2 * Contains CPU feature definitions
4 * Copyright (C) 2015 ARM Ltd.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 #define pr_fmt(fmt) "CPU features: " fmt
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
28 #include <asm/cpufeature.h>
29 #include <asm/cpu_ops.h>
30 #include <asm/fpsimd.h>
31 #include <asm/mmu_context.h>
32 #include <asm/processor.h>
33 #include <asm/sysreg.h>
34 #include <asm/traps.h>
37 unsigned long elf_hwcap __read_mostly
;
38 EXPORT_SYMBOL_GPL(elf_hwcap
);
41 #define COMPAT_ELF_HWCAP_DEFAULT \
42 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
43 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
44 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
45 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
46 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
48 unsigned int compat_elf_hwcap __read_mostly
= COMPAT_ELF_HWCAP_DEFAULT
;
49 unsigned int compat_elf_hwcap2 __read_mostly
;
52 DECLARE_BITMAP(cpu_hwcaps
, ARM64_NCAPS
);
53 EXPORT_SYMBOL(cpu_hwcaps
);
56 * Flag to indicate if we have computed the system wide
57 * capabilities based on the boot time active CPUs. This
58 * will be used to determine if a new booting CPU should
59 * go through the verification process to make sure that it
60 * supports the system capabilities, without using a hotplug
63 static bool sys_caps_initialised
;
65 static inline void set_sys_caps_initialised(void)
67 sys_caps_initialised
= true;
70 static int dump_cpu_hwcaps(struct notifier_block
*self
, unsigned long v
, void *p
)
72 /* file-wide pr_fmt adds "CPU features: " prefix */
73 pr_emerg("0x%*pb\n", ARM64_NCAPS
, &cpu_hwcaps
);
77 static struct notifier_block cpu_hwcaps_notifier
= {
78 .notifier_call
= dump_cpu_hwcaps
81 static int __init
register_cpu_hwcaps_dumper(void)
83 atomic_notifier_chain_register(&panic_notifier_list
,
84 &cpu_hwcaps_notifier
);
87 __initcall(register_cpu_hwcaps_dumper
);
89 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys
, ARM64_NCAPS
);
90 EXPORT_SYMBOL(cpu_hwcap_keys
);
92 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
100 .safe_val = SAFE_VAL, \
103 /* Define a feature with unsigned values */
104 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
105 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
107 /* Define a feature with a signed value */
108 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
109 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
111 #define ARM64_FTR_END \
116 /* meta feature for alternatives */
117 static bool __maybe_unused
118 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities
*entry
, int __unused
);
122 * NOTE: Any changes to the visibility of features should be kept in
123 * sync with the documentation of the CPU feature register ABI.
125 static const struct arm64_ftr_bits ftr_id_aa64isar0
[] = {
126 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_DP_SHIFT
, 4, 0),
127 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_SM4_SHIFT
, 4, 0),
128 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_SM3_SHIFT
, 4, 0),
129 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_SHA3_SHIFT
, 4, 0),
130 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_RDM_SHIFT
, 4, 0),
131 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_ATOMICS_SHIFT
, 4, 0),
132 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_CRC32_SHIFT
, 4, 0),
133 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_SHA2_SHIFT
, 4, 0),
134 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_SHA1_SHIFT
, 4, 0),
135 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_AES_SHIFT
, 4, 0),
139 static const struct arm64_ftr_bits ftr_id_aa64isar1
[] = {
140 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_LRCPC_SHIFT
, 4, 0),
141 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_FCMA_SHIFT
, 4, 0),
142 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_JSCVT_SHIFT
, 4, 0),
143 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_DPB_SHIFT
, 4, 0),
147 static const struct arm64_ftr_bits ftr_id_aa64pfr0
[] = {
148 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE
),
149 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_SVE_SHIFT
, 4, 0),
150 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_GIC_SHIFT
, 4, 0),
151 S_ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_ASIMD_SHIFT
, 4, ID_AA64PFR0_ASIMD_NI
),
152 S_ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_FP_SHIFT
, 4, ID_AA64PFR0_FP_NI
),
153 /* Linux doesn't care about the EL3 */
154 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL3_SHIFT
, 4, 0),
155 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL2_SHIFT
, 4, 0),
156 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL1_SHIFT
, 4, ID_AA64PFR0_EL1_64BIT_ONLY
),
157 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL0_SHIFT
, 4, ID_AA64PFR0_EL0_64BIT_ONLY
),
161 static const struct arm64_ftr_bits ftr_id_aa64mmfr0
[] = {
162 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_TGRAN4_SHIFT
, 4, ID_AA64MMFR0_TGRAN4_NI
),
163 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_TGRAN64_SHIFT
, 4, ID_AA64MMFR0_TGRAN64_NI
),
164 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_TGRAN16_SHIFT
, 4, ID_AA64MMFR0_TGRAN16_NI
),
165 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_BIGENDEL0_SHIFT
, 4, 0),
166 /* Linux shouldn't care about secure memory */
167 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_SNSMEM_SHIFT
, 4, 0),
168 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_BIGENDEL_SHIFT
, 4, 0),
169 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_ASID_SHIFT
, 4, 0),
171 * Differing PARange is fine as long as all peripherals and memory are mapped
172 * within the minimum PARange of all CPUs
174 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_PARANGE_SHIFT
, 4, 0),
178 static const struct arm64_ftr_bits ftr_id_aa64mmfr1
[] = {
179 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_PAN_SHIFT
, 4, 0),
180 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_LOR_SHIFT
, 4, 0),
181 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_HPD_SHIFT
, 4, 0),
182 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_VHE_SHIFT
, 4, 0),
183 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_VMIDBITS_SHIFT
, 4, 0),
184 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_HADBS_SHIFT
, 4, 0),
188 static const struct arm64_ftr_bits ftr_id_aa64mmfr2
[] = {
189 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_LVA_SHIFT
, 4, 0),
190 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_IESB_SHIFT
, 4, 0),
191 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_LSM_SHIFT
, 4, 0),
192 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_UAO_SHIFT
, 4, 0),
193 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_CNP_SHIFT
, 4, 0),
197 static const struct arm64_ftr_bits ftr_ctr
[] = {
198 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_EXACT
, 31, 1, 1), /* RAO */
199 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_HIGHER_SAFE
, 24, 4, 0), /* CWG */
200 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, 20, 4, 0), /* ERG */
201 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, 16, 4, 1), /* DminLine */
203 * Linux can handle differing I-cache policies. Userspace JITs will
204 * make use of *minLine.
205 * If we have differing I-cache policies, report it as the weakest - VIPT.
207 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_NONSTRICT
, FTR_EXACT
, 14, 2, ICACHE_POLICY_VIPT
), /* L1Ip */
208 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0), /* IminLine */
212 struct arm64_ftr_reg arm64_ftr_reg_ctrel0
= {
213 .name
= "SYS_CTR_EL0",
217 static const struct arm64_ftr_bits ftr_id_mmfr0
[] = {
218 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 28, 4, 0xf), /* InnerShr */
219 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 24, 4, 0), /* FCSE */
220 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, 20, 4, 0), /* AuxReg */
221 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 16, 4, 0), /* TCM */
222 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 12, 4, 0), /* ShareLvl */
223 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 8, 4, 0xf), /* OuterShr */
224 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0), /* PMSA */
225 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0), /* VMSA */
229 static const struct arm64_ftr_bits ftr_id_aa64dfr0
[] = {
230 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, 36, 28, 0),
231 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_PMSVER_SHIFT
, 4, 0),
232 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_CTX_CMPS_SHIFT
, 4, 0),
233 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_WRPS_SHIFT
, 4, 0),
234 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_BRPS_SHIFT
, 4, 0),
236 * We can instantiate multiple PMU instances with different levels
239 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_EXACT
, ID_AA64DFR0_PMUVER_SHIFT
, 4, 0),
240 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64DFR0_TRACEVER_SHIFT
, 4, 0),
241 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64DFR0_DEBUGVER_SHIFT
, 4, 0x6),
245 static const struct arm64_ftr_bits ftr_mvfr2
[] = {
246 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0), /* FPMisc */
247 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0), /* SIMDMisc */
251 static const struct arm64_ftr_bits ftr_dczid
[] = {
252 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_EXACT
, 4, 1, 1), /* DZP */
253 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0), /* BS */
258 static const struct arm64_ftr_bits ftr_id_isar5
[] = {
259 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_RDM_SHIFT
, 4, 0),
260 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_CRC32_SHIFT
, 4, 0),
261 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_SHA2_SHIFT
, 4, 0),
262 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_SHA1_SHIFT
, 4, 0),
263 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_AES_SHIFT
, 4, 0),
264 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_SEVL_SHIFT
, 4, 0),
268 static const struct arm64_ftr_bits ftr_id_mmfr4
[] = {
269 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0), /* ac2 */
273 static const struct arm64_ftr_bits ftr_id_pfr0
[] = {
274 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 12, 4, 0), /* State3 */
275 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 8, 4, 0), /* State2 */
276 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0), /* State1 */
277 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0), /* State0 */
281 static const struct arm64_ftr_bits ftr_id_dfr0
[] = {
282 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 28, 4, 0),
283 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 24, 4, 0xf), /* PerfMon */
284 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 20, 4, 0),
285 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 16, 4, 0),
286 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 12, 4, 0),
287 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 8, 4, 0),
288 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0),
289 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0),
293 static const struct arm64_ftr_bits ftr_zcr
[] = {
294 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
,
295 ZCR_ELx_LEN_SHIFT
, ZCR_ELx_LEN_SIZE
, 0), /* LEN */
300 * Common ftr bits for a 32bit register with all hidden, strict
301 * attributes, with 4bit feature fields and a default safe value of
302 * 0. Covers the following 32bit registers:
303 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
305 static const struct arm64_ftr_bits ftr_generic_32bits
[] = {
306 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 28, 4, 0),
307 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 24, 4, 0),
308 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 20, 4, 0),
309 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 16, 4, 0),
310 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 12, 4, 0),
311 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 8, 4, 0),
312 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0),
313 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0),
317 /* Table for a single 32bit feature value */
318 static const struct arm64_ftr_bits ftr_single32
[] = {
319 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, 0, 32, 0),
323 static const struct arm64_ftr_bits ftr_raz
[] = {
327 #define ARM64_FTR_REG(id, table) { \
329 .reg = &(struct arm64_ftr_reg){ \
331 .ftr_bits = &((table)[0]), \
334 static const struct __ftr_reg_entry
{
336 struct arm64_ftr_reg
*reg
;
337 } arm64_ftr_regs
[] = {
339 /* Op1 = 0, CRn = 0, CRm = 1 */
340 ARM64_FTR_REG(SYS_ID_PFR0_EL1
, ftr_id_pfr0
),
341 ARM64_FTR_REG(SYS_ID_PFR1_EL1
, ftr_generic_32bits
),
342 ARM64_FTR_REG(SYS_ID_DFR0_EL1
, ftr_id_dfr0
),
343 ARM64_FTR_REG(SYS_ID_MMFR0_EL1
, ftr_id_mmfr0
),
344 ARM64_FTR_REG(SYS_ID_MMFR1_EL1
, ftr_generic_32bits
),
345 ARM64_FTR_REG(SYS_ID_MMFR2_EL1
, ftr_generic_32bits
),
346 ARM64_FTR_REG(SYS_ID_MMFR3_EL1
, ftr_generic_32bits
),
348 /* Op1 = 0, CRn = 0, CRm = 2 */
349 ARM64_FTR_REG(SYS_ID_ISAR0_EL1
, ftr_generic_32bits
),
350 ARM64_FTR_REG(SYS_ID_ISAR1_EL1
, ftr_generic_32bits
),
351 ARM64_FTR_REG(SYS_ID_ISAR2_EL1
, ftr_generic_32bits
),
352 ARM64_FTR_REG(SYS_ID_ISAR3_EL1
, ftr_generic_32bits
),
353 ARM64_FTR_REG(SYS_ID_ISAR4_EL1
, ftr_generic_32bits
),
354 ARM64_FTR_REG(SYS_ID_ISAR5_EL1
, ftr_id_isar5
),
355 ARM64_FTR_REG(SYS_ID_MMFR4_EL1
, ftr_id_mmfr4
),
357 /* Op1 = 0, CRn = 0, CRm = 3 */
358 ARM64_FTR_REG(SYS_MVFR0_EL1
, ftr_generic_32bits
),
359 ARM64_FTR_REG(SYS_MVFR1_EL1
, ftr_generic_32bits
),
360 ARM64_FTR_REG(SYS_MVFR2_EL1
, ftr_mvfr2
),
362 /* Op1 = 0, CRn = 0, CRm = 4 */
363 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1
, ftr_id_aa64pfr0
),
364 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1
, ftr_raz
),
365 ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1
, ftr_raz
),
367 /* Op1 = 0, CRn = 0, CRm = 5 */
368 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1
, ftr_id_aa64dfr0
),
369 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1
, ftr_raz
),
371 /* Op1 = 0, CRn = 0, CRm = 6 */
372 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1
, ftr_id_aa64isar0
),
373 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1
, ftr_id_aa64isar1
),
375 /* Op1 = 0, CRn = 0, CRm = 7 */
376 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1
, ftr_id_aa64mmfr0
),
377 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1
, ftr_id_aa64mmfr1
),
378 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1
, ftr_id_aa64mmfr2
),
380 /* Op1 = 0, CRn = 1, CRm = 2 */
381 ARM64_FTR_REG(SYS_ZCR_EL1
, ftr_zcr
),
383 /* Op1 = 3, CRn = 0, CRm = 0 */
384 { SYS_CTR_EL0
, &arm64_ftr_reg_ctrel0
},
385 ARM64_FTR_REG(SYS_DCZID_EL0
, ftr_dczid
),
387 /* Op1 = 3, CRn = 14, CRm = 0 */
388 ARM64_FTR_REG(SYS_CNTFRQ_EL0
, ftr_single32
),
391 static int search_cmp_ftr_reg(const void *id
, const void *regp
)
393 return (int)(unsigned long)id
- (int)((const struct __ftr_reg_entry
*)regp
)->sys_id
;
397 * get_arm64_ftr_reg - Lookup a feature register entry using its
398 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
399 * ascending order of sys_id , we use binary search to find a matching
402 * returns - Upon success, matching ftr_reg entry for id.
403 * - NULL on failure. It is upto the caller to decide
404 * the impact of a failure.
406 static struct arm64_ftr_reg
*get_arm64_ftr_reg(u32 sys_id
)
408 const struct __ftr_reg_entry
*ret
;
410 ret
= bsearch((const void *)(unsigned long)sys_id
,
412 ARRAY_SIZE(arm64_ftr_regs
),
413 sizeof(arm64_ftr_regs
[0]),
420 static u64
arm64_ftr_set_value(const struct arm64_ftr_bits
*ftrp
, s64 reg
,
423 u64 mask
= arm64_ftr_mask(ftrp
);
426 reg
|= (ftr_val
<< ftrp
->shift
) & mask
;
430 static s64
arm64_ftr_safe_value(const struct arm64_ftr_bits
*ftrp
, s64
new,
435 switch (ftrp
->type
) {
437 ret
= ftrp
->safe_val
;
440 ret
= new < cur
? new : cur
;
442 case FTR_HIGHER_SAFE
:
443 ret
= new > cur
? new : cur
;
452 static void __init
sort_ftr_regs(void)
456 /* Check that the array is sorted so that we can do the binary search */
457 for (i
= 1; i
< ARRAY_SIZE(arm64_ftr_regs
); i
++)
458 BUG_ON(arm64_ftr_regs
[i
].sys_id
< arm64_ftr_regs
[i
- 1].sys_id
);
462 * Initialise the CPU feature register from Boot CPU values.
463 * Also initiliases the strict_mask for the register.
464 * Any bits that are not covered by an arm64_ftr_bits entry are considered
465 * RES0 for the system-wide value, and must strictly match.
467 static void __init
init_cpu_ftr_reg(u32 sys_reg
, u64
new)
470 u64 strict_mask
= ~0x0ULL
;
474 const struct arm64_ftr_bits
*ftrp
;
475 struct arm64_ftr_reg
*reg
= get_arm64_ftr_reg(sys_reg
);
479 for (ftrp
= reg
->ftr_bits
; ftrp
->width
; ftrp
++) {
480 u64 ftr_mask
= arm64_ftr_mask(ftrp
);
481 s64 ftr_new
= arm64_ftr_value(ftrp
, new);
483 val
= arm64_ftr_set_value(ftrp
, val
, ftr_new
);
485 valid_mask
|= ftr_mask
;
487 strict_mask
&= ~ftr_mask
;
489 user_mask
|= ftr_mask
;
491 reg
->user_val
= arm64_ftr_set_value(ftrp
,
499 reg
->strict_mask
= strict_mask
;
500 reg
->user_mask
= user_mask
;
503 void __init
init_cpu_features(struct cpuinfo_arm64
*info
)
505 /* Before we start using the tables, make sure it is sorted */
508 init_cpu_ftr_reg(SYS_CTR_EL0
, info
->reg_ctr
);
509 init_cpu_ftr_reg(SYS_DCZID_EL0
, info
->reg_dczid
);
510 init_cpu_ftr_reg(SYS_CNTFRQ_EL0
, info
->reg_cntfrq
);
511 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1
, info
->reg_id_aa64dfr0
);
512 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1
, info
->reg_id_aa64dfr1
);
513 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1
, info
->reg_id_aa64isar0
);
514 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1
, info
->reg_id_aa64isar1
);
515 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1
, info
->reg_id_aa64mmfr0
);
516 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1
, info
->reg_id_aa64mmfr1
);
517 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1
, info
->reg_id_aa64mmfr2
);
518 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1
, info
->reg_id_aa64pfr0
);
519 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1
, info
->reg_id_aa64pfr1
);
520 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1
, info
->reg_id_aa64zfr0
);
522 if (id_aa64pfr0_32bit_el0(info
->reg_id_aa64pfr0
)) {
523 init_cpu_ftr_reg(SYS_ID_DFR0_EL1
, info
->reg_id_dfr0
);
524 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1
, info
->reg_id_isar0
);
525 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1
, info
->reg_id_isar1
);
526 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1
, info
->reg_id_isar2
);
527 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1
, info
->reg_id_isar3
);
528 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1
, info
->reg_id_isar4
);
529 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1
, info
->reg_id_isar5
);
530 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1
, info
->reg_id_mmfr0
);
531 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1
, info
->reg_id_mmfr1
);
532 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1
, info
->reg_id_mmfr2
);
533 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1
, info
->reg_id_mmfr3
);
534 init_cpu_ftr_reg(SYS_ID_PFR0_EL1
, info
->reg_id_pfr0
);
535 init_cpu_ftr_reg(SYS_ID_PFR1_EL1
, info
->reg_id_pfr1
);
536 init_cpu_ftr_reg(SYS_MVFR0_EL1
, info
->reg_mvfr0
);
537 init_cpu_ftr_reg(SYS_MVFR1_EL1
, info
->reg_mvfr1
);
538 init_cpu_ftr_reg(SYS_MVFR2_EL1
, info
->reg_mvfr2
);
541 if (id_aa64pfr0_sve(info
->reg_id_aa64pfr0
)) {
542 init_cpu_ftr_reg(SYS_ZCR_EL1
, info
->reg_zcr
);
547 static void update_cpu_ftr_reg(struct arm64_ftr_reg
*reg
, u64
new)
549 const struct arm64_ftr_bits
*ftrp
;
551 for (ftrp
= reg
->ftr_bits
; ftrp
->width
; ftrp
++) {
552 s64 ftr_cur
= arm64_ftr_value(ftrp
, reg
->sys_val
);
553 s64 ftr_new
= arm64_ftr_value(ftrp
, new);
555 if (ftr_cur
== ftr_new
)
557 /* Find a safe value */
558 ftr_new
= arm64_ftr_safe_value(ftrp
, ftr_new
, ftr_cur
);
559 reg
->sys_val
= arm64_ftr_set_value(ftrp
, reg
->sys_val
, ftr_new
);
564 static int check_update_ftr_reg(u32 sys_id
, int cpu
, u64 val
, u64 boot
)
566 struct arm64_ftr_reg
*regp
= get_arm64_ftr_reg(sys_id
);
569 update_cpu_ftr_reg(regp
, val
);
570 if ((boot
& regp
->strict_mask
) == (val
& regp
->strict_mask
))
572 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
573 regp
->name
, boot
, cpu
, val
);
578 * Update system wide CPU feature registers with the values from a
579 * non-boot CPU. Also performs SANITY checks to make sure that there
580 * aren't any insane variations from that of the boot CPU.
582 void update_cpu_features(int cpu
,
583 struct cpuinfo_arm64
*info
,
584 struct cpuinfo_arm64
*boot
)
589 * The kernel can handle differing I-cache policies, but otherwise
590 * caches should look identical. Userspace JITs will make use of
593 taint
|= check_update_ftr_reg(SYS_CTR_EL0
, cpu
,
594 info
->reg_ctr
, boot
->reg_ctr
);
597 * Userspace may perform DC ZVA instructions. Mismatched block sizes
598 * could result in too much or too little memory being zeroed if a
599 * process is preempted and migrated between CPUs.
601 taint
|= check_update_ftr_reg(SYS_DCZID_EL0
, cpu
,
602 info
->reg_dczid
, boot
->reg_dczid
);
604 /* If different, timekeeping will be broken (especially with KVM) */
605 taint
|= check_update_ftr_reg(SYS_CNTFRQ_EL0
, cpu
,
606 info
->reg_cntfrq
, boot
->reg_cntfrq
);
609 * The kernel uses self-hosted debug features and expects CPUs to
610 * support identical debug features. We presently need CTX_CMPs, WRPs,
611 * and BRPs to be identical.
612 * ID_AA64DFR1 is currently RES0.
614 taint
|= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1
, cpu
,
615 info
->reg_id_aa64dfr0
, boot
->reg_id_aa64dfr0
);
616 taint
|= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1
, cpu
,
617 info
->reg_id_aa64dfr1
, boot
->reg_id_aa64dfr1
);
619 * Even in big.LITTLE, processors should be identical instruction-set
622 taint
|= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1
, cpu
,
623 info
->reg_id_aa64isar0
, boot
->reg_id_aa64isar0
);
624 taint
|= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1
, cpu
,
625 info
->reg_id_aa64isar1
, boot
->reg_id_aa64isar1
);
628 * Differing PARange support is fine as long as all peripherals and
629 * memory are mapped within the minimum PARange of all CPUs.
630 * Linux should not care about secure memory.
632 taint
|= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1
, cpu
,
633 info
->reg_id_aa64mmfr0
, boot
->reg_id_aa64mmfr0
);
634 taint
|= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1
, cpu
,
635 info
->reg_id_aa64mmfr1
, boot
->reg_id_aa64mmfr1
);
636 taint
|= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1
, cpu
,
637 info
->reg_id_aa64mmfr2
, boot
->reg_id_aa64mmfr2
);
640 * EL3 is not our concern.
641 * ID_AA64PFR1 is currently RES0.
643 taint
|= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1
, cpu
,
644 info
->reg_id_aa64pfr0
, boot
->reg_id_aa64pfr0
);
645 taint
|= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1
, cpu
,
646 info
->reg_id_aa64pfr1
, boot
->reg_id_aa64pfr1
);
648 taint
|= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1
, cpu
,
649 info
->reg_id_aa64zfr0
, boot
->reg_id_aa64zfr0
);
652 * If we have AArch32, we care about 32-bit features for compat.
653 * If the system doesn't support AArch32, don't update them.
655 if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1
)) &&
656 id_aa64pfr0_32bit_el0(info
->reg_id_aa64pfr0
)) {
658 taint
|= check_update_ftr_reg(SYS_ID_DFR0_EL1
, cpu
,
659 info
->reg_id_dfr0
, boot
->reg_id_dfr0
);
660 taint
|= check_update_ftr_reg(SYS_ID_ISAR0_EL1
, cpu
,
661 info
->reg_id_isar0
, boot
->reg_id_isar0
);
662 taint
|= check_update_ftr_reg(SYS_ID_ISAR1_EL1
, cpu
,
663 info
->reg_id_isar1
, boot
->reg_id_isar1
);
664 taint
|= check_update_ftr_reg(SYS_ID_ISAR2_EL1
, cpu
,
665 info
->reg_id_isar2
, boot
->reg_id_isar2
);
666 taint
|= check_update_ftr_reg(SYS_ID_ISAR3_EL1
, cpu
,
667 info
->reg_id_isar3
, boot
->reg_id_isar3
);
668 taint
|= check_update_ftr_reg(SYS_ID_ISAR4_EL1
, cpu
,
669 info
->reg_id_isar4
, boot
->reg_id_isar4
);
670 taint
|= check_update_ftr_reg(SYS_ID_ISAR5_EL1
, cpu
,
671 info
->reg_id_isar5
, boot
->reg_id_isar5
);
674 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
675 * ACTLR formats could differ across CPUs and therefore would have to
676 * be trapped for virtualization anyway.
678 taint
|= check_update_ftr_reg(SYS_ID_MMFR0_EL1
, cpu
,
679 info
->reg_id_mmfr0
, boot
->reg_id_mmfr0
);
680 taint
|= check_update_ftr_reg(SYS_ID_MMFR1_EL1
, cpu
,
681 info
->reg_id_mmfr1
, boot
->reg_id_mmfr1
);
682 taint
|= check_update_ftr_reg(SYS_ID_MMFR2_EL1
, cpu
,
683 info
->reg_id_mmfr2
, boot
->reg_id_mmfr2
);
684 taint
|= check_update_ftr_reg(SYS_ID_MMFR3_EL1
, cpu
,
685 info
->reg_id_mmfr3
, boot
->reg_id_mmfr3
);
686 taint
|= check_update_ftr_reg(SYS_ID_PFR0_EL1
, cpu
,
687 info
->reg_id_pfr0
, boot
->reg_id_pfr0
);
688 taint
|= check_update_ftr_reg(SYS_ID_PFR1_EL1
, cpu
,
689 info
->reg_id_pfr1
, boot
->reg_id_pfr1
);
690 taint
|= check_update_ftr_reg(SYS_MVFR0_EL1
, cpu
,
691 info
->reg_mvfr0
, boot
->reg_mvfr0
);
692 taint
|= check_update_ftr_reg(SYS_MVFR1_EL1
, cpu
,
693 info
->reg_mvfr1
, boot
->reg_mvfr1
);
694 taint
|= check_update_ftr_reg(SYS_MVFR2_EL1
, cpu
,
695 info
->reg_mvfr2
, boot
->reg_mvfr2
);
698 if (id_aa64pfr0_sve(info
->reg_id_aa64pfr0
)) {
699 taint
|= check_update_ftr_reg(SYS_ZCR_EL1
, cpu
,
700 info
->reg_zcr
, boot
->reg_zcr
);
702 /* Probe vector lengths, unless we already gave up on SVE */
703 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1
)) &&
704 !sys_caps_initialised
)
709 * Mismatched CPU features are a recipe for disaster. Don't even
710 * pretend to support them.
713 pr_warn_once("Unsupported CPU feature variation detected.\n");
714 add_taint(TAINT_CPU_OUT_OF_SPEC
, LOCKDEP_STILL_OK
);
718 u64
read_sanitised_ftr_reg(u32 id
)
720 struct arm64_ftr_reg
*regp
= get_arm64_ftr_reg(id
);
722 /* We shouldn't get a request for an unsupported register */
724 return regp
->sys_val
;
727 #define read_sysreg_case(r) \
728 case r: return read_sysreg_s(r)
731 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
732 * Read the system register on the current CPU
734 static u64
__read_sysreg_by_encoding(u32 sys_id
)
737 read_sysreg_case(SYS_ID_PFR0_EL1
);
738 read_sysreg_case(SYS_ID_PFR1_EL1
);
739 read_sysreg_case(SYS_ID_DFR0_EL1
);
740 read_sysreg_case(SYS_ID_MMFR0_EL1
);
741 read_sysreg_case(SYS_ID_MMFR1_EL1
);
742 read_sysreg_case(SYS_ID_MMFR2_EL1
);
743 read_sysreg_case(SYS_ID_MMFR3_EL1
);
744 read_sysreg_case(SYS_ID_ISAR0_EL1
);
745 read_sysreg_case(SYS_ID_ISAR1_EL1
);
746 read_sysreg_case(SYS_ID_ISAR2_EL1
);
747 read_sysreg_case(SYS_ID_ISAR3_EL1
);
748 read_sysreg_case(SYS_ID_ISAR4_EL1
);
749 read_sysreg_case(SYS_ID_ISAR5_EL1
);
750 read_sysreg_case(SYS_MVFR0_EL1
);
751 read_sysreg_case(SYS_MVFR1_EL1
);
752 read_sysreg_case(SYS_MVFR2_EL1
);
754 read_sysreg_case(SYS_ID_AA64PFR0_EL1
);
755 read_sysreg_case(SYS_ID_AA64PFR1_EL1
);
756 read_sysreg_case(SYS_ID_AA64DFR0_EL1
);
757 read_sysreg_case(SYS_ID_AA64DFR1_EL1
);
758 read_sysreg_case(SYS_ID_AA64MMFR0_EL1
);
759 read_sysreg_case(SYS_ID_AA64MMFR1_EL1
);
760 read_sysreg_case(SYS_ID_AA64MMFR2_EL1
);
761 read_sysreg_case(SYS_ID_AA64ISAR0_EL1
);
762 read_sysreg_case(SYS_ID_AA64ISAR1_EL1
);
764 read_sysreg_case(SYS_CNTFRQ_EL0
);
765 read_sysreg_case(SYS_CTR_EL0
);
766 read_sysreg_case(SYS_DCZID_EL0
);
774 #include <linux/irqchip/arm-gic-v3.h>
777 feature_matches(u64 reg
, const struct arm64_cpu_capabilities
*entry
)
779 int val
= cpuid_feature_extract_field(reg
, entry
->field_pos
, entry
->sign
);
781 return val
>= entry
->min_field_value
;
785 has_cpuid_feature(const struct arm64_cpu_capabilities
*entry
, int scope
)
789 WARN_ON(scope
== SCOPE_LOCAL_CPU
&& preemptible());
790 if (scope
== SCOPE_SYSTEM
)
791 val
= read_sanitised_ftr_reg(entry
->sys_reg
);
793 val
= __read_sysreg_by_encoding(entry
->sys_reg
);
795 return feature_matches(val
, entry
);
798 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities
*entry
, int scope
)
802 if (!has_cpuid_feature(entry
, scope
))
805 has_sre
= gic_enable_sre();
807 pr_warn_once("%s present but disabled by higher exception level\n",
813 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities
*entry
, int __unused
)
815 u32 midr
= read_cpuid_id();
817 /* Cavium ThunderX pass 1.x and 2.x */
818 return MIDR_IS_CPU_MODEL_RANGE(midr
, MIDR_THUNDERX
,
819 MIDR_CPU_VAR_REV(0, 0),
820 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK
));
823 static bool runs_at_el2(const struct arm64_cpu_capabilities
*entry
, int __unused
)
825 return is_kernel_in_hyp_mode();
828 static bool hyp_offset_low(const struct arm64_cpu_capabilities
*entry
,
831 phys_addr_t idmap_addr
= __pa_symbol(__hyp_idmap_text_start
);
834 * Activate the lower HYP offset only if:
835 * - the idmap doesn't clash with it,
836 * - the kernel is not running at EL2.
838 return idmap_addr
> GENMASK(VA_BITS
- 2, 0) && !is_kernel_in_hyp_mode();
841 static bool has_no_fpsimd(const struct arm64_cpu_capabilities
*entry
, int __unused
)
843 u64 pfr0
= read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1
);
845 return cpuid_feature_extract_signed_field(pfr0
,
846 ID_AA64PFR0_FP_SHIFT
) < 0;
849 static const struct arm64_cpu_capabilities arm64_features
[] = {
851 .desc
= "GIC system register CPU interface",
852 .capability
= ARM64_HAS_SYSREG_GIC_CPUIF
,
853 .def_scope
= SCOPE_SYSTEM
,
854 .matches
= has_useable_gicv3_cpuif
,
855 .sys_reg
= SYS_ID_AA64PFR0_EL1
,
856 .field_pos
= ID_AA64PFR0_GIC_SHIFT
,
857 .sign
= FTR_UNSIGNED
,
858 .min_field_value
= 1,
860 #ifdef CONFIG_ARM64_PAN
862 .desc
= "Privileged Access Never",
863 .capability
= ARM64_HAS_PAN
,
864 .def_scope
= SCOPE_SYSTEM
,
865 .matches
= has_cpuid_feature
,
866 .sys_reg
= SYS_ID_AA64MMFR1_EL1
,
867 .field_pos
= ID_AA64MMFR1_PAN_SHIFT
,
868 .sign
= FTR_UNSIGNED
,
869 .min_field_value
= 1,
870 .enable
= cpu_enable_pan
,
872 #endif /* CONFIG_ARM64_PAN */
873 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
875 .desc
= "LSE atomic instructions",
876 .capability
= ARM64_HAS_LSE_ATOMICS
,
877 .def_scope
= SCOPE_SYSTEM
,
878 .matches
= has_cpuid_feature
,
879 .sys_reg
= SYS_ID_AA64ISAR0_EL1
,
880 .field_pos
= ID_AA64ISAR0_ATOMICS_SHIFT
,
881 .sign
= FTR_UNSIGNED
,
882 .min_field_value
= 2,
884 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
886 .desc
= "Software prefetching using PRFM",
887 .capability
= ARM64_HAS_NO_HW_PREFETCH
,
888 .def_scope
= SCOPE_SYSTEM
,
889 .matches
= has_no_hw_prefetch
,
891 #ifdef CONFIG_ARM64_UAO
893 .desc
= "User Access Override",
894 .capability
= ARM64_HAS_UAO
,
895 .def_scope
= SCOPE_SYSTEM
,
896 .matches
= has_cpuid_feature
,
897 .sys_reg
= SYS_ID_AA64MMFR2_EL1
,
898 .field_pos
= ID_AA64MMFR2_UAO_SHIFT
,
899 .min_field_value
= 1,
901 * We rely on stop_machine() calling uao_thread_switch() to set
902 * UAO immediately after patching.
905 #endif /* CONFIG_ARM64_UAO */
906 #ifdef CONFIG_ARM64_PAN
908 .capability
= ARM64_ALT_PAN_NOT_UAO
,
909 .def_scope
= SCOPE_SYSTEM
,
910 .matches
= cpufeature_pan_not_uao
,
912 #endif /* CONFIG_ARM64_PAN */
914 .desc
= "Virtualization Host Extensions",
915 .capability
= ARM64_HAS_VIRT_HOST_EXTN
,
916 .def_scope
= SCOPE_SYSTEM
,
917 .matches
= runs_at_el2
,
920 .desc
= "32-bit EL0 Support",
921 .capability
= ARM64_HAS_32BIT_EL0
,
922 .def_scope
= SCOPE_SYSTEM
,
923 .matches
= has_cpuid_feature
,
924 .sys_reg
= SYS_ID_AA64PFR0_EL1
,
925 .sign
= FTR_UNSIGNED
,
926 .field_pos
= ID_AA64PFR0_EL0_SHIFT
,
927 .min_field_value
= ID_AA64PFR0_EL0_32BIT_64BIT
,
930 .desc
= "Reduced HYP mapping offset",
931 .capability
= ARM64_HYP_OFFSET_LOW
,
932 .def_scope
= SCOPE_SYSTEM
,
933 .matches
= hyp_offset_low
,
936 /* FP/SIMD is not implemented */
937 .capability
= ARM64_HAS_NO_FPSIMD
,
938 .def_scope
= SCOPE_SYSTEM
,
939 .min_field_value
= 0,
940 .matches
= has_no_fpsimd
,
942 #ifdef CONFIG_ARM64_PMEM
944 .desc
= "Data cache clean to Point of Persistence",
945 .capability
= ARM64_HAS_DCPOP
,
946 .def_scope
= SCOPE_SYSTEM
,
947 .matches
= has_cpuid_feature
,
948 .sys_reg
= SYS_ID_AA64ISAR1_EL1
,
949 .field_pos
= ID_AA64ISAR1_DPB_SHIFT
,
950 .min_field_value
= 1,
953 #ifdef CONFIG_ARM64_SVE
955 .desc
= "Scalable Vector Extension",
956 .capability
= ARM64_SVE
,
957 .def_scope
= SCOPE_SYSTEM
,
958 .sys_reg
= SYS_ID_AA64PFR0_EL1
,
959 .sign
= FTR_UNSIGNED
,
960 .field_pos
= ID_AA64PFR0_SVE_SHIFT
,
961 .min_field_value
= ID_AA64PFR0_SVE
,
962 .matches
= has_cpuid_feature
,
963 .enable
= sve_kernel_enable
,
965 #endif /* CONFIG_ARM64_SVE */
969 #define HWCAP_CAP(reg, field, s, min_value, type, cap) \
972 .def_scope = SCOPE_SYSTEM, \
973 .matches = has_cpuid_feature, \
975 .field_pos = field, \
977 .min_field_value = min_value, \
978 .hwcap_type = type, \
982 static const struct arm64_cpu_capabilities arm64_elf_hwcaps
[] = {
983 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_AES_SHIFT
, FTR_UNSIGNED
, 2, CAP_HWCAP
, HWCAP_PMULL
),
984 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_AES_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_AES
),
985 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SHA1_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_SHA1
),
986 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SHA2_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_SHA2
),
987 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SHA2_SHIFT
, FTR_UNSIGNED
, 2, CAP_HWCAP
, HWCAP_SHA512
),
988 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_CRC32_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_CRC32
),
989 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_ATOMICS_SHIFT
, FTR_UNSIGNED
, 2, CAP_HWCAP
, HWCAP_ATOMICS
),
990 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_RDM_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_ASIMDRDM
),
991 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SHA3_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_SHA3
),
992 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SM3_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_SM3
),
993 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SM4_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_SM4
),
994 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_DP_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_ASIMDDP
),
995 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_FP_SHIFT
, FTR_SIGNED
, 0, CAP_HWCAP
, HWCAP_FP
),
996 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_FP_SHIFT
, FTR_SIGNED
, 1, CAP_HWCAP
, HWCAP_FPHP
),
997 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_ASIMD_SHIFT
, FTR_SIGNED
, 0, CAP_HWCAP
, HWCAP_ASIMD
),
998 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_ASIMD_SHIFT
, FTR_SIGNED
, 1, CAP_HWCAP
, HWCAP_ASIMDHP
),
999 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_DPB_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_DCPOP
),
1000 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_JSCVT_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_JSCVT
),
1001 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_FCMA_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_FCMA
),
1002 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_LRCPC_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_LRCPC
),
1003 #ifdef CONFIG_ARM64_SVE
1004 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_SVE_SHIFT
, FTR_UNSIGNED
, ID_AA64PFR0_SVE
, CAP_HWCAP
, HWCAP_SVE
),
1009 static const struct arm64_cpu_capabilities compat_elf_hwcaps
[] = {
1010 #ifdef CONFIG_COMPAT
1011 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_AES_SHIFT
, FTR_UNSIGNED
, 2, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_PMULL
),
1012 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_AES_SHIFT
, FTR_UNSIGNED
, 1, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_AES
),
1013 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_SHA1_SHIFT
, FTR_UNSIGNED
, 1, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_SHA1
),
1014 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_SHA2_SHIFT
, FTR_UNSIGNED
, 1, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_SHA2
),
1015 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_CRC32_SHIFT
, FTR_UNSIGNED
, 1, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_CRC32
),
1020 static void __init
cap_set_elf_hwcap(const struct arm64_cpu_capabilities
*cap
)
1022 switch (cap
->hwcap_type
) {
1024 elf_hwcap
|= cap
->hwcap
;
1026 #ifdef CONFIG_COMPAT
1027 case CAP_COMPAT_HWCAP
:
1028 compat_elf_hwcap
|= (u32
)cap
->hwcap
;
1030 case CAP_COMPAT_HWCAP2
:
1031 compat_elf_hwcap2
|= (u32
)cap
->hwcap
;
1040 /* Check if we have a particular HWCAP enabled */
1041 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities
*cap
)
1045 switch (cap
->hwcap_type
) {
1047 rc
= (elf_hwcap
& cap
->hwcap
) != 0;
1049 #ifdef CONFIG_COMPAT
1050 case CAP_COMPAT_HWCAP
:
1051 rc
= (compat_elf_hwcap
& (u32
)cap
->hwcap
) != 0;
1053 case CAP_COMPAT_HWCAP2
:
1054 rc
= (compat_elf_hwcap2
& (u32
)cap
->hwcap
) != 0;
1065 static void __init
setup_elf_hwcaps(const struct arm64_cpu_capabilities
*hwcaps
)
1067 /* We support emulation of accesses to CPU ID feature registers */
1068 elf_hwcap
|= HWCAP_CPUID
;
1069 for (; hwcaps
->matches
; hwcaps
++)
1070 if (hwcaps
->matches(hwcaps
, hwcaps
->def_scope
))
1071 cap_set_elf_hwcap(hwcaps
);
1074 void update_cpu_capabilities(const struct arm64_cpu_capabilities
*caps
,
1077 for (; caps
->matches
; caps
++) {
1078 if (!caps
->matches(caps
, caps
->def_scope
))
1081 if (!cpus_have_cap(caps
->capability
) && caps
->desc
)
1082 pr_info("%s %s\n", info
, caps
->desc
);
1083 cpus_set_cap(caps
->capability
);
1088 * Run through the enabled capabilities and enable() it on all active
1091 void __init
enable_cpu_capabilities(const struct arm64_cpu_capabilities
*caps
)
1093 for (; caps
->matches
; caps
++) {
1094 unsigned int num
= caps
->capability
;
1096 if (!cpus_have_cap(num
))
1099 /* Ensure cpus_have_const_cap(num) works */
1100 static_branch_enable(&cpu_hwcap_keys
[num
]);
1104 * Use stop_machine() as it schedules the work allowing
1105 * us to modify PSTATE, instead of on_each_cpu() which
1106 * uses an IPI, giving us a PSTATE that disappears when
1109 stop_machine(caps
->enable
, NULL
, cpu_online_mask
);
1115 * Check for CPU features that are used in early boot
1116 * based on the Boot CPU value.
1118 static void check_early_cpu_features(void)
1120 verify_cpu_run_el();
1121 verify_cpu_asid_bits();
1125 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities
*caps
)
1128 for (; caps
->matches
; caps
++)
1129 if (cpus_have_elf_hwcap(caps
) && !caps
->matches(caps
, SCOPE_LOCAL_CPU
)) {
1130 pr_crit("CPU%d: missing HWCAP: %s\n",
1131 smp_processor_id(), caps
->desc
);
1137 verify_local_cpu_features(const struct arm64_cpu_capabilities
*caps
)
1139 for (; caps
->matches
; caps
++) {
1140 if (!cpus_have_cap(caps
->capability
))
1143 * If the new CPU misses an advertised feature, we cannot proceed
1144 * further, park the cpu.
1146 if (!caps
->matches(caps
, SCOPE_LOCAL_CPU
)) {
1147 pr_crit("CPU%d: missing feature: %s\n",
1148 smp_processor_id(), caps
->desc
);
1156 static void verify_sve_features(void)
1158 u64 safe_zcr
= read_sanitised_ftr_reg(SYS_ZCR_EL1
);
1159 u64 zcr
= read_zcr_features();
1161 unsigned int safe_len
= safe_zcr
& ZCR_ELx_LEN_MASK
;
1162 unsigned int len
= zcr
& ZCR_ELx_LEN_MASK
;
1164 if (len
< safe_len
|| sve_verify_vq_map()) {
1165 pr_crit("CPU%d: SVE: required vector length(s) missing\n",
1166 smp_processor_id());
1170 /* Add checks on other ZCR bits here if necessary */
1174 * Run through the enabled system capabilities and enable() it on this CPU.
1175 * The capabilities were decided based on the available CPUs at the boot time.
1176 * Any new CPU should match the system wide status of the capability. If the
1177 * new CPU doesn't have a capability which the system now has enabled, we
1178 * cannot do anything to fix it up and could cause unexpected failures. So
1181 static void verify_local_cpu_capabilities(void)
1183 verify_local_cpu_errata_workarounds();
1184 verify_local_cpu_features(arm64_features
);
1185 verify_local_elf_hwcaps(arm64_elf_hwcaps
);
1187 if (system_supports_32bit_el0())
1188 verify_local_elf_hwcaps(compat_elf_hwcaps
);
1190 if (system_supports_sve())
1191 verify_sve_features();
1194 void check_local_cpu_capabilities(void)
1197 * All secondary CPUs should conform to the early CPU features
1198 * in use by the kernel based on boot CPU.
1200 check_early_cpu_features();
1203 * If we haven't finalised the system capabilities, this CPU gets
1204 * a chance to update the errata work arounds.
1205 * Otherwise, this CPU should verify that it has all the system
1206 * advertised capabilities.
1208 if (!sys_caps_initialised
)
1209 update_cpu_errata_workarounds();
1211 verify_local_cpu_capabilities();
1214 static void __init
setup_feature_capabilities(void)
1216 update_cpu_capabilities(arm64_features
, "detected feature:");
1217 enable_cpu_capabilities(arm64_features
);
1220 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready
);
1221 EXPORT_SYMBOL(arm64_const_caps_ready
);
1223 static void __init
mark_const_caps_ready(void)
1225 static_branch_enable(&arm64_const_caps_ready
);
1229 * Check if the current CPU has a given feature capability.
1230 * Should be called from non-preemptible context.
1232 static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities
*cap_array
,
1235 const struct arm64_cpu_capabilities
*caps
;
1237 if (WARN_ON(preemptible()))
1240 for (caps
= cap_array
; caps
->desc
; caps
++)
1241 if (caps
->capability
== cap
&& caps
->matches
)
1242 return caps
->matches(caps
, SCOPE_LOCAL_CPU
);
1247 extern const struct arm64_cpu_capabilities arm64_errata
[];
1249 bool this_cpu_has_cap(unsigned int cap
)
1251 return (__this_cpu_has_cap(arm64_features
, cap
) ||
1252 __this_cpu_has_cap(arm64_errata
, cap
));
1255 void __init
setup_cpu_features(void)
1260 /* Set the CPU feature capabilies */
1261 setup_feature_capabilities();
1262 enable_errata_workarounds();
1263 mark_const_caps_ready();
1264 setup_elf_hwcaps(arm64_elf_hwcaps
);
1266 if (system_supports_32bit_el0())
1267 setup_elf_hwcaps(compat_elf_hwcaps
);
1271 /* Advertise that we have computed the system capabilities */
1272 set_sys_caps_initialised();
1275 * Check for sane CTR_EL0.CWG value.
1277 cwg
= cache_type_cwg();
1278 cls
= cache_line_size();
1280 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1282 if (L1_CACHE_BYTES
< cls
)
1283 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1284 L1_CACHE_BYTES
, cls
);
1287 static bool __maybe_unused
1288 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities
*entry
, int __unused
)
1290 return (cpus_have_const_cap(ARM64_HAS_PAN
) && !cpus_have_const_cap(ARM64_HAS_UAO
));
1294 * We emulate only the following system register space.
1295 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1296 * See Table C5-6 System instruction encodings for System register accesses,
1297 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1299 static inline bool __attribute_const__
is_emulated(u32 id
)
1301 return (sys_reg_Op0(id
) == 0x3 &&
1302 sys_reg_CRn(id
) == 0x0 &&
1303 sys_reg_Op1(id
) == 0x0 &&
1304 (sys_reg_CRm(id
) == 0 ||
1305 ((sys_reg_CRm(id
) >= 4) && (sys_reg_CRm(id
) <= 7))));
1309 * With CRm == 0, reg should be one of :
1310 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1312 static inline int emulate_id_reg(u32 id
, u64
*valp
)
1316 *valp
= read_cpuid_id();
1319 *valp
= SYS_MPIDR_SAFE_VAL
;
1321 case SYS_REVIDR_EL1
:
1322 /* IMPLEMENTATION DEFINED values are emulated with 0 */
1332 static int emulate_sys_reg(u32 id
, u64
*valp
)
1334 struct arm64_ftr_reg
*regp
;
1336 if (!is_emulated(id
))
1339 if (sys_reg_CRm(id
) == 0)
1340 return emulate_id_reg(id
, valp
);
1342 regp
= get_arm64_ftr_reg(id
);
1344 *valp
= arm64_ftr_reg_user_value(regp
);
1347 * The untracked registers are either IMPLEMENTATION DEFINED
1348 * (e.g, ID_AFR0_EL1) or reserved RAZ.
1354 static int emulate_mrs(struct pt_regs
*regs
, u32 insn
)
1361 * sys_reg values are defined as used in mrs/msr instruction.
1362 * shift the imm value to get the encoding.
1364 sys_reg
= (u32
)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16
, insn
) << 5;
1365 rc
= emulate_sys_reg(sys_reg
, &val
);
1367 dst
= aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT
, insn
);
1368 pt_regs_write_reg(regs
, dst
, val
);
1369 arm64_skip_faulting_instruction(regs
, AARCH64_INSN_SIZE
);
1375 static struct undef_hook mrs_hook
= {
1376 .instr_mask
= 0xfff00000,
1377 .instr_val
= 0xd5300000,
1378 .pstate_mask
= COMPAT_PSR_MODE_MASK
,
1379 .pstate_val
= PSR_MODE_EL0t
,
1383 static int __init
enable_mrs_emulation(void)
1385 register_undef_hook(&mrs_hook
);
1389 core_initcall(enable_mrs_emulation
);