_id.header.size);
6576 if (ret)
6577 goto out;
6579 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6580 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6582 perf_output_put(&handle, comm_event->event_id);
6583 __output_copy(&handle, comm_event->comm,
6584 comm_event->comm_size);
6586 perf_event__output_id_sample(event, &handle, &sample);
6588 perf_output_end(&handle);
6589 out:
6590 comm_event->event_id.header.size = size;
6593 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6595 char comm[TASK_COMM_LEN];
6596 unsigned int size;
6598 memset(comm, 0, sizeof(comm));
6599 strlcpy(comm, comm_event->task->comm, sizeof(comm));
6600 size = ALIGN(strlen(comm)+1, sizeof(u64));
6602 comm_event->comm = comm;
6603 comm_event->comm_size = size;
6605 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6607 perf_iterate_sb(perf_event_comm_output,
6608 comm_event,
6609 NULL);
6612 void perf_event_comm(struct task_struct *task, bool exec)
6614 struct perf_comm_event comm_event;
6616 if (!atomic_read(&nr_comm_events))
6617 return;
6619 comm_event = (struct perf_comm_event){
6620 .task = task,
6621 /* .comm */
6622 /* .comm_size */
6623 .event_id = {
6624 .header = {
6625 .type = PERF_RECORD_COMM,
6626 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6627 /* .size */
6629 /* .pid */
6630 /* .tid */
6634 perf_event_comm_event(&comm_event);
6638 * namespaces tracking
6641 struct perf_namespaces_event {
6642 struct task_struct *task;
6644 struct {
6645 struct perf_event_header header;
6647 u32 pid;
6648 u32 tid;
6649 u64 nr_namespaces;
6650 struct perf_ns_link_info link_info[NR_NAMESPACES];
6651 } event_id;
6654 static int perf_event_namespaces_match(struct perf_event *event)
6656 return event->attr.namespaces;
6659 static void perf_event_namespaces_output(struct perf_event *event,
6660 void *data)
6662 struct perf_namespaces_event *namespaces_event = data;
6663 struct perf_output_handle handle;
6664 struct perf_sample_data sample;
6665 u16 header_size = namespaces_event->event_id.header.size;
6666 int ret;
6668 if (!perf_event_namespaces_match(event))
6669 return;
6671 perf_event_header__init_id(&namespaces_event->event_id.header,
6672 &sample, event);
6673 ret = perf_output_begin(&handle, event,
6674 namespaces_event->event_id.header.size);
6675 if (ret)
6676 goto out;
6678 namespaces_event->event_id.pid = perf_event_pid(event,
6679 namespaces_event->task);
6680 namespaces_event->event_id.tid = perf_event_tid(event,
6681 namespaces_event->task);
6683 perf_output_put(&handle, namespaces_event->event_id);
6685 perf_event__output_id_sample(event, &handle, &sample);
6687 perf_output_end(&handle);
6688 out:
6689 namespaces_event->event_id.header.size = header_size;
6692 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6693 struct task_struct *task,
6694 const struct proc_ns_operations *ns_ops)
6696 struct path ns_path;
6697 struct inode *ns_inode;
6698 void *error;
6700 error = ns_get_path(&ns_path, task, ns_ops);
6701 if (!error) {
6702 ns_inode = ns_path.dentry->d_inode;
6703 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6704 ns_link_info->ino = ns_inode->i_ino;
6705 path_put(&ns_path);
6709 void perf_event_namespaces(struct task_struct *task)
6711 struct perf_namespaces_event namespaces_event;
6712 struct perf_ns_link_info *ns_link_info;
6714 if (!atomic_read(&nr_namespaces_events))
6715 return;
6717 namespaces_event = (struct perf_namespaces_event){
6718 .task = task,
6719 .event_id = {
6720 .header = {
6721 .type = PERF_RECORD_NAMESPACES,
6722 .misc = 0,
6723 .size = sizeof(namespaces_event.event_id),
6725 /* .pid */
6726 /* .tid */
6727 .nr_namespaces = NR_NAMESPACES,
6728 /* .link_info[NR_NAMESPACES] */
6732 ns_link_info = namespaces_event.event_id.link_info;
6734 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6735 task, &mntns_operations);
6737 #ifdef CONFIG_USER_NS
6738 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6739 task, &userns_operations);
6740 #endif
6741 #ifdef CONFIG_NET_NS
6742 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6743 task, &netns_operations);
6744 #endif
6745 #ifdef CONFIG_UTS_NS
6746 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6747 task, &utsns_operations);
6748 #endif
6749 #ifdef CONFIG_IPC_NS
6750 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6751 task, &ipcns_operations);
6752 #endif
6753 #ifdef CONFIG_PID_NS
6754 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6755 task, &pidns_operations);
6756 #endif
6757 #ifdef CONFIG_CGROUPS
6758 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6759 task, &cgroupns_operations);
6760 #endif
6762 perf_iterate_sb(perf_event_namespaces_output,
6763 &namespaces_event,
6764 NULL);
6768 * mmap tracking
6771 struct perf_mmap_event {
6772 struct vm_area_struct *vma;
6774 const char *file_name;
6775 int file_size;
6776 int maj, min;
6777 u64 ino;
6778 u64 ino_generation;
6779 u32 prot, flags;
6781 struct {
6782 struct perf_event_header header;
6784 u32 pid;
6785 u32 tid;
6786 u64 start;
6787 u64 len;
6788 u64 pgoff;
6789 } event_id;
6792 static int perf_event_mmap_match(struct perf_event *event,
6793 void *data)
6795 struct perf_mmap_event *mmap_event = data;
6796 struct vm_area_struct *vma = mmap_event->vma;
6797 int executable = vma->vm_flags & VM_EXEC;
6799 return (!executable && event->attr.mmap_data) ||
6800 (executable && (event->attr.mmap || event->attr.mmap2));
6803 static void perf_event_mmap_output(struct perf_event *event,
6804 void *data)
6806 struct perf_mmap_event *mmap_event = data;
6807 struct perf_output_handle handle;
6808 struct perf_sample_data sample;
6809 int size = mmap_event->event_id.header.size;
6810 int ret;
6812 if (!perf_event_mmap_match(event, data))
6813 return;
6815 if (event->attr.mmap2) {
6816 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6817 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6818 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6819 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6820 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6821 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6822 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6825 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6826 ret = perf_output_begin(&handle, event,
6827 mmap_event->event_id.header.size);
6828 if (ret)
6829 goto out;
6831 mmap_event->event_id.pid = perf_event_pid(event, current);
6832 mmap_event->event_id.tid = perf_event_tid(event, current);
6834 perf_output_put(&handle, mmap_event->event_id);
6836 if (event->attr.mmap2) {
6837 perf_output_put(&handle, mmap_event->maj);
6838 perf_output_put(&handle, mmap_event->min);
6839 perf_output_put(&handle, mmap_event->ino);
6840 perf_output_put(&handle, mmap_event->ino_generation);
6841 perf_output_put(&handle, mmap_event->prot);
6842 perf_output_put(&handle, mmap_event->flags);
6845 __output_copy(&handle, mmap_event->file_name,
6846 mmap_event->file_size);
6848 perf_event__output_id_sample(event, &handle, &sample);
6850 perf_output_end(&handle);
6851 out:
6852 mmap_event->event_id.header.size = size;
6855 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6857 struct vm_area_struct *vma = mmap_event->vma;
6858 struct file *file = vma->vm_file;
6859 int maj = 0, min = 0;
6860 u64 ino = 0, gen = 0;
6861 u32 prot = 0, flags = 0;
6862 unsigned int size;
6863 char tmp[16];
6864 char *buf = NULL;
6865 char *name;
6867 if (vma->vm_flags & VM_READ)
6868 prot |= PROT_READ;
6869 if (vma->vm_flags & VM_WRITE)
6870 prot |= PROT_WRITE;
6871 if (vma->vm_flags & VM_EXEC)
6872 prot |= PROT_EXEC;
6874 if (vma->vm_flags & VM_MAYSHARE)
6875 flags = MAP_SHARED;
6876 else
6877 flags = MAP_PRIVATE;
6879 if (vma->vm_flags & VM_DENYWRITE)
6880 flags |= MAP_DENYWRITE;
6881 if (vma->vm_flags & VM_MAYEXEC)
6882 flags |= MAP_EXECUTABLE;
6883 if (vma->vm_flags & VM_LOCKED)
6884 flags |= MAP_LOCKED;
6885 if (vma->vm_flags & VM_HUGETLB)
6886 flags |= MAP_HUGETLB;
6888 if (file) {
6889 struct inode *inode;
6890 dev_t dev;
6892 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6893 if (!buf) {
6894 name = "//enomem";
6895 goto cpy_name;
6898 * d_path() works from the end of the rb backwards, so we
6899 * need to add enough zero bytes after the string to handle
6900 * the 64bit alignment we do later.
6902 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6903 if (IS_ERR(name)) {
6904 name = "//toolong";
6905 goto cpy_name;
6907 inode = file_inode(vma->vm_file);
6908 dev = inode->i_sb->s_dev;
6909 ino = inode->i_ino;
6910 gen = inode->i_generation;
6911 maj = MAJOR(dev);
6912 min = MINOR(dev);
6914 goto got_name;
6915 } else {
6916 if (vma->vm_ops && vma->vm_ops->name) {
6917 name = (char *) vma->vm_ops->name(vma);
6918 if (name)
6919 goto cpy_name;
6922 name = (char *)arch_vma_name(vma);
6923 if (name)
6924 goto cpy_name;
6926 if (vma->vm_start <= vma->vm_mm->start_brk &&
6927 vma->vm_end >= vma->vm_mm->brk) {
6928 name = "[heap]";
6929 goto cpy_name;
6931 if (vma->vm_start <= vma->vm_mm->start_stack &&
6932 vma->vm_end >= vma->vm_mm->start_stack) {
6933 name = "[stack]";
6934 goto cpy_name;
6937 name = "//anon";
6938 goto cpy_name;
6941 cpy_name:
6942 strlcpy(tmp, name, sizeof(tmp));
6943 name = tmp;
6944 got_name:
6946 * Since our buffer works in 8 byte units we need to align our string
6947 * size to a multiple of 8. However, we must guarantee the tail end is
6948 * zero'd out to avoid leaking random bits to userspace.
6950 size = strlen(name)+1;
6951 while (!IS_ALIGNED(size, sizeof(u64)))
6952 name[size++] = '\0';
6954 mmap_event->file_name = name;
6955 mmap_event->file_size = size;
6956 mmap_event->maj = maj;
6957 mmap_event->min = min;
6958 mmap_event->ino = ino;
6959 mmap_event->ino_generation = gen;
6960 mmap_event->prot = prot;
6961 mmap_event->flags = flags;
6963 if (!(vma->vm_flags & VM_EXEC))
6964 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6966 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6968 perf_iterate_sb(perf_event_mmap_output,
6969 mmap_event,
6970 NULL);
6972 kfree(buf);
6976 * Check whether inode and address range match filter criteria.
6978 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6979 struct file *file, unsigned long offset,
6980 unsigned long size)
6982 if (filter->inode != file_inode(file))
6983 return false;
6985 if (filter->offset > offset + size)
6986 return false;
6988 if (filter->offset + filter->size < offset)
6989 return false;
6991 return true;
6994 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6996 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6997 struct vm_area_struct *vma = data;
6998 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6999 struct file *file = vma->vm_file;
7000 struct perf_addr_filter *filter;
7001 unsigned int restart = 0, count = 0;
7003 if (!has_addr_filter(event))
7004 return;
7006 if (!file)
7007 return;
7009 raw_spin_lock_irqsave(&ifh->lock, flags);
7010 list_for_each_entry(filter, &ifh->list, entry) {
7011 if (perf_addr_filter_match(filter, file, off,
7012 vma->vm_end - vma->vm_start)) {
7013 event->addr_filters_offs[count] = vma->vm_start;
7014 restart++;
7017 count++;
7020 if (restart)
7021 event->addr_filters_gen++;
7022 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7024 if (restart)
7025 perf_event_stop(event, 1);
7029 * Adjust all task's events' filters to the new vma
7031 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7033 struct perf_event_context *ctx;
7034 int ctxn;
7037 * Data tracing isn't supported yet and as such there is no need
7038 * to keep track of anything that isn't related to executable code:
7040 if (!(vma->vm_flags & VM_EXEC))
7041 return;
7043 rcu_read_lock();
7044 for_each_task_context_nr(ctxn) {
7045 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7046 if (!ctx)
7047 continue;
7049 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7051 rcu_read_unlock();
7054 void perf_event_mmap(struct vm_area_struct *vma)
7056 struct perf_mmap_event mmap_event;
7058 if (!atomic_read(&nr_mmap_events))
7059 return;
7061 mmap_event = (struct perf_mmap_event){
7062 .vma = vma,
7063 /* .file_name */
7064 /* .file_size */
7065 .event_id = {
7066 .header = {
7067 .type = PERF_RECORD_MMAP,
7068 .misc = PERF_RECORD_MISC_USER,
7069 /* .size */
7071 /* .pid */
7072 /* .tid */
7073 .start = vma->vm_start,
7074 .len = vma->vm_end - vma->vm_start,
7075 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
7077 /* .maj (attr_mmap2 only) */
7078 /* .min (attr_mmap2 only) */
7079 /* .ino (attr_mmap2 only) */
7080 /* .ino_generation (attr_mmap2 only) */
7081 /* .prot (attr_mmap2 only) */
7082 /* .flags (attr_mmap2 only) */
7085 perf_addr_filters_adjust(vma);
7086 perf_event_mmap_event(&mmap_event);
7089 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7090 unsigned long size, u64 flags)
7092 struct perf_output_handle handle;
7093 struct perf_sample_data sample;
7094 struct perf_aux_event {
7095 struct perf_event_header header;
7096 u64 offset;
7097 u64 size;
7098 u64 flags;
7099 } rec = {
7100 .header = {
7101 .type = PERF_RECORD_AUX,
7102 .misc = 0,
7103 .size = sizeof(rec),
7105 .offset = head,
7106 .size = size,
7107 .flags = flags,
7109 int ret;
7111 perf_event_header__init_id(&rec.header, &sample, event);
7112 ret = perf_output_begin(&handle, event, rec.header.size);
7114 if (ret)
7115 return;
7117 perf_output_put(&handle, rec);
7118 perf_event__output_id_sample(event, &handle, &sample);
7120 perf_output_end(&handle);
7124 * Lost/dropped samples logging
7126 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7128 struct perf_output_handle handle;
7129 struct perf_sample_data sample;
7130 int ret;
7132 struct {
7133 struct perf_event_header header;
7134 u64 lost;
7135 } lost_samples_event = {
7136 .header = {
7137 .type = PERF_RECORD_LOST_SAMPLES,
7138 .misc = 0,
7139 .size = sizeof(lost_samples_event),
7141 .lost = lost,
7144 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7146 ret = perf_output_begin(&handle, event,
7147 lost_samples_event.header.size);
7148 if (ret)
7149 return;
7151 perf_output_put(&handle, lost_samples_event);
7152 perf_event__output_id_sample(event, &handle, &sample);
7153 perf_output_end(&handle);
7157 * context_switch tracking
7160 struct perf_switch_event {
7161 struct task_struct *task;
7162 struct task_struct *next_prev;
7164 struct {
7165 struct perf_event_header header;
7166 u32 next_prev_pid;
7167 u32 next_prev_tid;
7168 } event_id;
7171 static int perf_event_switch_match(struct perf_event *event)
7173 return event->attr.context_switch;
7176 static void perf_event_switch_output(struct perf_event *event, void *data)
7178 struct perf_switch_event *se = data;
7179 struct perf_output_handle handle;
7180 struct perf_sample_data sample;
7181 int ret;
7183 if (!perf_event_switch_match(event))
7184 return;
7186 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7187 if (event->ctx->task) {
7188 se->event_id.header.type = PERF_RECORD_SWITCH;
7189 se->event_id.header.size = sizeof(se->event_id.header);
7190 } else {
7191 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7192 se->event_id.header.size = sizeof(se->event_id);
7193 se->event_id.next_prev_pid =
7194 perf_event_pid(event, se->next_prev);
7195 se->event_id.next_prev_tid =
7196 perf_event_tid(event, se->next_prev);
7199 perf_event_header__init_id(&se->event_id.header, &sample, event);
7201 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7202 if (ret)
7203 return;
7205 if (event->ctx->task)
7206 perf_output_put(&handle, se->event_id.header);
7207 else
7208 perf_output_put(&handle, se->event_id);
7210 perf_event__output_id_sample(event, &handle, &sample);
7212 perf_output_end(&handle);
7215 static void perf_event_switch(struct task_struct *task,
7216 struct task_struct *next_prev, bool sched_in)
7218 struct perf_switch_event switch_event;
7220 /* N.B. caller checks nr_switch_events != 0 */
7222 switch_event = (struct perf_switch_event){
7223 .task = task,
7224 .next_prev = next_prev,
7225 .event_id = {
7226 .header = {
7227 /* .type */
7228 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7229 /* .size */
7231 /* .next_prev_pid */
7232 /* .next_prev_tid */
7236 perf_iterate_sb(perf_event_switch_output,
7237 &switch_event,
7238 NULL);
7242 * IRQ throttle logging
7245 static void perf_log_throttle(struct perf_event *event, int enable)
7247 struct perf_output_handle handle;
7248 struct perf_sample_data sample;
7249 int ret;
7251 struct {
7252 struct perf_event_header header;
7253 u64 time;
7254 u64 id;
7255 u64 stream_id;
7256 } throttle_event = {
7257 .header = {
7258 .type = PERF_RECORD_THROTTLE,
7259 .misc = 0,
7260 .size = sizeof(throttle_event),
7262 .time = perf_event_clock(event),
7263 .id = primary_event_id(event),
7264 .stream_id = event->id,
7267 if (enable)
7268 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7270 perf_event_header__init_id(&throttle_event.header, &sample, event);
7272 ret = perf_output_begin(&handle, event,
7273 throttle_event.header.size);
7274 if (ret)
7275 return;
7277 perf_output_put(&handle, throttle_event);
7278 perf_event__output_id_sample(event, &handle, &sample);
7279 perf_output_end(&handle);
7282 void perf_event_itrace_started(struct perf_event *event)
7284 event->attach_state |= PERF_ATTACH_ITRACE;
7287 static void perf_log_itrace_start(struct perf_event *event)
7289 struct perf_output_handle handle;
7290 struct perf_sample_data sample;
7291 struct perf_aux_event {
7292 struct perf_event_header header;
7293 u32 pid;
7294 u32 tid;
7295 } rec;
7296 int ret;
7298 if (event->parent)
7299 event = event->parent;
7301 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7302 event->attach_state & PERF_ATTACH_ITRACE)
7303 return;
7305 rec.header.type = PERF_RECORD_ITRACE_START;
7306 rec.header.misc = 0;
7307 rec.header.size = sizeof(rec);
7308 rec.pid = perf_event_pid(event, current);
7309 rec.tid = perf_event_tid(event, current);
7311 perf_event_header__init_id(&rec.header, &sample, event);
7312 ret = perf_output_begin(&handle, event, rec.header.size);
7314 if (ret)
7315 return;
7317 perf_output_put(&handle, rec);
7318 perf_event__output_id_sample(event, &handle, &sample);
7320 perf_output_end(&handle);
7323 static int
7324 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7326 struct hw_perf_event *hwc = &event->hw;
7327 int ret = 0;
7328 u64 seq;
7330 seq = __this_cpu_read(perf_throttled_seq);
7331 if (seq != hwc->interrupts_seq) {
7332 hwc->interrupts_seq = seq;
7333 hwc->interrupts = 1;
7334 } else {
7335 hwc->interrupts++;
7336 if (unlikely(throttle
7337 && hwc->interrupts >= max_samples_per_tick)) {
7338 __this_cpu_inc(perf_throttled_count);
7339 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7340 hwc->interrupts = MAX_INTERRUPTS;
7341 perf_log_throttle(event, 0);
7342 ret = 1;
7346 if (event->attr.freq) {
7347 u64 now = perf_clock();
7348 s64 delta = now - hwc->freq_time_stamp;
7350 hwc->freq_time_stamp = now;
7352 if (delta > 0 && delta < 2*TICK_NSEC)
7353 perf_adjust_period(event, delta, hwc->last_period, true);
7356 return ret;
7359 int perf_event_account_interrupt(struct perf_event *event)
7361 return __perf_event_account_interrupt(event, 1);
7365 * Generic event overflow handling, sampling.
7368 static int __perf_event_overflow(struct perf_event *event,
7369 int throttle, struct perf_sample_data *data,
7370 struct pt_regs *regs)
7372 int events = atomic_read(&event->event_limit);
7373 int ret = 0;
7376 * Non-sampling counters might still use the PMI to fold short
7377 * hardware counters, ignore those.
7379 if (unlikely(!is_sampling_event(event)))
7380 return 0;
7382 ret = __perf_event_account_interrupt(event, throttle);
7385 * XXX event_limit might not quite work as expected on inherited
7386 * events
7389 event->pending_kill = POLL_IN;
7390 if (events && atomic_dec_and_test(&event->event_limit)) {
7391 ret = 1;
7392 event->pending_kill = POLL_HUP;
7394 perf_event_disable_inatomic(event);
7397 READ_ONCE(event->overflow_handler)(event, data, regs);
7399 if (*perf_event_fasync(event) && event->pending_kill) {
7400 event->pending_wakeup = 1;
7401 irq_work_queue(&event->pending);
7404 return ret;
7407 int perf_event_overflow(struct perf_event *event,
7408 struct perf_sample_data *data,
7409 struct pt_regs *regs)
7411 return __perf_event_overflow(event, 1, data, regs);
7415 * Generic software event infrastructure
7418 struct swevent_htable {
7419 struct swevent_hlist *swevent_hlist;
7420 struct mutex hlist_mutex;
7421 int hlist_refcount;
7423 /* Recursion avoidance in each contexts */
7424 int recursion[PERF_NR_CONTEXTS];
7427 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7430 * We directly increment event->count and keep a second value in
7431 * event->hw.period_left to count intervals. This period event
7432 * is kept in the range [-sample_period, 0] so that we can use the
7433 * sign as trigger.
7436 u64 perf_swevent_set_period(struct perf_event *event)
7438 struct hw_perf_event *hwc = &event->hw;
7439 u64 period = hwc->last_period;
7440 u64 nr, offset;
7441 s64 old, val;
7443 hwc->last_period = hwc->sample_period;
7445 again:
7446 old = val = local64_read(&hwc->period_left);
7447 if (val < 0)
7448 return 0;
7450 nr = div64_u64(period + val, period);
7451 offset = nr * period;
7452 val -= offset;
7453 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7454 goto again;
7456 return nr;
7459 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7460 struct perf_sample_data *data,
7461 struct pt_regs *regs)
7463 struct hw_perf_event *hwc = &event->hw;
7464 int throttle = 0;
7466 if (!overflow)
7467 overflow = perf_swevent_set_period(event);
7469 if (hwc->interrupts == MAX_INTERRUPTS)
7470 return;
7472 for (; overflow; overflow--) {
7473 if (__perf_event_overflow(event, throttle,
7474 data, regs)) {
7476 * We inhibit the overflow from happening when
7477 * hwc->interrupts == MAX_INTERRUPTS.
7479 break;
7481 throttle = 1;
7485 static void perf_swevent_event(struct perf_event *event, u64 nr,
7486 struct perf_sample_data *data,
7487 struct pt_regs *regs)
7489 struct hw_perf_event *hwc = &event->hw;
7491 local64_add(nr, &event->count);
7493 if (!regs)
7494 return;
7496 if (!is_sampling_event(event))
7497 return;
7499 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7500 data->period = nr;
7501 return perf_swevent_overflow(event, 1, data, regs);
7502 } else
7503 data->period = event->hw.last_period;
7505 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7506 return perf_swevent_overflow(event, 1, data, regs);
7508 if (local64_add_negative(nr, &hwc->period_left))
7509 return;
7511 perf_swevent_overflow(event, 0, data, regs);
7514 static int perf_exclude_event(struct perf_event *event,
7515 struct pt_regs *regs)
7517 if (event->hw.state & PERF_HES_STOPPED)
7518 return 1;
7520 if (regs) {
7521 if (event->attr.exclude_user && user_mode(regs))
7522 return 1;
7524 if (event->attr.exclude_kernel && !user_mode(regs))
7525 return 1;
7528 return 0;
7531 static int perf_swevent_match(struct perf_event *event,
7532 enum perf_type_id type,
7533 u32 event_id,
7534 struct perf_sample_data *data,
7535 struct pt_regs *regs)
7537 if (event->attr.type != type)
7538 return 0;
7540 if (event->attr.config != event_id)
7541 return 0;
7543 if (perf_exclude_event(event, regs))
7544 return 0;
7546 return 1;
7549 static inline u64 swevent_hash(u64 type, u32 event_id)
7551 u64 val = event_id | (type << 32);
7553 return hash_64(val, SWEVENT_HLIST_BITS);
7556 static inline struct hlist_head *
7557 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7559 u64 hash = swevent_hash(type, event_id);
7561 return &hlist->heads[hash];
7564 /* For the read side: events when they trigger */
7565 static inline struct hlist_head *
7566 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7568 struct swevent_hlist *hlist;
7570 hlist = rcu_dereference(swhash->swevent_hlist);
7571 if (!hlist)
7572 return NULL;
7574 return __find_swevent_head(hlist, type, event_id);
7577 /* For the event head insertion and removal in the hlist */
7578 static inline struct hlist_head *
7579 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7581 struct swevent_hlist *hlist;
7582 u32 event_id = event->attr.config;
7583 u64 type = event->attr.type;
7586 * Event scheduling is always serialized against hlist allocation
7587 * and release. Which makes the protected version suitable here.
7588 * The context lock guarantees that.
7590 hlist = rcu_dereference_protected(swhash->swevent_hlist,
7591 lockdep_is_held(&event->ctx->lock));
7592 if (!hlist)
7593 return NULL;
7595 return __find_swevent_head(hlist, type, event_id);
7598 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7599 u64 nr,
7600 struct perf_sample_data *data,
7601 struct pt_regs *regs)
7603 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7604 struct perf_event *event;
7605 struct hlist_head *head;
7607 rcu_read_lock();
7608 head = find_swevent_head_rcu(swhash, type, event_id);
7609 if (!head)
7610 goto end;
7612 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7613 if (perf_swevent_match(event, type, event_id, data, regs))
7614 perf_swevent_event(event, nr, data, regs);
7616 end:
7617 rcu_read_unlock();
7620 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7622 int perf_swevent_get_recursion_context(void)
7624 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7626 return get_recursion_context(swhash->recursion);
7628 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7630 void perf_swevent_put_recursion_context(int rctx)
7632 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7634 put_recursion_context(swhash->recursion, rctx);
7637 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7639 struct perf_sample_data data;
7641 if (WARN_ON_ONCE(!regs))
7642 return;
7644 perf_sample_data_init(&data, addr, 0);
7645 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7648 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7650 int rctx;
7652 preempt_disable_notrace();
7653 rctx = perf_swevent_get_recursion_context();
7654 if (unlikely(rctx < 0))
7655 goto fail;
7657 ___perf_sw_event(event_id, nr, regs, addr);
7659 perf_swevent_put_recursion_context(rctx);
7660 fail:
7661 preempt_enable_notrace();
7664 static void perf_swevent_read(struct perf_event *event)
7668 static int perf_swevent_add(struct perf_event *event, int flags)
7670 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7671 struct hw_perf_event *hwc = &event->hw;
7672 struct hlist_head *head;
7674 if (is_sampling_event(event)) {
7675 hwc->last_period = hwc->sample_period;
7676 perf_swevent_set_period(event);
7679 hwc->state = !(flags & PERF_EF_START);
7681 head = find_swevent_head(swhash, event);
7682 if (WARN_ON_ONCE(!head))
7683 return -EINVAL;
7685 hlist_add_head_rcu(&event->hlist_entry, head);
7686 perf_event_update_userpage(event);
7688 return 0;
7691 static void perf_swevent_del(struct perf_event *event, int flags)
7693 hlist_del_rcu(&event->hlist_entry);
7696 static void perf_swevent_start(struct perf_event *event, int flags)
7698 event->hw.state = 0;
7701 static void perf_swevent_stop(struct perf_event *event, int flags)
7703 event->hw.state = PERF_HES_STOPPED;
7706 /* Deref the hlist from the update side */
7707 static inline struct swevent_hlist *
7708 swevent_hlist_deref(struct swevent_htable *swhash)
7710 return rcu_dereference_protected(swhash->swevent_hlist,
7711 lockdep_is_held(&swhash->hlist_mutex));
7714 static void swevent_hlist_release(struct swevent_htable *swhash)
7716 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7718 if (!hlist)
7719 return;
7721 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7722 kfree_rcu(hlist, rcu_head);
7725 static void swevent_hlist_put_cpu(int cpu)
7727 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7729 mutex_lock(&swhash->hlist_mutex);
7731 if (!--swhash->hlist_refcount)
7732 swevent_hlist_release(swhash);
7734 mutex_unlock(&swhash->hlist_mutex);
7737 static void swevent_hlist_put(void)
7739 int cpu;
7741 for_each_possible_cpu(cpu)
7742 swevent_hlist_put_cpu(cpu);
7745 static int swevent_hlist_get_cpu(int cpu)
7747 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7748 int err = 0;
7750 mutex_lock(&swhash->hlist_mutex);
7751 if (!swevent_hlist_deref(swhash) &&
7752 cpumask_test_cpu(cpu, perf_online_mask)) {
7753 struct swevent_hlist *hlist;
7755 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7756 if (!hlist) {
7757 err = -ENOMEM;
7758 goto exit;
7760 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7762 swhash->hlist_refcount++;
7763 exit:
7764 mutex_unlock(&swhash->hlist_mutex);
7766 return err;
7769 static int swevent_hlist_get(void)
7771 int err, cpu, failed_cpu;
7773 mutex_lock(&pmus_lock);
7774 for_each_possible_cpu(cpu) {
7775 err = swevent_hlist_get_cpu(cpu);
7776 if (err) {
7777 failed_cpu = cpu;
7778 goto fail;
7781 mutex_unlock(&pmus_lock);
7782 return 0;
7783 fail:
7784 for_each_possible_cpu(cpu) {
7785 if (cpu == failed_cpu)
7786 break;
7787 swevent_hlist_put_cpu(cpu);
7789 mutex_unlock(&pmus_lock);
7790 return err;
7793 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7795 static void sw_perf_event_destroy(struct perf_event *event)
7797 u64 event_id = event->attr.config;
7799 WARN_ON(event->parent);
7801 static_key_slow_dec(&perf_swevent_enabled[event_id]);
7802 swevent_hlist_put();
7805 static int perf_swevent_init(struct perf_event *event)
7807 u64 event_id = event->attr.config;
7809 if (event->attr.type != PERF_TYPE_SOFTWARE)
7810 return -ENOENT;
7813 * no branch sampling for software events
7815 if (has_branch_stack(event))
7816 return -EOPNOTSUPP;
7818 switch (event_id) {
7819 case PERF_COUNT_SW_CPU_CLOCK:
7820 case PERF_COUNT_SW_TASK_CLOCK:
7821 return -ENOENT;
7823 default:
7824 break;
7827 if (event_id >= PERF_COUNT_SW_MAX)
7828 return -ENOENT;
7830 if (!event->parent) {
7831 int err;
7833 err = swevent_hlist_get();
7834 if (err)
7835 return err;
7837 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7838 event->destroy = sw_perf_event_destroy;
7841 return 0;
7844 static struct pmu perf_swevent = {
7845 .task_ctx_nr = perf_sw_context,
7847 .capabilities = PERF_PMU_CAP_NO_NMI,
7849 .event_init = perf_swevent_init,
7850 .add = perf_swevent_add,
7851 .del = perf_swevent_del,
7852 .start = perf_swevent_start,
7853 .stop = perf_swevent_stop,
7854 .read = perf_swevent_read,
7857 #ifdef CONFIG_EVENT_TRACING
7859 static int perf_tp_filter_match(struct perf_event *event,
7860 struct perf_sample_data *data)
7862 void *record = data->raw->frag.data;
7864 /* only top level events have filters set */
7865 if (event->parent)
7866 event = event->parent;
7868 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7869 return 1;
7870 return 0;
7873 static int perf_tp_event_match(struct perf_event *event,
7874 struct perf_sample_data *data,
7875 struct pt_regs *regs)
7877 if (event->hw.state & PERF_HES_STOPPED)
7878 return 0;
7880 * All tracepoints are from kernel-space.
7882 if (event->attr.exclude_kernel)
7883 return 0;
7885 if (!perf_tp_filter_match(event, data))
7886 return 0;
7888 return 1;
7891 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7892 struct trace_event_call *call, u64 count,
7893 struct pt_regs *regs, struct hlist_head *head,
7894 struct task_struct *task)
7896 if (bpf_prog_array_valid(call)) {
7897 *(struct pt_regs **)raw_data = regs;
7898 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
7899 perf_swevent_put_recursion_context(rctx);
7900 return;
7903 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7904 rctx, task);
7906 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7908 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7909 struct pt_regs *regs, struct hlist_head *head, int rctx,
7910 struct task_struct *task)
7912 struct perf_sample_data data;
7913 struct perf_event *event;
7915 struct perf_raw_record raw = {
7916 .frag = {
7917 .size = entry_size,
7918 .data = record,
7922 perf_sample_data_init(&data, 0, 0);
7923 data.raw = &raw;
7925 perf_trace_buf_update(record, event_type);
7927 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7928 if (perf_tp_event_match(event, &data, regs))
7929 perf_swevent_event(event, count, &data, regs);
7933 * If we got specified a target task, also iterate its context and
7934 * deliver this event there too.
7936 if (task && task != current) {
7937 struct perf_event_context *ctx;
7938 struct trace_entry *entry = record;
7940 rcu_read_lock();
7941 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7942 if (!ctx)
7943 goto unlock;
7945 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7946 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7947 continue;
7948 if (event->attr.config != entry->type)
7949 continue;
7950 if (perf_tp_event_match(event, &data, regs))
7951 perf_swevent_event(event, count, &data, regs);
7953 unlock:
7954 rcu_read_unlock();
7957 perf_swevent_put_recursion_context(rctx);
7959 EXPORT_SYMBOL_GPL(perf_tp_event);
7961 static void tp_perf_event_destroy(struct perf_event *event)
7963 perf_trace_destroy(event);
7966 static int perf_tp_event_init(struct perf_event *event)
7968 int err;
7970 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7971 return -ENOENT;
7974 * no branch sampling for tracepoint events
7976 if (has_branch_stack(event))
7977 return -EOPNOTSUPP;
7979 err = perf_trace_init(event);
7980 if (err)
7981 return err;
7983 event->destroy = tp_perf_event_destroy;
7985 return 0;
7988 static struct pmu perf_tracepoint = {
7989 .task_ctx_nr = perf_sw_context,
7991 .event_init = perf_tp_event_init,
7992 .add = perf_trace_add,
7993 .del = perf_trace_del,
7994 .start = perf_swevent_start,
7995 .stop = perf_swevent_stop,
7996 .read = perf_swevent_read,
7999 static inline void perf_tp_register(void)
8001 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8004 static void perf_event_free_filter(struct perf_event *event)
8006 ftrace_profile_free_filter(event);
8009 #ifdef CONFIG_BPF_SYSCALL
8010 static void bpf_overflow_handler(struct perf_event *event,
8011 struct perf_sample_data *data,
8012 struct pt_regs *regs)
8014 struct bpf_perf_event_data_kern ctx = {
8015 .data = data,
8016 .event = event,
8018 int ret = 0;
8020 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8021 preempt_disable();
8022 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8023 goto out;
8024 rcu_read_lock();
8025 ret = BPF_PROG_RUN(event->prog, &ctx);
8026 rcu_read_unlock();
8027 out:
8028 __this_cpu_dec(bpf_prog_active);
8029 preempt_enable();
8030 if (!ret)
8031 return;
8033 event->orig_overflow_handler(event, data, regs);
8036 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8038 struct bpf_prog *prog;
8040 if (event->overflow_handler_context)
8041 /* hw breakpoint or kernel counter */
8042 return -EINVAL;
8044 if (event->prog)
8045 return -EEXIST;
8047 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8048 if (IS_ERR(prog))
8049 return PTR_ERR(prog);
8051 event->prog = prog;
8052 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8053 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8054 return 0;
8057 static void perf_event_free_bpf_handler(struct perf_event *event)
8059 struct bpf_prog *prog = event->prog;
8061 if (!prog)
8062 return;
8064 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8065 event->prog = NULL;
8066 bpf_prog_put(prog);
8068 #else
8069 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8071 return -EOPNOTSUPP;
8073 static void perf_event_free_bpf_handler(struct perf_event *event)
8076 #endif
8078 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8080 bool is_kprobe, is_tracepoint, is_syscall_tp;
8081 struct bpf_prog *prog;
8082 int ret;
8084 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8085 return perf_event_set_bpf_handler(event, prog_fd);
8087 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8088 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8089 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8090 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8091 /* bpf programs can only be attached to u/kprobe or tracepoint */
8092 return -EINVAL;
8094 prog = bpf_prog_get(prog_fd);
8095 if (IS_ERR(prog))
8096 return PTR_ERR(prog);
8098 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8099 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8100 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8101 /* valid fd, but invalid bpf program type */
8102 bpf_prog_put(prog);
8103 return -EINVAL;
8106 /* Kprobe override only works for kprobes, not uprobes. */
8107 if (prog->kprobe_override &&
8108 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8109 bpf_prog_put(prog);
8110 return -EINVAL;
8113 if (is_tracepoint || is_syscall_tp) {
8114 int off = trace_event_get_offsets(event->tp_event);
8116 if (prog->aux->max_ctx_offset > off) {
8117 bpf_prog_put(prog);
8118 return -EACCES;
8122 ret = perf_event_attach_bpf_prog(event, prog);
8123 if (ret)
8124 bpf_prog_put(prog);
8125 return ret;
8128 static void perf_event_free_bpf_prog(struct perf_event *event)
8130 if (event->attr.type != PERF_TYPE_TRACEPOINT) {
8131 perf_event_free_bpf_handler(event);
8132 return;
8134 perf_event_detach_bpf_prog(event);
8137 #else
8139 static inline void perf_tp_register(void)
8143 static void perf_event_free_filter(struct perf_event *event)
8147 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8149 return -ENOENT;
8152 static void perf_event_free_bpf_prog(struct perf_event *event)
8155 #endif /* CONFIG_EVENT_TRACING */
8157 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8158 void perf_bp_event(struct perf_event *bp, void *data)
8160 struct perf_sample_data sample;
8161 struct pt_regs *regs = data;
8163 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8165 if (!bp->hw.state && !perf_exclude_event(bp, regs))
8166 perf_swevent_event(bp, 1, &sample, regs);
8168 #endif
8171 * Allocate a new address filter
8173 static struct perf_addr_filter *
8174 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8176 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8177 struct perf_addr_filter *filter;
8179 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8180 if (!filter)
8181 return NULL;
8183 INIT_LIST_HEAD(&filter->entry);
8184 list_add_tail(&filter->entry, filters);
8186 return filter;
8189 static void free_filters_list(struct list_head *filters)
8191 struct perf_addr_filter *filter, *iter;
8193 list_for_each_entry_safe(filter, iter, filters, entry) {
8194 if (filter->inode)
8195 iput(filter->inode);
8196 list_del(&filter->entry);
8197 kfree(filter);
8202 * Free existing address filters and optionally install new ones
8204 static void perf_addr_filters_splice(struct perf_event *event,
8205 struct list_head *head)
8207 unsigned long flags;
8208 LIST_HEAD(list);
8210 if (!has_addr_filter(event))
8211 return;
8213 /* don't bother with children, they don't have their own filters */
8214 if (event->parent)
8215 return;
8217 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8219 list_splice_init(&event->addr_filters.list, &list);
8220 if (head)
8221 list_splice(head, &event->addr_filters.list);
8223 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8225 free_filters_list(&list);
8229 * Scan through mm's vmas and see if one of them matches the
8230 * @filter; if so, adjust filter's address range.
8231 * Called with mm::mmap_sem down for reading.
8233 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8234 struct mm_struct *mm)
8236 struct vm_area_struct *vma;
8238 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8239 struct file *file = vma->vm_file;
8240 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8241 unsigned long vma_size = vma->vm_end - vma->vm_start;
8243 if (!file)
8244 continue;
8246 if (!perf_addr_filter_match(filter, file, off, vma_size))
8247 continue;
8249 return vma->vm_start;
8252 return 0;
8256 * Update event's address range filters based on the
8257 * task's existing mappings, if any.
8259 static void perf_event_addr_filters_apply(struct perf_event *event)
8261 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8262 struct task_struct *task = READ_ONCE(event->ctx->task);
8263 struct perf_addr_filter *filter;
8264 struct mm_struct *mm = NULL;
8265 unsigned int count = 0;
8266 unsigned long flags;
8269 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8270 * will stop on the parent's child_mutex that our caller is also holding
8272 if (task == TASK_TOMBSTONE)
8273 return;
8275 if (!ifh->nr_file_filters)
8276 return;
8278 mm = get_task_mm(event->ctx->task);
8279 if (!mm)
8280 goto restart;
8282 down_read(&mm->mmap_sem);
8284 raw_spin_lock_irqsave(&ifh->lock, flags);
8285 list_for_each_entry(filter, &ifh->list, entry) {
8286 event->addr_filters_offs[count] = 0;
8289 * Adjust base offset if the filter is associated to a binary
8290 * that needs to be mapped:
8292 if (filter->inode)
8293 event->addr_filters_offs[count] =
8294 perf_addr_filter_apply(filter, mm);
8296 count++;
8299 event->addr_filters_gen++;
8300 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8302 up_read(&mm->mmap_sem);
8304 mmput(mm);
8306 restart:
8307 perf_event_stop(event, 1);
8311 * Address range filtering: limiting the data to certain
8312 * instruction address ranges. Filters are ioctl()ed to us from
8313 * userspace as ascii strings.
8315 * Filter string format:
8317 * ACTION RANGE_SPEC
8318 * where ACTION is one of the
8319 * * "filter": limit the trace to this region
8320 * * "start": start tracing from this address
8321 * * "stop": stop tracing at this address/region;
8322 * RANGE_SPEC is
8323 * * for kernel addresses: <start address>[/<size>]
8324 * * for object files: <start address>[/<size>]@</path/to/object/file>
8326 * if <size> is not specified, the range is treated as a single address.
8328 enum {
8329 IF_ACT_NONE = -1,
8330 IF_ACT_FILTER,
8331 IF_ACT_START,
8332 IF_ACT_STOP,
8333 IF_SRC_FILE,
8334 IF_SRC_KERNEL,
8335 IF_SRC_FILEADDR,
8336 IF_SRC_KERNELADDR,
8339 enum {
8340 IF_STATE_ACTION = 0,
8341 IF_STATE_SOURCE,
8342 IF_STATE_END,
8345 static const match_table_t if_tokens = {
8346 { IF_ACT_FILTER, "filter" },
8347 { IF_ACT_START, "start" },
8348 { IF_ACT_STOP, "stop" },
8349 { IF_SRC_FILE, "%u/%u@%s" },
8350 { IF_SRC_KERNEL, "%u/%u" },
8351 { IF_SRC_FILEADDR, "%u@%s" },
8352 { IF_SRC_KERNELADDR, "%u" },
8353 { IF_ACT_NONE, NULL },
8357 * Address filter string parser
8359 static int
8360 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8361 struct list_head *filters)
8363 struct perf_addr_filter *filter = NULL;
8364 char *start, *orig, *filename = NULL;
8365 struct path path;
8366 substring_t args[MAX_OPT_ARGS];
8367 int state = IF_STATE_ACTION, token;
8368 unsigned int kernel = 0;
8369 int ret = -EINVAL;
8371 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8372 if (!fstr)
8373 return -ENOMEM;
8375 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8376 ret = -EINVAL;
8378 if (!*start)
8379 continue;
8381 /* filter definition begins */
8382 if (state == IF_STATE_ACTION) {
8383 filter = perf_addr_filter_new(event, filters);
8384 if (!filter)
8385 goto fail;
8388 token = match_token(start, if_tokens, args);
8389 switch (token) {
8390 case IF_ACT_FILTER:
8391 case IF_ACT_START:
8392 filter->filter = 1;
8394 case IF_ACT_STOP:
8395 if (state != IF_STATE_ACTION)
8396 goto fail;
8398 state = IF_STATE_SOURCE;
8399 break;
8401 case IF_SRC_KERNELADDR:
8402 case IF_SRC_KERNEL:
8403 kernel = 1;
8405 case IF_SRC_FILEADDR:
8406 case IF_SRC_FILE:
8407 if (state != IF_STATE_SOURCE)
8408 goto fail;
8410 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8411 filter->range = 1;
8413 *args[0].to = 0;
8414 ret = kstrtoul(args[0].from, 0, &filter->offset);
8415 if (ret)
8416 goto fail;
8418 if (filter->range) {
8419 *args[1].to = 0;
8420 ret = kstrtoul(args[1].from, 0, &filter->size);
8421 if (ret)
8422 goto fail;
8425 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8426 int fpos = filter->range ? 2 : 1;
8428 filename = match_strdup(&args[fpos]);
8429 if (!filename) {
8430 ret = -ENOMEM;
8431 goto fail;
8435 state = IF_STATE_END;
8436 break;
8438 default:
8439 goto fail;
8443 * Filter definition is fully parsed, validate and install it.
8444 * Make sure that it doesn't contradict itself or the event's
8445 * attribute.
8447 if (state == IF_STATE_END) {
8448 ret = -EINVAL;
8449 if (kernel && event->attr.exclude_kernel)
8450 goto fail;
8452 if (!kernel) {
8453 if (!filename)
8454 goto fail;
8457 * For now, we only support file-based filters
8458 * in per-task events; doing so for CPU-wide
8459 * events requires additional context switching
8460 * trickery, since same object code will be
8461 * mapped at different virtual addresses in
8462 * different processes.
8464 ret = -EOPNOTSUPP;
8465 if (!event->ctx->task)
8466 goto fail_free_name;
8468 /* look up the path and grab its inode */
8469 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8470 if (ret)
8471 goto fail_free_name;
8473 filter->inode = igrab(d_inode(path.dentry));
8474 path_put(&path);
8475 kfree(filename);
8476 filename = NULL;
8478 ret = -EINVAL;
8479 if (!filter->inode ||
8480 !S_ISREG(filter->inode->i_mode))
8481 /* free_filters_list() will iput() */
8482 goto fail;
8484 event->addr_filters.nr_file_filters++;
8487 /* ready to consume more filters */
8488 state = IF_STATE_ACTION;
8489 filter = NULL;
8493 if (state != IF_STATE_ACTION)
8494 goto fail;
8496 kfree(orig);
8498 return 0;
8500 fail_free_name:
8501 kfree(filename);
8502 fail:
8503 free_filters_list(filters);
8504 kfree(orig);
8506 return ret;
8509 static int
8510 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8512 LIST_HEAD(filters);
8513 int ret;
8516 * Since this is called in perf_ioctl() path, we're already holding
8517 * ctx::mutex.
8519 lockdep_assert_held(&event->ctx->mutex);
8521 if (WARN_ON_ONCE(event->parent))
8522 return -EINVAL;
8524 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8525 if (ret)
8526 goto fail_clear_files;
8528 ret = event->pmu->addr_filters_validate(&filters);
8529 if (ret)
8530 goto fail_free_filters;
8532 /* remove existing filters, if any */
8533 perf_addr_filters_splice(event, &filters);
8535 /* install new filters */
8536 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8538 return ret;
8540 fail_free_filters:
8541 free_filters_list(&filters);
8543 fail_clear_files:
8544 event->addr_filters.nr_file_filters = 0;
8546 return ret;
8549 static int
8550 perf_tracepoint_set_filter(struct perf_event *event, char *filter_str)
8552 struct perf_event_context *ctx = event->ctx;
8553 int ret;
8556 * Beware, here be dragons!!
8558 * the tracepoint muck will deadlock against ctx->mutex, but the tracepoint
8559 * stuff does not actually need it. So temporarily drop ctx->mutex. As per
8560 * perf_event_ctx_lock() we already have a reference on ctx.
8562 * This can result in event getting moved to a different ctx, but that
8563 * does not affect the tracepoint state.
8565 mutex_unlock(&ctx->mutex);
8566 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
8567 mutex_lock(&ctx->mutex);
8569 return ret;
8572 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8574 char *filter_str;
8575 int ret = -EINVAL;
8577 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8578 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8579 !has_addr_filter(event))
8580 return -EINVAL;
8582 filter_str = strndup_user(arg, PAGE_SIZE);
8583 if (IS_ERR(filter_str))
8584 return PTR_ERR(filter_str);
8586 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8587 event->attr.type == PERF_TYPE_TRACEPOINT)
8588 ret = perf_tracepoint_set_filter(event, filter_str);
8589 else if (has_addr_filter(event))
8590 ret = perf_event_set_addr_filter(event, filter_str);
8592 kfree(filter_str);
8593 return ret;
8597 * hrtimer based swevent callback
8600 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8602 enum hrtimer_restart ret = HRTIMER_RESTART;
8603 struct perf_sample_data data;
8604 struct pt_regs *regs;
8605 struct perf_event *event;
8606 u64 period;
8608 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8610 if (event->state != PERF_EVENT_STATE_ACTIVE)
8611 return HRTIMER_NORESTART;
8613 event->pmu->read(event);
8615 perf_sample_data_init(&data, 0, event->hw.last_period);
8616 regs = get_irq_regs();
8618 if (regs && !perf_exclude_event(event, regs)) {
8619 if (!(event->attr.exclude_idle && is_idle_task(current)))
8620 if (__perf_event_overflow(event, 1, &data, regs))
8621 ret = HRTIMER_NORESTART;
8624 period = max_t(u64, 10000, event->hw.sample_period);
8625 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8627 return ret;
8630 static void perf_swevent_start_hrtimer(struct perf_event *event)
8632 struct hw_perf_event *hwc = &event->hw;
8633 s64 period;
8635 if (!is_sampling_event(event))
8636 return;
8638 period = local64_read(&hwc->period_left);
8639 if (period) {
8640 if (period < 0)
8641 period = 10000;
8643 local64_set(&hwc->period_left, 0);
8644 } else {
8645 period = max_t(u64, 10000, hwc->sample_period);
8647 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8648 HRTIMER_MODE_REL_PINNED);
8651 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8653 struct hw_perf_event *hwc = &event->hw;
8655 if (is_sampling_event(event)) {
8656 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8657 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8659 hrtimer_cancel(&hwc->hrtimer);
8663 static void perf_swevent_init_hrtimer(struct perf_event *event)
8665 struct hw_perf_event *hwc = &event->hw;
8667 if (!is_sampling_event(event))
8668 return;
8670 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8671 hwc->hrtimer.function = perf_swevent_hrtimer;
8674 * Since hrtimers have a fixed rate, we can do a static freq->period
8675 * mapping and avoid the whole period adjust feedback stuff.
8677 if (event->attr.freq) {
8678 long freq = event->attr.sample_freq;
8680 event->attr.sample_period = NSEC_PER_SEC / freq;
8681 hwc->sample_period = event->attr.sample_period;
8682 local64_set(&hwc->period_left, hwc->sample_period);
8683 hwc->last_period = hwc->sample_period;
8684 event->attr.freq = 0;
8689 * Software event: cpu wall time clock
8692 static void cpu_clock_event_update(struct perf_event *event)
8694 s64 prev;
8695 u64 now;
8697 now = local_clock();
8698 prev = local64_xchg(&event->hw.prev_count, now);
8699 local64_add(now - prev, &event->count);
8702 static void cpu_clock_event_start(struct perf_event *event, int flags)
8704 local64_set(&event->hw.prev_count, local_clock());
8705 perf_swevent_start_hrtimer(event);
8708 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8710 perf_swevent_cancel_hrtimer(event);
8711 cpu_clock_event_update(event);
8714 static int cpu_clock_event_add(struct perf_event *event, int flags)
8716 if (flags & PERF_EF_START)
8717 cpu_clock_event_start(event, flags);
8718 perf_event_update_userpage(event);
8720 return 0;
8723 static void cpu_clock_event_del(struct perf_event *event, int flags)
8725 cpu_clock_event_stop(event, flags);
8728 static void cpu_clock_event_read(struct perf_event *event)
8730 cpu_clock_event_update(event);
8733 static int cpu_clock_event_init(struct perf_event *event)
8735 if (event->attr.type != PERF_TYPE_SOFTWARE)
8736 return -ENOENT;
8738 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8739 return -ENOENT;
8742 * no branch sampling for software events
8744 if (has_branch_stack(event))
8745 return -EOPNOTSUPP;
8747 perf_swevent_init_hrtimer(event);
8749 return 0;
8752 static struct pmu perf_cpu_clock = {
8753 .task_ctx_nr = perf_sw_context,
8755 .capabilities = PERF_PMU_CAP_NO_NMI,
8757 .event_init = cpu_clock_event_init,
8758 .add = cpu_clock_event_add,
8759 .del = cpu_clock_event_del,
8760 .start = cpu_clock_event_start,
8761 .stop = cpu_clock_event_stop,
8762 .read = cpu_clock_event_read,
8766 * Software event: task time clock
8769 static void task_clock_event_update(struct perf_event *event, u64 now)
8771 u64 prev;
8772 s64 delta;
8774 prev = local64_xchg(&event->hw.prev_count, now);
8775 delta = now - prev;
8776 local64_add(delta, &event->count);
8779 static void task_clock_event_start(struct perf_event *event, int flags)
8781 local64_set(&event->hw.prev_count, event->ctx->time);
8782 perf_swevent_start_hrtimer(event);
8785 static void task_clock_event_stop(struct perf_event *event, int flags)
8787 perf_swevent_cancel_hrtimer(event);
8788 task_clock_event_update(event, event->ctx->time);
8791 static int task_clock_event_add(struct perf_event *event, int flags)
8793 if (flags & PERF_EF_START)
8794 task_clock_event_start(event, flags);
8795 perf_event_update_userpage(event);
8797 return 0;
8800 static void task_clock_event_del(struct perf_event *event, int flags)
8802 task_clock_event_stop(event, PERF_EF_UPDATE);
8805 static void task_clock_event_read(struct perf_event *event)
8807 u64 now = perf_clock();
8808 u64 delta = now - event->ctx->timestamp;
8809 u64 time = event->ctx->time + delta;
8811 task_clock_event_update(event, time);
8814 static int task_clock_event_init(struct perf_event *event)
8816 if (event->attr.type != PERF_TYPE_SOFTWARE)
8817 return -ENOENT;
8819 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8820 return -ENOENT;
8823 * no branch sampling for software events
8825 if (has_branch_stack(event))
8826 return -EOPNOTSUPP;
8828 perf_swevent_init_hrtimer(event);
8830 return 0;
8833 static struct pmu perf_task_clock = {
8834 .task_ctx_nr = perf_sw_context,
8836 .capabilities = PERF_PMU_CAP_NO_NMI,
8838 .event_init = task_clock_event_init,
8839 .add = task_clock_event_add,
8840 .del = task_clock_event_del,
8841 .start = task_clock_event_start,
8842 .stop = task_clock_event_stop,
8843 .read = task_clock_event_read,
8846 static void perf_pmu_nop_void(struct pmu *pmu)
8850 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8854 static int perf_pmu_nop_int(struct pmu *pmu)
8856 return 0;
8859 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8861 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8863 __this_cpu_write(nop_txn_flags, flags);
8865 if (flags & ~PERF_PMU_TXN_ADD)
8866 return;
8868 perf_pmu_disable(pmu);
8871 static int perf_pmu_commit_txn(struct pmu *pmu)
8873 unsigned int flags = __this_cpu_read(nop_txn_flags);
8875 __this_cpu_write(nop_txn_flags, 0);
8877 if (flags & ~PERF_PMU_TXN_ADD)
8878 return 0;
8880 perf_pmu_enable(pmu);
8881 return 0;
8884 static void perf_pmu_cancel_txn(struct pmu *pmu)
8886 unsigned int flags = __this_cpu_read(nop_txn_flags);
8888 __this_cpu_write(nop_txn_flags, 0);
8890 if (flags & ~PERF_PMU_TXN_ADD)
8891 return;
8893 perf_pmu_enable(pmu);
8896 static int perf_event_idx_default(struct perf_event *event)
8898 return 0;
8902 * Ensures all contexts with the same task_ctx_nr have the same
8903 * pmu_cpu_context too.
8905 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8907 struct pmu *pmu;
8909 if (ctxn < 0)
8910 return NULL;
8912 list_for_each_entry(pmu, &pmus, entry) {
8913 if (pmu->task_ctx_nr == ctxn)
8914 return pmu->pmu_cpu_context;
8917 return NULL;
8920 static void free_pmu_context(struct pmu *pmu)
8923 * Static contexts such as perf_sw_context have a global lifetime
8924 * and may be shared between different PMUs. Avoid freeing them
8925 * when a single PMU is going away.
8927 if (pmu->task_ctx_nr > perf_invalid_context)
8928 return;
8930 mutex_lock(&pmus_lock);
8931 free_percpu(pmu->pmu_cpu_context);
8932 mutex_unlock(&pmus_lock);
8936 * Let userspace know that this PMU supports address range filtering:
8938 static ssize_t nr_addr_filters_show(struct device *dev,
8939 struct device_attribute *attr,
8940 char *page)
8942 struct pmu *pmu = dev_get_drvdata(dev);
8944 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8946 DEVICE_ATTR_RO(nr_addr_filters);
8948 static struct idr pmu_idr;
8950 static ssize_t
8951 type_show(struct device *dev, struct device_attribute *attr, char *page)
8953 struct pmu *pmu = dev_get_drvdata(dev);
8955 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8957 static DEVICE_ATTR_RO(type);
8959 static ssize_t
8960 perf_event_mux_interval_ms_show(struct device *dev,
8961 struct device_attribute *attr,
8962 char *page)
8964 struct pmu *pmu = dev_get_drvdata(dev);
8966 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8969 static DEFINE_MUTEX(mux_interval_mutex);
8971 static ssize_t
8972 perf_event_mux_interval_ms_store(struct device *dev,
8973 struct device_attribute *attr,
8974 const char *buf, size_t count)
8976 struct pmu *pmu = dev_get_drvdata(dev);
8977 int timer, cpu, ret;
8979 ret = kstrtoint(buf, 0, &timer);
8980 if (ret)
8981 return ret;
8983 if (timer < 1)
8984 return -EINVAL;
8986 /* same value, noting to do */
8987 if (timer == pmu->hrtimer_interval_ms)
8988 return count;
8990 mutex_lock(&mux_interval_mutex);
8991 pmu->hrtimer_interval_ms = timer;
8993 /* update all cpuctx for this PMU */
8994 cpus_read_lock();
8995 for_each_online_cpu(cpu) {
8996 struct perf_cpu_context *cpuctx;
8997 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8998 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9000 cpu_function_call(cpu,
9001 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9003 cpus_read_unlock();
9004 mutex_unlock(&mux_interval_mutex);
9006 return count;
9008 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9010 static struct attribute *pmu_dev_attrs[] = {
9011 &dev_attr_type.attr,
9012 &dev_attr_perf_event_mux_interval_ms.attr,
9013 NULL,
9015 ATTRIBUTE_GROUPS(pmu_dev);
9017 static int pmu_bus_running;
9018 static struct bus_type pmu_bus = {
9019 .name = "event_source",
9020 .dev_groups = pmu_dev_groups,
9023 static void pmu_dev_release(struct device *dev)
9025 kfree(dev);
9028 static int pmu_dev_alloc(struct pmu *pmu)
9030 int ret = -ENOMEM;
9032 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9033 if (!pmu->dev)
9034 goto out;
9036 pmu->dev->groups = pmu->attr_groups;
9037 device_initialize(pmu->dev);
9038 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9039 if (ret)
9040 goto free_dev;
9042 dev_set_drvdata(pmu->dev, pmu);
9043 pmu->dev->bus = &pmu_bus;
9044 pmu->dev->release = pmu_dev_release;
9045 ret = device_add(pmu->dev);
9046 if (ret)
9047 goto free_dev;
9049 /* For PMUs with address filters, throw in an extra attribute: */
9050 if (pmu->nr_addr_filters)
9051 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9053 if (ret)
9054 goto del_dev;
9056 out:
9057 return ret;
9059 del_dev:
9060 device_del(pmu->dev);
9062 free_dev:
9063 put_device(pmu->dev);
9064 goto out;
9067 static struct lock_class_key cpuctx_mutex;
9068 static struct lock_class_key cpuctx_lock;
9070 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9072 int cpu, ret;
9074 mutex_lock(&pmus_lock);
9075 ret = -ENOMEM;
9076 pmu->pmu_disable_count = alloc_percpu(int);
9077 if (!pmu->pmu_disable_count)
9078 goto unlock;
9080 pmu->type = -1;
9081 if (!name)
9082 goto skip_type;
9083 pmu->name = name;
9085 if (type < 0) {
9086 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9087 if (type < 0) {
9088 ret = type;
9089 goto free_pdc;
9092 pmu->type = type;
9094 if (pmu_bus_running) {
9095 ret = pmu_dev_alloc(pmu);
9096 if (ret)
9097 goto free_idr;
9100 skip_type:
9101 if (pmu->task_ctx_nr == perf_hw_context) {
9102 static int hw_context_taken = 0;
9105 * Other than systems with heterogeneous CPUs, it never makes
9106 * sense for two PMUs to share perf_hw_context. PMUs which are
9107 * uncore must use perf_invalid_context.
9109 if (WARN_ON_ONCE(hw_context_taken &&
9110 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9111 pmu->task_ctx_nr = perf_invalid_context;
9113 hw_context_taken = 1;
9116 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9117 if (pmu->pmu_cpu_context)
9118 goto got_cpu_context;
9120 ret = -ENOMEM;
9121 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9122 if (!pmu->pmu_cpu_context)
9123 goto free_dev;
9125 for_each_possible_cpu(cpu) {
9126 struct perf_cpu_context *cpuctx;
9128 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9129 __perf_event_init_context(&cpuctx->ctx);
9130 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9131 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9132 cpuctx->ctx.pmu = pmu;
9133 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9135 __perf_mux_hrtimer_init(cpuctx, cpu);
9138 got_cpu_context:
9139 if (!pmu->start_txn) {
9140 if (pmu->pmu_enable) {
9142 * If we have pmu_enable/pmu_disable calls, install
9143 * transaction stubs that use that to try and batch
9144 * hardware accesses.
9146 pmu->start_txn = perf_pmu_start_txn;
9147 pmu->commit_txn = perf_pmu_commit_txn;
9148 pmu->cancel_txn = perf_pmu_cancel_txn;
9149 } else {
9150 pmu->start_txn = perf_pmu_nop_txn;
9151 pmu->commit_txn = perf_pmu_nop_int;
9152 pmu->cancel_txn = perf_pmu_nop_void;
9156 if (!pmu->pmu_enable) {
9157 pmu->pmu_enable = perf_pmu_nop_void;
9158 pmu->pmu_disable = perf_pmu_nop_void;
9161 if (!pmu->event_idx)
9162 pmu->event_idx = perf_event_idx_default;
9164 list_add_rcu(&pmu->entry, &pmus);
9165 atomic_set(&pmu->exclusive_cnt, 0);
9166 ret = 0;
9167 unlock:
9168 mutex_unlock(&pmus_lock);
9170 return ret;
9172 free_dev:
9173 device_del(pmu->dev);
9174 put_device(pmu->dev);
9176 free_idr:
9177 if (pmu->type >= PERF_TYPE_MAX)
9178 idr_remove(&pmu_idr, pmu->type);
9180 free_pdc:
9181 free_percpu(pmu->pmu_disable_count);
9182 goto unlock;
9184 EXPORT_SYMBOL_GPL(perf_pmu_register);
9186 void perf_pmu_unregister(struct pmu *pmu)
9188 int remove_device;
9190 mutex_lock(&pmus_lock);
9191 remove_device = pmu_bus_running;
9192 list_del_rcu(&pmu->entry);
9193 mutex_unlock(&pmus_lock);
9196 * We dereference the pmu list under both SRCU and regular RCU, so
9197 * synchronize against both of those.
9199 synchronize_srcu(&pmus_srcu);
9200 synchronize_rcu();
9202 free_percpu(pmu->pmu_disable_count);
9203 if (pmu->type >= PERF_TYPE_MAX)
9204 idr_remove(&pmu_idr, pmu->type);
9205 if (remove_device) {
9206 if (pmu->nr_addr_filters)
9207 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9208 device_del(pmu->dev);
9209 put_device(pmu->dev);
9211 free_pmu_context(pmu);
9213 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9215 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9217 struct perf_event_context *ctx = NULL;
9218 int ret;
9220 if (!try_module_get(pmu->module))
9221 return -ENODEV;
9224 * A number of pmu->event_init() methods iterate the sibling_list to,
9225 * for example, validate if the group fits on the PMU. Therefore,
9226 * if this is a sibling event, acquire the ctx->mutex to protect
9227 * the sibling_list.
9229 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9231 * This ctx->mutex can nest when we're called through
9232 * inheritance. See the perf_event_ctx_lock_nested() comment.
9234 ctx = perf_event_ctx_lock_nested(event->group_leader,
9235 SINGLE_DEPTH_NESTING);
9236 BUG_ON(!ctx);
9239 event->pmu = pmu;
9240 ret = pmu->event_init(event);
9242 if (ctx)
9243 perf_event_ctx_unlock(event->group_leader, ctx);
9245 if (ret)
9246 module_put(pmu->module);
9248 return ret;
9251 static struct pmu *perf_init_event(struct perf_event *event)
9253 struct pmu *pmu;
9254 int idx;
9255 int ret;
9257 idx = srcu_read_lock(&pmus_srcu);
9259 /* Try parent's PMU first: */
9260 if (event->parent && event->parent->pmu) {
9261 pmu = event->parent->pmu;
9262 ret = perf_try_init_event(pmu, event);
9263 if (!ret)
9264 goto unlock;
9267 rcu_read_lock();
9268 pmu = idr_find(&pmu_idr, event->attr.type);
9269 rcu_read_unlock();
9270 if (pmu) {
9271 ret = perf_try_init_event(pmu, event);
9272 if (ret)
9273 pmu = ERR_PTR(ret);
9274 goto unlock;
9277 list_for_each_entry_rcu(pmu, &pmus, entry) {
9278 ret = perf_try_init_event(pmu, event);
9279 if (!ret)
9280 goto unlock;
9282 if (ret != -ENOENT) {
9283 pmu = ERR_PTR(ret);
9284 goto unlock;
9287 pmu = ERR_PTR(-ENOENT);
9288 unlock:
9289 srcu_read_unlock(&pmus_srcu, idx);
9291 return pmu;
9294 static void attach_sb_event(struct perf_event *event)
9296 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9298 raw_spin_lock(&pel->lock);
9299 list_add_rcu(&event->sb_list, &pel->list);
9300 raw_spin_unlock(&pel->lock);
9304 * We keep a list of all !task (and therefore per-cpu) events
9305 * that need to receive side-band records.
9307 * This avoids having to scan all the various PMU per-cpu contexts
9308 * looking for them.
9310 static void account_pmu_sb_event(struct perf_event *event)
9312 if (is_sb_event(event))
9313 attach_sb_event(event);
9316 static void account_event_cpu(struct perf_event *event, int cpu)
9318 if (event->parent)
9319 return;
9321 if (is_cgroup_event(event))
9322 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9325 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9326 static void account_freq_event_nohz(void)
9328 #ifdef CONFIG_NO_HZ_FULL
9329 /* Lock so we don't race with concurrent unaccount */
9330 spin_lock(&nr_freq_lock);
9331 if (atomic_inc_return(&nr_freq_events) == 1)
9332 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9333 spin_unlock(&nr_freq_lock);
9334 #endif
9337 static void account_freq_event(void)
9339 if (tick_nohz_full_enabled())
9340 account_freq_event_nohz();
9341 else
9342 atomic_inc(&nr_freq_events);
9346 static void account_event(struct perf_event *event)
9348 bool inc = false;
9350 if (event->parent)
9351 return;
9353 if (event->attach_state & PERF_ATTACH_TASK)
9354 inc = true;
9355 if (event->attr.mmap || event->attr.mmap_data)
9356 atomic_inc(&nr_mmap_events);
9357 if (event->attr.comm)
9358 atomic_inc(&nr_comm_events);
9359 if (event->attr.namespaces)
9360 atomic_inc(&nr_namespaces_events);
9361 if (event->attr.task)
9362 atomic_inc(&nr_task_events);
9363 if (event->attr.freq)
9364 account_freq_event();
9365 if (event->attr.context_switch) {
9366 atomic_inc(&nr_switch_events);
9367 inc = true;
9369 if (has_branch_stack(event))
9370 inc = true;
9371 if (is_cgroup_event(event))
9372 inc = true;
9374 if (inc) {
9376 * We need the mutex here because static_branch_enable()
9377 * must complete *before* the perf_sched_count increment
9378 * becomes visible.
9380 if (atomic_inc_not_zero(&perf_sched_count))
9381 goto enabled;
9383 mutex_lock(&perf_sched_mutex);
9384 if (!atomic_read(&perf_sched_count)) {
9385 static_branch_enable(&perf_sched_events);
9387 * Guarantee that all CPUs observe they key change and
9388 * call the perf scheduling hooks before proceeding to
9389 * install events that need them.
9391 synchronize_sched();
9394 * Now that we have waited for the sync_sched(), allow further
9395 * increments to by-pass the mutex.
9397 atomic_inc(&perf_sched_count);
9398 mutex_unlock(&perf_sched_mutex);
9400 enabled:
9402 account_event_cpu(event, event->cpu);
9404 account_pmu_sb_event(event);
9408 * Allocate and initialize a event structure
9410 static struct perf_event *
9411 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9412 struct task_struct *task,
9413 struct perf_event *group_leader,
9414 struct perf_event *parent_event,
9415 perf_overflow_handler_t overflow_handler,
9416 void *context, int cgroup_fd)
9418 struct pmu *pmu;
9419 struct perf_event *event;
9420 struct hw_perf_event *hwc;
9421 long err = -EINVAL;
9423 if ((unsigned)cpu >= nr_cpu_ids) {
9424 if (!task || cpu != -1)
9425 return ERR_PTR(-EINVAL);
9428 event = kzalloc(sizeof(*event), GFP_KERNEL);
9429 if (!event)
9430 return ERR_PTR(-ENOMEM);
9433 * Single events are their own group leaders, with an
9434 * empty sibling list:
9436 if (!group_leader)
9437 group_leader = event;
9439 mutex_init(&event->child_mutex);
9440 INIT_LIST_HEAD(&event->child_list);
9442 INIT_LIST_HEAD(&event->group_entry);
9443 INIT_LIST_HEAD(&event->event_entry);
9444 INIT_LIST_HEAD(&event->sibling_list);
9445 INIT_LIST_HEAD(&event->rb_entry);
9446 INIT_LIST_HEAD(&event->active_entry);
9447 INIT_LIST_HEAD(&event->addr_filters.list);
9448 INIT_HLIST_NODE(&event->hlist_entry);
9451 init_waitqueue_head(&event->waitq);
9452 init_irq_work(&event->pending, perf_pending_event);
9454 mutex_init(&event->mmap_mutex);
9455 raw_spin_lock_init(&event->addr_filters.lock);
9457 atomic_long_set(&event->refcount, 1);
9458 event->cpu = cpu;
9459 event->attr = *attr;
9460 event->group_leader = group_leader;
9461 event->pmu = NULL;
9462 event->oncpu = -1;
9464 event->parent = parent_event;
9466 event->ns = get_pid_ns(task_active_pid_ns(current));
9467 event->id = atomic64_inc_return(&perf_event_id);
9469 event->state = PERF_EVENT_STATE_INACTIVE;
9471 if (task) {
9472 event->attach_state = PERF_ATTACH_TASK;
9474 * XXX pmu::event_init needs to know what task to account to
9475 * and we cannot use the ctx information because we need the
9476 * pmu before we get a ctx.
9478 event->hw.target = task;
9481 event->clock = &local_clock;
9482 if (parent_event)
9483 event->clock = parent_event->clock;
9485 if (!overflow_handler && parent_event) {
9486 overflow_handler = parent_event->overflow_handler;
9487 context = parent_event->overflow_handler_context;
9488 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9489 if (overflow_handler == bpf_overflow_handler) {
9490 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9492 if (IS_ERR(prog)) {
9493 err = PTR_ERR(prog);
9494 goto err_ns;
9496 event->prog = prog;
9497 event->orig_overflow_handler =
9498 parent_event->orig_overflow_handler;
9500 #endif
9503 if (overflow_handler) {
9504 event->overflow_handler = overflow_handler;
9505 event->overflow_handler_context = context;
9506 } else if (is_write_backward(event)){
9507 event->overflow_handler = perf_event_output_backward;
9508 event->overflow_handler_context = NULL;
9509 } else {
9510 event->overflow_handler = perf_event_output_forward;
9511 event->overflow_handler_context = NULL;
9514 perf_event__state_init(event);
9516 pmu = NULL;
9518 hwc = &event->hw;
9519 hwc->sample_period = attr->sample_period;
9520 if (attr->freq && attr->sample_freq)
9521 hwc->sample_period = 1;
9522 hwc->last_period = hwc->sample_period;
9524 local64_set(&hwc->period_left, hwc->sample_period);
9527 * We currently do not support PERF_SAMPLE_READ on inherited events.
9528 * See perf_output_read().
9530 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9531 goto err_ns;
9533 if (!has_branch_stack(event))
9534 event->attr.branch_sample_type = 0;
9536 if (cgroup_fd != -1) {
9537 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9538 if (err)
9539 goto err_ns;
9542 pmu = perf_init_event(event);
9543 if (IS_ERR(pmu)) {
9544 err = PTR_ERR(pmu);
9545 goto err_ns;
9548 err = exclusive_event_init(event);
9549 if (err)
9550 goto err_pmu;
9552 if (has_addr_filter(event)) {
9553 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9554 sizeof(unsigned long),
9555 GFP_KERNEL);
9556 if (!event->addr_filters_offs) {
9557 err = -ENOMEM;
9558 goto err_per_task;
9561 /* force hw sync on the address filters */
9562 event->addr_filters_gen = 1;
9565 if (!event->parent) {
9566 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9567 err = get_callchain_buffers(attr->sample_max_stack);
9568 if (err)
9569 goto err_addr_filters;
9573 /* symmetric to unaccount_event() in _free_event() */
9574 account_event(event);
9576 return event;
9578 err_addr_filters:
9579 kfree(event->addr_filters_offs);
9581 err_per_task:
9582 exclusive_event_destroy(event);
9584 err_pmu:
9585 if (event->destroy)
9586 event->destroy(event);
9587 module_put(pmu->module);
9588 err_ns:
9589 if (is_cgroup_event(event))
9590 perf_detach_cgroup(event);
9591 if (event->ns)
9592 put_pid_ns(event->ns);
9593 kfree(event);
9595 return ERR_PTR(err);
9598 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9599 struct perf_event_attr *attr)
9601 u32 size;
9602 int ret;
9604 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9605 return -EFAULT;
9608 * zero the full structure, so that a short copy will be nice.
9610 memset(attr, 0, sizeof(*attr));
9612 ret = get_user(size, &uattr->size);
9613 if (ret)
9614 return ret;
9616 if (size > PAGE_SIZE) /* silly large */
9617 goto err_size;
9619 if (!size) /* abi compat */
9620 size = PERF_ATTR_SIZE_VER0;
9622 if (size < PERF_ATTR_SIZE_VER0)
9623 goto err_size;
9626 * If we're handed a bigger struct than we know of,
9627 * ensure all the unknown bits are 0 - i.e. new
9628 * user-space does not rely on any kernel feature
9629 * extensions we dont know about yet.
9631 if (size > sizeof(*attr)) {
9632 unsigned char __user *addr;
9633 unsigned char __user *end;
9634 unsigned char val;
9636 addr = (void __user *)uattr + sizeof(*attr);
9637 end = (void __user *)uattr + size;
9639 for (; addr < end; addr++) {
9640 ret = get_user(val, addr);
9641 if (ret)
9642 return ret;
9643 if (val)
9644 goto err_size;
9646 size = sizeof(*attr);
9649 ret = copy_from_user(attr, uattr, size);
9650 if (ret)
9651 return -EFAULT;
9653 attr->size = size;
9655 if (attr->__reserved_1)
9656 return -EINVAL;
9658 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9659 return -EINVAL;
9661 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9662 return -EINVAL;
9664 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9665 u64 mask = attr->branch_sample_type;
9667 /* only using defined bits */
9668 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9669 return -EINVAL;
9671 /* at least one branch bit must be set */
9672 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9673 return -EINVAL;
9675 /* propagate priv level, when not set for branch */
9676 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9678 /* exclude_kernel checked on syscall entry */
9679 if (!attr->exclude_kernel)
9680 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9682 if (!attr->exclude_user)
9683 mask |= PERF_SAMPLE_BRANCH_USER;
9685 if (!attr->exclude_hv)
9686 mask |= PERF_SAMPLE_BRANCH_HV;
9688 * adjust user setting (for HW filter setup)
9690 attr->branch_sample_type = mask;
9692 /* privileged levels capture (kernel, hv): check permissions */
9693 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9694 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9695 return -EACCES;
9698 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9699 ret = perf_reg_validate(attr->sample_regs_user);
9700 if (ret)
9701 return ret;
9704 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9705 if (!arch_perf_have_user_stack_dump())
9706 return -ENOSYS;
9709 * We have __u32 type for the size, but so far
9710 * we can only use __u16 as maximum due to the
9711 * __u16 sample size limit.
9713 if (attr->sample_stack_user >= USHRT_MAX)
9714 ret = -EINVAL;
9715 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9716 ret = -EINVAL;
9719 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9720 ret = perf_reg_validate(attr->sample_regs_intr);
9721 out:
9722 return ret;
9724 err_size:
9725 put_user(sizeof(*attr), &uattr->size);
9726 ret = -E2BIG;
9727 goto out;
9730 static int
9731 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9733 struct ring_buffer *rb = NULL;
9734 int ret = -EINVAL;
9736 if (!output_event)
9737 goto set;
9739 /* don't allow circular references */
9740 if (event == output_event)
9741 goto out;
9744 * Don't allow cross-cpu buffers
9746 if (output_event->cpu != event->cpu)
9747 goto out;
9750 * If its not a per-cpu rb, it must be the same task.
9752 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9753 goto out;
9756 * Mixing clocks in the same buffer is trouble you don't need.
9758 if (output_event->clock != event->clock)
9759 goto out;
9762 * Either writing ring buffer from beginning or from end.
9763 * Mixing is not allowed.
9765 if (is_write_backward(output_event) != is_write_backward(event))
9766 goto out;
9769 * If both events generate aux data, they must be on the same PMU
9771 if (has_aux(event) && has_aux(output_event) &&
9772 event->pmu != output_event->pmu)
9773 goto out;
9775 set:
9776 mutex_lock(&event->mmap_mutex);
9777 /* Can't redirect output if we've got an active mmap() */
9778 if (atomic_read(&event->mmap_count))
9779 goto unlock;
9781 if (output_event) {
9782 /* get the rb we want to redirect to */
9783 rb = ring_buffer_get(output_event);
9784 if (!rb)
9785 goto unlock;
9788 ring_buffer_attach(event, rb);
9790 ret = 0;
9791 unlock:
9792 mutex_unlock(&event->mmap_mutex);
9794 out:
9795 return ret;
9798 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9800 if (b < a)
9801 swap(a, b);
9803 mutex_lock(a);
9804 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9807 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9809 bool nmi_safe = false;
9811 switch (clk_id) {
9812 case CLOCK_MONOTONIC:
9813 event->clock = &ktime_get_mono_fast_ns;
9814 nmi_safe = true;
9815 break;
9817 case CLOCK_MONOTONIC_RAW:
9818 event->clock = &ktime_get_raw_fast_ns;
9819 nmi_safe = true;
9820 break;
9822 case CLOCK_REALTIME:
9823 event->clock = &ktime_get_real_ns;
9824 break;
9826 case CLOCK_BOOTTIME:
9827 event->clock = &ktime_get_boot_ns;
9828 break;
9830 case CLOCK_TAI:
9831 event->clock = &ktime_get_tai_ns;
9832 break;
9834 default:
9835 return -EINVAL;
9838 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9839 return -EINVAL;
9841 return 0;
9845 * Variation on perf_event_ctx_lock_nested(), except we take two context
9846 * mutexes.
9848 static struct perf_event_context *
9849 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9850 struct perf_event_context *ctx)
9852 struct perf_event_context *gctx;
9854 again:
9855 rcu_read_lock();
9856 gctx = READ_ONCE(group_leader->ctx);
9857 if (!atomic_inc_not_zero(&gctx->refcount)) {
9858 rcu_read_unlock();
9859 goto again;
9861 rcu_read_unlock();
9863 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9865 if (group_leader->ctx != gctx) {
9866 mutex_unlock(&ctx->mutex);
9867 mutex_unlock(&gctx->mutex);
9868 put_ctx(gctx);
9869 goto again;
9872 return gctx;
9876 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9878 * @attr_uptr: event_id type attributes for monitoring/sampling
9879 * @pid: target pid
9880 * @cpu: target cpu
9881 * @group_fd: group leader event fd
9883 SYSCALL_DEFINE5(perf_event_open,
9884 struct perf_event_attr __user *, attr_uptr,
9885 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9887 struct perf_event *group_leader = NULL, *output_event = NULL;
9888 struct perf_event *event, *sibling;
9889 struct perf_event_attr attr;
9890 struct perf_event_context *ctx, *uninitialized_var(gctx);
9891 struct file *event_file = NULL;
9892 struct fd group = {NULL, 0};
9893 struct task_struct *task = NULL;
9894 struct pmu *pmu;
9895 int event_fd;
9896 int move_group = 0;
9897 int err;
9898 int f_flags = O_RDWR;
9899 int cgroup_fd = -1;
9901 /* for future expandability... */
9902 if (flags & ~PERF_FLAG_ALL)
9903 return -EINVAL;
9905 err = perf_copy_attr(attr_uptr, &attr);
9906 if (err)
9907 return err;
9909 if (!attr.exclude_kernel) {
9910 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9911 return -EACCES;
9914 if (attr.namespaces) {
9915 if (!capable(CAP_SYS_ADMIN))
9916 return -EACCES;
9919 if (attr.freq) {
9920 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9921 return -EINVAL;
9922 } else {
9923 if (attr.sample_period & (1ULL << 63))
9924 return -EINVAL;
9927 /* Only privileged users can get physical addresses */
9928 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9929 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9930 return -EACCES;
9932 if (!attr.sample_max_stack)
9933 attr.sample_max_stack = sysctl_perf_event_max_stack;
9936 * In cgroup mode, the pid argument is used to pass the fd
9937 * opened to the cgroup directory in cgroupfs. The cpu argument
9938 * designates the cpu on which to monitor threads from that
9939 * cgroup.
9941 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9942 return -EINVAL;
9944 if (flags & PERF_FLAG_FD_CLOEXEC)
9945 f_flags |= O_CLOEXEC;
9947 event_fd = get_unused_fd_flags(f_flags);
9948 if (event_fd < 0)
9949 return event_fd;
9951 if (group_fd != -1) {
9952 err = perf_fget_light(group_fd, &group);
9953 if (err)
9954 goto err_fd;
9955 group_leader = group.file->private_data;
9956 if (flags & PERF_FLAG_FD_OUTPUT)
9957 output_event = group_leader;
9958 if (flags & PERF_FLAG_FD_NO_GROUP)
9959 group_leader = NULL;
9962 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9963 task = find_lively_task_by_vpid(pid);
9964 if (IS_ERR(task)) {
9965 err = PTR_ERR(task);
9966 goto err_group_fd;
9970 if (task && group_leader &&
9971 group_leader->attr.inherit != attr.inherit) {
9972 err = -EINVAL;
9973 goto err_task;
9976 if (task) {
9977 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9978 if (err)
9979 goto err_task;
9982 * Reuse ptrace permission checks for now.
9984 * We must hold cred_guard_mutex across this and any potential
9985 * perf_install_in_context() call for this new event to
9986 * serialize against exec() altering our credentials (and the
9987 * perf_event_exit_task() that could imply).
9989 err = -EACCES;
9990 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9991 goto err_cred;
9994 if (flags & PERF_FLAG_PID_CGROUP)
9995 cgroup_fd = pid;
9997 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9998 NULL, NULL, cgroup_fd);
9999 if (IS_ERR(event)) {
10000 err = PTR_ERR(event);
10001 goto err_cred;
10004 if (is_sampling_event(event)) {
10005 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10006 err = -EOPNOTSUPP;
10007 goto err_alloc;
10012 * Special case software events and allow them to be part of
10013 * any hardware group.
10015 pmu = event->pmu;
10017 if (attr.use_clockid) {
10018 err = perf_event_set_clock(event, attr.clockid);
10019 if (err)
10020 goto err_alloc;
10023 if (pmu->task_ctx_nr == perf_sw_context)
10024 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10026 if (group_leader &&
10027 (is_software_event(event) != is_software_event(group_leader))) {
10028 if (is_software_event(event)) {
10030 * If event and group_leader are not both a software
10031 * event, and event is, then group leader is not.
10033 * Allow the addition of software events to !software
10034 * groups, this is safe because software events never
10035 * fail to schedule.
10037 pmu = group_leader->pmu;
10038 } else if (is_software_event(group_leader) &&
10039 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10041 * In case the group is a pure software group, and we
10042 * try to add a hardware event, move the whole group to
10043 * the hardware context.
10045 move_group = 1;
10050 * Get the target context (task or percpu):
10052 ctx = find_get_context(pmu, task, event);
10053 if (IS_ERR(ctx)) {
10054 err = PTR_ERR(ctx);
10055 goto err_alloc;
10058 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10059 err = -EBUSY;
10060 goto err_context;
10064 * Look up the group leader (we will attach this event to it):
10066 if (group_leader) {
10067 err = -EINVAL;
10070 * Do not allow a recursive hierarchy (this new sibling
10071 * becoming part of another group-sibling):
10073 if (group_leader->group_leader != group_leader)
10074 goto err_context;
10076 /* All events in a group should have the same clock */
10077 if (group_leader->clock != event->clock)
10078 goto err_context;
10081 * Make sure we're both events for the same CPU;
10082 * grouping events for different CPUs is broken; since
10083 * you can never concurrently schedule them anyhow.
10085 if (group_leader->cpu != event->cpu)
10086 goto err_context;
10089 * Make sure we're both on the same task, or both
10090 * per-CPU events.
10092 if (group_leader->ctx->task != ctx->task)
10093 goto err_context;
10096 * Do not allow to attach to a group in a different task
10097 * or CPU context. If we're moving SW events, we'll fix
10098 * this up later, so allow that.
10100 if (!move_group && group_leader->ctx != ctx)
10101 goto err_context;
10104 * Only a group leader can be exclusive or pinned
10106 if (attr.exclusive || attr.pinned)
10107 goto err_context;
10110 if (output_event) {
10111 err = perf_event_set_output(event, output_event);
10112 if (err)
10113 goto err_context;
10116 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10117 f_flags);
10118 if (IS_ERR(event_file)) {
10119 err = PTR_ERR(event_file);
10120 event_file = NULL;
10121 goto err_context;
10124 if (move_group) {
10125 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10127 if (gctx->task == TASK_TOMBSTONE) {
10128 err = -ESRCH;
10129 goto err_locked;
10133 * Check if we raced against another sys_perf_event_open() call
10134 * moving the software group underneath us.
10136 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10138 * If someone moved the group out from under us, check
10139 * if this new event wound up on the same ctx, if so
10140 * its the regular !move_group case, otherwise fail.
10142 if (gctx != ctx) {
10143 err = -EINVAL;
10144 goto err_locked;
10145 } else {
10146 perf_event_ctx_unlock(group_leader, gctx);
10147 move_group = 0;
10150 } else {
10151 mutex_lock(&ctx->mutex);
10154 if (ctx->task == TASK_TOMBSTONE) {
10155 err = -ESRCH;
10156 goto err_locked;
10159 if (!perf_event_validate_size(event)) {
10160 err = -E2BIG;
10161 goto err_locked;
10164 if (!task) {
10166 * Check if the @cpu we're creating an event for is online.
10168 * We use the perf_cpu_context::ctx::mutex to serialize against
10169 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10171 struct perf_cpu_context *cpuctx =
10172 container_of(ctx, struct perf_cpu_context, ctx);
10174 if (!cpuctx->online) {
10175 err = -ENODEV;
10176 goto err_locked;
10182 * Must be under the same ctx::mutex as perf_install_in_context(),
10183 * because we need to serialize with concurrent event creation.
10185 if (!exclusive_event_installable(event, ctx)) {
10186 /* exclusive and group stuff are assumed mutually exclusive */
10187 WARN_ON_ONCE(move_group);
10189 err = -EBUSY;
10190 goto err_locked;
10193 WARN_ON_ONCE(ctx->parent_ctx);
10196 * This is the point on no return; we cannot fail hereafter. This is
10197 * where we start modifying current state.
10200 if (move_group) {
10202 * See perf_event_ctx_lock() for comments on the details
10203 * of swizzling perf_event::ctx.
10205 perf_remove_from_context(group_leader, 0);
10206 put_ctx(gctx);
10208 list_for_each_entry(sibling, &group_leader->sibling_list,
10209 group_entry) {
10210 perf_remove_from_context(sibling, 0);
10211 put_ctx(gctx);
10215 * Wait for everybody to stop referencing the events through
10216 * the old lists, before installing it on new lists.
10218 synchronize_rcu();
10221 * Install the group siblings before the group leader.
10223 * Because a group leader will try and install the entire group
10224 * (through the sibling list, which is still in-tact), we can
10225 * end up with siblings installed in the wrong context.
10227 * By installing siblings first we NO-OP because they're not
10228 * reachable through the group lists.
10230 list_for_each_entry(sibling, &group_leader->sibling_list,
10231 group_entry) {
10232 perf_event__state_init(sibling);
10233 perf_install_in_context(ctx, sibling, sibling->cpu);
10234 get_ctx(ctx);
10238 * Removing from the context ends up with disabled
10239 * event. What we want here is event in the initial
10240 * startup state, ready to be add into new context.
10242 perf_event__state_init(group_leader);
10243 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10244 get_ctx(ctx);
10248 * Precalculate sample_data sizes; do while holding ctx::mutex such
10249 * that we're serialized against further additions and before
10250 * perf_install_in_context() which is the point the event is active and
10251 * can use these values.
10253 perf_event__header_size(event);
10254 perf_event__id_header_size(event);
10256 event->owner = current;
10258 perf_install_in_context(ctx, event, event->cpu);
10259 perf_unpin_context(ctx);
10261 if (move_group)
10262 perf_event_ctx_unlock(group_leader, gctx);
10263 mutex_unlock(&ctx->mutex);
10265 if (task) {
10266 mutex_unlock(&task->signal->cred_guard_mutex);
10267 put_task_struct(task);
10270 mutex_lock(&current->perf_event_mutex);
10271 list_add_tail(&event->owner_entry, &current->perf_event_list);
10272 mutex_unlock(&current->perf_event_mutex);
10275 * Drop the reference on the group_event after placing the
10276 * new event on the sibling_list. This ensures destruction
10277 * of the group leader will find the pointer to itself in
10278 * perf_group_detach().
10280 fdput(group);
10281 fd_install(event_fd, event_file);
10282 return event_fd;
10284 err_locked:
10285 if (move_group)
10286 perf_event_ctx_unlock(group_leader, gctx);
10287 mutex_unlock(&ctx->mutex);
10288 /* err_file: */
10289 fput(event_file);
10290 err_context:
10291 perf_unpin_context(ctx);
10292 put_ctx(ctx);
10293 err_alloc:
10295 * If event_file is set, the fput() above will have called ->release()
10296 * and that will take care of freeing the event.
10298 if (!event_file)
10299 free_event(event);
10300 err_cred:
10301 if (task)
10302 mutex_unlock(&task->signal->cred_guard_mutex);
10303 err_task:
10304 if (task)
10305 put_task_struct(task);
10306 err_group_fd:
10307 fdput(group);
10308 err_fd:
10309 put_unused_fd(event_fd);
10310 return err;
10314 * perf_event_create_kernel_counter
10316 * @attr: attributes of the counter to create
10317 * @cpu: cpu in which the counter is bound
10318 * @task: task to profile (NULL for percpu)
10320 struct perf_event *
10321 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10322 struct task_struct *task,
10323 perf_overflow_handler_t overflow_handler,
10324 void *context)
10326 struct perf_event_context *ctx;
10327 struct perf_event *event;
10328 int err;
10331 * Get the target context (task or percpu):
10334 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10335 overflow_handler, context, -1);
10336 if (IS_ERR(event)) {
10337 err = PTR_ERR(event);
10338 goto err;
10341 /* Mark owner so we could distinguish it from user events. */
10342 event->owner = TASK_TOMBSTONE;
10344 ctx = find_get_context(event->pmu, task, event);
10345 if (IS_ERR(ctx)) {
10346 err = PTR_ERR(ctx);
10347 goto err_free;
10350 WARN_ON_ONCE(ctx->parent_ctx);
10351 mutex_lock(&ctx->mutex);
10352 if (ctx->task == TASK_TOMBSTONE) {
10353 err = -ESRCH;
10354 goto err_unlock;
10357 if (!task) {
10359 * Check if the @cpu we're creating an event for is online.
10361 * We use the perf_cpu_context::ctx::mutex to serialize against
10362 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10364 struct perf_cpu_context *cpuctx =
10365 container_of(ctx, struct perf_cpu_context, ctx);
10366 if (!cpuctx->online) {
10367 err = -ENODEV;
10368 goto err_unlock;
10372 if (!exclusive_event_installable(event, ctx)) {
10373 err = -EBUSY;
10374 goto err_unlock;
10377 perf_install_in_context(ctx, event, cpu);
10378 perf_unpin_context(ctx);
10379 mutex_unlock(&ctx->mutex);
10381 return event;
10383 err_unlock:
10384 mutex_unlock(&ctx->mutex);
10385 perf_unpin_context(ctx);
10386 put_ctx(ctx);
10387 err_free:
10388 free_event(event);
10389 err:
10390 return ERR_PTR(err);
10392 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10394 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10396 struct perf_event_context *src_ctx;
10397 struct perf_event_context *dst_ctx;
10398 struct perf_event *event, *tmp;
10399 LIST_HEAD(events);
10401 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10402 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10405 * See perf_event_ctx_lock() for comments on the details
10406 * of swizzling perf_event::ctx.
10408 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10409 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10410 event_entry) {
10411 perf_remove_from_context(event, 0);
10412 unaccount_event_cpu(event, src_cpu);
10413 put_ctx(src_ctx);
10414 list_add(&event->migrate_entry, &events);
10418 * Wait for the events to quiesce before re-instating them.
10420 synchronize_rcu();
10423 * Re-instate events in 2 passes.
10425 * Skip over group leaders and only install siblings on this first
10426 * pass, siblings will not get enabled without a leader, however a
10427 * leader will enable its siblings, even if those are still on the old
10428 * context.
10430 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10431 if (event->group_leader == event)
10432 continue;
10434 list_del(&event->migrate_entry);
10435 if (event->state >= PERF_EVENT_STATE_OFF)
10436 event->state = PERF_EVENT_STATE_INACTIVE;
10437 account_event_cpu(event, dst_cpu);
10438 perf_install_in_context(dst_ctx, event, dst_cpu);
10439 get_ctx(dst_ctx);
10443 * Once all the siblings are setup properly, install the group leaders
10444 * to make it go.
10446 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10447 list_del(&event->migrate_entry);
10448 if (event->state >= PERF_EVENT_STATE_OFF)
10449 event->state = PERF_EVENT_STATE_INACTIVE;
10450 account_event_cpu(event, dst_cpu);
10451 perf_install_in_context(dst_ctx, event, dst_cpu);
10452 get_ctx(dst_ctx);
10454 mutex_unlock(&dst_ctx->mutex);
10455 mutex_unlock(&src_ctx->mutex);
10457 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10459 static void sync_child_event(struct perf_event *child_event,
10460 struct task_struct *child)
10462 struct perf_event *parent_event = child_event->parent;
10463 u64 child_val;
10465 if (child_event->attr.inherit_stat)
10466 perf_event_read_event(child_event, child);
10468 child_val = perf_event_count(child_event);
10471 * Add back the child's count to the parent's count:
10473 atomic64_add(child_val, &parent_event->child_count);
10474 atomic64_add(child_event->total_time_enabled,
10475 &parent_event->child_total_time_enabled);
10476 atomic64_add(child_event->total_time_running,
10477 &parent_event->child_total_time_running);
10480 static void
10481 perf_event_exit_event(struct perf_event *child_event,
10482 struct perf_event_context *child_ctx,
10483 struct task_struct *child)
10485 struct perf_event *parent_event = child_event->parent;
10488 * Do not destroy the 'original' grouping; because of the context
10489 * switch optimization the original events could've ended up in a
10490 * random child task.
10492 * If we were to destroy the original group, all group related
10493 * operations would cease to function properly after this random
10494 * child dies.
10496 * Do destroy all inherited groups, we don't care about those
10497 * and being thorough is better.
10499 raw_spin_lock_irq(&child_ctx->lock);
10500 WARN_ON_ONCE(child_ctx->is_active);
10502 if (parent_event)
10503 perf_group_detach(child_event);
10504 list_del_event(child_event, child_ctx);
10505 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
10506 raw_spin_unlock_irq(&child_ctx->lock);
10509 * Parent events are governed by their filedesc, retain them.
10511 if (!parent_event) {
10512 perf_event_wakeup(child_event);
10513 return;
10516 * Child events can be cleaned up.
10519 sync_child_event(child_event, child);
10522 * Remove this event from the parent's list
10524 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10525 mutex_lock(&parent_event->child_mutex);
10526 list_del_init(&child_event->child_list);
10527 mutex_unlock(&parent_event->child_mutex);
10530 * Kick perf_poll() for is_event_hup().
10532 perf_event_wakeup(parent_event);
10533 free_event(child_event);
10534 put_event(parent_event);
10537 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10539 struct perf_event_context *child_ctx, *clone_ctx = NULL;
10540 struct perf_event *child_event, *next;
10542 WARN_ON_ONCE(child != current);
10544 child_ctx = perf_pin_task_context(child, ctxn);
10545 if (!child_ctx)
10546 return;
10549 * In order to reduce the amount of tricky in ctx tear-down, we hold
10550 * ctx::mutex over the entire thing. This serializes against almost
10551 * everything that wants to access the ctx.
10553 * The exception is sys_perf_event_open() /
10554 * perf_event_create_kernel_count() which does find_get_context()
10555 * without ctx::mutex (it cannot because of the move_group double mutex
10556 * lock thing). See the comments in perf_install_in_context().
10558 mutex_lock(&child_ctx->mutex);
10561 * In a single ctx::lock section, de-schedule the events and detach the
10562 * context from the task such that we cannot ever get it scheduled back
10563 * in.
10565 raw_spin_lock_irq(&child_ctx->lock);
10566 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10569 * Now that the context is inactive, destroy the task <-> ctx relation
10570 * and mark the context dead.
10572 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10573 put_ctx(child_ctx); /* cannot be last */
10574 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10575 put_task_struct(current); /* cannot be last */
10577 clone_ctx = unclone_ctx(child_ctx);
10578 raw_spin_unlock_irq(&child_ctx->lock);
10580 if (clone_ctx)
10581 put_ctx(clone_ctx);
10584 * Report the task dead after unscheduling the events so that we
10585 * won't get any samples after PERF_RECORD_EXIT. We can however still
10586 * get a few PERF_RECORD_READ events.
10588 perf_event_task(child, child_ctx, 0);
10590 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10591 perf_event_exit_event(child_event, child_ctx, child);
10593 mutex_unlock(&child_ctx->mutex);
10595 put_ctx(child_ctx);
10599 * When a child task exits, feed back event values to parent events.
10601 * Can be called with cred_guard_mutex held when called from
10602 * install_exec_creds().
10604 void perf_event_exit_task(struct task_struct *child)
10606 struct perf_event *event, *tmp;
10607 int ctxn;
10609 mutex_lock(&child->perf_event_mutex);
10610 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10611 owner_entry) {
10612 list_del_init(&event->owner_entry);
10615 * Ensure the list deletion is visible before we clear
10616 * the owner, closes a race against perf_release() where
10617 * we need to serialize on the owner->perf_event_mutex.
10619 smp_store_release(&event->owner, NULL);
10621 mutex_unlock(&child->perf_event_mutex);
10623 for_each_task_context_nr(ctxn)
10624 perf_event_exit_task_context(child, ctxn);
10627 * The perf_event_exit_task_context calls perf_event_task
10628 * with child's task_ctx, which generates EXIT events for
10629 * child contexts and sets child->perf_event_ctxp[] to NULL.
10630 * At this point we need to send EXIT events to cpu contexts.
10632 perf_event_task(child, NULL, 0);
10635 static void perf_free_event(struct perf_event *event,
10636 struct perf_event_context *ctx)
10638 struct perf_event *parent = event->parent;
10640 if (WARN_ON_ONCE(!parent))
10641 return;
10643 mutex_lock(&parent->child_mutex);
10644 list_del_init(&event->child_list);
10645 mutex_unlock(&parent->child_mutex);
10647 put_event(parent);
10649 raw_spin_lock_irq(&ctx->lock);
10650 perf_group_detach(event);
10651 list_del_event(event, ctx);
10652 raw_spin_unlock_irq(&ctx->lock);
10653 free_event(event);
10657 * Free an unexposed, unused context as created by inheritance by
10658 * perf_event_init_task below, used by fork() in case of fail.
10660 * Not all locks are strictly required, but take them anyway to be nice and
10661 * help out with the lockdep assertions.
10663 void perf_event_free_task(struct task_struct *task)
10665 struct perf_event_context *ctx;
10666 struct perf_event *event, *tmp;
10667 int ctxn;
10669 for_each_task_context_nr(ctxn) {
10670 ctx = task->perf_event_ctxp[ctxn];
10671 if (!ctx)
10672 continue;
10674 mutex_lock(&ctx->mutex);
10675 raw_spin_lock_irq(&ctx->lock);
10677 * Destroy the task <-> ctx relation and mark the context dead.
10679 * This is important because even though the task hasn't been
10680 * exposed yet the context has been (through child_list).
10682 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10683 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10684 put_task_struct(task); /* cannot be last */
10685 raw_spin_unlock_irq(&ctx->lock);
10687 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10688 perf_free_event(event, ctx);
10690 mutex_unlock(&ctx->mutex);
10691 put_ctx(ctx);
10695 void perf_event_delayed_put(struct task_struct *task)
10697 int ctxn;
10699 for_each_task_context_nr(ctxn)
10700 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10703 struct file *perf_event_get(unsigned int fd)
10705 struct file *file;
10707 file = fget_raw(fd);
10708 if (!file)
10709 return ERR_PTR(-EBADF);
10711 if (file->f_op != &perf_fops) {
10712 fput(file);
10713 return ERR_PTR(-EBADF);
10716 return file;
10719 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10721 if (!event)
10722 return ERR_PTR(-EINVAL);
10724 return &event->attr;
10728 * Inherit a event from parent task to child task.
10730 * Returns:
10731 * - valid pointer on success
10732 * - NULL for orphaned events
10733 * - IS_ERR() on error
10735 static struct perf_event *
10736 inherit_event(struct perf_event *parent_event,
10737 struct task_struct *parent,
10738 struct perf_event_context *parent_ctx,
10739 struct task_struct *child,
10740 struct perf_event *group_leader,
10741 struct perf_event_context *child_ctx)
10743 enum perf_event_state parent_state = parent_event->state;
10744 struct perf_event *child_event;
10745 unsigned long flags;
10748 * Instead of creating recursive hierarchies of events,
10749 * we link inherited events back to the original parent,
10750 * which has a filp for sure, which we use as the reference
10751 * count:
10753 if (parent_event->parent)
10754 parent_event = parent_event->parent;
10756 child_event = perf_event_alloc(&parent_event->attr,
10757 parent_event->cpu,
10758 child,
10759 group_leader, parent_event,
10760 NULL, NULL, -1);
10761 if (IS_ERR(child_event))
10762 return child_event;
10765 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
10766 !child_ctx->task_ctx_data) {
10767 struct pmu *pmu = child_event->pmu;
10769 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
10770 GFP_KERNEL);
10771 if (!child_ctx->task_ctx_data) {
10772 free_event(child_event);
10773 return NULL;
10778 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10779 * must be under the same lock in order to serialize against
10780 * perf_event_release_kernel(), such that either we must observe
10781 * is_orphaned_event() or they will observe us on the child_list.
10783 mutex_lock(&parent_event->child_mutex);
10784 if (is_orphaned_event(parent_event) ||
10785 !atomic_long_inc_not_zero(&parent_event->refcount)) {
10786 mutex_unlock(&parent_event->child_mutex);
10787 /* task_ctx_data is freed with child_ctx */
10788 free_event(child_event);
10789 return NULL;
10792 get_ctx(child_ctx);
10795 * Make the child state follow the state of the parent event,
10796 * not its attr.disabled bit. We hold the parent's mutex,
10797 * so we won't race with perf_event_{en, dis}able_family.
10799 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10800 child_event->state = PERF_EVENT_STATE_INACTIVE;
10801 else
10802 child_event->state = PERF_EVENT_STATE_OFF;
10804 if (parent_event->attr.freq) {
10805 u64 sample_period = parent_event->hw.sample_period;
10806 struct hw_perf_event *hwc = &child_event->hw;
10808 hwc->sample_period = sample_period;
10809 hwc->last_period = sample_period;
10811 local64_set(&hwc->period_left, sample_period);
10814 child_event->ctx = child_ctx;
10815 child_event->overflow_handler = parent_event->overflow_handler;
10816 child_event->overflow_handler_context
10817 = parent_event->overflow_handler_context;
10820 * Precalculate sample_data sizes
10822 perf_event__header_size(child_event);
10823 perf_event__id_header_size(child_event);
10826 * Link it up in the child's context:
10828 raw_spin_lock_irqsave(&child_ctx->lock, flags);
10829 add_event_to_ctx(child_event, child_ctx);
10830 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10833 * Link this into the parent event's child list
10835 list_add_tail(&child_event->child_list, &parent_event->child_list);
10836 mutex_unlock(&parent_event->child_mutex);
10838 return child_event;
10842 * Inherits an event group.
10844 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10845 * This matches with perf_event_release_kernel() removing all child events.
10847 * Returns:
10848 * - 0 on success
10849 * - <0 on error
10851 static int inherit_group(struct perf_event *parent_event,
10852 struct task_struct *parent,
10853 struct perf_event_context *parent_ctx,
10854 struct task_struct *child,
10855 struct perf_event_context *child_ctx)
10857 struct perf_event *leader;
10858 struct perf_event *sub;
10859 struct perf_event *child_ctr;
10861 leader = inherit_event(parent_event, parent, parent_ctx,
10862 child, NULL, child_ctx);
10863 if (IS_ERR(leader))
10864 return PTR_ERR(leader);
10866 * @leader can be NULL here because of is_orphaned_event(). In this
10867 * case inherit_event() will create individual events, similar to what
10868 * perf_group_detach() would do anyway.
10870 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10871 child_ctr = inherit_event(sub, parent, parent_ctx,
10872 child, leader, child_ctx);
10873 if (IS_ERR(child_ctr))
10874 return PTR_ERR(child_ctr);
10876 return 0;
10880 * Creates the child task context and tries to inherit the event-group.
10882 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10883 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10884 * consistent with perf_event_release_kernel() removing all child events.
10886 * Returns:
10887 * - 0 on success
10888 * - <0 on error
10890 static int
10891 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10892 struct perf_event_context *parent_ctx,
10893 struct task_struct *child, int ctxn,
10894 int *inherited_all)
10896 int ret;
10897 struct perf_event_context *child_ctx;
10899 if (!event->attr.inherit) {
10900 *inherited_all = 0;
10901 return 0;
10904 child_ctx = child->perf_event_ctxp[ctxn];
10905 if (!child_ctx) {
10907 * This is executed from the parent task context, so
10908 * inherit events that have been marked for cloning.
10909 * First allocate and initialize a context for the
10910 * child.
10912 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10913 if (!child_ctx)
10914 return -ENOMEM;
10916 child->perf_event_ctxp[ctxn] = child_ctx;
10919 ret = inherit_group(event, parent, parent_ctx,
10920 child, child_ctx);
10922 if (ret)
10923 *inherited_all = 0;
10925 return ret;
10929 * Initialize the perf_event context in task_struct
10931 static int perf_event_init_context(struct task_struct *child, int ctxn)
10933 struct perf_event_context *child_ctx, *parent_ctx;
10934 struct perf_event_context *cloned_ctx;
10935 struct perf_event *event;
10936 struct task_struct *parent = current;
10937 int inherited_all = 1;
10938 unsigned long flags;
10939 int ret = 0;
10941 if (likely(!parent->perf_event_ctxp[ctxn]))
10942 return 0;
10945 * If the parent's context is a clone, pin it so it won't get
10946 * swapped under us.
10948 parent_ctx = perf_pin_task_context(parent, ctxn);
10949 if (!parent_ctx)
10950 return 0;
10953 * No need to check if parent_ctx != NULL here; since we saw
10954 * it non-NULL earlier, the only reason for it to become NULL
10955 * is if we exit, and since we're currently in the middle of
10956 * a fork we can't be exiting at the same time.
10960 * Lock the parent list. No need to lock the child - not PID
10961 * hashed yet and not running, so nobody can access it.
10963 mutex_lock(&parent_ctx->mutex);
10966 * We dont have to disable NMIs - we are only looking at
10967 * the list, not manipulating it:
10969 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10970 ret = inherit_task_group(event, parent, parent_ctx,
10971 child, ctxn, &inherited_all);
10972 if (ret)
10973 goto out_unlock;
10977 * We can't hold ctx->lock when iterating the ->flexible_group list due
10978 * to allocations, but we need to prevent rotation because
10979 * rotate_ctx() will change the list from interrupt context.
10981 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10982 parent_ctx->rotate_disable = 1;
10983 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10985 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10986 ret = inherit_task_group(event, parent, parent_ctx,
10987 child, ctxn, &inherited_all);
10988 if (ret)
10989 goto out_unlock;
10992 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10993 parent_ctx->rotate_disable = 0;
10995 child_ctx = child->perf_event_ctxp[ctxn];
10997 if (child_ctx && inherited_all) {
10999 * Mark the child context as a clone of the parent
11000 * context, or of whatever the parent is a clone of.
11002 * Note that if the parent is a clone, the holding of
11003 * parent_ctx->lock avoids it from being uncloned.
11005 cloned_ctx = parent_ctx->parent_ctx;
11006 if (cloned_ctx) {
11007 child_ctx->parent_ctx = cloned_ctx;
11008 child_ctx->parent_gen = parent_ctx->parent_gen;
11009 } else {
11010 child_ctx->parent_ctx = parent_ctx;
11011 child_ctx->parent_gen = parent_ctx->generation;
11013 get_ctx(child_ctx->parent_ctx);
11016 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11017 out_unlock:
11018 mutex_unlock(&parent_ctx->mutex);
11020 perf_unpin_context(parent_ctx);
11021 put_ctx(parent_ctx);
11023 return ret;
11027 * Initialize the perf_event context in task_struct
11029 int perf_event_init_task(struct task_struct *child)
11031 int ctxn, ret;
11033 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11034 mutex_init(&child->perf_event_mutex);
11035 INIT_LIST_HEAD(&child->perf_event_list);
11037 for_each_task_context_nr(ctxn) {
11038 ret = perf_event_init_context(child, ctxn);
11039 if (ret) {
11040 perf_event_free_task(child);
11041 return ret;
11045 return 0;
11048 static void __init perf_event_init_all_cpus(void)
11050 struct swevent_htable *swhash;
11051 int cpu;
11053 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11055 for_each_possible_cpu(cpu) {
11056 swhash = &per_cpu(swevent_htable, cpu);
11057 mutex_init(&swhash->hlist_mutex);
11058 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11060 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11061 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11063 #ifdef CONFIG_CGROUP_PERF
11064 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11065 #endif
11066 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11070 void perf_swevent_init_cpu(unsigned int cpu)
11072 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11074 mutex_lock(&swhash->hlist_mutex);
11075 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11076 struct swevent_hlist *hlist;
11078 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11079 WARN_ON(!hlist);
11080 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11082 mutex_unlock(&swhash->hlist_mutex);
11085 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11086 static void __perf_event_exit_context(void *__info)
11088 struct perf_event_context *ctx = __info;
11089 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11090 struct perf_event *event;
11092 raw_spin_lock(&ctx->lock);
11093 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11094 list_for_each_entry(event, &ctx->event_list, event_entry)
11095 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11096 raw_spin_unlock(&ctx->lock);
11099 static void perf_event_exit_cpu_context(int cpu)
11101 struct perf_cpu_context *cpuctx;
11102 struct perf_event_context *ctx;
11103 struct pmu *pmu;
11105 mutex_lock(&pmus_lock);
11106 list_for_each_entry(pmu, &pmus, entry) {
11107 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11108 ctx = &cpuctx->ctx;
11110 mutex_lock(&ctx->mutex);
11111 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11112 cpuctx->online = 0;
11113 mutex_unlock(&ctx->mutex);
11115 cpumask_clear_cpu(cpu, perf_online_mask);
11116 mutex_unlock(&pmus_lock);
11118 #else
11120 static void perf_event_exit_cpu_context(int cpu) { }
11122 #endif
11124 int perf_event_init_cpu(unsigned int cpu)
11126 struct perf_cpu_context *cpuctx;
11127 struct perf_event_context *ctx;
11128 struct pmu *pmu;
11130 perf_swevent_init_cpu(cpu);
11132 mutex_lock(&pmus_lock);
11133 cpumask_set_cpu(cpu, perf_online_mask);
11134 list_for_each_entry(pmu, &pmus, entry) {
11135 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11136 ctx = &cpuctx->ctx;
11138 mutex_lock(&ctx->mutex);
11139 cpuctx->online = 1;
11140 mutex_unlock(&ctx->mutex);
11142 mutex_unlock(&pmus_lock);
11144 return 0;
11147 int perf_event_exit_cpu(unsigned int cpu)
11149 perf_event_exit_cpu_context(cpu);
11150 return 0;
11153 static int
11154 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11156 int cpu;
11158 for_each_online_cpu(cpu)
11159 perf_event_exit_cpu(cpu);
11161 return NOTIFY_OK;
11165 * Run the perf reboot notifier at the very last possible moment so that
11166 * the generic watchdog code runs as long as possible.
11168 static struct notifier_block perf_reboot_notifier = {
11169 .notifier_call = perf_reboot,
11170 .priority = INT_MIN,
11173 void __init perf_event_init(void)
11175 int ret;
11177 idr_init(&pmu_idr);
11179 perf_event_init_all_cpus();
11180 init_srcu_struct(&pmus_srcu);
11181 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11182 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11183 perf_pmu_register(&perf_task_clock, NULL, -1);
11184 perf_tp_register();
11185 perf_event_init_cpu(smp_processor_id());
11186 register_reboot_notifier(&perf_reboot_notifier);
11188 ret = init_hw_breakpoint();
11189 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11192 * Build time assertion that we keep the data_head at the intended
11193 * location. IOW, validation we got the __reserved[] size right.
11195 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11196 != 1024);
11199 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11200 char *page)
11202 struct perf_pmu_events_attr *pmu_attr =
11203 container_of(attr, struct perf_pmu_events_attr, attr);
11205 if (pmu_attr->event_str)
11206 return sprintf(page, "%s\n", pmu_attr->event_str);
11208 return 0;
11210 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11212 static int __init perf_event_sysfs_init(void)
11214 struct pmu *pmu;
11215 int ret;
11217 mutex_lock(&pmus_lock);
11219 ret = bus_register(&pmu_bus);
11220 if (ret)
11221 goto unlock;
11223 list_for_each_entry(pmu, &pmus, entry) {
11224 if (!pmu->name || pmu->type < 0)
11225 continue;
11227 ret = pmu_dev_alloc(pmu);
11228 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11230 pmu_bus_running = 1;
11231 ret = 0;
11233 unlock:
11234 mutex_unlock(&pmus_lock);
11236 return ret;
11238 device_initcall(perf_event_sysfs_init);
11240 #ifdef CONFIG_CGROUP_PERF
11241 static struct cgroup_subsys_state *
11242 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11244 struct perf_cgroup *jc;
11246 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11247 if (!jc)
11248 return ERR_PTR(-ENOMEM);
11250 jc->info = alloc_percpu(struct perf_cgroup_info);
11251 if (!jc->info) {
11252 kfree(jc);
11253 return ERR_PTR(-ENOMEM);
11256 return &jc->css;
11259 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11261 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11263 free_percpu(jc->info);
11264 kfree(jc);
11267 static int __perf_cgroup_move(void *info)
11269 struct task_struct *task = info;
11270 rcu_read_lock();
11271 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11272 rcu_read_unlock();
11273 return 0;
11276 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11278 struct task_struct *task;
11279 struct cgroup_subsys_state *css;
11281 cgroup_taskset_for_each(task, css, tset)
11282 task_function_call(task, __perf_cgroup_move, task);
11285 struct cgroup_subsys perf_event_cgrp_subsys = {
11286 .css_alloc = perf_cgroup_css_alloc,
11287 .css_free = perf_cgroup_css_free,
11288 .attach = perf_cgroup_attach,
11290 * Implicitly enable on dfl hierarchy so that perf events can
11291 * always be filtered by cgroup2 path as long as perf_event
11292 * controller is not mounted on a legacy hierarchy.
11294 .implicit_on_dfl = true,
11295 .threaded = true,
11297 #endif /* CONFIG_CGROUP_PERF */