xtensa: fix high memory/reserved memory collision
[cris-mirror.git] / kernel / locking / rtmutex.c
blob65cc0cb984e6aef64211da9ff693b4dc67968103
1 /*
2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4 * started by Ingo Molnar and Thomas Gleixner.
6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9 * Copyright (C) 2006 Esben Nielsen
11 * See Documentation/locking/rt-mutex-design.txt for details.
13 #include <linux/spinlock.h>
14 #include <linux/export.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/rt.h>
17 #include <linux/sched/deadline.h>
18 #include <linux/sched/wake_q.h>
19 #include <linux/sched/debug.h>
20 #include <linux/timer.h>
22 #include "rtmutex_common.h"
25 * lock->owner state tracking:
27 * lock->owner holds the task_struct pointer of the owner. Bit 0
28 * is used to keep track of the "lock has waiters" state.
30 * owner bit0
31 * NULL 0 lock is free (fast acquire possible)
32 * NULL 1 lock is free and has waiters and the top waiter
33 * is going to take the lock*
34 * taskpointer 0 lock is held (fast release possible)
35 * taskpointer 1 lock is held and has waiters**
37 * The fast atomic compare exchange based acquire and release is only
38 * possible when bit 0 of lock->owner is 0.
40 * (*) It also can be a transitional state when grabbing the lock
41 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
42 * we need to set the bit0 before looking at the lock, and the owner may be
43 * NULL in this small time, hence this can be a transitional state.
45 * (**) There is a small time when bit 0 is set but there are no
46 * waiters. This can happen when grabbing the lock in the slow path.
47 * To prevent a cmpxchg of the owner releasing the lock, we need to
48 * set this bit before looking at the lock.
51 static void
52 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
54 unsigned long val = (unsigned long)owner;
56 if (rt_mutex_has_waiters(lock))
57 val |= RT_MUTEX_HAS_WAITERS;
59 lock->owner = (struct task_struct *)val;
62 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
64 lock->owner = (struct task_struct *)
65 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
68 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
70 unsigned long owner, *p = (unsigned long *) &lock->owner;
72 if (rt_mutex_has_waiters(lock))
73 return;
76 * The rbtree has no waiters enqueued, now make sure that the
77 * lock->owner still has the waiters bit set, otherwise the
78 * following can happen:
80 * CPU 0 CPU 1 CPU2
81 * l->owner=T1
82 * rt_mutex_lock(l)
83 * lock(l->lock)
84 * l->owner = T1 | HAS_WAITERS;
85 * enqueue(T2)
86 * boost()
87 * unlock(l->lock)
88 * block()
90 * rt_mutex_lock(l)
91 * lock(l->lock)
92 * l->owner = T1 | HAS_WAITERS;
93 * enqueue(T3)
94 * boost()
95 * unlock(l->lock)
96 * block()
97 * signal(->T2) signal(->T3)
98 * lock(l->lock)
99 * dequeue(T2)
100 * deboost()
101 * unlock(l->lock)
102 * lock(l->lock)
103 * dequeue(T3)
104 * ==> wait list is empty
105 * deboost()
106 * unlock(l->lock)
107 * lock(l->lock)
108 * fixup_rt_mutex_waiters()
109 * if (wait_list_empty(l) {
110 * l->owner = owner
111 * owner = l->owner & ~HAS_WAITERS;
112 * ==> l->owner = T1
114 * lock(l->lock)
115 * rt_mutex_unlock(l) fixup_rt_mutex_waiters()
116 * if (wait_list_empty(l) {
117 * owner = l->owner & ~HAS_WAITERS;
118 * cmpxchg(l->owner, T1, NULL)
119 * ===> Success (l->owner = NULL)
121 * l->owner = owner
122 * ==> l->owner = T1
125 * With the check for the waiter bit in place T3 on CPU2 will not
126 * overwrite. All tasks fiddling with the waiters bit are
127 * serialized by l->lock, so nothing else can modify the waiters
128 * bit. If the bit is set then nothing can change l->owner either
129 * so the simple RMW is safe. The cmpxchg() will simply fail if it
130 * happens in the middle of the RMW because the waiters bit is
131 * still set.
133 owner = READ_ONCE(*p);
134 if (owner & RT_MUTEX_HAS_WAITERS)
135 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
139 * We can speed up the acquire/release, if there's no debugging state to be
140 * set up.
142 #ifndef CONFIG_DEBUG_RT_MUTEXES
143 # define rt_mutex_cmpxchg_relaxed(l,c,n) (cmpxchg_relaxed(&l->owner, c, n) == c)
144 # define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
145 # define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
148 * Callers must hold the ->wait_lock -- which is the whole purpose as we force
149 * all future threads that attempt to [Rmw] the lock to the slowpath. As such
150 * relaxed semantics suffice.
152 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
154 unsigned long owner, *p = (unsigned long *) &lock->owner;
156 do {
157 owner = *p;
158 } while (cmpxchg_relaxed(p, owner,
159 owner | RT_MUTEX_HAS_WAITERS) != owner);
163 * Safe fastpath aware unlock:
164 * 1) Clear the waiters bit
165 * 2) Drop lock->wait_lock
166 * 3) Try to unlock the lock with cmpxchg
168 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
169 unsigned long flags)
170 __releases(lock->wait_lock)
172 struct task_struct *owner = rt_mutex_owner(lock);
174 clear_rt_mutex_waiters(lock);
175 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
177 * If a new waiter comes in between the unlock and the cmpxchg
178 * we have two situations:
180 * unlock(wait_lock);
181 * lock(wait_lock);
182 * cmpxchg(p, owner, 0) == owner
183 * mark_rt_mutex_waiters(lock);
184 * acquire(lock);
185 * or:
187 * unlock(wait_lock);
188 * lock(wait_lock);
189 * mark_rt_mutex_waiters(lock);
191 * cmpxchg(p, owner, 0) != owner
192 * enqueue_waiter();
193 * unlock(wait_lock);
194 * lock(wait_lock);
195 * wake waiter();
196 * unlock(wait_lock);
197 * lock(wait_lock);
198 * acquire(lock);
200 return rt_mutex_cmpxchg_release(lock, owner, NULL);
203 #else
204 # define rt_mutex_cmpxchg_relaxed(l,c,n) (0)
205 # define rt_mutex_cmpxchg_acquire(l,c,n) (0)
206 # define rt_mutex_cmpxchg_release(l,c,n) (0)
208 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
210 lock->owner = (struct task_struct *)
211 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
215 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
217 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
218 unsigned long flags)
219 __releases(lock->wait_lock)
221 lock->owner = NULL;
222 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
223 return true;
225 #endif
228 * Only use with rt_mutex_waiter_{less,equal}()
230 #define task_to_waiter(p) \
231 &(struct rt_mutex_waiter){ .prio = (p)->prio, .deadline = (p)->dl.deadline }
233 static inline int
234 rt_mutex_waiter_less(struct rt_mutex_waiter *left,
235 struct rt_mutex_waiter *right)
237 if (left->prio < right->prio)
238 return 1;
241 * If both waiters have dl_prio(), we check the deadlines of the
242 * associated tasks.
243 * If left waiter has a dl_prio(), and we didn't return 1 above,
244 * then right waiter has a dl_prio() too.
246 if (dl_prio(left->prio))
247 return dl_time_before(left->deadline, right->deadline);
249 return 0;
252 static inline int
253 rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
254 struct rt_mutex_waiter *right)
256 if (left->prio != right->prio)
257 return 0;
260 * If both waiters have dl_prio(), we check the deadlines of the
261 * associated tasks.
262 * If left waiter has a dl_prio(), and we didn't return 0 above,
263 * then right waiter has a dl_prio() too.
265 if (dl_prio(left->prio))
266 return left->deadline == right->deadline;
268 return 1;
271 static void
272 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
274 struct rb_node **link = &lock->waiters.rb_root.rb_node;
275 struct rb_node *parent = NULL;
276 struct rt_mutex_waiter *entry;
277 bool leftmost = true;
279 while (*link) {
280 parent = *link;
281 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
282 if (rt_mutex_waiter_less(waiter, entry)) {
283 link = &parent->rb_left;
284 } else {
285 link = &parent->rb_right;
286 leftmost = false;
290 rb_link_node(&waiter->tree_entry, parent, link);
291 rb_insert_color_cached(&waiter->tree_entry, &lock->waiters, leftmost);
294 static void
295 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
297 if (RB_EMPTY_NODE(&waiter->tree_entry))
298 return;
300 rb_erase_cached(&waiter->tree_entry, &lock->waiters);
301 RB_CLEAR_NODE(&waiter->tree_entry);
304 static void
305 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
307 struct rb_node **link = &task->pi_waiters.rb_root.rb_node;
308 struct rb_node *parent = NULL;
309 struct rt_mutex_waiter *entry;
310 bool leftmost = true;
312 while (*link) {
313 parent = *link;
314 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
315 if (rt_mutex_waiter_less(waiter, entry)) {
316 link = &parent->rb_left;
317 } else {
318 link = &parent->rb_right;
319 leftmost = false;
323 rb_link_node(&waiter->pi_tree_entry, parent, link);
324 rb_insert_color_cached(&waiter->pi_tree_entry, &task->pi_waiters, leftmost);
327 static void
328 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
330 if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
331 return;
333 rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters);
334 RB_CLEAR_NODE(&waiter->pi_tree_entry);
337 static void rt_mutex_adjust_prio(struct task_struct *p)
339 struct task_struct *pi_task = NULL;
341 lockdep_assert_held(&p->pi_lock);
343 if (task_has_pi_waiters(p))
344 pi_task = task_top_pi_waiter(p)->task;
346 rt_mutex_setprio(p, pi_task);
350 * Deadlock detection is conditional:
352 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
353 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
355 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
356 * conducted independent of the detect argument.
358 * If the waiter argument is NULL this indicates the deboost path and
359 * deadlock detection is disabled independent of the detect argument
360 * and the config settings.
362 static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
363 enum rtmutex_chainwalk chwalk)
366 * This is just a wrapper function for the following call,
367 * because debug_rt_mutex_detect_deadlock() smells like a magic
368 * debug feature and I wanted to keep the cond function in the
369 * main source file along with the comments instead of having
370 * two of the same in the headers.
372 return debug_rt_mutex_detect_deadlock(waiter, chwalk);
376 * Max number of times we'll walk the boosting chain:
378 int max_lock_depth = 1024;
380 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
382 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
386 * Adjust the priority chain. Also used for deadlock detection.
387 * Decreases task's usage by one - may thus free the task.
389 * @task: the task owning the mutex (owner) for which a chain walk is
390 * probably needed
391 * @chwalk: do we have to carry out deadlock detection?
392 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
393 * things for a task that has just got its priority adjusted, and
394 * is waiting on a mutex)
395 * @next_lock: the mutex on which the owner of @orig_lock was blocked before
396 * we dropped its pi_lock. Is never dereferenced, only used for
397 * comparison to detect lock chain changes.
398 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
399 * its priority to the mutex owner (can be NULL in the case
400 * depicted above or if the top waiter is gone away and we are
401 * actually deboosting the owner)
402 * @top_task: the current top waiter
404 * Returns 0 or -EDEADLK.
406 * Chain walk basics and protection scope
408 * [R] refcount on task
409 * [P] task->pi_lock held
410 * [L] rtmutex->wait_lock held
412 * Step Description Protected by
413 * function arguments:
414 * @task [R]
415 * @orig_lock if != NULL @top_task is blocked on it
416 * @next_lock Unprotected. Cannot be
417 * dereferenced. Only used for
418 * comparison.
419 * @orig_waiter if != NULL @top_task is blocked on it
420 * @top_task current, or in case of proxy
421 * locking protected by calling
422 * code
423 * again:
424 * loop_sanity_check();
425 * retry:
426 * [1] lock(task->pi_lock); [R] acquire [P]
427 * [2] waiter = task->pi_blocked_on; [P]
428 * [3] check_exit_conditions_1(); [P]
429 * [4] lock = waiter->lock; [P]
430 * [5] if (!try_lock(lock->wait_lock)) { [P] try to acquire [L]
431 * unlock(task->pi_lock); release [P]
432 * goto retry;
434 * [6] check_exit_conditions_2(); [P] + [L]
435 * [7] requeue_lock_waiter(lock, waiter); [P] + [L]
436 * [8] unlock(task->pi_lock); release [P]
437 * put_task_struct(task); release [R]
438 * [9] check_exit_conditions_3(); [L]
439 * [10] task = owner(lock); [L]
440 * get_task_struct(task); [L] acquire [R]
441 * lock(task->pi_lock); [L] acquire [P]
442 * [11] requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
443 * [12] check_exit_conditions_4(); [P] + [L]
444 * [13] unlock(task->pi_lock); release [P]
445 * unlock(lock->wait_lock); release [L]
446 * goto again;
448 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
449 enum rtmutex_chainwalk chwalk,
450 struct rt_mutex *orig_lock,
451 struct rt_mutex *next_lock,
452 struct rt_mutex_waiter *orig_waiter,
453 struct task_struct *top_task)
455 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
456 struct rt_mutex_waiter *prerequeue_top_waiter;
457 int ret = 0, depth = 0;
458 struct rt_mutex *lock;
459 bool detect_deadlock;
460 bool requeue = true;
462 detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
465 * The (de)boosting is a step by step approach with a lot of
466 * pitfalls. We want this to be preemptible and we want hold a
467 * maximum of two locks per step. So we have to check
468 * carefully whether things change under us.
470 again:
472 * We limit the lock chain length for each invocation.
474 if (++depth > max_lock_depth) {
475 static int prev_max;
478 * Print this only once. If the admin changes the limit,
479 * print a new message when reaching the limit again.
481 if (prev_max != max_lock_depth) {
482 prev_max = max_lock_depth;
483 printk(KERN_WARNING "Maximum lock depth %d reached "
484 "task: %s (%d)\n", max_lock_depth,
485 top_task->comm, task_pid_nr(top_task));
487 put_task_struct(task);
489 return -EDEADLK;
493 * We are fully preemptible here and only hold the refcount on
494 * @task. So everything can have changed under us since the
495 * caller or our own code below (goto retry/again) dropped all
496 * locks.
498 retry:
500 * [1] Task cannot go away as we did a get_task() before !
502 raw_spin_lock_irq(&task->pi_lock);
505 * [2] Get the waiter on which @task is blocked on.
507 waiter = task->pi_blocked_on;
510 * [3] check_exit_conditions_1() protected by task->pi_lock.
514 * Check whether the end of the boosting chain has been
515 * reached or the state of the chain has changed while we
516 * dropped the locks.
518 if (!waiter)
519 goto out_unlock_pi;
522 * Check the orig_waiter state. After we dropped the locks,
523 * the previous owner of the lock might have released the lock.
525 if (orig_waiter && !rt_mutex_owner(orig_lock))
526 goto out_unlock_pi;
529 * We dropped all locks after taking a refcount on @task, so
530 * the task might have moved on in the lock chain or even left
531 * the chain completely and blocks now on an unrelated lock or
532 * on @orig_lock.
534 * We stored the lock on which @task was blocked in @next_lock,
535 * so we can detect the chain change.
537 if (next_lock != waiter->lock)
538 goto out_unlock_pi;
541 * Drop out, when the task has no waiters. Note,
542 * top_waiter can be NULL, when we are in the deboosting
543 * mode!
545 if (top_waiter) {
546 if (!task_has_pi_waiters(task))
547 goto out_unlock_pi;
549 * If deadlock detection is off, we stop here if we
550 * are not the top pi waiter of the task. If deadlock
551 * detection is enabled we continue, but stop the
552 * requeueing in the chain walk.
554 if (top_waiter != task_top_pi_waiter(task)) {
555 if (!detect_deadlock)
556 goto out_unlock_pi;
557 else
558 requeue = false;
563 * If the waiter priority is the same as the task priority
564 * then there is no further priority adjustment necessary. If
565 * deadlock detection is off, we stop the chain walk. If its
566 * enabled we continue, but stop the requeueing in the chain
567 * walk.
569 if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
570 if (!detect_deadlock)
571 goto out_unlock_pi;
572 else
573 requeue = false;
577 * [4] Get the next lock
579 lock = waiter->lock;
581 * [5] We need to trylock here as we are holding task->pi_lock,
582 * which is the reverse lock order versus the other rtmutex
583 * operations.
585 if (!raw_spin_trylock(&lock->wait_lock)) {
586 raw_spin_unlock_irq(&task->pi_lock);
587 cpu_relax();
588 goto retry;
592 * [6] check_exit_conditions_2() protected by task->pi_lock and
593 * lock->wait_lock.
595 * Deadlock detection. If the lock is the same as the original
596 * lock which caused us to walk the lock chain or if the
597 * current lock is owned by the task which initiated the chain
598 * walk, we detected a deadlock.
600 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
601 debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
602 raw_spin_unlock(&lock->wait_lock);
603 ret = -EDEADLK;
604 goto out_unlock_pi;
608 * If we just follow the lock chain for deadlock detection, no
609 * need to do all the requeue operations. To avoid a truckload
610 * of conditionals around the various places below, just do the
611 * minimum chain walk checks.
613 if (!requeue) {
615 * No requeue[7] here. Just release @task [8]
617 raw_spin_unlock(&task->pi_lock);
618 put_task_struct(task);
621 * [9] check_exit_conditions_3 protected by lock->wait_lock.
622 * If there is no owner of the lock, end of chain.
624 if (!rt_mutex_owner(lock)) {
625 raw_spin_unlock_irq(&lock->wait_lock);
626 return 0;
629 /* [10] Grab the next task, i.e. owner of @lock */
630 task = rt_mutex_owner(lock);
631 get_task_struct(task);
632 raw_spin_lock(&task->pi_lock);
635 * No requeue [11] here. We just do deadlock detection.
637 * [12] Store whether owner is blocked
638 * itself. Decision is made after dropping the locks
640 next_lock = task_blocked_on_lock(task);
642 * Get the top waiter for the next iteration
644 top_waiter = rt_mutex_top_waiter(lock);
646 /* [13] Drop locks */
647 raw_spin_unlock(&task->pi_lock);
648 raw_spin_unlock_irq(&lock->wait_lock);
650 /* If owner is not blocked, end of chain. */
651 if (!next_lock)
652 goto out_put_task;
653 goto again;
657 * Store the current top waiter before doing the requeue
658 * operation on @lock. We need it for the boost/deboost
659 * decision below.
661 prerequeue_top_waiter = rt_mutex_top_waiter(lock);
663 /* [7] Requeue the waiter in the lock waiter tree. */
664 rt_mutex_dequeue(lock, waiter);
667 * Update the waiter prio fields now that we're dequeued.
669 * These values can have changed through either:
671 * sys_sched_set_scheduler() / sys_sched_setattr()
673 * or
675 * DL CBS enforcement advancing the effective deadline.
677 * Even though pi_waiters also uses these fields, and that tree is only
678 * updated in [11], we can do this here, since we hold [L], which
679 * serializes all pi_waiters access and rb_erase() does not care about
680 * the values of the node being removed.
682 waiter->prio = task->prio;
683 waiter->deadline = task->dl.deadline;
685 rt_mutex_enqueue(lock, waiter);
687 /* [8] Release the task */
688 raw_spin_unlock(&task->pi_lock);
689 put_task_struct(task);
692 * [9] check_exit_conditions_3 protected by lock->wait_lock.
694 * We must abort the chain walk if there is no lock owner even
695 * in the dead lock detection case, as we have nothing to
696 * follow here. This is the end of the chain we are walking.
698 if (!rt_mutex_owner(lock)) {
700 * If the requeue [7] above changed the top waiter,
701 * then we need to wake the new top waiter up to try
702 * to get the lock.
704 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
705 wake_up_process(rt_mutex_top_waiter(lock)->task);
706 raw_spin_unlock_irq(&lock->wait_lock);
707 return 0;
710 /* [10] Grab the next task, i.e. the owner of @lock */
711 task = rt_mutex_owner(lock);
712 get_task_struct(task);
713 raw_spin_lock(&task->pi_lock);
715 /* [11] requeue the pi waiters if necessary */
716 if (waiter == rt_mutex_top_waiter(lock)) {
718 * The waiter became the new top (highest priority)
719 * waiter on the lock. Replace the previous top waiter
720 * in the owner tasks pi waiters tree with this waiter
721 * and adjust the priority of the owner.
723 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
724 rt_mutex_enqueue_pi(task, waiter);
725 rt_mutex_adjust_prio(task);
727 } else if (prerequeue_top_waiter == waiter) {
729 * The waiter was the top waiter on the lock, but is
730 * no longer the top prority waiter. Replace waiter in
731 * the owner tasks pi waiters tree with the new top
732 * (highest priority) waiter and adjust the priority
733 * of the owner.
734 * The new top waiter is stored in @waiter so that
735 * @waiter == @top_waiter evaluates to true below and
736 * we continue to deboost the rest of the chain.
738 rt_mutex_dequeue_pi(task, waiter);
739 waiter = rt_mutex_top_waiter(lock);
740 rt_mutex_enqueue_pi(task, waiter);
741 rt_mutex_adjust_prio(task);
742 } else {
744 * Nothing changed. No need to do any priority
745 * adjustment.
750 * [12] check_exit_conditions_4() protected by task->pi_lock
751 * and lock->wait_lock. The actual decisions are made after we
752 * dropped the locks.
754 * Check whether the task which owns the current lock is pi
755 * blocked itself. If yes we store a pointer to the lock for
756 * the lock chain change detection above. After we dropped
757 * task->pi_lock next_lock cannot be dereferenced anymore.
759 next_lock = task_blocked_on_lock(task);
761 * Store the top waiter of @lock for the end of chain walk
762 * decision below.
764 top_waiter = rt_mutex_top_waiter(lock);
766 /* [13] Drop the locks */
767 raw_spin_unlock(&task->pi_lock);
768 raw_spin_unlock_irq(&lock->wait_lock);
771 * Make the actual exit decisions [12], based on the stored
772 * values.
774 * We reached the end of the lock chain. Stop right here. No
775 * point to go back just to figure that out.
777 if (!next_lock)
778 goto out_put_task;
781 * If the current waiter is not the top waiter on the lock,
782 * then we can stop the chain walk here if we are not in full
783 * deadlock detection mode.
785 if (!detect_deadlock && waiter != top_waiter)
786 goto out_put_task;
788 goto again;
790 out_unlock_pi:
791 raw_spin_unlock_irq(&task->pi_lock);
792 out_put_task:
793 put_task_struct(task);
795 return ret;
799 * Try to take an rt-mutex
801 * Must be called with lock->wait_lock held and interrupts disabled
803 * @lock: The lock to be acquired.
804 * @task: The task which wants to acquire the lock
805 * @waiter: The waiter that is queued to the lock's wait tree if the
806 * callsite called task_blocked_on_lock(), otherwise NULL
808 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
809 struct rt_mutex_waiter *waiter)
811 lockdep_assert_held(&lock->wait_lock);
814 * Before testing whether we can acquire @lock, we set the
815 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
816 * other tasks which try to modify @lock into the slow path
817 * and they serialize on @lock->wait_lock.
819 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
820 * as explained at the top of this file if and only if:
822 * - There is a lock owner. The caller must fixup the
823 * transient state if it does a trylock or leaves the lock
824 * function due to a signal or timeout.
826 * - @task acquires the lock and there are no other
827 * waiters. This is undone in rt_mutex_set_owner(@task) at
828 * the end of this function.
830 mark_rt_mutex_waiters(lock);
833 * If @lock has an owner, give up.
835 if (rt_mutex_owner(lock))
836 return 0;
839 * If @waiter != NULL, @task has already enqueued the waiter
840 * into @lock waiter tree. If @waiter == NULL then this is a
841 * trylock attempt.
843 if (waiter) {
845 * If waiter is not the highest priority waiter of
846 * @lock, give up.
848 if (waiter != rt_mutex_top_waiter(lock))
849 return 0;
852 * We can acquire the lock. Remove the waiter from the
853 * lock waiters tree.
855 rt_mutex_dequeue(lock, waiter);
857 } else {
859 * If the lock has waiters already we check whether @task is
860 * eligible to take over the lock.
862 * If there are no other waiters, @task can acquire
863 * the lock. @task->pi_blocked_on is NULL, so it does
864 * not need to be dequeued.
866 if (rt_mutex_has_waiters(lock)) {
868 * If @task->prio is greater than or equal to
869 * the top waiter priority (kernel view),
870 * @task lost.
872 if (!rt_mutex_waiter_less(task_to_waiter(task),
873 rt_mutex_top_waiter(lock)))
874 return 0;
877 * The current top waiter stays enqueued. We
878 * don't have to change anything in the lock
879 * waiters order.
881 } else {
883 * No waiters. Take the lock without the
884 * pi_lock dance.@task->pi_blocked_on is NULL
885 * and we have no waiters to enqueue in @task
886 * pi waiters tree.
888 goto takeit;
893 * Clear @task->pi_blocked_on. Requires protection by
894 * @task->pi_lock. Redundant operation for the @waiter == NULL
895 * case, but conditionals are more expensive than a redundant
896 * store.
898 raw_spin_lock(&task->pi_lock);
899 task->pi_blocked_on = NULL;
901 * Finish the lock acquisition. @task is the new owner. If
902 * other waiters exist we have to insert the highest priority
903 * waiter into @task->pi_waiters tree.
905 if (rt_mutex_has_waiters(lock))
906 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
907 raw_spin_unlock(&task->pi_lock);
909 takeit:
910 /* We got the lock. */
911 debug_rt_mutex_lock(lock);
914 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
915 * are still waiters or clears it.
917 rt_mutex_set_owner(lock, task);
919 return 1;
923 * Task blocks on lock.
925 * Prepare waiter and propagate pi chain
927 * This must be called with lock->wait_lock held and interrupts disabled
929 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
930 struct rt_mutex_waiter *waiter,
931 struct task_struct *task,
932 enum rtmutex_chainwalk chwalk)
934 struct task_struct *owner = rt_mutex_owner(lock);
935 struct rt_mutex_waiter *top_waiter = waiter;
936 struct rt_mutex *next_lock;
937 int chain_walk = 0, res;
939 lockdep_assert_held(&lock->wait_lock);
942 * Early deadlock detection. We really don't want the task to
943 * enqueue on itself just to untangle the mess later. It's not
944 * only an optimization. We drop the locks, so another waiter
945 * can come in before the chain walk detects the deadlock. So
946 * the other will detect the deadlock and return -EDEADLOCK,
947 * which is wrong, as the other waiter is not in a deadlock
948 * situation.
950 if (owner == task)
951 return -EDEADLK;
953 raw_spin_lock(&task->pi_lock);
954 waiter->task = task;
955 waiter->lock = lock;
956 waiter->prio = task->prio;
957 waiter->deadline = task->dl.deadline;
959 /* Get the top priority waiter on the lock */
960 if (rt_mutex_has_waiters(lock))
961 top_waiter = rt_mutex_top_waiter(lock);
962 rt_mutex_enqueue(lock, waiter);
964 task->pi_blocked_on = waiter;
966 raw_spin_unlock(&task->pi_lock);
968 if (!owner)
969 return 0;
971 raw_spin_lock(&owner->pi_lock);
972 if (waiter == rt_mutex_top_waiter(lock)) {
973 rt_mutex_dequeue_pi(owner, top_waiter);
974 rt_mutex_enqueue_pi(owner, waiter);
976 rt_mutex_adjust_prio(owner);
977 if (owner->pi_blocked_on)
978 chain_walk = 1;
979 } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
980 chain_walk = 1;
983 /* Store the lock on which owner is blocked or NULL */
984 next_lock = task_blocked_on_lock(owner);
986 raw_spin_unlock(&owner->pi_lock);
988 * Even if full deadlock detection is on, if the owner is not
989 * blocked itself, we can avoid finding this out in the chain
990 * walk.
992 if (!chain_walk || !next_lock)
993 return 0;
996 * The owner can't disappear while holding a lock,
997 * so the owner struct is protected by wait_lock.
998 * Gets dropped in rt_mutex_adjust_prio_chain()!
1000 get_task_struct(owner);
1002 raw_spin_unlock_irq(&lock->wait_lock);
1004 res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1005 next_lock, waiter, task);
1007 raw_spin_lock_irq(&lock->wait_lock);
1009 return res;
1013 * Remove the top waiter from the current tasks pi waiter tree and
1014 * queue it up.
1016 * Called with lock->wait_lock held and interrupts disabled.
1018 static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
1019 struct rt_mutex *lock)
1021 struct rt_mutex_waiter *waiter;
1023 raw_spin_lock(&current->pi_lock);
1025 waiter = rt_mutex_top_waiter(lock);
1028 * Remove it from current->pi_waiters and deboost.
1030 * We must in fact deboost here in order to ensure we call
1031 * rt_mutex_setprio() to update p->pi_top_task before the
1032 * task unblocks.
1034 rt_mutex_dequeue_pi(current, waiter);
1035 rt_mutex_adjust_prio(current);
1038 * As we are waking up the top waiter, and the waiter stays
1039 * queued on the lock until it gets the lock, this lock
1040 * obviously has waiters. Just set the bit here and this has
1041 * the added benefit of forcing all new tasks into the
1042 * slow path making sure no task of lower priority than
1043 * the top waiter can steal this lock.
1045 lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1048 * We deboosted before waking the top waiter task such that we don't
1049 * run two tasks with the 'same' priority (and ensure the
1050 * p->pi_top_task pointer points to a blocked task). This however can
1051 * lead to priority inversion if we would get preempted after the
1052 * deboost but before waking our donor task, hence the preempt_disable()
1053 * before unlock.
1055 * Pairs with preempt_enable() in rt_mutex_postunlock();
1057 preempt_disable();
1058 wake_q_add(wake_q, waiter->task);
1059 raw_spin_unlock(&current->pi_lock);
1063 * Remove a waiter from a lock and give up
1065 * Must be called with lock->wait_lock held and interrupts disabled. I must
1066 * have just failed to try_to_take_rt_mutex().
1068 static void remove_waiter(struct rt_mutex *lock,
1069 struct rt_mutex_waiter *waiter)
1071 bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1072 struct task_struct *owner = rt_mutex_owner(lock);
1073 struct rt_mutex *next_lock;
1075 lockdep_assert_held(&lock->wait_lock);
1077 raw_spin_lock(&current->pi_lock);
1078 rt_mutex_dequeue(lock, waiter);
1079 current->pi_blocked_on = NULL;
1080 raw_spin_unlock(&current->pi_lock);
1083 * Only update priority if the waiter was the highest priority
1084 * waiter of the lock and there is an owner to update.
1086 if (!owner || !is_top_waiter)
1087 return;
1089 raw_spin_lock(&owner->pi_lock);
1091 rt_mutex_dequeue_pi(owner, waiter);
1093 if (rt_mutex_has_waiters(lock))
1094 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1096 rt_mutex_adjust_prio(owner);
1098 /* Store the lock on which owner is blocked or NULL */
1099 next_lock = task_blocked_on_lock(owner);
1101 raw_spin_unlock(&owner->pi_lock);
1104 * Don't walk the chain, if the owner task is not blocked
1105 * itself.
1107 if (!next_lock)
1108 return;
1110 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1111 get_task_struct(owner);
1113 raw_spin_unlock_irq(&lock->wait_lock);
1115 rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1116 next_lock, NULL, current);
1118 raw_spin_lock_irq(&lock->wait_lock);
1122 * Recheck the pi chain, in case we got a priority setting
1124 * Called from sched_setscheduler
1126 void rt_mutex_adjust_pi(struct task_struct *task)
1128 struct rt_mutex_waiter *waiter;
1129 struct rt_mutex *next_lock;
1130 unsigned long flags;
1132 raw_spin_lock_irqsave(&task->pi_lock, flags);
1134 waiter = task->pi_blocked_on;
1135 if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
1136 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1137 return;
1139 next_lock = waiter->lock;
1140 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1142 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1143 get_task_struct(task);
1145 rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1146 next_lock, NULL, task);
1149 void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
1151 debug_rt_mutex_init_waiter(waiter);
1152 RB_CLEAR_NODE(&waiter->pi_tree_entry);
1153 RB_CLEAR_NODE(&waiter->tree_entry);
1154 waiter->task = NULL;
1158 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1159 * @lock: the rt_mutex to take
1160 * @state: the state the task should block in (TASK_INTERRUPTIBLE
1161 * or TASK_UNINTERRUPTIBLE)
1162 * @timeout: the pre-initialized and started timer, or NULL for none
1163 * @waiter: the pre-initialized rt_mutex_waiter
1165 * Must be called with lock->wait_lock held and interrupts disabled
1167 static int __sched
1168 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
1169 struct hrtimer_sleeper *timeout,
1170 struct rt_mutex_waiter *waiter)
1172 int ret = 0;
1174 for (;;) {
1175 /* Try to acquire the lock: */
1176 if (try_to_take_rt_mutex(lock, current, waiter))
1177 break;
1180 * TASK_INTERRUPTIBLE checks for signals and
1181 * timeout. Ignored otherwise.
1183 if (likely(state == TASK_INTERRUPTIBLE)) {
1184 /* Signal pending? */
1185 if (signal_pending(current))
1186 ret = -EINTR;
1187 if (timeout && !timeout->task)
1188 ret = -ETIMEDOUT;
1189 if (ret)
1190 break;
1193 raw_spin_unlock_irq(&lock->wait_lock);
1195 debug_rt_mutex_print_deadlock(waiter);
1197 schedule();
1199 raw_spin_lock_irq(&lock->wait_lock);
1200 set_current_state(state);
1203 __set_current_state(TASK_RUNNING);
1204 return ret;
1207 static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1208 struct rt_mutex_waiter *w)
1211 * If the result is not -EDEADLOCK or the caller requested
1212 * deadlock detection, nothing to do here.
1214 if (res != -EDEADLOCK || detect_deadlock)
1215 return;
1218 * Yell lowdly and stop the task right here.
1220 rt_mutex_print_deadlock(w);
1221 while (1) {
1222 set_current_state(TASK_INTERRUPTIBLE);
1223 schedule();
1228 * Slow path lock function:
1230 static int __sched
1231 rt_mutex_slowlock(struct rt_mutex *lock, int state,
1232 struct hrtimer_sleeper *timeout,
1233 enum rtmutex_chainwalk chwalk)
1235 struct rt_mutex_waiter waiter;
1236 unsigned long flags;
1237 int ret = 0;
1239 rt_mutex_init_waiter(&waiter);
1242 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1243 * be called in early boot if the cmpxchg() fast path is disabled
1244 * (debug, no architecture support). In this case we will acquire the
1245 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1246 * enable interrupts in that early boot case. So we need to use the
1247 * irqsave/restore variants.
1249 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1251 /* Try to acquire the lock again: */
1252 if (try_to_take_rt_mutex(lock, current, NULL)) {
1253 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1254 return 0;
1257 set_current_state(state);
1259 /* Setup the timer, when timeout != NULL */
1260 if (unlikely(timeout))
1261 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1263 ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1265 if (likely(!ret))
1266 /* sleep on the mutex */
1267 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1269 if (unlikely(ret)) {
1270 __set_current_state(TASK_RUNNING);
1271 if (rt_mutex_has_waiters(lock))
1272 remove_waiter(lock, &waiter);
1273 rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1277 * try_to_take_rt_mutex() sets the waiter bit
1278 * unconditionally. We might have to fix that up.
1280 fixup_rt_mutex_waiters(lock);
1282 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1284 /* Remove pending timer: */
1285 if (unlikely(timeout))
1286 hrtimer_cancel(&timeout->timer);
1288 debug_rt_mutex_free_waiter(&waiter);
1290 return ret;
1293 static inline int __rt_mutex_slowtrylock(struct rt_mutex *lock)
1295 int ret = try_to_take_rt_mutex(lock, current, NULL);
1298 * try_to_take_rt_mutex() sets the lock waiters bit
1299 * unconditionally. Clean this up.
1301 fixup_rt_mutex_waiters(lock);
1303 return ret;
1307 * Slow path try-lock function:
1309 static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1311 unsigned long flags;
1312 int ret;
1315 * If the lock already has an owner we fail to get the lock.
1316 * This can be done without taking the @lock->wait_lock as
1317 * it is only being read, and this is a trylock anyway.
1319 if (rt_mutex_owner(lock))
1320 return 0;
1323 * The mutex has currently no owner. Lock the wait lock and try to
1324 * acquire the lock. We use irqsave here to support early boot calls.
1326 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1328 ret = __rt_mutex_slowtrylock(lock);
1330 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1332 return ret;
1336 * Slow path to release a rt-mutex.
1338 * Return whether the current task needs to call rt_mutex_postunlock().
1340 static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1341 struct wake_q_head *wake_q)
1343 unsigned long flags;
1345 /* irqsave required to support early boot calls */
1346 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1348 debug_rt_mutex_unlock(lock);
1351 * We must be careful here if the fast path is enabled. If we
1352 * have no waiters queued we cannot set owner to NULL here
1353 * because of:
1355 * foo->lock->owner = NULL;
1356 * rtmutex_lock(foo->lock); <- fast path
1357 * free = atomic_dec_and_test(foo->refcnt);
1358 * rtmutex_unlock(foo->lock); <- fast path
1359 * if (free)
1360 * kfree(foo);
1361 * raw_spin_unlock(foo->lock->wait_lock);
1363 * So for the fastpath enabled kernel:
1365 * Nothing can set the waiters bit as long as we hold
1366 * lock->wait_lock. So we do the following sequence:
1368 * owner = rt_mutex_owner(lock);
1369 * clear_rt_mutex_waiters(lock);
1370 * raw_spin_unlock(&lock->wait_lock);
1371 * if (cmpxchg(&lock->owner, owner, 0) == owner)
1372 * return;
1373 * goto retry;
1375 * The fastpath disabled variant is simple as all access to
1376 * lock->owner is serialized by lock->wait_lock:
1378 * lock->owner = NULL;
1379 * raw_spin_unlock(&lock->wait_lock);
1381 while (!rt_mutex_has_waiters(lock)) {
1382 /* Drops lock->wait_lock ! */
1383 if (unlock_rt_mutex_safe(lock, flags) == true)
1384 return false;
1385 /* Relock the rtmutex and try again */
1386 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1390 * The wakeup next waiter path does not suffer from the above
1391 * race. See the comments there.
1393 * Queue the next waiter for wakeup once we release the wait_lock.
1395 mark_wakeup_next_waiter(wake_q, lock);
1396 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1398 return true; /* call rt_mutex_postunlock() */
1402 * debug aware fast / slowpath lock,trylock,unlock
1404 * The atomic acquire/release ops are compiled away, when either the
1405 * architecture does not support cmpxchg or when debugging is enabled.
1407 static inline int
1408 rt_mutex_fastlock(struct rt_mutex *lock, int state,
1409 int (*slowfn)(struct rt_mutex *lock, int state,
1410 struct hrtimer_sleeper *timeout,
1411 enum rtmutex_chainwalk chwalk))
1413 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1414 return 0;
1416 return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1419 static inline int
1420 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1421 struct hrtimer_sleeper *timeout,
1422 enum rtmutex_chainwalk chwalk,
1423 int (*slowfn)(struct rt_mutex *lock, int state,
1424 struct hrtimer_sleeper *timeout,
1425 enum rtmutex_chainwalk chwalk))
1427 if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1428 likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1429 return 0;
1431 return slowfn(lock, state, timeout, chwalk);
1434 static inline int
1435 rt_mutex_fasttrylock(struct rt_mutex *lock,
1436 int (*slowfn)(struct rt_mutex *lock))
1438 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1439 return 1;
1441 return slowfn(lock);
1445 * Performs the wakeup of the the top-waiter and re-enables preemption.
1447 void rt_mutex_postunlock(struct wake_q_head *wake_q)
1449 wake_up_q(wake_q);
1451 /* Pairs with preempt_disable() in rt_mutex_slowunlock() */
1452 preempt_enable();
1455 static inline void
1456 rt_mutex_fastunlock(struct rt_mutex *lock,
1457 bool (*slowfn)(struct rt_mutex *lock,
1458 struct wake_q_head *wqh))
1460 DEFINE_WAKE_Q(wake_q);
1462 if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1463 return;
1465 if (slowfn(lock, &wake_q))
1466 rt_mutex_postunlock(&wake_q);
1470 * rt_mutex_lock - lock a rt_mutex
1472 * @lock: the rt_mutex to be locked
1474 void __sched rt_mutex_lock(struct rt_mutex *lock)
1476 might_sleep();
1478 mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1479 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1481 EXPORT_SYMBOL_GPL(rt_mutex_lock);
1484 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1486 * @lock: the rt_mutex to be locked
1488 * Returns:
1489 * 0 on success
1490 * -EINTR when interrupted by a signal
1492 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1494 int ret;
1496 might_sleep();
1498 mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1499 ret = rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1500 if (ret)
1501 mutex_release(&lock->dep_map, 1, _RET_IP_);
1503 return ret;
1505 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1508 * Futex variant, must not use fastpath.
1510 int __sched rt_mutex_futex_trylock(struct rt_mutex *lock)
1512 return rt_mutex_slowtrylock(lock);
1515 int __sched __rt_mutex_futex_trylock(struct rt_mutex *lock)
1517 return __rt_mutex_slowtrylock(lock);
1521 * rt_mutex_timed_lock - lock a rt_mutex interruptible
1522 * the timeout structure is provided
1523 * by the caller
1525 * @lock: the rt_mutex to be locked
1526 * @timeout: timeout structure or NULL (no timeout)
1528 * Returns:
1529 * 0 on success
1530 * -EINTR when interrupted by a signal
1531 * -ETIMEDOUT when the timeout expired
1534 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1536 int ret;
1538 might_sleep();
1540 mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1541 ret = rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1542 RT_MUTEX_MIN_CHAINWALK,
1543 rt_mutex_slowlock);
1544 if (ret)
1545 mutex_release(&lock->dep_map, 1, _RET_IP_);
1547 return ret;
1549 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1552 * rt_mutex_trylock - try to lock a rt_mutex
1554 * @lock: the rt_mutex to be locked
1556 * This function can only be called in thread context. It's safe to
1557 * call it from atomic regions, but not from hard interrupt or soft
1558 * interrupt context.
1560 * Returns 1 on success and 0 on contention
1562 int __sched rt_mutex_trylock(struct rt_mutex *lock)
1564 int ret;
1566 if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq()))
1567 return 0;
1569 ret = rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1570 if (ret)
1571 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1573 return ret;
1575 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1578 * rt_mutex_unlock - unlock a rt_mutex
1580 * @lock: the rt_mutex to be unlocked
1582 void __sched rt_mutex_unlock(struct rt_mutex *lock)
1584 mutex_release(&lock->dep_map, 1, _RET_IP_);
1585 rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1587 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1590 * Futex variant, that since futex variants do not use the fast-path, can be
1591 * simple and will not need to retry.
1593 bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock,
1594 struct wake_q_head *wake_q)
1596 lockdep_assert_held(&lock->wait_lock);
1598 debug_rt_mutex_unlock(lock);
1600 if (!rt_mutex_has_waiters(lock)) {
1601 lock->owner = NULL;
1602 return false; /* done */
1606 * We've already deboosted, mark_wakeup_next_waiter() will
1607 * retain preempt_disabled when we drop the wait_lock, to
1608 * avoid inversion prior to the wakeup. preempt_disable()
1609 * therein pairs with rt_mutex_postunlock().
1611 mark_wakeup_next_waiter(wake_q, lock);
1613 return true; /* call postunlock() */
1616 void __sched rt_mutex_futex_unlock(struct rt_mutex *lock)
1618 DEFINE_WAKE_Q(wake_q);
1619 bool postunlock;
1621 raw_spin_lock_irq(&lock->wait_lock);
1622 postunlock = __rt_mutex_futex_unlock(lock, &wake_q);
1623 raw_spin_unlock_irq(&lock->wait_lock);
1625 if (postunlock)
1626 rt_mutex_postunlock(&wake_q);
1630 * rt_mutex_destroy - mark a mutex unusable
1631 * @lock: the mutex to be destroyed
1633 * This function marks the mutex uninitialized, and any subsequent
1634 * use of the mutex is forbidden. The mutex must not be locked when
1635 * this function is called.
1637 void rt_mutex_destroy(struct rt_mutex *lock)
1639 WARN_ON(rt_mutex_is_locked(lock));
1640 #ifdef CONFIG_DEBUG_RT_MUTEXES
1641 lock->magic = NULL;
1642 #endif
1644 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1647 * __rt_mutex_init - initialize the rt lock
1649 * @lock: the rt lock to be initialized
1651 * Initialize the rt lock to unlocked state.
1653 * Initializing of a locked rt lock is not allowed
1655 void __rt_mutex_init(struct rt_mutex *lock, const char *name,
1656 struct lock_class_key *key)
1658 lock->owner = NULL;
1659 raw_spin_lock_init(&lock->wait_lock);
1660 lock->waiters = RB_ROOT_CACHED;
1662 if (name && key)
1663 debug_rt_mutex_init(lock, name, key);
1665 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1668 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1669 * proxy owner
1671 * @lock: the rt_mutex to be locked
1672 * @proxy_owner:the task to set as owner
1674 * No locking. Caller has to do serializing itself
1676 * Special API call for PI-futex support. This initializes the rtmutex and
1677 * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
1678 * possible at this point because the pi_state which contains the rtmutex
1679 * is not yet visible to other tasks.
1681 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1682 struct task_struct *proxy_owner)
1684 __rt_mutex_init(lock, NULL, NULL);
1685 debug_rt_mutex_proxy_lock(lock, proxy_owner);
1686 rt_mutex_set_owner(lock, proxy_owner);
1690 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1692 * @lock: the rt_mutex to be locked
1694 * No locking. Caller has to do serializing itself
1696 * Special API call for PI-futex support. This merrily cleans up the rtmutex
1697 * (debugging) state. Concurrent operations on this rt_mutex are not
1698 * possible because it belongs to the pi_state which is about to be freed
1699 * and it is not longer visible to other tasks.
1701 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1702 struct task_struct *proxy_owner)
1704 debug_rt_mutex_proxy_unlock(lock);
1705 rt_mutex_set_owner(lock, NULL);
1708 int __rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1709 struct rt_mutex_waiter *waiter,
1710 struct task_struct *task)
1712 int ret;
1714 if (try_to_take_rt_mutex(lock, task, NULL))
1715 return 1;
1717 /* We enforce deadlock detection for futexes */
1718 ret = task_blocks_on_rt_mutex(lock, waiter, task,
1719 RT_MUTEX_FULL_CHAINWALK);
1721 if (ret && !rt_mutex_owner(lock)) {
1723 * Reset the return value. We might have
1724 * returned with -EDEADLK and the owner
1725 * released the lock while we were walking the
1726 * pi chain. Let the waiter sort it out.
1728 ret = 0;
1731 if (unlikely(ret))
1732 remove_waiter(lock, waiter);
1734 debug_rt_mutex_print_deadlock(waiter);
1736 return ret;
1740 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1741 * @lock: the rt_mutex to take
1742 * @waiter: the pre-initialized rt_mutex_waiter
1743 * @task: the task to prepare
1745 * Returns:
1746 * 0 - task blocked on lock
1747 * 1 - acquired the lock for task, caller should wake it up
1748 * <0 - error
1750 * Special API call for FUTEX_REQUEUE_PI support.
1752 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1753 struct rt_mutex_waiter *waiter,
1754 struct task_struct *task)
1756 int ret;
1758 raw_spin_lock_irq(&lock->wait_lock);
1759 ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
1760 raw_spin_unlock_irq(&lock->wait_lock);
1762 return ret;
1766 * rt_mutex_next_owner - return the next owner of the lock
1768 * @lock: the rt lock query
1770 * Returns the next owner of the lock or NULL
1772 * Caller has to serialize against other accessors to the lock
1773 * itself.
1775 * Special API call for PI-futex support
1777 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1779 if (!rt_mutex_has_waiters(lock))
1780 return NULL;
1782 return rt_mutex_top_waiter(lock)->task;
1786 * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
1787 * @lock: the rt_mutex we were woken on
1788 * @to: the timeout, null if none. hrtimer should already have
1789 * been started.
1790 * @waiter: the pre-initialized rt_mutex_waiter
1792 * Wait for the the lock acquisition started on our behalf by
1793 * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
1794 * rt_mutex_cleanup_proxy_lock().
1796 * Returns:
1797 * 0 - success
1798 * <0 - error, one of -EINTR, -ETIMEDOUT
1800 * Special API call for PI-futex support
1802 int rt_mutex_wait_proxy_lock(struct rt_mutex *lock,
1803 struct hrtimer_sleeper *to,
1804 struct rt_mutex_waiter *waiter)
1806 int ret;
1808 raw_spin_lock_irq(&lock->wait_lock);
1809 /* sleep on the mutex */
1810 set_current_state(TASK_INTERRUPTIBLE);
1811 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1813 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1814 * have to fix that up.
1816 fixup_rt_mutex_waiters(lock);
1817 raw_spin_unlock_irq(&lock->wait_lock);
1819 return ret;
1823 * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
1824 * @lock: the rt_mutex we were woken on
1825 * @waiter: the pre-initialized rt_mutex_waiter
1827 * Attempt to clean up after a failed rt_mutex_wait_proxy_lock().
1829 * Unless we acquired the lock; we're still enqueued on the wait-list and can
1830 * in fact still be granted ownership until we're removed. Therefore we can
1831 * find we are in fact the owner and must disregard the
1832 * rt_mutex_wait_proxy_lock() failure.
1834 * Returns:
1835 * true - did the cleanup, we done.
1836 * false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
1837 * caller should disregards its return value.
1839 * Special API call for PI-futex support
1841 bool rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock,
1842 struct rt_mutex_waiter *waiter)
1844 bool cleanup = false;
1846 raw_spin_lock_irq(&lock->wait_lock);
1848 * Do an unconditional try-lock, this deals with the lock stealing
1849 * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
1850 * sets a NULL owner.
1852 * We're not interested in the return value, because the subsequent
1853 * test on rt_mutex_owner() will infer that. If the trylock succeeded,
1854 * we will own the lock and it will have removed the waiter. If we
1855 * failed the trylock, we're still not owner and we need to remove
1856 * ourselves.
1858 try_to_take_rt_mutex(lock, current, waiter);
1860 * Unless we're the owner; we're still enqueued on the wait_list.
1861 * So check if we became owner, if not, take us off the wait_list.
1863 if (rt_mutex_owner(lock) != current) {
1864 remove_waiter(lock, waiter);
1865 cleanup = true;
1868 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1869 * have to fix that up.
1871 fixup_rt_mutex_waiters(lock);
1873 raw_spin_unlock_irq(&lock->wait_lock);
1875 return cleanup;