2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
27 #include "transaction.h"
31 #define BTRFS_ROOT_TRANS_TAG 0
33 static noinline
void put_transaction(struct btrfs_transaction
*transaction
)
35 WARN_ON(transaction
->use_count
== 0);
36 transaction
->use_count
--;
37 if (transaction
->use_count
== 0) {
38 list_del_init(&transaction
->list
);
39 memset(transaction
, 0, sizeof(*transaction
));
40 kmem_cache_free(btrfs_transaction_cachep
, transaction
);
44 static noinline
void switch_commit_root(struct btrfs_root
*root
)
46 free_extent_buffer(root
->commit_root
);
47 root
->commit_root
= btrfs_root_node(root
);
51 * either allocate a new transaction or hop into the existing one
53 static noinline
int join_transaction(struct btrfs_root
*root
)
55 struct btrfs_transaction
*cur_trans
;
56 cur_trans
= root
->fs_info
->running_transaction
;
58 cur_trans
= kmem_cache_alloc(btrfs_transaction_cachep
,
62 root
->fs_info
->generation
++;
63 cur_trans
->num_writers
= 1;
64 cur_trans
->num_joined
= 0;
65 cur_trans
->transid
= root
->fs_info
->generation
;
66 init_waitqueue_head(&cur_trans
->writer_wait
);
67 init_waitqueue_head(&cur_trans
->commit_wait
);
68 cur_trans
->in_commit
= 0;
69 cur_trans
->blocked
= 0;
70 cur_trans
->use_count
= 1;
71 cur_trans
->commit_done
= 0;
72 cur_trans
->start_time
= get_seconds();
74 cur_trans
->delayed_refs
.root
= RB_ROOT
;
75 cur_trans
->delayed_refs
.num_entries
= 0;
76 cur_trans
->delayed_refs
.num_heads_ready
= 0;
77 cur_trans
->delayed_refs
.num_heads
= 0;
78 cur_trans
->delayed_refs
.flushing
= 0;
79 cur_trans
->delayed_refs
.run_delayed_start
= 0;
80 spin_lock_init(&cur_trans
->delayed_refs
.lock
);
82 INIT_LIST_HEAD(&cur_trans
->pending_snapshots
);
83 list_add_tail(&cur_trans
->list
, &root
->fs_info
->trans_list
);
84 extent_io_tree_init(&cur_trans
->dirty_pages
,
85 root
->fs_info
->btree_inode
->i_mapping
,
87 spin_lock(&root
->fs_info
->new_trans_lock
);
88 root
->fs_info
->running_transaction
= cur_trans
;
89 spin_unlock(&root
->fs_info
->new_trans_lock
);
91 cur_trans
->num_writers
++;
92 cur_trans
->num_joined
++;
99 * this does all the record keeping required to make sure that a reference
100 * counted root is properly recorded in a given transaction. This is required
101 * to make sure the old root from before we joined the transaction is deleted
102 * when the transaction commits
104 static noinline
int record_root_in_trans(struct btrfs_trans_handle
*trans
,
105 struct btrfs_root
*root
)
107 if (root
->ref_cows
&& root
->last_trans
< trans
->transid
) {
108 WARN_ON(root
== root
->fs_info
->extent_root
);
109 WARN_ON(root
->commit_root
!= root
->node
);
111 radix_tree_tag_set(&root
->fs_info
->fs_roots_radix
,
112 (unsigned long)root
->root_key
.objectid
,
113 BTRFS_ROOT_TRANS_TAG
);
114 root
->last_trans
= trans
->transid
;
115 btrfs_init_reloc_root(trans
, root
);
120 int btrfs_record_root_in_trans(struct btrfs_trans_handle
*trans
,
121 struct btrfs_root
*root
)
126 mutex_lock(&root
->fs_info
->trans_mutex
);
127 if (root
->last_trans
== trans
->transid
) {
128 mutex_unlock(&root
->fs_info
->trans_mutex
);
132 record_root_in_trans(trans
, root
);
133 mutex_unlock(&root
->fs_info
->trans_mutex
);
137 /* wait for commit against the current transaction to become unblocked
138 * when this is done, it is safe to start a new transaction, but the current
139 * transaction might not be fully on disk.
141 static void wait_current_trans(struct btrfs_root
*root
)
143 struct btrfs_transaction
*cur_trans
;
145 cur_trans
= root
->fs_info
->running_transaction
;
146 if (cur_trans
&& cur_trans
->blocked
) {
148 cur_trans
->use_count
++;
150 prepare_to_wait(&root
->fs_info
->transaction_wait
, &wait
,
151 TASK_UNINTERRUPTIBLE
);
152 if (!cur_trans
->blocked
)
154 mutex_unlock(&root
->fs_info
->trans_mutex
);
156 mutex_lock(&root
->fs_info
->trans_mutex
);
158 finish_wait(&root
->fs_info
->transaction_wait
, &wait
);
159 put_transaction(cur_trans
);
163 enum btrfs_trans_type
{
170 static int may_wait_transaction(struct btrfs_root
*root
, int type
)
172 if (!root
->fs_info
->log_root_recovering
&&
173 ((type
== TRANS_START
&& !root
->fs_info
->open_ioctl_trans
) ||
174 type
== TRANS_USERSPACE
))
179 static struct btrfs_trans_handle
*start_transaction(struct btrfs_root
*root
,
180 u64 num_items
, int type
)
182 struct btrfs_trans_handle
*h
;
183 struct btrfs_transaction
*cur_trans
;
186 if (root
->fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
)
187 return ERR_PTR(-EROFS
);
189 h
= kmem_cache_alloc(btrfs_trans_handle_cachep
, GFP_NOFS
);
191 return ERR_PTR(-ENOMEM
);
193 if (type
!= TRANS_JOIN_NOLOCK
)
194 mutex_lock(&root
->fs_info
->trans_mutex
);
195 if (may_wait_transaction(root
, type
))
196 wait_current_trans(root
);
198 ret
= join_transaction(root
);
200 if (type
!= TRANS_JOIN_NOLOCK
)
201 mutex_unlock(&root
->fs_info
->trans_mutex
);
205 cur_trans
= root
->fs_info
->running_transaction
;
206 cur_trans
->use_count
++;
207 if (type
!= TRANS_JOIN_NOLOCK
)
208 mutex_unlock(&root
->fs_info
->trans_mutex
);
210 h
->transid
= cur_trans
->transid
;
211 h
->transaction
= cur_trans
;
214 h
->bytes_reserved
= 0;
215 h
->delayed_ref_updates
= 0;
219 if (cur_trans
->blocked
&& may_wait_transaction(root
, type
)) {
220 btrfs_commit_transaction(h
, root
);
225 ret
= btrfs_trans_reserve_metadata(h
, root
, num_items
);
226 if (ret
== -EAGAIN
) {
227 btrfs_commit_transaction(h
, root
);
231 btrfs_end_transaction(h
, root
);
236 if (type
!= TRANS_JOIN_NOLOCK
)
237 mutex_lock(&root
->fs_info
->trans_mutex
);
238 record_root_in_trans(h
, root
);
239 if (type
!= TRANS_JOIN_NOLOCK
)
240 mutex_unlock(&root
->fs_info
->trans_mutex
);
242 if (!current
->journal_info
&& type
!= TRANS_USERSPACE
)
243 current
->journal_info
= h
;
247 struct btrfs_trans_handle
*btrfs_start_transaction(struct btrfs_root
*root
,
250 return start_transaction(root
, num_items
, TRANS_START
);
252 struct btrfs_trans_handle
*btrfs_join_transaction(struct btrfs_root
*root
,
255 return start_transaction(root
, 0, TRANS_JOIN
);
258 struct btrfs_trans_handle
*btrfs_join_transaction_nolock(struct btrfs_root
*root
,
261 return start_transaction(root
, 0, TRANS_JOIN_NOLOCK
);
264 struct btrfs_trans_handle
*btrfs_start_ioctl_transaction(struct btrfs_root
*r
,
267 return start_transaction(r
, 0, TRANS_USERSPACE
);
270 /* wait for a transaction commit to be fully complete */
271 static noinline
int wait_for_commit(struct btrfs_root
*root
,
272 struct btrfs_transaction
*commit
)
275 mutex_lock(&root
->fs_info
->trans_mutex
);
276 while (!commit
->commit_done
) {
277 prepare_to_wait(&commit
->commit_wait
, &wait
,
278 TASK_UNINTERRUPTIBLE
);
279 if (commit
->commit_done
)
281 mutex_unlock(&root
->fs_info
->trans_mutex
);
283 mutex_lock(&root
->fs_info
->trans_mutex
);
285 mutex_unlock(&root
->fs_info
->trans_mutex
);
286 finish_wait(&commit
->commit_wait
, &wait
);
290 int btrfs_wait_for_commit(struct btrfs_root
*root
, u64 transid
)
292 struct btrfs_transaction
*cur_trans
= NULL
, *t
;
295 mutex_lock(&root
->fs_info
->trans_mutex
);
299 if (transid
<= root
->fs_info
->last_trans_committed
)
302 /* find specified transaction */
303 list_for_each_entry(t
, &root
->fs_info
->trans_list
, list
) {
304 if (t
->transid
== transid
) {
308 if (t
->transid
> transid
)
313 goto out_unlock
; /* bad transid */
315 /* find newest transaction that is committing | committed */
316 list_for_each_entry_reverse(t
, &root
->fs_info
->trans_list
,
326 goto out_unlock
; /* nothing committing|committed */
329 cur_trans
->use_count
++;
330 mutex_unlock(&root
->fs_info
->trans_mutex
);
332 wait_for_commit(root
, cur_trans
);
334 mutex_lock(&root
->fs_info
->trans_mutex
);
335 put_transaction(cur_trans
);
338 mutex_unlock(&root
->fs_info
->trans_mutex
);
344 * rate limit against the drop_snapshot code. This helps to slow down new
345 * operations if the drop_snapshot code isn't able to keep up.
347 static void throttle_on_drops(struct btrfs_root
*root
)
349 struct btrfs_fs_info
*info
= root
->fs_info
;
350 int harder_count
= 0;
353 if (atomic_read(&info
->throttles
)) {
356 thr
= atomic_read(&info
->throttle_gen
);
359 prepare_to_wait(&info
->transaction_throttle
,
360 &wait
, TASK_UNINTERRUPTIBLE
);
361 if (!atomic_read(&info
->throttles
)) {
362 finish_wait(&info
->transaction_throttle
, &wait
);
366 finish_wait(&info
->transaction_throttle
, &wait
);
367 } while (thr
== atomic_read(&info
->throttle_gen
));
370 if (root
->fs_info
->total_ref_cache_size
> 1 * 1024 * 1024 &&
374 if (root
->fs_info
->total_ref_cache_size
> 5 * 1024 * 1024 &&
378 if (root
->fs_info
->total_ref_cache_size
> 10 * 1024 * 1024 &&
385 void btrfs_throttle(struct btrfs_root
*root
)
387 mutex_lock(&root
->fs_info
->trans_mutex
);
388 if (!root
->fs_info
->open_ioctl_trans
)
389 wait_current_trans(root
);
390 mutex_unlock(&root
->fs_info
->trans_mutex
);
393 static int should_end_transaction(struct btrfs_trans_handle
*trans
,
394 struct btrfs_root
*root
)
397 ret
= btrfs_block_rsv_check(trans
, root
,
398 &root
->fs_info
->global_block_rsv
, 0, 5);
402 int btrfs_should_end_transaction(struct btrfs_trans_handle
*trans
,
403 struct btrfs_root
*root
)
405 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
408 if (cur_trans
->blocked
|| cur_trans
->delayed_refs
.flushing
)
411 updates
= trans
->delayed_ref_updates
;
412 trans
->delayed_ref_updates
= 0;
414 btrfs_run_delayed_refs(trans
, root
, updates
);
416 return should_end_transaction(trans
, root
);
419 static int __btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
420 struct btrfs_root
*root
, int throttle
, int lock
)
422 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
423 struct btrfs_fs_info
*info
= root
->fs_info
;
427 unsigned long cur
= trans
->delayed_ref_updates
;
428 trans
->delayed_ref_updates
= 0;
430 trans
->transaction
->delayed_refs
.num_heads_ready
> 64) {
431 trans
->delayed_ref_updates
= 0;
434 * do a full flush if the transaction is trying
437 if (trans
->transaction
->delayed_refs
.flushing
)
439 btrfs_run_delayed_refs(trans
, root
, cur
);
446 btrfs_trans_release_metadata(trans
, root
);
448 if (lock
&& !root
->fs_info
->open_ioctl_trans
&&
449 should_end_transaction(trans
, root
))
450 trans
->transaction
->blocked
= 1;
452 if (lock
&& cur_trans
->blocked
&& !cur_trans
->in_commit
) {
454 return btrfs_commit_transaction(trans
, root
);
456 wake_up_process(info
->transaction_kthread
);
460 mutex_lock(&info
->trans_mutex
);
461 WARN_ON(cur_trans
!= info
->running_transaction
);
462 WARN_ON(cur_trans
->num_writers
< 1);
463 cur_trans
->num_writers
--;
466 if (waitqueue_active(&cur_trans
->writer_wait
))
467 wake_up(&cur_trans
->writer_wait
);
468 put_transaction(cur_trans
);
470 mutex_unlock(&info
->trans_mutex
);
472 if (current
->journal_info
== trans
)
473 current
->journal_info
= NULL
;
474 memset(trans
, 0, sizeof(*trans
));
475 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
478 btrfs_run_delayed_iputs(root
);
483 int btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
484 struct btrfs_root
*root
)
486 return __btrfs_end_transaction(trans
, root
, 0, 1);
489 int btrfs_end_transaction_throttle(struct btrfs_trans_handle
*trans
,
490 struct btrfs_root
*root
)
492 return __btrfs_end_transaction(trans
, root
, 1, 1);
495 int btrfs_end_transaction_nolock(struct btrfs_trans_handle
*trans
,
496 struct btrfs_root
*root
)
498 return __btrfs_end_transaction(trans
, root
, 0, 0);
502 * when btree blocks are allocated, they have some corresponding bits set for
503 * them in one of two extent_io trees. This is used to make sure all of
504 * those extents are sent to disk but does not wait on them
506 int btrfs_write_marked_extents(struct btrfs_root
*root
,
507 struct extent_io_tree
*dirty_pages
, int mark
)
513 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
519 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
523 while (start
<= end
) {
526 index
= start
>> PAGE_CACHE_SHIFT
;
527 start
= (u64
)(index
+ 1) << PAGE_CACHE_SHIFT
;
528 page
= find_get_page(btree_inode
->i_mapping
, index
);
532 btree_lock_page_hook(page
);
533 if (!page
->mapping
) {
535 page_cache_release(page
);
539 if (PageWriteback(page
)) {
541 wait_on_page_writeback(page
);
544 page_cache_release(page
);
548 err
= write_one_page(page
, 0);
551 page_cache_release(page
);
560 * when btree blocks are allocated, they have some corresponding bits set for
561 * them in one of two extent_io trees. This is used to make sure all of
562 * those extents are on disk for transaction or log commit. We wait
563 * on all the pages and clear them from the dirty pages state tree
565 int btrfs_wait_marked_extents(struct btrfs_root
*root
,
566 struct extent_io_tree
*dirty_pages
, int mark
)
572 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
578 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
583 clear_extent_bits(dirty_pages
, start
, end
, mark
, GFP_NOFS
);
584 while (start
<= end
) {
585 index
= start
>> PAGE_CACHE_SHIFT
;
586 start
= (u64
)(index
+ 1) << PAGE_CACHE_SHIFT
;
587 page
= find_get_page(btree_inode
->i_mapping
, index
);
590 if (PageDirty(page
)) {
591 btree_lock_page_hook(page
);
592 wait_on_page_writeback(page
);
593 err
= write_one_page(page
, 0);
597 wait_on_page_writeback(page
);
598 page_cache_release(page
);
608 * when btree blocks are allocated, they have some corresponding bits set for
609 * them in one of two extent_io trees. This is used to make sure all of
610 * those extents are on disk for transaction or log commit
612 int btrfs_write_and_wait_marked_extents(struct btrfs_root
*root
,
613 struct extent_io_tree
*dirty_pages
, int mark
)
618 ret
= btrfs_write_marked_extents(root
, dirty_pages
, mark
);
619 ret2
= btrfs_wait_marked_extents(root
, dirty_pages
, mark
);
623 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle
*trans
,
624 struct btrfs_root
*root
)
626 if (!trans
|| !trans
->transaction
) {
627 struct inode
*btree_inode
;
628 btree_inode
= root
->fs_info
->btree_inode
;
629 return filemap_write_and_wait(btree_inode
->i_mapping
);
631 return btrfs_write_and_wait_marked_extents(root
,
632 &trans
->transaction
->dirty_pages
,
637 * this is used to update the root pointer in the tree of tree roots.
639 * But, in the case of the extent allocation tree, updating the root
640 * pointer may allocate blocks which may change the root of the extent
643 * So, this loops and repeats and makes sure the cowonly root didn't
644 * change while the root pointer was being updated in the metadata.
646 static int update_cowonly_root(struct btrfs_trans_handle
*trans
,
647 struct btrfs_root
*root
)
652 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
654 old_root_used
= btrfs_root_used(&root
->root_item
);
655 btrfs_write_dirty_block_groups(trans
, root
);
658 old_root_bytenr
= btrfs_root_bytenr(&root
->root_item
);
659 if (old_root_bytenr
== root
->node
->start
&&
660 old_root_used
== btrfs_root_used(&root
->root_item
))
663 btrfs_set_root_node(&root
->root_item
, root
->node
);
664 ret
= btrfs_update_root(trans
, tree_root
,
669 old_root_used
= btrfs_root_used(&root
->root_item
);
670 ret
= btrfs_write_dirty_block_groups(trans
, root
);
674 if (root
!= root
->fs_info
->extent_root
)
675 switch_commit_root(root
);
681 * update all the cowonly tree roots on disk
683 static noinline
int commit_cowonly_roots(struct btrfs_trans_handle
*trans
,
684 struct btrfs_root
*root
)
686 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
687 struct list_head
*next
;
688 struct extent_buffer
*eb
;
691 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
694 eb
= btrfs_lock_root_node(fs_info
->tree_root
);
695 btrfs_cow_block(trans
, fs_info
->tree_root
, eb
, NULL
, 0, &eb
);
696 btrfs_tree_unlock(eb
);
697 free_extent_buffer(eb
);
699 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
702 while (!list_empty(&fs_info
->dirty_cowonly_roots
)) {
703 next
= fs_info
->dirty_cowonly_roots
.next
;
705 root
= list_entry(next
, struct btrfs_root
, dirty_list
);
707 update_cowonly_root(trans
, root
);
710 down_write(&fs_info
->extent_commit_sem
);
711 switch_commit_root(fs_info
->extent_root
);
712 up_write(&fs_info
->extent_commit_sem
);
718 * dead roots are old snapshots that need to be deleted. This allocates
719 * a dirty root struct and adds it into the list of dead roots that need to
722 int btrfs_add_dead_root(struct btrfs_root
*root
)
724 mutex_lock(&root
->fs_info
->trans_mutex
);
725 list_add(&root
->root_list
, &root
->fs_info
->dead_roots
);
726 mutex_unlock(&root
->fs_info
->trans_mutex
);
731 * update all the cowonly tree roots on disk
733 static noinline
int commit_fs_roots(struct btrfs_trans_handle
*trans
,
734 struct btrfs_root
*root
)
736 struct btrfs_root
*gang
[8];
737 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
743 ret
= radix_tree_gang_lookup_tag(&fs_info
->fs_roots_radix
,
746 BTRFS_ROOT_TRANS_TAG
);
749 for (i
= 0; i
< ret
; i
++) {
751 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
752 (unsigned long)root
->root_key
.objectid
,
753 BTRFS_ROOT_TRANS_TAG
);
755 btrfs_free_log(trans
, root
);
756 btrfs_update_reloc_root(trans
, root
);
757 btrfs_orphan_commit_root(trans
, root
);
759 if (root
->commit_root
!= root
->node
) {
760 switch_commit_root(root
);
761 btrfs_set_root_node(&root
->root_item
,
765 err
= btrfs_update_root(trans
, fs_info
->tree_root
,
776 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
777 * otherwise every leaf in the btree is read and defragged.
779 int btrfs_defrag_root(struct btrfs_root
*root
, int cacheonly
)
781 struct btrfs_fs_info
*info
= root
->fs_info
;
782 struct btrfs_trans_handle
*trans
;
786 if (xchg(&root
->defrag_running
, 1))
790 trans
= btrfs_start_transaction(root
, 0);
792 return PTR_ERR(trans
);
794 ret
= btrfs_defrag_leaves(trans
, root
, cacheonly
);
796 nr
= trans
->blocks_used
;
797 btrfs_end_transaction(trans
, root
);
798 btrfs_btree_balance_dirty(info
->tree_root
, nr
);
801 if (root
->fs_info
->closing
|| ret
!= -EAGAIN
)
804 root
->defrag_running
= 0;
810 * when dropping snapshots, we generate a ton of delayed refs, and it makes
811 * sense not to join the transaction while it is trying to flush the current
812 * queue of delayed refs out.
814 * This is used by the drop snapshot code only
816 static noinline
int wait_transaction_pre_flush(struct btrfs_fs_info
*info
)
820 mutex_lock(&info
->trans_mutex
);
821 while (info
->running_transaction
&&
822 info
->running_transaction
->delayed_refs
.flushing
) {
823 prepare_to_wait(&info
->transaction_wait
, &wait
,
824 TASK_UNINTERRUPTIBLE
);
825 mutex_unlock(&info
->trans_mutex
);
829 mutex_lock(&info
->trans_mutex
);
830 finish_wait(&info
->transaction_wait
, &wait
);
832 mutex_unlock(&info
->trans_mutex
);
837 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
840 int btrfs_drop_dead_root(struct btrfs_root
*root
)
842 struct btrfs_trans_handle
*trans
;
843 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
849 * we don't want to jump in and create a bunch of
850 * delayed refs if the transaction is starting to close
852 wait_transaction_pre_flush(tree_root
->fs_info
);
853 trans
= btrfs_start_transaction(tree_root
, 1);
856 * we've joined a transaction, make sure it isn't
859 if (trans
->transaction
->delayed_refs
.flushing
) {
860 btrfs_end_transaction(trans
, tree_root
);
864 ret
= btrfs_drop_snapshot(trans
, root
);
868 ret
= btrfs_update_root(trans
, tree_root
,
874 nr
= trans
->blocks_used
;
875 ret
= btrfs_end_transaction(trans
, tree_root
);
878 btrfs_btree_balance_dirty(tree_root
, nr
);
883 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
886 nr
= trans
->blocks_used
;
887 ret
= btrfs_end_transaction(trans
, tree_root
);
890 free_extent_buffer(root
->node
);
891 free_extent_buffer(root
->commit_root
);
894 btrfs_btree_balance_dirty(tree_root
, nr
);
900 * new snapshots need to be created at a very specific time in the
901 * transaction commit. This does the actual creation
903 static noinline
int create_pending_snapshot(struct btrfs_trans_handle
*trans
,
904 struct btrfs_fs_info
*fs_info
,
905 struct btrfs_pending_snapshot
*pending
)
907 struct btrfs_key key
;
908 struct btrfs_root_item
*new_root_item
;
909 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
910 struct btrfs_root
*root
= pending
->root
;
911 struct btrfs_root
*parent_root
;
912 struct inode
*parent_inode
;
913 struct dentry
*parent
;
914 struct dentry
*dentry
;
915 struct extent_buffer
*tmp
;
916 struct extent_buffer
*old
;
923 new_root_item
= kmalloc(sizeof(*new_root_item
), GFP_NOFS
);
924 if (!new_root_item
) {
925 pending
->error
= -ENOMEM
;
929 ret
= btrfs_find_free_objectid(trans
, tree_root
, 0, &objectid
);
931 pending
->error
= ret
;
935 btrfs_reloc_pre_snapshot(trans
, pending
, &to_reserve
);
936 btrfs_orphan_pre_snapshot(trans
, pending
, &to_reserve
);
938 if (to_reserve
> 0) {
939 ret
= btrfs_block_rsv_add(trans
, root
, &pending
->block_rsv
,
942 pending
->error
= ret
;
947 key
.objectid
= objectid
;
948 key
.offset
= (u64
)-1;
949 key
.type
= BTRFS_ROOT_ITEM_KEY
;
951 trans
->block_rsv
= &pending
->block_rsv
;
953 dentry
= pending
->dentry
;
954 parent
= dget_parent(dentry
);
955 parent_inode
= parent
->d_inode
;
956 parent_root
= BTRFS_I(parent_inode
)->root
;
957 record_root_in_trans(trans
, parent_root
);
960 * insert the directory item
962 ret
= btrfs_set_inode_index(parent_inode
, &index
);
964 ret
= btrfs_insert_dir_item(trans
, parent_root
,
965 dentry
->d_name
.name
, dentry
->d_name
.len
,
966 parent_inode
->i_ino
, &key
,
967 BTRFS_FT_DIR
, index
);
970 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
971 dentry
->d_name
.len
* 2);
972 ret
= btrfs_update_inode(trans
, parent_root
, parent_inode
);
975 record_root_in_trans(trans
, root
);
976 btrfs_set_root_last_snapshot(&root
->root_item
, trans
->transid
);
977 memcpy(new_root_item
, &root
->root_item
, sizeof(*new_root_item
));
979 root_flags
= btrfs_root_flags(new_root_item
);
980 if (pending
->readonly
)
981 root_flags
|= BTRFS_ROOT_SUBVOL_RDONLY
;
983 root_flags
&= ~BTRFS_ROOT_SUBVOL_RDONLY
;
984 btrfs_set_root_flags(new_root_item
, root_flags
);
986 old
= btrfs_lock_root_node(root
);
987 btrfs_cow_block(trans
, root
, old
, NULL
, 0, &old
);
988 btrfs_set_lock_blocking(old
);
990 btrfs_copy_root(trans
, root
, old
, &tmp
, objectid
);
991 btrfs_tree_unlock(old
);
992 free_extent_buffer(old
);
994 btrfs_set_root_node(new_root_item
, tmp
);
995 /* record when the snapshot was created in key.offset */
996 key
.offset
= trans
->transid
;
997 ret
= btrfs_insert_root(trans
, tree_root
, &key
, new_root_item
);
998 btrfs_tree_unlock(tmp
);
999 free_extent_buffer(tmp
);
1003 * insert root back/forward references
1005 ret
= btrfs_add_root_ref(trans
, tree_root
, objectid
,
1006 parent_root
->root_key
.objectid
,
1007 parent_inode
->i_ino
, index
,
1008 dentry
->d_name
.name
, dentry
->d_name
.len
);
1012 key
.offset
= (u64
)-1;
1013 pending
->snap
= btrfs_read_fs_root_no_name(root
->fs_info
, &key
);
1014 BUG_ON(IS_ERR(pending
->snap
));
1016 btrfs_reloc_post_snapshot(trans
, pending
);
1017 btrfs_orphan_post_snapshot(trans
, pending
);
1019 kfree(new_root_item
);
1020 btrfs_block_rsv_release(root
, &pending
->block_rsv
, (u64
)-1);
1025 * create all the snapshots we've scheduled for creation
1027 static noinline
int create_pending_snapshots(struct btrfs_trans_handle
*trans
,
1028 struct btrfs_fs_info
*fs_info
)
1030 struct btrfs_pending_snapshot
*pending
;
1031 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
1034 list_for_each_entry(pending
, head
, list
) {
1035 ret
= create_pending_snapshot(trans
, fs_info
, pending
);
1041 static void update_super_roots(struct btrfs_root
*root
)
1043 struct btrfs_root_item
*root_item
;
1044 struct btrfs_super_block
*super
;
1046 super
= &root
->fs_info
->super_copy
;
1048 root_item
= &root
->fs_info
->chunk_root
->root_item
;
1049 super
->chunk_root
= root_item
->bytenr
;
1050 super
->chunk_root_generation
= root_item
->generation
;
1051 super
->chunk_root_level
= root_item
->level
;
1053 root_item
= &root
->fs_info
->tree_root
->root_item
;
1054 super
->root
= root_item
->bytenr
;
1055 super
->generation
= root_item
->generation
;
1056 super
->root_level
= root_item
->level
;
1057 if (super
->cache_generation
!= 0 || btrfs_test_opt(root
, SPACE_CACHE
))
1058 super
->cache_generation
= root_item
->generation
;
1061 int btrfs_transaction_in_commit(struct btrfs_fs_info
*info
)
1064 spin_lock(&info
->new_trans_lock
);
1065 if (info
->running_transaction
)
1066 ret
= info
->running_transaction
->in_commit
;
1067 spin_unlock(&info
->new_trans_lock
);
1071 int btrfs_transaction_blocked(struct btrfs_fs_info
*info
)
1074 spin_lock(&info
->new_trans_lock
);
1075 if (info
->running_transaction
)
1076 ret
= info
->running_transaction
->blocked
;
1077 spin_unlock(&info
->new_trans_lock
);
1082 * wait for the current transaction commit to start and block subsequent
1085 static void wait_current_trans_commit_start(struct btrfs_root
*root
,
1086 struct btrfs_transaction
*trans
)
1090 if (trans
->in_commit
)
1094 prepare_to_wait(&root
->fs_info
->transaction_blocked_wait
, &wait
,
1095 TASK_UNINTERRUPTIBLE
);
1096 if (trans
->in_commit
) {
1097 finish_wait(&root
->fs_info
->transaction_blocked_wait
,
1101 mutex_unlock(&root
->fs_info
->trans_mutex
);
1103 mutex_lock(&root
->fs_info
->trans_mutex
);
1104 finish_wait(&root
->fs_info
->transaction_blocked_wait
, &wait
);
1109 * wait for the current transaction to start and then become unblocked.
1112 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root
*root
,
1113 struct btrfs_transaction
*trans
)
1117 if (trans
->commit_done
|| (trans
->in_commit
&& !trans
->blocked
))
1121 prepare_to_wait(&root
->fs_info
->transaction_wait
, &wait
,
1122 TASK_UNINTERRUPTIBLE
);
1123 if (trans
->commit_done
||
1124 (trans
->in_commit
&& !trans
->blocked
)) {
1125 finish_wait(&root
->fs_info
->transaction_wait
,
1129 mutex_unlock(&root
->fs_info
->trans_mutex
);
1131 mutex_lock(&root
->fs_info
->trans_mutex
);
1132 finish_wait(&root
->fs_info
->transaction_wait
,
1138 * commit transactions asynchronously. once btrfs_commit_transaction_async
1139 * returns, any subsequent transaction will not be allowed to join.
1141 struct btrfs_async_commit
{
1142 struct btrfs_trans_handle
*newtrans
;
1143 struct btrfs_root
*root
;
1144 struct delayed_work work
;
1147 static void do_async_commit(struct work_struct
*work
)
1149 struct btrfs_async_commit
*ac
=
1150 container_of(work
, struct btrfs_async_commit
, work
.work
);
1152 btrfs_commit_transaction(ac
->newtrans
, ac
->root
);
1156 int btrfs_commit_transaction_async(struct btrfs_trans_handle
*trans
,
1157 struct btrfs_root
*root
,
1158 int wait_for_unblock
)
1160 struct btrfs_async_commit
*ac
;
1161 struct btrfs_transaction
*cur_trans
;
1163 ac
= kmalloc(sizeof(*ac
), GFP_NOFS
);
1167 INIT_DELAYED_WORK(&ac
->work
, do_async_commit
);
1169 ac
->newtrans
= btrfs_join_transaction(root
, 0);
1170 if (IS_ERR(ac
->newtrans
)) {
1171 int err
= PTR_ERR(ac
->newtrans
);
1176 /* take transaction reference */
1177 mutex_lock(&root
->fs_info
->trans_mutex
);
1178 cur_trans
= trans
->transaction
;
1179 cur_trans
->use_count
++;
1180 mutex_unlock(&root
->fs_info
->trans_mutex
);
1182 btrfs_end_transaction(trans
, root
);
1183 schedule_delayed_work(&ac
->work
, 0);
1185 /* wait for transaction to start and unblock */
1186 mutex_lock(&root
->fs_info
->trans_mutex
);
1187 if (wait_for_unblock
)
1188 wait_current_trans_commit_start_and_unblock(root
, cur_trans
);
1190 wait_current_trans_commit_start(root
, cur_trans
);
1191 put_transaction(cur_trans
);
1192 mutex_unlock(&root
->fs_info
->trans_mutex
);
1198 * btrfs_transaction state sequence:
1199 * in_commit = 0, blocked = 0 (initial)
1200 * in_commit = 1, blocked = 1
1204 int btrfs_commit_transaction(struct btrfs_trans_handle
*trans
,
1205 struct btrfs_root
*root
)
1207 unsigned long joined
= 0;
1208 struct btrfs_transaction
*cur_trans
;
1209 struct btrfs_transaction
*prev_trans
= NULL
;
1212 int should_grow
= 0;
1213 unsigned long now
= get_seconds();
1214 int flush_on_commit
= btrfs_test_opt(root
, FLUSHONCOMMIT
);
1216 btrfs_run_ordered_operations(root
, 0);
1218 /* make a pass through all the delayed refs we have so far
1219 * any runnings procs may add more while we are here
1221 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1224 btrfs_trans_release_metadata(trans
, root
);
1226 cur_trans
= trans
->transaction
;
1228 * set the flushing flag so procs in this transaction have to
1229 * start sending their work down.
1231 cur_trans
->delayed_refs
.flushing
= 1;
1233 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1236 mutex_lock(&root
->fs_info
->trans_mutex
);
1237 if (cur_trans
->in_commit
) {
1238 cur_trans
->use_count
++;
1239 mutex_unlock(&root
->fs_info
->trans_mutex
);
1240 btrfs_end_transaction(trans
, root
);
1242 ret
= wait_for_commit(root
, cur_trans
);
1245 mutex_lock(&root
->fs_info
->trans_mutex
);
1246 put_transaction(cur_trans
);
1247 mutex_unlock(&root
->fs_info
->trans_mutex
);
1252 trans
->transaction
->in_commit
= 1;
1253 trans
->transaction
->blocked
= 1;
1254 wake_up(&root
->fs_info
->transaction_blocked_wait
);
1256 if (cur_trans
->list
.prev
!= &root
->fs_info
->trans_list
) {
1257 prev_trans
= list_entry(cur_trans
->list
.prev
,
1258 struct btrfs_transaction
, list
);
1259 if (!prev_trans
->commit_done
) {
1260 prev_trans
->use_count
++;
1261 mutex_unlock(&root
->fs_info
->trans_mutex
);
1263 wait_for_commit(root
, prev_trans
);
1265 mutex_lock(&root
->fs_info
->trans_mutex
);
1266 put_transaction(prev_trans
);
1270 if (now
< cur_trans
->start_time
|| now
- cur_trans
->start_time
< 1)
1274 int snap_pending
= 0;
1275 joined
= cur_trans
->num_joined
;
1276 if (!list_empty(&trans
->transaction
->pending_snapshots
))
1279 WARN_ON(cur_trans
!= trans
->transaction
);
1280 mutex_unlock(&root
->fs_info
->trans_mutex
);
1282 if (flush_on_commit
|| snap_pending
) {
1283 btrfs_start_delalloc_inodes(root
, 1);
1284 ret
= btrfs_wait_ordered_extents(root
, 0, 1);
1289 * rename don't use btrfs_join_transaction, so, once we
1290 * set the transaction to blocked above, we aren't going
1291 * to get any new ordered operations. We can safely run
1292 * it here and no for sure that nothing new will be added
1295 btrfs_run_ordered_operations(root
, 1);
1297 prepare_to_wait(&cur_trans
->writer_wait
, &wait
,
1298 TASK_UNINTERRUPTIBLE
);
1301 if (cur_trans
->num_writers
> 1)
1302 schedule_timeout(MAX_SCHEDULE_TIMEOUT
);
1303 else if (should_grow
)
1304 schedule_timeout(1);
1306 mutex_lock(&root
->fs_info
->trans_mutex
);
1307 finish_wait(&cur_trans
->writer_wait
, &wait
);
1308 } while (cur_trans
->num_writers
> 1 ||
1309 (should_grow
&& cur_trans
->num_joined
!= joined
));
1311 ret
= create_pending_snapshots(trans
, root
->fs_info
);
1314 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1317 WARN_ON(cur_trans
!= trans
->transaction
);
1319 /* btrfs_commit_tree_roots is responsible for getting the
1320 * various roots consistent with each other. Every pointer
1321 * in the tree of tree roots has to point to the most up to date
1322 * root for every subvolume and other tree. So, we have to keep
1323 * the tree logging code from jumping in and changing any
1326 * At this point in the commit, there can't be any tree-log
1327 * writers, but a little lower down we drop the trans mutex
1328 * and let new people in. By holding the tree_log_mutex
1329 * from now until after the super is written, we avoid races
1330 * with the tree-log code.
1332 mutex_lock(&root
->fs_info
->tree_log_mutex
);
1334 ret
= commit_fs_roots(trans
, root
);
1337 /* commit_fs_roots gets rid of all the tree log roots, it is now
1338 * safe to free the root of tree log roots
1340 btrfs_free_log_root_tree(trans
, root
->fs_info
);
1342 ret
= commit_cowonly_roots(trans
, root
);
1345 btrfs_prepare_extent_commit(trans
, root
);
1347 cur_trans
= root
->fs_info
->running_transaction
;
1348 spin_lock(&root
->fs_info
->new_trans_lock
);
1349 root
->fs_info
->running_transaction
= NULL
;
1350 spin_unlock(&root
->fs_info
->new_trans_lock
);
1352 btrfs_set_root_node(&root
->fs_info
->tree_root
->root_item
,
1353 root
->fs_info
->tree_root
->node
);
1354 switch_commit_root(root
->fs_info
->tree_root
);
1356 btrfs_set_root_node(&root
->fs_info
->chunk_root
->root_item
,
1357 root
->fs_info
->chunk_root
->node
);
1358 switch_commit_root(root
->fs_info
->chunk_root
);
1360 update_super_roots(root
);
1362 if (!root
->fs_info
->log_root_recovering
) {
1363 btrfs_set_super_log_root(&root
->fs_info
->super_copy
, 0);
1364 btrfs_set_super_log_root_level(&root
->fs_info
->super_copy
, 0);
1367 memcpy(&root
->fs_info
->super_for_commit
, &root
->fs_info
->super_copy
,
1368 sizeof(root
->fs_info
->super_copy
));
1370 trans
->transaction
->blocked
= 0;
1372 wake_up(&root
->fs_info
->transaction_wait
);
1374 mutex_unlock(&root
->fs_info
->trans_mutex
);
1375 ret
= btrfs_write_and_wait_transaction(trans
, root
);
1377 write_ctree_super(trans
, root
, 0);
1380 * the super is written, we can safely allow the tree-loggers
1381 * to go about their business
1383 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1385 btrfs_finish_extent_commit(trans
, root
);
1387 mutex_lock(&root
->fs_info
->trans_mutex
);
1389 cur_trans
->commit_done
= 1;
1391 root
->fs_info
->last_trans_committed
= cur_trans
->transid
;
1393 wake_up(&cur_trans
->commit_wait
);
1395 put_transaction(cur_trans
);
1396 put_transaction(cur_trans
);
1398 trace_btrfs_transaction_commit(root
);
1400 mutex_unlock(&root
->fs_info
->trans_mutex
);
1402 if (current
->journal_info
== trans
)
1403 current
->journal_info
= NULL
;
1405 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1407 if (current
!= root
->fs_info
->transaction_kthread
)
1408 btrfs_run_delayed_iputs(root
);
1414 * interface function to delete all the snapshots we have scheduled for deletion
1416 int btrfs_clean_old_snapshots(struct btrfs_root
*root
)
1419 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1421 mutex_lock(&fs_info
->trans_mutex
);
1422 list_splice_init(&fs_info
->dead_roots
, &list
);
1423 mutex_unlock(&fs_info
->trans_mutex
);
1425 while (!list_empty(&list
)) {
1426 root
= list_entry(list
.next
, struct btrfs_root
, root_list
);
1427 list_del(&root
->root_list
);
1429 if (btrfs_header_backref_rev(root
->node
) <
1430 BTRFS_MIXED_BACKREF_REV
)
1431 btrfs_drop_snapshot(root
, NULL
, 0);
1433 btrfs_drop_snapshot(root
, NULL
, 1);