xtensa: fix high memory/reserved memory collision
[cris-mirror.git] / mm / kmemleak.c
blobe83987c55a08ade7429476f9f8c7554c9d80759f
1 /*
2 * mm/kmemleak.c
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/dev-tools/kmemleak.rst.
24 * Notes on locking
25 * ----------------
27 * The following locks and mutexes are used by kmemleak:
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a red black tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
54 * pointer
56 * Locks and mutexes are acquired/nested in the following order:
58 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
60 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
61 * regions.
63 * The kmemleak_object structures have a use_count incremented or decremented
64 * using the get_object()/put_object() functions. When the use_count becomes
65 * 0, this count can no longer be incremented and put_object() schedules the
66 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67 * function must be protected by rcu_read_lock() to avoid accessing a freed
68 * structure.
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
73 #include <linux/init.h>
74 #include <linux/kernel.h>
75 #include <linux/list.h>
76 #include <linux/sched/signal.h>
77 #include <linux/sched/task.h>
78 #include <linux/sched/task_stack.h>
79 #include <linux/jiffies.h>
80 #include <linux/delay.h>
81 #include <linux/export.h>
82 #include <linux/kthread.h>
83 #include <linux/rbtree.h>
84 #include <linux/fs.h>
85 #include <linux/debugfs.h>
86 #include <linux/seq_file.h>
87 #include <linux/cpumask.h>
88 #include <linux/spinlock.h>
89 #include <linux/mutex.h>
90 #include <linux/rcupdate.h>
91 #include <linux/stacktrace.h>
92 #include <linux/cache.h>
93 #include <linux/percpu.h>
94 #include <linux/bootmem.h>
95 #include <linux/pfn.h>
96 #include <linux/mmzone.h>
97 #include <linux/slab.h>
98 #include <linux/thread_info.h>
99 #include <linux/err.h>
100 #include <linux/uaccess.h>
101 #include <linux/string.h>
102 #include <linux/nodemask.h>
103 #include <linux/mm.h>
104 #include <linux/workqueue.h>
105 #include <linux/crc32.h>
107 #include <asm/sections.h>
108 #include <asm/processor.h>
109 #include <linux/atomic.h>
111 #include <linux/kasan.h>
112 #include <linux/kmemleak.h>
113 #include <linux/memory_hotplug.h>
116 * Kmemleak configuration and common defines.
118 #define MAX_TRACE 16 /* stack trace length */
119 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
120 #define SECS_FIRST_SCAN 60 /* delay before the first scan */
121 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
122 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
124 #define BYTES_PER_POINTER sizeof(void *)
126 /* GFP bitmask for kmemleak internal allocations */
127 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
128 __GFP_NORETRY | __GFP_NOMEMALLOC | \
129 __GFP_NOWARN | __GFP_NOFAIL)
131 /* scanning area inside a memory block */
132 struct kmemleak_scan_area {
133 struct hlist_node node;
134 unsigned long start;
135 size_t size;
138 #define KMEMLEAK_GREY 0
139 #define KMEMLEAK_BLACK -1
142 * Structure holding the metadata for each allocated memory block.
143 * Modifications to such objects should be made while holding the
144 * object->lock. Insertions or deletions from object_list, gray_list or
145 * rb_node are already protected by the corresponding locks or mutex (see
146 * the notes on locking above). These objects are reference-counted
147 * (use_count) and freed using the RCU mechanism.
149 struct kmemleak_object {
150 spinlock_t lock;
151 unsigned int flags; /* object status flags */
152 struct list_head object_list;
153 struct list_head gray_list;
154 struct rb_node rb_node;
155 struct rcu_head rcu; /* object_list lockless traversal */
156 /* object usage count; object freed when use_count == 0 */
157 atomic_t use_count;
158 unsigned long pointer;
159 size_t size;
160 /* pass surplus references to this pointer */
161 unsigned long excess_ref;
162 /* minimum number of a pointers found before it is considered leak */
163 int min_count;
164 /* the total number of pointers found pointing to this object */
165 int count;
166 /* checksum for detecting modified objects */
167 u32 checksum;
168 /* memory ranges to be scanned inside an object (empty for all) */
169 struct hlist_head area_list;
170 unsigned long trace[MAX_TRACE];
171 unsigned int trace_len;
172 unsigned long jiffies; /* creation timestamp */
173 pid_t pid; /* pid of the current task */
174 char comm[TASK_COMM_LEN]; /* executable name */
177 /* flag representing the memory block allocation status */
178 #define OBJECT_ALLOCATED (1 << 0)
179 /* flag set after the first reporting of an unreference object */
180 #define OBJECT_REPORTED (1 << 1)
181 /* flag set to not scan the object */
182 #define OBJECT_NO_SCAN (1 << 2)
184 /* number of bytes to print per line; must be 16 or 32 */
185 #define HEX_ROW_SIZE 16
186 /* number of bytes to print at a time (1, 2, 4, 8) */
187 #define HEX_GROUP_SIZE 1
188 /* include ASCII after the hex output */
189 #define HEX_ASCII 1
190 /* max number of lines to be printed */
191 #define HEX_MAX_LINES 2
193 /* the list of all allocated objects */
194 static LIST_HEAD(object_list);
195 /* the list of gray-colored objects (see color_gray comment below) */
196 static LIST_HEAD(gray_list);
197 /* search tree for object boundaries */
198 static struct rb_root object_tree_root = RB_ROOT;
199 /* rw_lock protecting the access to object_list and object_tree_root */
200 static DEFINE_RWLOCK(kmemleak_lock);
202 /* allocation caches for kmemleak internal data */
203 static struct kmem_cache *object_cache;
204 static struct kmem_cache *scan_area_cache;
206 /* set if tracing memory operations is enabled */
207 static int kmemleak_enabled;
208 /* same as above but only for the kmemleak_free() callback */
209 static int kmemleak_free_enabled;
210 /* set in the late_initcall if there were no errors */
211 static int kmemleak_initialized;
212 /* enables or disables early logging of the memory operations */
213 static int kmemleak_early_log = 1;
214 /* set if a kmemleak warning was issued */
215 static int kmemleak_warning;
216 /* set if a fatal kmemleak error has occurred */
217 static int kmemleak_error;
219 /* minimum and maximum address that may be valid pointers */
220 static unsigned long min_addr = ULONG_MAX;
221 static unsigned long max_addr;
223 static struct task_struct *scan_thread;
224 /* used to avoid reporting of recently allocated objects */
225 static unsigned long jiffies_min_age;
226 static unsigned long jiffies_last_scan;
227 /* delay between automatic memory scannings */
228 static signed long jiffies_scan_wait;
229 /* enables or disables the task stacks scanning */
230 static int kmemleak_stack_scan = 1;
231 /* protects the memory scanning, parameters and debug/kmemleak file access */
232 static DEFINE_MUTEX(scan_mutex);
233 /* setting kmemleak=on, will set this var, skipping the disable */
234 static int kmemleak_skip_disable;
235 /* If there are leaks that can be reported */
236 static bool kmemleak_found_leaks;
239 * Early object allocation/freeing logging. Kmemleak is initialized after the
240 * kernel allocator. However, both the kernel allocator and kmemleak may
241 * allocate memory blocks which need to be tracked. Kmemleak defines an
242 * arbitrary buffer to hold the allocation/freeing information before it is
243 * fully initialized.
246 /* kmemleak operation type for early logging */
247 enum {
248 KMEMLEAK_ALLOC,
249 KMEMLEAK_ALLOC_PERCPU,
250 KMEMLEAK_FREE,
251 KMEMLEAK_FREE_PART,
252 KMEMLEAK_FREE_PERCPU,
253 KMEMLEAK_NOT_LEAK,
254 KMEMLEAK_IGNORE,
255 KMEMLEAK_SCAN_AREA,
256 KMEMLEAK_NO_SCAN,
257 KMEMLEAK_SET_EXCESS_REF
261 * Structure holding the information passed to kmemleak callbacks during the
262 * early logging.
264 struct early_log {
265 int op_type; /* kmemleak operation type */
266 int min_count; /* minimum reference count */
267 const void *ptr; /* allocated/freed memory block */
268 union {
269 size_t size; /* memory block size */
270 unsigned long excess_ref; /* surplus reference passing */
272 unsigned long trace[MAX_TRACE]; /* stack trace */
273 unsigned int trace_len; /* stack trace length */
276 /* early logging buffer and current position */
277 static struct early_log
278 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
279 static int crt_early_log __initdata;
281 static void kmemleak_disable(void);
284 * Print a warning and dump the stack trace.
286 #define kmemleak_warn(x...) do { \
287 pr_warn(x); \
288 dump_stack(); \
289 kmemleak_warning = 1; \
290 } while (0)
293 * Macro invoked when a serious kmemleak condition occurred and cannot be
294 * recovered from. Kmemleak will be disabled and further allocation/freeing
295 * tracing no longer available.
297 #define kmemleak_stop(x...) do { \
298 kmemleak_warn(x); \
299 kmemleak_disable(); \
300 } while (0)
303 * Printing of the objects hex dump to the seq file. The number of lines to be
304 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
305 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
306 * with the object->lock held.
308 static void hex_dump_object(struct seq_file *seq,
309 struct kmemleak_object *object)
311 const u8 *ptr = (const u8 *)object->pointer;
312 size_t len;
314 /* limit the number of lines to HEX_MAX_LINES */
315 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
317 seq_printf(seq, " hex dump (first %zu bytes):\n", len);
318 kasan_disable_current();
319 seq_hex_dump(seq, " ", DUMP_PREFIX_NONE, HEX_ROW_SIZE,
320 HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
321 kasan_enable_current();
325 * Object colors, encoded with count and min_count:
326 * - white - orphan object, not enough references to it (count < min_count)
327 * - gray - not orphan, not marked as false positive (min_count == 0) or
328 * sufficient references to it (count >= min_count)
329 * - black - ignore, it doesn't contain references (e.g. text section)
330 * (min_count == -1). No function defined for this color.
331 * Newly created objects don't have any color assigned (object->count == -1)
332 * before the next memory scan when they become white.
334 static bool color_white(const struct kmemleak_object *object)
336 return object->count != KMEMLEAK_BLACK &&
337 object->count < object->min_count;
340 static bool color_gray(const struct kmemleak_object *object)
342 return object->min_count != KMEMLEAK_BLACK &&
343 object->count >= object->min_count;
347 * Objects are considered unreferenced only if their color is white, they have
348 * not be deleted and have a minimum age to avoid false positives caused by
349 * pointers temporarily stored in CPU registers.
351 static bool unreferenced_object(struct kmemleak_object *object)
353 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
354 time_before_eq(object->jiffies + jiffies_min_age,
355 jiffies_last_scan);
359 * Printing of the unreferenced objects information to the seq file. The
360 * print_unreferenced function must be called with the object->lock held.
362 static void print_unreferenced(struct seq_file *seq,
363 struct kmemleak_object *object)
365 int i;
366 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
368 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
369 object->pointer, object->size);
370 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
371 object->comm, object->pid, object->jiffies,
372 msecs_age / 1000, msecs_age % 1000);
373 hex_dump_object(seq, object);
374 seq_printf(seq, " backtrace:\n");
376 for (i = 0; i < object->trace_len; i++) {
377 void *ptr = (void *)object->trace[i];
378 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
383 * Print the kmemleak_object information. This function is used mainly for
384 * debugging special cases when kmemleak operations. It must be called with
385 * the object->lock held.
387 static void dump_object_info(struct kmemleak_object *object)
389 struct stack_trace trace;
391 trace.nr_entries = object->trace_len;
392 trace.entries = object->trace;
394 pr_notice("Object 0x%08lx (size %zu):\n",
395 object->pointer, object->size);
396 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
397 object->comm, object->pid, object->jiffies);
398 pr_notice(" min_count = %d\n", object->min_count);
399 pr_notice(" count = %d\n", object->count);
400 pr_notice(" flags = 0x%x\n", object->flags);
401 pr_notice(" checksum = %u\n", object->checksum);
402 pr_notice(" backtrace:\n");
403 print_stack_trace(&trace, 4);
407 * Look-up a memory block metadata (kmemleak_object) in the object search
408 * tree based on a pointer value. If alias is 0, only values pointing to the
409 * beginning of the memory block are allowed. The kmemleak_lock must be held
410 * when calling this function.
412 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
414 struct rb_node *rb = object_tree_root.rb_node;
416 while (rb) {
417 struct kmemleak_object *object =
418 rb_entry(rb, struct kmemleak_object, rb_node);
419 if (ptr < object->pointer)
420 rb = object->rb_node.rb_left;
421 else if (object->pointer + object->size <= ptr)
422 rb = object->rb_node.rb_right;
423 else if (object->pointer == ptr || alias)
424 return object;
425 else {
426 kmemleak_warn("Found object by alias at 0x%08lx\n",
427 ptr);
428 dump_object_info(object);
429 break;
432 return NULL;
436 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
437 * that once an object's use_count reached 0, the RCU freeing was already
438 * registered and the object should no longer be used. This function must be
439 * called under the protection of rcu_read_lock().
441 static int get_object(struct kmemleak_object *object)
443 return atomic_inc_not_zero(&object->use_count);
447 * RCU callback to free a kmemleak_object.
449 static void free_object_rcu(struct rcu_head *rcu)
451 struct hlist_node *tmp;
452 struct kmemleak_scan_area *area;
453 struct kmemleak_object *object =
454 container_of(rcu, struct kmemleak_object, rcu);
457 * Once use_count is 0 (guaranteed by put_object), there is no other
458 * code accessing this object, hence no need for locking.
460 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
461 hlist_del(&area->node);
462 kmem_cache_free(scan_area_cache, area);
464 kmem_cache_free(object_cache, object);
468 * Decrement the object use_count. Once the count is 0, free the object using
469 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
470 * delete_object() path, the delayed RCU freeing ensures that there is no
471 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
472 * is also possible.
474 static void put_object(struct kmemleak_object *object)
476 if (!atomic_dec_and_test(&object->use_count))
477 return;
479 /* should only get here after delete_object was called */
480 WARN_ON(object->flags & OBJECT_ALLOCATED);
482 call_rcu(&object->rcu, free_object_rcu);
486 * Look up an object in the object search tree and increase its use_count.
488 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
490 unsigned long flags;
491 struct kmemleak_object *object;
493 rcu_read_lock();
494 read_lock_irqsave(&kmemleak_lock, flags);
495 object = lookup_object(ptr, alias);
496 read_unlock_irqrestore(&kmemleak_lock, flags);
498 /* check whether the object is still available */
499 if (object && !get_object(object))
500 object = NULL;
501 rcu_read_unlock();
503 return object;
507 * Look up an object in the object search tree and remove it from both
508 * object_tree_root and object_list. The returned object's use_count should be
509 * at least 1, as initially set by create_object().
511 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
513 unsigned long flags;
514 struct kmemleak_object *object;
516 write_lock_irqsave(&kmemleak_lock, flags);
517 object = lookup_object(ptr, alias);
518 if (object) {
519 rb_erase(&object->rb_node, &object_tree_root);
520 list_del_rcu(&object->object_list);
522 write_unlock_irqrestore(&kmemleak_lock, flags);
524 return object;
528 * Save stack trace to the given array of MAX_TRACE size.
530 static int __save_stack_trace(unsigned long *trace)
532 struct stack_trace stack_trace;
534 stack_trace.max_entries = MAX_TRACE;
535 stack_trace.nr_entries = 0;
536 stack_trace.entries = trace;
537 stack_trace.skip = 2;
538 save_stack_trace(&stack_trace);
540 return stack_trace.nr_entries;
544 * Create the metadata (struct kmemleak_object) corresponding to an allocated
545 * memory block and add it to the object_list and object_tree_root.
547 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
548 int min_count, gfp_t gfp)
550 unsigned long flags;
551 struct kmemleak_object *object, *parent;
552 struct rb_node **link, *rb_parent;
554 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
555 if (!object) {
556 pr_warn("Cannot allocate a kmemleak_object structure\n");
557 kmemleak_disable();
558 return NULL;
561 INIT_LIST_HEAD(&object->object_list);
562 INIT_LIST_HEAD(&object->gray_list);
563 INIT_HLIST_HEAD(&object->area_list);
564 spin_lock_init(&object->lock);
565 atomic_set(&object->use_count, 1);
566 object->flags = OBJECT_ALLOCATED;
567 object->pointer = ptr;
568 object->size = size;
569 object->excess_ref = 0;
570 object->min_count = min_count;
571 object->count = 0; /* white color initially */
572 object->jiffies = jiffies;
573 object->checksum = 0;
575 /* task information */
576 if (in_irq()) {
577 object->pid = 0;
578 strncpy(object->comm, "hardirq", sizeof(object->comm));
579 } else if (in_softirq()) {
580 object->pid = 0;
581 strncpy(object->comm, "softirq", sizeof(object->comm));
582 } else {
583 object->pid = current->pid;
585 * There is a small chance of a race with set_task_comm(),
586 * however using get_task_comm() here may cause locking
587 * dependency issues with current->alloc_lock. In the worst
588 * case, the command line is not correct.
590 strncpy(object->comm, current->comm, sizeof(object->comm));
593 /* kernel backtrace */
594 object->trace_len = __save_stack_trace(object->trace);
596 write_lock_irqsave(&kmemleak_lock, flags);
598 min_addr = min(min_addr, ptr);
599 max_addr = max(max_addr, ptr + size);
600 link = &object_tree_root.rb_node;
601 rb_parent = NULL;
602 while (*link) {
603 rb_parent = *link;
604 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
605 if (ptr + size <= parent->pointer)
606 link = &parent->rb_node.rb_left;
607 else if (parent->pointer + parent->size <= ptr)
608 link = &parent->rb_node.rb_right;
609 else {
610 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
611 ptr);
613 * No need for parent->lock here since "parent" cannot
614 * be freed while the kmemleak_lock is held.
616 dump_object_info(parent);
617 kmem_cache_free(object_cache, object);
618 object = NULL;
619 goto out;
622 rb_link_node(&object->rb_node, rb_parent, link);
623 rb_insert_color(&object->rb_node, &object_tree_root);
625 list_add_tail_rcu(&object->object_list, &object_list);
626 out:
627 write_unlock_irqrestore(&kmemleak_lock, flags);
628 return object;
632 * Mark the object as not allocated and schedule RCU freeing via put_object().
634 static void __delete_object(struct kmemleak_object *object)
636 unsigned long flags;
638 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
639 WARN_ON(atomic_read(&object->use_count) < 1);
642 * Locking here also ensures that the corresponding memory block
643 * cannot be freed when it is being scanned.
645 spin_lock_irqsave(&object->lock, flags);
646 object->flags &= ~OBJECT_ALLOCATED;
647 spin_unlock_irqrestore(&object->lock, flags);
648 put_object(object);
652 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
653 * delete it.
655 static void delete_object_full(unsigned long ptr)
657 struct kmemleak_object *object;
659 object = find_and_remove_object(ptr, 0);
660 if (!object) {
661 #ifdef DEBUG
662 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
663 ptr);
664 #endif
665 return;
667 __delete_object(object);
671 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
672 * delete it. If the memory block is partially freed, the function may create
673 * additional metadata for the remaining parts of the block.
675 static void delete_object_part(unsigned long ptr, size_t size)
677 struct kmemleak_object *object;
678 unsigned long start, end;
680 object = find_and_remove_object(ptr, 1);
681 if (!object) {
682 #ifdef DEBUG
683 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
684 ptr, size);
685 #endif
686 return;
690 * Create one or two objects that may result from the memory block
691 * split. Note that partial freeing is only done by free_bootmem() and
692 * this happens before kmemleak_init() is called. The path below is
693 * only executed during early log recording in kmemleak_init(), so
694 * GFP_KERNEL is enough.
696 start = object->pointer;
697 end = object->pointer + object->size;
698 if (ptr > start)
699 create_object(start, ptr - start, object->min_count,
700 GFP_KERNEL);
701 if (ptr + size < end)
702 create_object(ptr + size, end - ptr - size, object->min_count,
703 GFP_KERNEL);
705 __delete_object(object);
708 static void __paint_it(struct kmemleak_object *object, int color)
710 object->min_count = color;
711 if (color == KMEMLEAK_BLACK)
712 object->flags |= OBJECT_NO_SCAN;
715 static void paint_it(struct kmemleak_object *object, int color)
717 unsigned long flags;
719 spin_lock_irqsave(&object->lock, flags);
720 __paint_it(object, color);
721 spin_unlock_irqrestore(&object->lock, flags);
724 static void paint_ptr(unsigned long ptr, int color)
726 struct kmemleak_object *object;
728 object = find_and_get_object(ptr, 0);
729 if (!object) {
730 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
731 ptr,
732 (color == KMEMLEAK_GREY) ? "Grey" :
733 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
734 return;
736 paint_it(object, color);
737 put_object(object);
741 * Mark an object permanently as gray-colored so that it can no longer be
742 * reported as a leak. This is used in general to mark a false positive.
744 static void make_gray_object(unsigned long ptr)
746 paint_ptr(ptr, KMEMLEAK_GREY);
750 * Mark the object as black-colored so that it is ignored from scans and
751 * reporting.
753 static void make_black_object(unsigned long ptr)
755 paint_ptr(ptr, KMEMLEAK_BLACK);
759 * Add a scanning area to the object. If at least one such area is added,
760 * kmemleak will only scan these ranges rather than the whole memory block.
762 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
764 unsigned long flags;
765 struct kmemleak_object *object;
766 struct kmemleak_scan_area *area;
768 object = find_and_get_object(ptr, 1);
769 if (!object) {
770 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
771 ptr);
772 return;
775 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
776 if (!area) {
777 pr_warn("Cannot allocate a scan area\n");
778 goto out;
781 spin_lock_irqsave(&object->lock, flags);
782 if (size == SIZE_MAX) {
783 size = object->pointer + object->size - ptr;
784 } else if (ptr + size > object->pointer + object->size) {
785 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
786 dump_object_info(object);
787 kmem_cache_free(scan_area_cache, area);
788 goto out_unlock;
791 INIT_HLIST_NODE(&area->node);
792 area->start = ptr;
793 area->size = size;
795 hlist_add_head(&area->node, &object->area_list);
796 out_unlock:
797 spin_unlock_irqrestore(&object->lock, flags);
798 out:
799 put_object(object);
803 * Any surplus references (object already gray) to 'ptr' are passed to
804 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
805 * vm_struct may be used as an alternative reference to the vmalloc'ed object
806 * (see free_thread_stack()).
808 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
810 unsigned long flags;
811 struct kmemleak_object *object;
813 object = find_and_get_object(ptr, 0);
814 if (!object) {
815 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
816 ptr);
817 return;
820 spin_lock_irqsave(&object->lock, flags);
821 object->excess_ref = excess_ref;
822 spin_unlock_irqrestore(&object->lock, flags);
823 put_object(object);
827 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
828 * pointer. Such object will not be scanned by kmemleak but references to it
829 * are searched.
831 static void object_no_scan(unsigned long ptr)
833 unsigned long flags;
834 struct kmemleak_object *object;
836 object = find_and_get_object(ptr, 0);
837 if (!object) {
838 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
839 return;
842 spin_lock_irqsave(&object->lock, flags);
843 object->flags |= OBJECT_NO_SCAN;
844 spin_unlock_irqrestore(&object->lock, flags);
845 put_object(object);
849 * Log an early kmemleak_* call to the early_log buffer. These calls will be
850 * processed later once kmemleak is fully initialized.
852 static void __init log_early(int op_type, const void *ptr, size_t size,
853 int min_count)
855 unsigned long flags;
856 struct early_log *log;
858 if (kmemleak_error) {
859 /* kmemleak stopped recording, just count the requests */
860 crt_early_log++;
861 return;
864 if (crt_early_log >= ARRAY_SIZE(early_log)) {
865 crt_early_log++;
866 kmemleak_disable();
867 return;
871 * There is no need for locking since the kernel is still in UP mode
872 * at this stage. Disabling the IRQs is enough.
874 local_irq_save(flags);
875 log = &early_log[crt_early_log];
876 log->op_type = op_type;
877 log->ptr = ptr;
878 log->size = size;
879 log->min_count = min_count;
880 log->trace_len = __save_stack_trace(log->trace);
881 crt_early_log++;
882 local_irq_restore(flags);
886 * Log an early allocated block and populate the stack trace.
888 static void early_alloc(struct early_log *log)
890 struct kmemleak_object *object;
891 unsigned long flags;
892 int i;
894 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
895 return;
898 * RCU locking needed to ensure object is not freed via put_object().
900 rcu_read_lock();
901 object = create_object((unsigned long)log->ptr, log->size,
902 log->min_count, GFP_ATOMIC);
903 if (!object)
904 goto out;
905 spin_lock_irqsave(&object->lock, flags);
906 for (i = 0; i < log->trace_len; i++)
907 object->trace[i] = log->trace[i];
908 object->trace_len = log->trace_len;
909 spin_unlock_irqrestore(&object->lock, flags);
910 out:
911 rcu_read_unlock();
915 * Log an early allocated block and populate the stack trace.
917 static void early_alloc_percpu(struct early_log *log)
919 unsigned int cpu;
920 const void __percpu *ptr = log->ptr;
922 for_each_possible_cpu(cpu) {
923 log->ptr = per_cpu_ptr(ptr, cpu);
924 early_alloc(log);
929 * kmemleak_alloc - register a newly allocated object
930 * @ptr: pointer to beginning of the object
931 * @size: size of the object
932 * @min_count: minimum number of references to this object. If during memory
933 * scanning a number of references less than @min_count is found,
934 * the object is reported as a memory leak. If @min_count is 0,
935 * the object is never reported as a leak. If @min_count is -1,
936 * the object is ignored (not scanned and not reported as a leak)
937 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
939 * This function is called from the kernel allocators when a new object
940 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
942 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
943 gfp_t gfp)
945 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
947 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
948 create_object((unsigned long)ptr, size, min_count, gfp);
949 else if (kmemleak_early_log)
950 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
952 EXPORT_SYMBOL_GPL(kmemleak_alloc);
955 * kmemleak_alloc_percpu - register a newly allocated __percpu object
956 * @ptr: __percpu pointer to beginning of the object
957 * @size: size of the object
958 * @gfp: flags used for kmemleak internal memory allocations
960 * This function is called from the kernel percpu allocator when a new object
961 * (memory block) is allocated (alloc_percpu).
963 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
964 gfp_t gfp)
966 unsigned int cpu;
968 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
971 * Percpu allocations are only scanned and not reported as leaks
972 * (min_count is set to 0).
974 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
975 for_each_possible_cpu(cpu)
976 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
977 size, 0, gfp);
978 else if (kmemleak_early_log)
979 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
981 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
984 * kmemleak_vmalloc - register a newly vmalloc'ed object
985 * @area: pointer to vm_struct
986 * @size: size of the object
987 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
989 * This function is called from the vmalloc() kernel allocator when a new
990 * object (memory block) is allocated.
992 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
994 pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
997 * A min_count = 2 is needed because vm_struct contains a reference to
998 * the virtual address of the vmalloc'ed block.
1000 if (kmemleak_enabled) {
1001 create_object((unsigned long)area->addr, size, 2, gfp);
1002 object_set_excess_ref((unsigned long)area,
1003 (unsigned long)area->addr);
1004 } else if (kmemleak_early_log) {
1005 log_early(KMEMLEAK_ALLOC, area->addr, size, 2);
1006 /* reusing early_log.size for storing area->addr */
1007 log_early(KMEMLEAK_SET_EXCESS_REF,
1008 area, (unsigned long)area->addr, 0);
1011 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1014 * kmemleak_free - unregister a previously registered object
1015 * @ptr: pointer to beginning of the object
1017 * This function is called from the kernel allocators when an object (memory
1018 * block) is freed (kmem_cache_free, kfree, vfree etc.).
1020 void __ref kmemleak_free(const void *ptr)
1022 pr_debug("%s(0x%p)\n", __func__, ptr);
1024 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1025 delete_object_full((unsigned long)ptr);
1026 else if (kmemleak_early_log)
1027 log_early(KMEMLEAK_FREE, ptr, 0, 0);
1029 EXPORT_SYMBOL_GPL(kmemleak_free);
1032 * kmemleak_free_part - partially unregister a previously registered object
1033 * @ptr: pointer to the beginning or inside the object. This also
1034 * represents the start of the range to be freed
1035 * @size: size to be unregistered
1037 * This function is called when only a part of a memory block is freed
1038 * (usually from the bootmem allocator).
1040 void __ref kmemleak_free_part(const void *ptr, size_t size)
1042 pr_debug("%s(0x%p)\n", __func__, ptr);
1044 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1045 delete_object_part((unsigned long)ptr, size);
1046 else if (kmemleak_early_log)
1047 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
1049 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1052 * kmemleak_free_percpu - unregister a previously registered __percpu object
1053 * @ptr: __percpu pointer to beginning of the object
1055 * This function is called from the kernel percpu allocator when an object
1056 * (memory block) is freed (free_percpu).
1058 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1060 unsigned int cpu;
1062 pr_debug("%s(0x%p)\n", __func__, ptr);
1064 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1065 for_each_possible_cpu(cpu)
1066 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1067 cpu));
1068 else if (kmemleak_early_log)
1069 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1071 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1074 * kmemleak_update_trace - update object allocation stack trace
1075 * @ptr: pointer to beginning of the object
1077 * Override the object allocation stack trace for cases where the actual
1078 * allocation place is not always useful.
1080 void __ref kmemleak_update_trace(const void *ptr)
1082 struct kmemleak_object *object;
1083 unsigned long flags;
1085 pr_debug("%s(0x%p)\n", __func__, ptr);
1087 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1088 return;
1090 object = find_and_get_object((unsigned long)ptr, 1);
1091 if (!object) {
1092 #ifdef DEBUG
1093 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1094 ptr);
1095 #endif
1096 return;
1099 spin_lock_irqsave(&object->lock, flags);
1100 object->trace_len = __save_stack_trace(object->trace);
1101 spin_unlock_irqrestore(&object->lock, flags);
1103 put_object(object);
1105 EXPORT_SYMBOL(kmemleak_update_trace);
1108 * kmemleak_not_leak - mark an allocated object as false positive
1109 * @ptr: pointer to beginning of the object
1111 * Calling this function on an object will cause the memory block to no longer
1112 * be reported as leak and always be scanned.
1114 void __ref kmemleak_not_leak(const void *ptr)
1116 pr_debug("%s(0x%p)\n", __func__, ptr);
1118 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1119 make_gray_object((unsigned long)ptr);
1120 else if (kmemleak_early_log)
1121 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1123 EXPORT_SYMBOL(kmemleak_not_leak);
1126 * kmemleak_ignore - ignore an allocated object
1127 * @ptr: pointer to beginning of the object
1129 * Calling this function on an object will cause the memory block to be
1130 * ignored (not scanned and not reported as a leak). This is usually done when
1131 * it is known that the corresponding block is not a leak and does not contain
1132 * any references to other allocated memory blocks.
1134 void __ref kmemleak_ignore(const void *ptr)
1136 pr_debug("%s(0x%p)\n", __func__, ptr);
1138 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1139 make_black_object((unsigned long)ptr);
1140 else if (kmemleak_early_log)
1141 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1143 EXPORT_SYMBOL(kmemleak_ignore);
1146 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1147 * @ptr: pointer to beginning or inside the object. This also
1148 * represents the start of the scan area
1149 * @size: size of the scan area
1150 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1152 * This function is used when it is known that only certain parts of an object
1153 * contain references to other objects. Kmemleak will only scan these areas
1154 * reducing the number false negatives.
1156 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1158 pr_debug("%s(0x%p)\n", __func__, ptr);
1160 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1161 add_scan_area((unsigned long)ptr, size, gfp);
1162 else if (kmemleak_early_log)
1163 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1165 EXPORT_SYMBOL(kmemleak_scan_area);
1168 * kmemleak_no_scan - do not scan an allocated object
1169 * @ptr: pointer to beginning of the object
1171 * This function notifies kmemleak not to scan the given memory block. Useful
1172 * in situations where it is known that the given object does not contain any
1173 * references to other objects. Kmemleak will not scan such objects reducing
1174 * the number of false negatives.
1176 void __ref kmemleak_no_scan(const void *ptr)
1178 pr_debug("%s(0x%p)\n", __func__, ptr);
1180 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1181 object_no_scan((unsigned long)ptr);
1182 else if (kmemleak_early_log)
1183 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1185 EXPORT_SYMBOL(kmemleak_no_scan);
1188 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1189 * address argument
1191 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1192 gfp_t gfp)
1194 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1195 kmemleak_alloc(__va(phys), size, min_count, gfp);
1197 EXPORT_SYMBOL(kmemleak_alloc_phys);
1200 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1201 * physical address argument
1203 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1205 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1206 kmemleak_free_part(__va(phys), size);
1208 EXPORT_SYMBOL(kmemleak_free_part_phys);
1211 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1212 * address argument
1214 void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1216 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1217 kmemleak_not_leak(__va(phys));
1219 EXPORT_SYMBOL(kmemleak_not_leak_phys);
1222 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1223 * address argument
1225 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1227 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1228 kmemleak_ignore(__va(phys));
1230 EXPORT_SYMBOL(kmemleak_ignore_phys);
1233 * Update an object's checksum and return true if it was modified.
1235 static bool update_checksum(struct kmemleak_object *object)
1237 u32 old_csum = object->checksum;
1239 kasan_disable_current();
1240 object->checksum = crc32(0, (void *)object->pointer, object->size);
1241 kasan_enable_current();
1243 return object->checksum != old_csum;
1247 * Update an object's references. object->lock must be held by the caller.
1249 static void update_refs(struct kmemleak_object *object)
1251 if (!color_white(object)) {
1252 /* non-orphan, ignored or new */
1253 return;
1257 * Increase the object's reference count (number of pointers to the
1258 * memory block). If this count reaches the required minimum, the
1259 * object's color will become gray and it will be added to the
1260 * gray_list.
1262 object->count++;
1263 if (color_gray(object)) {
1264 /* put_object() called when removing from gray_list */
1265 WARN_ON(!get_object(object));
1266 list_add_tail(&object->gray_list, &gray_list);
1271 * Memory scanning is a long process and it needs to be interruptable. This
1272 * function checks whether such interrupt condition occurred.
1274 static int scan_should_stop(void)
1276 if (!kmemleak_enabled)
1277 return 1;
1280 * This function may be called from either process or kthread context,
1281 * hence the need to check for both stop conditions.
1283 if (current->mm)
1284 return signal_pending(current);
1285 else
1286 return kthread_should_stop();
1288 return 0;
1292 * Scan a memory block (exclusive range) for valid pointers and add those
1293 * found to the gray list.
1295 static void scan_block(void *_start, void *_end,
1296 struct kmemleak_object *scanned)
1298 unsigned long *ptr;
1299 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1300 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1301 unsigned long flags;
1303 read_lock_irqsave(&kmemleak_lock, flags);
1304 for (ptr = start; ptr < end; ptr++) {
1305 struct kmemleak_object *object;
1306 unsigned long pointer;
1307 unsigned long excess_ref;
1309 if (scan_should_stop())
1310 break;
1312 kasan_disable_current();
1313 pointer = *ptr;
1314 kasan_enable_current();
1316 if (pointer < min_addr || pointer >= max_addr)
1317 continue;
1320 * No need for get_object() here since we hold kmemleak_lock.
1321 * object->use_count cannot be dropped to 0 while the object
1322 * is still present in object_tree_root and object_list
1323 * (with updates protected by kmemleak_lock).
1325 object = lookup_object(pointer, 1);
1326 if (!object)
1327 continue;
1328 if (object == scanned)
1329 /* self referenced, ignore */
1330 continue;
1333 * Avoid the lockdep recursive warning on object->lock being
1334 * previously acquired in scan_object(). These locks are
1335 * enclosed by scan_mutex.
1337 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1338 /* only pass surplus references (object already gray) */
1339 if (color_gray(object)) {
1340 excess_ref = object->excess_ref;
1341 /* no need for update_refs() if object already gray */
1342 } else {
1343 excess_ref = 0;
1344 update_refs(object);
1346 spin_unlock(&object->lock);
1348 if (excess_ref) {
1349 object = lookup_object(excess_ref, 0);
1350 if (!object)
1351 continue;
1352 if (object == scanned)
1353 /* circular reference, ignore */
1354 continue;
1355 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1356 update_refs(object);
1357 spin_unlock(&object->lock);
1360 read_unlock_irqrestore(&kmemleak_lock, flags);
1364 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1366 static void scan_large_block(void *start, void *end)
1368 void *next;
1370 while (start < end) {
1371 next = min(start + MAX_SCAN_SIZE, end);
1372 scan_block(start, next, NULL);
1373 start = next;
1374 cond_resched();
1379 * Scan a memory block corresponding to a kmemleak_object. A condition is
1380 * that object->use_count >= 1.
1382 static void scan_object(struct kmemleak_object *object)
1384 struct kmemleak_scan_area *area;
1385 unsigned long flags;
1388 * Once the object->lock is acquired, the corresponding memory block
1389 * cannot be freed (the same lock is acquired in delete_object).
1391 spin_lock_irqsave(&object->lock, flags);
1392 if (object->flags & OBJECT_NO_SCAN)
1393 goto out;
1394 if (!(object->flags & OBJECT_ALLOCATED))
1395 /* already freed object */
1396 goto out;
1397 if (hlist_empty(&object->area_list)) {
1398 void *start = (void *)object->pointer;
1399 void *end = (void *)(object->pointer + object->size);
1400 void *next;
1402 do {
1403 next = min(start + MAX_SCAN_SIZE, end);
1404 scan_block(start, next, object);
1406 start = next;
1407 if (start >= end)
1408 break;
1410 spin_unlock_irqrestore(&object->lock, flags);
1411 cond_resched();
1412 spin_lock_irqsave(&object->lock, flags);
1413 } while (object->flags & OBJECT_ALLOCATED);
1414 } else
1415 hlist_for_each_entry(area, &object->area_list, node)
1416 scan_block((void *)area->start,
1417 (void *)(area->start + area->size),
1418 object);
1419 out:
1420 spin_unlock_irqrestore(&object->lock, flags);
1424 * Scan the objects already referenced (gray objects). More objects will be
1425 * referenced and, if there are no memory leaks, all the objects are scanned.
1427 static void scan_gray_list(void)
1429 struct kmemleak_object *object, *tmp;
1432 * The list traversal is safe for both tail additions and removals
1433 * from inside the loop. The kmemleak objects cannot be freed from
1434 * outside the loop because their use_count was incremented.
1436 object = list_entry(gray_list.next, typeof(*object), gray_list);
1437 while (&object->gray_list != &gray_list) {
1438 cond_resched();
1440 /* may add new objects to the list */
1441 if (!scan_should_stop())
1442 scan_object(object);
1444 tmp = list_entry(object->gray_list.next, typeof(*object),
1445 gray_list);
1447 /* remove the object from the list and release it */
1448 list_del(&object->gray_list);
1449 put_object(object);
1451 object = tmp;
1453 WARN_ON(!list_empty(&gray_list));
1457 * Scan data sections and all the referenced memory blocks allocated via the
1458 * kernel's standard allocators. This function must be called with the
1459 * scan_mutex held.
1461 static void kmemleak_scan(void)
1463 unsigned long flags;
1464 struct kmemleak_object *object;
1465 int i;
1466 int new_leaks = 0;
1468 jiffies_last_scan = jiffies;
1470 /* prepare the kmemleak_object's */
1471 rcu_read_lock();
1472 list_for_each_entry_rcu(object, &object_list, object_list) {
1473 spin_lock_irqsave(&object->lock, flags);
1474 #ifdef DEBUG
1476 * With a few exceptions there should be a maximum of
1477 * 1 reference to any object at this point.
1479 if (atomic_read(&object->use_count) > 1) {
1480 pr_debug("object->use_count = %d\n",
1481 atomic_read(&object->use_count));
1482 dump_object_info(object);
1484 #endif
1485 /* reset the reference count (whiten the object) */
1486 object->count = 0;
1487 if (color_gray(object) && get_object(object))
1488 list_add_tail(&object->gray_list, &gray_list);
1490 spin_unlock_irqrestore(&object->lock, flags);
1492 rcu_read_unlock();
1494 /* data/bss scanning */
1495 scan_large_block(_sdata, _edata);
1496 scan_large_block(__bss_start, __bss_stop);
1497 scan_large_block(__start_ro_after_init, __end_ro_after_init);
1499 #ifdef CONFIG_SMP
1500 /* per-cpu sections scanning */
1501 for_each_possible_cpu(i)
1502 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1503 __per_cpu_end + per_cpu_offset(i));
1504 #endif
1507 * Struct page scanning for each node.
1509 get_online_mems();
1510 for_each_online_node(i) {
1511 unsigned long start_pfn = node_start_pfn(i);
1512 unsigned long end_pfn = node_end_pfn(i);
1513 unsigned long pfn;
1515 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1516 struct page *page;
1518 if (!pfn_valid(pfn))
1519 continue;
1520 page = pfn_to_page(pfn);
1521 /* only scan if page is in use */
1522 if (page_count(page) == 0)
1523 continue;
1524 scan_block(page, page + 1, NULL);
1525 if (!(pfn & 63))
1526 cond_resched();
1529 put_online_mems();
1532 * Scanning the task stacks (may introduce false negatives).
1534 if (kmemleak_stack_scan) {
1535 struct task_struct *p, *g;
1537 read_lock(&tasklist_lock);
1538 do_each_thread(g, p) {
1539 void *stack = try_get_task_stack(p);
1540 if (stack) {
1541 scan_block(stack, stack + THREAD_SIZE, NULL);
1542 put_task_stack(p);
1544 } while_each_thread(g, p);
1545 read_unlock(&tasklist_lock);
1549 * Scan the objects already referenced from the sections scanned
1550 * above.
1552 scan_gray_list();
1555 * Check for new or unreferenced objects modified since the previous
1556 * scan and color them gray until the next scan.
1558 rcu_read_lock();
1559 list_for_each_entry_rcu(object, &object_list, object_list) {
1560 spin_lock_irqsave(&object->lock, flags);
1561 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1562 && update_checksum(object) && get_object(object)) {
1563 /* color it gray temporarily */
1564 object->count = object->min_count;
1565 list_add_tail(&object->gray_list, &gray_list);
1567 spin_unlock_irqrestore(&object->lock, flags);
1569 rcu_read_unlock();
1572 * Re-scan the gray list for modified unreferenced objects.
1574 scan_gray_list();
1577 * If scanning was stopped do not report any new unreferenced objects.
1579 if (scan_should_stop())
1580 return;
1583 * Scanning result reporting.
1585 rcu_read_lock();
1586 list_for_each_entry_rcu(object, &object_list, object_list) {
1587 spin_lock_irqsave(&object->lock, flags);
1588 if (unreferenced_object(object) &&
1589 !(object->flags & OBJECT_REPORTED)) {
1590 object->flags |= OBJECT_REPORTED;
1591 new_leaks++;
1593 spin_unlock_irqrestore(&object->lock, flags);
1595 rcu_read_unlock();
1597 if (new_leaks) {
1598 kmemleak_found_leaks = true;
1600 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1601 new_leaks);
1607 * Thread function performing automatic memory scanning. Unreferenced objects
1608 * at the end of a memory scan are reported but only the first time.
1610 static int kmemleak_scan_thread(void *arg)
1612 static int first_run = 1;
1614 pr_info("Automatic memory scanning thread started\n");
1615 set_user_nice(current, 10);
1618 * Wait before the first scan to allow the system to fully initialize.
1620 if (first_run) {
1621 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1622 first_run = 0;
1623 while (timeout && !kthread_should_stop())
1624 timeout = schedule_timeout_interruptible(timeout);
1627 while (!kthread_should_stop()) {
1628 signed long timeout = jiffies_scan_wait;
1630 mutex_lock(&scan_mutex);
1631 kmemleak_scan();
1632 mutex_unlock(&scan_mutex);
1634 /* wait before the next scan */
1635 while (timeout && !kthread_should_stop())
1636 timeout = schedule_timeout_interruptible(timeout);
1639 pr_info("Automatic memory scanning thread ended\n");
1641 return 0;
1645 * Start the automatic memory scanning thread. This function must be called
1646 * with the scan_mutex held.
1648 static void start_scan_thread(void)
1650 if (scan_thread)
1651 return;
1652 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1653 if (IS_ERR(scan_thread)) {
1654 pr_warn("Failed to create the scan thread\n");
1655 scan_thread = NULL;
1660 * Stop the automatic memory scanning thread. This function must be called
1661 * with the scan_mutex held.
1663 static void stop_scan_thread(void)
1665 if (scan_thread) {
1666 kthread_stop(scan_thread);
1667 scan_thread = NULL;
1672 * Iterate over the object_list and return the first valid object at or after
1673 * the required position with its use_count incremented. The function triggers
1674 * a memory scanning when the pos argument points to the first position.
1676 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1678 struct kmemleak_object *object;
1679 loff_t n = *pos;
1680 int err;
1682 err = mutex_lock_interruptible(&scan_mutex);
1683 if (err < 0)
1684 return ERR_PTR(err);
1686 rcu_read_lock();
1687 list_for_each_entry_rcu(object, &object_list, object_list) {
1688 if (n-- > 0)
1689 continue;
1690 if (get_object(object))
1691 goto out;
1693 object = NULL;
1694 out:
1695 return object;
1699 * Return the next object in the object_list. The function decrements the
1700 * use_count of the previous object and increases that of the next one.
1702 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1704 struct kmemleak_object *prev_obj = v;
1705 struct kmemleak_object *next_obj = NULL;
1706 struct kmemleak_object *obj = prev_obj;
1708 ++(*pos);
1710 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1711 if (get_object(obj)) {
1712 next_obj = obj;
1713 break;
1717 put_object(prev_obj);
1718 return next_obj;
1722 * Decrement the use_count of the last object required, if any.
1724 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1726 if (!IS_ERR(v)) {
1728 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1729 * waiting was interrupted, so only release it if !IS_ERR.
1731 rcu_read_unlock();
1732 mutex_unlock(&scan_mutex);
1733 if (v)
1734 put_object(v);
1739 * Print the information for an unreferenced object to the seq file.
1741 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1743 struct kmemleak_object *object = v;
1744 unsigned long flags;
1746 spin_lock_irqsave(&object->lock, flags);
1747 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1748 print_unreferenced(seq, object);
1749 spin_unlock_irqrestore(&object->lock, flags);
1750 return 0;
1753 static const struct seq_operations kmemleak_seq_ops = {
1754 .start = kmemleak_seq_start,
1755 .next = kmemleak_seq_next,
1756 .stop = kmemleak_seq_stop,
1757 .show = kmemleak_seq_show,
1760 static int kmemleak_open(struct inode *inode, struct file *file)
1762 return seq_open(file, &kmemleak_seq_ops);
1765 static int dump_str_object_info(const char *str)
1767 unsigned long flags;
1768 struct kmemleak_object *object;
1769 unsigned long addr;
1771 if (kstrtoul(str, 0, &addr))
1772 return -EINVAL;
1773 object = find_and_get_object(addr, 0);
1774 if (!object) {
1775 pr_info("Unknown object at 0x%08lx\n", addr);
1776 return -EINVAL;
1779 spin_lock_irqsave(&object->lock, flags);
1780 dump_object_info(object);
1781 spin_unlock_irqrestore(&object->lock, flags);
1783 put_object(object);
1784 return 0;
1788 * We use grey instead of black to ensure we can do future scans on the same
1789 * objects. If we did not do future scans these black objects could
1790 * potentially contain references to newly allocated objects in the future and
1791 * we'd end up with false positives.
1793 static void kmemleak_clear(void)
1795 struct kmemleak_object *object;
1796 unsigned long flags;
1798 rcu_read_lock();
1799 list_for_each_entry_rcu(object, &object_list, object_list) {
1800 spin_lock_irqsave(&object->lock, flags);
1801 if ((object->flags & OBJECT_REPORTED) &&
1802 unreferenced_object(object))
1803 __paint_it(object, KMEMLEAK_GREY);
1804 spin_unlock_irqrestore(&object->lock, flags);
1806 rcu_read_unlock();
1808 kmemleak_found_leaks = false;
1811 static void __kmemleak_do_cleanup(void);
1814 * File write operation to configure kmemleak at run-time. The following
1815 * commands can be written to the /sys/kernel/debug/kmemleak file:
1816 * off - disable kmemleak (irreversible)
1817 * stack=on - enable the task stacks scanning
1818 * stack=off - disable the tasks stacks scanning
1819 * scan=on - start the automatic memory scanning thread
1820 * scan=off - stop the automatic memory scanning thread
1821 * scan=... - set the automatic memory scanning period in seconds (0 to
1822 * disable it)
1823 * scan - trigger a memory scan
1824 * clear - mark all current reported unreferenced kmemleak objects as
1825 * grey to ignore printing them, or free all kmemleak objects
1826 * if kmemleak has been disabled.
1827 * dump=... - dump information about the object found at the given address
1829 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1830 size_t size, loff_t *ppos)
1832 char buf[64];
1833 int buf_size;
1834 int ret;
1836 buf_size = min(size, (sizeof(buf) - 1));
1837 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1838 return -EFAULT;
1839 buf[buf_size] = 0;
1841 ret = mutex_lock_interruptible(&scan_mutex);
1842 if (ret < 0)
1843 return ret;
1845 if (strncmp(buf, "clear", 5) == 0) {
1846 if (kmemleak_enabled)
1847 kmemleak_clear();
1848 else
1849 __kmemleak_do_cleanup();
1850 goto out;
1853 if (!kmemleak_enabled) {
1854 ret = -EBUSY;
1855 goto out;
1858 if (strncmp(buf, "off", 3) == 0)
1859 kmemleak_disable();
1860 else if (strncmp(buf, "stack=on", 8) == 0)
1861 kmemleak_stack_scan = 1;
1862 else if (strncmp(buf, "stack=off", 9) == 0)
1863 kmemleak_stack_scan = 0;
1864 else if (strncmp(buf, "scan=on", 7) == 0)
1865 start_scan_thread();
1866 else if (strncmp(buf, "scan=off", 8) == 0)
1867 stop_scan_thread();
1868 else if (strncmp(buf, "scan=", 5) == 0) {
1869 unsigned long secs;
1871 ret = kstrtoul(buf + 5, 0, &secs);
1872 if (ret < 0)
1873 goto out;
1874 stop_scan_thread();
1875 if (secs) {
1876 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1877 start_scan_thread();
1879 } else if (strncmp(buf, "scan", 4) == 0)
1880 kmemleak_scan();
1881 else if (strncmp(buf, "dump=", 5) == 0)
1882 ret = dump_str_object_info(buf + 5);
1883 else
1884 ret = -EINVAL;
1886 out:
1887 mutex_unlock(&scan_mutex);
1888 if (ret < 0)
1889 return ret;
1891 /* ignore the rest of the buffer, only one command at a time */
1892 *ppos += size;
1893 return size;
1896 static const struct file_operations kmemleak_fops = {
1897 .owner = THIS_MODULE,
1898 .open = kmemleak_open,
1899 .read = seq_read,
1900 .write = kmemleak_write,
1901 .llseek = seq_lseek,
1902 .release = seq_release,
1905 static void __kmemleak_do_cleanup(void)
1907 struct kmemleak_object *object;
1909 rcu_read_lock();
1910 list_for_each_entry_rcu(object, &object_list, object_list)
1911 delete_object_full(object->pointer);
1912 rcu_read_unlock();
1916 * Stop the memory scanning thread and free the kmemleak internal objects if
1917 * no previous scan thread (otherwise, kmemleak may still have some useful
1918 * information on memory leaks).
1920 static void kmemleak_do_cleanup(struct work_struct *work)
1922 stop_scan_thread();
1925 * Once the scan thread has stopped, it is safe to no longer track
1926 * object freeing. Ordering of the scan thread stopping and the memory
1927 * accesses below is guaranteed by the kthread_stop() function.
1929 kmemleak_free_enabled = 0;
1931 if (!kmemleak_found_leaks)
1932 __kmemleak_do_cleanup();
1933 else
1934 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1937 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1940 * Disable kmemleak. No memory allocation/freeing will be traced once this
1941 * function is called. Disabling kmemleak is an irreversible operation.
1943 static void kmemleak_disable(void)
1945 /* atomically check whether it was already invoked */
1946 if (cmpxchg(&kmemleak_error, 0, 1))
1947 return;
1949 /* stop any memory operation tracing */
1950 kmemleak_enabled = 0;
1952 /* check whether it is too early for a kernel thread */
1953 if (kmemleak_initialized)
1954 schedule_work(&cleanup_work);
1955 else
1956 kmemleak_free_enabled = 0;
1958 pr_info("Kernel memory leak detector disabled\n");
1962 * Allow boot-time kmemleak disabling (enabled by default).
1964 static int kmemleak_boot_config(char *str)
1966 if (!str)
1967 return -EINVAL;
1968 if (strcmp(str, "off") == 0)
1969 kmemleak_disable();
1970 else if (strcmp(str, "on") == 0)
1971 kmemleak_skip_disable = 1;
1972 else
1973 return -EINVAL;
1974 return 0;
1976 early_param("kmemleak", kmemleak_boot_config);
1978 static void __init print_log_trace(struct early_log *log)
1980 struct stack_trace trace;
1982 trace.nr_entries = log->trace_len;
1983 trace.entries = log->trace;
1985 pr_notice("Early log backtrace:\n");
1986 print_stack_trace(&trace, 2);
1990 * Kmemleak initialization.
1992 void __init kmemleak_init(void)
1994 int i;
1995 unsigned long flags;
1997 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1998 if (!kmemleak_skip_disable) {
1999 kmemleak_early_log = 0;
2000 kmemleak_disable();
2001 return;
2003 #endif
2005 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2006 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2008 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2009 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2011 if (crt_early_log > ARRAY_SIZE(early_log))
2012 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
2013 crt_early_log);
2015 /* the kernel is still in UP mode, so disabling the IRQs is enough */
2016 local_irq_save(flags);
2017 kmemleak_early_log = 0;
2018 if (kmemleak_error) {
2019 local_irq_restore(flags);
2020 return;
2021 } else {
2022 kmemleak_enabled = 1;
2023 kmemleak_free_enabled = 1;
2025 local_irq_restore(flags);
2028 * This is the point where tracking allocations is safe. Automatic
2029 * scanning is started during the late initcall. Add the early logged
2030 * callbacks to the kmemleak infrastructure.
2032 for (i = 0; i < crt_early_log; i++) {
2033 struct early_log *log = &early_log[i];
2035 switch (log->op_type) {
2036 case KMEMLEAK_ALLOC:
2037 early_alloc(log);
2038 break;
2039 case KMEMLEAK_ALLOC_PERCPU:
2040 early_alloc_percpu(log);
2041 break;
2042 case KMEMLEAK_FREE:
2043 kmemleak_free(log->ptr);
2044 break;
2045 case KMEMLEAK_FREE_PART:
2046 kmemleak_free_part(log->ptr, log->size);
2047 break;
2048 case KMEMLEAK_FREE_PERCPU:
2049 kmemleak_free_percpu(log->ptr);
2050 break;
2051 case KMEMLEAK_NOT_LEAK:
2052 kmemleak_not_leak(log->ptr);
2053 break;
2054 case KMEMLEAK_IGNORE:
2055 kmemleak_ignore(log->ptr);
2056 break;
2057 case KMEMLEAK_SCAN_AREA:
2058 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
2059 break;
2060 case KMEMLEAK_NO_SCAN:
2061 kmemleak_no_scan(log->ptr);
2062 break;
2063 case KMEMLEAK_SET_EXCESS_REF:
2064 object_set_excess_ref((unsigned long)log->ptr,
2065 log->excess_ref);
2066 break;
2067 default:
2068 kmemleak_warn("Unknown early log operation: %d\n",
2069 log->op_type);
2072 if (kmemleak_warning) {
2073 print_log_trace(log);
2074 kmemleak_warning = 0;
2080 * Late initialization function.
2082 static int __init kmemleak_late_init(void)
2084 struct dentry *dentry;
2086 kmemleak_initialized = 1;
2088 if (kmemleak_error) {
2090 * Some error occurred and kmemleak was disabled. There is a
2091 * small chance that kmemleak_disable() was called immediately
2092 * after setting kmemleak_initialized and we may end up with
2093 * two clean-up threads but serialized by scan_mutex.
2095 schedule_work(&cleanup_work);
2096 return -ENOMEM;
2099 dentry = debugfs_create_file("kmemleak", 0644, NULL, NULL,
2100 &kmemleak_fops);
2101 if (!dentry)
2102 pr_warn("Failed to create the debugfs kmemleak file\n");
2103 mutex_lock(&scan_mutex);
2104 start_scan_thread();
2105 mutex_unlock(&scan_mutex);
2107 pr_info("Kernel memory leak detector initialized\n");
2109 return 0;
2111 late_initcall(kmemleak_late_init);