2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
43 #include "transaction.h"
44 #include "btrfs_inode.h"
46 #include "print-tree.h"
48 #include "ordered-data.h"
51 #include "compression.h"
53 #include "free-space-cache.h"
55 struct btrfs_iget_args
{
57 struct btrfs_root
*root
;
60 static const struct inode_operations btrfs_dir_inode_operations
;
61 static const struct inode_operations btrfs_symlink_inode_operations
;
62 static const struct inode_operations btrfs_dir_ro_inode_operations
;
63 static const struct inode_operations btrfs_special_inode_operations
;
64 static const struct inode_operations btrfs_file_inode_operations
;
65 static const struct address_space_operations btrfs_aops
;
66 static const struct address_space_operations btrfs_symlink_aops
;
67 static const struct file_operations btrfs_dir_file_operations
;
68 static struct extent_io_ops btrfs_extent_io_ops
;
70 static struct kmem_cache
*btrfs_inode_cachep
;
71 struct kmem_cache
*btrfs_trans_handle_cachep
;
72 struct kmem_cache
*btrfs_transaction_cachep
;
73 struct kmem_cache
*btrfs_path_cachep
;
74 struct kmem_cache
*btrfs_free_space_cachep
;
77 static unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
78 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
79 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
80 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
81 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
82 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
83 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
84 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
87 static int btrfs_setsize(struct inode
*inode
, loff_t newsize
);
88 static int btrfs_truncate(struct inode
*inode
);
89 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
);
90 static noinline
int cow_file_range(struct inode
*inode
,
91 struct page
*locked_page
,
92 u64 start
, u64 end
, int *page_started
,
93 unsigned long *nr_written
, int unlock
);
95 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
96 struct inode
*inode
, struct inode
*dir
,
97 const struct qstr
*qstr
)
101 err
= btrfs_init_acl(trans
, inode
, dir
);
103 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
108 * this does all the hard work for inserting an inline extent into
109 * the btree. The caller should have done a btrfs_drop_extents so that
110 * no overlapping inline items exist in the btree
112 static noinline
int insert_inline_extent(struct btrfs_trans_handle
*trans
,
113 struct btrfs_root
*root
, struct inode
*inode
,
114 u64 start
, size_t size
, size_t compressed_size
,
115 struct page
**compressed_pages
)
117 struct btrfs_key key
;
118 struct btrfs_path
*path
;
119 struct extent_buffer
*leaf
;
120 struct page
*page
= NULL
;
123 struct btrfs_file_extent_item
*ei
;
126 size_t cur_size
= size
;
128 unsigned long offset
;
129 int compress_type
= BTRFS_COMPRESS_NONE
;
131 if (compressed_size
&& compressed_pages
) {
132 compress_type
= root
->fs_info
->compress_type
;
133 cur_size
= compressed_size
;
136 path
= btrfs_alloc_path();
140 path
->leave_spinning
= 1;
141 btrfs_set_trans_block_group(trans
, inode
);
143 key
.objectid
= inode
->i_ino
;
145 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
146 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
148 inode_add_bytes(inode
, size
);
149 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
156 leaf
= path
->nodes
[0];
157 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
158 struct btrfs_file_extent_item
);
159 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
160 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
161 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
162 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
163 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
164 ptr
= btrfs_file_extent_inline_start(ei
);
166 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
169 while (compressed_size
> 0) {
170 cpage
= compressed_pages
[i
];
171 cur_size
= min_t(unsigned long, compressed_size
,
174 kaddr
= kmap_atomic(cpage
, KM_USER0
);
175 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
176 kunmap_atomic(kaddr
, KM_USER0
);
180 compressed_size
-= cur_size
;
182 btrfs_set_file_extent_compression(leaf
, ei
,
185 page
= find_get_page(inode
->i_mapping
,
186 start
>> PAGE_CACHE_SHIFT
);
187 btrfs_set_file_extent_compression(leaf
, ei
, 0);
188 kaddr
= kmap_atomic(page
, KM_USER0
);
189 offset
= start
& (PAGE_CACHE_SIZE
- 1);
190 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
191 kunmap_atomic(kaddr
, KM_USER0
);
192 page_cache_release(page
);
194 btrfs_mark_buffer_dirty(leaf
);
195 btrfs_free_path(path
);
198 * we're an inline extent, so nobody can
199 * extend the file past i_size without locking
200 * a page we already have locked.
202 * We must do any isize and inode updates
203 * before we unlock the pages. Otherwise we
204 * could end up racing with unlink.
206 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
207 btrfs_update_inode(trans
, root
, inode
);
211 btrfs_free_path(path
);
217 * conditionally insert an inline extent into the file. This
218 * does the checks required to make sure the data is small enough
219 * to fit as an inline extent.
221 static noinline
int cow_file_range_inline(struct btrfs_trans_handle
*trans
,
222 struct btrfs_root
*root
,
223 struct inode
*inode
, u64 start
, u64 end
,
224 size_t compressed_size
,
225 struct page
**compressed_pages
)
227 u64 isize
= i_size_read(inode
);
228 u64 actual_end
= min(end
+ 1, isize
);
229 u64 inline_len
= actual_end
- start
;
230 u64 aligned_end
= (end
+ root
->sectorsize
- 1) &
231 ~((u64
)root
->sectorsize
- 1);
233 u64 data_len
= inline_len
;
237 data_len
= compressed_size
;
240 actual_end
>= PAGE_CACHE_SIZE
||
241 data_len
>= BTRFS_MAX_INLINE_DATA_SIZE(root
) ||
243 (actual_end
& (root
->sectorsize
- 1)) == 0) ||
245 data_len
> root
->fs_info
->max_inline
) {
249 ret
= btrfs_drop_extents(trans
, inode
, start
, aligned_end
,
253 if (isize
> actual_end
)
254 inline_len
= min_t(u64
, isize
, actual_end
);
255 ret
= insert_inline_extent(trans
, root
, inode
, start
,
256 inline_len
, compressed_size
,
259 btrfs_delalloc_release_metadata(inode
, end
+ 1 - start
);
260 btrfs_drop_extent_cache(inode
, start
, aligned_end
- 1, 0);
264 struct async_extent
{
269 unsigned long nr_pages
;
271 struct list_head list
;
276 struct btrfs_root
*root
;
277 struct page
*locked_page
;
280 struct list_head extents
;
281 struct btrfs_work work
;
284 static noinline
int add_async_extent(struct async_cow
*cow
,
285 u64 start
, u64 ram_size
,
288 unsigned long nr_pages
,
291 struct async_extent
*async_extent
;
293 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
294 BUG_ON(!async_extent
);
295 async_extent
->start
= start
;
296 async_extent
->ram_size
= ram_size
;
297 async_extent
->compressed_size
= compressed_size
;
298 async_extent
->pages
= pages
;
299 async_extent
->nr_pages
= nr_pages
;
300 async_extent
->compress_type
= compress_type
;
301 list_add_tail(&async_extent
->list
, &cow
->extents
);
306 * we create compressed extents in two phases. The first
307 * phase compresses a range of pages that have already been
308 * locked (both pages and state bits are locked).
310 * This is done inside an ordered work queue, and the compression
311 * is spread across many cpus. The actual IO submission is step
312 * two, and the ordered work queue takes care of making sure that
313 * happens in the same order things were put onto the queue by
314 * writepages and friends.
316 * If this code finds it can't get good compression, it puts an
317 * entry onto the work queue to write the uncompressed bytes. This
318 * makes sure that both compressed inodes and uncompressed inodes
319 * are written in the same order that pdflush sent them down.
321 static noinline
int compress_file_range(struct inode
*inode
,
322 struct page
*locked_page
,
324 struct async_cow
*async_cow
,
327 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
328 struct btrfs_trans_handle
*trans
;
330 u64 blocksize
= root
->sectorsize
;
332 u64 isize
= i_size_read(inode
);
334 struct page
**pages
= NULL
;
335 unsigned long nr_pages
;
336 unsigned long nr_pages_ret
= 0;
337 unsigned long total_compressed
= 0;
338 unsigned long total_in
= 0;
339 unsigned long max_compressed
= 128 * 1024;
340 unsigned long max_uncompressed
= 128 * 1024;
343 int compress_type
= root
->fs_info
->compress_type
;
345 actual_end
= min_t(u64
, isize
, end
+ 1);
348 nr_pages
= (end
>> PAGE_CACHE_SHIFT
) - (start
>> PAGE_CACHE_SHIFT
) + 1;
349 nr_pages
= min(nr_pages
, (128 * 1024UL) / PAGE_CACHE_SIZE
);
352 * we don't want to send crud past the end of i_size through
353 * compression, that's just a waste of CPU time. So, if the
354 * end of the file is before the start of our current
355 * requested range of bytes, we bail out to the uncompressed
356 * cleanup code that can deal with all of this.
358 * It isn't really the fastest way to fix things, but this is a
359 * very uncommon corner.
361 if (actual_end
<= start
)
362 goto cleanup_and_bail_uncompressed
;
364 total_compressed
= actual_end
- start
;
366 /* we want to make sure that amount of ram required to uncompress
367 * an extent is reasonable, so we limit the total size in ram
368 * of a compressed extent to 128k. This is a crucial number
369 * because it also controls how easily we can spread reads across
370 * cpus for decompression.
372 * We also want to make sure the amount of IO required to do
373 * a random read is reasonably small, so we limit the size of
374 * a compressed extent to 128k.
376 total_compressed
= min(total_compressed
, max_uncompressed
);
377 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
378 num_bytes
= max(blocksize
, num_bytes
);
383 * we do compression for mount -o compress and when the
384 * inode has not been flagged as nocompress. This flag can
385 * change at any time if we discover bad compression ratios.
387 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
) &&
388 (btrfs_test_opt(root
, COMPRESS
) ||
389 (BTRFS_I(inode
)->force_compress
) ||
390 (BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
))) {
392 pages
= kzalloc(sizeof(struct page
*) * nr_pages
, GFP_NOFS
);
395 if (BTRFS_I(inode
)->force_compress
)
396 compress_type
= BTRFS_I(inode
)->force_compress
;
398 ret
= btrfs_compress_pages(compress_type
,
399 inode
->i_mapping
, start
,
400 total_compressed
, pages
,
401 nr_pages
, &nr_pages_ret
,
407 unsigned long offset
= total_compressed
&
408 (PAGE_CACHE_SIZE
- 1);
409 struct page
*page
= pages
[nr_pages_ret
- 1];
412 /* zero the tail end of the last page, we might be
413 * sending it down to disk
416 kaddr
= kmap_atomic(page
, KM_USER0
);
417 memset(kaddr
+ offset
, 0,
418 PAGE_CACHE_SIZE
- offset
);
419 kunmap_atomic(kaddr
, KM_USER0
);
425 trans
= btrfs_join_transaction(root
, 1);
426 BUG_ON(IS_ERR(trans
));
427 btrfs_set_trans_block_group(trans
, inode
);
428 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
430 /* lets try to make an inline extent */
431 if (ret
|| total_in
< (actual_end
- start
)) {
432 /* we didn't compress the entire range, try
433 * to make an uncompressed inline extent.
435 ret
= cow_file_range_inline(trans
, root
, inode
,
436 start
, end
, 0, NULL
);
438 /* try making a compressed inline extent */
439 ret
= cow_file_range_inline(trans
, root
, inode
,
441 total_compressed
, pages
);
445 * inline extent creation worked, we don't need
446 * to create any more async work items. Unlock
447 * and free up our temp pages.
449 extent_clear_unlock_delalloc(inode
,
450 &BTRFS_I(inode
)->io_tree
,
452 EXTENT_CLEAR_UNLOCK_PAGE
| EXTENT_CLEAR_DIRTY
|
453 EXTENT_CLEAR_DELALLOC
|
454 EXTENT_SET_WRITEBACK
| EXTENT_END_WRITEBACK
);
456 btrfs_end_transaction(trans
, root
);
459 btrfs_end_transaction(trans
, root
);
464 * we aren't doing an inline extent round the compressed size
465 * up to a block size boundary so the allocator does sane
468 total_compressed
= (total_compressed
+ blocksize
- 1) &
472 * one last check to make sure the compression is really a
473 * win, compare the page count read with the blocks on disk
475 total_in
= (total_in
+ PAGE_CACHE_SIZE
- 1) &
476 ~(PAGE_CACHE_SIZE
- 1);
477 if (total_compressed
>= total_in
) {
480 num_bytes
= total_in
;
483 if (!will_compress
&& pages
) {
485 * the compression code ran but failed to make things smaller,
486 * free any pages it allocated and our page pointer array
488 for (i
= 0; i
< nr_pages_ret
; i
++) {
489 WARN_ON(pages
[i
]->mapping
);
490 page_cache_release(pages
[i
]);
494 total_compressed
= 0;
497 /* flag the file so we don't compress in the future */
498 if (!btrfs_test_opt(root
, FORCE_COMPRESS
) &&
499 !(BTRFS_I(inode
)->force_compress
)) {
500 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
506 /* the async work queues will take care of doing actual
507 * allocation on disk for these compressed pages,
508 * and will submit them to the elevator.
510 add_async_extent(async_cow
, start
, num_bytes
,
511 total_compressed
, pages
, nr_pages_ret
,
514 if (start
+ num_bytes
< end
) {
521 cleanup_and_bail_uncompressed
:
523 * No compression, but we still need to write the pages in
524 * the file we've been given so far. redirty the locked
525 * page if it corresponds to our extent and set things up
526 * for the async work queue to run cow_file_range to do
527 * the normal delalloc dance
529 if (page_offset(locked_page
) >= start
&&
530 page_offset(locked_page
) <= end
) {
531 __set_page_dirty_nobuffers(locked_page
);
532 /* unlocked later on in the async handlers */
534 add_async_extent(async_cow
, start
, end
- start
+ 1,
535 0, NULL
, 0, BTRFS_COMPRESS_NONE
);
543 for (i
= 0; i
< nr_pages_ret
; i
++) {
544 WARN_ON(pages
[i
]->mapping
);
545 page_cache_release(pages
[i
]);
553 * phase two of compressed writeback. This is the ordered portion
554 * of the code, which only gets called in the order the work was
555 * queued. We walk all the async extents created by compress_file_range
556 * and send them down to the disk.
558 static noinline
int submit_compressed_extents(struct inode
*inode
,
559 struct async_cow
*async_cow
)
561 struct async_extent
*async_extent
;
563 struct btrfs_trans_handle
*trans
;
564 struct btrfs_key ins
;
565 struct extent_map
*em
;
566 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
567 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
568 struct extent_io_tree
*io_tree
;
571 if (list_empty(&async_cow
->extents
))
575 while (!list_empty(&async_cow
->extents
)) {
576 async_extent
= list_entry(async_cow
->extents
.next
,
577 struct async_extent
, list
);
578 list_del(&async_extent
->list
);
580 io_tree
= &BTRFS_I(inode
)->io_tree
;
583 /* did the compression code fall back to uncompressed IO? */
584 if (!async_extent
->pages
) {
585 int page_started
= 0;
586 unsigned long nr_written
= 0;
588 lock_extent(io_tree
, async_extent
->start
,
589 async_extent
->start
+
590 async_extent
->ram_size
- 1, GFP_NOFS
);
592 /* allocate blocks */
593 ret
= cow_file_range(inode
, async_cow
->locked_page
,
595 async_extent
->start
+
596 async_extent
->ram_size
- 1,
597 &page_started
, &nr_written
, 0);
600 * if page_started, cow_file_range inserted an
601 * inline extent and took care of all the unlocking
602 * and IO for us. Otherwise, we need to submit
603 * all those pages down to the drive.
605 if (!page_started
&& !ret
)
606 extent_write_locked_range(io_tree
,
607 inode
, async_extent
->start
,
608 async_extent
->start
+
609 async_extent
->ram_size
- 1,
617 lock_extent(io_tree
, async_extent
->start
,
618 async_extent
->start
+ async_extent
->ram_size
- 1,
621 trans
= btrfs_join_transaction(root
, 1);
622 BUG_ON(IS_ERR(trans
));
623 ret
= btrfs_reserve_extent(trans
, root
,
624 async_extent
->compressed_size
,
625 async_extent
->compressed_size
,
628 btrfs_end_transaction(trans
, root
);
632 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
633 WARN_ON(async_extent
->pages
[i
]->mapping
);
634 page_cache_release(async_extent
->pages
[i
]);
636 kfree(async_extent
->pages
);
637 async_extent
->nr_pages
= 0;
638 async_extent
->pages
= NULL
;
639 unlock_extent(io_tree
, async_extent
->start
,
640 async_extent
->start
+
641 async_extent
->ram_size
- 1, GFP_NOFS
);
646 * here we're doing allocation and writeback of the
649 btrfs_drop_extent_cache(inode
, async_extent
->start
,
650 async_extent
->start
+
651 async_extent
->ram_size
- 1, 0);
653 em
= alloc_extent_map(GFP_NOFS
);
655 em
->start
= async_extent
->start
;
656 em
->len
= async_extent
->ram_size
;
657 em
->orig_start
= em
->start
;
659 em
->block_start
= ins
.objectid
;
660 em
->block_len
= ins
.offset
;
661 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
662 em
->compress_type
= async_extent
->compress_type
;
663 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
664 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
667 write_lock(&em_tree
->lock
);
668 ret
= add_extent_mapping(em_tree
, em
);
669 write_unlock(&em_tree
->lock
);
670 if (ret
!= -EEXIST
) {
674 btrfs_drop_extent_cache(inode
, async_extent
->start
,
675 async_extent
->start
+
676 async_extent
->ram_size
- 1, 0);
679 ret
= btrfs_add_ordered_extent_compress(inode
,
682 async_extent
->ram_size
,
684 BTRFS_ORDERED_COMPRESSED
,
685 async_extent
->compress_type
);
689 * clear dirty, set writeback and unlock the pages.
691 extent_clear_unlock_delalloc(inode
,
692 &BTRFS_I(inode
)->io_tree
,
694 async_extent
->start
+
695 async_extent
->ram_size
- 1,
696 NULL
, EXTENT_CLEAR_UNLOCK_PAGE
|
697 EXTENT_CLEAR_UNLOCK
|
698 EXTENT_CLEAR_DELALLOC
|
699 EXTENT_CLEAR_DIRTY
| EXTENT_SET_WRITEBACK
);
701 ret
= btrfs_submit_compressed_write(inode
,
703 async_extent
->ram_size
,
705 ins
.offset
, async_extent
->pages
,
706 async_extent
->nr_pages
);
709 alloc_hint
= ins
.objectid
+ ins
.offset
;
717 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
720 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
721 struct extent_map
*em
;
724 read_lock(&em_tree
->lock
);
725 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
728 * if block start isn't an actual block number then find the
729 * first block in this inode and use that as a hint. If that
730 * block is also bogus then just don't worry about it.
732 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
734 em
= search_extent_mapping(em_tree
, 0, 0);
735 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
736 alloc_hint
= em
->block_start
;
740 alloc_hint
= em
->block_start
;
744 read_unlock(&em_tree
->lock
);
750 * when extent_io.c finds a delayed allocation range in the file,
751 * the call backs end up in this code. The basic idea is to
752 * allocate extents on disk for the range, and create ordered data structs
753 * in ram to track those extents.
755 * locked_page is the page that writepage had locked already. We use
756 * it to make sure we don't do extra locks or unlocks.
758 * *page_started is set to one if we unlock locked_page and do everything
759 * required to start IO on it. It may be clean and already done with
762 static noinline
int cow_file_range(struct inode
*inode
,
763 struct page
*locked_page
,
764 u64 start
, u64 end
, int *page_started
,
765 unsigned long *nr_written
,
768 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
769 struct btrfs_trans_handle
*trans
;
772 unsigned long ram_size
;
775 u64 blocksize
= root
->sectorsize
;
776 struct btrfs_key ins
;
777 struct extent_map
*em
;
778 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
781 BUG_ON(root
== root
->fs_info
->tree_root
);
782 trans
= btrfs_join_transaction(root
, 1);
783 BUG_ON(IS_ERR(trans
));
784 btrfs_set_trans_block_group(trans
, inode
);
785 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
787 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
788 num_bytes
= max(blocksize
, num_bytes
);
789 disk_num_bytes
= num_bytes
;
793 /* lets try to make an inline extent */
794 ret
= cow_file_range_inline(trans
, root
, inode
,
795 start
, end
, 0, NULL
);
797 extent_clear_unlock_delalloc(inode
,
798 &BTRFS_I(inode
)->io_tree
,
800 EXTENT_CLEAR_UNLOCK_PAGE
|
801 EXTENT_CLEAR_UNLOCK
|
802 EXTENT_CLEAR_DELALLOC
|
804 EXTENT_SET_WRITEBACK
|
805 EXTENT_END_WRITEBACK
);
807 *nr_written
= *nr_written
+
808 (end
- start
+ PAGE_CACHE_SIZE
) / PAGE_CACHE_SIZE
;
815 BUG_ON(disk_num_bytes
>
816 btrfs_super_total_bytes(&root
->fs_info
->super_copy
));
818 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
819 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
821 while (disk_num_bytes
> 0) {
824 cur_alloc_size
= disk_num_bytes
;
825 ret
= btrfs_reserve_extent(trans
, root
, cur_alloc_size
,
826 root
->sectorsize
, 0, alloc_hint
,
830 em
= alloc_extent_map(GFP_NOFS
);
833 em
->orig_start
= em
->start
;
834 ram_size
= ins
.offset
;
835 em
->len
= ins
.offset
;
837 em
->block_start
= ins
.objectid
;
838 em
->block_len
= ins
.offset
;
839 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
840 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
843 write_lock(&em_tree
->lock
);
844 ret
= add_extent_mapping(em_tree
, em
);
845 write_unlock(&em_tree
->lock
);
846 if (ret
!= -EEXIST
) {
850 btrfs_drop_extent_cache(inode
, start
,
851 start
+ ram_size
- 1, 0);
854 cur_alloc_size
= ins
.offset
;
855 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
856 ram_size
, cur_alloc_size
, 0);
859 if (root
->root_key
.objectid
==
860 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
861 ret
= btrfs_reloc_clone_csums(inode
, start
,
866 if (disk_num_bytes
< cur_alloc_size
)
869 /* we're not doing compressed IO, don't unlock the first
870 * page (which the caller expects to stay locked), don't
871 * clear any dirty bits and don't set any writeback bits
873 * Do set the Private2 bit so we know this page was properly
874 * setup for writepage
876 op
= unlock
? EXTENT_CLEAR_UNLOCK_PAGE
: 0;
877 op
|= EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
880 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
881 start
, start
+ ram_size
- 1,
883 disk_num_bytes
-= cur_alloc_size
;
884 num_bytes
-= cur_alloc_size
;
885 alloc_hint
= ins
.objectid
+ ins
.offset
;
886 start
+= cur_alloc_size
;
890 btrfs_end_transaction(trans
, root
);
896 * work queue call back to started compression on a file and pages
898 static noinline
void async_cow_start(struct btrfs_work
*work
)
900 struct async_cow
*async_cow
;
902 async_cow
= container_of(work
, struct async_cow
, work
);
904 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
905 async_cow
->start
, async_cow
->end
, async_cow
,
908 async_cow
->inode
= NULL
;
912 * work queue call back to submit previously compressed pages
914 static noinline
void async_cow_submit(struct btrfs_work
*work
)
916 struct async_cow
*async_cow
;
917 struct btrfs_root
*root
;
918 unsigned long nr_pages
;
920 async_cow
= container_of(work
, struct async_cow
, work
);
922 root
= async_cow
->root
;
923 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_CACHE_SIZE
) >>
926 atomic_sub(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
928 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
930 waitqueue_active(&root
->fs_info
->async_submit_wait
))
931 wake_up(&root
->fs_info
->async_submit_wait
);
933 if (async_cow
->inode
)
934 submit_compressed_extents(async_cow
->inode
, async_cow
);
937 static noinline
void async_cow_free(struct btrfs_work
*work
)
939 struct async_cow
*async_cow
;
940 async_cow
= container_of(work
, struct async_cow
, work
);
944 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
945 u64 start
, u64 end
, int *page_started
,
946 unsigned long *nr_written
)
948 struct async_cow
*async_cow
;
949 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
950 unsigned long nr_pages
;
952 int limit
= 10 * 1024 * 1042;
954 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
955 1, 0, NULL
, GFP_NOFS
);
956 while (start
< end
) {
957 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
958 async_cow
->inode
= inode
;
959 async_cow
->root
= root
;
960 async_cow
->locked_page
= locked_page
;
961 async_cow
->start
= start
;
963 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
966 cur_end
= min(end
, start
+ 512 * 1024 - 1);
968 async_cow
->end
= cur_end
;
969 INIT_LIST_HEAD(&async_cow
->extents
);
971 async_cow
->work
.func
= async_cow_start
;
972 async_cow
->work
.ordered_func
= async_cow_submit
;
973 async_cow
->work
.ordered_free
= async_cow_free
;
974 async_cow
->work
.flags
= 0;
976 nr_pages
= (cur_end
- start
+ PAGE_CACHE_SIZE
) >>
978 atomic_add(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
980 btrfs_queue_worker(&root
->fs_info
->delalloc_workers
,
983 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) > limit
) {
984 wait_event(root
->fs_info
->async_submit_wait
,
985 (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
989 while (atomic_read(&root
->fs_info
->async_submit_draining
) &&
990 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
991 wait_event(root
->fs_info
->async_submit_wait
,
992 (atomic_read(&root
->fs_info
->async_delalloc_pages
) ==
996 *nr_written
+= nr_pages
;
1003 static noinline
int csum_exist_in_range(struct btrfs_root
*root
,
1004 u64 bytenr
, u64 num_bytes
)
1007 struct btrfs_ordered_sum
*sums
;
1010 ret
= btrfs_lookup_csums_range(root
->fs_info
->csum_root
, bytenr
,
1011 bytenr
+ num_bytes
- 1, &list
);
1012 if (ret
== 0 && list_empty(&list
))
1015 while (!list_empty(&list
)) {
1016 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1017 list_del(&sums
->list
);
1024 * when nowcow writeback call back. This checks for snapshots or COW copies
1025 * of the extents that exist in the file, and COWs the file as required.
1027 * If no cow copies or snapshots exist, we write directly to the existing
1030 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1031 struct page
*locked_page
,
1032 u64 start
, u64 end
, int *page_started
, int force
,
1033 unsigned long *nr_written
)
1035 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1036 struct btrfs_trans_handle
*trans
;
1037 struct extent_buffer
*leaf
;
1038 struct btrfs_path
*path
;
1039 struct btrfs_file_extent_item
*fi
;
1040 struct btrfs_key found_key
;
1052 bool nolock
= false;
1054 path
= btrfs_alloc_path();
1056 if (root
== root
->fs_info
->tree_root
) {
1058 trans
= btrfs_join_transaction_nolock(root
, 1);
1060 trans
= btrfs_join_transaction(root
, 1);
1062 BUG_ON(IS_ERR(trans
));
1064 cow_start
= (u64
)-1;
1067 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
1070 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1071 leaf
= path
->nodes
[0];
1072 btrfs_item_key_to_cpu(leaf
, &found_key
,
1073 path
->slots
[0] - 1);
1074 if (found_key
.objectid
== inode
->i_ino
&&
1075 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1080 leaf
= path
->nodes
[0];
1081 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1082 ret
= btrfs_next_leaf(root
, path
);
1087 leaf
= path
->nodes
[0];
1093 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1095 if (found_key
.objectid
> inode
->i_ino
||
1096 found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1097 found_key
.offset
> end
)
1100 if (found_key
.offset
> cur_offset
) {
1101 extent_end
= found_key
.offset
;
1106 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1107 struct btrfs_file_extent_item
);
1108 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1110 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1111 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1112 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1113 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1114 extent_end
= found_key
.offset
+
1115 btrfs_file_extent_num_bytes(leaf
, fi
);
1116 if (extent_end
<= start
) {
1120 if (disk_bytenr
== 0)
1122 if (btrfs_file_extent_compression(leaf
, fi
) ||
1123 btrfs_file_extent_encryption(leaf
, fi
) ||
1124 btrfs_file_extent_other_encoding(leaf
, fi
))
1126 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1128 if (btrfs_extent_readonly(root
, disk_bytenr
))
1130 if (btrfs_cross_ref_exist(trans
, root
, inode
->i_ino
,
1132 extent_offset
, disk_bytenr
))
1134 disk_bytenr
+= extent_offset
;
1135 disk_bytenr
+= cur_offset
- found_key
.offset
;
1136 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1138 * force cow if csum exists in the range.
1139 * this ensure that csum for a given extent are
1140 * either valid or do not exist.
1142 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
1145 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1146 extent_end
= found_key
.offset
+
1147 btrfs_file_extent_inline_len(leaf
, fi
);
1148 extent_end
= ALIGN(extent_end
, root
->sectorsize
);
1153 if (extent_end
<= start
) {
1158 if (cow_start
== (u64
)-1)
1159 cow_start
= cur_offset
;
1160 cur_offset
= extent_end
;
1161 if (cur_offset
> end
)
1167 btrfs_release_path(root
, path
);
1168 if (cow_start
!= (u64
)-1) {
1169 ret
= cow_file_range(inode
, locked_page
, cow_start
,
1170 found_key
.offset
- 1, page_started
,
1173 cow_start
= (u64
)-1;
1176 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1177 struct extent_map
*em
;
1178 struct extent_map_tree
*em_tree
;
1179 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1180 em
= alloc_extent_map(GFP_NOFS
);
1182 em
->start
= cur_offset
;
1183 em
->orig_start
= em
->start
;
1184 em
->len
= num_bytes
;
1185 em
->block_len
= num_bytes
;
1186 em
->block_start
= disk_bytenr
;
1187 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1188 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1190 write_lock(&em_tree
->lock
);
1191 ret
= add_extent_mapping(em_tree
, em
);
1192 write_unlock(&em_tree
->lock
);
1193 if (ret
!= -EEXIST
) {
1194 free_extent_map(em
);
1197 btrfs_drop_extent_cache(inode
, em
->start
,
1198 em
->start
+ em
->len
- 1, 0);
1200 type
= BTRFS_ORDERED_PREALLOC
;
1202 type
= BTRFS_ORDERED_NOCOW
;
1205 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1206 num_bytes
, num_bytes
, type
);
1209 if (root
->root_key
.objectid
==
1210 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1211 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1216 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
1217 cur_offset
, cur_offset
+ num_bytes
- 1,
1218 locked_page
, EXTENT_CLEAR_UNLOCK_PAGE
|
1219 EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
1220 EXTENT_SET_PRIVATE2
);
1221 cur_offset
= extent_end
;
1222 if (cur_offset
> end
)
1225 btrfs_release_path(root
, path
);
1227 if (cur_offset
<= end
&& cow_start
== (u64
)-1)
1228 cow_start
= cur_offset
;
1229 if (cow_start
!= (u64
)-1) {
1230 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
,
1231 page_started
, nr_written
, 1);
1236 ret
= btrfs_end_transaction_nolock(trans
, root
);
1239 ret
= btrfs_end_transaction(trans
, root
);
1242 btrfs_free_path(path
);
1247 * extent_io.c call back to do delayed allocation processing
1249 static int run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1250 u64 start
, u64 end
, int *page_started
,
1251 unsigned long *nr_written
)
1254 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1256 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
)
1257 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1258 page_started
, 1, nr_written
);
1259 else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
)
1260 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1261 page_started
, 0, nr_written
);
1262 else if (!btrfs_test_opt(root
, COMPRESS
) &&
1263 !(BTRFS_I(inode
)->force_compress
) &&
1264 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
))
1265 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1266 page_started
, nr_written
, 1);
1268 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1269 page_started
, nr_written
);
1273 static int btrfs_split_extent_hook(struct inode
*inode
,
1274 struct extent_state
*orig
, u64 split
)
1276 /* not delalloc, ignore it */
1277 if (!(orig
->state
& EXTENT_DELALLOC
))
1280 atomic_inc(&BTRFS_I(inode
)->outstanding_extents
);
1285 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1286 * extents so we can keep track of new extents that are just merged onto old
1287 * extents, such as when we are doing sequential writes, so we can properly
1288 * account for the metadata space we'll need.
1290 static int btrfs_merge_extent_hook(struct inode
*inode
,
1291 struct extent_state
*new,
1292 struct extent_state
*other
)
1294 /* not delalloc, ignore it */
1295 if (!(other
->state
& EXTENT_DELALLOC
))
1298 atomic_dec(&BTRFS_I(inode
)->outstanding_extents
);
1303 * extent_io.c set_bit_hook, used to track delayed allocation
1304 * bytes in this file, and to maintain the list of inodes that
1305 * have pending delalloc work to be done.
1307 static int btrfs_set_bit_hook(struct inode
*inode
,
1308 struct extent_state
*state
, int *bits
)
1312 * set_bit and clear bit hooks normally require _irqsave/restore
1313 * but in this case, we are only testeing for the DELALLOC
1314 * bit, which is only set or cleared with irqs on
1316 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1317 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1318 u64 len
= state
->end
+ 1 - state
->start
;
1319 int do_list
= (root
->root_key
.objectid
!=
1320 BTRFS_ROOT_TREE_OBJECTID
);
1322 if (*bits
& EXTENT_FIRST_DELALLOC
)
1323 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1325 atomic_inc(&BTRFS_I(inode
)->outstanding_extents
);
1327 spin_lock(&root
->fs_info
->delalloc_lock
);
1328 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1329 root
->fs_info
->delalloc_bytes
+= len
;
1330 if (do_list
&& list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1331 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1332 &root
->fs_info
->delalloc_inodes
);
1334 spin_unlock(&root
->fs_info
->delalloc_lock
);
1340 * extent_io.c clear_bit_hook, see set_bit_hook for why
1342 static int btrfs_clear_bit_hook(struct inode
*inode
,
1343 struct extent_state
*state
, int *bits
)
1346 * set_bit and clear bit hooks normally require _irqsave/restore
1347 * but in this case, we are only testeing for the DELALLOC
1348 * bit, which is only set or cleared with irqs on
1350 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1351 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1352 u64 len
= state
->end
+ 1 - state
->start
;
1353 int do_list
= (root
->root_key
.objectid
!=
1354 BTRFS_ROOT_TREE_OBJECTID
);
1356 if (*bits
& EXTENT_FIRST_DELALLOC
)
1357 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1358 else if (!(*bits
& EXTENT_DO_ACCOUNTING
))
1359 atomic_dec(&BTRFS_I(inode
)->outstanding_extents
);
1361 if (*bits
& EXTENT_DO_ACCOUNTING
)
1362 btrfs_delalloc_release_metadata(inode
, len
);
1364 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
1366 btrfs_free_reserved_data_space(inode
, len
);
1368 spin_lock(&root
->fs_info
->delalloc_lock
);
1369 root
->fs_info
->delalloc_bytes
-= len
;
1370 BTRFS_I(inode
)->delalloc_bytes
-= len
;
1372 if (do_list
&& BTRFS_I(inode
)->delalloc_bytes
== 0 &&
1373 !list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1374 list_del_init(&BTRFS_I(inode
)->delalloc_inodes
);
1376 spin_unlock(&root
->fs_info
->delalloc_lock
);
1382 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1383 * we don't create bios that span stripes or chunks
1385 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1386 size_t size
, struct bio
*bio
,
1387 unsigned long bio_flags
)
1389 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
1390 struct btrfs_mapping_tree
*map_tree
;
1391 u64 logical
= (u64
)bio
->bi_sector
<< 9;
1396 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1399 length
= bio
->bi_size
;
1400 map_tree
= &root
->fs_info
->mapping_tree
;
1401 map_length
= length
;
1402 ret
= btrfs_map_block(map_tree
, READ
, logical
,
1403 &map_length
, NULL
, 0);
1405 if (map_length
< length
+ size
)
1411 * in order to insert checksums into the metadata in large chunks,
1412 * we wait until bio submission time. All the pages in the bio are
1413 * checksummed and sums are attached onto the ordered extent record.
1415 * At IO completion time the cums attached on the ordered extent record
1416 * are inserted into the btree
1418 static int __btrfs_submit_bio_start(struct inode
*inode
, int rw
,
1419 struct bio
*bio
, int mirror_num
,
1420 unsigned long bio_flags
,
1423 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1426 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1432 * in order to insert checksums into the metadata in large chunks,
1433 * we wait until bio submission time. All the pages in the bio are
1434 * checksummed and sums are attached onto the ordered extent record.
1436 * At IO completion time the cums attached on the ordered extent record
1437 * are inserted into the btree
1439 static int __btrfs_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
1440 int mirror_num
, unsigned long bio_flags
,
1443 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1444 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 1);
1448 * extent_io.c submission hook. This does the right thing for csum calculation
1449 * on write, or reading the csums from the tree before a read
1451 static int btrfs_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
1452 int mirror_num
, unsigned long bio_flags
,
1455 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1459 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1461 if (root
== root
->fs_info
->tree_root
)
1462 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 2);
1464 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
1467 if (!(rw
& REQ_WRITE
)) {
1468 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1469 return btrfs_submit_compressed_read(inode
, bio
,
1470 mirror_num
, bio_flags
);
1471 } else if (!skip_sum
) {
1472 ret
= btrfs_lookup_bio_sums(root
, inode
, bio
, NULL
);
1477 } else if (!skip_sum
) {
1478 /* csum items have already been cloned */
1479 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1481 /* we're doing a write, do the async checksumming */
1482 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
1483 inode
, rw
, bio
, mirror_num
,
1484 bio_flags
, bio_offset
,
1485 __btrfs_submit_bio_start
,
1486 __btrfs_submit_bio_done
);
1490 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
1494 * given a list of ordered sums record them in the inode. This happens
1495 * at IO completion time based on sums calculated at bio submission time.
1497 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
1498 struct inode
*inode
, u64 file_offset
,
1499 struct list_head
*list
)
1501 struct btrfs_ordered_sum
*sum
;
1503 btrfs_set_trans_block_group(trans
, inode
);
1505 list_for_each_entry(sum
, list
, list
) {
1506 btrfs_csum_file_blocks(trans
,
1507 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
1512 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
1513 struct extent_state
**cached_state
)
1515 if ((end
& (PAGE_CACHE_SIZE
- 1)) == 0)
1517 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
1518 cached_state
, GFP_NOFS
);
1521 /* see btrfs_writepage_start_hook for details on why this is required */
1522 struct btrfs_writepage_fixup
{
1524 struct btrfs_work work
;
1527 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
1529 struct btrfs_writepage_fixup
*fixup
;
1530 struct btrfs_ordered_extent
*ordered
;
1531 struct extent_state
*cached_state
= NULL
;
1533 struct inode
*inode
;
1537 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
1541 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
1542 ClearPageChecked(page
);
1546 inode
= page
->mapping
->host
;
1547 page_start
= page_offset(page
);
1548 page_end
= page_offset(page
) + PAGE_CACHE_SIZE
- 1;
1550 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, 0,
1551 &cached_state
, GFP_NOFS
);
1553 /* already ordered? We're done */
1554 if (PagePrivate2(page
))
1557 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
1559 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
1560 page_end
, &cached_state
, GFP_NOFS
);
1562 btrfs_start_ordered_extent(inode
, ordered
, 1);
1567 btrfs_set_extent_delalloc(inode
, page_start
, page_end
, &cached_state
);
1568 ClearPageChecked(page
);
1570 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
1571 &cached_state
, GFP_NOFS
);
1574 page_cache_release(page
);
1579 * There are a few paths in the higher layers of the kernel that directly
1580 * set the page dirty bit without asking the filesystem if it is a
1581 * good idea. This causes problems because we want to make sure COW
1582 * properly happens and the data=ordered rules are followed.
1584 * In our case any range that doesn't have the ORDERED bit set
1585 * hasn't been properly setup for IO. We kick off an async process
1586 * to fix it up. The async helper will wait for ordered extents, set
1587 * the delalloc bit and make it safe to write the page.
1589 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
1591 struct inode
*inode
= page
->mapping
->host
;
1592 struct btrfs_writepage_fixup
*fixup
;
1593 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1595 /* this page is properly in the ordered list */
1596 if (TestClearPagePrivate2(page
))
1599 if (PageChecked(page
))
1602 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
1606 SetPageChecked(page
);
1607 page_cache_get(page
);
1608 fixup
->work
.func
= btrfs_writepage_fixup_worker
;
1610 btrfs_queue_worker(&root
->fs_info
->fixup_workers
, &fixup
->work
);
1614 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
1615 struct inode
*inode
, u64 file_pos
,
1616 u64 disk_bytenr
, u64 disk_num_bytes
,
1617 u64 num_bytes
, u64 ram_bytes
,
1618 u8 compression
, u8 encryption
,
1619 u16 other_encoding
, int extent_type
)
1621 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1622 struct btrfs_file_extent_item
*fi
;
1623 struct btrfs_path
*path
;
1624 struct extent_buffer
*leaf
;
1625 struct btrfs_key ins
;
1629 path
= btrfs_alloc_path();
1632 path
->leave_spinning
= 1;
1635 * we may be replacing one extent in the tree with another.
1636 * The new extent is pinned in the extent map, and we don't want
1637 * to drop it from the cache until it is completely in the btree.
1639 * So, tell btrfs_drop_extents to leave this extent in the cache.
1640 * the caller is expected to unpin it and allow it to be merged
1643 ret
= btrfs_drop_extents(trans
, inode
, file_pos
, file_pos
+ num_bytes
,
1647 ins
.objectid
= inode
->i_ino
;
1648 ins
.offset
= file_pos
;
1649 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
1650 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
, sizeof(*fi
));
1652 leaf
= path
->nodes
[0];
1653 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1654 struct btrfs_file_extent_item
);
1655 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1656 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
1657 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
1658 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
1659 btrfs_set_file_extent_offset(leaf
, fi
, 0);
1660 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
1661 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
1662 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
1663 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
1664 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
1666 btrfs_unlock_up_safe(path
, 1);
1667 btrfs_set_lock_blocking(leaf
);
1669 btrfs_mark_buffer_dirty(leaf
);
1671 inode_add_bytes(inode
, num_bytes
);
1673 ins
.objectid
= disk_bytenr
;
1674 ins
.offset
= disk_num_bytes
;
1675 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1676 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
1677 root
->root_key
.objectid
,
1678 inode
->i_ino
, file_pos
, &ins
);
1680 btrfs_free_path(path
);
1686 * helper function for btrfs_finish_ordered_io, this
1687 * just reads in some of the csum leaves to prime them into ram
1688 * before we start the transaction. It limits the amount of btree
1689 * reads required while inside the transaction.
1691 /* as ordered data IO finishes, this gets called so we can finish
1692 * an ordered extent if the range of bytes in the file it covers are
1695 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
)
1697 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1698 struct btrfs_trans_handle
*trans
= NULL
;
1699 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
1700 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1701 struct extent_state
*cached_state
= NULL
;
1702 int compress_type
= 0;
1704 bool nolock
= false;
1706 ret
= btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
1710 BUG_ON(!ordered_extent
);
1712 nolock
= (root
== root
->fs_info
->tree_root
);
1714 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
1715 BUG_ON(!list_empty(&ordered_extent
->list
));
1716 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
1719 trans
= btrfs_join_transaction_nolock(root
, 1);
1721 trans
= btrfs_join_transaction(root
, 1);
1722 BUG_ON(IS_ERR(trans
));
1723 btrfs_set_trans_block_group(trans
, inode
);
1724 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1725 ret
= btrfs_update_inode(trans
, root
, inode
);
1731 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
1732 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
1733 0, &cached_state
, GFP_NOFS
);
1736 trans
= btrfs_join_transaction_nolock(root
, 1);
1738 trans
= btrfs_join_transaction(root
, 1);
1739 BUG_ON(IS_ERR(trans
));
1740 btrfs_set_trans_block_group(trans
, inode
);
1741 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1743 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
1744 compress_type
= ordered_extent
->compress_type
;
1745 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
1746 BUG_ON(compress_type
);
1747 ret
= btrfs_mark_extent_written(trans
, inode
,
1748 ordered_extent
->file_offset
,
1749 ordered_extent
->file_offset
+
1750 ordered_extent
->len
);
1753 BUG_ON(root
== root
->fs_info
->tree_root
);
1754 ret
= insert_reserved_file_extent(trans
, inode
,
1755 ordered_extent
->file_offset
,
1756 ordered_extent
->start
,
1757 ordered_extent
->disk_len
,
1758 ordered_extent
->len
,
1759 ordered_extent
->len
,
1760 compress_type
, 0, 0,
1761 BTRFS_FILE_EXTENT_REG
);
1762 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
1763 ordered_extent
->file_offset
,
1764 ordered_extent
->len
);
1767 unlock_extent_cached(io_tree
, ordered_extent
->file_offset
,
1768 ordered_extent
->file_offset
+
1769 ordered_extent
->len
- 1, &cached_state
, GFP_NOFS
);
1771 add_pending_csums(trans
, inode
, ordered_extent
->file_offset
,
1772 &ordered_extent
->list
);
1774 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
1775 ret
= btrfs_update_inode(trans
, root
, inode
);
1780 btrfs_end_transaction_nolock(trans
, root
);
1782 btrfs_delalloc_release_metadata(inode
, ordered_extent
->len
);
1784 btrfs_end_transaction(trans
, root
);
1788 btrfs_put_ordered_extent(ordered_extent
);
1789 /* once for the tree */
1790 btrfs_put_ordered_extent(ordered_extent
);
1795 static int btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1796 struct extent_state
*state
, int uptodate
)
1798 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
1800 ClearPagePrivate2(page
);
1801 return btrfs_finish_ordered_io(page
->mapping
->host
, start
, end
);
1805 * When IO fails, either with EIO or csum verification fails, we
1806 * try other mirrors that might have a good copy of the data. This
1807 * io_failure_record is used to record state as we go through all the
1808 * mirrors. If another mirror has good data, the page is set up to date
1809 * and things continue. If a good mirror can't be found, the original
1810 * bio end_io callback is called to indicate things have failed.
1812 struct io_failure_record
{
1817 unsigned long bio_flags
;
1821 static int btrfs_io_failed_hook(struct bio
*failed_bio
,
1822 struct page
*page
, u64 start
, u64 end
,
1823 struct extent_state
*state
)
1825 struct io_failure_record
*failrec
= NULL
;
1827 struct extent_map
*em
;
1828 struct inode
*inode
= page
->mapping
->host
;
1829 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
1830 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
1837 ret
= get_state_private(failure_tree
, start
, &private);
1839 failrec
= kmalloc(sizeof(*failrec
), GFP_NOFS
);
1842 failrec
->start
= start
;
1843 failrec
->len
= end
- start
+ 1;
1844 failrec
->last_mirror
= 0;
1845 failrec
->bio_flags
= 0;
1847 read_lock(&em_tree
->lock
);
1848 em
= lookup_extent_mapping(em_tree
, start
, failrec
->len
);
1849 if (em
->start
> start
|| em
->start
+ em
->len
< start
) {
1850 free_extent_map(em
);
1853 read_unlock(&em_tree
->lock
);
1855 if (!em
|| IS_ERR(em
)) {
1859 logical
= start
- em
->start
;
1860 logical
= em
->block_start
+ logical
;
1861 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
1862 logical
= em
->block_start
;
1863 failrec
->bio_flags
= EXTENT_BIO_COMPRESSED
;
1864 extent_set_compress_type(&failrec
->bio_flags
,
1867 failrec
->logical
= logical
;
1868 free_extent_map(em
);
1869 set_extent_bits(failure_tree
, start
, end
, EXTENT_LOCKED
|
1870 EXTENT_DIRTY
, GFP_NOFS
);
1871 set_state_private(failure_tree
, start
,
1872 (u64
)(unsigned long)failrec
);
1874 failrec
= (struct io_failure_record
*)(unsigned long)private;
1876 num_copies
= btrfs_num_copies(
1877 &BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
1878 failrec
->logical
, failrec
->len
);
1879 failrec
->last_mirror
++;
1881 spin_lock(&BTRFS_I(inode
)->io_tree
.lock
);
1882 state
= find_first_extent_bit_state(&BTRFS_I(inode
)->io_tree
,
1885 if (state
&& state
->start
!= failrec
->start
)
1887 spin_unlock(&BTRFS_I(inode
)->io_tree
.lock
);
1889 if (!state
|| failrec
->last_mirror
> num_copies
) {
1890 set_state_private(failure_tree
, failrec
->start
, 0);
1891 clear_extent_bits(failure_tree
, failrec
->start
,
1892 failrec
->start
+ failrec
->len
- 1,
1893 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
1897 bio
= bio_alloc(GFP_NOFS
, 1);
1898 bio
->bi_private
= state
;
1899 bio
->bi_end_io
= failed_bio
->bi_end_io
;
1900 bio
->bi_sector
= failrec
->logical
>> 9;
1901 bio
->bi_bdev
= failed_bio
->bi_bdev
;
1904 bio_add_page(bio
, page
, failrec
->len
, start
- page_offset(page
));
1905 if (failed_bio
->bi_rw
& REQ_WRITE
)
1910 ret
= BTRFS_I(inode
)->io_tree
.ops
->submit_bio_hook(inode
, rw
, bio
,
1911 failrec
->last_mirror
,
1912 failrec
->bio_flags
, 0);
1917 * each time an IO finishes, we do a fast check in the IO failure tree
1918 * to see if we need to process or clean up an io_failure_record
1920 static int btrfs_clean_io_failures(struct inode
*inode
, u64 start
)
1923 u64 private_failure
;
1924 struct io_failure_record
*failure
;
1928 if (count_range_bits(&BTRFS_I(inode
)->io_failure_tree
, &private,
1929 (u64
)-1, 1, EXTENT_DIRTY
, 0)) {
1930 ret
= get_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1931 start
, &private_failure
);
1933 failure
= (struct io_failure_record
*)(unsigned long)
1935 set_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1937 clear_extent_bits(&BTRFS_I(inode
)->io_failure_tree
,
1939 failure
->start
+ failure
->len
- 1,
1940 EXTENT_DIRTY
| EXTENT_LOCKED
,
1949 * when reads are done, we need to check csums to verify the data is correct
1950 * if there's a match, we allow the bio to finish. If not, we go through
1951 * the io_failure_record routines to find good copies
1953 static int btrfs_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1954 struct extent_state
*state
)
1956 size_t offset
= start
- ((u64
)page
->index
<< PAGE_CACHE_SHIFT
);
1957 struct inode
*inode
= page
->mapping
->host
;
1958 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1960 u64
private = ~(u32
)0;
1962 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1965 if (PageChecked(page
)) {
1966 ClearPageChecked(page
);
1970 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
1973 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
1974 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
1975 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
,
1980 if (state
&& state
->start
== start
) {
1981 private = state
->private;
1984 ret
= get_state_private(io_tree
, start
, &private);
1986 kaddr
= kmap_atomic(page
, KM_USER0
);
1990 csum
= btrfs_csum_data(root
, kaddr
+ offset
, csum
, end
- start
+ 1);
1991 btrfs_csum_final(csum
, (char *)&csum
);
1992 if (csum
!= private)
1995 kunmap_atomic(kaddr
, KM_USER0
);
1997 /* if the io failure tree for this inode is non-empty,
1998 * check to see if we've recovered from a failed IO
2000 btrfs_clean_io_failures(inode
, start
);
2004 if (printk_ratelimit()) {
2005 printk(KERN_INFO
"btrfs csum failed ino %lu off %llu csum %u "
2006 "private %llu\n", page
->mapping
->host
->i_ino
,
2007 (unsigned long long)start
, csum
,
2008 (unsigned long long)private);
2010 memset(kaddr
+ offset
, 1, end
- start
+ 1);
2011 flush_dcache_page(page
);
2012 kunmap_atomic(kaddr
, KM_USER0
);
2018 struct delayed_iput
{
2019 struct list_head list
;
2020 struct inode
*inode
;
2023 void btrfs_add_delayed_iput(struct inode
*inode
)
2025 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2026 struct delayed_iput
*delayed
;
2028 if (atomic_add_unless(&inode
->i_count
, -1, 1))
2031 delayed
= kmalloc(sizeof(*delayed
), GFP_NOFS
| __GFP_NOFAIL
);
2032 delayed
->inode
= inode
;
2034 spin_lock(&fs_info
->delayed_iput_lock
);
2035 list_add_tail(&delayed
->list
, &fs_info
->delayed_iputs
);
2036 spin_unlock(&fs_info
->delayed_iput_lock
);
2039 void btrfs_run_delayed_iputs(struct btrfs_root
*root
)
2042 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2043 struct delayed_iput
*delayed
;
2046 spin_lock(&fs_info
->delayed_iput_lock
);
2047 empty
= list_empty(&fs_info
->delayed_iputs
);
2048 spin_unlock(&fs_info
->delayed_iput_lock
);
2052 down_read(&root
->fs_info
->cleanup_work_sem
);
2053 spin_lock(&fs_info
->delayed_iput_lock
);
2054 list_splice_init(&fs_info
->delayed_iputs
, &list
);
2055 spin_unlock(&fs_info
->delayed_iput_lock
);
2057 while (!list_empty(&list
)) {
2058 delayed
= list_entry(list
.next
, struct delayed_iput
, list
);
2059 list_del(&delayed
->list
);
2060 iput(delayed
->inode
);
2063 up_read(&root
->fs_info
->cleanup_work_sem
);
2067 * calculate extra metadata reservation when snapshotting a subvolume
2068 * contains orphan files.
2070 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle
*trans
,
2071 struct btrfs_pending_snapshot
*pending
,
2072 u64
*bytes_to_reserve
)
2074 struct btrfs_root
*root
;
2075 struct btrfs_block_rsv
*block_rsv
;
2079 root
= pending
->root
;
2080 if (!root
->orphan_block_rsv
|| list_empty(&root
->orphan_list
))
2083 block_rsv
= root
->orphan_block_rsv
;
2085 /* orphan block reservation for the snapshot */
2086 num_bytes
= block_rsv
->size
;
2089 * after the snapshot is created, COWing tree blocks may use more
2090 * space than it frees. So we should make sure there is enough
2093 index
= trans
->transid
& 0x1;
2094 if (block_rsv
->reserved
+ block_rsv
->freed
[index
] < block_rsv
->size
) {
2095 num_bytes
+= block_rsv
->size
-
2096 (block_rsv
->reserved
+ block_rsv
->freed
[index
]);
2099 *bytes_to_reserve
+= num_bytes
;
2102 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle
*trans
,
2103 struct btrfs_pending_snapshot
*pending
)
2105 struct btrfs_root
*root
= pending
->root
;
2106 struct btrfs_root
*snap
= pending
->snap
;
2107 struct btrfs_block_rsv
*block_rsv
;
2112 if (!root
->orphan_block_rsv
|| list_empty(&root
->orphan_list
))
2115 /* refill source subvolume's orphan block reservation */
2116 block_rsv
= root
->orphan_block_rsv
;
2117 index
= trans
->transid
& 0x1;
2118 if (block_rsv
->reserved
+ block_rsv
->freed
[index
] < block_rsv
->size
) {
2119 num_bytes
= block_rsv
->size
-
2120 (block_rsv
->reserved
+ block_rsv
->freed
[index
]);
2121 ret
= btrfs_block_rsv_migrate(&pending
->block_rsv
,
2122 root
->orphan_block_rsv
,
2127 /* setup orphan block reservation for the snapshot */
2128 block_rsv
= btrfs_alloc_block_rsv(snap
);
2131 btrfs_add_durable_block_rsv(root
->fs_info
, block_rsv
);
2132 snap
->orphan_block_rsv
= block_rsv
;
2134 num_bytes
= root
->orphan_block_rsv
->size
;
2135 ret
= btrfs_block_rsv_migrate(&pending
->block_rsv
,
2136 block_rsv
, num_bytes
);
2140 /* insert orphan item for the snapshot */
2141 WARN_ON(!root
->orphan_item_inserted
);
2142 ret
= btrfs_insert_orphan_item(trans
, root
->fs_info
->tree_root
,
2143 snap
->root_key
.objectid
);
2145 snap
->orphan_item_inserted
= 1;
2149 enum btrfs_orphan_cleanup_state
{
2150 ORPHAN_CLEANUP_STARTED
= 1,
2151 ORPHAN_CLEANUP_DONE
= 2,
2155 * This is called in transaction commmit time. If there are no orphan
2156 * files in the subvolume, it removes orphan item and frees block_rsv
2159 void btrfs_orphan_commit_root(struct btrfs_trans_handle
*trans
,
2160 struct btrfs_root
*root
)
2164 if (!list_empty(&root
->orphan_list
) ||
2165 root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
)
2168 if (root
->orphan_item_inserted
&&
2169 btrfs_root_refs(&root
->root_item
) > 0) {
2170 ret
= btrfs_del_orphan_item(trans
, root
->fs_info
->tree_root
,
2171 root
->root_key
.objectid
);
2173 root
->orphan_item_inserted
= 0;
2176 if (root
->orphan_block_rsv
) {
2177 WARN_ON(root
->orphan_block_rsv
->size
> 0);
2178 btrfs_free_block_rsv(root
, root
->orphan_block_rsv
);
2179 root
->orphan_block_rsv
= NULL
;
2184 * This creates an orphan entry for the given inode in case something goes
2185 * wrong in the middle of an unlink/truncate.
2187 * NOTE: caller of this function should reserve 5 units of metadata for
2190 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2192 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2193 struct btrfs_block_rsv
*block_rsv
= NULL
;
2198 if (!root
->orphan_block_rsv
) {
2199 block_rsv
= btrfs_alloc_block_rsv(root
);
2203 spin_lock(&root
->orphan_lock
);
2204 if (!root
->orphan_block_rsv
) {
2205 root
->orphan_block_rsv
= block_rsv
;
2206 } else if (block_rsv
) {
2207 btrfs_free_block_rsv(root
, block_rsv
);
2211 if (list_empty(&BTRFS_I(inode
)->i_orphan
)) {
2212 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
2215 * For proper ENOSPC handling, we should do orphan
2216 * cleanup when mounting. But this introduces backward
2217 * compatibility issue.
2219 if (!xchg(&root
->orphan_item_inserted
, 1))
2226 WARN_ON(!BTRFS_I(inode
)->orphan_meta_reserved
);
2229 if (!BTRFS_I(inode
)->orphan_meta_reserved
) {
2230 BTRFS_I(inode
)->orphan_meta_reserved
= 1;
2233 spin_unlock(&root
->orphan_lock
);
2236 btrfs_add_durable_block_rsv(root
->fs_info
, block_rsv
);
2238 /* grab metadata reservation from transaction handle */
2240 ret
= btrfs_orphan_reserve_metadata(trans
, inode
);
2244 /* insert an orphan item to track this unlinked/truncated file */
2246 ret
= btrfs_insert_orphan_item(trans
, root
, inode
->i_ino
);
2250 /* insert an orphan item to track subvolume contains orphan files */
2252 ret
= btrfs_insert_orphan_item(trans
, root
->fs_info
->tree_root
,
2253 root
->root_key
.objectid
);
2260 * We have done the truncate/delete so we can go ahead and remove the orphan
2261 * item for this particular inode.
2263 int btrfs_orphan_del(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2265 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2266 int delete_item
= 0;
2267 int release_rsv
= 0;
2270 spin_lock(&root
->orphan_lock
);
2271 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
2272 list_del_init(&BTRFS_I(inode
)->i_orphan
);
2276 if (BTRFS_I(inode
)->orphan_meta_reserved
) {
2277 BTRFS_I(inode
)->orphan_meta_reserved
= 0;
2280 spin_unlock(&root
->orphan_lock
);
2282 if (trans
&& delete_item
) {
2283 ret
= btrfs_del_orphan_item(trans
, root
, inode
->i_ino
);
2288 btrfs_orphan_release_metadata(inode
);
2294 * this cleans up any orphans that may be left on the list from the last use
2297 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
2299 struct btrfs_path
*path
;
2300 struct extent_buffer
*leaf
;
2301 struct btrfs_key key
, found_key
;
2302 struct btrfs_trans_handle
*trans
;
2303 struct inode
*inode
;
2304 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
2306 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
2309 path
= btrfs_alloc_path();
2316 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
2317 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
2318 key
.offset
= (u64
)-1;
2321 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2326 * if ret == 0 means we found what we were searching for, which
2327 * is weird, but possible, so only screw with path if we didnt
2328 * find the key and see if we have stuff that matches
2332 if (path
->slots
[0] == 0)
2337 /* pull out the item */
2338 leaf
= path
->nodes
[0];
2339 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2341 /* make sure the item matches what we want */
2342 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
2344 if (btrfs_key_type(&found_key
) != BTRFS_ORPHAN_ITEM_KEY
)
2347 /* release the path since we're done with it */
2348 btrfs_release_path(root
, path
);
2351 * this is where we are basically btrfs_lookup, without the
2352 * crossing root thing. we store the inode number in the
2353 * offset of the orphan item.
2355 found_key
.objectid
= found_key
.offset
;
2356 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
2357 found_key
.offset
= 0;
2358 inode
= btrfs_iget(root
->fs_info
->sb
, &found_key
, root
, NULL
);
2359 if (IS_ERR(inode
)) {
2360 ret
= PTR_ERR(inode
);
2365 * add this inode to the orphan list so btrfs_orphan_del does
2366 * the proper thing when we hit it
2368 spin_lock(&root
->orphan_lock
);
2369 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
2370 spin_unlock(&root
->orphan_lock
);
2373 * if this is a bad inode, means we actually succeeded in
2374 * removing the inode, but not the orphan record, which means
2375 * we need to manually delete the orphan since iput will just
2376 * do a destroy_inode
2378 if (is_bad_inode(inode
)) {
2379 trans
= btrfs_start_transaction(root
, 0);
2380 if (IS_ERR(trans
)) {
2381 ret
= PTR_ERR(trans
);
2384 btrfs_orphan_del(trans
, inode
);
2385 btrfs_end_transaction(trans
, root
);
2390 /* if we have links, this was a truncate, lets do that */
2391 if (inode
->i_nlink
) {
2392 if (!S_ISREG(inode
->i_mode
)) {
2398 ret
= btrfs_truncate(inode
);
2403 /* this will do delete_inode and everything for us */
2408 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
2410 if (root
->orphan_block_rsv
)
2411 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
,
2414 if (root
->orphan_block_rsv
|| root
->orphan_item_inserted
) {
2415 trans
= btrfs_join_transaction(root
, 1);
2417 btrfs_end_transaction(trans
, root
);
2421 printk(KERN_INFO
"btrfs: unlinked %d orphans\n", nr_unlink
);
2423 printk(KERN_INFO
"btrfs: truncated %d orphans\n", nr_truncate
);
2427 printk(KERN_CRIT
"btrfs: could not do orphan cleanup %d\n", ret
);
2428 btrfs_free_path(path
);
2433 * very simple check to peek ahead in the leaf looking for xattrs. If we
2434 * don't find any xattrs, we know there can't be any acls.
2436 * slot is the slot the inode is in, objectid is the objectid of the inode
2438 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
2439 int slot
, u64 objectid
)
2441 u32 nritems
= btrfs_header_nritems(leaf
);
2442 struct btrfs_key found_key
;
2446 while (slot
< nritems
) {
2447 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
2449 /* we found a different objectid, there must not be acls */
2450 if (found_key
.objectid
!= objectid
)
2453 /* we found an xattr, assume we've got an acl */
2454 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
)
2458 * we found a key greater than an xattr key, there can't
2459 * be any acls later on
2461 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
2468 * it goes inode, inode backrefs, xattrs, extents,
2469 * so if there are a ton of hard links to an inode there can
2470 * be a lot of backrefs. Don't waste time searching too hard,
2471 * this is just an optimization
2476 /* we hit the end of the leaf before we found an xattr or
2477 * something larger than an xattr. We have to assume the inode
2484 * read an inode from the btree into the in-memory inode
2486 static void btrfs_read_locked_inode(struct inode
*inode
)
2488 struct btrfs_path
*path
;
2489 struct extent_buffer
*leaf
;
2490 struct btrfs_inode_item
*inode_item
;
2491 struct btrfs_timespec
*tspec
;
2492 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2493 struct btrfs_key location
;
2495 u64 alloc_group_block
;
2499 path
= btrfs_alloc_path();
2501 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
2503 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
2507 leaf
= path
->nodes
[0];
2508 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2509 struct btrfs_inode_item
);
2511 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
2512 inode
->i_nlink
= btrfs_inode_nlink(leaf
, inode_item
);
2513 inode
->i_uid
= btrfs_inode_uid(leaf
, inode_item
);
2514 inode
->i_gid
= btrfs_inode_gid(leaf
, inode_item
);
2515 btrfs_i_size_write(inode
, btrfs_inode_size(leaf
, inode_item
));
2517 tspec
= btrfs_inode_atime(inode_item
);
2518 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2519 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2521 tspec
= btrfs_inode_mtime(inode_item
);
2522 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2523 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2525 tspec
= btrfs_inode_ctime(inode_item
);
2526 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2527 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2529 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
2530 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
2531 BTRFS_I(inode
)->sequence
= btrfs_inode_sequence(leaf
, inode_item
);
2532 inode
->i_generation
= BTRFS_I(inode
)->generation
;
2534 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
2536 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
2537 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
2539 alloc_group_block
= btrfs_inode_block_group(leaf
, inode_item
);
2540 if (location
.objectid
== BTRFS_FREE_SPACE_OBJECTID
)
2541 inode
->i_mapping
->flags
&= ~__GFP_FS
;
2544 * try to precache a NULL acl entry for files that don't have
2545 * any xattrs or acls
2547 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0], inode
->i_ino
);
2549 cache_no_acl(inode
);
2551 BTRFS_I(inode
)->block_group
= btrfs_find_block_group(root
, 0,
2552 alloc_group_block
, 0);
2553 btrfs_free_path(path
);
2556 switch (inode
->i_mode
& S_IFMT
) {
2558 inode
->i_mapping
->a_ops
= &btrfs_aops
;
2559 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2560 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
2561 inode
->i_fop
= &btrfs_file_operations
;
2562 inode
->i_op
= &btrfs_file_inode_operations
;
2565 inode
->i_fop
= &btrfs_dir_file_operations
;
2566 if (root
== root
->fs_info
->tree_root
)
2567 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
2569 inode
->i_op
= &btrfs_dir_inode_operations
;
2572 inode
->i_op
= &btrfs_symlink_inode_operations
;
2573 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
2574 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2577 inode
->i_op
= &btrfs_special_inode_operations
;
2578 init_special_inode(inode
, inode
->i_mode
, rdev
);
2582 btrfs_update_iflags(inode
);
2586 btrfs_free_path(path
);
2587 make_bad_inode(inode
);
2591 * given a leaf and an inode, copy the inode fields into the leaf
2593 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
2594 struct extent_buffer
*leaf
,
2595 struct btrfs_inode_item
*item
,
2596 struct inode
*inode
)
2598 btrfs_set_inode_uid(leaf
, item
, inode
->i_uid
);
2599 btrfs_set_inode_gid(leaf
, item
, inode
->i_gid
);
2600 btrfs_set_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
);
2601 btrfs_set_inode_mode(leaf
, item
, inode
->i_mode
);
2602 btrfs_set_inode_nlink(leaf
, item
, inode
->i_nlink
);
2604 btrfs_set_timespec_sec(leaf
, btrfs_inode_atime(item
),
2605 inode
->i_atime
.tv_sec
);
2606 btrfs_set_timespec_nsec(leaf
, btrfs_inode_atime(item
),
2607 inode
->i_atime
.tv_nsec
);
2609 btrfs_set_timespec_sec(leaf
, btrfs_inode_mtime(item
),
2610 inode
->i_mtime
.tv_sec
);
2611 btrfs_set_timespec_nsec(leaf
, btrfs_inode_mtime(item
),
2612 inode
->i_mtime
.tv_nsec
);
2614 btrfs_set_timespec_sec(leaf
, btrfs_inode_ctime(item
),
2615 inode
->i_ctime
.tv_sec
);
2616 btrfs_set_timespec_nsec(leaf
, btrfs_inode_ctime(item
),
2617 inode
->i_ctime
.tv_nsec
);
2619 btrfs_set_inode_nbytes(leaf
, item
, inode_get_bytes(inode
));
2620 btrfs_set_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
);
2621 btrfs_set_inode_sequence(leaf
, item
, BTRFS_I(inode
)->sequence
);
2622 btrfs_set_inode_transid(leaf
, item
, trans
->transid
);
2623 btrfs_set_inode_rdev(leaf
, item
, inode
->i_rdev
);
2624 btrfs_set_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
);
2625 btrfs_set_inode_block_group(leaf
, item
, BTRFS_I(inode
)->block_group
);
2629 * copy everything in the in-memory inode into the btree.
2631 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
2632 struct btrfs_root
*root
, struct inode
*inode
)
2634 struct btrfs_inode_item
*inode_item
;
2635 struct btrfs_path
*path
;
2636 struct extent_buffer
*leaf
;
2639 path
= btrfs_alloc_path();
2641 path
->leave_spinning
= 1;
2642 ret
= btrfs_lookup_inode(trans
, root
, path
,
2643 &BTRFS_I(inode
)->location
, 1);
2650 btrfs_unlock_up_safe(path
, 1);
2651 leaf
= path
->nodes
[0];
2652 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2653 struct btrfs_inode_item
);
2655 fill_inode_item(trans
, leaf
, inode_item
, inode
);
2656 btrfs_mark_buffer_dirty(leaf
);
2657 btrfs_set_inode_last_trans(trans
, inode
);
2660 btrfs_free_path(path
);
2666 * unlink helper that gets used here in inode.c and in the tree logging
2667 * recovery code. It remove a link in a directory with a given name, and
2668 * also drops the back refs in the inode to the directory
2670 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2671 struct btrfs_root
*root
,
2672 struct inode
*dir
, struct inode
*inode
,
2673 const char *name
, int name_len
)
2675 struct btrfs_path
*path
;
2677 struct extent_buffer
*leaf
;
2678 struct btrfs_dir_item
*di
;
2679 struct btrfs_key key
;
2682 path
= btrfs_alloc_path();
2688 path
->leave_spinning
= 1;
2689 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
2690 name
, name_len
, -1);
2699 leaf
= path
->nodes
[0];
2700 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2701 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2704 btrfs_release_path(root
, path
);
2706 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
2708 dir
->i_ino
, &index
);
2710 printk(KERN_INFO
"btrfs failed to delete reference to %.*s, "
2711 "inode %lu parent %lu\n", name_len
, name
,
2712 inode
->i_ino
, dir
->i_ino
);
2716 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
,
2717 index
, name
, name_len
, -1);
2726 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2727 btrfs_release_path(root
, path
);
2729 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
,
2731 BUG_ON(ret
!= 0 && ret
!= -ENOENT
);
2733 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
,
2738 btrfs_free_path(path
);
2742 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2743 inode
->i_ctime
= dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2744 btrfs_update_inode(trans
, root
, dir
);
2749 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2750 struct btrfs_root
*root
,
2751 struct inode
*dir
, struct inode
*inode
,
2752 const char *name
, int name_len
)
2755 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
2757 btrfs_drop_nlink(inode
);
2758 ret
= btrfs_update_inode(trans
, root
, inode
);
2764 /* helper to check if there is any shared block in the path */
2765 static int check_path_shared(struct btrfs_root
*root
,
2766 struct btrfs_path
*path
)
2768 struct extent_buffer
*eb
;
2772 for (level
= 0; level
< BTRFS_MAX_LEVEL
; level
++) {
2775 if (!path
->nodes
[level
])
2777 eb
= path
->nodes
[level
];
2778 if (!btrfs_block_can_be_shared(root
, eb
))
2780 ret
= btrfs_lookup_extent_info(NULL
, root
, eb
->start
, eb
->len
,
2789 * helper to start transaction for unlink and rmdir.
2791 * unlink and rmdir are special in btrfs, they do not always free space.
2792 * so in enospc case, we should make sure they will free space before
2793 * allowing them to use the global metadata reservation.
2795 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
,
2796 struct dentry
*dentry
)
2798 struct btrfs_trans_handle
*trans
;
2799 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2800 struct btrfs_path
*path
;
2801 struct btrfs_inode_ref
*ref
;
2802 struct btrfs_dir_item
*di
;
2803 struct inode
*inode
= dentry
->d_inode
;
2809 trans
= btrfs_start_transaction(root
, 10);
2810 if (!IS_ERR(trans
) || PTR_ERR(trans
) != -ENOSPC
)
2813 if (inode
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
2814 return ERR_PTR(-ENOSPC
);
2816 /* check if there is someone else holds reference */
2817 if (S_ISDIR(inode
->i_mode
) && atomic_read(&inode
->i_count
) > 1)
2818 return ERR_PTR(-ENOSPC
);
2820 if (atomic_read(&inode
->i_count
) > 2)
2821 return ERR_PTR(-ENOSPC
);
2823 if (xchg(&root
->fs_info
->enospc_unlink
, 1))
2824 return ERR_PTR(-ENOSPC
);
2826 path
= btrfs_alloc_path();
2828 root
->fs_info
->enospc_unlink
= 0;
2829 return ERR_PTR(-ENOMEM
);
2832 trans
= btrfs_start_transaction(root
, 0);
2833 if (IS_ERR(trans
)) {
2834 btrfs_free_path(path
);
2835 root
->fs_info
->enospc_unlink
= 0;
2839 path
->skip_locking
= 1;
2840 path
->search_commit_root
= 1;
2842 ret
= btrfs_lookup_inode(trans
, root
, path
,
2843 &BTRFS_I(dir
)->location
, 0);
2849 if (check_path_shared(root
, path
))
2854 btrfs_release_path(root
, path
);
2856 ret
= btrfs_lookup_inode(trans
, root
, path
,
2857 &BTRFS_I(inode
)->location
, 0);
2863 if (check_path_shared(root
, path
))
2868 btrfs_release_path(root
, path
);
2870 if (ret
== 0 && S_ISREG(inode
->i_mode
)) {
2871 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
2872 inode
->i_ino
, (u64
)-1, 0);
2878 if (check_path_shared(root
, path
))
2880 btrfs_release_path(root
, path
);
2888 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
2889 dentry
->d_name
.name
, dentry
->d_name
.len
, 0);
2895 if (check_path_shared(root
, path
))
2901 btrfs_release_path(root
, path
);
2903 ref
= btrfs_lookup_inode_ref(trans
, root
, path
,
2904 dentry
->d_name
.name
, dentry
->d_name
.len
,
2905 inode
->i_ino
, dir
->i_ino
, 0);
2911 if (check_path_shared(root
, path
))
2913 index
= btrfs_inode_ref_index(path
->nodes
[0], ref
);
2914 btrfs_release_path(root
, path
);
2916 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
, index
,
2917 dentry
->d_name
.name
, dentry
->d_name
.len
, 0);
2922 BUG_ON(ret
== -ENOENT
);
2923 if (check_path_shared(root
, path
))
2928 btrfs_free_path(path
);
2930 btrfs_end_transaction(trans
, root
);
2931 root
->fs_info
->enospc_unlink
= 0;
2932 return ERR_PTR(err
);
2935 trans
->block_rsv
= &root
->fs_info
->global_block_rsv
;
2939 static void __unlink_end_trans(struct btrfs_trans_handle
*trans
,
2940 struct btrfs_root
*root
)
2942 if (trans
->block_rsv
== &root
->fs_info
->global_block_rsv
) {
2943 BUG_ON(!root
->fs_info
->enospc_unlink
);
2944 root
->fs_info
->enospc_unlink
= 0;
2946 btrfs_end_transaction_throttle(trans
, root
);
2949 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
2951 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2952 struct btrfs_trans_handle
*trans
;
2953 struct inode
*inode
= dentry
->d_inode
;
2955 unsigned long nr
= 0;
2957 trans
= __unlink_start_trans(dir
, dentry
);
2959 return PTR_ERR(trans
);
2961 btrfs_set_trans_block_group(trans
, dir
);
2963 btrfs_record_unlink_dir(trans
, dir
, dentry
->d_inode
, 0);
2965 ret
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
2966 dentry
->d_name
.name
, dentry
->d_name
.len
);
2969 if (inode
->i_nlink
== 0) {
2970 ret
= btrfs_orphan_add(trans
, inode
);
2974 nr
= trans
->blocks_used
;
2975 __unlink_end_trans(trans
, root
);
2976 btrfs_btree_balance_dirty(root
, nr
);
2980 int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
2981 struct btrfs_root
*root
,
2982 struct inode
*dir
, u64 objectid
,
2983 const char *name
, int name_len
)
2985 struct btrfs_path
*path
;
2986 struct extent_buffer
*leaf
;
2987 struct btrfs_dir_item
*di
;
2988 struct btrfs_key key
;
2992 path
= btrfs_alloc_path();
2996 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
2997 name
, name_len
, -1);
2998 BUG_ON(!di
|| IS_ERR(di
));
3000 leaf
= path
->nodes
[0];
3001 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
3002 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
3003 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
3005 btrfs_release_path(root
, path
);
3007 ret
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
3008 objectid
, root
->root_key
.objectid
,
3009 dir
->i_ino
, &index
, name
, name_len
);
3011 BUG_ON(ret
!= -ENOENT
);
3012 di
= btrfs_search_dir_index_item(root
, path
, dir
->i_ino
,
3014 BUG_ON(!di
|| IS_ERR(di
));
3016 leaf
= path
->nodes
[0];
3017 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3018 btrfs_release_path(root
, path
);
3022 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
,
3023 index
, name
, name_len
, -1);
3024 BUG_ON(!di
|| IS_ERR(di
));
3026 leaf
= path
->nodes
[0];
3027 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
3028 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
3029 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
3031 btrfs_release_path(root
, path
);
3033 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
3034 dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
3035 ret
= btrfs_update_inode(trans
, root
, dir
);
3038 btrfs_free_path(path
);
3042 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
3044 struct inode
*inode
= dentry
->d_inode
;
3046 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3047 struct btrfs_trans_handle
*trans
;
3048 unsigned long nr
= 0;
3050 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
||
3051 inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
3054 trans
= __unlink_start_trans(dir
, dentry
);
3056 return PTR_ERR(trans
);
3058 btrfs_set_trans_block_group(trans
, dir
);
3060 if (unlikely(inode
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
3061 err
= btrfs_unlink_subvol(trans
, root
, dir
,
3062 BTRFS_I(inode
)->location
.objectid
,
3063 dentry
->d_name
.name
,
3064 dentry
->d_name
.len
);
3068 err
= btrfs_orphan_add(trans
, inode
);
3072 /* now the directory is empty */
3073 err
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
3074 dentry
->d_name
.name
, dentry
->d_name
.len
);
3076 btrfs_i_size_write(inode
, 0);
3078 nr
= trans
->blocks_used
;
3079 __unlink_end_trans(trans
, root
);
3080 btrfs_btree_balance_dirty(root
, nr
);
3087 * when truncating bytes in a file, it is possible to avoid reading
3088 * the leaves that contain only checksum items. This can be the
3089 * majority of the IO required to delete a large file, but it must
3090 * be done carefully.
3092 * The keys in the level just above the leaves are checked to make sure
3093 * the lowest key in a given leaf is a csum key, and starts at an offset
3094 * after the new size.
3096 * Then the key for the next leaf is checked to make sure it also has
3097 * a checksum item for the same file. If it does, we know our target leaf
3098 * contains only checksum items, and it can be safely freed without reading
3101 * This is just an optimization targeted at large files. It may do
3102 * nothing. It will return 0 unless things went badly.
3104 static noinline
int drop_csum_leaves(struct btrfs_trans_handle
*trans
,
3105 struct btrfs_root
*root
,
3106 struct btrfs_path
*path
,
3107 struct inode
*inode
, u64 new_size
)
3109 struct btrfs_key key
;
3112 struct btrfs_key found_key
;
3113 struct btrfs_key other_key
;
3114 struct btrfs_leaf_ref
*ref
;
3118 path
->lowest_level
= 1;
3119 key
.objectid
= inode
->i_ino
;
3120 key
.type
= BTRFS_CSUM_ITEM_KEY
;
3121 key
.offset
= new_size
;
3123 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3127 if (path
->nodes
[1] == NULL
) {
3132 btrfs_node_key_to_cpu(path
->nodes
[1], &found_key
, path
->slots
[1]);
3133 nritems
= btrfs_header_nritems(path
->nodes
[1]);
3138 if (path
->slots
[1] >= nritems
)
3141 /* did we find a key greater than anything we want to delete? */
3142 if (found_key
.objectid
> inode
->i_ino
||
3143 (found_key
.objectid
== inode
->i_ino
&& found_key
.type
> key
.type
))
3146 /* we check the next key in the node to make sure the leave contains
3147 * only checksum items. This comparison doesn't work if our
3148 * leaf is the last one in the node
3150 if (path
->slots
[1] + 1 >= nritems
) {
3152 /* search forward from the last key in the node, this
3153 * will bring us into the next node in the tree
3155 btrfs_node_key_to_cpu(path
->nodes
[1], &found_key
, nritems
- 1);
3157 /* unlikely, but we inc below, so check to be safe */
3158 if (found_key
.offset
== (u64
)-1)
3161 /* search_forward needs a path with locks held, do the
3162 * search again for the original key. It is possible
3163 * this will race with a balance and return a path that
3164 * we could modify, but this drop is just an optimization
3165 * and is allowed to miss some leaves.
3167 btrfs_release_path(root
, path
);
3170 /* setup a max key for search_forward */
3171 other_key
.offset
= (u64
)-1;
3172 other_key
.type
= key
.type
;
3173 other_key
.objectid
= key
.objectid
;
3175 path
->keep_locks
= 1;
3176 ret
= btrfs_search_forward(root
, &found_key
, &other_key
,
3178 path
->keep_locks
= 0;
3179 if (ret
|| found_key
.objectid
!= key
.objectid
||
3180 found_key
.type
!= key
.type
) {
3185 key
.offset
= found_key
.offset
;
3186 btrfs_release_path(root
, path
);
3191 /* we know there's one more slot after us in the tree,
3192 * read that key so we can verify it is also a checksum item
3194 btrfs_node_key_to_cpu(path
->nodes
[1], &other_key
, path
->slots
[1] + 1);
3196 if (found_key
.objectid
< inode
->i_ino
)
3199 if (found_key
.type
!= key
.type
|| found_key
.offset
< new_size
)
3203 * if the key for the next leaf isn't a csum key from this objectid,
3204 * we can't be sure there aren't good items inside this leaf.
3207 if (other_key
.objectid
!= inode
->i_ino
|| other_key
.type
!= key
.type
)
3210 leaf_start
= btrfs_node_blockptr(path
->nodes
[1], path
->slots
[1]);
3211 leaf_gen
= btrfs_node_ptr_generation(path
->nodes
[1], path
->slots
[1]);
3213 * it is safe to delete this leaf, it contains only
3214 * csum items from this inode at an offset >= new_size
3216 ret
= btrfs_del_leaf(trans
, root
, path
, leaf_start
);
3219 if (root
->ref_cows
&& leaf_gen
< trans
->transid
) {
3220 ref
= btrfs_alloc_leaf_ref(root
, 0);
3222 ref
->root_gen
= root
->root_key
.offset
;
3223 ref
->bytenr
= leaf_start
;
3225 ref
->generation
= leaf_gen
;
3228 btrfs_sort_leaf_ref(ref
);
3230 ret
= btrfs_add_leaf_ref(root
, ref
, 0);
3232 btrfs_free_leaf_ref(root
, ref
);
3238 btrfs_release_path(root
, path
);
3240 if (other_key
.objectid
== inode
->i_ino
&&
3241 other_key
.type
== key
.type
&& other_key
.offset
> key
.offset
) {
3242 key
.offset
= other_key
.offset
;
3248 /* fixup any changes we've made to the path */
3249 path
->lowest_level
= 0;
3250 path
->keep_locks
= 0;
3251 btrfs_release_path(root
, path
);
3258 * this can truncate away extent items, csum items and directory items.
3259 * It starts at a high offset and removes keys until it can't find
3260 * any higher than new_size
3262 * csum items that cross the new i_size are truncated to the new size
3265 * min_type is the minimum key type to truncate down to. If set to 0, this
3266 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3268 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
3269 struct btrfs_root
*root
,
3270 struct inode
*inode
,
3271 u64 new_size
, u32 min_type
)
3273 struct btrfs_path
*path
;
3274 struct extent_buffer
*leaf
;
3275 struct btrfs_file_extent_item
*fi
;
3276 struct btrfs_key key
;
3277 struct btrfs_key found_key
;
3278 u64 extent_start
= 0;
3279 u64 extent_num_bytes
= 0;
3280 u64 extent_offset
= 0;
3282 u64 mask
= root
->sectorsize
- 1;
3283 u32 found_type
= (u8
)-1;
3286 int pending_del_nr
= 0;
3287 int pending_del_slot
= 0;
3288 int extent_type
= -1;
3293 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
3295 if (root
->ref_cows
|| root
== root
->fs_info
->tree_root
)
3296 btrfs_drop_extent_cache(inode
, new_size
& (~mask
), (u64
)-1, 0);
3298 path
= btrfs_alloc_path();
3302 key
.objectid
= inode
->i_ino
;
3303 key
.offset
= (u64
)-1;
3307 path
->leave_spinning
= 1;
3308 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3315 /* there are no items in the tree for us to truncate, we're
3318 if (path
->slots
[0] == 0)
3325 leaf
= path
->nodes
[0];
3326 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3327 found_type
= btrfs_key_type(&found_key
);
3330 if (found_key
.objectid
!= inode
->i_ino
)
3333 if (found_type
< min_type
)
3336 item_end
= found_key
.offset
;
3337 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
3338 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
3339 struct btrfs_file_extent_item
);
3340 extent_type
= btrfs_file_extent_type(leaf
, fi
);
3341 encoding
= btrfs_file_extent_compression(leaf
, fi
);
3342 encoding
|= btrfs_file_extent_encryption(leaf
, fi
);
3343 encoding
|= btrfs_file_extent_other_encoding(leaf
, fi
);
3345 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
3347 btrfs_file_extent_num_bytes(leaf
, fi
);
3348 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
3349 item_end
+= btrfs_file_extent_inline_len(leaf
,
3354 if (found_type
> min_type
) {
3357 if (item_end
< new_size
)
3359 if (found_key
.offset
>= new_size
)
3365 /* FIXME, shrink the extent if the ref count is only 1 */
3366 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
3369 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
3371 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
3372 if (!del_item
&& !encoding
) {
3373 u64 orig_num_bytes
=
3374 btrfs_file_extent_num_bytes(leaf
, fi
);
3375 extent_num_bytes
= new_size
-
3376 found_key
.offset
+ root
->sectorsize
- 1;
3377 extent_num_bytes
= extent_num_bytes
&
3378 ~((u64
)root
->sectorsize
- 1);
3379 btrfs_set_file_extent_num_bytes(leaf
, fi
,
3381 num_dec
= (orig_num_bytes
-
3383 if (root
->ref_cows
&& extent_start
!= 0)
3384 inode_sub_bytes(inode
, num_dec
);
3385 btrfs_mark_buffer_dirty(leaf
);
3388 btrfs_file_extent_disk_num_bytes(leaf
,
3390 extent_offset
= found_key
.offset
-
3391 btrfs_file_extent_offset(leaf
, fi
);
3393 /* FIXME blocksize != 4096 */
3394 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
3395 if (extent_start
!= 0) {
3398 inode_sub_bytes(inode
, num_dec
);
3401 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
3403 * we can't truncate inline items that have had
3407 btrfs_file_extent_compression(leaf
, fi
) == 0 &&
3408 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
3409 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
3410 u32 size
= new_size
- found_key
.offset
;
3412 if (root
->ref_cows
) {
3413 inode_sub_bytes(inode
, item_end
+ 1 -
3417 btrfs_file_extent_calc_inline_size(size
);
3418 ret
= btrfs_truncate_item(trans
, root
, path
,
3421 } else if (root
->ref_cows
) {
3422 inode_sub_bytes(inode
, item_end
+ 1 -
3428 if (!pending_del_nr
) {
3429 /* no pending yet, add ourselves */
3430 pending_del_slot
= path
->slots
[0];
3432 } else if (pending_del_nr
&&
3433 path
->slots
[0] + 1 == pending_del_slot
) {
3434 /* hop on the pending chunk */
3436 pending_del_slot
= path
->slots
[0];
3443 if (found_extent
&& (root
->ref_cows
||
3444 root
== root
->fs_info
->tree_root
)) {
3445 btrfs_set_path_blocking(path
);
3446 ret
= btrfs_free_extent(trans
, root
, extent_start
,
3447 extent_num_bytes
, 0,
3448 btrfs_header_owner(leaf
),
3449 inode
->i_ino
, extent_offset
);
3453 if (found_type
== BTRFS_INODE_ITEM_KEY
)
3456 if (path
->slots
[0] == 0 ||
3457 path
->slots
[0] != pending_del_slot
) {
3458 if (root
->ref_cows
) {
3462 if (pending_del_nr
) {
3463 ret
= btrfs_del_items(trans
, root
, path
,
3469 btrfs_release_path(root
, path
);
3476 if (pending_del_nr
) {
3477 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
3481 btrfs_free_path(path
);
3486 * taken from block_truncate_page, but does cow as it zeros out
3487 * any bytes left in the last page in the file.
3489 static int btrfs_truncate_page(struct address_space
*mapping
, loff_t from
)
3491 struct inode
*inode
= mapping
->host
;
3492 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3493 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3494 struct btrfs_ordered_extent
*ordered
;
3495 struct extent_state
*cached_state
= NULL
;
3497 u32 blocksize
= root
->sectorsize
;
3498 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
3499 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3505 if ((offset
& (blocksize
- 1)) == 0)
3507 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
3513 page
= grab_cache_page(mapping
, index
);
3515 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
3519 page_start
= page_offset(page
);
3520 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
3522 if (!PageUptodate(page
)) {
3523 ret
= btrfs_readpage(NULL
, page
);
3525 if (page
->mapping
!= mapping
) {
3527 page_cache_release(page
);
3530 if (!PageUptodate(page
)) {
3535 wait_on_page_writeback(page
);
3537 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
,
3539 set_page_extent_mapped(page
);
3541 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
3543 unlock_extent_cached(io_tree
, page_start
, page_end
,
3544 &cached_state
, GFP_NOFS
);
3546 page_cache_release(page
);
3547 btrfs_start_ordered_extent(inode
, ordered
, 1);
3548 btrfs_put_ordered_extent(ordered
);
3552 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
3553 EXTENT_DIRTY
| EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
,
3554 0, 0, &cached_state
, GFP_NOFS
);
3556 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
3559 unlock_extent_cached(io_tree
, page_start
, page_end
,
3560 &cached_state
, GFP_NOFS
);
3565 if (offset
!= PAGE_CACHE_SIZE
) {
3567 memset(kaddr
+ offset
, 0, PAGE_CACHE_SIZE
- offset
);
3568 flush_dcache_page(page
);
3571 ClearPageChecked(page
);
3572 set_page_dirty(page
);
3573 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
,
3578 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
3580 page_cache_release(page
);
3586 * This function puts in dummy file extents for the area we're creating a hole
3587 * for. So if we are truncating this file to a larger size we need to insert
3588 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3589 * the range between oldsize and size
3591 int btrfs_cont_expand(struct inode
*inode
, loff_t oldsize
, loff_t size
)
3593 struct btrfs_trans_handle
*trans
;
3594 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3595 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3596 struct extent_map
*em
= NULL
;
3597 struct extent_state
*cached_state
= NULL
;
3598 u64 mask
= root
->sectorsize
- 1;
3599 u64 hole_start
= (oldsize
+ mask
) & ~mask
;
3600 u64 block_end
= (size
+ mask
) & ~mask
;
3606 if (size
<= hole_start
)
3610 struct btrfs_ordered_extent
*ordered
;
3611 btrfs_wait_ordered_range(inode
, hole_start
,
3612 block_end
- hole_start
);
3613 lock_extent_bits(io_tree
, hole_start
, block_end
- 1, 0,
3614 &cached_state
, GFP_NOFS
);
3615 ordered
= btrfs_lookup_ordered_extent(inode
, hole_start
);
3618 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1,
3619 &cached_state
, GFP_NOFS
);
3620 btrfs_put_ordered_extent(ordered
);
3623 cur_offset
= hole_start
;
3625 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
3626 block_end
- cur_offset
, 0);
3627 BUG_ON(IS_ERR(em
) || !em
);
3628 last_byte
= min(extent_map_end(em
), block_end
);
3629 last_byte
= (last_byte
+ mask
) & ~mask
;
3630 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
3632 hole_size
= last_byte
- cur_offset
;
3634 trans
= btrfs_start_transaction(root
, 2);
3635 if (IS_ERR(trans
)) {
3636 err
= PTR_ERR(trans
);
3639 btrfs_set_trans_block_group(trans
, inode
);
3641 err
= btrfs_drop_extents(trans
, inode
, cur_offset
,
3642 cur_offset
+ hole_size
,
3647 err
= btrfs_insert_file_extent(trans
, root
,
3648 inode
->i_ino
, cur_offset
, 0,
3649 0, hole_size
, 0, hole_size
,
3654 btrfs_drop_extent_cache(inode
, hole_start
,
3657 btrfs_end_transaction(trans
, root
);
3659 free_extent_map(em
);
3661 cur_offset
= last_byte
;
3662 if (cur_offset
>= block_end
)
3666 free_extent_map(em
);
3667 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
,
3672 static int btrfs_setsize(struct inode
*inode
, loff_t newsize
)
3674 loff_t oldsize
= i_size_read(inode
);
3677 if (newsize
== oldsize
)
3680 if (newsize
> oldsize
) {
3681 i_size_write(inode
, newsize
);
3682 btrfs_ordered_update_i_size(inode
, i_size_read(inode
), NULL
);
3683 truncate_pagecache(inode
, oldsize
, newsize
);
3684 ret
= btrfs_cont_expand(inode
, oldsize
, newsize
);
3686 btrfs_setsize(inode
, oldsize
);
3690 mark_inode_dirty(inode
);
3694 * We're truncating a file that used to have good data down to
3695 * zero. Make sure it gets into the ordered flush list so that
3696 * any new writes get down to disk quickly.
3699 BTRFS_I(inode
)->ordered_data_close
= 1;
3701 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3702 truncate_setsize(inode
, newsize
);
3703 ret
= btrfs_truncate(inode
);
3709 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
3711 struct inode
*inode
= dentry
->d_inode
;
3712 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3715 if (btrfs_root_readonly(root
))
3718 err
= inode_change_ok(inode
, attr
);
3722 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
3723 err
= btrfs_setsize(inode
, attr
->ia_size
);
3728 if (attr
->ia_valid
) {
3729 setattr_copy(inode
, attr
);
3730 mark_inode_dirty(inode
);
3732 if (attr
->ia_valid
& ATTR_MODE
)
3733 err
= btrfs_acl_chmod(inode
);
3739 void btrfs_evict_inode(struct inode
*inode
)
3741 struct btrfs_trans_handle
*trans
;
3742 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3746 trace_btrfs_inode_evict(inode
);
3748 truncate_inode_pages(&inode
->i_data
, 0);
3749 if (inode
->i_nlink
&& (btrfs_root_refs(&root
->root_item
) != 0 ||
3750 root
== root
->fs_info
->tree_root
))
3753 if (is_bad_inode(inode
)) {
3754 btrfs_orphan_del(NULL
, inode
);
3757 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3758 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
3760 if (root
->fs_info
->log_root_recovering
) {
3761 BUG_ON(!list_empty(&BTRFS_I(inode
)->i_orphan
));
3765 if (inode
->i_nlink
> 0) {
3766 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0);
3770 btrfs_i_size_write(inode
, 0);
3773 trans
= btrfs_start_transaction(root
, 0);
3774 BUG_ON(IS_ERR(trans
));
3775 btrfs_set_trans_block_group(trans
, inode
);
3776 trans
->block_rsv
= root
->orphan_block_rsv
;
3778 ret
= btrfs_block_rsv_check(trans
, root
,
3779 root
->orphan_block_rsv
, 0, 5);
3781 BUG_ON(ret
!= -EAGAIN
);
3782 ret
= btrfs_commit_transaction(trans
, root
);
3787 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
3791 nr
= trans
->blocks_used
;
3792 btrfs_end_transaction(trans
, root
);
3794 btrfs_btree_balance_dirty(root
, nr
);
3799 ret
= btrfs_orphan_del(trans
, inode
);
3803 nr
= trans
->blocks_used
;
3804 btrfs_end_transaction(trans
, root
);
3805 btrfs_btree_balance_dirty(root
, nr
);
3807 end_writeback(inode
);
3812 * this returns the key found in the dir entry in the location pointer.
3813 * If no dir entries were found, location->objectid is 0.
3815 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
3816 struct btrfs_key
*location
)
3818 const char *name
= dentry
->d_name
.name
;
3819 int namelen
= dentry
->d_name
.len
;
3820 struct btrfs_dir_item
*di
;
3821 struct btrfs_path
*path
;
3822 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3825 path
= btrfs_alloc_path();
3828 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dir
->i_ino
, name
,
3833 if (!di
|| IS_ERR(di
))
3836 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
3838 btrfs_free_path(path
);
3841 location
->objectid
= 0;
3846 * when we hit a tree root in a directory, the btrfs part of the inode
3847 * needs to be changed to reflect the root directory of the tree root. This
3848 * is kind of like crossing a mount point.
3850 static int fixup_tree_root_location(struct btrfs_root
*root
,
3852 struct dentry
*dentry
,
3853 struct btrfs_key
*location
,
3854 struct btrfs_root
**sub_root
)
3856 struct btrfs_path
*path
;
3857 struct btrfs_root
*new_root
;
3858 struct btrfs_root_ref
*ref
;
3859 struct extent_buffer
*leaf
;
3863 path
= btrfs_alloc_path();
3870 ret
= btrfs_find_root_ref(root
->fs_info
->tree_root
, path
,
3871 BTRFS_I(dir
)->root
->root_key
.objectid
,
3872 location
->objectid
);
3879 leaf
= path
->nodes
[0];
3880 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
3881 if (btrfs_root_ref_dirid(leaf
, ref
) != dir
->i_ino
||
3882 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
3885 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
3886 (unsigned long)(ref
+ 1),
3887 dentry
->d_name
.len
);
3891 btrfs_release_path(root
->fs_info
->tree_root
, path
);
3893 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, location
);
3894 if (IS_ERR(new_root
)) {
3895 err
= PTR_ERR(new_root
);
3899 if (btrfs_root_refs(&new_root
->root_item
) == 0) {
3904 *sub_root
= new_root
;
3905 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
3906 location
->type
= BTRFS_INODE_ITEM_KEY
;
3907 location
->offset
= 0;
3910 btrfs_free_path(path
);
3914 static void inode_tree_add(struct inode
*inode
)
3916 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3917 struct btrfs_inode
*entry
;
3919 struct rb_node
*parent
;
3921 p
= &root
->inode_tree
.rb_node
;
3924 if (inode_unhashed(inode
))
3927 spin_lock(&root
->inode_lock
);
3930 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
3932 if (inode
->i_ino
< entry
->vfs_inode
.i_ino
)
3933 p
= &parent
->rb_left
;
3934 else if (inode
->i_ino
> entry
->vfs_inode
.i_ino
)
3935 p
= &parent
->rb_right
;
3937 WARN_ON(!(entry
->vfs_inode
.i_state
&
3938 (I_WILL_FREE
| I_FREEING
)));
3939 rb_erase(parent
, &root
->inode_tree
);
3940 RB_CLEAR_NODE(parent
);
3941 spin_unlock(&root
->inode_lock
);
3945 rb_link_node(&BTRFS_I(inode
)->rb_node
, parent
, p
);
3946 rb_insert_color(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3947 spin_unlock(&root
->inode_lock
);
3950 static void inode_tree_del(struct inode
*inode
)
3952 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3955 spin_lock(&root
->inode_lock
);
3956 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
3957 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3958 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
3959 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
3961 spin_unlock(&root
->inode_lock
);
3964 * Free space cache has inodes in the tree root, but the tree root has a
3965 * root_refs of 0, so this could end up dropping the tree root as a
3966 * snapshot, so we need the extra !root->fs_info->tree_root check to
3967 * make sure we don't drop it.
3969 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0 &&
3970 root
!= root
->fs_info
->tree_root
) {
3971 synchronize_srcu(&root
->fs_info
->subvol_srcu
);
3972 spin_lock(&root
->inode_lock
);
3973 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
3974 spin_unlock(&root
->inode_lock
);
3976 btrfs_add_dead_root(root
);
3980 int btrfs_invalidate_inodes(struct btrfs_root
*root
)
3982 struct rb_node
*node
;
3983 struct rb_node
*prev
;
3984 struct btrfs_inode
*entry
;
3985 struct inode
*inode
;
3988 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
3990 spin_lock(&root
->inode_lock
);
3992 node
= root
->inode_tree
.rb_node
;
3996 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
3998 if (objectid
< entry
->vfs_inode
.i_ino
)
3999 node
= node
->rb_left
;
4000 else if (objectid
> entry
->vfs_inode
.i_ino
)
4001 node
= node
->rb_right
;
4007 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
4008 if (objectid
<= entry
->vfs_inode
.i_ino
) {
4012 prev
= rb_next(prev
);
4016 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
4017 objectid
= entry
->vfs_inode
.i_ino
+ 1;
4018 inode
= igrab(&entry
->vfs_inode
);
4020 spin_unlock(&root
->inode_lock
);
4021 if (atomic_read(&inode
->i_count
) > 1)
4022 d_prune_aliases(inode
);
4024 * btrfs_drop_inode will have it removed from
4025 * the inode cache when its usage count
4030 spin_lock(&root
->inode_lock
);
4034 if (cond_resched_lock(&root
->inode_lock
))
4037 node
= rb_next(node
);
4039 spin_unlock(&root
->inode_lock
);
4043 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
4045 struct btrfs_iget_args
*args
= p
;
4046 inode
->i_ino
= args
->ino
;
4047 BTRFS_I(inode
)->root
= args
->root
;
4048 btrfs_set_inode_space_info(args
->root
, inode
);
4052 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
4054 struct btrfs_iget_args
*args
= opaque
;
4055 return args
->ino
== inode
->i_ino
&&
4056 args
->root
== BTRFS_I(inode
)->root
;
4059 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
4061 struct btrfs_root
*root
)
4063 struct inode
*inode
;
4064 struct btrfs_iget_args args
;
4065 args
.ino
= objectid
;
4068 inode
= iget5_locked(s
, objectid
, btrfs_find_actor
,
4069 btrfs_init_locked_inode
,
4074 /* Get an inode object given its location and corresponding root.
4075 * Returns in *is_new if the inode was read from disk
4077 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
4078 struct btrfs_root
*root
, int *new)
4080 struct inode
*inode
;
4082 inode
= btrfs_iget_locked(s
, location
->objectid
, root
);
4084 return ERR_PTR(-ENOMEM
);
4086 if (inode
->i_state
& I_NEW
) {
4087 BTRFS_I(inode
)->root
= root
;
4088 memcpy(&BTRFS_I(inode
)->location
, location
, sizeof(*location
));
4089 btrfs_read_locked_inode(inode
);
4090 inode_tree_add(inode
);
4091 unlock_new_inode(inode
);
4099 static struct inode
*new_simple_dir(struct super_block
*s
,
4100 struct btrfs_key
*key
,
4101 struct btrfs_root
*root
)
4103 struct inode
*inode
= new_inode(s
);
4106 return ERR_PTR(-ENOMEM
);
4108 BTRFS_I(inode
)->root
= root
;
4109 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
4110 BTRFS_I(inode
)->dummy_inode
= 1;
4112 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
4113 inode
->i_op
= &simple_dir_inode_operations
;
4114 inode
->i_fop
= &simple_dir_operations
;
4115 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
4116 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
4121 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
4123 struct inode
*inode
;
4124 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4125 struct btrfs_root
*sub_root
= root
;
4126 struct btrfs_key location
;
4130 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
4131 return ERR_PTR(-ENAMETOOLONG
);
4133 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
4136 return ERR_PTR(ret
);
4138 if (location
.objectid
== 0)
4141 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
4142 inode
= btrfs_iget(dir
->i_sb
, &location
, root
, NULL
);
4146 BUG_ON(location
.type
!= BTRFS_ROOT_ITEM_KEY
);
4148 index
= srcu_read_lock(&root
->fs_info
->subvol_srcu
);
4149 ret
= fixup_tree_root_location(root
, dir
, dentry
,
4150 &location
, &sub_root
);
4153 inode
= ERR_PTR(ret
);
4155 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
4157 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, NULL
);
4159 srcu_read_unlock(&root
->fs_info
->subvol_srcu
, index
);
4161 if (!IS_ERR(inode
) && root
!= sub_root
) {
4162 down_read(&root
->fs_info
->cleanup_work_sem
);
4163 if (!(inode
->i_sb
->s_flags
& MS_RDONLY
))
4164 ret
= btrfs_orphan_cleanup(sub_root
);
4165 up_read(&root
->fs_info
->cleanup_work_sem
);
4167 inode
= ERR_PTR(ret
);
4173 static int btrfs_dentry_delete(const struct dentry
*dentry
)
4175 struct btrfs_root
*root
;
4177 if (!dentry
->d_inode
&& !IS_ROOT(dentry
))
4178 dentry
= dentry
->d_parent
;
4180 if (dentry
->d_inode
) {
4181 root
= BTRFS_I(dentry
->d_inode
)->root
;
4182 if (btrfs_root_refs(&root
->root_item
) == 0)
4188 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
4189 struct nameidata
*nd
)
4191 struct inode
*inode
;
4193 inode
= btrfs_lookup_dentry(dir
, dentry
);
4195 return ERR_CAST(inode
);
4197 return d_splice_alias(inode
, dentry
);
4200 static unsigned char btrfs_filetype_table
[] = {
4201 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
4204 static int btrfs_real_readdir(struct file
*filp
, void *dirent
,
4207 struct inode
*inode
= filp
->f_dentry
->d_inode
;
4208 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4209 struct btrfs_item
*item
;
4210 struct btrfs_dir_item
*di
;
4211 struct btrfs_key key
;
4212 struct btrfs_key found_key
;
4213 struct btrfs_path
*path
;
4216 struct extent_buffer
*leaf
;
4219 unsigned char d_type
;
4224 int key_type
= BTRFS_DIR_INDEX_KEY
;
4229 /* FIXME, use a real flag for deciding about the key type */
4230 if (root
->fs_info
->tree_root
== root
)
4231 key_type
= BTRFS_DIR_ITEM_KEY
;
4233 /* special case for "." */
4234 if (filp
->f_pos
== 0) {
4235 over
= filldir(dirent
, ".", 1,
4242 /* special case for .., just use the back ref */
4243 if (filp
->f_pos
== 1) {
4244 u64 pino
= parent_ino(filp
->f_path
.dentry
);
4245 over
= filldir(dirent
, "..", 2,
4251 path
= btrfs_alloc_path();
4254 btrfs_set_key_type(&key
, key_type
);
4255 key
.offset
= filp
->f_pos
;
4256 key
.objectid
= inode
->i_ino
;
4258 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4264 leaf
= path
->nodes
[0];
4265 nritems
= btrfs_header_nritems(leaf
);
4266 slot
= path
->slots
[0];
4267 if (advance
|| slot
>= nritems
) {
4268 if (slot
>= nritems
- 1) {
4269 ret
= btrfs_next_leaf(root
, path
);
4272 leaf
= path
->nodes
[0];
4273 nritems
= btrfs_header_nritems(leaf
);
4274 slot
= path
->slots
[0];
4282 item
= btrfs_item_nr(leaf
, slot
);
4283 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
4285 if (found_key
.objectid
!= key
.objectid
)
4287 if (btrfs_key_type(&found_key
) != key_type
)
4289 if (found_key
.offset
< filp
->f_pos
)
4292 filp
->f_pos
= found_key
.offset
;
4294 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
4296 di_total
= btrfs_item_size(leaf
, item
);
4298 while (di_cur
< di_total
) {
4299 struct btrfs_key location
;
4301 if (verify_dir_item(root
, leaf
, di
))
4304 name_len
= btrfs_dir_name_len(leaf
, di
);
4305 if (name_len
<= sizeof(tmp_name
)) {
4306 name_ptr
= tmp_name
;
4308 name_ptr
= kmalloc(name_len
, GFP_NOFS
);
4314 read_extent_buffer(leaf
, name_ptr
,
4315 (unsigned long)(di
+ 1), name_len
);
4317 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
4318 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
4320 /* is this a reference to our own snapshot? If so
4323 if (location
.type
== BTRFS_ROOT_ITEM_KEY
&&
4324 location
.objectid
== root
->root_key
.objectid
) {
4328 over
= filldir(dirent
, name_ptr
, name_len
,
4329 found_key
.offset
, location
.objectid
,
4333 if (name_ptr
!= tmp_name
)
4338 di_len
= btrfs_dir_name_len(leaf
, di
) +
4339 btrfs_dir_data_len(leaf
, di
) + sizeof(*di
);
4341 di
= (struct btrfs_dir_item
*)((char *)di
+ di_len
);
4345 /* Reached end of directory/root. Bump pos past the last item. */
4346 if (key_type
== BTRFS_DIR_INDEX_KEY
)
4348 * 32-bit glibc will use getdents64, but then strtol -
4349 * so the last number we can serve is this.
4351 filp
->f_pos
= 0x7fffffff;
4357 btrfs_free_path(path
);
4361 int btrfs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
4363 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4364 struct btrfs_trans_handle
*trans
;
4366 bool nolock
= false;
4368 if (BTRFS_I(inode
)->dummy_inode
)
4372 nolock
= (root
->fs_info
->closing
&& root
== root
->fs_info
->tree_root
);
4374 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
4376 trans
= btrfs_join_transaction_nolock(root
, 1);
4378 trans
= btrfs_join_transaction(root
, 1);
4380 return PTR_ERR(trans
);
4381 btrfs_set_trans_block_group(trans
, inode
);
4383 ret
= btrfs_end_transaction_nolock(trans
, root
);
4385 ret
= btrfs_commit_transaction(trans
, root
);
4391 * This is somewhat expensive, updating the tree every time the
4392 * inode changes. But, it is most likely to find the inode in cache.
4393 * FIXME, needs more benchmarking...there are no reasons other than performance
4394 * to keep or drop this code.
4396 void btrfs_dirty_inode(struct inode
*inode
)
4398 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4399 struct btrfs_trans_handle
*trans
;
4402 if (BTRFS_I(inode
)->dummy_inode
)
4405 trans
= btrfs_join_transaction(root
, 1);
4406 BUG_ON(IS_ERR(trans
));
4407 btrfs_set_trans_block_group(trans
, inode
);
4409 ret
= btrfs_update_inode(trans
, root
, inode
);
4410 if (ret
&& ret
== -ENOSPC
) {
4411 /* whoops, lets try again with the full transaction */
4412 btrfs_end_transaction(trans
, root
);
4413 trans
= btrfs_start_transaction(root
, 1);
4414 if (IS_ERR(trans
)) {
4415 if (printk_ratelimit()) {
4416 printk(KERN_ERR
"btrfs: fail to "
4417 "dirty inode %lu error %ld\n",
4418 inode
->i_ino
, PTR_ERR(trans
));
4422 btrfs_set_trans_block_group(trans
, inode
);
4424 ret
= btrfs_update_inode(trans
, root
, inode
);
4426 if (printk_ratelimit()) {
4427 printk(KERN_ERR
"btrfs: fail to "
4428 "dirty inode %lu error %d\n",
4433 btrfs_end_transaction(trans
, root
);
4437 * find the highest existing sequence number in a directory
4438 * and then set the in-memory index_cnt variable to reflect
4439 * free sequence numbers
4441 static int btrfs_set_inode_index_count(struct inode
*inode
)
4443 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4444 struct btrfs_key key
, found_key
;
4445 struct btrfs_path
*path
;
4446 struct extent_buffer
*leaf
;
4449 key
.objectid
= inode
->i_ino
;
4450 btrfs_set_key_type(&key
, BTRFS_DIR_INDEX_KEY
);
4451 key
.offset
= (u64
)-1;
4453 path
= btrfs_alloc_path();
4457 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4460 /* FIXME: we should be able to handle this */
4466 * MAGIC NUMBER EXPLANATION:
4467 * since we search a directory based on f_pos we have to start at 2
4468 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4469 * else has to start at 2
4471 if (path
->slots
[0] == 0) {
4472 BTRFS_I(inode
)->index_cnt
= 2;
4478 leaf
= path
->nodes
[0];
4479 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4481 if (found_key
.objectid
!= inode
->i_ino
||
4482 btrfs_key_type(&found_key
) != BTRFS_DIR_INDEX_KEY
) {
4483 BTRFS_I(inode
)->index_cnt
= 2;
4487 BTRFS_I(inode
)->index_cnt
= found_key
.offset
+ 1;
4489 btrfs_free_path(path
);
4494 * helper to find a free sequence number in a given directory. This current
4495 * code is very simple, later versions will do smarter things in the btree
4497 int btrfs_set_inode_index(struct inode
*dir
, u64
*index
)
4501 if (BTRFS_I(dir
)->index_cnt
== (u64
)-1) {
4502 ret
= btrfs_set_inode_index_count(dir
);
4507 *index
= BTRFS_I(dir
)->index_cnt
;
4508 BTRFS_I(dir
)->index_cnt
++;
4513 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
4514 struct btrfs_root
*root
,
4516 const char *name
, int name_len
,
4517 u64 ref_objectid
, u64 objectid
,
4518 u64 alloc_hint
, int mode
, u64
*index
)
4520 struct inode
*inode
;
4521 struct btrfs_inode_item
*inode_item
;
4522 struct btrfs_key
*location
;
4523 struct btrfs_path
*path
;
4524 struct btrfs_inode_ref
*ref
;
4525 struct btrfs_key key
[2];
4531 path
= btrfs_alloc_path();
4534 inode
= new_inode(root
->fs_info
->sb
);
4536 return ERR_PTR(-ENOMEM
);
4539 trace_btrfs_inode_request(dir
);
4541 ret
= btrfs_set_inode_index(dir
, index
);
4544 return ERR_PTR(ret
);
4548 * index_cnt is ignored for everything but a dir,
4549 * btrfs_get_inode_index_count has an explanation for the magic
4552 BTRFS_I(inode
)->index_cnt
= 2;
4553 BTRFS_I(inode
)->root
= root
;
4554 BTRFS_I(inode
)->generation
= trans
->transid
;
4555 inode
->i_generation
= BTRFS_I(inode
)->generation
;
4556 btrfs_set_inode_space_info(root
, inode
);
4562 BTRFS_I(inode
)->block_group
=
4563 btrfs_find_block_group(root
, 0, alloc_hint
, owner
);
4565 key
[0].objectid
= objectid
;
4566 btrfs_set_key_type(&key
[0], BTRFS_INODE_ITEM_KEY
);
4569 key
[1].objectid
= objectid
;
4570 btrfs_set_key_type(&key
[1], BTRFS_INODE_REF_KEY
);
4571 key
[1].offset
= ref_objectid
;
4573 sizes
[0] = sizeof(struct btrfs_inode_item
);
4574 sizes
[1] = name_len
+ sizeof(*ref
);
4576 path
->leave_spinning
= 1;
4577 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, 2);
4581 inode_init_owner(inode
, dir
, mode
);
4582 inode
->i_ino
= objectid
;
4583 inode_set_bytes(inode
, 0);
4584 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
4585 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4586 struct btrfs_inode_item
);
4587 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
4589 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
4590 struct btrfs_inode_ref
);
4591 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
4592 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
4593 ptr
= (unsigned long)(ref
+ 1);
4594 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
4596 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4597 btrfs_free_path(path
);
4599 location
= &BTRFS_I(inode
)->location
;
4600 location
->objectid
= objectid
;
4601 location
->offset
= 0;
4602 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
4604 btrfs_inherit_iflags(inode
, dir
);
4606 if ((mode
& S_IFREG
)) {
4607 if (btrfs_test_opt(root
, NODATASUM
))
4608 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
4609 if (btrfs_test_opt(root
, NODATACOW
) ||
4610 (BTRFS_I(dir
)->flags
& BTRFS_INODE_NODATACOW
))
4611 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
4614 insert_inode_hash(inode
);
4615 inode_tree_add(inode
);
4617 trace_btrfs_inode_new(inode
);
4622 BTRFS_I(dir
)->index_cnt
--;
4623 btrfs_free_path(path
);
4625 return ERR_PTR(ret
);
4628 static inline u8
btrfs_inode_type(struct inode
*inode
)
4630 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
4634 * utility function to add 'inode' into 'parent_inode' with
4635 * a give name and a given sequence number.
4636 * if 'add_backref' is true, also insert a backref from the
4637 * inode to the parent directory.
4639 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
4640 struct inode
*parent_inode
, struct inode
*inode
,
4641 const char *name
, int name_len
, int add_backref
, u64 index
)
4644 struct btrfs_key key
;
4645 struct btrfs_root
*root
= BTRFS_I(parent_inode
)->root
;
4647 if (unlikely(inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4648 memcpy(&key
, &BTRFS_I(inode
)->root
->root_key
, sizeof(key
));
4650 key
.objectid
= inode
->i_ino
;
4651 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
4655 if (unlikely(inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4656 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
4657 key
.objectid
, root
->root_key
.objectid
,
4658 parent_inode
->i_ino
,
4659 index
, name
, name_len
);
4660 } else if (add_backref
) {
4661 ret
= btrfs_insert_inode_ref(trans
, root
,
4662 name
, name_len
, inode
->i_ino
,
4663 parent_inode
->i_ino
, index
);
4667 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
4668 parent_inode
->i_ino
, &key
,
4669 btrfs_inode_type(inode
), index
);
4672 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
4674 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
4675 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
4680 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
4681 struct inode
*dir
, struct dentry
*dentry
,
4682 struct inode
*inode
, int backref
, u64 index
)
4684 int err
= btrfs_add_link(trans
, dir
, inode
,
4685 dentry
->d_name
.name
, dentry
->d_name
.len
,
4688 d_instantiate(dentry
, inode
);
4696 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
4697 int mode
, dev_t rdev
)
4699 struct btrfs_trans_handle
*trans
;
4700 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4701 struct inode
*inode
= NULL
;
4705 unsigned long nr
= 0;
4708 if (!new_valid_dev(rdev
))
4711 err
= btrfs_find_free_objectid(NULL
, root
, dir
->i_ino
, &objectid
);
4716 * 2 for inode item and ref
4718 * 1 for xattr if selinux is on
4720 trans
= btrfs_start_transaction(root
, 5);
4722 return PTR_ERR(trans
);
4724 btrfs_set_trans_block_group(trans
, dir
);
4726 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4727 dentry
->d_name
.len
, dir
->i_ino
, objectid
,
4728 BTRFS_I(dir
)->block_group
, mode
, &index
);
4729 err
= PTR_ERR(inode
);
4733 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
4739 btrfs_set_trans_block_group(trans
, inode
);
4740 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
4744 inode
->i_op
= &btrfs_special_inode_operations
;
4745 init_special_inode(inode
, inode
->i_mode
, rdev
);
4746 btrfs_update_inode(trans
, root
, inode
);
4748 btrfs_update_inode_block_group(trans
, inode
);
4749 btrfs_update_inode_block_group(trans
, dir
);
4751 nr
= trans
->blocks_used
;
4752 btrfs_end_transaction_throttle(trans
, root
);
4753 btrfs_btree_balance_dirty(root
, nr
);
4755 inode_dec_link_count(inode
);
4761 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
4762 int mode
, struct nameidata
*nd
)
4764 struct btrfs_trans_handle
*trans
;
4765 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4766 struct inode
*inode
= NULL
;
4769 unsigned long nr
= 0;
4773 err
= btrfs_find_free_objectid(NULL
, root
, dir
->i_ino
, &objectid
);
4777 * 2 for inode item and ref
4779 * 1 for xattr if selinux is on
4781 trans
= btrfs_start_transaction(root
, 5);
4783 return PTR_ERR(trans
);
4785 btrfs_set_trans_block_group(trans
, dir
);
4787 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4788 dentry
->d_name
.len
, dir
->i_ino
, objectid
,
4789 BTRFS_I(dir
)->block_group
, mode
, &index
);
4790 err
= PTR_ERR(inode
);
4794 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
4800 btrfs_set_trans_block_group(trans
, inode
);
4801 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
4805 inode
->i_mapping
->a_ops
= &btrfs_aops
;
4806 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
4807 inode
->i_fop
= &btrfs_file_operations
;
4808 inode
->i_op
= &btrfs_file_inode_operations
;
4809 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
4811 btrfs_update_inode_block_group(trans
, inode
);
4812 btrfs_update_inode_block_group(trans
, dir
);
4814 nr
= trans
->blocks_used
;
4815 btrfs_end_transaction_throttle(trans
, root
);
4817 inode_dec_link_count(inode
);
4820 btrfs_btree_balance_dirty(root
, nr
);
4824 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
4825 struct dentry
*dentry
)
4827 struct btrfs_trans_handle
*trans
;
4828 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4829 struct inode
*inode
= old_dentry
->d_inode
;
4831 unsigned long nr
= 0;
4835 /* do not allow sys_link's with other subvols of the same device */
4836 if (root
->objectid
!= BTRFS_I(inode
)->root
->objectid
)
4839 if (inode
->i_nlink
== ~0U)
4842 btrfs_inc_nlink(inode
);
4843 inode
->i_ctime
= CURRENT_TIME
;
4845 err
= btrfs_set_inode_index(dir
, &index
);
4850 * 2 items for inode and inode ref
4851 * 2 items for dir items
4852 * 1 item for parent inode
4854 trans
= btrfs_start_transaction(root
, 5);
4855 if (IS_ERR(trans
)) {
4856 err
= PTR_ERR(trans
);
4860 btrfs_set_trans_block_group(trans
, dir
);
4863 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 1, index
);
4868 struct dentry
*parent
= dget_parent(dentry
);
4869 btrfs_update_inode_block_group(trans
, dir
);
4870 err
= btrfs_update_inode(trans
, root
, inode
);
4872 btrfs_log_new_name(trans
, inode
, NULL
, parent
);
4876 nr
= trans
->blocks_used
;
4877 btrfs_end_transaction_throttle(trans
, root
);
4880 inode_dec_link_count(inode
);
4883 btrfs_btree_balance_dirty(root
, nr
);
4887 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
4889 struct inode
*inode
= NULL
;
4890 struct btrfs_trans_handle
*trans
;
4891 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4893 int drop_on_err
= 0;
4896 unsigned long nr
= 1;
4898 err
= btrfs_find_free_objectid(NULL
, root
, dir
->i_ino
, &objectid
);
4903 * 2 items for inode and ref
4904 * 2 items for dir items
4905 * 1 for xattr if selinux is on
4907 trans
= btrfs_start_transaction(root
, 5);
4909 return PTR_ERR(trans
);
4910 btrfs_set_trans_block_group(trans
, dir
);
4912 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4913 dentry
->d_name
.len
, dir
->i_ino
, objectid
,
4914 BTRFS_I(dir
)->block_group
, S_IFDIR
| mode
,
4916 if (IS_ERR(inode
)) {
4917 err
= PTR_ERR(inode
);
4923 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
4927 inode
->i_op
= &btrfs_dir_inode_operations
;
4928 inode
->i_fop
= &btrfs_dir_file_operations
;
4929 btrfs_set_trans_block_group(trans
, inode
);
4931 btrfs_i_size_write(inode
, 0);
4932 err
= btrfs_update_inode(trans
, root
, inode
);
4936 err
= btrfs_add_link(trans
, dir
, inode
, dentry
->d_name
.name
,
4937 dentry
->d_name
.len
, 0, index
);
4941 d_instantiate(dentry
, inode
);
4943 btrfs_update_inode_block_group(trans
, inode
);
4944 btrfs_update_inode_block_group(trans
, dir
);
4947 nr
= trans
->blocks_used
;
4948 btrfs_end_transaction_throttle(trans
, root
);
4951 btrfs_btree_balance_dirty(root
, nr
);
4955 /* helper for btfs_get_extent. Given an existing extent in the tree,
4956 * and an extent that you want to insert, deal with overlap and insert
4957 * the new extent into the tree.
4959 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
4960 struct extent_map
*existing
,
4961 struct extent_map
*em
,
4962 u64 map_start
, u64 map_len
)
4966 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
4967 start_diff
= map_start
- em
->start
;
4968 em
->start
= map_start
;
4970 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
4971 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
4972 em
->block_start
+= start_diff
;
4973 em
->block_len
-= start_diff
;
4975 return add_extent_mapping(em_tree
, em
);
4978 static noinline
int uncompress_inline(struct btrfs_path
*path
,
4979 struct inode
*inode
, struct page
*page
,
4980 size_t pg_offset
, u64 extent_offset
,
4981 struct btrfs_file_extent_item
*item
)
4984 struct extent_buffer
*leaf
= path
->nodes
[0];
4987 unsigned long inline_size
;
4991 WARN_ON(pg_offset
!= 0);
4992 compress_type
= btrfs_file_extent_compression(leaf
, item
);
4993 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
4994 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
4995 btrfs_item_nr(leaf
, path
->slots
[0]));
4996 tmp
= kmalloc(inline_size
, GFP_NOFS
);
4997 ptr
= btrfs_file_extent_inline_start(item
);
4999 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
5001 max_size
= min_t(unsigned long, PAGE_CACHE_SIZE
, max_size
);
5002 ret
= btrfs_decompress(compress_type
, tmp
, page
,
5003 extent_offset
, inline_size
, max_size
);
5005 char *kaddr
= kmap_atomic(page
, KM_USER0
);
5006 unsigned long copy_size
= min_t(u64
,
5007 PAGE_CACHE_SIZE
- pg_offset
,
5008 max_size
- extent_offset
);
5009 memset(kaddr
+ pg_offset
, 0, copy_size
);
5010 kunmap_atomic(kaddr
, KM_USER0
);
5017 * a bit scary, this does extent mapping from logical file offset to the disk.
5018 * the ugly parts come from merging extents from the disk with the in-ram
5019 * representation. This gets more complex because of the data=ordered code,
5020 * where the in-ram extents might be locked pending data=ordered completion.
5022 * This also copies inline extents directly into the page.
5025 struct extent_map
*btrfs_get_extent(struct inode
*inode
, struct page
*page
,
5026 size_t pg_offset
, u64 start
, u64 len
,
5032 u64 extent_start
= 0;
5034 u64 objectid
= inode
->i_ino
;
5036 struct btrfs_path
*path
= NULL
;
5037 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5038 struct btrfs_file_extent_item
*item
;
5039 struct extent_buffer
*leaf
;
5040 struct btrfs_key found_key
;
5041 struct extent_map
*em
= NULL
;
5042 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
5043 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
5044 struct btrfs_trans_handle
*trans
= NULL
;
5048 read_lock(&em_tree
->lock
);
5049 em
= lookup_extent_mapping(em_tree
, start
, len
);
5051 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5052 read_unlock(&em_tree
->lock
);
5055 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
5056 free_extent_map(em
);
5057 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
5058 free_extent_map(em
);
5062 em
= alloc_extent_map(GFP_NOFS
);
5067 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5068 em
->start
= EXTENT_MAP_HOLE
;
5069 em
->orig_start
= EXTENT_MAP_HOLE
;
5071 em
->block_len
= (u64
)-1;
5074 path
= btrfs_alloc_path();
5078 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
5079 objectid
, start
, trans
!= NULL
);
5086 if (path
->slots
[0] == 0)
5091 leaf
= path
->nodes
[0];
5092 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
5093 struct btrfs_file_extent_item
);
5094 /* are we inside the extent that was found? */
5095 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5096 found_type
= btrfs_key_type(&found_key
);
5097 if (found_key
.objectid
!= objectid
||
5098 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
5102 found_type
= btrfs_file_extent_type(leaf
, item
);
5103 extent_start
= found_key
.offset
;
5104 compress_type
= btrfs_file_extent_compression(leaf
, item
);
5105 if (found_type
== BTRFS_FILE_EXTENT_REG
||
5106 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5107 extent_end
= extent_start
+
5108 btrfs_file_extent_num_bytes(leaf
, item
);
5109 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
5111 size
= btrfs_file_extent_inline_len(leaf
, item
);
5112 extent_end
= (extent_start
+ size
+ root
->sectorsize
- 1) &
5113 ~((u64
)root
->sectorsize
- 1);
5116 if (start
>= extent_end
) {
5118 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
5119 ret
= btrfs_next_leaf(root
, path
);
5126 leaf
= path
->nodes
[0];
5128 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5129 if (found_key
.objectid
!= objectid
||
5130 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5132 if (start
+ len
<= found_key
.offset
)
5135 em
->len
= found_key
.offset
- start
;
5139 if (found_type
== BTRFS_FILE_EXTENT_REG
||
5140 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5141 em
->start
= extent_start
;
5142 em
->len
= extent_end
- extent_start
;
5143 em
->orig_start
= extent_start
-
5144 btrfs_file_extent_offset(leaf
, item
);
5145 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, item
);
5147 em
->block_start
= EXTENT_MAP_HOLE
;
5150 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
5151 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
5152 em
->compress_type
= compress_type
;
5153 em
->block_start
= bytenr
;
5154 em
->block_len
= btrfs_file_extent_disk_num_bytes(leaf
,
5157 bytenr
+= btrfs_file_extent_offset(leaf
, item
);
5158 em
->block_start
= bytenr
;
5159 em
->block_len
= em
->len
;
5160 if (found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
5161 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
5164 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
5168 size_t extent_offset
;
5171 em
->block_start
= EXTENT_MAP_INLINE
;
5172 if (!page
|| create
) {
5173 em
->start
= extent_start
;
5174 em
->len
= extent_end
- extent_start
;
5178 size
= btrfs_file_extent_inline_len(leaf
, item
);
5179 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
5180 copy_size
= min_t(u64
, PAGE_CACHE_SIZE
- pg_offset
,
5181 size
- extent_offset
);
5182 em
->start
= extent_start
+ extent_offset
;
5183 em
->len
= (copy_size
+ root
->sectorsize
- 1) &
5184 ~((u64
)root
->sectorsize
- 1);
5185 em
->orig_start
= EXTENT_MAP_INLINE
;
5186 if (compress_type
) {
5187 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
5188 em
->compress_type
= compress_type
;
5190 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
5191 if (create
== 0 && !PageUptodate(page
)) {
5192 if (btrfs_file_extent_compression(leaf
, item
) !=
5193 BTRFS_COMPRESS_NONE
) {
5194 ret
= uncompress_inline(path
, inode
, page
,
5196 extent_offset
, item
);
5200 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
5202 if (pg_offset
+ copy_size
< PAGE_CACHE_SIZE
) {
5203 memset(map
+ pg_offset
+ copy_size
, 0,
5204 PAGE_CACHE_SIZE
- pg_offset
-
5209 flush_dcache_page(page
);
5210 } else if (create
&& PageUptodate(page
)) {
5214 free_extent_map(em
);
5216 btrfs_release_path(root
, path
);
5217 trans
= btrfs_join_transaction(root
, 1);
5219 return ERR_CAST(trans
);
5223 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
5226 btrfs_mark_buffer_dirty(leaf
);
5228 set_extent_uptodate(io_tree
, em
->start
,
5229 extent_map_end(em
) - 1, GFP_NOFS
);
5232 printk(KERN_ERR
"btrfs unknown found_type %d\n", found_type
);
5239 em
->block_start
= EXTENT_MAP_HOLE
;
5240 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
5242 btrfs_release_path(root
, path
);
5243 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
5244 printk(KERN_ERR
"Btrfs: bad extent! em: [%llu %llu] passed "
5245 "[%llu %llu]\n", (unsigned long long)em
->start
,
5246 (unsigned long long)em
->len
,
5247 (unsigned long long)start
,
5248 (unsigned long long)len
);
5254 write_lock(&em_tree
->lock
);
5255 ret
= add_extent_mapping(em_tree
, em
);
5256 /* it is possible that someone inserted the extent into the tree
5257 * while we had the lock dropped. It is also possible that
5258 * an overlapping map exists in the tree
5260 if (ret
== -EEXIST
) {
5261 struct extent_map
*existing
;
5265 existing
= lookup_extent_mapping(em_tree
, start
, len
);
5266 if (existing
&& (existing
->start
> start
||
5267 existing
->start
+ existing
->len
<= start
)) {
5268 free_extent_map(existing
);
5272 existing
= lookup_extent_mapping(em_tree
, em
->start
,
5275 err
= merge_extent_mapping(em_tree
, existing
,
5278 free_extent_map(existing
);
5280 free_extent_map(em
);
5285 free_extent_map(em
);
5289 free_extent_map(em
);
5294 write_unlock(&em_tree
->lock
);
5297 trace_btrfs_get_extent(root
, em
);
5300 btrfs_free_path(path
);
5302 ret
= btrfs_end_transaction(trans
, root
);
5307 free_extent_map(em
);
5308 return ERR_PTR(err
);
5313 struct extent_map
*btrfs_get_extent_fiemap(struct inode
*inode
, struct page
*page
,
5314 size_t pg_offset
, u64 start
, u64 len
,
5317 struct extent_map
*em
;
5318 struct extent_map
*hole_em
= NULL
;
5319 u64 range_start
= start
;
5325 em
= btrfs_get_extent(inode
, page
, pg_offset
, start
, len
, create
);
5330 * if our em maps to a hole, there might
5331 * actually be delalloc bytes behind it
5333 if (em
->block_start
!= EXTENT_MAP_HOLE
)
5339 /* check to see if we've wrapped (len == -1 or similar) */
5348 /* ok, we didn't find anything, lets look for delalloc */
5349 found
= count_range_bits(&BTRFS_I(inode
)->io_tree
, &range_start
,
5350 end
, len
, EXTENT_DELALLOC
, 1);
5351 found_end
= range_start
+ found
;
5352 if (found_end
< range_start
)
5353 found_end
= (u64
)-1;
5356 * we didn't find anything useful, return
5357 * the original results from get_extent()
5359 if (range_start
> end
|| found_end
<= start
) {
5365 /* adjust the range_start to make sure it doesn't
5366 * go backwards from the start they passed in
5368 range_start
= max(start
,range_start
);
5369 found
= found_end
- range_start
;
5372 u64 hole_start
= start
;
5375 em
= alloc_extent_map(GFP_NOFS
);
5381 * when btrfs_get_extent can't find anything it
5382 * returns one huge hole
5384 * make sure what it found really fits our range, and
5385 * adjust to make sure it is based on the start from
5389 u64 calc_end
= extent_map_end(hole_em
);
5391 if (calc_end
<= start
|| (hole_em
->start
> end
)) {
5392 free_extent_map(hole_em
);
5395 hole_start
= max(hole_em
->start
, start
);
5396 hole_len
= calc_end
- hole_start
;
5400 if (hole_em
&& range_start
> hole_start
) {
5401 /* our hole starts before our delalloc, so we
5402 * have to return just the parts of the hole
5403 * that go until the delalloc starts
5405 em
->len
= min(hole_len
,
5406 range_start
- hole_start
);
5407 em
->start
= hole_start
;
5408 em
->orig_start
= hole_start
;
5410 * don't adjust block start at all,
5411 * it is fixed at EXTENT_MAP_HOLE
5413 em
->block_start
= hole_em
->block_start
;
5414 em
->block_len
= hole_len
;
5416 em
->start
= range_start
;
5418 em
->orig_start
= range_start
;
5419 em
->block_start
= EXTENT_MAP_DELALLOC
;
5420 em
->block_len
= found
;
5422 } else if (hole_em
) {
5427 free_extent_map(hole_em
);
5429 free_extent_map(em
);
5430 return ERR_PTR(err
);
5435 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
5438 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5439 struct btrfs_trans_handle
*trans
;
5440 struct extent_map
*em
;
5441 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
5442 struct btrfs_key ins
;
5446 btrfs_drop_extent_cache(inode
, start
, start
+ len
- 1, 0);
5448 trans
= btrfs_join_transaction(root
, 0);
5450 return ERR_CAST(trans
);
5452 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5454 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
5455 ret
= btrfs_reserve_extent(trans
, root
, len
, root
->sectorsize
, 0,
5456 alloc_hint
, (u64
)-1, &ins
, 1);
5462 em
= alloc_extent_map(GFP_NOFS
);
5464 em
= ERR_PTR(-ENOMEM
);
5469 em
->orig_start
= em
->start
;
5470 em
->len
= ins
.offset
;
5472 em
->block_start
= ins
.objectid
;
5473 em
->block_len
= ins
.offset
;
5474 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5475 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5478 write_lock(&em_tree
->lock
);
5479 ret
= add_extent_mapping(em_tree
, em
);
5480 write_unlock(&em_tree
->lock
);
5483 btrfs_drop_extent_cache(inode
, start
, start
+ em
->len
- 1, 0);
5486 ret
= btrfs_add_ordered_extent_dio(inode
, start
, ins
.objectid
,
5487 ins
.offset
, ins
.offset
, 0);
5489 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
);
5493 btrfs_end_transaction(trans
, root
);
5498 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5499 * block must be cow'd
5501 static noinline
int can_nocow_odirect(struct btrfs_trans_handle
*trans
,
5502 struct inode
*inode
, u64 offset
, u64 len
)
5504 struct btrfs_path
*path
;
5506 struct extent_buffer
*leaf
;
5507 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5508 struct btrfs_file_extent_item
*fi
;
5509 struct btrfs_key key
;
5517 path
= btrfs_alloc_path();
5521 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
5526 slot
= path
->slots
[0];
5529 /* can't find the item, must cow */
5536 leaf
= path
->nodes
[0];
5537 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5538 if (key
.objectid
!= inode
->i_ino
||
5539 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
5540 /* not our file or wrong item type, must cow */
5544 if (key
.offset
> offset
) {
5545 /* Wrong offset, must cow */
5549 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
5550 found_type
= btrfs_file_extent_type(leaf
, fi
);
5551 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
5552 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
5553 /* not a regular extent, must cow */
5556 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
5557 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
5559 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
5560 if (extent_end
< offset
+ len
) {
5561 /* extent doesn't include our full range, must cow */
5565 if (btrfs_extent_readonly(root
, disk_bytenr
))
5569 * look for other files referencing this extent, if we
5570 * find any we must cow
5572 if (btrfs_cross_ref_exist(trans
, root
, inode
->i_ino
,
5573 key
.offset
- backref_offset
, disk_bytenr
))
5577 * adjust disk_bytenr and num_bytes to cover just the bytes
5578 * in this extent we are about to write. If there
5579 * are any csums in that range we have to cow in order
5580 * to keep the csums correct
5582 disk_bytenr
+= backref_offset
;
5583 disk_bytenr
+= offset
- key
.offset
;
5584 num_bytes
= min(offset
+ len
, extent_end
) - offset
;
5585 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
5588 * all of the above have passed, it is safe to overwrite this extent
5593 btrfs_free_path(path
);
5597 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
5598 struct buffer_head
*bh_result
, int create
)
5600 struct extent_map
*em
;
5601 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5602 u64 start
= iblock
<< inode
->i_blkbits
;
5603 u64 len
= bh_result
->b_size
;
5604 struct btrfs_trans_handle
*trans
;
5606 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
5611 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5612 * io. INLINE is special, and we could probably kludge it in here, but
5613 * it's still buffered so for safety lets just fall back to the generic
5616 * For COMPRESSED we _have_ to read the entire extent in so we can
5617 * decompress it, so there will be buffering required no matter what we
5618 * do, so go ahead and fallback to buffered.
5620 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5621 * to buffered IO. Don't blame me, this is the price we pay for using
5624 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
5625 em
->block_start
== EXTENT_MAP_INLINE
) {
5626 free_extent_map(em
);
5630 /* Just a good old fashioned hole, return */
5631 if (!create
&& (em
->block_start
== EXTENT_MAP_HOLE
||
5632 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
5633 free_extent_map(em
);
5634 /* DIO will do one hole at a time, so just unlock a sector */
5635 unlock_extent(&BTRFS_I(inode
)->io_tree
, start
,
5636 start
+ root
->sectorsize
- 1, GFP_NOFS
);
5641 * We don't allocate a new extent in the following cases
5643 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5645 * 2) The extent is marked as PREALLOC. We're good to go here and can
5646 * just use the extent.
5650 len
= em
->len
- (start
- em
->start
);
5654 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
5655 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
5656 em
->block_start
!= EXTENT_MAP_HOLE
)) {
5661 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
5662 type
= BTRFS_ORDERED_PREALLOC
;
5664 type
= BTRFS_ORDERED_NOCOW
;
5665 len
= min(len
, em
->len
- (start
- em
->start
));
5666 block_start
= em
->block_start
+ (start
- em
->start
);
5669 * we're not going to log anything, but we do need
5670 * to make sure the current transaction stays open
5671 * while we look for nocow cross refs
5673 trans
= btrfs_join_transaction(root
, 0);
5677 if (can_nocow_odirect(trans
, inode
, start
, len
) == 1) {
5678 ret
= btrfs_add_ordered_extent_dio(inode
, start
,
5679 block_start
, len
, len
, type
);
5680 btrfs_end_transaction(trans
, root
);
5682 free_extent_map(em
);
5687 btrfs_end_transaction(trans
, root
);
5691 * this will cow the extent, reset the len in case we changed
5694 len
= bh_result
->b_size
;
5695 free_extent_map(em
);
5696 em
= btrfs_new_extent_direct(inode
, start
, len
);
5699 len
= min(len
, em
->len
- (start
- em
->start
));
5701 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1,
5702 EXTENT_LOCKED
| EXTENT_DELALLOC
| EXTENT_DIRTY
, 1,
5705 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
5707 bh_result
->b_size
= len
;
5708 bh_result
->b_bdev
= em
->bdev
;
5709 set_buffer_mapped(bh_result
);
5710 if (create
&& !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
5711 set_buffer_new(bh_result
);
5713 free_extent_map(em
);
5718 struct btrfs_dio_private
{
5719 struct inode
*inode
;
5726 /* number of bios pending for this dio */
5727 atomic_t pending_bios
;
5732 struct bio
*orig_bio
;
5735 static void btrfs_endio_direct_read(struct bio
*bio
, int err
)
5737 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5738 struct bio_vec
*bvec_end
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
5739 struct bio_vec
*bvec
= bio
->bi_io_vec
;
5740 struct inode
*inode
= dip
->inode
;
5741 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5743 u32
*private = dip
->csums
;
5745 start
= dip
->logical_offset
;
5747 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
5748 struct page
*page
= bvec
->bv_page
;
5751 unsigned long flags
;
5753 local_irq_save(flags
);
5754 kaddr
= kmap_atomic(page
, KM_IRQ0
);
5755 csum
= btrfs_csum_data(root
, kaddr
+ bvec
->bv_offset
,
5756 csum
, bvec
->bv_len
);
5757 btrfs_csum_final(csum
, (char *)&csum
);
5758 kunmap_atomic(kaddr
, KM_IRQ0
);
5759 local_irq_restore(flags
);
5761 flush_dcache_page(bvec
->bv_page
);
5762 if (csum
!= *private) {
5763 printk(KERN_ERR
"btrfs csum failed ino %lu off"
5764 " %llu csum %u private %u\n",
5765 inode
->i_ino
, (unsigned long long)start
,
5771 start
+= bvec
->bv_len
;
5774 } while (bvec
<= bvec_end
);
5776 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
5777 dip
->logical_offset
+ dip
->bytes
- 1, GFP_NOFS
);
5778 bio
->bi_private
= dip
->private;
5783 /* If we had a csum failure make sure to clear the uptodate flag */
5785 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
5786 dio_end_io(bio
, err
);
5789 static void btrfs_endio_direct_write(struct bio
*bio
, int err
)
5791 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5792 struct inode
*inode
= dip
->inode
;
5793 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5794 struct btrfs_trans_handle
*trans
;
5795 struct btrfs_ordered_extent
*ordered
= NULL
;
5796 struct extent_state
*cached_state
= NULL
;
5797 u64 ordered_offset
= dip
->logical_offset
;
5798 u64 ordered_bytes
= dip
->bytes
;
5804 ret
= btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
5812 trans
= btrfs_join_transaction(root
, 1);
5813 if (IS_ERR(trans
)) {
5817 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5819 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
)) {
5820 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered
);
5822 ret
= btrfs_update_inode(trans
, root
, inode
);
5827 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, ordered
->file_offset
,
5828 ordered
->file_offset
+ ordered
->len
- 1, 0,
5829 &cached_state
, GFP_NOFS
);
5831 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
)) {
5832 ret
= btrfs_mark_extent_written(trans
, inode
,
5833 ordered
->file_offset
,
5834 ordered
->file_offset
+
5841 ret
= insert_reserved_file_extent(trans
, inode
,
5842 ordered
->file_offset
,
5848 BTRFS_FILE_EXTENT_REG
);
5849 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
5850 ordered
->file_offset
, ordered
->len
);
5858 add_pending_csums(trans
, inode
, ordered
->file_offset
, &ordered
->list
);
5859 btrfs_ordered_update_i_size(inode
, 0, ordered
);
5860 btrfs_update_inode(trans
, root
, inode
);
5862 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, ordered
->file_offset
,
5863 ordered
->file_offset
+ ordered
->len
- 1,
5864 &cached_state
, GFP_NOFS
);
5866 btrfs_delalloc_release_metadata(inode
, ordered
->len
);
5867 btrfs_end_transaction(trans
, root
);
5868 ordered_offset
= ordered
->file_offset
+ ordered
->len
;
5869 btrfs_put_ordered_extent(ordered
);
5870 btrfs_put_ordered_extent(ordered
);
5874 * our bio might span multiple ordered extents. If we haven't
5875 * completed the accounting for the whole dio, go back and try again
5877 if (ordered_offset
< dip
->logical_offset
+ dip
->bytes
) {
5878 ordered_bytes
= dip
->logical_offset
+ dip
->bytes
-
5883 bio
->bi_private
= dip
->private;
5888 /* If we had an error make sure to clear the uptodate flag */
5890 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
5891 dio_end_io(bio
, err
);
5894 static int __btrfs_submit_bio_start_direct_io(struct inode
*inode
, int rw
,
5895 struct bio
*bio
, int mirror_num
,
5896 unsigned long bio_flags
, u64 offset
)
5899 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5900 ret
= btrfs_csum_one_bio(root
, inode
, bio
, offset
, 1);
5905 static void btrfs_end_dio_bio(struct bio
*bio
, int err
)
5907 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5910 printk(KERN_ERR
"btrfs direct IO failed ino %lu rw %lu "
5911 "sector %#Lx len %u err no %d\n",
5912 dip
->inode
->i_ino
, bio
->bi_rw
,
5913 (unsigned long long)bio
->bi_sector
, bio
->bi_size
, err
);
5917 * before atomic variable goto zero, we must make sure
5918 * dip->errors is perceived to be set.
5920 smp_mb__before_atomic_dec();
5923 /* if there are more bios still pending for this dio, just exit */
5924 if (!atomic_dec_and_test(&dip
->pending_bios
))
5928 bio_io_error(dip
->orig_bio
);
5930 set_bit(BIO_UPTODATE
, &dip
->orig_bio
->bi_flags
);
5931 bio_endio(dip
->orig_bio
, 0);
5937 static struct bio
*btrfs_dio_bio_alloc(struct block_device
*bdev
,
5938 u64 first_sector
, gfp_t gfp_flags
)
5940 int nr_vecs
= bio_get_nr_vecs(bdev
);
5941 return btrfs_bio_alloc(bdev
, first_sector
, nr_vecs
, gfp_flags
);
5944 static inline int __btrfs_submit_dio_bio(struct bio
*bio
, struct inode
*inode
,
5945 int rw
, u64 file_offset
, int skip_sum
,
5948 int write
= rw
& REQ_WRITE
;
5949 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5953 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
5957 if (write
&& !skip_sum
) {
5958 ret
= btrfs_wq_submit_bio(root
->fs_info
,
5959 inode
, rw
, bio
, 0, 0,
5961 __btrfs_submit_bio_start_direct_io
,
5962 __btrfs_submit_bio_done
);
5964 } else if (!skip_sum
) {
5965 ret
= btrfs_lookup_bio_sums_dio(root
, inode
, bio
,
5966 file_offset
, csums
);
5971 ret
= btrfs_map_bio(root
, rw
, bio
, 0, 1);
5977 static int btrfs_submit_direct_hook(int rw
, struct btrfs_dio_private
*dip
,
5980 struct inode
*inode
= dip
->inode
;
5981 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5982 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
5984 struct bio
*orig_bio
= dip
->orig_bio
;
5985 struct bio_vec
*bvec
= orig_bio
->bi_io_vec
;
5986 u64 start_sector
= orig_bio
->bi_sector
;
5987 u64 file_offset
= dip
->logical_offset
;
5991 u32
*csums
= dip
->csums
;
5993 int write
= rw
& REQ_WRITE
;
5995 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
, start_sector
, GFP_NOFS
);
5998 bio
->bi_private
= dip
;
5999 bio
->bi_end_io
= btrfs_end_dio_bio
;
6000 atomic_inc(&dip
->pending_bios
);
6002 map_length
= orig_bio
->bi_size
;
6003 ret
= btrfs_map_block(map_tree
, READ
, start_sector
<< 9,
6004 &map_length
, NULL
, 0);
6010 while (bvec
<= (orig_bio
->bi_io_vec
+ orig_bio
->bi_vcnt
- 1)) {
6011 if (unlikely(map_length
< submit_len
+ bvec
->bv_len
||
6012 bio_add_page(bio
, bvec
->bv_page
, bvec
->bv_len
,
6013 bvec
->bv_offset
) < bvec
->bv_len
)) {
6015 * inc the count before we submit the bio so
6016 * we know the end IO handler won't happen before
6017 * we inc the count. Otherwise, the dip might get freed
6018 * before we're done setting it up
6020 atomic_inc(&dip
->pending_bios
);
6021 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
,
6022 file_offset
, skip_sum
,
6026 atomic_dec(&dip
->pending_bios
);
6030 /* Write's use the ordered csums */
6031 if (!write
&& !skip_sum
)
6032 csums
= csums
+ nr_pages
;
6033 start_sector
+= submit_len
>> 9;
6034 file_offset
+= submit_len
;
6039 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
,
6040 start_sector
, GFP_NOFS
);
6043 bio
->bi_private
= dip
;
6044 bio
->bi_end_io
= btrfs_end_dio_bio
;
6046 map_length
= orig_bio
->bi_size
;
6047 ret
= btrfs_map_block(map_tree
, READ
, start_sector
<< 9,
6048 &map_length
, NULL
, 0);
6054 submit_len
+= bvec
->bv_len
;
6060 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
, file_offset
, skip_sum
,
6069 * before atomic variable goto zero, we must
6070 * make sure dip->errors is perceived to be set.
6072 smp_mb__before_atomic_dec();
6073 if (atomic_dec_and_test(&dip
->pending_bios
))
6074 bio_io_error(dip
->orig_bio
);
6076 /* bio_end_io() will handle error, so we needn't return it */
6080 static void btrfs_submit_direct(int rw
, struct bio
*bio
, struct inode
*inode
,
6083 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6084 struct btrfs_dio_private
*dip
;
6085 struct bio_vec
*bvec
= bio
->bi_io_vec
;
6087 int write
= rw
& REQ_WRITE
;
6090 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
6092 dip
= kmalloc(sizeof(*dip
), GFP_NOFS
);
6099 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6100 if (!write
&& !skip_sum
) {
6101 dip
->csums
= kmalloc(sizeof(u32
) * bio
->bi_vcnt
, GFP_NOFS
);
6109 dip
->private = bio
->bi_private
;
6111 dip
->logical_offset
= file_offset
;
6115 dip
->bytes
+= bvec
->bv_len
;
6117 } while (bvec
<= (bio
->bi_io_vec
+ bio
->bi_vcnt
- 1));
6119 dip
->disk_bytenr
= (u64
)bio
->bi_sector
<< 9;
6120 bio
->bi_private
= dip
;
6122 dip
->orig_bio
= bio
;
6123 atomic_set(&dip
->pending_bios
, 0);
6126 bio
->bi_end_io
= btrfs_endio_direct_write
;
6128 bio
->bi_end_io
= btrfs_endio_direct_read
;
6130 ret
= btrfs_submit_direct_hook(rw
, dip
, skip_sum
);
6135 * If this is a write, we need to clean up the reserved space and kill
6136 * the ordered extent.
6139 struct btrfs_ordered_extent
*ordered
;
6140 ordered
= btrfs_lookup_ordered_extent(inode
, file_offset
);
6141 if (!test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
) &&
6142 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
))
6143 btrfs_free_reserved_extent(root
, ordered
->start
,
6145 btrfs_put_ordered_extent(ordered
);
6146 btrfs_put_ordered_extent(ordered
);
6148 bio_endio(bio
, ret
);
6151 static ssize_t
check_direct_IO(struct btrfs_root
*root
, int rw
, struct kiocb
*iocb
,
6152 const struct iovec
*iov
, loff_t offset
,
6153 unsigned long nr_segs
)
6158 unsigned blocksize_mask
= root
->sectorsize
- 1;
6159 ssize_t retval
= -EINVAL
;
6160 loff_t end
= offset
;
6162 if (offset
& blocksize_mask
)
6165 /* Check the memory alignment. Blocks cannot straddle pages */
6166 for (seg
= 0; seg
< nr_segs
; seg
++) {
6167 addr
= (unsigned long)iov
[seg
].iov_base
;
6168 size
= iov
[seg
].iov_len
;
6170 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
))
6177 static ssize_t
btrfs_direct_IO(int rw
, struct kiocb
*iocb
,
6178 const struct iovec
*iov
, loff_t offset
,
6179 unsigned long nr_segs
)
6181 struct file
*file
= iocb
->ki_filp
;
6182 struct inode
*inode
= file
->f_mapping
->host
;
6183 struct btrfs_ordered_extent
*ordered
;
6184 struct extent_state
*cached_state
= NULL
;
6185 u64 lockstart
, lockend
;
6187 int writing
= rw
& WRITE
;
6189 size_t count
= iov_length(iov
, nr_segs
);
6191 if (check_direct_IO(BTRFS_I(inode
)->root
, rw
, iocb
, iov
,
6197 lockend
= offset
+ count
- 1;
6200 ret
= btrfs_delalloc_reserve_space(inode
, count
);
6206 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6207 0, &cached_state
, GFP_NOFS
);
6209 * We're concerned with the entire range that we're going to be
6210 * doing DIO to, so we need to make sure theres no ordered
6211 * extents in this range.
6213 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
,
6214 lockend
- lockstart
+ 1);
6217 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6218 &cached_state
, GFP_NOFS
);
6219 btrfs_start_ordered_extent(inode
, ordered
, 1);
6220 btrfs_put_ordered_extent(ordered
);
6225 * we don't use btrfs_set_extent_delalloc because we don't want
6226 * the dirty or uptodate bits
6229 write_bits
= EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
;
6230 ret
= set_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6231 EXTENT_DELALLOC
, 0, NULL
, &cached_state
,
6234 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
6235 lockend
, EXTENT_LOCKED
| write_bits
,
6236 1, 0, &cached_state
, GFP_NOFS
);
6241 free_extent_state(cached_state
);
6242 cached_state
= NULL
;
6244 ret
= __blockdev_direct_IO(rw
, iocb
, inode
,
6245 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
,
6246 iov
, offset
, nr_segs
, btrfs_get_blocks_direct
, NULL
,
6247 btrfs_submit_direct
, 0);
6249 if (ret
< 0 && ret
!= -EIOCBQUEUED
) {
6250 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, offset
,
6251 offset
+ iov_length(iov
, nr_segs
) - 1,
6252 EXTENT_LOCKED
| write_bits
, 1, 0,
6253 &cached_state
, GFP_NOFS
);
6254 } else if (ret
>= 0 && ret
< iov_length(iov
, nr_segs
)) {
6256 * We're falling back to buffered, unlock the section we didn't
6259 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, offset
+ ret
,
6260 offset
+ iov_length(iov
, nr_segs
) - 1,
6261 EXTENT_LOCKED
| write_bits
, 1, 0,
6262 &cached_state
, GFP_NOFS
);
6265 free_extent_state(cached_state
);
6269 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
6270 __u64 start
, __u64 len
)
6272 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent_fiemap
);
6275 int btrfs_readpage(struct file
*file
, struct page
*page
)
6277 struct extent_io_tree
*tree
;
6278 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6279 return extent_read_full_page(tree
, page
, btrfs_get_extent
);
6282 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
6284 struct extent_io_tree
*tree
;
6287 if (current
->flags
& PF_MEMALLOC
) {
6288 redirty_page_for_writepage(wbc
, page
);
6292 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6293 return extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
6296 int btrfs_writepages(struct address_space
*mapping
,
6297 struct writeback_control
*wbc
)
6299 struct extent_io_tree
*tree
;
6301 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
6302 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
6306 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
6307 struct list_head
*pages
, unsigned nr_pages
)
6309 struct extent_io_tree
*tree
;
6310 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
6311 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
6314 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
6316 struct extent_io_tree
*tree
;
6317 struct extent_map_tree
*map
;
6320 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6321 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
6322 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
6324 ClearPagePrivate(page
);
6325 set_page_private(page
, 0);
6326 page_cache_release(page
);
6331 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
6333 if (PageWriteback(page
) || PageDirty(page
))
6335 return __btrfs_releasepage(page
, gfp_flags
& GFP_NOFS
);
6338 static void btrfs_invalidatepage(struct page
*page
, unsigned long offset
)
6340 struct extent_io_tree
*tree
;
6341 struct btrfs_ordered_extent
*ordered
;
6342 struct extent_state
*cached_state
= NULL
;
6343 u64 page_start
= page_offset(page
);
6344 u64 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6348 * we have the page locked, so new writeback can't start,
6349 * and the dirty bit won't be cleared while we are here.
6351 * Wait for IO on this page so that we can safely clear
6352 * the PagePrivate2 bit and do ordered accounting
6354 wait_on_page_writeback(page
);
6356 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6358 btrfs_releasepage(page
, GFP_NOFS
);
6361 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
,
6363 ordered
= btrfs_lookup_ordered_extent(page
->mapping
->host
,
6367 * IO on this page will never be started, so we need
6368 * to account for any ordered extents now
6370 clear_extent_bit(tree
, page_start
, page_end
,
6371 EXTENT_DIRTY
| EXTENT_DELALLOC
|
6372 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
, 1, 0,
6373 &cached_state
, GFP_NOFS
);
6375 * whoever cleared the private bit is responsible
6376 * for the finish_ordered_io
6378 if (TestClearPagePrivate2(page
)) {
6379 btrfs_finish_ordered_io(page
->mapping
->host
,
6380 page_start
, page_end
);
6382 btrfs_put_ordered_extent(ordered
);
6383 cached_state
= NULL
;
6384 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
,
6387 clear_extent_bit(tree
, page_start
, page_end
,
6388 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
6389 EXTENT_DO_ACCOUNTING
, 1, 1, &cached_state
, GFP_NOFS
);
6390 __btrfs_releasepage(page
, GFP_NOFS
);
6392 ClearPageChecked(page
);
6393 if (PagePrivate(page
)) {
6394 ClearPagePrivate(page
);
6395 set_page_private(page
, 0);
6396 page_cache_release(page
);
6401 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6402 * called from a page fault handler when a page is first dirtied. Hence we must
6403 * be careful to check for EOF conditions here. We set the page up correctly
6404 * for a written page which means we get ENOSPC checking when writing into
6405 * holes and correct delalloc and unwritten extent mapping on filesystems that
6406 * support these features.
6408 * We are not allowed to take the i_mutex here so we have to play games to
6409 * protect against truncate races as the page could now be beyond EOF. Because
6410 * vmtruncate() writes the inode size before removing pages, once we have the
6411 * page lock we can determine safely if the page is beyond EOF. If it is not
6412 * beyond EOF, then the page is guaranteed safe against truncation until we
6415 int btrfs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
6417 struct page
*page
= vmf
->page
;
6418 struct inode
*inode
= fdentry(vma
->vm_file
)->d_inode
;
6419 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6420 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
6421 struct btrfs_ordered_extent
*ordered
;
6422 struct extent_state
*cached_state
= NULL
;
6424 unsigned long zero_start
;
6430 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
6434 else /* -ENOSPC, -EIO, etc */
6435 ret
= VM_FAULT_SIGBUS
;
6439 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
6442 size
= i_size_read(inode
);
6443 page_start
= page_offset(page
);
6444 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6446 if ((page
->mapping
!= inode
->i_mapping
) ||
6447 (page_start
>= size
)) {
6448 /* page got truncated out from underneath us */
6451 wait_on_page_writeback(page
);
6453 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
,
6455 set_page_extent_mapped(page
);
6458 * we can't set the delalloc bits if there are pending ordered
6459 * extents. Drop our locks and wait for them to finish
6461 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
6463 unlock_extent_cached(io_tree
, page_start
, page_end
,
6464 &cached_state
, GFP_NOFS
);
6466 btrfs_start_ordered_extent(inode
, ordered
, 1);
6467 btrfs_put_ordered_extent(ordered
);
6472 * XXX - page_mkwrite gets called every time the page is dirtied, even
6473 * if it was already dirty, so for space accounting reasons we need to
6474 * clear any delalloc bits for the range we are fixing to save. There
6475 * is probably a better way to do this, but for now keep consistent with
6476 * prepare_pages in the normal write path.
6478 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
6479 EXTENT_DIRTY
| EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
,
6480 0, 0, &cached_state
, GFP_NOFS
);
6482 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
6485 unlock_extent_cached(io_tree
, page_start
, page_end
,
6486 &cached_state
, GFP_NOFS
);
6487 ret
= VM_FAULT_SIGBUS
;
6492 /* page is wholly or partially inside EOF */
6493 if (page_start
+ PAGE_CACHE_SIZE
> size
)
6494 zero_start
= size
& ~PAGE_CACHE_MASK
;
6496 zero_start
= PAGE_CACHE_SIZE
;
6498 if (zero_start
!= PAGE_CACHE_SIZE
) {
6500 memset(kaddr
+ zero_start
, 0, PAGE_CACHE_SIZE
- zero_start
);
6501 flush_dcache_page(page
);
6504 ClearPageChecked(page
);
6505 set_page_dirty(page
);
6506 SetPageUptodate(page
);
6508 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
;
6509 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
6511 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
, GFP_NOFS
);
6515 return VM_FAULT_LOCKED
;
6517 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
6522 static int btrfs_truncate(struct inode
*inode
)
6524 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6527 struct btrfs_trans_handle
*trans
;
6529 u64 mask
= root
->sectorsize
- 1;
6531 ret
= btrfs_truncate_page(inode
->i_mapping
, inode
->i_size
);
6535 btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
), (u64
)-1);
6536 btrfs_ordered_update_i_size(inode
, inode
->i_size
, NULL
);
6538 trans
= btrfs_start_transaction(root
, 5);
6540 return PTR_ERR(trans
);
6542 btrfs_set_trans_block_group(trans
, inode
);
6544 ret
= btrfs_orphan_add(trans
, inode
);
6546 btrfs_end_transaction(trans
, root
);
6550 nr
= trans
->blocks_used
;
6551 btrfs_end_transaction(trans
, root
);
6552 btrfs_btree_balance_dirty(root
, nr
);
6554 /* Now start a transaction for the truncate */
6555 trans
= btrfs_start_transaction(root
, 0);
6557 return PTR_ERR(trans
);
6558 btrfs_set_trans_block_group(trans
, inode
);
6559 trans
->block_rsv
= root
->orphan_block_rsv
;
6562 * setattr is responsible for setting the ordered_data_close flag,
6563 * but that is only tested during the last file release. That
6564 * could happen well after the next commit, leaving a great big
6565 * window where new writes may get lost if someone chooses to write
6566 * to this file after truncating to zero
6568 * The inode doesn't have any dirty data here, and so if we commit
6569 * this is a noop. If someone immediately starts writing to the inode
6570 * it is very likely we'll catch some of their writes in this
6571 * transaction, and the commit will find this file on the ordered
6572 * data list with good things to send down.
6574 * This is a best effort solution, there is still a window where
6575 * using truncate to replace the contents of the file will
6576 * end up with a zero length file after a crash.
6578 if (inode
->i_size
== 0 && BTRFS_I(inode
)->ordered_data_close
)
6579 btrfs_add_ordered_operation(trans
, root
, inode
);
6583 trans
= btrfs_start_transaction(root
, 0);
6585 return PTR_ERR(trans
);
6586 btrfs_set_trans_block_group(trans
, inode
);
6587 trans
->block_rsv
= root
->orphan_block_rsv
;
6590 ret
= btrfs_block_rsv_check(trans
, root
,
6591 root
->orphan_block_rsv
, 0, 5);
6592 if (ret
== -EAGAIN
) {
6593 ret
= btrfs_commit_transaction(trans
, root
);
6603 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
6605 BTRFS_EXTENT_DATA_KEY
);
6606 if (ret
!= -EAGAIN
) {
6611 ret
= btrfs_update_inode(trans
, root
, inode
);
6617 nr
= trans
->blocks_used
;
6618 btrfs_end_transaction(trans
, root
);
6620 btrfs_btree_balance_dirty(root
, nr
);
6623 if (ret
== 0 && inode
->i_nlink
> 0) {
6624 ret
= btrfs_orphan_del(trans
, inode
);
6627 } else if (ret
&& inode
->i_nlink
> 0) {
6629 * Failed to do the truncate, remove us from the in memory
6632 ret
= btrfs_orphan_del(NULL
, inode
);
6635 ret
= btrfs_update_inode(trans
, root
, inode
);
6639 nr
= trans
->blocks_used
;
6640 ret
= btrfs_end_transaction_throttle(trans
, root
);
6643 btrfs_btree_balance_dirty(root
, nr
);
6649 * create a new subvolume directory/inode (helper for the ioctl).
6651 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
6652 struct btrfs_root
*new_root
,
6653 u64 new_dirid
, u64 alloc_hint
)
6655 struct inode
*inode
;
6659 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2, new_dirid
,
6660 new_dirid
, alloc_hint
, S_IFDIR
| 0700, &index
);
6662 return PTR_ERR(inode
);
6663 inode
->i_op
= &btrfs_dir_inode_operations
;
6664 inode
->i_fop
= &btrfs_dir_file_operations
;
6667 btrfs_i_size_write(inode
, 0);
6669 err
= btrfs_update_inode(trans
, new_root
, inode
);
6676 /* helper function for file defrag and space balancing. This
6677 * forces readahead on a given range of bytes in an inode
6679 unsigned long btrfs_force_ra(struct address_space
*mapping
,
6680 struct file_ra_state
*ra
, struct file
*file
,
6681 pgoff_t offset
, pgoff_t last_index
)
6683 pgoff_t req_size
= last_index
- offset
+ 1;
6685 page_cache_sync_readahead(mapping
, ra
, file
, offset
, req_size
);
6686 return offset
+ req_size
;
6689 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
6691 struct btrfs_inode
*ei
;
6692 struct inode
*inode
;
6694 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
6699 ei
->space_info
= NULL
;
6703 ei
->last_sub_trans
= 0;
6704 ei
->logged_trans
= 0;
6705 ei
->delalloc_bytes
= 0;
6706 ei
->reserved_bytes
= 0;
6707 ei
->disk_i_size
= 0;
6709 ei
->index_cnt
= (u64
)-1;
6710 ei
->last_unlink_trans
= 0;
6712 atomic_set(&ei
->outstanding_extents
, 0);
6713 atomic_set(&ei
->reserved_extents
, 0);
6715 ei
->ordered_data_close
= 0;
6716 ei
->orphan_meta_reserved
= 0;
6717 ei
->dummy_inode
= 0;
6718 ei
->force_compress
= BTRFS_COMPRESS_NONE
;
6720 inode
= &ei
->vfs_inode
;
6721 extent_map_tree_init(&ei
->extent_tree
, GFP_NOFS
);
6722 extent_io_tree_init(&ei
->io_tree
, &inode
->i_data
, GFP_NOFS
);
6723 extent_io_tree_init(&ei
->io_failure_tree
, &inode
->i_data
, GFP_NOFS
);
6724 mutex_init(&ei
->log_mutex
);
6725 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
6726 INIT_LIST_HEAD(&ei
->i_orphan
);
6727 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
6728 INIT_LIST_HEAD(&ei
->ordered_operations
);
6729 RB_CLEAR_NODE(&ei
->rb_node
);
6734 static void btrfs_i_callback(struct rcu_head
*head
)
6736 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
6737 INIT_LIST_HEAD(&inode
->i_dentry
);
6738 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
6741 void btrfs_destroy_inode(struct inode
*inode
)
6743 struct btrfs_ordered_extent
*ordered
;
6744 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6746 WARN_ON(!list_empty(&inode
->i_dentry
));
6747 WARN_ON(inode
->i_data
.nrpages
);
6748 WARN_ON(atomic_read(&BTRFS_I(inode
)->outstanding_extents
));
6749 WARN_ON(atomic_read(&BTRFS_I(inode
)->reserved_extents
));
6752 * This can happen where we create an inode, but somebody else also
6753 * created the same inode and we need to destroy the one we already
6760 * Make sure we're properly removed from the ordered operation
6764 if (!list_empty(&BTRFS_I(inode
)->ordered_operations
)) {
6765 spin_lock(&root
->fs_info
->ordered_extent_lock
);
6766 list_del_init(&BTRFS_I(inode
)->ordered_operations
);
6767 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
6770 if (root
== root
->fs_info
->tree_root
) {
6771 struct btrfs_block_group_cache
*block_group
;
6773 block_group
= btrfs_lookup_block_group(root
->fs_info
,
6774 BTRFS_I(inode
)->block_group
);
6775 if (block_group
&& block_group
->inode
== inode
) {
6776 spin_lock(&block_group
->lock
);
6777 block_group
->inode
= NULL
;
6778 spin_unlock(&block_group
->lock
);
6779 btrfs_put_block_group(block_group
);
6780 } else if (block_group
) {
6781 btrfs_put_block_group(block_group
);
6785 spin_lock(&root
->orphan_lock
);
6786 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
6787 printk(KERN_INFO
"BTRFS: inode %lu still on the orphan list\n",
6789 list_del_init(&BTRFS_I(inode
)->i_orphan
);
6791 spin_unlock(&root
->orphan_lock
);
6794 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
6798 printk(KERN_ERR
"btrfs found ordered "
6799 "extent %llu %llu on inode cleanup\n",
6800 (unsigned long long)ordered
->file_offset
,
6801 (unsigned long long)ordered
->len
);
6802 btrfs_remove_ordered_extent(inode
, ordered
);
6803 btrfs_put_ordered_extent(ordered
);
6804 btrfs_put_ordered_extent(ordered
);
6807 inode_tree_del(inode
);
6808 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
6810 call_rcu(&inode
->i_rcu
, btrfs_i_callback
);
6813 int btrfs_drop_inode(struct inode
*inode
)
6815 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6817 if (btrfs_root_refs(&root
->root_item
) == 0 &&
6818 root
!= root
->fs_info
->tree_root
)
6821 return generic_drop_inode(inode
);
6824 static void init_once(void *foo
)
6826 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
6828 inode_init_once(&ei
->vfs_inode
);
6831 void btrfs_destroy_cachep(void)
6833 if (btrfs_inode_cachep
)
6834 kmem_cache_destroy(btrfs_inode_cachep
);
6835 if (btrfs_trans_handle_cachep
)
6836 kmem_cache_destroy(btrfs_trans_handle_cachep
);
6837 if (btrfs_transaction_cachep
)
6838 kmem_cache_destroy(btrfs_transaction_cachep
);
6839 if (btrfs_path_cachep
)
6840 kmem_cache_destroy(btrfs_path_cachep
);
6841 if (btrfs_free_space_cachep
)
6842 kmem_cache_destroy(btrfs_free_space_cachep
);
6845 int btrfs_init_cachep(void)
6847 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode_cache",
6848 sizeof(struct btrfs_inode
), 0,
6849 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, init_once
);
6850 if (!btrfs_inode_cachep
)
6853 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle_cache",
6854 sizeof(struct btrfs_trans_handle
), 0,
6855 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6856 if (!btrfs_trans_handle_cachep
)
6859 btrfs_transaction_cachep
= kmem_cache_create("btrfs_transaction_cache",
6860 sizeof(struct btrfs_transaction
), 0,
6861 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6862 if (!btrfs_transaction_cachep
)
6865 btrfs_path_cachep
= kmem_cache_create("btrfs_path_cache",
6866 sizeof(struct btrfs_path
), 0,
6867 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6868 if (!btrfs_path_cachep
)
6871 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space_cache",
6872 sizeof(struct btrfs_free_space
), 0,
6873 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6874 if (!btrfs_free_space_cachep
)
6879 btrfs_destroy_cachep();
6883 static int btrfs_getattr(struct vfsmount
*mnt
,
6884 struct dentry
*dentry
, struct kstat
*stat
)
6886 struct inode
*inode
= dentry
->d_inode
;
6887 generic_fillattr(inode
, stat
);
6888 stat
->dev
= BTRFS_I(inode
)->root
->anon_super
.s_dev
;
6889 stat
->blksize
= PAGE_CACHE_SIZE
;
6890 stat
->blocks
= (inode_get_bytes(inode
) +
6891 BTRFS_I(inode
)->delalloc_bytes
) >> 9;
6896 * If a file is moved, it will inherit the cow and compression flags of the new
6899 static void fixup_inode_flags(struct inode
*dir
, struct inode
*inode
)
6901 struct btrfs_inode
*b_dir
= BTRFS_I(dir
);
6902 struct btrfs_inode
*b_inode
= BTRFS_I(inode
);
6904 if (b_dir
->flags
& BTRFS_INODE_NODATACOW
)
6905 b_inode
->flags
|= BTRFS_INODE_NODATACOW
;
6907 b_inode
->flags
&= ~BTRFS_INODE_NODATACOW
;
6909 if (b_dir
->flags
& BTRFS_INODE_COMPRESS
)
6910 b_inode
->flags
|= BTRFS_INODE_COMPRESS
;
6912 b_inode
->flags
&= ~BTRFS_INODE_COMPRESS
;
6915 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
6916 struct inode
*new_dir
, struct dentry
*new_dentry
)
6918 struct btrfs_trans_handle
*trans
;
6919 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
6920 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
6921 struct inode
*new_inode
= new_dentry
->d_inode
;
6922 struct inode
*old_inode
= old_dentry
->d_inode
;
6923 struct timespec ctime
= CURRENT_TIME
;
6928 if (new_dir
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
6931 /* we only allow rename subvolume link between subvolumes */
6932 if (old_inode
->i_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
6935 if (old_inode
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
6936 (new_inode
&& new_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
))
6939 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
6940 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
6943 * we're using rename to replace one file with another.
6944 * and the replacement file is large. Start IO on it now so
6945 * we don't add too much work to the end of the transaction
6947 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
&&
6948 old_inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
6949 filemap_flush(old_inode
->i_mapping
);
6951 /* close the racy window with snapshot create/destroy ioctl */
6952 if (old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
6953 down_read(&root
->fs_info
->subvol_sem
);
6955 * We want to reserve the absolute worst case amount of items. So if
6956 * both inodes are subvols and we need to unlink them then that would
6957 * require 4 item modifications, but if they are both normal inodes it
6958 * would require 5 item modifications, so we'll assume their normal
6959 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6960 * should cover the worst case number of items we'll modify.
6962 trans
= btrfs_start_transaction(root
, 20);
6964 return PTR_ERR(trans
);
6966 btrfs_set_trans_block_group(trans
, new_dir
);
6969 btrfs_record_root_in_trans(trans
, dest
);
6971 ret
= btrfs_set_inode_index(new_dir
, &index
);
6975 if (unlikely(old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6976 /* force full log commit if subvolume involved. */
6977 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
6979 ret
= btrfs_insert_inode_ref(trans
, dest
,
6980 new_dentry
->d_name
.name
,
6981 new_dentry
->d_name
.len
,
6983 new_dir
->i_ino
, index
);
6987 * this is an ugly little race, but the rename is required
6988 * to make sure that if we crash, the inode is either at the
6989 * old name or the new one. pinning the log transaction lets
6990 * us make sure we don't allow a log commit to come in after
6991 * we unlink the name but before we add the new name back in.
6993 btrfs_pin_log_trans(root
);
6996 * make sure the inode gets flushed if it is replacing
6999 if (new_inode
&& new_inode
->i_size
&&
7000 old_inode
&& S_ISREG(old_inode
->i_mode
)) {
7001 btrfs_add_ordered_operation(trans
, root
, old_inode
);
7004 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
7005 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
7006 old_inode
->i_ctime
= ctime
;
7008 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
7009 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
7011 if (unlikely(old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
7012 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
7013 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
, root_objectid
,
7014 old_dentry
->d_name
.name
,
7015 old_dentry
->d_name
.len
);
7017 ret
= __btrfs_unlink_inode(trans
, root
, old_dir
,
7018 old_dentry
->d_inode
,
7019 old_dentry
->d_name
.name
,
7020 old_dentry
->d_name
.len
);
7022 ret
= btrfs_update_inode(trans
, root
, old_inode
);
7027 new_inode
->i_ctime
= CURRENT_TIME
;
7028 if (unlikely(new_inode
->i_ino
==
7029 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
7030 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
7031 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
7033 new_dentry
->d_name
.name
,
7034 new_dentry
->d_name
.len
);
7035 BUG_ON(new_inode
->i_nlink
== 0);
7037 ret
= btrfs_unlink_inode(trans
, dest
, new_dir
,
7038 new_dentry
->d_inode
,
7039 new_dentry
->d_name
.name
,
7040 new_dentry
->d_name
.len
);
7043 if (new_inode
->i_nlink
== 0) {
7044 ret
= btrfs_orphan_add(trans
, new_dentry
->d_inode
);
7049 fixup_inode_flags(new_dir
, old_inode
);
7051 ret
= btrfs_add_link(trans
, new_dir
, old_inode
,
7052 new_dentry
->d_name
.name
,
7053 new_dentry
->d_name
.len
, 0, index
);
7056 if (old_inode
->i_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
7057 struct dentry
*parent
= dget_parent(new_dentry
);
7058 btrfs_log_new_name(trans
, old_inode
, old_dir
, parent
);
7060 btrfs_end_log_trans(root
);
7063 btrfs_end_transaction_throttle(trans
, root
);
7065 if (old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
7066 up_read(&root
->fs_info
->subvol_sem
);
7072 * some fairly slow code that needs optimization. This walks the list
7073 * of all the inodes with pending delalloc and forces them to disk.
7075 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
)
7077 struct list_head
*head
= &root
->fs_info
->delalloc_inodes
;
7078 struct btrfs_inode
*binode
;
7079 struct inode
*inode
;
7081 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
7084 spin_lock(&root
->fs_info
->delalloc_lock
);
7085 while (!list_empty(head
)) {
7086 binode
= list_entry(head
->next
, struct btrfs_inode
,
7088 inode
= igrab(&binode
->vfs_inode
);
7090 list_del_init(&binode
->delalloc_inodes
);
7091 spin_unlock(&root
->fs_info
->delalloc_lock
);
7093 filemap_flush(inode
->i_mapping
);
7095 btrfs_add_delayed_iput(inode
);
7100 spin_lock(&root
->fs_info
->delalloc_lock
);
7102 spin_unlock(&root
->fs_info
->delalloc_lock
);
7104 /* the filemap_flush will queue IO into the worker threads, but
7105 * we have to make sure the IO is actually started and that
7106 * ordered extents get created before we return
7108 atomic_inc(&root
->fs_info
->async_submit_draining
);
7109 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
7110 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
7111 wait_event(root
->fs_info
->async_submit_wait
,
7112 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
7113 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
7115 atomic_dec(&root
->fs_info
->async_submit_draining
);
7119 int btrfs_start_one_delalloc_inode(struct btrfs_root
*root
, int delay_iput
,
7122 struct btrfs_inode
*binode
;
7123 struct inode
*inode
= NULL
;
7125 spin_lock(&root
->fs_info
->delalloc_lock
);
7126 while (!list_empty(&root
->fs_info
->delalloc_inodes
)) {
7127 binode
= list_entry(root
->fs_info
->delalloc_inodes
.next
,
7128 struct btrfs_inode
, delalloc_inodes
);
7129 inode
= igrab(&binode
->vfs_inode
);
7131 list_move_tail(&binode
->delalloc_inodes
,
7132 &root
->fs_info
->delalloc_inodes
);
7136 list_del_init(&binode
->delalloc_inodes
);
7137 cond_resched_lock(&root
->fs_info
->delalloc_lock
);
7139 spin_unlock(&root
->fs_info
->delalloc_lock
);
7143 filemap_write_and_wait(inode
->i_mapping
);
7145 * We have to do this because compression doesn't
7146 * actually set PG_writeback until it submits the pages
7147 * for IO, which happens in an async thread, so we could
7148 * race and not actually wait for any writeback pages
7149 * because they've not been submitted yet. Technically
7150 * this could still be the case for the ordered stuff
7151 * since the async thread may not have started to do its
7152 * work yet. If this becomes the case then we need to
7153 * figure out a way to make sure that in writepage we
7154 * wait for any async pages to be submitted before
7155 * returning so that fdatawait does what its supposed to
7158 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
7160 filemap_flush(inode
->i_mapping
);
7163 btrfs_add_delayed_iput(inode
);
7171 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
7172 const char *symname
)
7174 struct btrfs_trans_handle
*trans
;
7175 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
7176 struct btrfs_path
*path
;
7177 struct btrfs_key key
;
7178 struct inode
*inode
= NULL
;
7186 struct btrfs_file_extent_item
*ei
;
7187 struct extent_buffer
*leaf
;
7188 unsigned long nr
= 0;
7190 name_len
= strlen(symname
) + 1;
7191 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
))
7192 return -ENAMETOOLONG
;
7194 err
= btrfs_find_free_objectid(NULL
, root
, dir
->i_ino
, &objectid
);
7198 * 2 items for inode item and ref
7199 * 2 items for dir items
7200 * 1 item for xattr if selinux is on
7202 trans
= btrfs_start_transaction(root
, 5);
7204 return PTR_ERR(trans
);
7206 btrfs_set_trans_block_group(trans
, dir
);
7208 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
7209 dentry
->d_name
.len
, dir
->i_ino
, objectid
,
7210 BTRFS_I(dir
)->block_group
, S_IFLNK
|S_IRWXUGO
,
7212 err
= PTR_ERR(inode
);
7216 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
7222 btrfs_set_trans_block_group(trans
, inode
);
7223 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
7227 inode
->i_mapping
->a_ops
= &btrfs_aops
;
7228 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
7229 inode
->i_fop
= &btrfs_file_operations
;
7230 inode
->i_op
= &btrfs_file_inode_operations
;
7231 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
7233 btrfs_update_inode_block_group(trans
, inode
);
7234 btrfs_update_inode_block_group(trans
, dir
);
7238 path
= btrfs_alloc_path();
7240 key
.objectid
= inode
->i_ino
;
7242 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
7243 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
7244 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
7250 leaf
= path
->nodes
[0];
7251 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
7252 struct btrfs_file_extent_item
);
7253 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
7254 btrfs_set_file_extent_type(leaf
, ei
,
7255 BTRFS_FILE_EXTENT_INLINE
);
7256 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
7257 btrfs_set_file_extent_compression(leaf
, ei
, 0);
7258 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
7259 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
7261 ptr
= btrfs_file_extent_inline_start(ei
);
7262 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
7263 btrfs_mark_buffer_dirty(leaf
);
7264 btrfs_free_path(path
);
7266 inode
->i_op
= &btrfs_symlink_inode_operations
;
7267 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
7268 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
7269 inode_set_bytes(inode
, name_len
);
7270 btrfs_i_size_write(inode
, name_len
- 1);
7271 err
= btrfs_update_inode(trans
, root
, inode
);
7276 nr
= trans
->blocks_used
;
7277 btrfs_end_transaction_throttle(trans
, root
);
7279 inode_dec_link_count(inode
);
7282 btrfs_btree_balance_dirty(root
, nr
);
7286 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
7287 u64 start
, u64 num_bytes
, u64 min_size
,
7288 loff_t actual_len
, u64
*alloc_hint
,
7289 struct btrfs_trans_handle
*trans
)
7291 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7292 struct btrfs_key ins
;
7293 u64 cur_offset
= start
;
7296 bool own_trans
= true;
7300 while (num_bytes
> 0) {
7302 trans
= btrfs_start_transaction(root
, 3);
7303 if (IS_ERR(trans
)) {
7304 ret
= PTR_ERR(trans
);
7309 ret
= btrfs_reserve_extent(trans
, root
, num_bytes
, min_size
,
7310 0, *alloc_hint
, (u64
)-1, &ins
, 1);
7313 btrfs_end_transaction(trans
, root
);
7317 ret
= insert_reserved_file_extent(trans
, inode
,
7318 cur_offset
, ins
.objectid
,
7319 ins
.offset
, ins
.offset
,
7320 ins
.offset
, 0, 0, 0,
7321 BTRFS_FILE_EXTENT_PREALLOC
);
7323 btrfs_drop_extent_cache(inode
, cur_offset
,
7324 cur_offset
+ ins
.offset
-1, 0);
7326 num_bytes
-= ins
.offset
;
7327 cur_offset
+= ins
.offset
;
7328 *alloc_hint
= ins
.objectid
+ ins
.offset
;
7330 inode
->i_ctime
= CURRENT_TIME
;
7331 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
7332 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
7333 (actual_len
> inode
->i_size
) &&
7334 (cur_offset
> inode
->i_size
)) {
7335 if (cur_offset
> actual_len
)
7336 i_size
= actual_len
;
7338 i_size
= cur_offset
;
7339 i_size_write(inode
, i_size
);
7340 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
7343 ret
= btrfs_update_inode(trans
, root
, inode
);
7347 btrfs_end_transaction(trans
, root
);
7352 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
7353 u64 start
, u64 num_bytes
, u64 min_size
,
7354 loff_t actual_len
, u64
*alloc_hint
)
7356 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
7357 min_size
, actual_len
, alloc_hint
,
7361 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
7362 struct btrfs_trans_handle
*trans
, int mode
,
7363 u64 start
, u64 num_bytes
, u64 min_size
,
7364 loff_t actual_len
, u64
*alloc_hint
)
7366 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
7367 min_size
, actual_len
, alloc_hint
, trans
);
7370 static int btrfs_set_page_dirty(struct page
*page
)
7372 return __set_page_dirty_nobuffers(page
);
7375 static int btrfs_permission(struct inode
*inode
, int mask
, unsigned int flags
)
7377 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7379 if (btrfs_root_readonly(root
) && (mask
& MAY_WRITE
))
7381 if ((BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
) && (mask
& MAY_WRITE
))
7383 return generic_permission(inode
, mask
, flags
, btrfs_check_acl
);
7386 static const struct inode_operations btrfs_dir_inode_operations
= {
7387 .getattr
= btrfs_getattr
,
7388 .lookup
= btrfs_lookup
,
7389 .create
= btrfs_create
,
7390 .unlink
= btrfs_unlink
,
7392 .mkdir
= btrfs_mkdir
,
7393 .rmdir
= btrfs_rmdir
,
7394 .rename
= btrfs_rename
,
7395 .symlink
= btrfs_symlink
,
7396 .setattr
= btrfs_setattr
,
7397 .mknod
= btrfs_mknod
,
7398 .setxattr
= btrfs_setxattr
,
7399 .getxattr
= btrfs_getxattr
,
7400 .listxattr
= btrfs_listxattr
,
7401 .removexattr
= btrfs_removexattr
,
7402 .permission
= btrfs_permission
,
7404 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
7405 .lookup
= btrfs_lookup
,
7406 .permission
= btrfs_permission
,
7409 static const struct file_operations btrfs_dir_file_operations
= {
7410 .llseek
= generic_file_llseek
,
7411 .read
= generic_read_dir
,
7412 .readdir
= btrfs_real_readdir
,
7413 .unlocked_ioctl
= btrfs_ioctl
,
7414 #ifdef CONFIG_COMPAT
7415 .compat_ioctl
= btrfs_ioctl
,
7417 .release
= btrfs_release_file
,
7418 .fsync
= btrfs_sync_file
,
7421 static struct extent_io_ops btrfs_extent_io_ops
= {
7422 .fill_delalloc
= run_delalloc_range
,
7423 .submit_bio_hook
= btrfs_submit_bio_hook
,
7424 .merge_bio_hook
= btrfs_merge_bio_hook
,
7425 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
7426 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
7427 .writepage_start_hook
= btrfs_writepage_start_hook
,
7428 .readpage_io_failed_hook
= btrfs_io_failed_hook
,
7429 .set_bit_hook
= btrfs_set_bit_hook
,
7430 .clear_bit_hook
= btrfs_clear_bit_hook
,
7431 .merge_extent_hook
= btrfs_merge_extent_hook
,
7432 .split_extent_hook
= btrfs_split_extent_hook
,
7436 * btrfs doesn't support the bmap operation because swapfiles
7437 * use bmap to make a mapping of extents in the file. They assume
7438 * these extents won't change over the life of the file and they
7439 * use the bmap result to do IO directly to the drive.
7441 * the btrfs bmap call would return logical addresses that aren't
7442 * suitable for IO and they also will change frequently as COW
7443 * operations happen. So, swapfile + btrfs == corruption.
7445 * For now we're avoiding this by dropping bmap.
7447 static const struct address_space_operations btrfs_aops
= {
7448 .readpage
= btrfs_readpage
,
7449 .writepage
= btrfs_writepage
,
7450 .writepages
= btrfs_writepages
,
7451 .readpages
= btrfs_readpages
,
7452 .direct_IO
= btrfs_direct_IO
,
7453 .invalidatepage
= btrfs_invalidatepage
,
7454 .releasepage
= btrfs_releasepage
,
7455 .set_page_dirty
= btrfs_set_page_dirty
,
7456 .error_remove_page
= generic_error_remove_page
,
7459 static const struct address_space_operations btrfs_symlink_aops
= {
7460 .readpage
= btrfs_readpage
,
7461 .writepage
= btrfs_writepage
,
7462 .invalidatepage
= btrfs_invalidatepage
,
7463 .releasepage
= btrfs_releasepage
,
7466 static const struct inode_operations btrfs_file_inode_operations
= {
7467 .getattr
= btrfs_getattr
,
7468 .setattr
= btrfs_setattr
,
7469 .setxattr
= btrfs_setxattr
,
7470 .getxattr
= btrfs_getxattr
,
7471 .listxattr
= btrfs_listxattr
,
7472 .removexattr
= btrfs_removexattr
,
7473 .permission
= btrfs_permission
,
7474 .fiemap
= btrfs_fiemap
,
7476 static const struct inode_operations btrfs_special_inode_operations
= {
7477 .getattr
= btrfs_getattr
,
7478 .setattr
= btrfs_setattr
,
7479 .permission
= btrfs_permission
,
7480 .setxattr
= btrfs_setxattr
,
7481 .getxattr
= btrfs_getxattr
,
7482 .listxattr
= btrfs_listxattr
,
7483 .removexattr
= btrfs_removexattr
,
7485 static const struct inode_operations btrfs_symlink_inode_operations
= {
7486 .readlink
= generic_readlink
,
7487 .follow_link
= page_follow_link_light
,
7488 .put_link
= page_put_link
,
7489 .getattr
= btrfs_getattr
,
7490 .permission
= btrfs_permission
,
7491 .setxattr
= btrfs_setxattr
,
7492 .getxattr
= btrfs_getxattr
,
7493 .listxattr
= btrfs_listxattr
,
7494 .removexattr
= btrfs_removexattr
,
7497 const struct dentry_operations btrfs_dentry_operations
= {
7498 .d_delete
= btrfs_dentry_delete
,