Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/cjb/mmc
[cris-mirror.git] / fs / super.c
blob8a06881b1920b9e164ab276ffe73180ebfbbe97a
1 /*
2 * linux/fs/super.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include "internal.h"
37 LIST_HEAD(super_blocks);
38 DEFINE_SPINLOCK(sb_lock);
40 /**
41 * alloc_super - create new superblock
42 * @type: filesystem type superblock should belong to
44 * Allocates and initializes a new &struct super_block. alloc_super()
45 * returns a pointer new superblock or %NULL if allocation had failed.
47 static struct super_block *alloc_super(struct file_system_type *type)
49 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
50 static const struct super_operations default_op;
52 if (s) {
53 if (security_sb_alloc(s)) {
54 kfree(s);
55 s = NULL;
56 goto out;
58 #ifdef CONFIG_SMP
59 s->s_files = alloc_percpu(struct list_head);
60 if (!s->s_files) {
61 security_sb_free(s);
62 kfree(s);
63 s = NULL;
64 goto out;
65 } else {
66 int i;
68 for_each_possible_cpu(i)
69 INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
71 #else
72 INIT_LIST_HEAD(&s->s_files);
73 #endif
74 s->s_bdi = &default_backing_dev_info;
75 INIT_LIST_HEAD(&s->s_instances);
76 INIT_HLIST_BL_HEAD(&s->s_anon);
77 INIT_LIST_HEAD(&s->s_inodes);
78 INIT_LIST_HEAD(&s->s_dentry_lru);
79 init_rwsem(&s->s_umount);
80 mutex_init(&s->s_lock);
81 lockdep_set_class(&s->s_umount, &type->s_umount_key);
83 * The locking rules for s_lock are up to the
84 * filesystem. For example ext3fs has different
85 * lock ordering than usbfs:
87 lockdep_set_class(&s->s_lock, &type->s_lock_key);
89 * sget() can have s_umount recursion.
91 * When it cannot find a suitable sb, it allocates a new
92 * one (this one), and tries again to find a suitable old
93 * one.
95 * In case that succeeds, it will acquire the s_umount
96 * lock of the old one. Since these are clearly distrinct
97 * locks, and this object isn't exposed yet, there's no
98 * risk of deadlocks.
100 * Annotate this by putting this lock in a different
101 * subclass.
103 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
104 s->s_count = 1;
105 atomic_set(&s->s_active, 1);
106 mutex_init(&s->s_vfs_rename_mutex);
107 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
108 mutex_init(&s->s_dquot.dqio_mutex);
109 mutex_init(&s->s_dquot.dqonoff_mutex);
110 init_rwsem(&s->s_dquot.dqptr_sem);
111 init_waitqueue_head(&s->s_wait_unfrozen);
112 s->s_maxbytes = MAX_NON_LFS;
113 s->s_op = &default_op;
114 s->s_time_gran = 1000000000;
116 out:
117 return s;
121 * destroy_super - frees a superblock
122 * @s: superblock to free
124 * Frees a superblock.
126 static inline void destroy_super(struct super_block *s)
128 #ifdef CONFIG_SMP
129 free_percpu(s->s_files);
130 #endif
131 security_sb_free(s);
132 kfree(s->s_subtype);
133 kfree(s->s_options);
134 kfree(s);
137 /* Superblock refcounting */
140 * Drop a superblock's refcount. The caller must hold sb_lock.
142 void __put_super(struct super_block *sb)
144 if (!--sb->s_count) {
145 list_del_init(&sb->s_list);
146 destroy_super(sb);
151 * put_super - drop a temporary reference to superblock
152 * @sb: superblock in question
154 * Drops a temporary reference, frees superblock if there's no
155 * references left.
157 void put_super(struct super_block *sb)
159 spin_lock(&sb_lock);
160 __put_super(sb);
161 spin_unlock(&sb_lock);
166 * deactivate_locked_super - drop an active reference to superblock
167 * @s: superblock to deactivate
169 * Drops an active reference to superblock, converting it into a temprory
170 * one if there is no other active references left. In that case we
171 * tell fs driver to shut it down and drop the temporary reference we
172 * had just acquired.
174 * Caller holds exclusive lock on superblock; that lock is released.
176 void deactivate_locked_super(struct super_block *s)
178 struct file_system_type *fs = s->s_type;
179 if (atomic_dec_and_test(&s->s_active)) {
180 fs->kill_sb(s);
182 * We need to call rcu_barrier so all the delayed rcu free
183 * inodes are flushed before we release the fs module.
185 rcu_barrier();
186 put_filesystem(fs);
187 put_super(s);
188 } else {
189 up_write(&s->s_umount);
193 EXPORT_SYMBOL(deactivate_locked_super);
196 * deactivate_super - drop an active reference to superblock
197 * @s: superblock to deactivate
199 * Variant of deactivate_locked_super(), except that superblock is *not*
200 * locked by caller. If we are going to drop the final active reference,
201 * lock will be acquired prior to that.
203 void deactivate_super(struct super_block *s)
205 if (!atomic_add_unless(&s->s_active, -1, 1)) {
206 down_write(&s->s_umount);
207 deactivate_locked_super(s);
211 EXPORT_SYMBOL(deactivate_super);
214 * grab_super - acquire an active reference
215 * @s: reference we are trying to make active
217 * Tries to acquire an active reference. grab_super() is used when we
218 * had just found a superblock in super_blocks or fs_type->fs_supers
219 * and want to turn it into a full-blown active reference. grab_super()
220 * is called with sb_lock held and drops it. Returns 1 in case of
221 * success, 0 if we had failed (superblock contents was already dead or
222 * dying when grab_super() had been called).
224 static int grab_super(struct super_block *s) __releases(sb_lock)
226 if (atomic_inc_not_zero(&s->s_active)) {
227 spin_unlock(&sb_lock);
228 return 1;
230 /* it's going away */
231 s->s_count++;
232 spin_unlock(&sb_lock);
233 /* wait for it to die */
234 down_write(&s->s_umount);
235 up_write(&s->s_umount);
236 put_super(s);
237 return 0;
241 * Superblock locking. We really ought to get rid of these two.
243 void lock_super(struct super_block * sb)
245 get_fs_excl();
246 mutex_lock(&sb->s_lock);
249 void unlock_super(struct super_block * sb)
251 put_fs_excl();
252 mutex_unlock(&sb->s_lock);
255 EXPORT_SYMBOL(lock_super);
256 EXPORT_SYMBOL(unlock_super);
259 * generic_shutdown_super - common helper for ->kill_sb()
260 * @sb: superblock to kill
262 * generic_shutdown_super() does all fs-independent work on superblock
263 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
264 * that need destruction out of superblock, call generic_shutdown_super()
265 * and release aforementioned objects. Note: dentries and inodes _are_
266 * taken care of and do not need specific handling.
268 * Upon calling this function, the filesystem may no longer alter or
269 * rearrange the set of dentries belonging to this super_block, nor may it
270 * change the attachments of dentries to inodes.
272 void generic_shutdown_super(struct super_block *sb)
274 const struct super_operations *sop = sb->s_op;
277 if (sb->s_root) {
278 shrink_dcache_for_umount(sb);
279 sync_filesystem(sb);
280 get_fs_excl();
281 sb->s_flags &= ~MS_ACTIVE;
283 fsnotify_unmount_inodes(&sb->s_inodes);
285 evict_inodes(sb);
287 if (sop->put_super)
288 sop->put_super(sb);
290 if (!list_empty(&sb->s_inodes)) {
291 printk("VFS: Busy inodes after unmount of %s. "
292 "Self-destruct in 5 seconds. Have a nice day...\n",
293 sb->s_id);
295 put_fs_excl();
297 spin_lock(&sb_lock);
298 /* should be initialized for __put_super_and_need_restart() */
299 list_del_init(&sb->s_instances);
300 spin_unlock(&sb_lock);
301 up_write(&sb->s_umount);
304 EXPORT_SYMBOL(generic_shutdown_super);
307 * sget - find or create a superblock
308 * @type: filesystem type superblock should belong to
309 * @test: comparison callback
310 * @set: setup callback
311 * @data: argument to each of them
313 struct super_block *sget(struct file_system_type *type,
314 int (*test)(struct super_block *,void *),
315 int (*set)(struct super_block *,void *),
316 void *data)
318 struct super_block *s = NULL;
319 struct super_block *old;
320 int err;
322 retry:
323 spin_lock(&sb_lock);
324 if (test) {
325 list_for_each_entry(old, &type->fs_supers, s_instances) {
326 if (!test(old, data))
327 continue;
328 if (!grab_super(old))
329 goto retry;
330 if (s) {
331 up_write(&s->s_umount);
332 destroy_super(s);
333 s = NULL;
335 down_write(&old->s_umount);
336 if (unlikely(!(old->s_flags & MS_BORN))) {
337 deactivate_locked_super(old);
338 goto retry;
340 return old;
343 if (!s) {
344 spin_unlock(&sb_lock);
345 s = alloc_super(type);
346 if (!s)
347 return ERR_PTR(-ENOMEM);
348 goto retry;
351 err = set(s, data);
352 if (err) {
353 spin_unlock(&sb_lock);
354 up_write(&s->s_umount);
355 destroy_super(s);
356 return ERR_PTR(err);
358 s->s_type = type;
359 strlcpy(s->s_id, type->name, sizeof(s->s_id));
360 list_add_tail(&s->s_list, &super_blocks);
361 list_add(&s->s_instances, &type->fs_supers);
362 spin_unlock(&sb_lock);
363 get_filesystem(type);
364 return s;
367 EXPORT_SYMBOL(sget);
369 void drop_super(struct super_block *sb)
371 up_read(&sb->s_umount);
372 put_super(sb);
375 EXPORT_SYMBOL(drop_super);
378 * sync_supers - helper for periodic superblock writeback
380 * Call the write_super method if present on all dirty superblocks in
381 * the system. This is for the periodic writeback used by most older
382 * filesystems. For data integrity superblock writeback use
383 * sync_filesystems() instead.
385 * Note: check the dirty flag before waiting, so we don't
386 * hold up the sync while mounting a device. (The newly
387 * mounted device won't need syncing.)
389 void sync_supers(void)
391 struct super_block *sb, *p = NULL;
393 spin_lock(&sb_lock);
394 list_for_each_entry(sb, &super_blocks, s_list) {
395 if (list_empty(&sb->s_instances))
396 continue;
397 if (sb->s_op->write_super && sb->s_dirt) {
398 sb->s_count++;
399 spin_unlock(&sb_lock);
401 down_read(&sb->s_umount);
402 if (sb->s_root && sb->s_dirt)
403 sb->s_op->write_super(sb);
404 up_read(&sb->s_umount);
406 spin_lock(&sb_lock);
407 if (p)
408 __put_super(p);
409 p = sb;
412 if (p)
413 __put_super(p);
414 spin_unlock(&sb_lock);
418 * iterate_supers - call function for all active superblocks
419 * @f: function to call
420 * @arg: argument to pass to it
422 * Scans the superblock list and calls given function, passing it
423 * locked superblock and given argument.
425 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
427 struct super_block *sb, *p = NULL;
429 spin_lock(&sb_lock);
430 list_for_each_entry(sb, &super_blocks, s_list) {
431 if (list_empty(&sb->s_instances))
432 continue;
433 sb->s_count++;
434 spin_unlock(&sb_lock);
436 down_read(&sb->s_umount);
437 if (sb->s_root)
438 f(sb, arg);
439 up_read(&sb->s_umount);
441 spin_lock(&sb_lock);
442 if (p)
443 __put_super(p);
444 p = sb;
446 if (p)
447 __put_super(p);
448 spin_unlock(&sb_lock);
452 * get_super - get the superblock of a device
453 * @bdev: device to get the superblock for
455 * Scans the superblock list and finds the superblock of the file system
456 * mounted on the device given. %NULL is returned if no match is found.
459 struct super_block *get_super(struct block_device *bdev)
461 struct super_block *sb;
463 if (!bdev)
464 return NULL;
466 spin_lock(&sb_lock);
467 rescan:
468 list_for_each_entry(sb, &super_blocks, s_list) {
469 if (list_empty(&sb->s_instances))
470 continue;
471 if (sb->s_bdev == bdev) {
472 sb->s_count++;
473 spin_unlock(&sb_lock);
474 down_read(&sb->s_umount);
475 /* still alive? */
476 if (sb->s_root)
477 return sb;
478 up_read(&sb->s_umount);
479 /* nope, got unmounted */
480 spin_lock(&sb_lock);
481 __put_super(sb);
482 goto rescan;
485 spin_unlock(&sb_lock);
486 return NULL;
489 EXPORT_SYMBOL(get_super);
492 * get_active_super - get an active reference to the superblock of a device
493 * @bdev: device to get the superblock for
495 * Scans the superblock list and finds the superblock of the file system
496 * mounted on the device given. Returns the superblock with an active
497 * reference or %NULL if none was found.
499 struct super_block *get_active_super(struct block_device *bdev)
501 struct super_block *sb;
503 if (!bdev)
504 return NULL;
506 restart:
507 spin_lock(&sb_lock);
508 list_for_each_entry(sb, &super_blocks, s_list) {
509 if (list_empty(&sb->s_instances))
510 continue;
511 if (sb->s_bdev == bdev) {
512 if (grab_super(sb)) /* drops sb_lock */
513 return sb;
514 else
515 goto restart;
518 spin_unlock(&sb_lock);
519 return NULL;
522 struct super_block *user_get_super(dev_t dev)
524 struct super_block *sb;
526 spin_lock(&sb_lock);
527 rescan:
528 list_for_each_entry(sb, &super_blocks, s_list) {
529 if (list_empty(&sb->s_instances))
530 continue;
531 if (sb->s_dev == dev) {
532 sb->s_count++;
533 spin_unlock(&sb_lock);
534 down_read(&sb->s_umount);
535 /* still alive? */
536 if (sb->s_root)
537 return sb;
538 up_read(&sb->s_umount);
539 /* nope, got unmounted */
540 spin_lock(&sb_lock);
541 __put_super(sb);
542 goto rescan;
545 spin_unlock(&sb_lock);
546 return NULL;
550 * do_remount_sb - asks filesystem to change mount options.
551 * @sb: superblock in question
552 * @flags: numeric part of options
553 * @data: the rest of options
554 * @force: whether or not to force the change
556 * Alters the mount options of a mounted file system.
558 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
560 int retval;
561 int remount_ro;
563 if (sb->s_frozen != SB_UNFROZEN)
564 return -EBUSY;
566 #ifdef CONFIG_BLOCK
567 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
568 return -EACCES;
569 #endif
571 if (flags & MS_RDONLY)
572 acct_auto_close(sb);
573 shrink_dcache_sb(sb);
574 sync_filesystem(sb);
576 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
578 /* If we are remounting RDONLY and current sb is read/write,
579 make sure there are no rw files opened */
580 if (remount_ro) {
581 if (force)
582 mark_files_ro(sb);
583 else if (!fs_may_remount_ro(sb))
584 return -EBUSY;
587 if (sb->s_op->remount_fs) {
588 retval = sb->s_op->remount_fs(sb, &flags, data);
589 if (retval)
590 return retval;
592 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
595 * Some filesystems modify their metadata via some other path than the
596 * bdev buffer cache (eg. use a private mapping, or directories in
597 * pagecache, etc). Also file data modifications go via their own
598 * mappings. So If we try to mount readonly then copy the filesystem
599 * from bdev, we could get stale data, so invalidate it to give a best
600 * effort at coherency.
602 if (remount_ro && sb->s_bdev)
603 invalidate_bdev(sb->s_bdev);
604 return 0;
607 static void do_emergency_remount(struct work_struct *work)
609 struct super_block *sb, *p = NULL;
611 spin_lock(&sb_lock);
612 list_for_each_entry(sb, &super_blocks, s_list) {
613 if (list_empty(&sb->s_instances))
614 continue;
615 sb->s_count++;
616 spin_unlock(&sb_lock);
617 down_write(&sb->s_umount);
618 if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
620 * What lock protects sb->s_flags??
622 do_remount_sb(sb, MS_RDONLY, NULL, 1);
624 up_write(&sb->s_umount);
625 spin_lock(&sb_lock);
626 if (p)
627 __put_super(p);
628 p = sb;
630 if (p)
631 __put_super(p);
632 spin_unlock(&sb_lock);
633 kfree(work);
634 printk("Emergency Remount complete\n");
637 void emergency_remount(void)
639 struct work_struct *work;
641 work = kmalloc(sizeof(*work), GFP_ATOMIC);
642 if (work) {
643 INIT_WORK(work, do_emergency_remount);
644 schedule_work(work);
649 * Unnamed block devices are dummy devices used by virtual
650 * filesystems which don't use real block-devices. -- jrs
653 static DEFINE_IDA(unnamed_dev_ida);
654 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
655 static int unnamed_dev_start = 0; /* don't bother trying below it */
657 int set_anon_super(struct super_block *s, void *data)
659 int dev;
660 int error;
662 retry:
663 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
664 return -ENOMEM;
665 spin_lock(&unnamed_dev_lock);
666 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
667 if (!error)
668 unnamed_dev_start = dev + 1;
669 spin_unlock(&unnamed_dev_lock);
670 if (error == -EAGAIN)
671 /* We raced and lost with another CPU. */
672 goto retry;
673 else if (error)
674 return -EAGAIN;
676 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
677 spin_lock(&unnamed_dev_lock);
678 ida_remove(&unnamed_dev_ida, dev);
679 if (unnamed_dev_start > dev)
680 unnamed_dev_start = dev;
681 spin_unlock(&unnamed_dev_lock);
682 return -EMFILE;
684 s->s_dev = MKDEV(0, dev & MINORMASK);
685 s->s_bdi = &noop_backing_dev_info;
686 return 0;
689 EXPORT_SYMBOL(set_anon_super);
691 void kill_anon_super(struct super_block *sb)
693 int slot = MINOR(sb->s_dev);
695 generic_shutdown_super(sb);
696 spin_lock(&unnamed_dev_lock);
697 ida_remove(&unnamed_dev_ida, slot);
698 if (slot < unnamed_dev_start)
699 unnamed_dev_start = slot;
700 spin_unlock(&unnamed_dev_lock);
703 EXPORT_SYMBOL(kill_anon_super);
705 void kill_litter_super(struct super_block *sb)
707 if (sb->s_root)
708 d_genocide(sb->s_root);
709 kill_anon_super(sb);
712 EXPORT_SYMBOL(kill_litter_super);
714 static int ns_test_super(struct super_block *sb, void *data)
716 return sb->s_fs_info == data;
719 static int ns_set_super(struct super_block *sb, void *data)
721 sb->s_fs_info = data;
722 return set_anon_super(sb, NULL);
725 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
726 void *data, int (*fill_super)(struct super_block *, void *, int))
728 struct super_block *sb;
730 sb = sget(fs_type, ns_test_super, ns_set_super, data);
731 if (IS_ERR(sb))
732 return ERR_CAST(sb);
734 if (!sb->s_root) {
735 int err;
736 sb->s_flags = flags;
737 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
738 if (err) {
739 deactivate_locked_super(sb);
740 return ERR_PTR(err);
743 sb->s_flags |= MS_ACTIVE;
746 return dget(sb->s_root);
749 EXPORT_SYMBOL(mount_ns);
751 #ifdef CONFIG_BLOCK
752 static int set_bdev_super(struct super_block *s, void *data)
754 s->s_bdev = data;
755 s->s_dev = s->s_bdev->bd_dev;
758 * We set the bdi here to the queue backing, file systems can
759 * overwrite this in ->fill_super()
761 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
762 return 0;
765 static int test_bdev_super(struct super_block *s, void *data)
767 return (void *)s->s_bdev == data;
770 struct dentry *mount_bdev(struct file_system_type *fs_type,
771 int flags, const char *dev_name, void *data,
772 int (*fill_super)(struct super_block *, void *, int))
774 struct block_device *bdev;
775 struct super_block *s;
776 fmode_t mode = FMODE_READ | FMODE_EXCL;
777 int error = 0;
779 if (!(flags & MS_RDONLY))
780 mode |= FMODE_WRITE;
782 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
783 if (IS_ERR(bdev))
784 return ERR_CAST(bdev);
787 * once the super is inserted into the list by sget, s_umount
788 * will protect the lockfs code from trying to start a snapshot
789 * while we are mounting
791 mutex_lock(&bdev->bd_fsfreeze_mutex);
792 if (bdev->bd_fsfreeze_count > 0) {
793 mutex_unlock(&bdev->bd_fsfreeze_mutex);
794 error = -EBUSY;
795 goto error_bdev;
797 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
798 mutex_unlock(&bdev->bd_fsfreeze_mutex);
799 if (IS_ERR(s))
800 goto error_s;
802 if (s->s_root) {
803 if ((flags ^ s->s_flags) & MS_RDONLY) {
804 deactivate_locked_super(s);
805 error = -EBUSY;
806 goto error_bdev;
810 * s_umount nests inside bd_mutex during
811 * __invalidate_device(). blkdev_put() acquires
812 * bd_mutex and can't be called under s_umount. Drop
813 * s_umount temporarily. This is safe as we're
814 * holding an active reference.
816 up_write(&s->s_umount);
817 blkdev_put(bdev, mode);
818 down_write(&s->s_umount);
819 } else {
820 char b[BDEVNAME_SIZE];
822 s->s_flags = flags;
823 s->s_mode = mode;
824 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
825 sb_set_blocksize(s, block_size(bdev));
826 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
827 if (error) {
828 deactivate_locked_super(s);
829 goto error;
832 s->s_flags |= MS_ACTIVE;
833 bdev->bd_super = s;
836 return dget(s->s_root);
838 error_s:
839 error = PTR_ERR(s);
840 error_bdev:
841 blkdev_put(bdev, mode);
842 error:
843 return ERR_PTR(error);
845 EXPORT_SYMBOL(mount_bdev);
847 void kill_block_super(struct super_block *sb)
849 struct block_device *bdev = sb->s_bdev;
850 fmode_t mode = sb->s_mode;
852 bdev->bd_super = NULL;
853 generic_shutdown_super(sb);
854 sync_blockdev(bdev);
855 WARN_ON_ONCE(!(mode & FMODE_EXCL));
856 blkdev_put(bdev, mode | FMODE_EXCL);
859 EXPORT_SYMBOL(kill_block_super);
860 #endif
862 struct dentry *mount_nodev(struct file_system_type *fs_type,
863 int flags, void *data,
864 int (*fill_super)(struct super_block *, void *, int))
866 int error;
867 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
869 if (IS_ERR(s))
870 return ERR_CAST(s);
872 s->s_flags = flags;
874 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
875 if (error) {
876 deactivate_locked_super(s);
877 return ERR_PTR(error);
879 s->s_flags |= MS_ACTIVE;
880 return dget(s->s_root);
882 EXPORT_SYMBOL(mount_nodev);
884 static int compare_single(struct super_block *s, void *p)
886 return 1;
889 struct dentry *mount_single(struct file_system_type *fs_type,
890 int flags, void *data,
891 int (*fill_super)(struct super_block *, void *, int))
893 struct super_block *s;
894 int error;
896 s = sget(fs_type, compare_single, set_anon_super, NULL);
897 if (IS_ERR(s))
898 return ERR_CAST(s);
899 if (!s->s_root) {
900 s->s_flags = flags;
901 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
902 if (error) {
903 deactivate_locked_super(s);
904 return ERR_PTR(error);
906 s->s_flags |= MS_ACTIVE;
907 } else {
908 do_remount_sb(s, flags, data, 0);
910 return dget(s->s_root);
912 EXPORT_SYMBOL(mount_single);
914 struct dentry *
915 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
917 struct dentry *root;
918 struct super_block *sb;
919 char *secdata = NULL;
920 int error = -ENOMEM;
922 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
923 secdata = alloc_secdata();
924 if (!secdata)
925 goto out;
927 error = security_sb_copy_data(data, secdata);
928 if (error)
929 goto out_free_secdata;
932 root = type->mount(type, flags, name, data);
933 if (IS_ERR(root)) {
934 error = PTR_ERR(root);
935 goto out_free_secdata;
937 sb = root->d_sb;
938 BUG_ON(!sb);
939 WARN_ON(!sb->s_bdi);
940 WARN_ON(sb->s_bdi == &default_backing_dev_info);
941 sb->s_flags |= MS_BORN;
943 error = security_sb_kern_mount(sb, flags, secdata);
944 if (error)
945 goto out_sb;
948 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
949 * but s_maxbytes was an unsigned long long for many releases. Throw
950 * this warning for a little while to try and catch filesystems that
951 * violate this rule. This warning should be either removed or
952 * converted to a BUG() in 2.6.34.
954 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
955 "negative value (%lld)\n", type->name, sb->s_maxbytes);
957 up_write(&sb->s_umount);
958 free_secdata(secdata);
959 return root;
960 out_sb:
961 dput(root);
962 deactivate_locked_super(sb);
963 out_free_secdata:
964 free_secdata(secdata);
965 out:
966 return ERR_PTR(error);
970 * freeze_super - lock the filesystem and force it into a consistent state
971 * @sb: the super to lock
973 * Syncs the super to make sure the filesystem is consistent and calls the fs's
974 * freeze_fs. Subsequent calls to this without first thawing the fs will return
975 * -EBUSY.
977 int freeze_super(struct super_block *sb)
979 int ret;
981 atomic_inc(&sb->s_active);
982 down_write(&sb->s_umount);
983 if (sb->s_frozen) {
984 deactivate_locked_super(sb);
985 return -EBUSY;
988 if (sb->s_flags & MS_RDONLY) {
989 sb->s_frozen = SB_FREEZE_TRANS;
990 smp_wmb();
991 up_write(&sb->s_umount);
992 return 0;
995 sb->s_frozen = SB_FREEZE_WRITE;
996 smp_wmb();
998 sync_filesystem(sb);
1000 sb->s_frozen = SB_FREEZE_TRANS;
1001 smp_wmb();
1003 sync_blockdev(sb->s_bdev);
1004 if (sb->s_op->freeze_fs) {
1005 ret = sb->s_op->freeze_fs(sb);
1006 if (ret) {
1007 printk(KERN_ERR
1008 "VFS:Filesystem freeze failed\n");
1009 sb->s_frozen = SB_UNFROZEN;
1010 deactivate_locked_super(sb);
1011 return ret;
1014 up_write(&sb->s_umount);
1015 return 0;
1017 EXPORT_SYMBOL(freeze_super);
1020 * thaw_super -- unlock filesystem
1021 * @sb: the super to thaw
1023 * Unlocks the filesystem and marks it writeable again after freeze_super().
1025 int thaw_super(struct super_block *sb)
1027 int error;
1029 down_write(&sb->s_umount);
1030 if (sb->s_frozen == SB_UNFROZEN) {
1031 up_write(&sb->s_umount);
1032 return -EINVAL;
1035 if (sb->s_flags & MS_RDONLY)
1036 goto out;
1038 if (sb->s_op->unfreeze_fs) {
1039 error = sb->s_op->unfreeze_fs(sb);
1040 if (error) {
1041 printk(KERN_ERR
1042 "VFS:Filesystem thaw failed\n");
1043 sb->s_frozen = SB_FREEZE_TRANS;
1044 up_write(&sb->s_umount);
1045 return error;
1049 out:
1050 sb->s_frozen = SB_UNFROZEN;
1051 smp_wmb();
1052 wake_up(&sb->s_wait_unfrozen);
1053 deactivate_locked_super(sb);
1055 return 0;
1057 EXPORT_SYMBOL(thaw_super);