2 * Implementation of the security services.
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 * Added conditional policy language extensions
16 * Updated: Hewlett-Packard <paul.moore@hp.com>
18 * Added support for NetLabel
19 * Added support for the policy capability bitmap
21 * Updated: Chad Sellers <csellers@tresys.com>
23 * Added validation of kernel classes and permissions
25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 * Added support for bounds domain and audit messaged on masked permissions
29 * Updated: Guido Trentalancia <guido@trentalancia.com>
31 * Added support for runtime switching of the policy type
33 * Copyright (C) 2008, 2009 NEC Corporation
34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38 * This program is free software; you can redistribute it and/or modify
39 * it under the terms of the GNU General Public License as published by
40 * the Free Software Foundation, version 2.
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
65 #include "conditional.h"
73 extern void selnl_notify_policyload(u32 seqno
);
75 int selinux_policycap_netpeer
;
76 int selinux_policycap_openperm
;
78 static DEFINE_RWLOCK(policy_rwlock
);
80 static struct sidtab sidtab
;
81 struct policydb policydb
;
85 * The largest sequence number that has been used when
86 * providing an access decision to the access vector cache.
87 * The sequence number only changes when a policy change
90 static u32 latest_granting
;
92 /* Forward declaration. */
93 static int context_struct_to_string(struct context
*context
, char **scontext
,
96 static void context_struct_compute_av(struct context
*scontext
,
97 struct context
*tcontext
,
99 struct av_decision
*avd
);
101 struct selinux_mapping
{
102 u16 value
; /* policy value */
104 u32 perms
[sizeof(u32
) * 8];
107 static struct selinux_mapping
*current_mapping
;
108 static u16 current_mapping_size
;
110 static int selinux_set_mapping(struct policydb
*pol
,
111 struct security_class_mapping
*map
,
112 struct selinux_mapping
**out_map_p
,
115 struct selinux_mapping
*out_map
= NULL
;
116 size_t size
= sizeof(struct selinux_mapping
);
119 bool print_unknown_handle
= false;
121 /* Find number of classes in the input mapping */
128 /* Allocate space for the class records, plus one for class zero */
129 out_map
= kcalloc(++i
, size
, GFP_ATOMIC
);
133 /* Store the raw class and permission values */
135 while (map
[j
].name
) {
136 struct security_class_mapping
*p_in
= map
+ (j
++);
137 struct selinux_mapping
*p_out
= out_map
+ j
;
139 /* An empty class string skips ahead */
140 if (!strcmp(p_in
->name
, "")) {
141 p_out
->num_perms
= 0;
145 p_out
->value
= string_to_security_class(pol
, p_in
->name
);
148 "SELinux: Class %s not defined in policy.\n",
150 if (pol
->reject_unknown
)
152 p_out
->num_perms
= 0;
153 print_unknown_handle
= true;
158 while (p_in
->perms
&& p_in
->perms
[k
]) {
159 /* An empty permission string skips ahead */
160 if (!*p_in
->perms
[k
]) {
164 p_out
->perms
[k
] = string_to_av_perm(pol
, p_out
->value
,
166 if (!p_out
->perms
[k
]) {
168 "SELinux: Permission %s in class %s not defined in policy.\n",
169 p_in
->perms
[k
], p_in
->name
);
170 if (pol
->reject_unknown
)
172 print_unknown_handle
= true;
177 p_out
->num_perms
= k
;
180 if (print_unknown_handle
)
181 printk(KERN_INFO
"SELinux: the above unknown classes and permissions will be %s\n",
182 pol
->allow_unknown
? "allowed" : "denied");
184 *out_map_p
= out_map
;
193 * Get real, policy values from mapped values
196 static u16
unmap_class(u16 tclass
)
198 if (tclass
< current_mapping_size
)
199 return current_mapping
[tclass
].value
;
205 * Get kernel value for class from its policy value
207 static u16
map_class(u16 pol_value
)
211 for (i
= 1; i
< current_mapping_size
; i
++) {
212 if (current_mapping
[i
].value
== pol_value
)
216 return SECCLASS_NULL
;
219 static void map_decision(u16 tclass
, struct av_decision
*avd
,
222 if (tclass
< current_mapping_size
) {
223 unsigned i
, n
= current_mapping
[tclass
].num_perms
;
226 for (i
= 0, result
= 0; i
< n
; i
++) {
227 if (avd
->allowed
& current_mapping
[tclass
].perms
[i
])
229 if (allow_unknown
&& !current_mapping
[tclass
].perms
[i
])
232 avd
->allowed
= result
;
234 for (i
= 0, result
= 0; i
< n
; i
++)
235 if (avd
->auditallow
& current_mapping
[tclass
].perms
[i
])
237 avd
->auditallow
= result
;
239 for (i
= 0, result
= 0; i
< n
; i
++) {
240 if (avd
->auditdeny
& current_mapping
[tclass
].perms
[i
])
242 if (!allow_unknown
&& !current_mapping
[tclass
].perms
[i
])
246 * In case the kernel has a bug and requests a permission
247 * between num_perms and the maximum permission number, we
248 * should audit that denial
250 for (; i
< (sizeof(u32
)*8); i
++)
252 avd
->auditdeny
= result
;
256 int security_mls_enabled(void)
258 return policydb
.mls_enabled
;
262 * Return the boolean value of a constraint expression
263 * when it is applied to the specified source and target
266 * xcontext is a special beast... It is used by the validatetrans rules
267 * only. For these rules, scontext is the context before the transition,
268 * tcontext is the context after the transition, and xcontext is the context
269 * of the process performing the transition. All other callers of
270 * constraint_expr_eval should pass in NULL for xcontext.
272 static int constraint_expr_eval(struct context
*scontext
,
273 struct context
*tcontext
,
274 struct context
*xcontext
,
275 struct constraint_expr
*cexpr
)
279 struct role_datum
*r1
, *r2
;
280 struct mls_level
*l1
, *l2
;
281 struct constraint_expr
*e
;
282 int s
[CEXPR_MAXDEPTH
];
285 for (e
= cexpr
; e
; e
= e
->next
) {
286 switch (e
->expr_type
) {
302 if (sp
== (CEXPR_MAXDEPTH
- 1))
306 val1
= scontext
->user
;
307 val2
= tcontext
->user
;
310 val1
= scontext
->type
;
311 val2
= tcontext
->type
;
314 val1
= scontext
->role
;
315 val2
= tcontext
->role
;
316 r1
= policydb
.role_val_to_struct
[val1
- 1];
317 r2
= policydb
.role_val_to_struct
[val2
- 1];
320 s
[++sp
] = ebitmap_get_bit(&r1
->dominates
,
324 s
[++sp
] = ebitmap_get_bit(&r2
->dominates
,
328 s
[++sp
] = (!ebitmap_get_bit(&r1
->dominates
,
330 !ebitmap_get_bit(&r2
->dominates
,
338 l1
= &(scontext
->range
.level
[0]);
339 l2
= &(tcontext
->range
.level
[0]);
342 l1
= &(scontext
->range
.level
[0]);
343 l2
= &(tcontext
->range
.level
[1]);
346 l1
= &(scontext
->range
.level
[1]);
347 l2
= &(tcontext
->range
.level
[0]);
350 l1
= &(scontext
->range
.level
[1]);
351 l2
= &(tcontext
->range
.level
[1]);
354 l1
= &(scontext
->range
.level
[0]);
355 l2
= &(scontext
->range
.level
[1]);
358 l1
= &(tcontext
->range
.level
[0]);
359 l2
= &(tcontext
->range
.level
[1]);
364 s
[++sp
] = mls_level_eq(l1
, l2
);
367 s
[++sp
] = !mls_level_eq(l1
, l2
);
370 s
[++sp
] = mls_level_dom(l1
, l2
);
373 s
[++sp
] = mls_level_dom(l2
, l1
);
376 s
[++sp
] = mls_level_incomp(l2
, l1
);
390 s
[++sp
] = (val1
== val2
);
393 s
[++sp
] = (val1
!= val2
);
401 if (sp
== (CEXPR_MAXDEPTH
-1))
404 if (e
->attr
& CEXPR_TARGET
)
406 else if (e
->attr
& CEXPR_XTARGET
) {
413 if (e
->attr
& CEXPR_USER
)
415 else if (e
->attr
& CEXPR_ROLE
)
417 else if (e
->attr
& CEXPR_TYPE
)
426 s
[++sp
] = ebitmap_get_bit(&e
->names
, val1
- 1);
429 s
[++sp
] = !ebitmap_get_bit(&e
->names
, val1
- 1);
447 * security_dump_masked_av - dumps masked permissions during
448 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
450 static int dump_masked_av_helper(void *k
, void *d
, void *args
)
452 struct perm_datum
*pdatum
= d
;
453 char **permission_names
= args
;
455 BUG_ON(pdatum
->value
< 1 || pdatum
->value
> 32);
457 permission_names
[pdatum
->value
- 1] = (char *)k
;
462 static void security_dump_masked_av(struct context
*scontext
,
463 struct context
*tcontext
,
468 struct common_datum
*common_dat
;
469 struct class_datum
*tclass_dat
;
470 struct audit_buffer
*ab
;
472 char *scontext_name
= NULL
;
473 char *tcontext_name
= NULL
;
474 char *permission_names
[32];
477 bool need_comma
= false;
482 tclass_name
= sym_name(&policydb
, SYM_CLASSES
, tclass
- 1);
483 tclass_dat
= policydb
.class_val_to_struct
[tclass
- 1];
484 common_dat
= tclass_dat
->comdatum
;
486 /* init permission_names */
488 hashtab_map(common_dat
->permissions
.table
,
489 dump_masked_av_helper
, permission_names
) < 0)
492 if (hashtab_map(tclass_dat
->permissions
.table
,
493 dump_masked_av_helper
, permission_names
) < 0)
496 /* get scontext/tcontext in text form */
497 if (context_struct_to_string(scontext
,
498 &scontext_name
, &length
) < 0)
501 if (context_struct_to_string(tcontext
,
502 &tcontext_name
, &length
) < 0)
505 /* audit a message */
506 ab
= audit_log_start(current
->audit_context
,
507 GFP_ATOMIC
, AUDIT_SELINUX_ERR
);
511 audit_log_format(ab
, "op=security_compute_av reason=%s "
512 "scontext=%s tcontext=%s tclass=%s perms=",
513 reason
, scontext_name
, tcontext_name
, tclass_name
);
515 for (index
= 0; index
< 32; index
++) {
516 u32 mask
= (1 << index
);
518 if ((mask
& permissions
) == 0)
521 audit_log_format(ab
, "%s%s",
522 need_comma
? "," : "",
523 permission_names
[index
]
524 ? permission_names
[index
] : "????");
529 /* release scontext/tcontext */
530 kfree(tcontext_name
);
531 kfree(scontext_name
);
537 * security_boundary_permission - drops violated permissions
538 * on boundary constraint.
540 static void type_attribute_bounds_av(struct context
*scontext
,
541 struct context
*tcontext
,
543 struct av_decision
*avd
)
545 struct context lo_scontext
;
546 struct context lo_tcontext
;
547 struct av_decision lo_avd
;
548 struct type_datum
*source
;
549 struct type_datum
*target
;
552 source
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
556 target
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
560 if (source
->bounds
) {
561 memset(&lo_avd
, 0, sizeof(lo_avd
));
563 memcpy(&lo_scontext
, scontext
, sizeof(lo_scontext
));
564 lo_scontext
.type
= source
->bounds
;
566 context_struct_compute_av(&lo_scontext
,
570 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
571 return; /* no masked permission */
572 masked
= ~lo_avd
.allowed
& avd
->allowed
;
575 if (target
->bounds
) {
576 memset(&lo_avd
, 0, sizeof(lo_avd
));
578 memcpy(&lo_tcontext
, tcontext
, sizeof(lo_tcontext
));
579 lo_tcontext
.type
= target
->bounds
;
581 context_struct_compute_av(scontext
,
585 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
586 return; /* no masked permission */
587 masked
= ~lo_avd
.allowed
& avd
->allowed
;
590 if (source
->bounds
&& target
->bounds
) {
591 memset(&lo_avd
, 0, sizeof(lo_avd
));
593 * lo_scontext and lo_tcontext are already
597 context_struct_compute_av(&lo_scontext
,
601 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
602 return; /* no masked permission */
603 masked
= ~lo_avd
.allowed
& avd
->allowed
;
607 /* mask violated permissions */
608 avd
->allowed
&= ~masked
;
610 /* audit masked permissions */
611 security_dump_masked_av(scontext
, tcontext
,
612 tclass
, masked
, "bounds");
617 * Compute access vectors based on a context structure pair for
618 * the permissions in a particular class.
620 static void context_struct_compute_av(struct context
*scontext
,
621 struct context
*tcontext
,
623 struct av_decision
*avd
)
625 struct constraint_node
*constraint
;
626 struct role_allow
*ra
;
627 struct avtab_key avkey
;
628 struct avtab_node
*node
;
629 struct class_datum
*tclass_datum
;
630 struct ebitmap
*sattr
, *tattr
;
631 struct ebitmap_node
*snode
, *tnode
;
636 avd
->auditdeny
= 0xffffffff;
638 if (unlikely(!tclass
|| tclass
> policydb
.p_classes
.nprim
)) {
639 if (printk_ratelimit())
640 printk(KERN_WARNING
"SELinux: Invalid class %hu\n", tclass
);
644 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
647 * If a specific type enforcement rule was defined for
648 * this permission check, then use it.
650 avkey
.target_class
= tclass
;
651 avkey
.specified
= AVTAB_AV
;
652 sattr
= flex_array_get(policydb
.type_attr_map_array
, scontext
->type
- 1);
654 tattr
= flex_array_get(policydb
.type_attr_map_array
, tcontext
->type
- 1);
656 ebitmap_for_each_positive_bit(sattr
, snode
, i
) {
657 ebitmap_for_each_positive_bit(tattr
, tnode
, j
) {
658 avkey
.source_type
= i
+ 1;
659 avkey
.target_type
= j
+ 1;
660 for (node
= avtab_search_node(&policydb
.te_avtab
, &avkey
);
662 node
= avtab_search_node_next(node
, avkey
.specified
)) {
663 if (node
->key
.specified
== AVTAB_ALLOWED
)
664 avd
->allowed
|= node
->datum
.data
;
665 else if (node
->key
.specified
== AVTAB_AUDITALLOW
)
666 avd
->auditallow
|= node
->datum
.data
;
667 else if (node
->key
.specified
== AVTAB_AUDITDENY
)
668 avd
->auditdeny
&= node
->datum
.data
;
671 /* Check conditional av table for additional permissions */
672 cond_compute_av(&policydb
.te_cond_avtab
, &avkey
, avd
);
678 * Remove any permissions prohibited by a constraint (this includes
681 constraint
= tclass_datum
->constraints
;
683 if ((constraint
->permissions
& (avd
->allowed
)) &&
684 !constraint_expr_eval(scontext
, tcontext
, NULL
,
686 avd
->allowed
&= ~(constraint
->permissions
);
688 constraint
= constraint
->next
;
692 * If checking process transition permission and the
693 * role is changing, then check the (current_role, new_role)
696 if (tclass
== policydb
.process_class
&&
697 (avd
->allowed
& policydb
.process_trans_perms
) &&
698 scontext
->role
!= tcontext
->role
) {
699 for (ra
= policydb
.role_allow
; ra
; ra
= ra
->next
) {
700 if (scontext
->role
== ra
->role
&&
701 tcontext
->role
== ra
->new_role
)
705 avd
->allowed
&= ~policydb
.process_trans_perms
;
709 * If the given source and target types have boundary
710 * constraint, lazy checks have to mask any violated
711 * permission and notice it to userspace via audit.
713 type_attribute_bounds_av(scontext
, tcontext
,
717 static int security_validtrans_handle_fail(struct context
*ocontext
,
718 struct context
*ncontext
,
719 struct context
*tcontext
,
722 char *o
= NULL
, *n
= NULL
, *t
= NULL
;
723 u32 olen
, nlen
, tlen
;
725 if (context_struct_to_string(ocontext
, &o
, &olen
))
727 if (context_struct_to_string(ncontext
, &n
, &nlen
))
729 if (context_struct_to_string(tcontext
, &t
, &tlen
))
731 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
732 "security_validate_transition: denied for"
733 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
734 o
, n
, t
, sym_name(&policydb
, SYM_CLASSES
, tclass
-1));
740 if (!selinux_enforcing
)
745 int security_validate_transition(u32 oldsid
, u32 newsid
, u32 tasksid
,
748 struct context
*ocontext
;
749 struct context
*ncontext
;
750 struct context
*tcontext
;
751 struct class_datum
*tclass_datum
;
752 struct constraint_node
*constraint
;
759 read_lock(&policy_rwlock
);
761 tclass
= unmap_class(orig_tclass
);
763 if (!tclass
|| tclass
> policydb
.p_classes
.nprim
) {
764 printk(KERN_ERR
"SELinux: %s: unrecognized class %d\n",
769 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
771 ocontext
= sidtab_search(&sidtab
, oldsid
);
773 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
779 ncontext
= sidtab_search(&sidtab
, newsid
);
781 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
787 tcontext
= sidtab_search(&sidtab
, tasksid
);
789 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
795 constraint
= tclass_datum
->validatetrans
;
797 if (!constraint_expr_eval(ocontext
, ncontext
, tcontext
,
799 rc
= security_validtrans_handle_fail(ocontext
, ncontext
,
803 constraint
= constraint
->next
;
807 read_unlock(&policy_rwlock
);
812 * security_bounded_transition - check whether the given
813 * transition is directed to bounded, or not.
814 * It returns 0, if @newsid is bounded by @oldsid.
815 * Otherwise, it returns error code.
817 * @oldsid : current security identifier
818 * @newsid : destinated security identifier
820 int security_bounded_transition(u32 old_sid
, u32 new_sid
)
822 struct context
*old_context
, *new_context
;
823 struct type_datum
*type
;
827 read_lock(&policy_rwlock
);
830 old_context
= sidtab_search(&sidtab
, old_sid
);
832 printk(KERN_ERR
"SELinux: %s: unrecognized SID %u\n",
838 new_context
= sidtab_search(&sidtab
, new_sid
);
840 printk(KERN_ERR
"SELinux: %s: unrecognized SID %u\n",
846 /* type/domain unchanged */
847 if (old_context
->type
== new_context
->type
)
850 index
= new_context
->type
;
852 type
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
856 /* not bounded anymore */
861 /* @newsid is bounded by @oldsid */
863 if (type
->bounds
== old_context
->type
)
866 index
= type
->bounds
;
870 char *old_name
= NULL
;
871 char *new_name
= NULL
;
874 if (!context_struct_to_string(old_context
,
875 &old_name
, &length
) &&
876 !context_struct_to_string(new_context
,
877 &new_name
, &length
)) {
878 audit_log(current
->audit_context
,
879 GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
880 "op=security_bounded_transition "
882 "oldcontext=%s newcontext=%s",
889 read_unlock(&policy_rwlock
);
894 static void avd_init(struct av_decision
*avd
)
898 avd
->auditdeny
= 0xffffffff;
899 avd
->seqno
= latest_granting
;
905 * security_compute_av - Compute access vector decisions.
906 * @ssid: source security identifier
907 * @tsid: target security identifier
908 * @tclass: target security class
909 * @avd: access vector decisions
911 * Compute a set of access vector decisions based on the
912 * SID pair (@ssid, @tsid) for the permissions in @tclass.
914 void security_compute_av(u32 ssid
,
917 struct av_decision
*avd
)
920 struct context
*scontext
= NULL
, *tcontext
= NULL
;
922 read_lock(&policy_rwlock
);
927 scontext
= sidtab_search(&sidtab
, ssid
);
929 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
934 /* permissive domain? */
935 if (ebitmap_get_bit(&policydb
.permissive_map
, scontext
->type
))
936 avd
->flags
|= AVD_FLAGS_PERMISSIVE
;
938 tcontext
= sidtab_search(&sidtab
, tsid
);
940 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
945 tclass
= unmap_class(orig_tclass
);
946 if (unlikely(orig_tclass
&& !tclass
)) {
947 if (policydb
.allow_unknown
)
951 context_struct_compute_av(scontext
, tcontext
, tclass
, avd
);
952 map_decision(orig_tclass
, avd
, policydb
.allow_unknown
);
954 read_unlock(&policy_rwlock
);
957 avd
->allowed
= 0xffffffff;
961 void security_compute_av_user(u32 ssid
,
964 struct av_decision
*avd
)
966 struct context
*scontext
= NULL
, *tcontext
= NULL
;
968 read_lock(&policy_rwlock
);
973 scontext
= sidtab_search(&sidtab
, ssid
);
975 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
980 /* permissive domain? */
981 if (ebitmap_get_bit(&policydb
.permissive_map
, scontext
->type
))
982 avd
->flags
|= AVD_FLAGS_PERMISSIVE
;
984 tcontext
= sidtab_search(&sidtab
, tsid
);
986 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
991 if (unlikely(!tclass
)) {
992 if (policydb
.allow_unknown
)
997 context_struct_compute_av(scontext
, tcontext
, tclass
, avd
);
999 read_unlock(&policy_rwlock
);
1002 avd
->allowed
= 0xffffffff;
1007 * Write the security context string representation of
1008 * the context structure `context' into a dynamically
1009 * allocated string of the correct size. Set `*scontext'
1010 * to point to this string and set `*scontext_len' to
1011 * the length of the string.
1013 static int context_struct_to_string(struct context
*context
, char **scontext
, u32
*scontext_len
)
1022 *scontext_len
= context
->len
;
1023 *scontext
= kstrdup(context
->str
, GFP_ATOMIC
);
1029 /* Compute the size of the context. */
1030 *scontext_len
+= strlen(sym_name(&policydb
, SYM_USERS
, context
->user
- 1)) + 1;
1031 *scontext_len
+= strlen(sym_name(&policydb
, SYM_ROLES
, context
->role
- 1)) + 1;
1032 *scontext_len
+= strlen(sym_name(&policydb
, SYM_TYPES
, context
->type
- 1)) + 1;
1033 *scontext_len
+= mls_compute_context_len(context
);
1038 /* Allocate space for the context; caller must free this space. */
1039 scontextp
= kmalloc(*scontext_len
, GFP_ATOMIC
);
1042 *scontext
= scontextp
;
1045 * Copy the user name, role name and type name into the context.
1047 sprintf(scontextp
, "%s:%s:%s",
1048 sym_name(&policydb
, SYM_USERS
, context
->user
- 1),
1049 sym_name(&policydb
, SYM_ROLES
, context
->role
- 1),
1050 sym_name(&policydb
, SYM_TYPES
, context
->type
- 1));
1051 scontextp
+= strlen(sym_name(&policydb
, SYM_USERS
, context
->user
- 1)) +
1052 1 + strlen(sym_name(&policydb
, SYM_ROLES
, context
->role
- 1)) +
1053 1 + strlen(sym_name(&policydb
, SYM_TYPES
, context
->type
- 1));
1055 mls_sid_to_context(context
, &scontextp
);
1062 #include "initial_sid_to_string.h"
1064 const char *security_get_initial_sid_context(u32 sid
)
1066 if (unlikely(sid
> SECINITSID_NUM
))
1068 return initial_sid_to_string
[sid
];
1071 static int security_sid_to_context_core(u32 sid
, char **scontext
,
1072 u32
*scontext_len
, int force
)
1074 struct context
*context
;
1081 if (!ss_initialized
) {
1082 if (sid
<= SECINITSID_NUM
) {
1085 *scontext_len
= strlen(initial_sid_to_string
[sid
]) + 1;
1088 scontextp
= kmalloc(*scontext_len
, GFP_ATOMIC
);
1093 strcpy(scontextp
, initial_sid_to_string
[sid
]);
1094 *scontext
= scontextp
;
1097 printk(KERN_ERR
"SELinux: %s: called before initial "
1098 "load_policy on unknown SID %d\n", __func__
, sid
);
1102 read_lock(&policy_rwlock
);
1104 context
= sidtab_search_force(&sidtab
, sid
);
1106 context
= sidtab_search(&sidtab
, sid
);
1108 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1113 rc
= context_struct_to_string(context
, scontext
, scontext_len
);
1115 read_unlock(&policy_rwlock
);
1122 * security_sid_to_context - Obtain a context for a given SID.
1123 * @sid: security identifier, SID
1124 * @scontext: security context
1125 * @scontext_len: length in bytes
1127 * Write the string representation of the context associated with @sid
1128 * into a dynamically allocated string of the correct size. Set @scontext
1129 * to point to this string and set @scontext_len to the length of the string.
1131 int security_sid_to_context(u32 sid
, char **scontext
, u32
*scontext_len
)
1133 return security_sid_to_context_core(sid
, scontext
, scontext_len
, 0);
1136 int security_sid_to_context_force(u32 sid
, char **scontext
, u32
*scontext_len
)
1138 return security_sid_to_context_core(sid
, scontext
, scontext_len
, 1);
1142 * Caveat: Mutates scontext.
1144 static int string_to_context_struct(struct policydb
*pol
,
1145 struct sidtab
*sidtabp
,
1148 struct context
*ctx
,
1151 struct role_datum
*role
;
1152 struct type_datum
*typdatum
;
1153 struct user_datum
*usrdatum
;
1154 char *scontextp
, *p
, oldc
;
1159 /* Parse the security context. */
1162 scontextp
= (char *) scontext
;
1164 /* Extract the user. */
1166 while (*p
&& *p
!= ':')
1174 usrdatum
= hashtab_search(pol
->p_users
.table
, scontextp
);
1178 ctx
->user
= usrdatum
->value
;
1182 while (*p
&& *p
!= ':')
1190 role
= hashtab_search(pol
->p_roles
.table
, scontextp
);
1193 ctx
->role
= role
->value
;
1197 while (*p
&& *p
!= ':')
1202 typdatum
= hashtab_search(pol
->p_types
.table
, scontextp
);
1203 if (!typdatum
|| typdatum
->attribute
)
1206 ctx
->type
= typdatum
->value
;
1208 rc
= mls_context_to_sid(pol
, oldc
, &p
, ctx
, sidtabp
, def_sid
);
1213 if ((p
- scontext
) < scontext_len
)
1216 /* Check the validity of the new context. */
1217 if (!policydb_context_isvalid(pol
, ctx
))
1222 context_destroy(ctx
);
1226 static int security_context_to_sid_core(const char *scontext
, u32 scontext_len
,
1227 u32
*sid
, u32 def_sid
, gfp_t gfp_flags
,
1230 char *scontext2
, *str
= NULL
;
1231 struct context context
;
1234 if (!ss_initialized
) {
1237 for (i
= 1; i
< SECINITSID_NUM
; i
++) {
1238 if (!strcmp(initial_sid_to_string
[i
], scontext
)) {
1243 *sid
= SECINITSID_KERNEL
;
1248 /* Copy the string so that we can modify the copy as we parse it. */
1249 scontext2
= kmalloc(scontext_len
+ 1, gfp_flags
);
1252 memcpy(scontext2
, scontext
, scontext_len
);
1253 scontext2
[scontext_len
] = 0;
1256 /* Save another copy for storing in uninterpreted form */
1258 str
= kstrdup(scontext2
, gfp_flags
);
1263 read_lock(&policy_rwlock
);
1264 rc
= string_to_context_struct(&policydb
, &sidtab
, scontext2
,
1265 scontext_len
, &context
, def_sid
);
1266 if (rc
== -EINVAL
&& force
) {
1268 context
.len
= scontext_len
;
1272 rc
= sidtab_context_to_sid(&sidtab
, &context
, sid
);
1273 context_destroy(&context
);
1275 read_unlock(&policy_rwlock
);
1283 * security_context_to_sid - Obtain a SID for a given security context.
1284 * @scontext: security context
1285 * @scontext_len: length in bytes
1286 * @sid: security identifier, SID
1288 * Obtains a SID associated with the security context that
1289 * has the string representation specified by @scontext.
1290 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1291 * memory is available, or 0 on success.
1293 int security_context_to_sid(const char *scontext
, u32 scontext_len
, u32
*sid
)
1295 return security_context_to_sid_core(scontext
, scontext_len
,
1296 sid
, SECSID_NULL
, GFP_KERNEL
, 0);
1300 * security_context_to_sid_default - Obtain a SID for a given security context,
1301 * falling back to specified default if needed.
1303 * @scontext: security context
1304 * @scontext_len: length in bytes
1305 * @sid: security identifier, SID
1306 * @def_sid: default SID to assign on error
1308 * Obtains a SID associated with the security context that
1309 * has the string representation specified by @scontext.
1310 * The default SID is passed to the MLS layer to be used to allow
1311 * kernel labeling of the MLS field if the MLS field is not present
1312 * (for upgrading to MLS without full relabel).
1313 * Implicitly forces adding of the context even if it cannot be mapped yet.
1314 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1315 * memory is available, or 0 on success.
1317 int security_context_to_sid_default(const char *scontext
, u32 scontext_len
,
1318 u32
*sid
, u32 def_sid
, gfp_t gfp_flags
)
1320 return security_context_to_sid_core(scontext
, scontext_len
,
1321 sid
, def_sid
, gfp_flags
, 1);
1324 int security_context_to_sid_force(const char *scontext
, u32 scontext_len
,
1327 return security_context_to_sid_core(scontext
, scontext_len
,
1328 sid
, SECSID_NULL
, GFP_KERNEL
, 1);
1331 static int compute_sid_handle_invalid_context(
1332 struct context
*scontext
,
1333 struct context
*tcontext
,
1335 struct context
*newcontext
)
1337 char *s
= NULL
, *t
= NULL
, *n
= NULL
;
1338 u32 slen
, tlen
, nlen
;
1340 if (context_struct_to_string(scontext
, &s
, &slen
))
1342 if (context_struct_to_string(tcontext
, &t
, &tlen
))
1344 if (context_struct_to_string(newcontext
, &n
, &nlen
))
1346 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
1347 "security_compute_sid: invalid context %s"
1351 n
, s
, t
, sym_name(&policydb
, SYM_CLASSES
, tclass
-1));
1356 if (!selinux_enforcing
)
1361 static void filename_compute_type(struct policydb
*p
, struct context
*newcontext
,
1362 u32 scon
, u32 tcon
, u16 tclass
,
1363 const struct qstr
*qstr
)
1365 struct filename_trans
*ft
;
1366 for (ft
= p
->filename_trans
; ft
; ft
= ft
->next
) {
1367 if (ft
->stype
== scon
&&
1368 ft
->ttype
== tcon
&&
1369 ft
->tclass
== tclass
&&
1370 !strcmp(ft
->name
, qstr
->name
)) {
1371 newcontext
->type
= ft
->otype
;
1377 static int security_compute_sid(u32 ssid
,
1381 const struct qstr
*qstr
,
1385 struct context
*scontext
= NULL
, *tcontext
= NULL
, newcontext
;
1386 struct role_trans
*roletr
= NULL
;
1387 struct avtab_key avkey
;
1388 struct avtab_datum
*avdatum
;
1389 struct avtab_node
*node
;
1394 if (!ss_initialized
) {
1395 switch (orig_tclass
) {
1396 case SECCLASS_PROCESS
: /* kernel value */
1406 context_init(&newcontext
);
1408 read_lock(&policy_rwlock
);
1411 tclass
= unmap_class(orig_tclass
);
1412 sock
= security_is_socket_class(orig_tclass
);
1414 tclass
= orig_tclass
;
1415 sock
= security_is_socket_class(map_class(tclass
));
1418 scontext
= sidtab_search(&sidtab
, ssid
);
1420 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1425 tcontext
= sidtab_search(&sidtab
, tsid
);
1427 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1433 /* Set the user identity. */
1434 switch (specified
) {
1435 case AVTAB_TRANSITION
:
1437 /* Use the process user identity. */
1438 newcontext
.user
= scontext
->user
;
1441 /* Use the related object owner. */
1442 newcontext
.user
= tcontext
->user
;
1446 /* Set the role and type to default values. */
1447 if ((tclass
== policydb
.process_class
) || (sock
== true)) {
1448 /* Use the current role and type of process. */
1449 newcontext
.role
= scontext
->role
;
1450 newcontext
.type
= scontext
->type
;
1452 /* Use the well-defined object role. */
1453 newcontext
.role
= OBJECT_R_VAL
;
1454 /* Use the type of the related object. */
1455 newcontext
.type
= tcontext
->type
;
1458 /* Look for a type transition/member/change rule. */
1459 avkey
.source_type
= scontext
->type
;
1460 avkey
.target_type
= tcontext
->type
;
1461 avkey
.target_class
= tclass
;
1462 avkey
.specified
= specified
;
1463 avdatum
= avtab_search(&policydb
.te_avtab
, &avkey
);
1465 /* If no permanent rule, also check for enabled conditional rules */
1467 node
= avtab_search_node(&policydb
.te_cond_avtab
, &avkey
);
1468 for (; node
; node
= avtab_search_node_next(node
, specified
)) {
1469 if (node
->key
.specified
& AVTAB_ENABLED
) {
1470 avdatum
= &node
->datum
;
1477 /* Use the type from the type transition/member/change rule. */
1478 newcontext
.type
= avdatum
->data
;
1481 /* if we have a qstr this is a file trans check so check those rules */
1483 filename_compute_type(&policydb
, &newcontext
, scontext
->type
,
1484 tcontext
->type
, tclass
, qstr
);
1486 /* Check for class-specific changes. */
1487 if (tclass
== policydb
.process_class
) {
1488 if (specified
& AVTAB_TRANSITION
) {
1489 /* Look for a role transition rule. */
1490 for (roletr
= policydb
.role_tr
; roletr
;
1491 roletr
= roletr
->next
) {
1492 if (roletr
->role
== scontext
->role
&&
1493 roletr
->type
== tcontext
->type
) {
1494 /* Use the role transition rule. */
1495 newcontext
.role
= roletr
->new_role
;
1502 /* Set the MLS attributes.
1503 This is done last because it may allocate memory. */
1504 rc
= mls_compute_sid(scontext
, tcontext
, tclass
, specified
,
1509 /* Check the validity of the context. */
1510 if (!policydb_context_isvalid(&policydb
, &newcontext
)) {
1511 rc
= compute_sid_handle_invalid_context(scontext
,
1518 /* Obtain the sid for the context. */
1519 rc
= sidtab_context_to_sid(&sidtab
, &newcontext
, out_sid
);
1521 read_unlock(&policy_rwlock
);
1522 context_destroy(&newcontext
);
1528 * security_transition_sid - Compute the SID for a new subject/object.
1529 * @ssid: source security identifier
1530 * @tsid: target security identifier
1531 * @tclass: target security class
1532 * @out_sid: security identifier for new subject/object
1534 * Compute a SID to use for labeling a new subject or object in the
1535 * class @tclass based on a SID pair (@ssid, @tsid).
1536 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1537 * if insufficient memory is available, or %0 if the new SID was
1538 * computed successfully.
1540 int security_transition_sid(u32 ssid
, u32 tsid
, u16 tclass
,
1541 const struct qstr
*qstr
, u32
*out_sid
)
1543 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_TRANSITION
,
1544 qstr
, out_sid
, true);
1547 int security_transition_sid_user(u32 ssid
, u32 tsid
, u16 tclass
, u32
*out_sid
)
1549 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_TRANSITION
,
1550 NULL
, out_sid
, false);
1554 * security_member_sid - Compute the SID for member selection.
1555 * @ssid: source security identifier
1556 * @tsid: target security identifier
1557 * @tclass: target security class
1558 * @out_sid: security identifier for selected member
1560 * Compute a SID to use when selecting a member of a polyinstantiated
1561 * object of class @tclass based on a SID pair (@ssid, @tsid).
1562 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1563 * if insufficient memory is available, or %0 if the SID was
1564 * computed successfully.
1566 int security_member_sid(u32 ssid
,
1571 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_MEMBER
, NULL
,
1576 * security_change_sid - Compute the SID for object relabeling.
1577 * @ssid: source security identifier
1578 * @tsid: target security identifier
1579 * @tclass: target security class
1580 * @out_sid: security identifier for selected member
1582 * Compute a SID to use for relabeling an object of class @tclass
1583 * based on a SID pair (@ssid, @tsid).
1584 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1585 * if insufficient memory is available, or %0 if the SID was
1586 * computed successfully.
1588 int security_change_sid(u32 ssid
,
1593 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_CHANGE
, NULL
,
1597 /* Clone the SID into the new SID table. */
1598 static int clone_sid(u32 sid
,
1599 struct context
*context
,
1602 struct sidtab
*s
= arg
;
1604 if (sid
> SECINITSID_NUM
)
1605 return sidtab_insert(s
, sid
, context
);
1610 static inline int convert_context_handle_invalid_context(struct context
*context
)
1615 if (selinux_enforcing
)
1618 if (!context_struct_to_string(context
, &s
, &len
)) {
1619 printk(KERN_WARNING
"SELinux: Context %s would be invalid if enforcing\n", s
);
1625 struct convert_context_args
{
1626 struct policydb
*oldp
;
1627 struct policydb
*newp
;
1631 * Convert the values in the security context
1632 * structure `c' from the values specified
1633 * in the policy `p->oldp' to the values specified
1634 * in the policy `p->newp'. Verify that the
1635 * context is valid under the new policy.
1637 static int convert_context(u32 key
,
1641 struct convert_context_args
*args
;
1642 struct context oldc
;
1643 struct ocontext
*oc
;
1644 struct mls_range
*range
;
1645 struct role_datum
*role
;
1646 struct type_datum
*typdatum
;
1647 struct user_datum
*usrdatum
;
1652 if (key
<= SECINITSID_NUM
)
1661 s
= kstrdup(c
->str
, GFP_KERNEL
);
1665 rc
= string_to_context_struct(args
->newp
, NULL
, s
,
1666 c
->len
, &ctx
, SECSID_NULL
);
1669 printk(KERN_INFO
"SELinux: Context %s became valid (mapped).\n",
1671 /* Replace string with mapped representation. */
1673 memcpy(c
, &ctx
, sizeof(*c
));
1675 } else if (rc
== -EINVAL
) {
1676 /* Retain string representation for later mapping. */
1680 /* Other error condition, e.g. ENOMEM. */
1681 printk(KERN_ERR
"SELinux: Unable to map context %s, rc = %d.\n",
1687 rc
= context_cpy(&oldc
, c
);
1691 /* Convert the user. */
1693 usrdatum
= hashtab_search(args
->newp
->p_users
.table
,
1694 sym_name(args
->oldp
, SYM_USERS
, c
->user
- 1));
1697 c
->user
= usrdatum
->value
;
1699 /* Convert the role. */
1701 role
= hashtab_search(args
->newp
->p_roles
.table
,
1702 sym_name(args
->oldp
, SYM_ROLES
, c
->role
- 1));
1705 c
->role
= role
->value
;
1707 /* Convert the type. */
1709 typdatum
= hashtab_search(args
->newp
->p_types
.table
,
1710 sym_name(args
->oldp
, SYM_TYPES
, c
->type
- 1));
1713 c
->type
= typdatum
->value
;
1715 /* Convert the MLS fields if dealing with MLS policies */
1716 if (args
->oldp
->mls_enabled
&& args
->newp
->mls_enabled
) {
1717 rc
= mls_convert_context(args
->oldp
, args
->newp
, c
);
1720 } else if (args
->oldp
->mls_enabled
&& !args
->newp
->mls_enabled
) {
1722 * Switching between MLS and non-MLS policy:
1723 * free any storage used by the MLS fields in the
1724 * context for all existing entries in the sidtab.
1726 mls_context_destroy(c
);
1727 } else if (!args
->oldp
->mls_enabled
&& args
->newp
->mls_enabled
) {
1729 * Switching between non-MLS and MLS policy:
1730 * ensure that the MLS fields of the context for all
1731 * existing entries in the sidtab are filled in with a
1732 * suitable default value, likely taken from one of the
1735 oc
= args
->newp
->ocontexts
[OCON_ISID
];
1736 while (oc
&& oc
->sid
[0] != SECINITSID_UNLABELED
)
1740 printk(KERN_ERR
"SELinux: unable to look up"
1741 " the initial SIDs list\n");
1744 range
= &oc
->context
[0].range
;
1745 rc
= mls_range_set(c
, range
);
1750 /* Check the validity of the new context. */
1751 if (!policydb_context_isvalid(args
->newp
, c
)) {
1752 rc
= convert_context_handle_invalid_context(&oldc
);
1757 context_destroy(&oldc
);
1763 /* Map old representation to string and save it. */
1764 rc
= context_struct_to_string(&oldc
, &s
, &len
);
1767 context_destroy(&oldc
);
1771 printk(KERN_INFO
"SELinux: Context %s became invalid (unmapped).\n",
1777 static void security_load_policycaps(void)
1779 selinux_policycap_netpeer
= ebitmap_get_bit(&policydb
.policycaps
,
1780 POLICYDB_CAPABILITY_NETPEER
);
1781 selinux_policycap_openperm
= ebitmap_get_bit(&policydb
.policycaps
,
1782 POLICYDB_CAPABILITY_OPENPERM
);
1785 extern void selinux_complete_init(void);
1786 static int security_preserve_bools(struct policydb
*p
);
1789 * security_load_policy - Load a security policy configuration.
1790 * @data: binary policy data
1791 * @len: length of data in bytes
1793 * Load a new set of security policy configuration data,
1794 * validate it and convert the SID table as necessary.
1795 * This function will flush the access vector cache after
1796 * loading the new policy.
1798 int security_load_policy(void *data
, size_t len
)
1800 struct policydb oldpolicydb
, newpolicydb
;
1801 struct sidtab oldsidtab
, newsidtab
;
1802 struct selinux_mapping
*oldmap
, *map
= NULL
;
1803 struct convert_context_args args
;
1807 struct policy_file file
= { data
, len
}, *fp
= &file
;
1809 if (!ss_initialized
) {
1811 rc
= policydb_read(&policydb
, fp
);
1813 avtab_cache_destroy();
1818 rc
= selinux_set_mapping(&policydb
, secclass_map
,
1820 ¤t_mapping_size
);
1822 policydb_destroy(&policydb
);
1823 avtab_cache_destroy();
1827 rc
= policydb_load_isids(&policydb
, &sidtab
);
1829 policydb_destroy(&policydb
);
1830 avtab_cache_destroy();
1834 security_load_policycaps();
1836 seqno
= ++latest_granting
;
1837 selinux_complete_init();
1838 avc_ss_reset(seqno
);
1839 selnl_notify_policyload(seqno
);
1840 selinux_status_update_policyload(seqno
);
1841 selinux_netlbl_cache_invalidate();
1842 selinux_xfrm_notify_policyload();
1847 sidtab_hash_eval(&sidtab
, "sids");
1850 rc
= policydb_read(&newpolicydb
, fp
);
1854 newpolicydb
.len
= len
;
1855 /* If switching between different policy types, log MLS status */
1856 if (policydb
.mls_enabled
&& !newpolicydb
.mls_enabled
)
1857 printk(KERN_INFO
"SELinux: Disabling MLS support...\n");
1858 else if (!policydb
.mls_enabled
&& newpolicydb
.mls_enabled
)
1859 printk(KERN_INFO
"SELinux: Enabling MLS support...\n");
1861 rc
= policydb_load_isids(&newpolicydb
, &newsidtab
);
1863 printk(KERN_ERR
"SELinux: unable to load the initial SIDs\n");
1864 policydb_destroy(&newpolicydb
);
1868 rc
= selinux_set_mapping(&newpolicydb
, secclass_map
, &map
, &map_size
);
1872 rc
= security_preserve_bools(&newpolicydb
);
1874 printk(KERN_ERR
"SELinux: unable to preserve booleans\n");
1878 /* Clone the SID table. */
1879 sidtab_shutdown(&sidtab
);
1881 rc
= sidtab_map(&sidtab
, clone_sid
, &newsidtab
);
1886 * Convert the internal representations of contexts
1887 * in the new SID table.
1889 args
.oldp
= &policydb
;
1890 args
.newp
= &newpolicydb
;
1891 rc
= sidtab_map(&newsidtab
, convert_context
, &args
);
1893 printk(KERN_ERR
"SELinux: unable to convert the internal"
1894 " representation of contexts in the new SID"
1899 /* Save the old policydb and SID table to free later. */
1900 memcpy(&oldpolicydb
, &policydb
, sizeof policydb
);
1901 sidtab_set(&oldsidtab
, &sidtab
);
1903 /* Install the new policydb and SID table. */
1904 write_lock_irq(&policy_rwlock
);
1905 memcpy(&policydb
, &newpolicydb
, sizeof policydb
);
1906 sidtab_set(&sidtab
, &newsidtab
);
1907 security_load_policycaps();
1908 oldmap
= current_mapping
;
1909 current_mapping
= map
;
1910 current_mapping_size
= map_size
;
1911 seqno
= ++latest_granting
;
1912 write_unlock_irq(&policy_rwlock
);
1914 /* Free the old policydb and SID table. */
1915 policydb_destroy(&oldpolicydb
);
1916 sidtab_destroy(&oldsidtab
);
1919 avc_ss_reset(seqno
);
1920 selnl_notify_policyload(seqno
);
1921 selinux_status_update_policyload(seqno
);
1922 selinux_netlbl_cache_invalidate();
1923 selinux_xfrm_notify_policyload();
1929 sidtab_destroy(&newsidtab
);
1930 policydb_destroy(&newpolicydb
);
1935 size_t security_policydb_len(void)
1939 read_lock(&policy_rwlock
);
1941 read_unlock(&policy_rwlock
);
1947 * security_port_sid - Obtain the SID for a port.
1948 * @protocol: protocol number
1949 * @port: port number
1950 * @out_sid: security identifier
1952 int security_port_sid(u8 protocol
, u16 port
, u32
*out_sid
)
1957 read_lock(&policy_rwlock
);
1959 c
= policydb
.ocontexts
[OCON_PORT
];
1961 if (c
->u
.port
.protocol
== protocol
&&
1962 c
->u
.port
.low_port
<= port
&&
1963 c
->u
.port
.high_port
>= port
)
1970 rc
= sidtab_context_to_sid(&sidtab
,
1976 *out_sid
= c
->sid
[0];
1978 *out_sid
= SECINITSID_PORT
;
1982 read_unlock(&policy_rwlock
);
1987 * security_netif_sid - Obtain the SID for a network interface.
1988 * @name: interface name
1989 * @if_sid: interface SID
1991 int security_netif_sid(char *name
, u32
*if_sid
)
1996 read_lock(&policy_rwlock
);
1998 c
= policydb
.ocontexts
[OCON_NETIF
];
2000 if (strcmp(name
, c
->u
.name
) == 0)
2006 if (!c
->sid
[0] || !c
->sid
[1]) {
2007 rc
= sidtab_context_to_sid(&sidtab
,
2012 rc
= sidtab_context_to_sid(&sidtab
,
2018 *if_sid
= c
->sid
[0];
2020 *if_sid
= SECINITSID_NETIF
;
2023 read_unlock(&policy_rwlock
);
2027 static int match_ipv6_addrmask(u32
*input
, u32
*addr
, u32
*mask
)
2031 for (i
= 0; i
< 4; i
++)
2032 if (addr
[i
] != (input
[i
] & mask
[i
])) {
2041 * security_node_sid - Obtain the SID for a node (host).
2042 * @domain: communication domain aka address family
2044 * @addrlen: address length in bytes
2045 * @out_sid: security identifier
2047 int security_node_sid(u16 domain
,
2055 read_lock(&policy_rwlock
);
2062 if (addrlen
!= sizeof(u32
))
2065 addr
= *((u32
*)addrp
);
2067 c
= policydb
.ocontexts
[OCON_NODE
];
2069 if (c
->u
.node
.addr
== (addr
& c
->u
.node
.mask
))
2078 if (addrlen
!= sizeof(u64
) * 2)
2080 c
= policydb
.ocontexts
[OCON_NODE6
];
2082 if (match_ipv6_addrmask(addrp
, c
->u
.node6
.addr
,
2091 *out_sid
= SECINITSID_NODE
;
2097 rc
= sidtab_context_to_sid(&sidtab
,
2103 *out_sid
= c
->sid
[0];
2105 *out_sid
= SECINITSID_NODE
;
2110 read_unlock(&policy_rwlock
);
2117 * security_get_user_sids - Obtain reachable SIDs for a user.
2118 * @fromsid: starting SID
2119 * @username: username
2120 * @sids: array of reachable SIDs for user
2121 * @nel: number of elements in @sids
2123 * Generate the set of SIDs for legal security contexts
2124 * for a given user that can be reached by @fromsid.
2125 * Set *@sids to point to a dynamically allocated
2126 * array containing the set of SIDs. Set *@nel to the
2127 * number of elements in the array.
2130 int security_get_user_sids(u32 fromsid
,
2135 struct context
*fromcon
, usercon
;
2136 u32
*mysids
= NULL
, *mysids2
, sid
;
2137 u32 mynel
= 0, maxnel
= SIDS_NEL
;
2138 struct user_datum
*user
;
2139 struct role_datum
*role
;
2140 struct ebitmap_node
*rnode
, *tnode
;
2146 if (!ss_initialized
)
2149 read_lock(&policy_rwlock
);
2151 context_init(&usercon
);
2154 fromcon
= sidtab_search(&sidtab
, fromsid
);
2159 user
= hashtab_search(policydb
.p_users
.table
, username
);
2163 usercon
.user
= user
->value
;
2166 mysids
= kcalloc(maxnel
, sizeof(*mysids
), GFP_ATOMIC
);
2170 ebitmap_for_each_positive_bit(&user
->roles
, rnode
, i
) {
2171 role
= policydb
.role_val_to_struct
[i
];
2172 usercon
.role
= i
+ 1;
2173 ebitmap_for_each_positive_bit(&role
->types
, tnode
, j
) {
2174 usercon
.type
= j
+ 1;
2176 if (mls_setup_user_range(fromcon
, user
, &usercon
))
2179 rc
= sidtab_context_to_sid(&sidtab
, &usercon
, &sid
);
2182 if (mynel
< maxnel
) {
2183 mysids
[mynel
++] = sid
;
2187 mysids2
= kcalloc(maxnel
, sizeof(*mysids2
), GFP_ATOMIC
);
2190 memcpy(mysids2
, mysids
, mynel
* sizeof(*mysids2
));
2193 mysids
[mynel
++] = sid
;
2199 read_unlock(&policy_rwlock
);
2206 mysids2
= kcalloc(mynel
, sizeof(*mysids2
), GFP_KERNEL
);
2211 for (i
= 0, j
= 0; i
< mynel
; i
++) {
2212 rc
= avc_has_perm_noaudit(fromsid
, mysids
[i
],
2213 SECCLASS_PROCESS
, /* kernel value */
2214 PROCESS__TRANSITION
, AVC_STRICT
,
2217 mysids2
[j
++] = mysids
[i
];
2229 * security_genfs_sid - Obtain a SID for a file in a filesystem
2230 * @fstype: filesystem type
2231 * @path: path from root of mount
2232 * @sclass: file security class
2233 * @sid: SID for path
2235 * Obtain a SID to use for a file in a filesystem that
2236 * cannot support xattr or use a fixed labeling behavior like
2237 * transition SIDs or task SIDs.
2239 int security_genfs_sid(const char *fstype
,
2246 struct genfs
*genfs
;
2250 while (path
[0] == '/' && path
[1] == '/')
2253 read_lock(&policy_rwlock
);
2255 sclass
= unmap_class(orig_sclass
);
2256 *sid
= SECINITSID_UNLABELED
;
2258 for (genfs
= policydb
.genfs
; genfs
; genfs
= genfs
->next
) {
2259 cmp
= strcmp(fstype
, genfs
->fstype
);
2268 for (c
= genfs
->head
; c
; c
= c
->next
) {
2269 len
= strlen(c
->u
.name
);
2270 if ((!c
->v
.sclass
|| sclass
== c
->v
.sclass
) &&
2271 (strncmp(c
->u
.name
, path
, len
) == 0))
2280 rc
= sidtab_context_to_sid(&sidtab
, &c
->context
[0], &c
->sid
[0]);
2288 read_unlock(&policy_rwlock
);
2293 * security_fs_use - Determine how to handle labeling for a filesystem.
2294 * @fstype: filesystem type
2295 * @behavior: labeling behavior
2296 * @sid: SID for filesystem (superblock)
2298 int security_fs_use(
2300 unsigned int *behavior
,
2306 read_lock(&policy_rwlock
);
2308 c
= policydb
.ocontexts
[OCON_FSUSE
];
2310 if (strcmp(fstype
, c
->u
.name
) == 0)
2316 *behavior
= c
->v
.behavior
;
2318 rc
= sidtab_context_to_sid(&sidtab
, &c
->context
[0],
2325 rc
= security_genfs_sid(fstype
, "/", SECCLASS_DIR
, sid
);
2327 *behavior
= SECURITY_FS_USE_NONE
;
2330 *behavior
= SECURITY_FS_USE_GENFS
;
2335 read_unlock(&policy_rwlock
);
2339 int security_get_bools(int *len
, char ***names
, int **values
)
2343 read_lock(&policy_rwlock
);
2348 *len
= policydb
.p_bools
.nprim
;
2353 *names
= kcalloc(*len
, sizeof(char *), GFP_ATOMIC
);
2358 *values
= kcalloc(*len
, sizeof(int), GFP_ATOMIC
);
2362 for (i
= 0; i
< *len
; i
++) {
2365 (*values
)[i
] = policydb
.bool_val_to_struct
[i
]->state
;
2366 name_len
= strlen(sym_name(&policydb
, SYM_BOOLS
, i
)) + 1;
2369 (*names
)[i
] = kmalloc(sizeof(char) * name_len
, GFP_ATOMIC
);
2373 strncpy((*names
)[i
], sym_name(&policydb
, SYM_BOOLS
, i
), name_len
);
2374 (*names
)[i
][name_len
- 1] = 0;
2378 read_unlock(&policy_rwlock
);
2382 for (i
= 0; i
< *len
; i
++)
2390 int security_set_bools(int len
, int *values
)
2393 int lenp
, seqno
= 0;
2394 struct cond_node
*cur
;
2396 write_lock_irq(&policy_rwlock
);
2399 lenp
= policydb
.p_bools
.nprim
;
2403 for (i
= 0; i
< len
; i
++) {
2404 if (!!values
[i
] != policydb
.bool_val_to_struct
[i
]->state
) {
2405 audit_log(current
->audit_context
, GFP_ATOMIC
,
2406 AUDIT_MAC_CONFIG_CHANGE
,
2407 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2408 sym_name(&policydb
, SYM_BOOLS
, i
),
2410 policydb
.bool_val_to_struct
[i
]->state
,
2411 audit_get_loginuid(current
),
2412 audit_get_sessionid(current
));
2415 policydb
.bool_val_to_struct
[i
]->state
= 1;
2417 policydb
.bool_val_to_struct
[i
]->state
= 0;
2420 for (cur
= policydb
.cond_list
; cur
; cur
= cur
->next
) {
2421 rc
= evaluate_cond_node(&policydb
, cur
);
2426 seqno
= ++latest_granting
;
2429 write_unlock_irq(&policy_rwlock
);
2431 avc_ss_reset(seqno
);
2432 selnl_notify_policyload(seqno
);
2433 selinux_status_update_policyload(seqno
);
2434 selinux_xfrm_notify_policyload();
2439 int security_get_bool_value(int bool)
2444 read_lock(&policy_rwlock
);
2447 len
= policydb
.p_bools
.nprim
;
2451 rc
= policydb
.bool_val_to_struct
[bool]->state
;
2453 read_unlock(&policy_rwlock
);
2457 static int security_preserve_bools(struct policydb
*p
)
2459 int rc
, nbools
= 0, *bvalues
= NULL
, i
;
2460 char **bnames
= NULL
;
2461 struct cond_bool_datum
*booldatum
;
2462 struct cond_node
*cur
;
2464 rc
= security_get_bools(&nbools
, &bnames
, &bvalues
);
2467 for (i
= 0; i
< nbools
; i
++) {
2468 booldatum
= hashtab_search(p
->p_bools
.table
, bnames
[i
]);
2470 booldatum
->state
= bvalues
[i
];
2472 for (cur
= p
->cond_list
; cur
; cur
= cur
->next
) {
2473 rc
= evaluate_cond_node(p
, cur
);
2480 for (i
= 0; i
< nbools
; i
++)
2489 * security_sid_mls_copy() - computes a new sid based on the given
2490 * sid and the mls portion of mls_sid.
2492 int security_sid_mls_copy(u32 sid
, u32 mls_sid
, u32
*new_sid
)
2494 struct context
*context1
;
2495 struct context
*context2
;
2496 struct context newcon
;
2502 if (!ss_initialized
|| !policydb
.mls_enabled
) {
2507 context_init(&newcon
);
2509 read_lock(&policy_rwlock
);
2512 context1
= sidtab_search(&sidtab
, sid
);
2514 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2520 context2
= sidtab_search(&sidtab
, mls_sid
);
2522 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2527 newcon
.user
= context1
->user
;
2528 newcon
.role
= context1
->role
;
2529 newcon
.type
= context1
->type
;
2530 rc
= mls_context_cpy(&newcon
, context2
);
2534 /* Check the validity of the new context. */
2535 if (!policydb_context_isvalid(&policydb
, &newcon
)) {
2536 rc
= convert_context_handle_invalid_context(&newcon
);
2538 if (!context_struct_to_string(&newcon
, &s
, &len
)) {
2539 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2540 "security_sid_mls_copy: invalid context %s", s
);
2547 rc
= sidtab_context_to_sid(&sidtab
, &newcon
, new_sid
);
2549 read_unlock(&policy_rwlock
);
2550 context_destroy(&newcon
);
2556 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2557 * @nlbl_sid: NetLabel SID
2558 * @nlbl_type: NetLabel labeling protocol type
2559 * @xfrm_sid: XFRM SID
2562 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2563 * resolved into a single SID it is returned via @peer_sid and the function
2564 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2565 * returns a negative value. A table summarizing the behavior is below:
2567 * | function return | @sid
2568 * ------------------------------+-----------------+-----------------
2569 * no peer labels | 0 | SECSID_NULL
2570 * single peer label | 0 | <peer_label>
2571 * multiple, consistent labels | 0 | <peer_label>
2572 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2575 int security_net_peersid_resolve(u32 nlbl_sid
, u32 nlbl_type
,
2580 struct context
*nlbl_ctx
;
2581 struct context
*xfrm_ctx
;
2583 *peer_sid
= SECSID_NULL
;
2585 /* handle the common (which also happens to be the set of easy) cases
2586 * right away, these two if statements catch everything involving a
2587 * single or absent peer SID/label */
2588 if (xfrm_sid
== SECSID_NULL
) {
2589 *peer_sid
= nlbl_sid
;
2592 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2593 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2595 if (nlbl_sid
== SECSID_NULL
|| nlbl_type
== NETLBL_NLTYPE_UNLABELED
) {
2596 *peer_sid
= xfrm_sid
;
2600 /* we don't need to check ss_initialized here since the only way both
2601 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2602 * security server was initialized and ss_initialized was true */
2603 if (!policydb
.mls_enabled
)
2606 read_lock(&policy_rwlock
);
2609 nlbl_ctx
= sidtab_search(&sidtab
, nlbl_sid
);
2611 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2612 __func__
, nlbl_sid
);
2616 xfrm_ctx
= sidtab_search(&sidtab
, xfrm_sid
);
2618 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2619 __func__
, xfrm_sid
);
2622 rc
= (mls_context_cmp(nlbl_ctx
, xfrm_ctx
) ? 0 : -EACCES
);
2626 /* at present NetLabel SIDs/labels really only carry MLS
2627 * information so if the MLS portion of the NetLabel SID
2628 * matches the MLS portion of the labeled XFRM SID/label
2629 * then pass along the XFRM SID as it is the most
2631 *peer_sid
= xfrm_sid
;
2633 read_unlock(&policy_rwlock
);
2637 static int get_classes_callback(void *k
, void *d
, void *args
)
2639 struct class_datum
*datum
= d
;
2640 char *name
= k
, **classes
= args
;
2641 int value
= datum
->value
- 1;
2643 classes
[value
] = kstrdup(name
, GFP_ATOMIC
);
2644 if (!classes
[value
])
2650 int security_get_classes(char ***classes
, int *nclasses
)
2654 read_lock(&policy_rwlock
);
2657 *nclasses
= policydb
.p_classes
.nprim
;
2658 *classes
= kcalloc(*nclasses
, sizeof(**classes
), GFP_ATOMIC
);
2662 rc
= hashtab_map(policydb
.p_classes
.table
, get_classes_callback
,
2666 for (i
= 0; i
< *nclasses
; i
++)
2667 kfree((*classes
)[i
]);
2672 read_unlock(&policy_rwlock
);
2676 static int get_permissions_callback(void *k
, void *d
, void *args
)
2678 struct perm_datum
*datum
= d
;
2679 char *name
= k
, **perms
= args
;
2680 int value
= datum
->value
- 1;
2682 perms
[value
] = kstrdup(name
, GFP_ATOMIC
);
2689 int security_get_permissions(char *class, char ***perms
, int *nperms
)
2692 struct class_datum
*match
;
2694 read_lock(&policy_rwlock
);
2697 match
= hashtab_search(policydb
.p_classes
.table
, class);
2699 printk(KERN_ERR
"SELinux: %s: unrecognized class %s\n",
2705 *nperms
= match
->permissions
.nprim
;
2706 *perms
= kcalloc(*nperms
, sizeof(**perms
), GFP_ATOMIC
);
2710 if (match
->comdatum
) {
2711 rc
= hashtab_map(match
->comdatum
->permissions
.table
,
2712 get_permissions_callback
, *perms
);
2717 rc
= hashtab_map(match
->permissions
.table
, get_permissions_callback
,
2723 read_unlock(&policy_rwlock
);
2727 read_unlock(&policy_rwlock
);
2728 for (i
= 0; i
< *nperms
; i
++)
2734 int security_get_reject_unknown(void)
2736 return policydb
.reject_unknown
;
2739 int security_get_allow_unknown(void)
2741 return policydb
.allow_unknown
;
2745 * security_policycap_supported - Check for a specific policy capability
2746 * @req_cap: capability
2749 * This function queries the currently loaded policy to see if it supports the
2750 * capability specified by @req_cap. Returns true (1) if the capability is
2751 * supported, false (0) if it isn't supported.
2754 int security_policycap_supported(unsigned int req_cap
)
2758 read_lock(&policy_rwlock
);
2759 rc
= ebitmap_get_bit(&policydb
.policycaps
, req_cap
);
2760 read_unlock(&policy_rwlock
);
2765 struct selinux_audit_rule
{
2767 struct context au_ctxt
;
2770 void selinux_audit_rule_free(void *vrule
)
2772 struct selinux_audit_rule
*rule
= vrule
;
2775 context_destroy(&rule
->au_ctxt
);
2780 int selinux_audit_rule_init(u32 field
, u32 op
, char *rulestr
, void **vrule
)
2782 struct selinux_audit_rule
*tmprule
;
2783 struct role_datum
*roledatum
;
2784 struct type_datum
*typedatum
;
2785 struct user_datum
*userdatum
;
2786 struct selinux_audit_rule
**rule
= (struct selinux_audit_rule
**)vrule
;
2791 if (!ss_initialized
)
2795 case AUDIT_SUBJ_USER
:
2796 case AUDIT_SUBJ_ROLE
:
2797 case AUDIT_SUBJ_TYPE
:
2798 case AUDIT_OBJ_USER
:
2799 case AUDIT_OBJ_ROLE
:
2800 case AUDIT_OBJ_TYPE
:
2801 /* only 'equals' and 'not equals' fit user, role, and type */
2802 if (op
!= Audit_equal
&& op
!= Audit_not_equal
)
2805 case AUDIT_SUBJ_SEN
:
2806 case AUDIT_SUBJ_CLR
:
2807 case AUDIT_OBJ_LEV_LOW
:
2808 case AUDIT_OBJ_LEV_HIGH
:
2809 /* we do not allow a range, indicated by the presense of '-' */
2810 if (strchr(rulestr
, '-'))
2814 /* only the above fields are valid */
2818 tmprule
= kzalloc(sizeof(struct selinux_audit_rule
), GFP_KERNEL
);
2822 context_init(&tmprule
->au_ctxt
);
2824 read_lock(&policy_rwlock
);
2826 tmprule
->au_seqno
= latest_granting
;
2829 case AUDIT_SUBJ_USER
:
2830 case AUDIT_OBJ_USER
:
2832 userdatum
= hashtab_search(policydb
.p_users
.table
, rulestr
);
2835 tmprule
->au_ctxt
.user
= userdatum
->value
;
2837 case AUDIT_SUBJ_ROLE
:
2838 case AUDIT_OBJ_ROLE
:
2840 roledatum
= hashtab_search(policydb
.p_roles
.table
, rulestr
);
2843 tmprule
->au_ctxt
.role
= roledatum
->value
;
2845 case AUDIT_SUBJ_TYPE
:
2846 case AUDIT_OBJ_TYPE
:
2848 typedatum
= hashtab_search(policydb
.p_types
.table
, rulestr
);
2851 tmprule
->au_ctxt
.type
= typedatum
->value
;
2853 case AUDIT_SUBJ_SEN
:
2854 case AUDIT_SUBJ_CLR
:
2855 case AUDIT_OBJ_LEV_LOW
:
2856 case AUDIT_OBJ_LEV_HIGH
:
2857 rc
= mls_from_string(rulestr
, &tmprule
->au_ctxt
, GFP_ATOMIC
);
2864 read_unlock(&policy_rwlock
);
2867 selinux_audit_rule_free(tmprule
);
2876 /* Check to see if the rule contains any selinux fields */
2877 int selinux_audit_rule_known(struct audit_krule
*rule
)
2881 for (i
= 0; i
< rule
->field_count
; i
++) {
2882 struct audit_field
*f
= &rule
->fields
[i
];
2884 case AUDIT_SUBJ_USER
:
2885 case AUDIT_SUBJ_ROLE
:
2886 case AUDIT_SUBJ_TYPE
:
2887 case AUDIT_SUBJ_SEN
:
2888 case AUDIT_SUBJ_CLR
:
2889 case AUDIT_OBJ_USER
:
2890 case AUDIT_OBJ_ROLE
:
2891 case AUDIT_OBJ_TYPE
:
2892 case AUDIT_OBJ_LEV_LOW
:
2893 case AUDIT_OBJ_LEV_HIGH
:
2901 int selinux_audit_rule_match(u32 sid
, u32 field
, u32 op
, void *vrule
,
2902 struct audit_context
*actx
)
2904 struct context
*ctxt
;
2905 struct mls_level
*level
;
2906 struct selinux_audit_rule
*rule
= vrule
;
2910 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2911 "selinux_audit_rule_match: missing rule\n");
2915 read_lock(&policy_rwlock
);
2917 if (rule
->au_seqno
< latest_granting
) {
2918 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2919 "selinux_audit_rule_match: stale rule\n");
2924 ctxt
= sidtab_search(&sidtab
, sid
);
2926 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2927 "selinux_audit_rule_match: unrecognized SID %d\n",
2933 /* a field/op pair that is not caught here will simply fall through
2936 case AUDIT_SUBJ_USER
:
2937 case AUDIT_OBJ_USER
:
2940 match
= (ctxt
->user
== rule
->au_ctxt
.user
);
2942 case Audit_not_equal
:
2943 match
= (ctxt
->user
!= rule
->au_ctxt
.user
);
2947 case AUDIT_SUBJ_ROLE
:
2948 case AUDIT_OBJ_ROLE
:
2951 match
= (ctxt
->role
== rule
->au_ctxt
.role
);
2953 case Audit_not_equal
:
2954 match
= (ctxt
->role
!= rule
->au_ctxt
.role
);
2958 case AUDIT_SUBJ_TYPE
:
2959 case AUDIT_OBJ_TYPE
:
2962 match
= (ctxt
->type
== rule
->au_ctxt
.type
);
2964 case Audit_not_equal
:
2965 match
= (ctxt
->type
!= rule
->au_ctxt
.type
);
2969 case AUDIT_SUBJ_SEN
:
2970 case AUDIT_SUBJ_CLR
:
2971 case AUDIT_OBJ_LEV_LOW
:
2972 case AUDIT_OBJ_LEV_HIGH
:
2973 level
= ((field
== AUDIT_SUBJ_SEN
||
2974 field
== AUDIT_OBJ_LEV_LOW
) ?
2975 &ctxt
->range
.level
[0] : &ctxt
->range
.level
[1]);
2978 match
= mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2981 case Audit_not_equal
:
2982 match
= !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2986 match
= (mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
2988 !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2992 match
= mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
2996 match
= (mls_level_dom(level
,
2997 &rule
->au_ctxt
.range
.level
[0]) &&
2998 !mls_level_eq(level
,
2999 &rule
->au_ctxt
.range
.level
[0]));
3002 match
= mls_level_dom(level
,
3003 &rule
->au_ctxt
.range
.level
[0]);
3009 read_unlock(&policy_rwlock
);
3013 static int (*aurule_callback
)(void) = audit_update_lsm_rules
;
3015 static int aurule_avc_callback(u32 event
, u32 ssid
, u32 tsid
,
3016 u16
class, u32 perms
, u32
*retained
)
3020 if (event
== AVC_CALLBACK_RESET
&& aurule_callback
)
3021 err
= aurule_callback();
3025 static int __init
aurule_init(void)
3029 err
= avc_add_callback(aurule_avc_callback
, AVC_CALLBACK_RESET
,
3030 SECSID_NULL
, SECSID_NULL
, SECCLASS_NULL
, 0);
3032 panic("avc_add_callback() failed, error %d\n", err
);
3036 __initcall(aurule_init
);
3038 #ifdef CONFIG_NETLABEL
3040 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3041 * @secattr: the NetLabel packet security attributes
3042 * @sid: the SELinux SID
3045 * Attempt to cache the context in @ctx, which was derived from the packet in
3046 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3047 * already been initialized.
3050 static void security_netlbl_cache_add(struct netlbl_lsm_secattr
*secattr
,
3055 sid_cache
= kmalloc(sizeof(*sid_cache
), GFP_ATOMIC
);
3056 if (sid_cache
== NULL
)
3058 secattr
->cache
= netlbl_secattr_cache_alloc(GFP_ATOMIC
);
3059 if (secattr
->cache
== NULL
) {
3065 secattr
->cache
->free
= kfree
;
3066 secattr
->cache
->data
= sid_cache
;
3067 secattr
->flags
|= NETLBL_SECATTR_CACHE
;
3071 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3072 * @secattr: the NetLabel packet security attributes
3073 * @sid: the SELinux SID
3076 * Convert the given NetLabel security attributes in @secattr into a
3077 * SELinux SID. If the @secattr field does not contain a full SELinux
3078 * SID/context then use SECINITSID_NETMSG as the foundation. If possibile the
3079 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3080 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3081 * conversion for future lookups. Returns zero on success, negative values on
3085 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr
*secattr
,
3089 struct context
*ctx
;
3090 struct context ctx_new
;
3092 if (!ss_initialized
) {
3097 read_lock(&policy_rwlock
);
3099 if (secattr
->flags
& NETLBL_SECATTR_CACHE
)
3100 *sid
= *(u32
*)secattr
->cache
->data
;
3101 else if (secattr
->flags
& NETLBL_SECATTR_SECID
)
3102 *sid
= secattr
->attr
.secid
;
3103 else if (secattr
->flags
& NETLBL_SECATTR_MLS_LVL
) {
3105 ctx
= sidtab_search(&sidtab
, SECINITSID_NETMSG
);
3109 context_init(&ctx_new
);
3110 ctx_new
.user
= ctx
->user
;
3111 ctx_new
.role
= ctx
->role
;
3112 ctx_new
.type
= ctx
->type
;
3113 mls_import_netlbl_lvl(&ctx_new
, secattr
);
3114 if (secattr
->flags
& NETLBL_SECATTR_MLS_CAT
) {
3115 rc
= ebitmap_netlbl_import(&ctx_new
.range
.level
[0].cat
,
3116 secattr
->attr
.mls
.cat
);
3119 memcpy(&ctx_new
.range
.level
[1].cat
,
3120 &ctx_new
.range
.level
[0].cat
,
3121 sizeof(ctx_new
.range
.level
[0].cat
));
3124 if (!mls_context_isvalid(&policydb
, &ctx_new
))
3127 rc
= sidtab_context_to_sid(&sidtab
, &ctx_new
, sid
);
3131 security_netlbl_cache_add(secattr
, *sid
);
3133 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
3137 read_unlock(&policy_rwlock
);
3140 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
3142 read_unlock(&policy_rwlock
);
3147 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3148 * @sid: the SELinux SID
3149 * @secattr: the NetLabel packet security attributes
3152 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3153 * Returns zero on success, negative values on failure.
3156 int security_netlbl_sid_to_secattr(u32 sid
, struct netlbl_lsm_secattr
*secattr
)
3159 struct context
*ctx
;
3161 if (!ss_initialized
)
3164 read_lock(&policy_rwlock
);
3167 ctx
= sidtab_search(&sidtab
, sid
);
3172 secattr
->domain
= kstrdup(sym_name(&policydb
, SYM_TYPES
, ctx
->type
- 1),
3174 if (secattr
->domain
== NULL
)
3177 secattr
->attr
.secid
= sid
;
3178 secattr
->flags
|= NETLBL_SECATTR_DOMAIN_CPY
| NETLBL_SECATTR_SECID
;
3179 mls_export_netlbl_lvl(ctx
, secattr
);
3180 rc
= mls_export_netlbl_cat(ctx
, secattr
);
3182 read_unlock(&policy_rwlock
);
3185 #endif /* CONFIG_NETLABEL */
3188 * security_read_policy - read the policy.
3189 * @data: binary policy data
3190 * @len: length of data in bytes
3193 int security_read_policy(void **data
, ssize_t
*len
)
3196 struct policy_file fp
;
3198 if (!ss_initialized
)
3201 *len
= security_policydb_len();
3203 *data
= vmalloc_user(*len
);
3210 read_lock(&policy_rwlock
);
3211 rc
= policydb_write(&policydb
, &fp
);
3212 read_unlock(&policy_rwlock
);
3217 *len
= (unsigned long)fp
.data
- (unsigned long)*data
;