Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/cjb/mmc
[cris-mirror.git] / fs / ubifs / debug.c
blobf25a7339f80028427f5ca8208f0839facbe6a25b
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
30 #define UBIFS_DBG_PRESERVE_UBI
32 #include "ubifs.h"
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/debugfs.h>
36 #include <linux/math64.h>
37 #include <linux/slab.h>
39 #ifdef CONFIG_UBIFS_FS_DEBUG
41 DEFINE_SPINLOCK(dbg_lock);
43 static char dbg_key_buf0[128];
44 static char dbg_key_buf1[128];
46 unsigned int ubifs_msg_flags;
47 unsigned int ubifs_chk_flags;
48 unsigned int ubifs_tst_flags;
50 module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
51 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
52 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
54 MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
55 MODULE_PARM_DESC(debug_chks, "Debug check flags");
56 MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
58 static const char *get_key_fmt(int fmt)
60 switch (fmt) {
61 case UBIFS_SIMPLE_KEY_FMT:
62 return "simple";
63 default:
64 return "unknown/invalid format";
68 static const char *get_key_hash(int hash)
70 switch (hash) {
71 case UBIFS_KEY_HASH_R5:
72 return "R5";
73 case UBIFS_KEY_HASH_TEST:
74 return "test";
75 default:
76 return "unknown/invalid name hash";
80 static const char *get_key_type(int type)
82 switch (type) {
83 case UBIFS_INO_KEY:
84 return "inode";
85 case UBIFS_DENT_KEY:
86 return "direntry";
87 case UBIFS_XENT_KEY:
88 return "xentry";
89 case UBIFS_DATA_KEY:
90 return "data";
91 case UBIFS_TRUN_KEY:
92 return "truncate";
93 default:
94 return "unknown/invalid key";
98 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
99 char *buffer)
101 char *p = buffer;
102 int type = key_type(c, key);
104 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
105 switch (type) {
106 case UBIFS_INO_KEY:
107 sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
108 get_key_type(type));
109 break;
110 case UBIFS_DENT_KEY:
111 case UBIFS_XENT_KEY:
112 sprintf(p, "(%lu, %s, %#08x)",
113 (unsigned long)key_inum(c, key),
114 get_key_type(type), key_hash(c, key));
115 break;
116 case UBIFS_DATA_KEY:
117 sprintf(p, "(%lu, %s, %u)",
118 (unsigned long)key_inum(c, key),
119 get_key_type(type), key_block(c, key));
120 break;
121 case UBIFS_TRUN_KEY:
122 sprintf(p, "(%lu, %s)",
123 (unsigned long)key_inum(c, key),
124 get_key_type(type));
125 break;
126 default:
127 sprintf(p, "(bad key type: %#08x, %#08x)",
128 key->u32[0], key->u32[1]);
130 } else
131 sprintf(p, "bad key format %d", c->key_fmt);
134 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
136 /* dbg_lock must be held */
137 sprintf_key(c, key, dbg_key_buf0);
138 return dbg_key_buf0;
141 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
143 /* dbg_lock must be held */
144 sprintf_key(c, key, dbg_key_buf1);
145 return dbg_key_buf1;
148 const char *dbg_ntype(int type)
150 switch (type) {
151 case UBIFS_PAD_NODE:
152 return "padding node";
153 case UBIFS_SB_NODE:
154 return "superblock node";
155 case UBIFS_MST_NODE:
156 return "master node";
157 case UBIFS_REF_NODE:
158 return "reference node";
159 case UBIFS_INO_NODE:
160 return "inode node";
161 case UBIFS_DENT_NODE:
162 return "direntry node";
163 case UBIFS_XENT_NODE:
164 return "xentry node";
165 case UBIFS_DATA_NODE:
166 return "data node";
167 case UBIFS_TRUN_NODE:
168 return "truncate node";
169 case UBIFS_IDX_NODE:
170 return "indexing node";
171 case UBIFS_CS_NODE:
172 return "commit start node";
173 case UBIFS_ORPH_NODE:
174 return "orphan node";
175 default:
176 return "unknown node";
180 static const char *dbg_gtype(int type)
182 switch (type) {
183 case UBIFS_NO_NODE_GROUP:
184 return "no node group";
185 case UBIFS_IN_NODE_GROUP:
186 return "in node group";
187 case UBIFS_LAST_OF_NODE_GROUP:
188 return "last of node group";
189 default:
190 return "unknown";
194 const char *dbg_cstate(int cmt_state)
196 switch (cmt_state) {
197 case COMMIT_RESTING:
198 return "commit resting";
199 case COMMIT_BACKGROUND:
200 return "background commit requested";
201 case COMMIT_REQUIRED:
202 return "commit required";
203 case COMMIT_RUNNING_BACKGROUND:
204 return "BACKGROUND commit running";
205 case COMMIT_RUNNING_REQUIRED:
206 return "commit running and required";
207 case COMMIT_BROKEN:
208 return "broken commit";
209 default:
210 return "unknown commit state";
214 const char *dbg_jhead(int jhead)
216 switch (jhead) {
217 case GCHD:
218 return "0 (GC)";
219 case BASEHD:
220 return "1 (base)";
221 case DATAHD:
222 return "2 (data)";
223 default:
224 return "unknown journal head";
228 static void dump_ch(const struct ubifs_ch *ch)
230 printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic));
231 printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc));
232 printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type,
233 dbg_ntype(ch->node_type));
234 printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type,
235 dbg_gtype(ch->group_type));
236 printk(KERN_DEBUG "\tsqnum %llu\n",
237 (unsigned long long)le64_to_cpu(ch->sqnum));
238 printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len));
241 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
243 const struct ubifs_inode *ui = ubifs_inode(inode);
245 printk(KERN_DEBUG "Dump in-memory inode:");
246 printk(KERN_DEBUG "\tinode %lu\n", inode->i_ino);
247 printk(KERN_DEBUG "\tsize %llu\n",
248 (unsigned long long)i_size_read(inode));
249 printk(KERN_DEBUG "\tnlink %u\n", inode->i_nlink);
250 printk(KERN_DEBUG "\tuid %u\n", (unsigned int)inode->i_uid);
251 printk(KERN_DEBUG "\tgid %u\n", (unsigned int)inode->i_gid);
252 printk(KERN_DEBUG "\tatime %u.%u\n",
253 (unsigned int)inode->i_atime.tv_sec,
254 (unsigned int)inode->i_atime.tv_nsec);
255 printk(KERN_DEBUG "\tmtime %u.%u\n",
256 (unsigned int)inode->i_mtime.tv_sec,
257 (unsigned int)inode->i_mtime.tv_nsec);
258 printk(KERN_DEBUG "\tctime %u.%u\n",
259 (unsigned int)inode->i_ctime.tv_sec,
260 (unsigned int)inode->i_ctime.tv_nsec);
261 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", ui->creat_sqnum);
262 printk(KERN_DEBUG "\txattr_size %u\n", ui->xattr_size);
263 printk(KERN_DEBUG "\txattr_cnt %u\n", ui->xattr_cnt);
264 printk(KERN_DEBUG "\txattr_names %u\n", ui->xattr_names);
265 printk(KERN_DEBUG "\tdirty %u\n", ui->dirty);
266 printk(KERN_DEBUG "\txattr %u\n", ui->xattr);
267 printk(KERN_DEBUG "\tbulk_read %u\n", ui->xattr);
268 printk(KERN_DEBUG "\tsynced_i_size %llu\n",
269 (unsigned long long)ui->synced_i_size);
270 printk(KERN_DEBUG "\tui_size %llu\n",
271 (unsigned long long)ui->ui_size);
272 printk(KERN_DEBUG "\tflags %d\n", ui->flags);
273 printk(KERN_DEBUG "\tcompr_type %d\n", ui->compr_type);
274 printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
275 printk(KERN_DEBUG "\tread_in_a_row %lu\n", ui->read_in_a_row);
276 printk(KERN_DEBUG "\tdata_len %d\n", ui->data_len);
279 void dbg_dump_node(const struct ubifs_info *c, const void *node)
281 int i, n;
282 union ubifs_key key;
283 const struct ubifs_ch *ch = node;
285 if (dbg_failure_mode)
286 return;
288 /* If the magic is incorrect, just hexdump the first bytes */
289 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
290 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
291 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
292 (void *)node, UBIFS_CH_SZ, 1);
293 return;
296 spin_lock(&dbg_lock);
297 dump_ch(node);
299 switch (ch->node_type) {
300 case UBIFS_PAD_NODE:
302 const struct ubifs_pad_node *pad = node;
304 printk(KERN_DEBUG "\tpad_len %u\n",
305 le32_to_cpu(pad->pad_len));
306 break;
308 case UBIFS_SB_NODE:
310 const struct ubifs_sb_node *sup = node;
311 unsigned int sup_flags = le32_to_cpu(sup->flags);
313 printk(KERN_DEBUG "\tkey_hash %d (%s)\n",
314 (int)sup->key_hash, get_key_hash(sup->key_hash));
315 printk(KERN_DEBUG "\tkey_fmt %d (%s)\n",
316 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
317 printk(KERN_DEBUG "\tflags %#x\n", sup_flags);
318 printk(KERN_DEBUG "\t big_lpt %u\n",
319 !!(sup_flags & UBIFS_FLG_BIGLPT));
320 printk(KERN_DEBUG "\tmin_io_size %u\n",
321 le32_to_cpu(sup->min_io_size));
322 printk(KERN_DEBUG "\tleb_size %u\n",
323 le32_to_cpu(sup->leb_size));
324 printk(KERN_DEBUG "\tleb_cnt %u\n",
325 le32_to_cpu(sup->leb_cnt));
326 printk(KERN_DEBUG "\tmax_leb_cnt %u\n",
327 le32_to_cpu(sup->max_leb_cnt));
328 printk(KERN_DEBUG "\tmax_bud_bytes %llu\n",
329 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
330 printk(KERN_DEBUG "\tlog_lebs %u\n",
331 le32_to_cpu(sup->log_lebs));
332 printk(KERN_DEBUG "\tlpt_lebs %u\n",
333 le32_to_cpu(sup->lpt_lebs));
334 printk(KERN_DEBUG "\torph_lebs %u\n",
335 le32_to_cpu(sup->orph_lebs));
336 printk(KERN_DEBUG "\tjhead_cnt %u\n",
337 le32_to_cpu(sup->jhead_cnt));
338 printk(KERN_DEBUG "\tfanout %u\n",
339 le32_to_cpu(sup->fanout));
340 printk(KERN_DEBUG "\tlsave_cnt %u\n",
341 le32_to_cpu(sup->lsave_cnt));
342 printk(KERN_DEBUG "\tdefault_compr %u\n",
343 (int)le16_to_cpu(sup->default_compr));
344 printk(KERN_DEBUG "\trp_size %llu\n",
345 (unsigned long long)le64_to_cpu(sup->rp_size));
346 printk(KERN_DEBUG "\trp_uid %u\n",
347 le32_to_cpu(sup->rp_uid));
348 printk(KERN_DEBUG "\trp_gid %u\n",
349 le32_to_cpu(sup->rp_gid));
350 printk(KERN_DEBUG "\tfmt_version %u\n",
351 le32_to_cpu(sup->fmt_version));
352 printk(KERN_DEBUG "\ttime_gran %u\n",
353 le32_to_cpu(sup->time_gran));
354 printk(KERN_DEBUG "\tUUID %pUB\n",
355 sup->uuid);
356 break;
358 case UBIFS_MST_NODE:
360 const struct ubifs_mst_node *mst = node;
362 printk(KERN_DEBUG "\thighest_inum %llu\n",
363 (unsigned long long)le64_to_cpu(mst->highest_inum));
364 printk(KERN_DEBUG "\tcommit number %llu\n",
365 (unsigned long long)le64_to_cpu(mst->cmt_no));
366 printk(KERN_DEBUG "\tflags %#x\n",
367 le32_to_cpu(mst->flags));
368 printk(KERN_DEBUG "\tlog_lnum %u\n",
369 le32_to_cpu(mst->log_lnum));
370 printk(KERN_DEBUG "\troot_lnum %u\n",
371 le32_to_cpu(mst->root_lnum));
372 printk(KERN_DEBUG "\troot_offs %u\n",
373 le32_to_cpu(mst->root_offs));
374 printk(KERN_DEBUG "\troot_len %u\n",
375 le32_to_cpu(mst->root_len));
376 printk(KERN_DEBUG "\tgc_lnum %u\n",
377 le32_to_cpu(mst->gc_lnum));
378 printk(KERN_DEBUG "\tihead_lnum %u\n",
379 le32_to_cpu(mst->ihead_lnum));
380 printk(KERN_DEBUG "\tihead_offs %u\n",
381 le32_to_cpu(mst->ihead_offs));
382 printk(KERN_DEBUG "\tindex_size %llu\n",
383 (unsigned long long)le64_to_cpu(mst->index_size));
384 printk(KERN_DEBUG "\tlpt_lnum %u\n",
385 le32_to_cpu(mst->lpt_lnum));
386 printk(KERN_DEBUG "\tlpt_offs %u\n",
387 le32_to_cpu(mst->lpt_offs));
388 printk(KERN_DEBUG "\tnhead_lnum %u\n",
389 le32_to_cpu(mst->nhead_lnum));
390 printk(KERN_DEBUG "\tnhead_offs %u\n",
391 le32_to_cpu(mst->nhead_offs));
392 printk(KERN_DEBUG "\tltab_lnum %u\n",
393 le32_to_cpu(mst->ltab_lnum));
394 printk(KERN_DEBUG "\tltab_offs %u\n",
395 le32_to_cpu(mst->ltab_offs));
396 printk(KERN_DEBUG "\tlsave_lnum %u\n",
397 le32_to_cpu(mst->lsave_lnum));
398 printk(KERN_DEBUG "\tlsave_offs %u\n",
399 le32_to_cpu(mst->lsave_offs));
400 printk(KERN_DEBUG "\tlscan_lnum %u\n",
401 le32_to_cpu(mst->lscan_lnum));
402 printk(KERN_DEBUG "\tleb_cnt %u\n",
403 le32_to_cpu(mst->leb_cnt));
404 printk(KERN_DEBUG "\tempty_lebs %u\n",
405 le32_to_cpu(mst->empty_lebs));
406 printk(KERN_DEBUG "\tidx_lebs %u\n",
407 le32_to_cpu(mst->idx_lebs));
408 printk(KERN_DEBUG "\ttotal_free %llu\n",
409 (unsigned long long)le64_to_cpu(mst->total_free));
410 printk(KERN_DEBUG "\ttotal_dirty %llu\n",
411 (unsigned long long)le64_to_cpu(mst->total_dirty));
412 printk(KERN_DEBUG "\ttotal_used %llu\n",
413 (unsigned long long)le64_to_cpu(mst->total_used));
414 printk(KERN_DEBUG "\ttotal_dead %llu\n",
415 (unsigned long long)le64_to_cpu(mst->total_dead));
416 printk(KERN_DEBUG "\ttotal_dark %llu\n",
417 (unsigned long long)le64_to_cpu(mst->total_dark));
418 break;
420 case UBIFS_REF_NODE:
422 const struct ubifs_ref_node *ref = node;
424 printk(KERN_DEBUG "\tlnum %u\n",
425 le32_to_cpu(ref->lnum));
426 printk(KERN_DEBUG "\toffs %u\n",
427 le32_to_cpu(ref->offs));
428 printk(KERN_DEBUG "\tjhead %u\n",
429 le32_to_cpu(ref->jhead));
430 break;
432 case UBIFS_INO_NODE:
434 const struct ubifs_ino_node *ino = node;
436 key_read(c, &ino->key, &key);
437 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
438 printk(KERN_DEBUG "\tcreat_sqnum %llu\n",
439 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
440 printk(KERN_DEBUG "\tsize %llu\n",
441 (unsigned long long)le64_to_cpu(ino->size));
442 printk(KERN_DEBUG "\tnlink %u\n",
443 le32_to_cpu(ino->nlink));
444 printk(KERN_DEBUG "\tatime %lld.%u\n",
445 (long long)le64_to_cpu(ino->atime_sec),
446 le32_to_cpu(ino->atime_nsec));
447 printk(KERN_DEBUG "\tmtime %lld.%u\n",
448 (long long)le64_to_cpu(ino->mtime_sec),
449 le32_to_cpu(ino->mtime_nsec));
450 printk(KERN_DEBUG "\tctime %lld.%u\n",
451 (long long)le64_to_cpu(ino->ctime_sec),
452 le32_to_cpu(ino->ctime_nsec));
453 printk(KERN_DEBUG "\tuid %u\n",
454 le32_to_cpu(ino->uid));
455 printk(KERN_DEBUG "\tgid %u\n",
456 le32_to_cpu(ino->gid));
457 printk(KERN_DEBUG "\tmode %u\n",
458 le32_to_cpu(ino->mode));
459 printk(KERN_DEBUG "\tflags %#x\n",
460 le32_to_cpu(ino->flags));
461 printk(KERN_DEBUG "\txattr_cnt %u\n",
462 le32_to_cpu(ino->xattr_cnt));
463 printk(KERN_DEBUG "\txattr_size %u\n",
464 le32_to_cpu(ino->xattr_size));
465 printk(KERN_DEBUG "\txattr_names %u\n",
466 le32_to_cpu(ino->xattr_names));
467 printk(KERN_DEBUG "\tcompr_type %#x\n",
468 (int)le16_to_cpu(ino->compr_type));
469 printk(KERN_DEBUG "\tdata len %u\n",
470 le32_to_cpu(ino->data_len));
471 break;
473 case UBIFS_DENT_NODE:
474 case UBIFS_XENT_NODE:
476 const struct ubifs_dent_node *dent = node;
477 int nlen = le16_to_cpu(dent->nlen);
479 key_read(c, &dent->key, &key);
480 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
481 printk(KERN_DEBUG "\tinum %llu\n",
482 (unsigned long long)le64_to_cpu(dent->inum));
483 printk(KERN_DEBUG "\ttype %d\n", (int)dent->type);
484 printk(KERN_DEBUG "\tnlen %d\n", nlen);
485 printk(KERN_DEBUG "\tname ");
487 if (nlen > UBIFS_MAX_NLEN)
488 printk(KERN_DEBUG "(bad name length, not printing, "
489 "bad or corrupted node)");
490 else {
491 for (i = 0; i < nlen && dent->name[i]; i++)
492 printk(KERN_CONT "%c", dent->name[i]);
494 printk(KERN_CONT "\n");
496 break;
498 case UBIFS_DATA_NODE:
500 const struct ubifs_data_node *dn = node;
501 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
503 key_read(c, &dn->key, &key);
504 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
505 printk(KERN_DEBUG "\tsize %u\n",
506 le32_to_cpu(dn->size));
507 printk(KERN_DEBUG "\tcompr_typ %d\n",
508 (int)le16_to_cpu(dn->compr_type));
509 printk(KERN_DEBUG "\tdata size %d\n",
510 dlen);
511 printk(KERN_DEBUG "\tdata:\n");
512 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
513 (void *)&dn->data, dlen, 0);
514 break;
516 case UBIFS_TRUN_NODE:
518 const struct ubifs_trun_node *trun = node;
520 printk(KERN_DEBUG "\tinum %u\n",
521 le32_to_cpu(trun->inum));
522 printk(KERN_DEBUG "\told_size %llu\n",
523 (unsigned long long)le64_to_cpu(trun->old_size));
524 printk(KERN_DEBUG "\tnew_size %llu\n",
525 (unsigned long long)le64_to_cpu(trun->new_size));
526 break;
528 case UBIFS_IDX_NODE:
530 const struct ubifs_idx_node *idx = node;
532 n = le16_to_cpu(idx->child_cnt);
533 printk(KERN_DEBUG "\tchild_cnt %d\n", n);
534 printk(KERN_DEBUG "\tlevel %d\n",
535 (int)le16_to_cpu(idx->level));
536 printk(KERN_DEBUG "\tBranches:\n");
538 for (i = 0; i < n && i < c->fanout - 1; i++) {
539 const struct ubifs_branch *br;
541 br = ubifs_idx_branch(c, idx, i);
542 key_read(c, &br->key, &key);
543 printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
544 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
545 le32_to_cpu(br->len), DBGKEY(&key));
547 break;
549 case UBIFS_CS_NODE:
550 break;
551 case UBIFS_ORPH_NODE:
553 const struct ubifs_orph_node *orph = node;
555 printk(KERN_DEBUG "\tcommit number %llu\n",
556 (unsigned long long)
557 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
558 printk(KERN_DEBUG "\tlast node flag %llu\n",
559 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
560 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
561 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
562 for (i = 0; i < n; i++)
563 printk(KERN_DEBUG "\t ino %llu\n",
564 (unsigned long long)le64_to_cpu(orph->inos[i]));
565 break;
567 default:
568 printk(KERN_DEBUG "node type %d was not recognized\n",
569 (int)ch->node_type);
571 spin_unlock(&dbg_lock);
574 void dbg_dump_budget_req(const struct ubifs_budget_req *req)
576 spin_lock(&dbg_lock);
577 printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
578 req->new_ino, req->dirtied_ino);
579 printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n",
580 req->new_ino_d, req->dirtied_ino_d);
581 printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n",
582 req->new_page, req->dirtied_page);
583 printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n",
584 req->new_dent, req->mod_dent);
585 printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth);
586 printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n",
587 req->data_growth, req->dd_growth);
588 spin_unlock(&dbg_lock);
591 void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
593 spin_lock(&dbg_lock);
594 printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
595 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
596 printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
597 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
598 lst->total_dirty);
599 printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
600 "total_dead %lld\n", lst->total_used, lst->total_dark,
601 lst->total_dead);
602 spin_unlock(&dbg_lock);
605 void dbg_dump_budg(struct ubifs_info *c)
607 int i;
608 struct rb_node *rb;
609 struct ubifs_bud *bud;
610 struct ubifs_gced_idx_leb *idx_gc;
611 long long available, outstanding, free;
613 ubifs_assert(spin_is_locked(&c->space_lock));
614 spin_lock(&dbg_lock);
615 printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, "
616 "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid,
617 c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth);
618 printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, "
619 "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth,
620 c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth,
621 c->freeable_cnt);
622 printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, "
623 "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs,
624 c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt);
625 printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
626 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
627 atomic_long_read(&c->dirty_zn_cnt),
628 atomic_long_read(&c->clean_zn_cnt));
629 printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
630 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
631 printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
632 c->gc_lnum, c->ihead_lnum);
633 /* If we are in R/O mode, journal heads do not exist */
634 if (c->jheads)
635 for (i = 0; i < c->jhead_cnt; i++)
636 printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
637 dbg_jhead(c->jheads[i].wbuf.jhead),
638 c->jheads[i].wbuf.lnum);
639 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
640 bud = rb_entry(rb, struct ubifs_bud, rb);
641 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
643 list_for_each_entry(bud, &c->old_buds, list)
644 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
645 list_for_each_entry(idx_gc, &c->idx_gc, list)
646 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
647 idx_gc->lnum, idx_gc->unmap);
648 printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
650 /* Print budgeting predictions */
651 available = ubifs_calc_available(c, c->min_idx_lebs);
652 outstanding = c->budg_data_growth + c->budg_dd_growth;
653 free = ubifs_get_free_space_nolock(c);
654 printk(KERN_DEBUG "Budgeting predictions:\n");
655 printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
656 available, outstanding, free);
657 spin_unlock(&dbg_lock);
660 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
662 int i, spc, dark = 0, dead = 0;
663 struct rb_node *rb;
664 struct ubifs_bud *bud;
666 spc = lp->free + lp->dirty;
667 if (spc < c->dead_wm)
668 dead = spc;
669 else
670 dark = ubifs_calc_dark(c, spc);
672 if (lp->flags & LPROPS_INDEX)
673 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
674 "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
675 lp->dirty, c->leb_size - spc, spc, lp->flags);
676 else
677 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
678 "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
679 "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
680 c->leb_size - spc, spc, dark, dead,
681 (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
683 if (lp->flags & LPROPS_TAKEN) {
684 if (lp->flags & LPROPS_INDEX)
685 printk(KERN_CONT "index, taken");
686 else
687 printk(KERN_CONT "taken");
688 } else {
689 const char *s;
691 if (lp->flags & LPROPS_INDEX) {
692 switch (lp->flags & LPROPS_CAT_MASK) {
693 case LPROPS_DIRTY_IDX:
694 s = "dirty index";
695 break;
696 case LPROPS_FRDI_IDX:
697 s = "freeable index";
698 break;
699 default:
700 s = "index";
702 } else {
703 switch (lp->flags & LPROPS_CAT_MASK) {
704 case LPROPS_UNCAT:
705 s = "not categorized";
706 break;
707 case LPROPS_DIRTY:
708 s = "dirty";
709 break;
710 case LPROPS_FREE:
711 s = "free";
712 break;
713 case LPROPS_EMPTY:
714 s = "empty";
715 break;
716 case LPROPS_FREEABLE:
717 s = "freeable";
718 break;
719 default:
720 s = NULL;
721 break;
724 printk(KERN_CONT "%s", s);
727 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
728 bud = rb_entry(rb, struct ubifs_bud, rb);
729 if (bud->lnum == lp->lnum) {
730 int head = 0;
731 for (i = 0; i < c->jhead_cnt; i++) {
732 if (lp->lnum == c->jheads[i].wbuf.lnum) {
733 printk(KERN_CONT ", jhead %s",
734 dbg_jhead(i));
735 head = 1;
738 if (!head)
739 printk(KERN_CONT ", bud of jhead %s",
740 dbg_jhead(bud->jhead));
743 if (lp->lnum == c->gc_lnum)
744 printk(KERN_CONT ", GC LEB");
745 printk(KERN_CONT ")\n");
748 void dbg_dump_lprops(struct ubifs_info *c)
750 int lnum, err;
751 struct ubifs_lprops lp;
752 struct ubifs_lp_stats lst;
754 printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
755 current->pid);
756 ubifs_get_lp_stats(c, &lst);
757 dbg_dump_lstats(&lst);
759 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
760 err = ubifs_read_one_lp(c, lnum, &lp);
761 if (err)
762 ubifs_err("cannot read lprops for LEB %d", lnum);
764 dbg_dump_lprop(c, &lp);
766 printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
767 current->pid);
770 void dbg_dump_lpt_info(struct ubifs_info *c)
772 int i;
774 spin_lock(&dbg_lock);
775 printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
776 printk(KERN_DEBUG "\tlpt_sz: %lld\n", c->lpt_sz);
777 printk(KERN_DEBUG "\tpnode_sz: %d\n", c->pnode_sz);
778 printk(KERN_DEBUG "\tnnode_sz: %d\n", c->nnode_sz);
779 printk(KERN_DEBUG "\tltab_sz: %d\n", c->ltab_sz);
780 printk(KERN_DEBUG "\tlsave_sz: %d\n", c->lsave_sz);
781 printk(KERN_DEBUG "\tbig_lpt: %d\n", c->big_lpt);
782 printk(KERN_DEBUG "\tlpt_hght: %d\n", c->lpt_hght);
783 printk(KERN_DEBUG "\tpnode_cnt: %d\n", c->pnode_cnt);
784 printk(KERN_DEBUG "\tnnode_cnt: %d\n", c->nnode_cnt);
785 printk(KERN_DEBUG "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
786 printk(KERN_DEBUG "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
787 printk(KERN_DEBUG "\tlsave_cnt: %d\n", c->lsave_cnt);
788 printk(KERN_DEBUG "\tspace_bits: %d\n", c->space_bits);
789 printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
790 printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
791 printk(KERN_DEBUG "\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
792 printk(KERN_DEBUG "\tpcnt_bits: %d\n", c->pcnt_bits);
793 printk(KERN_DEBUG "\tlnum_bits: %d\n", c->lnum_bits);
794 printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
795 printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
796 c->nhead_lnum, c->nhead_offs);
797 printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
798 c->ltab_lnum, c->ltab_offs);
799 if (c->big_lpt)
800 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
801 c->lsave_lnum, c->lsave_offs);
802 for (i = 0; i < c->lpt_lebs; i++)
803 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
804 "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
805 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
806 spin_unlock(&dbg_lock);
809 void dbg_dump_leb(const struct ubifs_info *c, int lnum)
811 struct ubifs_scan_leb *sleb;
812 struct ubifs_scan_node *snod;
813 void *buf;
815 if (dbg_failure_mode)
816 return;
818 printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
819 current->pid, lnum);
821 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
822 if (!buf) {
823 ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
824 return;
827 sleb = ubifs_scan(c, lnum, 0, buf, 0);
828 if (IS_ERR(sleb)) {
829 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
830 goto out;
833 printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
834 sleb->nodes_cnt, sleb->endpt);
836 list_for_each_entry(snod, &sleb->nodes, list) {
837 cond_resched();
838 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
839 snod->offs, snod->len);
840 dbg_dump_node(c, snod->node);
843 printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
844 current->pid, lnum);
845 ubifs_scan_destroy(sleb);
847 out:
848 vfree(buf);
849 return;
852 void dbg_dump_znode(const struct ubifs_info *c,
853 const struct ubifs_znode *znode)
855 int n;
856 const struct ubifs_zbranch *zbr;
858 spin_lock(&dbg_lock);
859 if (znode->parent)
860 zbr = &znode->parent->zbranch[znode->iip];
861 else
862 zbr = &c->zroot;
864 printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
865 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
866 zbr->len, znode->parent, znode->iip, znode->level,
867 znode->child_cnt, znode->flags);
869 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
870 spin_unlock(&dbg_lock);
871 return;
874 printk(KERN_DEBUG "zbranches:\n");
875 for (n = 0; n < znode->child_cnt; n++) {
876 zbr = &znode->zbranch[n];
877 if (znode->level > 0)
878 printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
879 "%s\n", n, zbr->znode, zbr->lnum,
880 zbr->offs, zbr->len,
881 DBGKEY(&zbr->key));
882 else
883 printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
884 "%s\n", n, zbr->znode, zbr->lnum,
885 zbr->offs, zbr->len,
886 DBGKEY(&zbr->key));
888 spin_unlock(&dbg_lock);
891 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
893 int i;
895 printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
896 current->pid, cat, heap->cnt);
897 for (i = 0; i < heap->cnt; i++) {
898 struct ubifs_lprops *lprops = heap->arr[i];
900 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
901 "flags %d\n", i, lprops->lnum, lprops->hpos,
902 lprops->free, lprops->dirty, lprops->flags);
904 printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
907 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
908 struct ubifs_nnode *parent, int iip)
910 int i;
912 printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
913 printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
914 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
915 printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
916 pnode->flags, iip, pnode->level, pnode->num);
917 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
918 struct ubifs_lprops *lp = &pnode->lprops[i];
920 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
921 i, lp->free, lp->dirty, lp->flags, lp->lnum);
925 void dbg_dump_tnc(struct ubifs_info *c)
927 struct ubifs_znode *znode;
928 int level;
930 printk(KERN_DEBUG "\n");
931 printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
932 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
933 level = znode->level;
934 printk(KERN_DEBUG "== Level %d ==\n", level);
935 while (znode) {
936 if (level != znode->level) {
937 level = znode->level;
938 printk(KERN_DEBUG "== Level %d ==\n", level);
940 dbg_dump_znode(c, znode);
941 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
943 printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
946 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
947 void *priv)
949 dbg_dump_znode(c, znode);
950 return 0;
954 * dbg_dump_index - dump the on-flash index.
955 * @c: UBIFS file-system description object
957 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
958 * which dumps only in-memory znodes and does not read znodes which from flash.
960 void dbg_dump_index(struct ubifs_info *c)
962 dbg_walk_index(c, NULL, dump_znode, NULL);
966 * dbg_save_space_info - save information about flash space.
967 * @c: UBIFS file-system description object
969 * This function saves information about UBIFS free space, dirty space, etc, in
970 * order to check it later.
972 void dbg_save_space_info(struct ubifs_info *c)
974 struct ubifs_debug_info *d = c->dbg;
976 ubifs_get_lp_stats(c, &d->saved_lst);
978 spin_lock(&c->space_lock);
979 d->saved_free = ubifs_get_free_space_nolock(c);
980 spin_unlock(&c->space_lock);
984 * dbg_check_space_info - check flash space information.
985 * @c: UBIFS file-system description object
987 * This function compares current flash space information with the information
988 * which was saved when the 'dbg_save_space_info()' function was called.
989 * Returns zero if the information has not changed, and %-EINVAL it it has
990 * changed.
992 int dbg_check_space_info(struct ubifs_info *c)
994 struct ubifs_debug_info *d = c->dbg;
995 struct ubifs_lp_stats lst;
996 long long avail, free;
998 spin_lock(&c->space_lock);
999 avail = ubifs_calc_available(c, c->min_idx_lebs);
1000 spin_unlock(&c->space_lock);
1001 free = ubifs_get_free_space(c);
1003 if (free != d->saved_free) {
1004 ubifs_err("free space changed from %lld to %lld",
1005 d->saved_free, free);
1006 goto out;
1009 return 0;
1011 out:
1012 ubifs_msg("saved lprops statistics dump");
1013 dbg_dump_lstats(&d->saved_lst);
1014 ubifs_get_lp_stats(c, &lst);
1016 ubifs_msg("current lprops statistics dump");
1017 dbg_dump_lstats(&lst);
1019 spin_lock(&c->space_lock);
1020 dbg_dump_budg(c);
1021 spin_unlock(&c->space_lock);
1022 dump_stack();
1023 return -EINVAL;
1027 * dbg_check_synced_i_size - check synchronized inode size.
1028 * @inode: inode to check
1030 * If inode is clean, synchronized inode size has to be equivalent to current
1031 * inode size. This function has to be called only for locked inodes (@i_mutex
1032 * has to be locked). Returns %0 if synchronized inode size if correct, and
1033 * %-EINVAL if not.
1035 int dbg_check_synced_i_size(struct inode *inode)
1037 int err = 0;
1038 struct ubifs_inode *ui = ubifs_inode(inode);
1040 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1041 return 0;
1042 if (!S_ISREG(inode->i_mode))
1043 return 0;
1045 mutex_lock(&ui->ui_mutex);
1046 spin_lock(&ui->ui_lock);
1047 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1048 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1049 "is clean", ui->ui_size, ui->synced_i_size);
1050 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1051 inode->i_mode, i_size_read(inode));
1052 dbg_dump_stack();
1053 err = -EINVAL;
1055 spin_unlock(&ui->ui_lock);
1056 mutex_unlock(&ui->ui_mutex);
1057 return err;
1061 * dbg_check_dir - check directory inode size and link count.
1062 * @c: UBIFS file-system description object
1063 * @dir: the directory to calculate size for
1064 * @size: the result is returned here
1066 * This function makes sure that directory size and link count are correct.
1067 * Returns zero in case of success and a negative error code in case of
1068 * failure.
1070 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1071 * calling this function.
1073 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
1075 unsigned int nlink = 2;
1076 union ubifs_key key;
1077 struct ubifs_dent_node *dent, *pdent = NULL;
1078 struct qstr nm = { .name = NULL };
1079 loff_t size = UBIFS_INO_NODE_SZ;
1081 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1082 return 0;
1084 if (!S_ISDIR(dir->i_mode))
1085 return 0;
1087 lowest_dent_key(c, &key, dir->i_ino);
1088 while (1) {
1089 int err;
1091 dent = ubifs_tnc_next_ent(c, &key, &nm);
1092 if (IS_ERR(dent)) {
1093 err = PTR_ERR(dent);
1094 if (err == -ENOENT)
1095 break;
1096 return err;
1099 nm.name = dent->name;
1100 nm.len = le16_to_cpu(dent->nlen);
1101 size += CALC_DENT_SIZE(nm.len);
1102 if (dent->type == UBIFS_ITYPE_DIR)
1103 nlink += 1;
1104 kfree(pdent);
1105 pdent = dent;
1106 key_read(c, &dent->key, &key);
1108 kfree(pdent);
1110 if (i_size_read(dir) != size) {
1111 ubifs_err("directory inode %lu has size %llu, "
1112 "but calculated size is %llu", dir->i_ino,
1113 (unsigned long long)i_size_read(dir),
1114 (unsigned long long)size);
1115 dump_stack();
1116 return -EINVAL;
1118 if (dir->i_nlink != nlink) {
1119 ubifs_err("directory inode %lu has nlink %u, but calculated "
1120 "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1121 dump_stack();
1122 return -EINVAL;
1125 return 0;
1129 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1130 * @c: UBIFS file-system description object
1131 * @zbr1: first zbranch
1132 * @zbr2: following zbranch
1134 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1135 * names of the direntries/xentries which are referred by the keys. This
1136 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1137 * sure the name of direntry/xentry referred by @zbr1 is less than
1138 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1139 * and a negative error code in case of failure.
1141 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1142 struct ubifs_zbranch *zbr2)
1144 int err, nlen1, nlen2, cmp;
1145 struct ubifs_dent_node *dent1, *dent2;
1146 union ubifs_key key;
1148 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1149 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1150 if (!dent1)
1151 return -ENOMEM;
1152 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1153 if (!dent2) {
1154 err = -ENOMEM;
1155 goto out_free;
1158 err = ubifs_tnc_read_node(c, zbr1, dent1);
1159 if (err)
1160 goto out_free;
1161 err = ubifs_validate_entry(c, dent1);
1162 if (err)
1163 goto out_free;
1165 err = ubifs_tnc_read_node(c, zbr2, dent2);
1166 if (err)
1167 goto out_free;
1168 err = ubifs_validate_entry(c, dent2);
1169 if (err)
1170 goto out_free;
1172 /* Make sure node keys are the same as in zbranch */
1173 err = 1;
1174 key_read(c, &dent1->key, &key);
1175 if (keys_cmp(c, &zbr1->key, &key)) {
1176 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1177 zbr1->offs, DBGKEY(&key));
1178 dbg_err("but it should have key %s according to tnc",
1179 DBGKEY(&zbr1->key));
1180 dbg_dump_node(c, dent1);
1181 goto out_free;
1184 key_read(c, &dent2->key, &key);
1185 if (keys_cmp(c, &zbr2->key, &key)) {
1186 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1187 zbr1->offs, DBGKEY(&key));
1188 dbg_err("but it should have key %s according to tnc",
1189 DBGKEY(&zbr2->key));
1190 dbg_dump_node(c, dent2);
1191 goto out_free;
1194 nlen1 = le16_to_cpu(dent1->nlen);
1195 nlen2 = le16_to_cpu(dent2->nlen);
1197 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1198 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1199 err = 0;
1200 goto out_free;
1202 if (cmp == 0 && nlen1 == nlen2)
1203 dbg_err("2 xent/dent nodes with the same name");
1204 else
1205 dbg_err("bad order of colliding key %s",
1206 DBGKEY(&key));
1208 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1209 dbg_dump_node(c, dent1);
1210 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1211 dbg_dump_node(c, dent2);
1213 out_free:
1214 kfree(dent2);
1215 kfree(dent1);
1216 return err;
1220 * dbg_check_znode - check if znode is all right.
1221 * @c: UBIFS file-system description object
1222 * @zbr: zbranch which points to this znode
1224 * This function makes sure that znode referred to by @zbr is all right.
1225 * Returns zero if it is, and %-EINVAL if it is not.
1227 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1229 struct ubifs_znode *znode = zbr->znode;
1230 struct ubifs_znode *zp = znode->parent;
1231 int n, err, cmp;
1233 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1234 err = 1;
1235 goto out;
1237 if (znode->level < 0) {
1238 err = 2;
1239 goto out;
1241 if (znode->iip < 0 || znode->iip >= c->fanout) {
1242 err = 3;
1243 goto out;
1246 if (zbr->len == 0)
1247 /* Only dirty zbranch may have no on-flash nodes */
1248 if (!ubifs_zn_dirty(znode)) {
1249 err = 4;
1250 goto out;
1253 if (ubifs_zn_dirty(znode)) {
1255 * If znode is dirty, its parent has to be dirty as well. The
1256 * order of the operation is important, so we have to have
1257 * memory barriers.
1259 smp_mb();
1260 if (zp && !ubifs_zn_dirty(zp)) {
1262 * The dirty flag is atomic and is cleared outside the
1263 * TNC mutex, so znode's dirty flag may now have
1264 * been cleared. The child is always cleared before the
1265 * parent, so we just need to check again.
1267 smp_mb();
1268 if (ubifs_zn_dirty(znode)) {
1269 err = 5;
1270 goto out;
1275 if (zp) {
1276 const union ubifs_key *min, *max;
1278 if (znode->level != zp->level - 1) {
1279 err = 6;
1280 goto out;
1283 /* Make sure the 'parent' pointer in our znode is correct */
1284 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1285 if (!err) {
1286 /* This zbranch does not exist in the parent */
1287 err = 7;
1288 goto out;
1291 if (znode->iip >= zp->child_cnt) {
1292 err = 8;
1293 goto out;
1296 if (znode->iip != n) {
1297 /* This may happen only in case of collisions */
1298 if (keys_cmp(c, &zp->zbranch[n].key,
1299 &zp->zbranch[znode->iip].key)) {
1300 err = 9;
1301 goto out;
1303 n = znode->iip;
1307 * Make sure that the first key in our znode is greater than or
1308 * equal to the key in the pointing zbranch.
1310 min = &zbr->key;
1311 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1312 if (cmp == 1) {
1313 err = 10;
1314 goto out;
1317 if (n + 1 < zp->child_cnt) {
1318 max = &zp->zbranch[n + 1].key;
1321 * Make sure the last key in our znode is less or
1322 * equivalent than the key in the zbranch which goes
1323 * after our pointing zbranch.
1325 cmp = keys_cmp(c, max,
1326 &znode->zbranch[znode->child_cnt - 1].key);
1327 if (cmp == -1) {
1328 err = 11;
1329 goto out;
1332 } else {
1333 /* This may only be root znode */
1334 if (zbr != &c->zroot) {
1335 err = 12;
1336 goto out;
1341 * Make sure that next key is greater or equivalent then the previous
1342 * one.
1344 for (n = 1; n < znode->child_cnt; n++) {
1345 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1346 &znode->zbranch[n].key);
1347 if (cmp > 0) {
1348 err = 13;
1349 goto out;
1351 if (cmp == 0) {
1352 /* This can only be keys with colliding hash */
1353 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1354 err = 14;
1355 goto out;
1358 if (znode->level != 0 || c->replaying)
1359 continue;
1362 * Colliding keys should follow binary order of
1363 * corresponding xentry/dentry names.
1365 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1366 &znode->zbranch[n]);
1367 if (err < 0)
1368 return err;
1369 if (err) {
1370 err = 15;
1371 goto out;
1376 for (n = 0; n < znode->child_cnt; n++) {
1377 if (!znode->zbranch[n].znode &&
1378 (znode->zbranch[n].lnum == 0 ||
1379 znode->zbranch[n].len == 0)) {
1380 err = 16;
1381 goto out;
1384 if (znode->zbranch[n].lnum != 0 &&
1385 znode->zbranch[n].len == 0) {
1386 err = 17;
1387 goto out;
1390 if (znode->zbranch[n].lnum == 0 &&
1391 znode->zbranch[n].len != 0) {
1392 err = 18;
1393 goto out;
1396 if (znode->zbranch[n].lnum == 0 &&
1397 znode->zbranch[n].offs != 0) {
1398 err = 19;
1399 goto out;
1402 if (znode->level != 0 && znode->zbranch[n].znode)
1403 if (znode->zbranch[n].znode->parent != znode) {
1404 err = 20;
1405 goto out;
1409 return 0;
1411 out:
1412 ubifs_err("failed, error %d", err);
1413 ubifs_msg("dump of the znode");
1414 dbg_dump_znode(c, znode);
1415 if (zp) {
1416 ubifs_msg("dump of the parent znode");
1417 dbg_dump_znode(c, zp);
1419 dump_stack();
1420 return -EINVAL;
1424 * dbg_check_tnc - check TNC tree.
1425 * @c: UBIFS file-system description object
1426 * @extra: do extra checks that are possible at start commit
1428 * This function traverses whole TNC tree and checks every znode. Returns zero
1429 * if everything is all right and %-EINVAL if something is wrong with TNC.
1431 int dbg_check_tnc(struct ubifs_info *c, int extra)
1433 struct ubifs_znode *znode;
1434 long clean_cnt = 0, dirty_cnt = 0;
1435 int err, last;
1437 if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
1438 return 0;
1440 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1441 if (!c->zroot.znode)
1442 return 0;
1444 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1445 while (1) {
1446 struct ubifs_znode *prev;
1447 struct ubifs_zbranch *zbr;
1449 if (!znode->parent)
1450 zbr = &c->zroot;
1451 else
1452 zbr = &znode->parent->zbranch[znode->iip];
1454 err = dbg_check_znode(c, zbr);
1455 if (err)
1456 return err;
1458 if (extra) {
1459 if (ubifs_zn_dirty(znode))
1460 dirty_cnt += 1;
1461 else
1462 clean_cnt += 1;
1465 prev = znode;
1466 znode = ubifs_tnc_postorder_next(znode);
1467 if (!znode)
1468 break;
1471 * If the last key of this znode is equivalent to the first key
1472 * of the next znode (collision), then check order of the keys.
1474 last = prev->child_cnt - 1;
1475 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1476 !keys_cmp(c, &prev->zbranch[last].key,
1477 &znode->zbranch[0].key)) {
1478 err = dbg_check_key_order(c, &prev->zbranch[last],
1479 &znode->zbranch[0]);
1480 if (err < 0)
1481 return err;
1482 if (err) {
1483 ubifs_msg("first znode");
1484 dbg_dump_znode(c, prev);
1485 ubifs_msg("second znode");
1486 dbg_dump_znode(c, znode);
1487 return -EINVAL;
1492 if (extra) {
1493 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1494 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1495 atomic_long_read(&c->clean_zn_cnt),
1496 clean_cnt);
1497 return -EINVAL;
1499 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1500 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1501 atomic_long_read(&c->dirty_zn_cnt),
1502 dirty_cnt);
1503 return -EINVAL;
1507 return 0;
1511 * dbg_walk_index - walk the on-flash index.
1512 * @c: UBIFS file-system description object
1513 * @leaf_cb: called for each leaf node
1514 * @znode_cb: called for each indexing node
1515 * @priv: private data which is passed to callbacks
1517 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1518 * node and @znode_cb for each indexing node. Returns zero in case of success
1519 * and a negative error code in case of failure.
1521 * It would be better if this function removed every znode it pulled to into
1522 * the TNC, so that the behavior more closely matched the non-debugging
1523 * behavior.
1525 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1526 dbg_znode_callback znode_cb, void *priv)
1528 int err;
1529 struct ubifs_zbranch *zbr;
1530 struct ubifs_znode *znode, *child;
1532 mutex_lock(&c->tnc_mutex);
1533 /* If the root indexing node is not in TNC - pull it */
1534 if (!c->zroot.znode) {
1535 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1536 if (IS_ERR(c->zroot.znode)) {
1537 err = PTR_ERR(c->zroot.znode);
1538 c->zroot.znode = NULL;
1539 goto out_unlock;
1544 * We are going to traverse the indexing tree in the postorder manner.
1545 * Go down and find the leftmost indexing node where we are going to
1546 * start from.
1548 znode = c->zroot.znode;
1549 while (znode->level > 0) {
1550 zbr = &znode->zbranch[0];
1551 child = zbr->znode;
1552 if (!child) {
1553 child = ubifs_load_znode(c, zbr, znode, 0);
1554 if (IS_ERR(child)) {
1555 err = PTR_ERR(child);
1556 goto out_unlock;
1558 zbr->znode = child;
1561 znode = child;
1564 /* Iterate over all indexing nodes */
1565 while (1) {
1566 int idx;
1568 cond_resched();
1570 if (znode_cb) {
1571 err = znode_cb(c, znode, priv);
1572 if (err) {
1573 ubifs_err("znode checking function returned "
1574 "error %d", err);
1575 dbg_dump_znode(c, znode);
1576 goto out_dump;
1579 if (leaf_cb && znode->level == 0) {
1580 for (idx = 0; idx < znode->child_cnt; idx++) {
1581 zbr = &znode->zbranch[idx];
1582 err = leaf_cb(c, zbr, priv);
1583 if (err) {
1584 ubifs_err("leaf checking function "
1585 "returned error %d, for leaf "
1586 "at LEB %d:%d",
1587 err, zbr->lnum, zbr->offs);
1588 goto out_dump;
1593 if (!znode->parent)
1594 break;
1596 idx = znode->iip + 1;
1597 znode = znode->parent;
1598 if (idx < znode->child_cnt) {
1599 /* Switch to the next index in the parent */
1600 zbr = &znode->zbranch[idx];
1601 child = zbr->znode;
1602 if (!child) {
1603 child = ubifs_load_znode(c, zbr, znode, idx);
1604 if (IS_ERR(child)) {
1605 err = PTR_ERR(child);
1606 goto out_unlock;
1608 zbr->znode = child;
1610 znode = child;
1611 } else
1613 * This is the last child, switch to the parent and
1614 * continue.
1616 continue;
1618 /* Go to the lowest leftmost znode in the new sub-tree */
1619 while (znode->level > 0) {
1620 zbr = &znode->zbranch[0];
1621 child = zbr->znode;
1622 if (!child) {
1623 child = ubifs_load_znode(c, zbr, znode, 0);
1624 if (IS_ERR(child)) {
1625 err = PTR_ERR(child);
1626 goto out_unlock;
1628 zbr->znode = child;
1630 znode = child;
1634 mutex_unlock(&c->tnc_mutex);
1635 return 0;
1637 out_dump:
1638 if (znode->parent)
1639 zbr = &znode->parent->zbranch[znode->iip];
1640 else
1641 zbr = &c->zroot;
1642 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1643 dbg_dump_znode(c, znode);
1644 out_unlock:
1645 mutex_unlock(&c->tnc_mutex);
1646 return err;
1650 * add_size - add znode size to partially calculated index size.
1651 * @c: UBIFS file-system description object
1652 * @znode: znode to add size for
1653 * @priv: partially calculated index size
1655 * This is a helper function for 'dbg_check_idx_size()' which is called for
1656 * every indexing node and adds its size to the 'long long' variable pointed to
1657 * by @priv.
1659 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1661 long long *idx_size = priv;
1662 int add;
1664 add = ubifs_idx_node_sz(c, znode->child_cnt);
1665 add = ALIGN(add, 8);
1666 *idx_size += add;
1667 return 0;
1671 * dbg_check_idx_size - check index size.
1672 * @c: UBIFS file-system description object
1673 * @idx_size: size to check
1675 * This function walks the UBIFS index, calculates its size and checks that the
1676 * size is equivalent to @idx_size. Returns zero in case of success and a
1677 * negative error code in case of failure.
1679 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1681 int err;
1682 long long calc = 0;
1684 if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
1685 return 0;
1687 err = dbg_walk_index(c, NULL, add_size, &calc);
1688 if (err) {
1689 ubifs_err("error %d while walking the index", err);
1690 return err;
1693 if (calc != idx_size) {
1694 ubifs_err("index size check failed: calculated size is %lld, "
1695 "should be %lld", calc, idx_size);
1696 dump_stack();
1697 return -EINVAL;
1700 return 0;
1704 * struct fsck_inode - information about an inode used when checking the file-system.
1705 * @rb: link in the RB-tree of inodes
1706 * @inum: inode number
1707 * @mode: inode type, permissions, etc
1708 * @nlink: inode link count
1709 * @xattr_cnt: count of extended attributes
1710 * @references: how many directory/xattr entries refer this inode (calculated
1711 * while walking the index)
1712 * @calc_cnt: for directory inode count of child directories
1713 * @size: inode size (read from on-flash inode)
1714 * @xattr_sz: summary size of all extended attributes (read from on-flash
1715 * inode)
1716 * @calc_sz: for directories calculated directory size
1717 * @calc_xcnt: count of extended attributes
1718 * @calc_xsz: calculated summary size of all extended attributes
1719 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1720 * inode (read from on-flash inode)
1721 * @calc_xnms: calculated sum of lengths of all extended attribute names
1723 struct fsck_inode {
1724 struct rb_node rb;
1725 ino_t inum;
1726 umode_t mode;
1727 unsigned int nlink;
1728 unsigned int xattr_cnt;
1729 int references;
1730 int calc_cnt;
1731 long long size;
1732 unsigned int xattr_sz;
1733 long long calc_sz;
1734 long long calc_xcnt;
1735 long long calc_xsz;
1736 unsigned int xattr_nms;
1737 long long calc_xnms;
1741 * struct fsck_data - private FS checking information.
1742 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1744 struct fsck_data {
1745 struct rb_root inodes;
1749 * add_inode - add inode information to RB-tree of inodes.
1750 * @c: UBIFS file-system description object
1751 * @fsckd: FS checking information
1752 * @ino: raw UBIFS inode to add
1754 * This is a helper function for 'check_leaf()' which adds information about
1755 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1756 * case of success and a negative error code in case of failure.
1758 static struct fsck_inode *add_inode(struct ubifs_info *c,
1759 struct fsck_data *fsckd,
1760 struct ubifs_ino_node *ino)
1762 struct rb_node **p, *parent = NULL;
1763 struct fsck_inode *fscki;
1764 ino_t inum = key_inum_flash(c, &ino->key);
1766 p = &fsckd->inodes.rb_node;
1767 while (*p) {
1768 parent = *p;
1769 fscki = rb_entry(parent, struct fsck_inode, rb);
1770 if (inum < fscki->inum)
1771 p = &(*p)->rb_left;
1772 else if (inum > fscki->inum)
1773 p = &(*p)->rb_right;
1774 else
1775 return fscki;
1778 if (inum > c->highest_inum) {
1779 ubifs_err("too high inode number, max. is %lu",
1780 (unsigned long)c->highest_inum);
1781 return ERR_PTR(-EINVAL);
1784 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1785 if (!fscki)
1786 return ERR_PTR(-ENOMEM);
1788 fscki->inum = inum;
1789 fscki->nlink = le32_to_cpu(ino->nlink);
1790 fscki->size = le64_to_cpu(ino->size);
1791 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1792 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1793 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1794 fscki->mode = le32_to_cpu(ino->mode);
1795 if (S_ISDIR(fscki->mode)) {
1796 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1797 fscki->calc_cnt = 2;
1799 rb_link_node(&fscki->rb, parent, p);
1800 rb_insert_color(&fscki->rb, &fsckd->inodes);
1801 return fscki;
1805 * search_inode - search inode in the RB-tree of inodes.
1806 * @fsckd: FS checking information
1807 * @inum: inode number to search
1809 * This is a helper function for 'check_leaf()' which searches inode @inum in
1810 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1811 * the inode was not found.
1813 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1815 struct rb_node *p;
1816 struct fsck_inode *fscki;
1818 p = fsckd->inodes.rb_node;
1819 while (p) {
1820 fscki = rb_entry(p, struct fsck_inode, rb);
1821 if (inum < fscki->inum)
1822 p = p->rb_left;
1823 else if (inum > fscki->inum)
1824 p = p->rb_right;
1825 else
1826 return fscki;
1828 return NULL;
1832 * read_add_inode - read inode node and add it to RB-tree of inodes.
1833 * @c: UBIFS file-system description object
1834 * @fsckd: FS checking information
1835 * @inum: inode number to read
1837 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1838 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1839 * information pointer in case of success and a negative error code in case of
1840 * failure.
1842 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1843 struct fsck_data *fsckd, ino_t inum)
1845 int n, err;
1846 union ubifs_key key;
1847 struct ubifs_znode *znode;
1848 struct ubifs_zbranch *zbr;
1849 struct ubifs_ino_node *ino;
1850 struct fsck_inode *fscki;
1852 fscki = search_inode(fsckd, inum);
1853 if (fscki)
1854 return fscki;
1856 ino_key_init(c, &key, inum);
1857 err = ubifs_lookup_level0(c, &key, &znode, &n);
1858 if (!err) {
1859 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1860 return ERR_PTR(-ENOENT);
1861 } else if (err < 0) {
1862 ubifs_err("error %d while looking up inode %lu",
1863 err, (unsigned long)inum);
1864 return ERR_PTR(err);
1867 zbr = &znode->zbranch[n];
1868 if (zbr->len < UBIFS_INO_NODE_SZ) {
1869 ubifs_err("bad node %lu node length %d",
1870 (unsigned long)inum, zbr->len);
1871 return ERR_PTR(-EINVAL);
1874 ino = kmalloc(zbr->len, GFP_NOFS);
1875 if (!ino)
1876 return ERR_PTR(-ENOMEM);
1878 err = ubifs_tnc_read_node(c, zbr, ino);
1879 if (err) {
1880 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1881 zbr->lnum, zbr->offs, err);
1882 kfree(ino);
1883 return ERR_PTR(err);
1886 fscki = add_inode(c, fsckd, ino);
1887 kfree(ino);
1888 if (IS_ERR(fscki)) {
1889 ubifs_err("error %ld while adding inode %lu node",
1890 PTR_ERR(fscki), (unsigned long)inum);
1891 return fscki;
1894 return fscki;
1898 * check_leaf - check leaf node.
1899 * @c: UBIFS file-system description object
1900 * @zbr: zbranch of the leaf node to check
1901 * @priv: FS checking information
1903 * This is a helper function for 'dbg_check_filesystem()' which is called for
1904 * every single leaf node while walking the indexing tree. It checks that the
1905 * leaf node referred from the indexing tree exists, has correct CRC, and does
1906 * some other basic validation. This function is also responsible for building
1907 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1908 * calculates reference count, size, etc for each inode in order to later
1909 * compare them to the information stored inside the inodes and detect possible
1910 * inconsistencies. Returns zero in case of success and a negative error code
1911 * in case of failure.
1913 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1914 void *priv)
1916 ino_t inum;
1917 void *node;
1918 struct ubifs_ch *ch;
1919 int err, type = key_type(c, &zbr->key);
1920 struct fsck_inode *fscki;
1922 if (zbr->len < UBIFS_CH_SZ) {
1923 ubifs_err("bad leaf length %d (LEB %d:%d)",
1924 zbr->len, zbr->lnum, zbr->offs);
1925 return -EINVAL;
1928 node = kmalloc(zbr->len, GFP_NOFS);
1929 if (!node)
1930 return -ENOMEM;
1932 err = ubifs_tnc_read_node(c, zbr, node);
1933 if (err) {
1934 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1935 zbr->lnum, zbr->offs, err);
1936 goto out_free;
1939 /* If this is an inode node, add it to RB-tree of inodes */
1940 if (type == UBIFS_INO_KEY) {
1941 fscki = add_inode(c, priv, node);
1942 if (IS_ERR(fscki)) {
1943 err = PTR_ERR(fscki);
1944 ubifs_err("error %d while adding inode node", err);
1945 goto out_dump;
1947 goto out;
1950 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
1951 type != UBIFS_DATA_KEY) {
1952 ubifs_err("unexpected node type %d at LEB %d:%d",
1953 type, zbr->lnum, zbr->offs);
1954 err = -EINVAL;
1955 goto out_free;
1958 ch = node;
1959 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
1960 ubifs_err("too high sequence number, max. is %llu",
1961 c->max_sqnum);
1962 err = -EINVAL;
1963 goto out_dump;
1966 if (type == UBIFS_DATA_KEY) {
1967 long long blk_offs;
1968 struct ubifs_data_node *dn = node;
1971 * Search the inode node this data node belongs to and insert
1972 * it to the RB-tree of inodes.
1974 inum = key_inum_flash(c, &dn->key);
1975 fscki = read_add_inode(c, priv, inum);
1976 if (IS_ERR(fscki)) {
1977 err = PTR_ERR(fscki);
1978 ubifs_err("error %d while processing data node and "
1979 "trying to find inode node %lu",
1980 err, (unsigned long)inum);
1981 goto out_dump;
1984 /* Make sure the data node is within inode size */
1985 blk_offs = key_block_flash(c, &dn->key);
1986 blk_offs <<= UBIFS_BLOCK_SHIFT;
1987 blk_offs += le32_to_cpu(dn->size);
1988 if (blk_offs > fscki->size) {
1989 ubifs_err("data node at LEB %d:%d is not within inode "
1990 "size %lld", zbr->lnum, zbr->offs,
1991 fscki->size);
1992 err = -EINVAL;
1993 goto out_dump;
1995 } else {
1996 int nlen;
1997 struct ubifs_dent_node *dent = node;
1998 struct fsck_inode *fscki1;
2000 err = ubifs_validate_entry(c, dent);
2001 if (err)
2002 goto out_dump;
2005 * Search the inode node this entry refers to and the parent
2006 * inode node and insert them to the RB-tree of inodes.
2008 inum = le64_to_cpu(dent->inum);
2009 fscki = read_add_inode(c, priv, inum);
2010 if (IS_ERR(fscki)) {
2011 err = PTR_ERR(fscki);
2012 ubifs_err("error %d while processing entry node and "
2013 "trying to find inode node %lu",
2014 err, (unsigned long)inum);
2015 goto out_dump;
2018 /* Count how many direntries or xentries refers this inode */
2019 fscki->references += 1;
2021 inum = key_inum_flash(c, &dent->key);
2022 fscki1 = read_add_inode(c, priv, inum);
2023 if (IS_ERR(fscki1)) {
2024 err = PTR_ERR(fscki1);
2025 ubifs_err("error %d while processing entry node and "
2026 "trying to find parent inode node %lu",
2027 err, (unsigned long)inum);
2028 goto out_dump;
2031 nlen = le16_to_cpu(dent->nlen);
2032 if (type == UBIFS_XENT_KEY) {
2033 fscki1->calc_xcnt += 1;
2034 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2035 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2036 fscki1->calc_xnms += nlen;
2037 } else {
2038 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2039 if (dent->type == UBIFS_ITYPE_DIR)
2040 fscki1->calc_cnt += 1;
2044 out:
2045 kfree(node);
2046 return 0;
2048 out_dump:
2049 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2050 dbg_dump_node(c, node);
2051 out_free:
2052 kfree(node);
2053 return err;
2057 * free_inodes - free RB-tree of inodes.
2058 * @fsckd: FS checking information
2060 static void free_inodes(struct fsck_data *fsckd)
2062 struct rb_node *this = fsckd->inodes.rb_node;
2063 struct fsck_inode *fscki;
2065 while (this) {
2066 if (this->rb_left)
2067 this = this->rb_left;
2068 else if (this->rb_right)
2069 this = this->rb_right;
2070 else {
2071 fscki = rb_entry(this, struct fsck_inode, rb);
2072 this = rb_parent(this);
2073 if (this) {
2074 if (this->rb_left == &fscki->rb)
2075 this->rb_left = NULL;
2076 else
2077 this->rb_right = NULL;
2079 kfree(fscki);
2085 * check_inodes - checks all inodes.
2086 * @c: UBIFS file-system description object
2087 * @fsckd: FS checking information
2089 * This is a helper function for 'dbg_check_filesystem()' which walks the
2090 * RB-tree of inodes after the index scan has been finished, and checks that
2091 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2092 * %-EINVAL if not, and a negative error code in case of failure.
2094 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2096 int n, err;
2097 union ubifs_key key;
2098 struct ubifs_znode *znode;
2099 struct ubifs_zbranch *zbr;
2100 struct ubifs_ino_node *ino;
2101 struct fsck_inode *fscki;
2102 struct rb_node *this = rb_first(&fsckd->inodes);
2104 while (this) {
2105 fscki = rb_entry(this, struct fsck_inode, rb);
2106 this = rb_next(this);
2108 if (S_ISDIR(fscki->mode)) {
2110 * Directories have to have exactly one reference (they
2111 * cannot have hardlinks), although root inode is an
2112 * exception.
2114 if (fscki->inum != UBIFS_ROOT_INO &&
2115 fscki->references != 1) {
2116 ubifs_err("directory inode %lu has %d "
2117 "direntries which refer it, but "
2118 "should be 1",
2119 (unsigned long)fscki->inum,
2120 fscki->references);
2121 goto out_dump;
2123 if (fscki->inum == UBIFS_ROOT_INO &&
2124 fscki->references != 0) {
2125 ubifs_err("root inode %lu has non-zero (%d) "
2126 "direntries which refer it",
2127 (unsigned long)fscki->inum,
2128 fscki->references);
2129 goto out_dump;
2131 if (fscki->calc_sz != fscki->size) {
2132 ubifs_err("directory inode %lu size is %lld, "
2133 "but calculated size is %lld",
2134 (unsigned long)fscki->inum,
2135 fscki->size, fscki->calc_sz);
2136 goto out_dump;
2138 if (fscki->calc_cnt != fscki->nlink) {
2139 ubifs_err("directory inode %lu nlink is %d, "
2140 "but calculated nlink is %d",
2141 (unsigned long)fscki->inum,
2142 fscki->nlink, fscki->calc_cnt);
2143 goto out_dump;
2145 } else {
2146 if (fscki->references != fscki->nlink) {
2147 ubifs_err("inode %lu nlink is %d, but "
2148 "calculated nlink is %d",
2149 (unsigned long)fscki->inum,
2150 fscki->nlink, fscki->references);
2151 goto out_dump;
2154 if (fscki->xattr_sz != fscki->calc_xsz) {
2155 ubifs_err("inode %lu has xattr size %u, but "
2156 "calculated size is %lld",
2157 (unsigned long)fscki->inum, fscki->xattr_sz,
2158 fscki->calc_xsz);
2159 goto out_dump;
2161 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2162 ubifs_err("inode %lu has %u xattrs, but "
2163 "calculated count is %lld",
2164 (unsigned long)fscki->inum,
2165 fscki->xattr_cnt, fscki->calc_xcnt);
2166 goto out_dump;
2168 if (fscki->xattr_nms != fscki->calc_xnms) {
2169 ubifs_err("inode %lu has xattr names' size %u, but "
2170 "calculated names' size is %lld",
2171 (unsigned long)fscki->inum, fscki->xattr_nms,
2172 fscki->calc_xnms);
2173 goto out_dump;
2177 return 0;
2179 out_dump:
2180 /* Read the bad inode and dump it */
2181 ino_key_init(c, &key, fscki->inum);
2182 err = ubifs_lookup_level0(c, &key, &znode, &n);
2183 if (!err) {
2184 ubifs_err("inode %lu not found in index",
2185 (unsigned long)fscki->inum);
2186 return -ENOENT;
2187 } else if (err < 0) {
2188 ubifs_err("error %d while looking up inode %lu",
2189 err, (unsigned long)fscki->inum);
2190 return err;
2193 zbr = &znode->zbranch[n];
2194 ino = kmalloc(zbr->len, GFP_NOFS);
2195 if (!ino)
2196 return -ENOMEM;
2198 err = ubifs_tnc_read_node(c, zbr, ino);
2199 if (err) {
2200 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2201 zbr->lnum, zbr->offs, err);
2202 kfree(ino);
2203 return err;
2206 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2207 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2208 dbg_dump_node(c, ino);
2209 kfree(ino);
2210 return -EINVAL;
2214 * dbg_check_filesystem - check the file-system.
2215 * @c: UBIFS file-system description object
2217 * This function checks the file system, namely:
2218 * o makes sure that all leaf nodes exist and their CRCs are correct;
2219 * o makes sure inode nlink, size, xattr size/count are correct (for all
2220 * inodes).
2222 * The function reads whole indexing tree and all nodes, so it is pretty
2223 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2224 * not, and a negative error code in case of failure.
2226 int dbg_check_filesystem(struct ubifs_info *c)
2228 int err;
2229 struct fsck_data fsckd;
2231 if (!(ubifs_chk_flags & UBIFS_CHK_FS))
2232 return 0;
2234 fsckd.inodes = RB_ROOT;
2235 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2236 if (err)
2237 goto out_free;
2239 err = check_inodes(c, &fsckd);
2240 if (err)
2241 goto out_free;
2243 free_inodes(&fsckd);
2244 return 0;
2246 out_free:
2247 ubifs_err("file-system check failed with error %d", err);
2248 dump_stack();
2249 free_inodes(&fsckd);
2250 return err;
2254 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2255 * @c: UBIFS file-system description object
2256 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2258 * This function returns zero if the list of data nodes is sorted correctly,
2259 * and %-EINVAL if not.
2261 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2263 struct list_head *cur;
2264 struct ubifs_scan_node *sa, *sb;
2266 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
2267 return 0;
2269 for (cur = head->next; cur->next != head; cur = cur->next) {
2270 ino_t inuma, inumb;
2271 uint32_t blka, blkb;
2273 cond_resched();
2274 sa = container_of(cur, struct ubifs_scan_node, list);
2275 sb = container_of(cur->next, struct ubifs_scan_node, list);
2277 if (sa->type != UBIFS_DATA_NODE) {
2278 ubifs_err("bad node type %d", sa->type);
2279 dbg_dump_node(c, sa->node);
2280 return -EINVAL;
2282 if (sb->type != UBIFS_DATA_NODE) {
2283 ubifs_err("bad node type %d", sb->type);
2284 dbg_dump_node(c, sb->node);
2285 return -EINVAL;
2288 inuma = key_inum(c, &sa->key);
2289 inumb = key_inum(c, &sb->key);
2291 if (inuma < inumb)
2292 continue;
2293 if (inuma > inumb) {
2294 ubifs_err("larger inum %lu goes before inum %lu",
2295 (unsigned long)inuma, (unsigned long)inumb);
2296 goto error_dump;
2299 blka = key_block(c, &sa->key);
2300 blkb = key_block(c, &sb->key);
2302 if (blka > blkb) {
2303 ubifs_err("larger block %u goes before %u", blka, blkb);
2304 goto error_dump;
2306 if (blka == blkb) {
2307 ubifs_err("two data nodes for the same block");
2308 goto error_dump;
2312 return 0;
2314 error_dump:
2315 dbg_dump_node(c, sa->node);
2316 dbg_dump_node(c, sb->node);
2317 return -EINVAL;
2321 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2322 * @c: UBIFS file-system description object
2323 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2325 * This function returns zero if the list of non-data nodes is sorted correctly,
2326 * and %-EINVAL if not.
2328 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2330 struct list_head *cur;
2331 struct ubifs_scan_node *sa, *sb;
2333 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
2334 return 0;
2336 for (cur = head->next; cur->next != head; cur = cur->next) {
2337 ino_t inuma, inumb;
2338 uint32_t hasha, hashb;
2340 cond_resched();
2341 sa = container_of(cur, struct ubifs_scan_node, list);
2342 sb = container_of(cur->next, struct ubifs_scan_node, list);
2344 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2345 sa->type != UBIFS_XENT_NODE) {
2346 ubifs_err("bad node type %d", sa->type);
2347 dbg_dump_node(c, sa->node);
2348 return -EINVAL;
2350 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2351 sa->type != UBIFS_XENT_NODE) {
2352 ubifs_err("bad node type %d", sb->type);
2353 dbg_dump_node(c, sb->node);
2354 return -EINVAL;
2357 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2358 ubifs_err("non-inode node goes before inode node");
2359 goto error_dump;
2362 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2363 continue;
2365 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2366 /* Inode nodes are sorted in descending size order */
2367 if (sa->len < sb->len) {
2368 ubifs_err("smaller inode node goes first");
2369 goto error_dump;
2371 continue;
2375 * This is either a dentry or xentry, which should be sorted in
2376 * ascending (parent ino, hash) order.
2378 inuma = key_inum(c, &sa->key);
2379 inumb = key_inum(c, &sb->key);
2381 if (inuma < inumb)
2382 continue;
2383 if (inuma > inumb) {
2384 ubifs_err("larger inum %lu goes before inum %lu",
2385 (unsigned long)inuma, (unsigned long)inumb);
2386 goto error_dump;
2389 hasha = key_block(c, &sa->key);
2390 hashb = key_block(c, &sb->key);
2392 if (hasha > hashb) {
2393 ubifs_err("larger hash %u goes before %u", hasha, hashb);
2394 goto error_dump;
2398 return 0;
2400 error_dump:
2401 ubifs_msg("dumping first node");
2402 dbg_dump_node(c, sa->node);
2403 ubifs_msg("dumping second node");
2404 dbg_dump_node(c, sb->node);
2405 return -EINVAL;
2406 return 0;
2409 static int invocation_cnt;
2411 int dbg_force_in_the_gaps(void)
2413 if (!dbg_force_in_the_gaps_enabled)
2414 return 0;
2415 /* Force in-the-gaps every 8th commit */
2416 return !((invocation_cnt++) & 0x7);
2419 /* Failure mode for recovery testing */
2421 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2423 struct failure_mode_info {
2424 struct list_head list;
2425 struct ubifs_info *c;
2428 static LIST_HEAD(fmi_list);
2429 static DEFINE_SPINLOCK(fmi_lock);
2431 static unsigned int next;
2433 static int simple_rand(void)
2435 if (next == 0)
2436 next = current->pid;
2437 next = next * 1103515245 + 12345;
2438 return (next >> 16) & 32767;
2441 static void failure_mode_init(struct ubifs_info *c)
2443 struct failure_mode_info *fmi;
2445 fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2446 if (!fmi) {
2447 ubifs_err("Failed to register failure mode - no memory");
2448 return;
2450 fmi->c = c;
2451 spin_lock(&fmi_lock);
2452 list_add_tail(&fmi->list, &fmi_list);
2453 spin_unlock(&fmi_lock);
2456 static void failure_mode_exit(struct ubifs_info *c)
2458 struct failure_mode_info *fmi, *tmp;
2460 spin_lock(&fmi_lock);
2461 list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2462 if (fmi->c == c) {
2463 list_del(&fmi->list);
2464 kfree(fmi);
2466 spin_unlock(&fmi_lock);
2469 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2471 struct failure_mode_info *fmi;
2473 spin_lock(&fmi_lock);
2474 list_for_each_entry(fmi, &fmi_list, list)
2475 if (fmi->c->ubi == desc) {
2476 struct ubifs_info *c = fmi->c;
2478 spin_unlock(&fmi_lock);
2479 return c;
2481 spin_unlock(&fmi_lock);
2482 return NULL;
2485 static int in_failure_mode(struct ubi_volume_desc *desc)
2487 struct ubifs_info *c = dbg_find_info(desc);
2489 if (c && dbg_failure_mode)
2490 return c->dbg->failure_mode;
2491 return 0;
2494 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2496 struct ubifs_info *c = dbg_find_info(desc);
2497 struct ubifs_debug_info *d;
2499 if (!c || !dbg_failure_mode)
2500 return 0;
2501 d = c->dbg;
2502 if (d->failure_mode)
2503 return 1;
2504 if (!d->fail_cnt) {
2505 /* First call - decide delay to failure */
2506 if (chance(1, 2)) {
2507 unsigned int delay = 1 << (simple_rand() >> 11);
2509 if (chance(1, 2)) {
2510 d->fail_delay = 1;
2511 d->fail_timeout = jiffies +
2512 msecs_to_jiffies(delay);
2513 dbg_rcvry("failing after %ums", delay);
2514 } else {
2515 d->fail_delay = 2;
2516 d->fail_cnt_max = delay;
2517 dbg_rcvry("failing after %u calls", delay);
2520 d->fail_cnt += 1;
2522 /* Determine if failure delay has expired */
2523 if (d->fail_delay == 1) {
2524 if (time_before(jiffies, d->fail_timeout))
2525 return 0;
2526 } else if (d->fail_delay == 2)
2527 if (d->fail_cnt++ < d->fail_cnt_max)
2528 return 0;
2529 if (lnum == UBIFS_SB_LNUM) {
2530 if (write) {
2531 if (chance(1, 2))
2532 return 0;
2533 } else if (chance(19, 20))
2534 return 0;
2535 dbg_rcvry("failing in super block LEB %d", lnum);
2536 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2537 if (chance(19, 20))
2538 return 0;
2539 dbg_rcvry("failing in master LEB %d", lnum);
2540 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2541 if (write) {
2542 if (chance(99, 100))
2543 return 0;
2544 } else if (chance(399, 400))
2545 return 0;
2546 dbg_rcvry("failing in log LEB %d", lnum);
2547 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2548 if (write) {
2549 if (chance(7, 8))
2550 return 0;
2551 } else if (chance(19, 20))
2552 return 0;
2553 dbg_rcvry("failing in LPT LEB %d", lnum);
2554 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2555 if (write) {
2556 if (chance(1, 2))
2557 return 0;
2558 } else if (chance(9, 10))
2559 return 0;
2560 dbg_rcvry("failing in orphan LEB %d", lnum);
2561 } else if (lnum == c->ihead_lnum) {
2562 if (chance(99, 100))
2563 return 0;
2564 dbg_rcvry("failing in index head LEB %d", lnum);
2565 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2566 if (chance(9, 10))
2567 return 0;
2568 dbg_rcvry("failing in GC head LEB %d", lnum);
2569 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2570 !ubifs_search_bud(c, lnum)) {
2571 if (chance(19, 20))
2572 return 0;
2573 dbg_rcvry("failing in non-bud LEB %d", lnum);
2574 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2575 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2576 if (chance(999, 1000))
2577 return 0;
2578 dbg_rcvry("failing in bud LEB %d commit running", lnum);
2579 } else {
2580 if (chance(9999, 10000))
2581 return 0;
2582 dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2584 ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
2585 d->failure_mode = 1;
2586 dump_stack();
2587 return 1;
2590 static void cut_data(const void *buf, int len)
2592 int flen, i;
2593 unsigned char *p = (void *)buf;
2595 flen = (len * (long long)simple_rand()) >> 15;
2596 for (i = flen; i < len; i++)
2597 p[i] = 0xff;
2600 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2601 int len, int check)
2603 if (in_failure_mode(desc))
2604 return -EIO;
2605 return ubi_leb_read(desc, lnum, buf, offset, len, check);
2608 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2609 int offset, int len, int dtype)
2611 int err, failing;
2613 if (in_failure_mode(desc))
2614 return -EIO;
2615 failing = do_fail(desc, lnum, 1);
2616 if (failing)
2617 cut_data(buf, len);
2618 err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2619 if (err)
2620 return err;
2621 if (failing)
2622 return -EIO;
2623 return 0;
2626 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2627 int len, int dtype)
2629 int err;
2631 if (do_fail(desc, lnum, 1))
2632 return -EIO;
2633 err = ubi_leb_change(desc, lnum, buf, len, dtype);
2634 if (err)
2635 return err;
2636 if (do_fail(desc, lnum, 1))
2637 return -EIO;
2638 return 0;
2641 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2643 int err;
2645 if (do_fail(desc, lnum, 0))
2646 return -EIO;
2647 err = ubi_leb_erase(desc, lnum);
2648 if (err)
2649 return err;
2650 if (do_fail(desc, lnum, 0))
2651 return -EIO;
2652 return 0;
2655 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2657 int err;
2659 if (do_fail(desc, lnum, 0))
2660 return -EIO;
2661 err = ubi_leb_unmap(desc, lnum);
2662 if (err)
2663 return err;
2664 if (do_fail(desc, lnum, 0))
2665 return -EIO;
2666 return 0;
2669 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2671 if (in_failure_mode(desc))
2672 return -EIO;
2673 return ubi_is_mapped(desc, lnum);
2676 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2678 int err;
2680 if (do_fail(desc, lnum, 0))
2681 return -EIO;
2682 err = ubi_leb_map(desc, lnum, dtype);
2683 if (err)
2684 return err;
2685 if (do_fail(desc, lnum, 0))
2686 return -EIO;
2687 return 0;
2691 * ubifs_debugging_init - initialize UBIFS debugging.
2692 * @c: UBIFS file-system description object
2694 * This function initializes debugging-related data for the file system.
2695 * Returns zero in case of success and a negative error code in case of
2696 * failure.
2698 int ubifs_debugging_init(struct ubifs_info *c)
2700 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
2701 if (!c->dbg)
2702 return -ENOMEM;
2704 failure_mode_init(c);
2705 return 0;
2709 * ubifs_debugging_exit - free debugging data.
2710 * @c: UBIFS file-system description object
2712 void ubifs_debugging_exit(struct ubifs_info *c)
2714 failure_mode_exit(c);
2715 kfree(c->dbg);
2719 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2720 * contain the stuff specific to particular file-system mounts.
2722 static struct dentry *dfs_rootdir;
2725 * dbg_debugfs_init - initialize debugfs file-system.
2727 * UBIFS uses debugfs file-system to expose various debugging knobs to
2728 * user-space. This function creates "ubifs" directory in the debugfs
2729 * file-system. Returns zero in case of success and a negative error code in
2730 * case of failure.
2732 int dbg_debugfs_init(void)
2734 dfs_rootdir = debugfs_create_dir("ubifs", NULL);
2735 if (IS_ERR(dfs_rootdir)) {
2736 int err = PTR_ERR(dfs_rootdir);
2737 ubifs_err("cannot create \"ubifs\" debugfs directory, "
2738 "error %d\n", err);
2739 return err;
2742 return 0;
2746 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2748 void dbg_debugfs_exit(void)
2750 debugfs_remove(dfs_rootdir);
2753 static int open_debugfs_file(struct inode *inode, struct file *file)
2755 file->private_data = inode->i_private;
2756 return 0;
2759 static ssize_t write_debugfs_file(struct file *file, const char __user *buf,
2760 size_t count, loff_t *ppos)
2762 struct ubifs_info *c = file->private_data;
2763 struct ubifs_debug_info *d = c->dbg;
2765 if (file->f_path.dentry == d->dfs_dump_lprops)
2766 dbg_dump_lprops(c);
2767 else if (file->f_path.dentry == d->dfs_dump_budg) {
2768 spin_lock(&c->space_lock);
2769 dbg_dump_budg(c);
2770 spin_unlock(&c->space_lock);
2771 } else if (file->f_path.dentry == d->dfs_dump_tnc) {
2772 mutex_lock(&c->tnc_mutex);
2773 dbg_dump_tnc(c);
2774 mutex_unlock(&c->tnc_mutex);
2775 } else
2776 return -EINVAL;
2778 *ppos += count;
2779 return count;
2782 static const struct file_operations dfs_fops = {
2783 .open = open_debugfs_file,
2784 .write = write_debugfs_file,
2785 .owner = THIS_MODULE,
2786 .llseek = default_llseek,
2790 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2791 * @c: UBIFS file-system description object
2793 * This function creates all debugfs files for this instance of UBIFS. Returns
2794 * zero in case of success and a negative error code in case of failure.
2796 * Note, the only reason we have not merged this function with the
2797 * 'ubifs_debugging_init()' function is because it is better to initialize
2798 * debugfs interfaces at the very end of the mount process, and remove them at
2799 * the very beginning of the mount process.
2801 int dbg_debugfs_init_fs(struct ubifs_info *c)
2803 int err;
2804 const char *fname;
2805 struct dentry *dent;
2806 struct ubifs_debug_info *d = c->dbg;
2808 sprintf(d->dfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2809 d->dfs_dir = debugfs_create_dir(d->dfs_dir_name, dfs_rootdir);
2810 if (IS_ERR(d->dfs_dir)) {
2811 err = PTR_ERR(d->dfs_dir);
2812 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2813 d->dfs_dir_name, err);
2814 goto out;
2817 fname = "dump_lprops";
2818 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2819 if (IS_ERR(dent))
2820 goto out_remove;
2821 d->dfs_dump_lprops = dent;
2823 fname = "dump_budg";
2824 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2825 if (IS_ERR(dent))
2826 goto out_remove;
2827 d->dfs_dump_budg = dent;
2829 fname = "dump_tnc";
2830 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2831 if (IS_ERR(dent))
2832 goto out_remove;
2833 d->dfs_dump_tnc = dent;
2835 return 0;
2837 out_remove:
2838 err = PTR_ERR(dent);
2839 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2840 fname, err);
2841 debugfs_remove_recursive(d->dfs_dir);
2842 out:
2843 return err;
2847 * dbg_debugfs_exit_fs - remove all debugfs files.
2848 * @c: UBIFS file-system description object
2850 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2852 debugfs_remove_recursive(c->dbg->dfs_dir);
2855 #endif /* CONFIG_UBIFS_FS_DEBUG */