Linux 4.16-rc1
[cris-mirror.git] / Documentation / networking / tls.txt
blob77ed00631c12fa946e27055a7a68b2753b96f73f
1 Overview
2 ========
4 Transport Layer Security (TLS) is a Upper Layer Protocol (ULP) that runs over
5 TCP. TLS provides end-to-end data integrity and confidentiality.
7 User interface
8 ==============
10 Creating a TLS connection
11 -------------------------
13 First create a new TCP socket and set the TLS ULP.
15   sock = socket(AF_INET, SOCK_STREAM, 0);
16   setsockopt(sock, SOL_TCP, TCP_ULP, "tls", sizeof("tls"));
18 Setting the TLS ULP allows us to set/get TLS socket options. Currently
19 only the symmetric encryption is handled in the kernel.  After the TLS
20 handshake is complete, we have all the parameters required to move the
21 data-path to the kernel. There is a separate socket option for moving
22 the transmit and the receive into the kernel.
24   /* From linux/tls.h */
25   struct tls_crypto_info {
26           unsigned short version;
27           unsigned short cipher_type;
28   };
30   struct tls12_crypto_info_aes_gcm_128 {
31           struct tls_crypto_info info;
32           unsigned char iv[TLS_CIPHER_AES_GCM_128_IV_SIZE];
33           unsigned char key[TLS_CIPHER_AES_GCM_128_KEY_SIZE];
34           unsigned char salt[TLS_CIPHER_AES_GCM_128_SALT_SIZE];
35           unsigned char rec_seq[TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE];
36   };
39   struct tls12_crypto_info_aes_gcm_128 crypto_info;
41   crypto_info.info.version = TLS_1_2_VERSION;
42   crypto_info.info.cipher_type = TLS_CIPHER_AES_GCM_128;
43   memcpy(crypto_info.iv, iv_write, TLS_CIPHER_AES_GCM_128_IV_SIZE);
44   memcpy(crypto_info.rec_seq, seq_number_write,
45                                         TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
46   memcpy(crypto_info.key, cipher_key_write, TLS_CIPHER_AES_GCM_128_KEY_SIZE);
47   memcpy(crypto_info.salt, implicit_iv_write, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
49   setsockopt(sock, SOL_TLS, TLS_TX, &crypto_info, sizeof(crypto_info));
51 Sending TLS application data
52 ----------------------------
54 After setting the TLS_TX socket option all application data sent over this
55 socket is encrypted using TLS and the parameters provided in the socket option.
56 For example, we can send an encrypted hello world record as follows:
58   const char *msg = "hello world\n";
59   send(sock, msg, strlen(msg));
61 send() data is directly encrypted from the userspace buffer provided
62 to the encrypted kernel send buffer if possible.
64 The sendfile system call will send the file's data over TLS records of maximum
65 length (2^14).
67   file = open(filename, O_RDONLY);
68   fstat(file, &stat);
69   sendfile(sock, file, &offset, stat.st_size);
71 TLS records are created and sent after each send() call, unless
72 MSG_MORE is passed.  MSG_MORE will delay creation of a record until
73 MSG_MORE is not passed, or the maximum record size is reached.
75 The kernel will need to allocate a buffer for the encrypted data.
76 This buffer is allocated at the time send() is called, such that
77 either the entire send() call will return -ENOMEM (or block waiting
78 for memory), or the encryption will always succeed.  If send() returns
79 -ENOMEM and some data was left on the socket buffer from a previous
80 call using MSG_MORE, the MSG_MORE data is left on the socket buffer.
82 Send TLS control messages
83 -------------------------
85 Other than application data, TLS has control messages such as alert
86 messages (record type 21) and handshake messages (record type 22), etc.
87 These messages can be sent over the socket by providing the TLS record type
88 via a CMSG. For example the following function sends @data of @length bytes
89 using a record of type @record_type.
91 /* send TLS control message using record_type */
92   static int klts_send_ctrl_message(int sock, unsigned char record_type,
93                                   void *data, size_t length)
94   {
95         struct msghdr msg = {0};
96         int cmsg_len = sizeof(record_type);
97         struct cmsghdr *cmsg;
98         char buf[CMSG_SPACE(cmsg_len)];
99         struct iovec msg_iov;   /* Vector of data to send/receive into.  */
101         msg.msg_control = buf;
102         msg.msg_controllen = sizeof(buf);
103         cmsg = CMSG_FIRSTHDR(&msg);
104         cmsg->cmsg_level = SOL_TLS;
105         cmsg->cmsg_type = TLS_SET_RECORD_TYPE;
106         cmsg->cmsg_len = CMSG_LEN(cmsg_len);
107         *CMSG_DATA(cmsg) = record_type;
108         msg.msg_controllen = cmsg->cmsg_len;
110         msg_iov.iov_base = data;
111         msg_iov.iov_len = length;
112         msg.msg_iov = &msg_iov;
113         msg.msg_iovlen = 1;
115         return sendmsg(sock, &msg, 0);
116   }
118 Control message data should be provided unencrypted, and will be
119 encrypted by the kernel.
121 Integrating in to userspace TLS library
122 ---------------------------------------
124 At a high level, the kernel TLS ULP is a replacement for the record
125 layer of a userspace TLS library.
127 A patchset to OpenSSL to use ktls as the record layer is here:
129 https://github.com/Mellanox/tls-openssl
131 An example of calling send directly after a handshake using
132 gnutls.  Since it doesn't implement a full record layer, control
133 messages are not supported:
135 https://github.com/Mellanox/tls-af_ktls_tool