Linux 4.16-rc1
[cris-mirror.git] / fs / btrfs / inode.c
blob53ca025655fca690b5f92ef93eb0d11047a1a0cc
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/compat.h>
34 #include <linux/bit_spinlock.h>
35 #include <linux/xattr.h>
36 #include <linux/posix_acl.h>
37 #include <linux/falloc.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/mount.h>
41 #include <linux/btrfs.h>
42 #include <linux/blkdev.h>
43 #include <linux/posix_acl_xattr.h>
44 #include <linux/uio.h>
45 #include <linux/magic.h>
46 #include <linux/iversion.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "ordered-data.h"
53 #include "xattr.h"
54 #include "tree-log.h"
55 #include "volumes.h"
56 #include "compression.h"
57 #include "locking.h"
58 #include "free-space-cache.h"
59 #include "inode-map.h"
60 #include "backref.h"
61 #include "hash.h"
62 #include "props.h"
63 #include "qgroup.h"
64 #include "dedupe.h"
66 struct btrfs_iget_args {
67 struct btrfs_key *location;
68 struct btrfs_root *root;
71 struct btrfs_dio_data {
72 u64 reserve;
73 u64 unsubmitted_oe_range_start;
74 u64 unsubmitted_oe_range_end;
75 int overwrite;
78 static const struct inode_operations btrfs_dir_inode_operations;
79 static const struct inode_operations btrfs_symlink_inode_operations;
80 static const struct inode_operations btrfs_dir_ro_inode_operations;
81 static const struct inode_operations btrfs_special_inode_operations;
82 static const struct inode_operations btrfs_file_inode_operations;
83 static const struct address_space_operations btrfs_aops;
84 static const struct address_space_operations btrfs_symlink_aops;
85 static const struct file_operations btrfs_dir_file_operations;
86 static const struct extent_io_ops btrfs_extent_io_ops;
88 static struct kmem_cache *btrfs_inode_cachep;
89 struct kmem_cache *btrfs_trans_handle_cachep;
90 struct kmem_cache *btrfs_path_cachep;
91 struct kmem_cache *btrfs_free_space_cachep;
93 #define S_SHIFT 12
94 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
95 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
96 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
97 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
98 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
99 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
100 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
101 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
104 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
105 static int btrfs_truncate(struct inode *inode);
106 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
107 static noinline int cow_file_range(struct inode *inode,
108 struct page *locked_page,
109 u64 start, u64 end, u64 delalloc_end,
110 int *page_started, unsigned long *nr_written,
111 int unlock, struct btrfs_dedupe_hash *hash);
112 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
113 u64 orig_start, u64 block_start,
114 u64 block_len, u64 orig_block_len,
115 u64 ram_bytes, int compress_type,
116 int type);
118 static void __endio_write_update_ordered(struct inode *inode,
119 const u64 offset, const u64 bytes,
120 const bool uptodate);
123 * Cleanup all submitted ordered extents in specified range to handle errors
124 * from the fill_dellaloc() callback.
126 * NOTE: caller must ensure that when an error happens, it can not call
127 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
128 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
129 * to be released, which we want to happen only when finishing the ordered
130 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
131 * fill_delalloc() callback already does proper cleanup for the first page of
132 * the range, that is, it invokes the callback writepage_end_io_hook() for the
133 * range of the first page.
135 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
136 const u64 offset,
137 const u64 bytes)
139 unsigned long index = offset >> PAGE_SHIFT;
140 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
141 struct page *page;
143 while (index <= end_index) {
144 page = find_get_page(inode->i_mapping, index);
145 index++;
146 if (!page)
147 continue;
148 ClearPagePrivate2(page);
149 put_page(page);
151 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
152 bytes - PAGE_SIZE, false);
155 static int btrfs_dirty_inode(struct inode *inode);
157 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
158 void btrfs_test_inode_set_ops(struct inode *inode)
160 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
162 #endif
164 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
165 struct inode *inode, struct inode *dir,
166 const struct qstr *qstr)
168 int err;
170 err = btrfs_init_acl(trans, inode, dir);
171 if (!err)
172 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
173 return err;
177 * this does all the hard work for inserting an inline extent into
178 * the btree. The caller should have done a btrfs_drop_extents so that
179 * no overlapping inline items exist in the btree
181 static int insert_inline_extent(struct btrfs_trans_handle *trans,
182 struct btrfs_path *path, int extent_inserted,
183 struct btrfs_root *root, struct inode *inode,
184 u64 start, size_t size, size_t compressed_size,
185 int compress_type,
186 struct page **compressed_pages)
188 struct extent_buffer *leaf;
189 struct page *page = NULL;
190 char *kaddr;
191 unsigned long ptr;
192 struct btrfs_file_extent_item *ei;
193 int ret;
194 size_t cur_size = size;
195 unsigned long offset;
197 if (compressed_size && compressed_pages)
198 cur_size = compressed_size;
200 inode_add_bytes(inode, size);
202 if (!extent_inserted) {
203 struct btrfs_key key;
204 size_t datasize;
206 key.objectid = btrfs_ino(BTRFS_I(inode));
207 key.offset = start;
208 key.type = BTRFS_EXTENT_DATA_KEY;
210 datasize = btrfs_file_extent_calc_inline_size(cur_size);
211 path->leave_spinning = 1;
212 ret = btrfs_insert_empty_item(trans, root, path, &key,
213 datasize);
214 if (ret)
215 goto fail;
217 leaf = path->nodes[0];
218 ei = btrfs_item_ptr(leaf, path->slots[0],
219 struct btrfs_file_extent_item);
220 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
221 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
222 btrfs_set_file_extent_encryption(leaf, ei, 0);
223 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
224 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
225 ptr = btrfs_file_extent_inline_start(ei);
227 if (compress_type != BTRFS_COMPRESS_NONE) {
228 struct page *cpage;
229 int i = 0;
230 while (compressed_size > 0) {
231 cpage = compressed_pages[i];
232 cur_size = min_t(unsigned long, compressed_size,
233 PAGE_SIZE);
235 kaddr = kmap_atomic(cpage);
236 write_extent_buffer(leaf, kaddr, ptr, cur_size);
237 kunmap_atomic(kaddr);
239 i++;
240 ptr += cur_size;
241 compressed_size -= cur_size;
243 btrfs_set_file_extent_compression(leaf, ei,
244 compress_type);
245 } else {
246 page = find_get_page(inode->i_mapping,
247 start >> PAGE_SHIFT);
248 btrfs_set_file_extent_compression(leaf, ei, 0);
249 kaddr = kmap_atomic(page);
250 offset = start & (PAGE_SIZE - 1);
251 write_extent_buffer(leaf, kaddr + offset, ptr, size);
252 kunmap_atomic(kaddr);
253 put_page(page);
255 btrfs_mark_buffer_dirty(leaf);
256 btrfs_release_path(path);
259 * we're an inline extent, so nobody can
260 * extend the file past i_size without locking
261 * a page we already have locked.
263 * We must do any isize and inode updates
264 * before we unlock the pages. Otherwise we
265 * could end up racing with unlink.
267 BTRFS_I(inode)->disk_i_size = inode->i_size;
268 ret = btrfs_update_inode(trans, root, inode);
270 fail:
271 return ret;
276 * conditionally insert an inline extent into the file. This
277 * does the checks required to make sure the data is small enough
278 * to fit as an inline extent.
280 static noinline int cow_file_range_inline(struct btrfs_root *root,
281 struct inode *inode, u64 start,
282 u64 end, size_t compressed_size,
283 int compress_type,
284 struct page **compressed_pages)
286 struct btrfs_fs_info *fs_info = root->fs_info;
287 struct btrfs_trans_handle *trans;
288 u64 isize = i_size_read(inode);
289 u64 actual_end = min(end + 1, isize);
290 u64 inline_len = actual_end - start;
291 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
292 u64 data_len = inline_len;
293 int ret;
294 struct btrfs_path *path;
295 int extent_inserted = 0;
296 u32 extent_item_size;
298 if (compressed_size)
299 data_len = compressed_size;
301 if (start > 0 ||
302 actual_end > fs_info->sectorsize ||
303 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
304 (!compressed_size &&
305 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
306 end + 1 < isize ||
307 data_len > fs_info->max_inline) {
308 return 1;
311 path = btrfs_alloc_path();
312 if (!path)
313 return -ENOMEM;
315 trans = btrfs_join_transaction(root);
316 if (IS_ERR(trans)) {
317 btrfs_free_path(path);
318 return PTR_ERR(trans);
320 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
322 if (compressed_size && compressed_pages)
323 extent_item_size = btrfs_file_extent_calc_inline_size(
324 compressed_size);
325 else
326 extent_item_size = btrfs_file_extent_calc_inline_size(
327 inline_len);
329 ret = __btrfs_drop_extents(trans, root, inode, path,
330 start, aligned_end, NULL,
331 1, 1, extent_item_size, &extent_inserted);
332 if (ret) {
333 btrfs_abort_transaction(trans, ret);
334 goto out;
337 if (isize > actual_end)
338 inline_len = min_t(u64, isize, actual_end);
339 ret = insert_inline_extent(trans, path, extent_inserted,
340 root, inode, start,
341 inline_len, compressed_size,
342 compress_type, compressed_pages);
343 if (ret && ret != -ENOSPC) {
344 btrfs_abort_transaction(trans, ret);
345 goto out;
346 } else if (ret == -ENOSPC) {
347 ret = 1;
348 goto out;
351 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
352 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
353 out:
355 * Don't forget to free the reserved space, as for inlined extent
356 * it won't count as data extent, free them directly here.
357 * And at reserve time, it's always aligned to page size, so
358 * just free one page here.
360 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
361 btrfs_free_path(path);
362 btrfs_end_transaction(trans);
363 return ret;
366 struct async_extent {
367 u64 start;
368 u64 ram_size;
369 u64 compressed_size;
370 struct page **pages;
371 unsigned long nr_pages;
372 int compress_type;
373 struct list_head list;
376 struct async_cow {
377 struct inode *inode;
378 struct btrfs_root *root;
379 struct page *locked_page;
380 u64 start;
381 u64 end;
382 unsigned int write_flags;
383 struct list_head extents;
384 struct btrfs_work work;
387 static noinline int add_async_extent(struct async_cow *cow,
388 u64 start, u64 ram_size,
389 u64 compressed_size,
390 struct page **pages,
391 unsigned long nr_pages,
392 int compress_type)
394 struct async_extent *async_extent;
396 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
397 BUG_ON(!async_extent); /* -ENOMEM */
398 async_extent->start = start;
399 async_extent->ram_size = ram_size;
400 async_extent->compressed_size = compressed_size;
401 async_extent->pages = pages;
402 async_extent->nr_pages = nr_pages;
403 async_extent->compress_type = compress_type;
404 list_add_tail(&async_extent->list, &cow->extents);
405 return 0;
408 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
410 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
412 /* force compress */
413 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
414 return 1;
415 /* defrag ioctl */
416 if (BTRFS_I(inode)->defrag_compress)
417 return 1;
418 /* bad compression ratios */
419 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
420 return 0;
421 if (btrfs_test_opt(fs_info, COMPRESS) ||
422 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
423 BTRFS_I(inode)->prop_compress)
424 return btrfs_compress_heuristic(inode, start, end);
425 return 0;
428 static inline void inode_should_defrag(struct btrfs_inode *inode,
429 u64 start, u64 end, u64 num_bytes, u64 small_write)
431 /* If this is a small write inside eof, kick off a defrag */
432 if (num_bytes < small_write &&
433 (start > 0 || end + 1 < inode->disk_i_size))
434 btrfs_add_inode_defrag(NULL, inode);
438 * we create compressed extents in two phases. The first
439 * phase compresses a range of pages that have already been
440 * locked (both pages and state bits are locked).
442 * This is done inside an ordered work queue, and the compression
443 * is spread across many cpus. The actual IO submission is step
444 * two, and the ordered work queue takes care of making sure that
445 * happens in the same order things were put onto the queue by
446 * writepages and friends.
448 * If this code finds it can't get good compression, it puts an
449 * entry onto the work queue to write the uncompressed bytes. This
450 * makes sure that both compressed inodes and uncompressed inodes
451 * are written in the same order that the flusher thread sent them
452 * down.
454 static noinline void compress_file_range(struct inode *inode,
455 struct page *locked_page,
456 u64 start, u64 end,
457 struct async_cow *async_cow,
458 int *num_added)
460 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
461 struct btrfs_root *root = BTRFS_I(inode)->root;
462 u64 blocksize = fs_info->sectorsize;
463 u64 actual_end;
464 u64 isize = i_size_read(inode);
465 int ret = 0;
466 struct page **pages = NULL;
467 unsigned long nr_pages;
468 unsigned long total_compressed = 0;
469 unsigned long total_in = 0;
470 int i;
471 int will_compress;
472 int compress_type = fs_info->compress_type;
473 int redirty = 0;
475 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
476 SZ_16K);
478 actual_end = min_t(u64, isize, end + 1);
479 again:
480 will_compress = 0;
481 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
482 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
483 nr_pages = min_t(unsigned long, nr_pages,
484 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
487 * we don't want to send crud past the end of i_size through
488 * compression, that's just a waste of CPU time. So, if the
489 * end of the file is before the start of our current
490 * requested range of bytes, we bail out to the uncompressed
491 * cleanup code that can deal with all of this.
493 * It isn't really the fastest way to fix things, but this is a
494 * very uncommon corner.
496 if (actual_end <= start)
497 goto cleanup_and_bail_uncompressed;
499 total_compressed = actual_end - start;
502 * skip compression for a small file range(<=blocksize) that
503 * isn't an inline extent, since it doesn't save disk space at all.
505 if (total_compressed <= blocksize &&
506 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
507 goto cleanup_and_bail_uncompressed;
509 total_compressed = min_t(unsigned long, total_compressed,
510 BTRFS_MAX_UNCOMPRESSED);
511 total_in = 0;
512 ret = 0;
515 * we do compression for mount -o compress and when the
516 * inode has not been flagged as nocompress. This flag can
517 * change at any time if we discover bad compression ratios.
519 if (inode_need_compress(inode, start, end)) {
520 WARN_ON(pages);
521 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
522 if (!pages) {
523 /* just bail out to the uncompressed code */
524 goto cont;
527 if (BTRFS_I(inode)->defrag_compress)
528 compress_type = BTRFS_I(inode)->defrag_compress;
529 else if (BTRFS_I(inode)->prop_compress)
530 compress_type = BTRFS_I(inode)->prop_compress;
533 * we need to call clear_page_dirty_for_io on each
534 * page in the range. Otherwise applications with the file
535 * mmap'd can wander in and change the page contents while
536 * we are compressing them.
538 * If the compression fails for any reason, we set the pages
539 * dirty again later on.
541 * Note that the remaining part is redirtied, the start pointer
542 * has moved, the end is the original one.
544 if (!redirty) {
545 extent_range_clear_dirty_for_io(inode, start, end);
546 redirty = 1;
549 /* Compression level is applied here and only here */
550 ret = btrfs_compress_pages(
551 compress_type | (fs_info->compress_level << 4),
552 inode->i_mapping, start,
553 pages,
554 &nr_pages,
555 &total_in,
556 &total_compressed);
558 if (!ret) {
559 unsigned long offset = total_compressed &
560 (PAGE_SIZE - 1);
561 struct page *page = pages[nr_pages - 1];
562 char *kaddr;
564 /* zero the tail end of the last page, we might be
565 * sending it down to disk
567 if (offset) {
568 kaddr = kmap_atomic(page);
569 memset(kaddr + offset, 0,
570 PAGE_SIZE - offset);
571 kunmap_atomic(kaddr);
573 will_compress = 1;
576 cont:
577 if (start == 0) {
578 /* lets try to make an inline extent */
579 if (ret || total_in < actual_end) {
580 /* we didn't compress the entire range, try
581 * to make an uncompressed inline extent.
583 ret = cow_file_range_inline(root, inode, start, end,
584 0, BTRFS_COMPRESS_NONE, NULL);
585 } else {
586 /* try making a compressed inline extent */
587 ret = cow_file_range_inline(root, inode, start, end,
588 total_compressed,
589 compress_type, pages);
591 if (ret <= 0) {
592 unsigned long clear_flags = EXTENT_DELALLOC |
593 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
594 EXTENT_DO_ACCOUNTING;
595 unsigned long page_error_op;
597 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
600 * inline extent creation worked or returned error,
601 * we don't need to create any more async work items.
602 * Unlock and free up our temp pages.
604 * We use DO_ACCOUNTING here because we need the
605 * delalloc_release_metadata to be done _after_ we drop
606 * our outstanding extent for clearing delalloc for this
607 * range.
609 extent_clear_unlock_delalloc(inode, start, end, end,
610 NULL, clear_flags,
611 PAGE_UNLOCK |
612 PAGE_CLEAR_DIRTY |
613 PAGE_SET_WRITEBACK |
614 page_error_op |
615 PAGE_END_WRITEBACK);
616 goto free_pages_out;
620 if (will_compress) {
622 * we aren't doing an inline extent round the compressed size
623 * up to a block size boundary so the allocator does sane
624 * things
626 total_compressed = ALIGN(total_compressed, blocksize);
629 * one last check to make sure the compression is really a
630 * win, compare the page count read with the blocks on disk,
631 * compression must free at least one sector size
633 total_in = ALIGN(total_in, PAGE_SIZE);
634 if (total_compressed + blocksize <= total_in) {
635 *num_added += 1;
638 * The async work queues will take care of doing actual
639 * allocation on disk for these compressed pages, and
640 * will submit them to the elevator.
642 add_async_extent(async_cow, start, total_in,
643 total_compressed, pages, nr_pages,
644 compress_type);
646 if (start + total_in < end) {
647 start += total_in;
648 pages = NULL;
649 cond_resched();
650 goto again;
652 return;
655 if (pages) {
657 * the compression code ran but failed to make things smaller,
658 * free any pages it allocated and our page pointer array
660 for (i = 0; i < nr_pages; i++) {
661 WARN_ON(pages[i]->mapping);
662 put_page(pages[i]);
664 kfree(pages);
665 pages = NULL;
666 total_compressed = 0;
667 nr_pages = 0;
669 /* flag the file so we don't compress in the future */
670 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
671 !(BTRFS_I(inode)->prop_compress)) {
672 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
675 cleanup_and_bail_uncompressed:
677 * No compression, but we still need to write the pages in the file
678 * we've been given so far. redirty the locked page if it corresponds
679 * to our extent and set things up for the async work queue to run
680 * cow_file_range to do the normal delalloc dance.
682 if (page_offset(locked_page) >= start &&
683 page_offset(locked_page) <= end)
684 __set_page_dirty_nobuffers(locked_page);
685 /* unlocked later on in the async handlers */
687 if (redirty)
688 extent_range_redirty_for_io(inode, start, end);
689 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
690 BTRFS_COMPRESS_NONE);
691 *num_added += 1;
693 return;
695 free_pages_out:
696 for (i = 0; i < nr_pages; i++) {
697 WARN_ON(pages[i]->mapping);
698 put_page(pages[i]);
700 kfree(pages);
703 static void free_async_extent_pages(struct async_extent *async_extent)
705 int i;
707 if (!async_extent->pages)
708 return;
710 for (i = 0; i < async_extent->nr_pages; i++) {
711 WARN_ON(async_extent->pages[i]->mapping);
712 put_page(async_extent->pages[i]);
714 kfree(async_extent->pages);
715 async_extent->nr_pages = 0;
716 async_extent->pages = NULL;
720 * phase two of compressed writeback. This is the ordered portion
721 * of the code, which only gets called in the order the work was
722 * queued. We walk all the async extents created by compress_file_range
723 * and send them down to the disk.
725 static noinline void submit_compressed_extents(struct inode *inode,
726 struct async_cow *async_cow)
728 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
729 struct async_extent *async_extent;
730 u64 alloc_hint = 0;
731 struct btrfs_key ins;
732 struct extent_map *em;
733 struct btrfs_root *root = BTRFS_I(inode)->root;
734 struct extent_io_tree *io_tree;
735 int ret = 0;
737 again:
738 while (!list_empty(&async_cow->extents)) {
739 async_extent = list_entry(async_cow->extents.next,
740 struct async_extent, list);
741 list_del(&async_extent->list);
743 io_tree = &BTRFS_I(inode)->io_tree;
745 retry:
746 /* did the compression code fall back to uncompressed IO? */
747 if (!async_extent->pages) {
748 int page_started = 0;
749 unsigned long nr_written = 0;
751 lock_extent(io_tree, async_extent->start,
752 async_extent->start +
753 async_extent->ram_size - 1);
755 /* allocate blocks */
756 ret = cow_file_range(inode, async_cow->locked_page,
757 async_extent->start,
758 async_extent->start +
759 async_extent->ram_size - 1,
760 async_extent->start +
761 async_extent->ram_size - 1,
762 &page_started, &nr_written, 0,
763 NULL);
765 /* JDM XXX */
768 * if page_started, cow_file_range inserted an
769 * inline extent and took care of all the unlocking
770 * and IO for us. Otherwise, we need to submit
771 * all those pages down to the drive.
773 if (!page_started && !ret)
774 extent_write_locked_range(inode,
775 async_extent->start,
776 async_extent->start +
777 async_extent->ram_size - 1,
778 WB_SYNC_ALL);
779 else if (ret)
780 unlock_page(async_cow->locked_page);
781 kfree(async_extent);
782 cond_resched();
783 continue;
786 lock_extent(io_tree, async_extent->start,
787 async_extent->start + async_extent->ram_size - 1);
789 ret = btrfs_reserve_extent(root, async_extent->ram_size,
790 async_extent->compressed_size,
791 async_extent->compressed_size,
792 0, alloc_hint, &ins, 1, 1);
793 if (ret) {
794 free_async_extent_pages(async_extent);
796 if (ret == -ENOSPC) {
797 unlock_extent(io_tree, async_extent->start,
798 async_extent->start +
799 async_extent->ram_size - 1);
802 * we need to redirty the pages if we decide to
803 * fallback to uncompressed IO, otherwise we
804 * will not submit these pages down to lower
805 * layers.
807 extent_range_redirty_for_io(inode,
808 async_extent->start,
809 async_extent->start +
810 async_extent->ram_size - 1);
812 goto retry;
814 goto out_free;
817 * here we're doing allocation and writeback of the
818 * compressed pages
820 em = create_io_em(inode, async_extent->start,
821 async_extent->ram_size, /* len */
822 async_extent->start, /* orig_start */
823 ins.objectid, /* block_start */
824 ins.offset, /* block_len */
825 ins.offset, /* orig_block_len */
826 async_extent->ram_size, /* ram_bytes */
827 async_extent->compress_type,
828 BTRFS_ORDERED_COMPRESSED);
829 if (IS_ERR(em))
830 /* ret value is not necessary due to void function */
831 goto out_free_reserve;
832 free_extent_map(em);
834 ret = btrfs_add_ordered_extent_compress(inode,
835 async_extent->start,
836 ins.objectid,
837 async_extent->ram_size,
838 ins.offset,
839 BTRFS_ORDERED_COMPRESSED,
840 async_extent->compress_type);
841 if (ret) {
842 btrfs_drop_extent_cache(BTRFS_I(inode),
843 async_extent->start,
844 async_extent->start +
845 async_extent->ram_size - 1, 0);
846 goto out_free_reserve;
848 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
851 * clear dirty, set writeback and unlock the pages.
853 extent_clear_unlock_delalloc(inode, async_extent->start,
854 async_extent->start +
855 async_extent->ram_size - 1,
856 async_extent->start +
857 async_extent->ram_size - 1,
858 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
859 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
860 PAGE_SET_WRITEBACK);
861 if (btrfs_submit_compressed_write(inode,
862 async_extent->start,
863 async_extent->ram_size,
864 ins.objectid,
865 ins.offset, async_extent->pages,
866 async_extent->nr_pages,
867 async_cow->write_flags)) {
868 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
869 struct page *p = async_extent->pages[0];
870 const u64 start = async_extent->start;
871 const u64 end = start + async_extent->ram_size - 1;
873 p->mapping = inode->i_mapping;
874 tree->ops->writepage_end_io_hook(p, start, end,
875 NULL, 0);
876 p->mapping = NULL;
877 extent_clear_unlock_delalloc(inode, start, end, end,
878 NULL, 0,
879 PAGE_END_WRITEBACK |
880 PAGE_SET_ERROR);
881 free_async_extent_pages(async_extent);
883 alloc_hint = ins.objectid + ins.offset;
884 kfree(async_extent);
885 cond_resched();
887 return;
888 out_free_reserve:
889 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
890 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
891 out_free:
892 extent_clear_unlock_delalloc(inode, async_extent->start,
893 async_extent->start +
894 async_extent->ram_size - 1,
895 async_extent->start +
896 async_extent->ram_size - 1,
897 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
898 EXTENT_DELALLOC_NEW |
899 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
900 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
901 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
902 PAGE_SET_ERROR);
903 free_async_extent_pages(async_extent);
904 kfree(async_extent);
905 goto again;
908 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
909 u64 num_bytes)
911 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
912 struct extent_map *em;
913 u64 alloc_hint = 0;
915 read_lock(&em_tree->lock);
916 em = search_extent_mapping(em_tree, start, num_bytes);
917 if (em) {
919 * if block start isn't an actual block number then find the
920 * first block in this inode and use that as a hint. If that
921 * block is also bogus then just don't worry about it.
923 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
924 free_extent_map(em);
925 em = search_extent_mapping(em_tree, 0, 0);
926 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
927 alloc_hint = em->block_start;
928 if (em)
929 free_extent_map(em);
930 } else {
931 alloc_hint = em->block_start;
932 free_extent_map(em);
935 read_unlock(&em_tree->lock);
937 return alloc_hint;
941 * when extent_io.c finds a delayed allocation range in the file,
942 * the call backs end up in this code. The basic idea is to
943 * allocate extents on disk for the range, and create ordered data structs
944 * in ram to track those extents.
946 * locked_page is the page that writepage had locked already. We use
947 * it to make sure we don't do extra locks or unlocks.
949 * *page_started is set to one if we unlock locked_page and do everything
950 * required to start IO on it. It may be clean and already done with
951 * IO when we return.
953 static noinline int cow_file_range(struct inode *inode,
954 struct page *locked_page,
955 u64 start, u64 end, u64 delalloc_end,
956 int *page_started, unsigned long *nr_written,
957 int unlock, struct btrfs_dedupe_hash *hash)
959 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
960 struct btrfs_root *root = BTRFS_I(inode)->root;
961 u64 alloc_hint = 0;
962 u64 num_bytes;
963 unsigned long ram_size;
964 u64 disk_num_bytes;
965 u64 cur_alloc_size = 0;
966 u64 blocksize = fs_info->sectorsize;
967 struct btrfs_key ins;
968 struct extent_map *em;
969 unsigned clear_bits;
970 unsigned long page_ops;
971 bool extent_reserved = false;
972 int ret = 0;
974 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
975 WARN_ON_ONCE(1);
976 ret = -EINVAL;
977 goto out_unlock;
980 num_bytes = ALIGN(end - start + 1, blocksize);
981 num_bytes = max(blocksize, num_bytes);
982 disk_num_bytes = num_bytes;
984 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
986 if (start == 0) {
987 /* lets try to make an inline extent */
988 ret = cow_file_range_inline(root, inode, start, end, 0,
989 BTRFS_COMPRESS_NONE, NULL);
990 if (ret == 0) {
992 * We use DO_ACCOUNTING here because we need the
993 * delalloc_release_metadata to be run _after_ we drop
994 * our outstanding extent for clearing delalloc for this
995 * range.
997 extent_clear_unlock_delalloc(inode, start, end,
998 delalloc_end, NULL,
999 EXTENT_LOCKED | EXTENT_DELALLOC |
1000 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1001 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1002 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1003 PAGE_END_WRITEBACK);
1004 *nr_written = *nr_written +
1005 (end - start + PAGE_SIZE) / PAGE_SIZE;
1006 *page_started = 1;
1007 goto out;
1008 } else if (ret < 0) {
1009 goto out_unlock;
1013 BUG_ON(disk_num_bytes >
1014 btrfs_super_total_bytes(fs_info->super_copy));
1016 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1017 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1018 start + num_bytes - 1, 0);
1020 while (disk_num_bytes > 0) {
1021 cur_alloc_size = disk_num_bytes;
1022 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1023 fs_info->sectorsize, 0, alloc_hint,
1024 &ins, 1, 1);
1025 if (ret < 0)
1026 goto out_unlock;
1027 cur_alloc_size = ins.offset;
1028 extent_reserved = true;
1030 ram_size = ins.offset;
1031 em = create_io_em(inode, start, ins.offset, /* len */
1032 start, /* orig_start */
1033 ins.objectid, /* block_start */
1034 ins.offset, /* block_len */
1035 ins.offset, /* orig_block_len */
1036 ram_size, /* ram_bytes */
1037 BTRFS_COMPRESS_NONE, /* compress_type */
1038 BTRFS_ORDERED_REGULAR /* type */);
1039 if (IS_ERR(em))
1040 goto out_reserve;
1041 free_extent_map(em);
1043 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1044 ram_size, cur_alloc_size, 0);
1045 if (ret)
1046 goto out_drop_extent_cache;
1048 if (root->root_key.objectid ==
1049 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1050 ret = btrfs_reloc_clone_csums(inode, start,
1051 cur_alloc_size);
1053 * Only drop cache here, and process as normal.
1055 * We must not allow extent_clear_unlock_delalloc()
1056 * at out_unlock label to free meta of this ordered
1057 * extent, as its meta should be freed by
1058 * btrfs_finish_ordered_io().
1060 * So we must continue until @start is increased to
1061 * skip current ordered extent.
1063 if (ret)
1064 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1065 start + ram_size - 1, 0);
1068 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1070 /* we're not doing compressed IO, don't unlock the first
1071 * page (which the caller expects to stay locked), don't
1072 * clear any dirty bits and don't set any writeback bits
1074 * Do set the Private2 bit so we know this page was properly
1075 * setup for writepage
1077 page_ops = unlock ? PAGE_UNLOCK : 0;
1078 page_ops |= PAGE_SET_PRIVATE2;
1080 extent_clear_unlock_delalloc(inode, start,
1081 start + ram_size - 1,
1082 delalloc_end, locked_page,
1083 EXTENT_LOCKED | EXTENT_DELALLOC,
1084 page_ops);
1085 if (disk_num_bytes < cur_alloc_size)
1086 disk_num_bytes = 0;
1087 else
1088 disk_num_bytes -= cur_alloc_size;
1089 num_bytes -= cur_alloc_size;
1090 alloc_hint = ins.objectid + ins.offset;
1091 start += cur_alloc_size;
1092 extent_reserved = false;
1095 * btrfs_reloc_clone_csums() error, since start is increased
1096 * extent_clear_unlock_delalloc() at out_unlock label won't
1097 * free metadata of current ordered extent, we're OK to exit.
1099 if (ret)
1100 goto out_unlock;
1102 out:
1103 return ret;
1105 out_drop_extent_cache:
1106 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1107 out_reserve:
1108 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1109 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1110 out_unlock:
1111 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1112 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1113 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1114 PAGE_END_WRITEBACK;
1116 * If we reserved an extent for our delalloc range (or a subrange) and
1117 * failed to create the respective ordered extent, then it means that
1118 * when we reserved the extent we decremented the extent's size from
1119 * the data space_info's bytes_may_use counter and incremented the
1120 * space_info's bytes_reserved counter by the same amount. We must make
1121 * sure extent_clear_unlock_delalloc() does not try to decrement again
1122 * the data space_info's bytes_may_use counter, therefore we do not pass
1123 * it the flag EXTENT_CLEAR_DATA_RESV.
1125 if (extent_reserved) {
1126 extent_clear_unlock_delalloc(inode, start,
1127 start + cur_alloc_size,
1128 start + cur_alloc_size,
1129 locked_page,
1130 clear_bits,
1131 page_ops);
1132 start += cur_alloc_size;
1133 if (start >= end)
1134 goto out;
1136 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1137 locked_page,
1138 clear_bits | EXTENT_CLEAR_DATA_RESV,
1139 page_ops);
1140 goto out;
1144 * work queue call back to started compression on a file and pages
1146 static noinline void async_cow_start(struct btrfs_work *work)
1148 struct async_cow *async_cow;
1149 int num_added = 0;
1150 async_cow = container_of(work, struct async_cow, work);
1152 compress_file_range(async_cow->inode, async_cow->locked_page,
1153 async_cow->start, async_cow->end, async_cow,
1154 &num_added);
1155 if (num_added == 0) {
1156 btrfs_add_delayed_iput(async_cow->inode);
1157 async_cow->inode = NULL;
1162 * work queue call back to submit previously compressed pages
1164 static noinline void async_cow_submit(struct btrfs_work *work)
1166 struct btrfs_fs_info *fs_info;
1167 struct async_cow *async_cow;
1168 struct btrfs_root *root;
1169 unsigned long nr_pages;
1171 async_cow = container_of(work, struct async_cow, work);
1173 root = async_cow->root;
1174 fs_info = root->fs_info;
1175 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1176 PAGE_SHIFT;
1179 * atomic_sub_return implies a barrier for waitqueue_active
1181 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1182 5 * SZ_1M &&
1183 waitqueue_active(&fs_info->async_submit_wait))
1184 wake_up(&fs_info->async_submit_wait);
1186 if (async_cow->inode)
1187 submit_compressed_extents(async_cow->inode, async_cow);
1190 static noinline void async_cow_free(struct btrfs_work *work)
1192 struct async_cow *async_cow;
1193 async_cow = container_of(work, struct async_cow, work);
1194 if (async_cow->inode)
1195 btrfs_add_delayed_iput(async_cow->inode);
1196 kfree(async_cow);
1199 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1200 u64 start, u64 end, int *page_started,
1201 unsigned long *nr_written,
1202 unsigned int write_flags)
1204 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1205 struct async_cow *async_cow;
1206 struct btrfs_root *root = BTRFS_I(inode)->root;
1207 unsigned long nr_pages;
1208 u64 cur_end;
1210 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1211 1, 0, NULL);
1212 while (start < end) {
1213 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1214 BUG_ON(!async_cow); /* -ENOMEM */
1215 async_cow->inode = igrab(inode);
1216 async_cow->root = root;
1217 async_cow->locked_page = locked_page;
1218 async_cow->start = start;
1219 async_cow->write_flags = write_flags;
1221 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1222 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1223 cur_end = end;
1224 else
1225 cur_end = min(end, start + SZ_512K - 1);
1227 async_cow->end = cur_end;
1228 INIT_LIST_HEAD(&async_cow->extents);
1230 btrfs_init_work(&async_cow->work,
1231 btrfs_delalloc_helper,
1232 async_cow_start, async_cow_submit,
1233 async_cow_free);
1235 nr_pages = (cur_end - start + PAGE_SIZE) >>
1236 PAGE_SHIFT;
1237 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1239 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1241 *nr_written += nr_pages;
1242 start = cur_end + 1;
1244 *page_started = 1;
1245 return 0;
1248 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1249 u64 bytenr, u64 num_bytes)
1251 int ret;
1252 struct btrfs_ordered_sum *sums;
1253 LIST_HEAD(list);
1255 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1256 bytenr + num_bytes - 1, &list, 0);
1257 if (ret == 0 && list_empty(&list))
1258 return 0;
1260 while (!list_empty(&list)) {
1261 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1262 list_del(&sums->list);
1263 kfree(sums);
1265 return 1;
1269 * when nowcow writeback call back. This checks for snapshots or COW copies
1270 * of the extents that exist in the file, and COWs the file as required.
1272 * If no cow copies or snapshots exist, we write directly to the existing
1273 * blocks on disk
1275 static noinline int run_delalloc_nocow(struct inode *inode,
1276 struct page *locked_page,
1277 u64 start, u64 end, int *page_started, int force,
1278 unsigned long *nr_written)
1280 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1281 struct btrfs_root *root = BTRFS_I(inode)->root;
1282 struct extent_buffer *leaf;
1283 struct btrfs_path *path;
1284 struct btrfs_file_extent_item *fi;
1285 struct btrfs_key found_key;
1286 struct extent_map *em;
1287 u64 cow_start;
1288 u64 cur_offset;
1289 u64 extent_end;
1290 u64 extent_offset;
1291 u64 disk_bytenr;
1292 u64 num_bytes;
1293 u64 disk_num_bytes;
1294 u64 ram_bytes;
1295 int extent_type;
1296 int ret, err;
1297 int type;
1298 int nocow;
1299 int check_prev = 1;
1300 bool nolock;
1301 u64 ino = btrfs_ino(BTRFS_I(inode));
1303 path = btrfs_alloc_path();
1304 if (!path) {
1305 extent_clear_unlock_delalloc(inode, start, end, end,
1306 locked_page,
1307 EXTENT_LOCKED | EXTENT_DELALLOC |
1308 EXTENT_DO_ACCOUNTING |
1309 EXTENT_DEFRAG, PAGE_UNLOCK |
1310 PAGE_CLEAR_DIRTY |
1311 PAGE_SET_WRITEBACK |
1312 PAGE_END_WRITEBACK);
1313 return -ENOMEM;
1316 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1318 cow_start = (u64)-1;
1319 cur_offset = start;
1320 while (1) {
1321 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1322 cur_offset, 0);
1323 if (ret < 0)
1324 goto error;
1325 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1326 leaf = path->nodes[0];
1327 btrfs_item_key_to_cpu(leaf, &found_key,
1328 path->slots[0] - 1);
1329 if (found_key.objectid == ino &&
1330 found_key.type == BTRFS_EXTENT_DATA_KEY)
1331 path->slots[0]--;
1333 check_prev = 0;
1334 next_slot:
1335 leaf = path->nodes[0];
1336 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1337 ret = btrfs_next_leaf(root, path);
1338 if (ret < 0)
1339 goto error;
1340 if (ret > 0)
1341 break;
1342 leaf = path->nodes[0];
1345 nocow = 0;
1346 disk_bytenr = 0;
1347 num_bytes = 0;
1348 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1350 if (found_key.objectid > ino)
1351 break;
1352 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1353 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1354 path->slots[0]++;
1355 goto next_slot;
1357 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1358 found_key.offset > end)
1359 break;
1361 if (found_key.offset > cur_offset) {
1362 extent_end = found_key.offset;
1363 extent_type = 0;
1364 goto out_check;
1367 fi = btrfs_item_ptr(leaf, path->slots[0],
1368 struct btrfs_file_extent_item);
1369 extent_type = btrfs_file_extent_type(leaf, fi);
1371 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1372 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1373 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1374 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1375 extent_offset = btrfs_file_extent_offset(leaf, fi);
1376 extent_end = found_key.offset +
1377 btrfs_file_extent_num_bytes(leaf, fi);
1378 disk_num_bytes =
1379 btrfs_file_extent_disk_num_bytes(leaf, fi);
1380 if (extent_end <= start) {
1381 path->slots[0]++;
1382 goto next_slot;
1384 if (disk_bytenr == 0)
1385 goto out_check;
1386 if (btrfs_file_extent_compression(leaf, fi) ||
1387 btrfs_file_extent_encryption(leaf, fi) ||
1388 btrfs_file_extent_other_encoding(leaf, fi))
1389 goto out_check;
1390 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1391 goto out_check;
1392 if (btrfs_extent_readonly(fs_info, disk_bytenr))
1393 goto out_check;
1394 if (btrfs_cross_ref_exist(root, ino,
1395 found_key.offset -
1396 extent_offset, disk_bytenr))
1397 goto out_check;
1398 disk_bytenr += extent_offset;
1399 disk_bytenr += cur_offset - found_key.offset;
1400 num_bytes = min(end + 1, extent_end) - cur_offset;
1402 * if there are pending snapshots for this root,
1403 * we fall into common COW way.
1405 if (!nolock) {
1406 err = btrfs_start_write_no_snapshotting(root);
1407 if (!err)
1408 goto out_check;
1411 * force cow if csum exists in the range.
1412 * this ensure that csum for a given extent are
1413 * either valid or do not exist.
1415 if (csum_exist_in_range(fs_info, disk_bytenr,
1416 num_bytes)) {
1417 if (!nolock)
1418 btrfs_end_write_no_snapshotting(root);
1419 goto out_check;
1421 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1422 if (!nolock)
1423 btrfs_end_write_no_snapshotting(root);
1424 goto out_check;
1426 nocow = 1;
1427 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1428 extent_end = found_key.offset +
1429 btrfs_file_extent_inline_len(leaf,
1430 path->slots[0], fi);
1431 extent_end = ALIGN(extent_end,
1432 fs_info->sectorsize);
1433 } else {
1434 BUG_ON(1);
1436 out_check:
1437 if (extent_end <= start) {
1438 path->slots[0]++;
1439 if (!nolock && nocow)
1440 btrfs_end_write_no_snapshotting(root);
1441 if (nocow)
1442 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1443 goto next_slot;
1445 if (!nocow) {
1446 if (cow_start == (u64)-1)
1447 cow_start = cur_offset;
1448 cur_offset = extent_end;
1449 if (cur_offset > end)
1450 break;
1451 path->slots[0]++;
1452 goto next_slot;
1455 btrfs_release_path(path);
1456 if (cow_start != (u64)-1) {
1457 ret = cow_file_range(inode, locked_page,
1458 cow_start, found_key.offset - 1,
1459 end, page_started, nr_written, 1,
1460 NULL);
1461 if (ret) {
1462 if (!nolock && nocow)
1463 btrfs_end_write_no_snapshotting(root);
1464 if (nocow)
1465 btrfs_dec_nocow_writers(fs_info,
1466 disk_bytenr);
1467 goto error;
1469 cow_start = (u64)-1;
1472 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1473 u64 orig_start = found_key.offset - extent_offset;
1475 em = create_io_em(inode, cur_offset, num_bytes,
1476 orig_start,
1477 disk_bytenr, /* block_start */
1478 num_bytes, /* block_len */
1479 disk_num_bytes, /* orig_block_len */
1480 ram_bytes, BTRFS_COMPRESS_NONE,
1481 BTRFS_ORDERED_PREALLOC);
1482 if (IS_ERR(em)) {
1483 if (!nolock && nocow)
1484 btrfs_end_write_no_snapshotting(root);
1485 if (nocow)
1486 btrfs_dec_nocow_writers(fs_info,
1487 disk_bytenr);
1488 ret = PTR_ERR(em);
1489 goto error;
1491 free_extent_map(em);
1494 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1495 type = BTRFS_ORDERED_PREALLOC;
1496 } else {
1497 type = BTRFS_ORDERED_NOCOW;
1500 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1501 num_bytes, num_bytes, type);
1502 if (nocow)
1503 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1504 BUG_ON(ret); /* -ENOMEM */
1506 if (root->root_key.objectid ==
1507 BTRFS_DATA_RELOC_TREE_OBJECTID)
1509 * Error handled later, as we must prevent
1510 * extent_clear_unlock_delalloc() in error handler
1511 * from freeing metadata of created ordered extent.
1513 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1514 num_bytes);
1516 extent_clear_unlock_delalloc(inode, cur_offset,
1517 cur_offset + num_bytes - 1, end,
1518 locked_page, EXTENT_LOCKED |
1519 EXTENT_DELALLOC |
1520 EXTENT_CLEAR_DATA_RESV,
1521 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1523 if (!nolock && nocow)
1524 btrfs_end_write_no_snapshotting(root);
1525 cur_offset = extent_end;
1528 * btrfs_reloc_clone_csums() error, now we're OK to call error
1529 * handler, as metadata for created ordered extent will only
1530 * be freed by btrfs_finish_ordered_io().
1532 if (ret)
1533 goto error;
1534 if (cur_offset > end)
1535 break;
1537 btrfs_release_path(path);
1539 if (cur_offset <= end && cow_start == (u64)-1) {
1540 cow_start = cur_offset;
1541 cur_offset = end;
1544 if (cow_start != (u64)-1) {
1545 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1546 page_started, nr_written, 1, NULL);
1547 if (ret)
1548 goto error;
1551 error:
1552 if (ret && cur_offset < end)
1553 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1554 locked_page, EXTENT_LOCKED |
1555 EXTENT_DELALLOC | EXTENT_DEFRAG |
1556 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1557 PAGE_CLEAR_DIRTY |
1558 PAGE_SET_WRITEBACK |
1559 PAGE_END_WRITEBACK);
1560 btrfs_free_path(path);
1561 return ret;
1564 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1567 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1568 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1569 return 0;
1572 * @defrag_bytes is a hint value, no spinlock held here,
1573 * if is not zero, it means the file is defragging.
1574 * Force cow if given extent needs to be defragged.
1576 if (BTRFS_I(inode)->defrag_bytes &&
1577 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1578 EXTENT_DEFRAG, 0, NULL))
1579 return 1;
1581 return 0;
1585 * extent_io.c call back to do delayed allocation processing
1587 static int run_delalloc_range(void *private_data, struct page *locked_page,
1588 u64 start, u64 end, int *page_started,
1589 unsigned long *nr_written,
1590 struct writeback_control *wbc)
1592 struct inode *inode = private_data;
1593 int ret;
1594 int force_cow = need_force_cow(inode, start, end);
1595 unsigned int write_flags = wbc_to_write_flags(wbc);
1597 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1598 ret = run_delalloc_nocow(inode, locked_page, start, end,
1599 page_started, 1, nr_written);
1600 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1601 ret = run_delalloc_nocow(inode, locked_page, start, end,
1602 page_started, 0, nr_written);
1603 } else if (!inode_need_compress(inode, start, end)) {
1604 ret = cow_file_range(inode, locked_page, start, end, end,
1605 page_started, nr_written, 1, NULL);
1606 } else {
1607 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1608 &BTRFS_I(inode)->runtime_flags);
1609 ret = cow_file_range_async(inode, locked_page, start, end,
1610 page_started, nr_written,
1611 write_flags);
1613 if (ret)
1614 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
1615 return ret;
1618 static void btrfs_split_extent_hook(void *private_data,
1619 struct extent_state *orig, u64 split)
1621 struct inode *inode = private_data;
1622 u64 size;
1624 /* not delalloc, ignore it */
1625 if (!(orig->state & EXTENT_DELALLOC))
1626 return;
1628 size = orig->end - orig->start + 1;
1629 if (size > BTRFS_MAX_EXTENT_SIZE) {
1630 u32 num_extents;
1631 u64 new_size;
1634 * See the explanation in btrfs_merge_extent_hook, the same
1635 * applies here, just in reverse.
1637 new_size = orig->end - split + 1;
1638 num_extents = count_max_extents(new_size);
1639 new_size = split - orig->start;
1640 num_extents += count_max_extents(new_size);
1641 if (count_max_extents(size) >= num_extents)
1642 return;
1645 spin_lock(&BTRFS_I(inode)->lock);
1646 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1647 spin_unlock(&BTRFS_I(inode)->lock);
1651 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1652 * extents so we can keep track of new extents that are just merged onto old
1653 * extents, such as when we are doing sequential writes, so we can properly
1654 * account for the metadata space we'll need.
1656 static void btrfs_merge_extent_hook(void *private_data,
1657 struct extent_state *new,
1658 struct extent_state *other)
1660 struct inode *inode = private_data;
1661 u64 new_size, old_size;
1662 u32 num_extents;
1664 /* not delalloc, ignore it */
1665 if (!(other->state & EXTENT_DELALLOC))
1666 return;
1668 if (new->start > other->start)
1669 new_size = new->end - other->start + 1;
1670 else
1671 new_size = other->end - new->start + 1;
1673 /* we're not bigger than the max, unreserve the space and go */
1674 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1675 spin_lock(&BTRFS_I(inode)->lock);
1676 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1677 spin_unlock(&BTRFS_I(inode)->lock);
1678 return;
1682 * We have to add up either side to figure out how many extents were
1683 * accounted for before we merged into one big extent. If the number of
1684 * extents we accounted for is <= the amount we need for the new range
1685 * then we can return, otherwise drop. Think of it like this
1687 * [ 4k][MAX_SIZE]
1689 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1690 * need 2 outstanding extents, on one side we have 1 and the other side
1691 * we have 1 so they are == and we can return. But in this case
1693 * [MAX_SIZE+4k][MAX_SIZE+4k]
1695 * Each range on their own accounts for 2 extents, but merged together
1696 * they are only 3 extents worth of accounting, so we need to drop in
1697 * this case.
1699 old_size = other->end - other->start + 1;
1700 num_extents = count_max_extents(old_size);
1701 old_size = new->end - new->start + 1;
1702 num_extents += count_max_extents(old_size);
1703 if (count_max_extents(new_size) >= num_extents)
1704 return;
1706 spin_lock(&BTRFS_I(inode)->lock);
1707 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1708 spin_unlock(&BTRFS_I(inode)->lock);
1711 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1712 struct inode *inode)
1714 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1716 spin_lock(&root->delalloc_lock);
1717 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1718 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1719 &root->delalloc_inodes);
1720 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1721 &BTRFS_I(inode)->runtime_flags);
1722 root->nr_delalloc_inodes++;
1723 if (root->nr_delalloc_inodes == 1) {
1724 spin_lock(&fs_info->delalloc_root_lock);
1725 BUG_ON(!list_empty(&root->delalloc_root));
1726 list_add_tail(&root->delalloc_root,
1727 &fs_info->delalloc_roots);
1728 spin_unlock(&fs_info->delalloc_root_lock);
1731 spin_unlock(&root->delalloc_lock);
1734 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1735 struct btrfs_inode *inode)
1737 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1739 spin_lock(&root->delalloc_lock);
1740 if (!list_empty(&inode->delalloc_inodes)) {
1741 list_del_init(&inode->delalloc_inodes);
1742 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1743 &inode->runtime_flags);
1744 root->nr_delalloc_inodes--;
1745 if (!root->nr_delalloc_inodes) {
1746 spin_lock(&fs_info->delalloc_root_lock);
1747 BUG_ON(list_empty(&root->delalloc_root));
1748 list_del_init(&root->delalloc_root);
1749 spin_unlock(&fs_info->delalloc_root_lock);
1752 spin_unlock(&root->delalloc_lock);
1756 * extent_io.c set_bit_hook, used to track delayed allocation
1757 * bytes in this file, and to maintain the list of inodes that
1758 * have pending delalloc work to be done.
1760 static void btrfs_set_bit_hook(void *private_data,
1761 struct extent_state *state, unsigned *bits)
1763 struct inode *inode = private_data;
1765 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1767 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1768 WARN_ON(1);
1770 * set_bit and clear bit hooks normally require _irqsave/restore
1771 * but in this case, we are only testing for the DELALLOC
1772 * bit, which is only set or cleared with irqs on
1774 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1775 struct btrfs_root *root = BTRFS_I(inode)->root;
1776 u64 len = state->end + 1 - state->start;
1777 u32 num_extents = count_max_extents(len);
1778 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1780 spin_lock(&BTRFS_I(inode)->lock);
1781 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1782 spin_unlock(&BTRFS_I(inode)->lock);
1784 /* For sanity tests */
1785 if (btrfs_is_testing(fs_info))
1786 return;
1788 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1789 fs_info->delalloc_batch);
1790 spin_lock(&BTRFS_I(inode)->lock);
1791 BTRFS_I(inode)->delalloc_bytes += len;
1792 if (*bits & EXTENT_DEFRAG)
1793 BTRFS_I(inode)->defrag_bytes += len;
1794 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1795 &BTRFS_I(inode)->runtime_flags))
1796 btrfs_add_delalloc_inodes(root, inode);
1797 spin_unlock(&BTRFS_I(inode)->lock);
1800 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1801 (*bits & EXTENT_DELALLOC_NEW)) {
1802 spin_lock(&BTRFS_I(inode)->lock);
1803 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1804 state->start;
1805 spin_unlock(&BTRFS_I(inode)->lock);
1810 * extent_io.c clear_bit_hook, see set_bit_hook for why
1812 static void btrfs_clear_bit_hook(void *private_data,
1813 struct extent_state *state,
1814 unsigned *bits)
1816 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
1817 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1818 u64 len = state->end + 1 - state->start;
1819 u32 num_extents = count_max_extents(len);
1821 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1822 spin_lock(&inode->lock);
1823 inode->defrag_bytes -= len;
1824 spin_unlock(&inode->lock);
1828 * set_bit and clear bit hooks normally require _irqsave/restore
1829 * but in this case, we are only testing for the DELALLOC
1830 * bit, which is only set or cleared with irqs on
1832 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1833 struct btrfs_root *root = inode->root;
1834 bool do_list = !btrfs_is_free_space_inode(inode);
1836 spin_lock(&inode->lock);
1837 btrfs_mod_outstanding_extents(inode, -num_extents);
1838 spin_unlock(&inode->lock);
1841 * We don't reserve metadata space for space cache inodes so we
1842 * don't need to call dellalloc_release_metadata if there is an
1843 * error.
1845 if (*bits & EXTENT_CLEAR_META_RESV &&
1846 root != fs_info->tree_root)
1847 btrfs_delalloc_release_metadata(inode, len);
1849 /* For sanity tests. */
1850 if (btrfs_is_testing(fs_info))
1851 return;
1853 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1854 do_list && !(state->state & EXTENT_NORESERVE) &&
1855 (*bits & EXTENT_CLEAR_DATA_RESV))
1856 btrfs_free_reserved_data_space_noquota(
1857 &inode->vfs_inode,
1858 state->start, len);
1860 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1861 fs_info->delalloc_batch);
1862 spin_lock(&inode->lock);
1863 inode->delalloc_bytes -= len;
1864 if (do_list && inode->delalloc_bytes == 0 &&
1865 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1866 &inode->runtime_flags))
1867 btrfs_del_delalloc_inode(root, inode);
1868 spin_unlock(&inode->lock);
1871 if ((state->state & EXTENT_DELALLOC_NEW) &&
1872 (*bits & EXTENT_DELALLOC_NEW)) {
1873 spin_lock(&inode->lock);
1874 ASSERT(inode->new_delalloc_bytes >= len);
1875 inode->new_delalloc_bytes -= len;
1876 spin_unlock(&inode->lock);
1881 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1882 * we don't create bios that span stripes or chunks
1884 * return 1 if page cannot be merged to bio
1885 * return 0 if page can be merged to bio
1886 * return error otherwise
1888 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1889 size_t size, struct bio *bio,
1890 unsigned long bio_flags)
1892 struct inode *inode = page->mapping->host;
1893 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1894 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1895 u64 length = 0;
1896 u64 map_length;
1897 int ret;
1899 if (bio_flags & EXTENT_BIO_COMPRESSED)
1900 return 0;
1902 length = bio->bi_iter.bi_size;
1903 map_length = length;
1904 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1905 NULL, 0);
1906 if (ret < 0)
1907 return ret;
1908 if (map_length < length + size)
1909 return 1;
1910 return 0;
1914 * in order to insert checksums into the metadata in large chunks,
1915 * we wait until bio submission time. All the pages in the bio are
1916 * checksummed and sums are attached onto the ordered extent record.
1918 * At IO completion time the cums attached on the ordered extent record
1919 * are inserted into the btree
1921 static blk_status_t __btrfs_submit_bio_start(void *private_data, struct bio *bio,
1922 int mirror_num, unsigned long bio_flags,
1923 u64 bio_offset)
1925 struct inode *inode = private_data;
1926 blk_status_t ret = 0;
1928 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1929 BUG_ON(ret); /* -ENOMEM */
1930 return 0;
1934 * in order to insert checksums into the metadata in large chunks,
1935 * we wait until bio submission time. All the pages in the bio are
1936 * checksummed and sums are attached onto the ordered extent record.
1938 * At IO completion time the cums attached on the ordered extent record
1939 * are inserted into the btree
1941 static blk_status_t __btrfs_submit_bio_done(void *private_data, struct bio *bio,
1942 int mirror_num, unsigned long bio_flags,
1943 u64 bio_offset)
1945 struct inode *inode = private_data;
1946 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1947 blk_status_t ret;
1949 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
1950 if (ret) {
1951 bio->bi_status = ret;
1952 bio_endio(bio);
1954 return ret;
1958 * extent_io.c submission hook. This does the right thing for csum calculation
1959 * on write, or reading the csums from the tree before a read.
1961 * Rules about async/sync submit,
1962 * a) read: sync submit
1964 * b) write without checksum: sync submit
1966 * c) write with checksum:
1967 * c-1) if bio is issued by fsync: sync submit
1968 * (sync_writers != 0)
1970 * c-2) if root is reloc root: sync submit
1971 * (only in case of buffered IO)
1973 * c-3) otherwise: async submit
1975 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
1976 int mirror_num, unsigned long bio_flags,
1977 u64 bio_offset)
1979 struct inode *inode = private_data;
1980 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1981 struct btrfs_root *root = BTRFS_I(inode)->root;
1982 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1983 blk_status_t ret = 0;
1984 int skip_sum;
1985 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1987 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1989 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
1990 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1992 if (bio_op(bio) != REQ_OP_WRITE) {
1993 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
1994 if (ret)
1995 goto out;
1997 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1998 ret = btrfs_submit_compressed_read(inode, bio,
1999 mirror_num,
2000 bio_flags);
2001 goto out;
2002 } else if (!skip_sum) {
2003 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2004 if (ret)
2005 goto out;
2007 goto mapit;
2008 } else if (async && !skip_sum) {
2009 /* csum items have already been cloned */
2010 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2011 goto mapit;
2012 /* we're doing a write, do the async checksumming */
2013 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2014 bio_offset, inode,
2015 __btrfs_submit_bio_start,
2016 __btrfs_submit_bio_done);
2017 goto out;
2018 } else if (!skip_sum) {
2019 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2020 if (ret)
2021 goto out;
2024 mapit:
2025 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2027 out:
2028 if (ret) {
2029 bio->bi_status = ret;
2030 bio_endio(bio);
2032 return ret;
2036 * given a list of ordered sums record them in the inode. This happens
2037 * at IO completion time based on sums calculated at bio submission time.
2039 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2040 struct inode *inode, struct list_head *list)
2042 struct btrfs_ordered_sum *sum;
2044 list_for_each_entry(sum, list, list) {
2045 trans->adding_csums = true;
2046 btrfs_csum_file_blocks(trans,
2047 BTRFS_I(inode)->root->fs_info->csum_root, sum);
2048 trans->adding_csums = false;
2050 return 0;
2053 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2054 unsigned int extra_bits,
2055 struct extent_state **cached_state, int dedupe)
2057 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2058 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2059 extra_bits, cached_state);
2062 /* see btrfs_writepage_start_hook for details on why this is required */
2063 struct btrfs_writepage_fixup {
2064 struct page *page;
2065 struct btrfs_work work;
2068 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2070 struct btrfs_writepage_fixup *fixup;
2071 struct btrfs_ordered_extent *ordered;
2072 struct extent_state *cached_state = NULL;
2073 struct extent_changeset *data_reserved = NULL;
2074 struct page *page;
2075 struct inode *inode;
2076 u64 page_start;
2077 u64 page_end;
2078 int ret;
2080 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2081 page = fixup->page;
2082 again:
2083 lock_page(page);
2084 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2085 ClearPageChecked(page);
2086 goto out_page;
2089 inode = page->mapping->host;
2090 page_start = page_offset(page);
2091 page_end = page_offset(page) + PAGE_SIZE - 1;
2093 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2094 &cached_state);
2096 /* already ordered? We're done */
2097 if (PagePrivate2(page))
2098 goto out;
2100 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2101 PAGE_SIZE);
2102 if (ordered) {
2103 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2104 page_end, &cached_state);
2105 unlock_page(page);
2106 btrfs_start_ordered_extent(inode, ordered, 1);
2107 btrfs_put_ordered_extent(ordered);
2108 goto again;
2111 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2112 PAGE_SIZE);
2113 if (ret) {
2114 mapping_set_error(page->mapping, ret);
2115 end_extent_writepage(page, ret, page_start, page_end);
2116 ClearPageChecked(page);
2117 goto out;
2120 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2121 &cached_state, 0);
2122 if (ret) {
2123 mapping_set_error(page->mapping, ret);
2124 end_extent_writepage(page, ret, page_start, page_end);
2125 ClearPageChecked(page);
2126 goto out;
2129 ClearPageChecked(page);
2130 set_page_dirty(page);
2131 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2132 out:
2133 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2134 &cached_state);
2135 out_page:
2136 unlock_page(page);
2137 put_page(page);
2138 kfree(fixup);
2139 extent_changeset_free(data_reserved);
2143 * There are a few paths in the higher layers of the kernel that directly
2144 * set the page dirty bit without asking the filesystem if it is a
2145 * good idea. This causes problems because we want to make sure COW
2146 * properly happens and the data=ordered rules are followed.
2148 * In our case any range that doesn't have the ORDERED bit set
2149 * hasn't been properly setup for IO. We kick off an async process
2150 * to fix it up. The async helper will wait for ordered extents, set
2151 * the delalloc bit and make it safe to write the page.
2153 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2155 struct inode *inode = page->mapping->host;
2156 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2157 struct btrfs_writepage_fixup *fixup;
2159 /* this page is properly in the ordered list */
2160 if (TestClearPagePrivate2(page))
2161 return 0;
2163 if (PageChecked(page))
2164 return -EAGAIN;
2166 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2167 if (!fixup)
2168 return -EAGAIN;
2170 SetPageChecked(page);
2171 get_page(page);
2172 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2173 btrfs_writepage_fixup_worker, NULL, NULL);
2174 fixup->page = page;
2175 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2176 return -EBUSY;
2179 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2180 struct inode *inode, u64 file_pos,
2181 u64 disk_bytenr, u64 disk_num_bytes,
2182 u64 num_bytes, u64 ram_bytes,
2183 u8 compression, u8 encryption,
2184 u16 other_encoding, int extent_type)
2186 struct btrfs_root *root = BTRFS_I(inode)->root;
2187 struct btrfs_file_extent_item *fi;
2188 struct btrfs_path *path;
2189 struct extent_buffer *leaf;
2190 struct btrfs_key ins;
2191 u64 qg_released;
2192 int extent_inserted = 0;
2193 int ret;
2195 path = btrfs_alloc_path();
2196 if (!path)
2197 return -ENOMEM;
2200 * we may be replacing one extent in the tree with another.
2201 * The new extent is pinned in the extent map, and we don't want
2202 * to drop it from the cache until it is completely in the btree.
2204 * So, tell btrfs_drop_extents to leave this extent in the cache.
2205 * the caller is expected to unpin it and allow it to be merged
2206 * with the others.
2208 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2209 file_pos + num_bytes, NULL, 0,
2210 1, sizeof(*fi), &extent_inserted);
2211 if (ret)
2212 goto out;
2214 if (!extent_inserted) {
2215 ins.objectid = btrfs_ino(BTRFS_I(inode));
2216 ins.offset = file_pos;
2217 ins.type = BTRFS_EXTENT_DATA_KEY;
2219 path->leave_spinning = 1;
2220 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2221 sizeof(*fi));
2222 if (ret)
2223 goto out;
2225 leaf = path->nodes[0];
2226 fi = btrfs_item_ptr(leaf, path->slots[0],
2227 struct btrfs_file_extent_item);
2228 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2229 btrfs_set_file_extent_type(leaf, fi, extent_type);
2230 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2231 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2232 btrfs_set_file_extent_offset(leaf, fi, 0);
2233 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2234 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2235 btrfs_set_file_extent_compression(leaf, fi, compression);
2236 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2237 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2239 btrfs_mark_buffer_dirty(leaf);
2240 btrfs_release_path(path);
2242 inode_add_bytes(inode, num_bytes);
2244 ins.objectid = disk_bytenr;
2245 ins.offset = disk_num_bytes;
2246 ins.type = BTRFS_EXTENT_ITEM_KEY;
2249 * Release the reserved range from inode dirty range map, as it is
2250 * already moved into delayed_ref_head
2252 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2253 if (ret < 0)
2254 goto out;
2255 qg_released = ret;
2256 ret = btrfs_alloc_reserved_file_extent(trans, root,
2257 btrfs_ino(BTRFS_I(inode)),
2258 file_pos, qg_released, &ins);
2259 out:
2260 btrfs_free_path(path);
2262 return ret;
2265 /* snapshot-aware defrag */
2266 struct sa_defrag_extent_backref {
2267 struct rb_node node;
2268 struct old_sa_defrag_extent *old;
2269 u64 root_id;
2270 u64 inum;
2271 u64 file_pos;
2272 u64 extent_offset;
2273 u64 num_bytes;
2274 u64 generation;
2277 struct old_sa_defrag_extent {
2278 struct list_head list;
2279 struct new_sa_defrag_extent *new;
2281 u64 extent_offset;
2282 u64 bytenr;
2283 u64 offset;
2284 u64 len;
2285 int count;
2288 struct new_sa_defrag_extent {
2289 struct rb_root root;
2290 struct list_head head;
2291 struct btrfs_path *path;
2292 struct inode *inode;
2293 u64 file_pos;
2294 u64 len;
2295 u64 bytenr;
2296 u64 disk_len;
2297 u8 compress_type;
2300 static int backref_comp(struct sa_defrag_extent_backref *b1,
2301 struct sa_defrag_extent_backref *b2)
2303 if (b1->root_id < b2->root_id)
2304 return -1;
2305 else if (b1->root_id > b2->root_id)
2306 return 1;
2308 if (b1->inum < b2->inum)
2309 return -1;
2310 else if (b1->inum > b2->inum)
2311 return 1;
2313 if (b1->file_pos < b2->file_pos)
2314 return -1;
2315 else if (b1->file_pos > b2->file_pos)
2316 return 1;
2319 * [------------------------------] ===> (a range of space)
2320 * |<--->| |<---->| =============> (fs/file tree A)
2321 * |<---------------------------->| ===> (fs/file tree B)
2323 * A range of space can refer to two file extents in one tree while
2324 * refer to only one file extent in another tree.
2326 * So we may process a disk offset more than one time(two extents in A)
2327 * and locate at the same extent(one extent in B), then insert two same
2328 * backrefs(both refer to the extent in B).
2330 return 0;
2333 static void backref_insert(struct rb_root *root,
2334 struct sa_defrag_extent_backref *backref)
2336 struct rb_node **p = &root->rb_node;
2337 struct rb_node *parent = NULL;
2338 struct sa_defrag_extent_backref *entry;
2339 int ret;
2341 while (*p) {
2342 parent = *p;
2343 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2345 ret = backref_comp(backref, entry);
2346 if (ret < 0)
2347 p = &(*p)->rb_left;
2348 else
2349 p = &(*p)->rb_right;
2352 rb_link_node(&backref->node, parent, p);
2353 rb_insert_color(&backref->node, root);
2357 * Note the backref might has changed, and in this case we just return 0.
2359 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2360 void *ctx)
2362 struct btrfs_file_extent_item *extent;
2363 struct old_sa_defrag_extent *old = ctx;
2364 struct new_sa_defrag_extent *new = old->new;
2365 struct btrfs_path *path = new->path;
2366 struct btrfs_key key;
2367 struct btrfs_root *root;
2368 struct sa_defrag_extent_backref *backref;
2369 struct extent_buffer *leaf;
2370 struct inode *inode = new->inode;
2371 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2372 int slot;
2373 int ret;
2374 u64 extent_offset;
2375 u64 num_bytes;
2377 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2378 inum == btrfs_ino(BTRFS_I(inode)))
2379 return 0;
2381 key.objectid = root_id;
2382 key.type = BTRFS_ROOT_ITEM_KEY;
2383 key.offset = (u64)-1;
2385 root = btrfs_read_fs_root_no_name(fs_info, &key);
2386 if (IS_ERR(root)) {
2387 if (PTR_ERR(root) == -ENOENT)
2388 return 0;
2389 WARN_ON(1);
2390 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2391 inum, offset, root_id);
2392 return PTR_ERR(root);
2395 key.objectid = inum;
2396 key.type = BTRFS_EXTENT_DATA_KEY;
2397 if (offset > (u64)-1 << 32)
2398 key.offset = 0;
2399 else
2400 key.offset = offset;
2402 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2403 if (WARN_ON(ret < 0))
2404 return ret;
2405 ret = 0;
2407 while (1) {
2408 cond_resched();
2410 leaf = path->nodes[0];
2411 slot = path->slots[0];
2413 if (slot >= btrfs_header_nritems(leaf)) {
2414 ret = btrfs_next_leaf(root, path);
2415 if (ret < 0) {
2416 goto out;
2417 } else if (ret > 0) {
2418 ret = 0;
2419 goto out;
2421 continue;
2424 path->slots[0]++;
2426 btrfs_item_key_to_cpu(leaf, &key, slot);
2428 if (key.objectid > inum)
2429 goto out;
2431 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2432 continue;
2434 extent = btrfs_item_ptr(leaf, slot,
2435 struct btrfs_file_extent_item);
2437 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2438 continue;
2441 * 'offset' refers to the exact key.offset,
2442 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2443 * (key.offset - extent_offset).
2445 if (key.offset != offset)
2446 continue;
2448 extent_offset = btrfs_file_extent_offset(leaf, extent);
2449 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2451 if (extent_offset >= old->extent_offset + old->offset +
2452 old->len || extent_offset + num_bytes <=
2453 old->extent_offset + old->offset)
2454 continue;
2455 break;
2458 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2459 if (!backref) {
2460 ret = -ENOENT;
2461 goto out;
2464 backref->root_id = root_id;
2465 backref->inum = inum;
2466 backref->file_pos = offset;
2467 backref->num_bytes = num_bytes;
2468 backref->extent_offset = extent_offset;
2469 backref->generation = btrfs_file_extent_generation(leaf, extent);
2470 backref->old = old;
2471 backref_insert(&new->root, backref);
2472 old->count++;
2473 out:
2474 btrfs_release_path(path);
2475 WARN_ON(ret);
2476 return ret;
2479 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2480 struct new_sa_defrag_extent *new)
2482 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2483 struct old_sa_defrag_extent *old, *tmp;
2484 int ret;
2486 new->path = path;
2488 list_for_each_entry_safe(old, tmp, &new->head, list) {
2489 ret = iterate_inodes_from_logical(old->bytenr +
2490 old->extent_offset, fs_info,
2491 path, record_one_backref,
2492 old, false);
2493 if (ret < 0 && ret != -ENOENT)
2494 return false;
2496 /* no backref to be processed for this extent */
2497 if (!old->count) {
2498 list_del(&old->list);
2499 kfree(old);
2503 if (list_empty(&new->head))
2504 return false;
2506 return true;
2509 static int relink_is_mergable(struct extent_buffer *leaf,
2510 struct btrfs_file_extent_item *fi,
2511 struct new_sa_defrag_extent *new)
2513 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2514 return 0;
2516 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2517 return 0;
2519 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2520 return 0;
2522 if (btrfs_file_extent_encryption(leaf, fi) ||
2523 btrfs_file_extent_other_encoding(leaf, fi))
2524 return 0;
2526 return 1;
2530 * Note the backref might has changed, and in this case we just return 0.
2532 static noinline int relink_extent_backref(struct btrfs_path *path,
2533 struct sa_defrag_extent_backref *prev,
2534 struct sa_defrag_extent_backref *backref)
2536 struct btrfs_file_extent_item *extent;
2537 struct btrfs_file_extent_item *item;
2538 struct btrfs_ordered_extent *ordered;
2539 struct btrfs_trans_handle *trans;
2540 struct btrfs_root *root;
2541 struct btrfs_key key;
2542 struct extent_buffer *leaf;
2543 struct old_sa_defrag_extent *old = backref->old;
2544 struct new_sa_defrag_extent *new = old->new;
2545 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2546 struct inode *inode;
2547 struct extent_state *cached = NULL;
2548 int ret = 0;
2549 u64 start;
2550 u64 len;
2551 u64 lock_start;
2552 u64 lock_end;
2553 bool merge = false;
2554 int index;
2556 if (prev && prev->root_id == backref->root_id &&
2557 prev->inum == backref->inum &&
2558 prev->file_pos + prev->num_bytes == backref->file_pos)
2559 merge = true;
2561 /* step 1: get root */
2562 key.objectid = backref->root_id;
2563 key.type = BTRFS_ROOT_ITEM_KEY;
2564 key.offset = (u64)-1;
2566 index = srcu_read_lock(&fs_info->subvol_srcu);
2568 root = btrfs_read_fs_root_no_name(fs_info, &key);
2569 if (IS_ERR(root)) {
2570 srcu_read_unlock(&fs_info->subvol_srcu, index);
2571 if (PTR_ERR(root) == -ENOENT)
2572 return 0;
2573 return PTR_ERR(root);
2576 if (btrfs_root_readonly(root)) {
2577 srcu_read_unlock(&fs_info->subvol_srcu, index);
2578 return 0;
2581 /* step 2: get inode */
2582 key.objectid = backref->inum;
2583 key.type = BTRFS_INODE_ITEM_KEY;
2584 key.offset = 0;
2586 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2587 if (IS_ERR(inode)) {
2588 srcu_read_unlock(&fs_info->subvol_srcu, index);
2589 return 0;
2592 srcu_read_unlock(&fs_info->subvol_srcu, index);
2594 /* step 3: relink backref */
2595 lock_start = backref->file_pos;
2596 lock_end = backref->file_pos + backref->num_bytes - 1;
2597 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2598 &cached);
2600 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2601 if (ordered) {
2602 btrfs_put_ordered_extent(ordered);
2603 goto out_unlock;
2606 trans = btrfs_join_transaction(root);
2607 if (IS_ERR(trans)) {
2608 ret = PTR_ERR(trans);
2609 goto out_unlock;
2612 key.objectid = backref->inum;
2613 key.type = BTRFS_EXTENT_DATA_KEY;
2614 key.offset = backref->file_pos;
2616 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2617 if (ret < 0) {
2618 goto out_free_path;
2619 } else if (ret > 0) {
2620 ret = 0;
2621 goto out_free_path;
2624 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2625 struct btrfs_file_extent_item);
2627 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2628 backref->generation)
2629 goto out_free_path;
2631 btrfs_release_path(path);
2633 start = backref->file_pos;
2634 if (backref->extent_offset < old->extent_offset + old->offset)
2635 start += old->extent_offset + old->offset -
2636 backref->extent_offset;
2638 len = min(backref->extent_offset + backref->num_bytes,
2639 old->extent_offset + old->offset + old->len);
2640 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2642 ret = btrfs_drop_extents(trans, root, inode, start,
2643 start + len, 1);
2644 if (ret)
2645 goto out_free_path;
2646 again:
2647 key.objectid = btrfs_ino(BTRFS_I(inode));
2648 key.type = BTRFS_EXTENT_DATA_KEY;
2649 key.offset = start;
2651 path->leave_spinning = 1;
2652 if (merge) {
2653 struct btrfs_file_extent_item *fi;
2654 u64 extent_len;
2655 struct btrfs_key found_key;
2657 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2658 if (ret < 0)
2659 goto out_free_path;
2661 path->slots[0]--;
2662 leaf = path->nodes[0];
2663 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2665 fi = btrfs_item_ptr(leaf, path->slots[0],
2666 struct btrfs_file_extent_item);
2667 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2669 if (extent_len + found_key.offset == start &&
2670 relink_is_mergable(leaf, fi, new)) {
2671 btrfs_set_file_extent_num_bytes(leaf, fi,
2672 extent_len + len);
2673 btrfs_mark_buffer_dirty(leaf);
2674 inode_add_bytes(inode, len);
2676 ret = 1;
2677 goto out_free_path;
2678 } else {
2679 merge = false;
2680 btrfs_release_path(path);
2681 goto again;
2685 ret = btrfs_insert_empty_item(trans, root, path, &key,
2686 sizeof(*extent));
2687 if (ret) {
2688 btrfs_abort_transaction(trans, ret);
2689 goto out_free_path;
2692 leaf = path->nodes[0];
2693 item = btrfs_item_ptr(leaf, path->slots[0],
2694 struct btrfs_file_extent_item);
2695 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2696 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2697 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2698 btrfs_set_file_extent_num_bytes(leaf, item, len);
2699 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2700 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2701 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2702 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2703 btrfs_set_file_extent_encryption(leaf, item, 0);
2704 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2706 btrfs_mark_buffer_dirty(leaf);
2707 inode_add_bytes(inode, len);
2708 btrfs_release_path(path);
2710 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2711 new->disk_len, 0,
2712 backref->root_id, backref->inum,
2713 new->file_pos); /* start - extent_offset */
2714 if (ret) {
2715 btrfs_abort_transaction(trans, ret);
2716 goto out_free_path;
2719 ret = 1;
2720 out_free_path:
2721 btrfs_release_path(path);
2722 path->leave_spinning = 0;
2723 btrfs_end_transaction(trans);
2724 out_unlock:
2725 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2726 &cached);
2727 iput(inode);
2728 return ret;
2731 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2733 struct old_sa_defrag_extent *old, *tmp;
2735 if (!new)
2736 return;
2738 list_for_each_entry_safe(old, tmp, &new->head, list) {
2739 kfree(old);
2741 kfree(new);
2744 static void relink_file_extents(struct new_sa_defrag_extent *new)
2746 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2747 struct btrfs_path *path;
2748 struct sa_defrag_extent_backref *backref;
2749 struct sa_defrag_extent_backref *prev = NULL;
2750 struct inode *inode;
2751 struct btrfs_root *root;
2752 struct rb_node *node;
2753 int ret;
2755 inode = new->inode;
2756 root = BTRFS_I(inode)->root;
2758 path = btrfs_alloc_path();
2759 if (!path)
2760 return;
2762 if (!record_extent_backrefs(path, new)) {
2763 btrfs_free_path(path);
2764 goto out;
2766 btrfs_release_path(path);
2768 while (1) {
2769 node = rb_first(&new->root);
2770 if (!node)
2771 break;
2772 rb_erase(node, &new->root);
2774 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2776 ret = relink_extent_backref(path, prev, backref);
2777 WARN_ON(ret < 0);
2779 kfree(prev);
2781 if (ret == 1)
2782 prev = backref;
2783 else
2784 prev = NULL;
2785 cond_resched();
2787 kfree(prev);
2789 btrfs_free_path(path);
2790 out:
2791 free_sa_defrag_extent(new);
2793 atomic_dec(&fs_info->defrag_running);
2794 wake_up(&fs_info->transaction_wait);
2797 static struct new_sa_defrag_extent *
2798 record_old_file_extents(struct inode *inode,
2799 struct btrfs_ordered_extent *ordered)
2801 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2802 struct btrfs_root *root = BTRFS_I(inode)->root;
2803 struct btrfs_path *path;
2804 struct btrfs_key key;
2805 struct old_sa_defrag_extent *old;
2806 struct new_sa_defrag_extent *new;
2807 int ret;
2809 new = kmalloc(sizeof(*new), GFP_NOFS);
2810 if (!new)
2811 return NULL;
2813 new->inode = inode;
2814 new->file_pos = ordered->file_offset;
2815 new->len = ordered->len;
2816 new->bytenr = ordered->start;
2817 new->disk_len = ordered->disk_len;
2818 new->compress_type = ordered->compress_type;
2819 new->root = RB_ROOT;
2820 INIT_LIST_HEAD(&new->head);
2822 path = btrfs_alloc_path();
2823 if (!path)
2824 goto out_kfree;
2826 key.objectid = btrfs_ino(BTRFS_I(inode));
2827 key.type = BTRFS_EXTENT_DATA_KEY;
2828 key.offset = new->file_pos;
2830 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2831 if (ret < 0)
2832 goto out_free_path;
2833 if (ret > 0 && path->slots[0] > 0)
2834 path->slots[0]--;
2836 /* find out all the old extents for the file range */
2837 while (1) {
2838 struct btrfs_file_extent_item *extent;
2839 struct extent_buffer *l;
2840 int slot;
2841 u64 num_bytes;
2842 u64 offset;
2843 u64 end;
2844 u64 disk_bytenr;
2845 u64 extent_offset;
2847 l = path->nodes[0];
2848 slot = path->slots[0];
2850 if (slot >= btrfs_header_nritems(l)) {
2851 ret = btrfs_next_leaf(root, path);
2852 if (ret < 0)
2853 goto out_free_path;
2854 else if (ret > 0)
2855 break;
2856 continue;
2859 btrfs_item_key_to_cpu(l, &key, slot);
2861 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2862 break;
2863 if (key.type != BTRFS_EXTENT_DATA_KEY)
2864 break;
2865 if (key.offset >= new->file_pos + new->len)
2866 break;
2868 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2870 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2871 if (key.offset + num_bytes < new->file_pos)
2872 goto next;
2874 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2875 if (!disk_bytenr)
2876 goto next;
2878 extent_offset = btrfs_file_extent_offset(l, extent);
2880 old = kmalloc(sizeof(*old), GFP_NOFS);
2881 if (!old)
2882 goto out_free_path;
2884 offset = max(new->file_pos, key.offset);
2885 end = min(new->file_pos + new->len, key.offset + num_bytes);
2887 old->bytenr = disk_bytenr;
2888 old->extent_offset = extent_offset;
2889 old->offset = offset - key.offset;
2890 old->len = end - offset;
2891 old->new = new;
2892 old->count = 0;
2893 list_add_tail(&old->list, &new->head);
2894 next:
2895 path->slots[0]++;
2896 cond_resched();
2899 btrfs_free_path(path);
2900 atomic_inc(&fs_info->defrag_running);
2902 return new;
2904 out_free_path:
2905 btrfs_free_path(path);
2906 out_kfree:
2907 free_sa_defrag_extent(new);
2908 return NULL;
2911 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2912 u64 start, u64 len)
2914 struct btrfs_block_group_cache *cache;
2916 cache = btrfs_lookup_block_group(fs_info, start);
2917 ASSERT(cache);
2919 spin_lock(&cache->lock);
2920 cache->delalloc_bytes -= len;
2921 spin_unlock(&cache->lock);
2923 btrfs_put_block_group(cache);
2926 /* as ordered data IO finishes, this gets called so we can finish
2927 * an ordered extent if the range of bytes in the file it covers are
2928 * fully written.
2930 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2932 struct inode *inode = ordered_extent->inode;
2933 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2934 struct btrfs_root *root = BTRFS_I(inode)->root;
2935 struct btrfs_trans_handle *trans = NULL;
2936 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2937 struct extent_state *cached_state = NULL;
2938 struct new_sa_defrag_extent *new = NULL;
2939 int compress_type = 0;
2940 int ret = 0;
2941 u64 logical_len = ordered_extent->len;
2942 bool nolock;
2943 bool truncated = false;
2944 bool range_locked = false;
2945 bool clear_new_delalloc_bytes = false;
2947 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2948 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2949 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2950 clear_new_delalloc_bytes = true;
2952 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2954 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2955 ret = -EIO;
2956 goto out;
2959 btrfs_free_io_failure_record(BTRFS_I(inode),
2960 ordered_extent->file_offset,
2961 ordered_extent->file_offset +
2962 ordered_extent->len - 1);
2964 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2965 truncated = true;
2966 logical_len = ordered_extent->truncated_len;
2967 /* Truncated the entire extent, don't bother adding */
2968 if (!logical_len)
2969 goto out;
2972 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2973 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2976 * For mwrite(mmap + memset to write) case, we still reserve
2977 * space for NOCOW range.
2978 * As NOCOW won't cause a new delayed ref, just free the space
2980 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
2981 ordered_extent->len);
2982 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2983 if (nolock)
2984 trans = btrfs_join_transaction_nolock(root);
2985 else
2986 trans = btrfs_join_transaction(root);
2987 if (IS_ERR(trans)) {
2988 ret = PTR_ERR(trans);
2989 trans = NULL;
2990 goto out;
2992 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2993 ret = btrfs_update_inode_fallback(trans, root, inode);
2994 if (ret) /* -ENOMEM or corruption */
2995 btrfs_abort_transaction(trans, ret);
2996 goto out;
2999 range_locked = true;
3000 lock_extent_bits(io_tree, ordered_extent->file_offset,
3001 ordered_extent->file_offset + ordered_extent->len - 1,
3002 &cached_state);
3004 ret = test_range_bit(io_tree, ordered_extent->file_offset,
3005 ordered_extent->file_offset + ordered_extent->len - 1,
3006 EXTENT_DEFRAG, 0, cached_state);
3007 if (ret) {
3008 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3009 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3010 /* the inode is shared */
3011 new = record_old_file_extents(inode, ordered_extent);
3013 clear_extent_bit(io_tree, ordered_extent->file_offset,
3014 ordered_extent->file_offset + ordered_extent->len - 1,
3015 EXTENT_DEFRAG, 0, 0, &cached_state);
3018 if (nolock)
3019 trans = btrfs_join_transaction_nolock(root);
3020 else
3021 trans = btrfs_join_transaction(root);
3022 if (IS_ERR(trans)) {
3023 ret = PTR_ERR(trans);
3024 trans = NULL;
3025 goto out;
3028 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3030 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3031 compress_type = ordered_extent->compress_type;
3032 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3033 BUG_ON(compress_type);
3034 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3035 ordered_extent->len);
3036 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3037 ordered_extent->file_offset,
3038 ordered_extent->file_offset +
3039 logical_len);
3040 } else {
3041 BUG_ON(root == fs_info->tree_root);
3042 ret = insert_reserved_file_extent(trans, inode,
3043 ordered_extent->file_offset,
3044 ordered_extent->start,
3045 ordered_extent->disk_len,
3046 logical_len, logical_len,
3047 compress_type, 0, 0,
3048 BTRFS_FILE_EXTENT_REG);
3049 if (!ret)
3050 btrfs_release_delalloc_bytes(fs_info,
3051 ordered_extent->start,
3052 ordered_extent->disk_len);
3054 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3055 ordered_extent->file_offset, ordered_extent->len,
3056 trans->transid);
3057 if (ret < 0) {
3058 btrfs_abort_transaction(trans, ret);
3059 goto out;
3062 add_pending_csums(trans, inode, &ordered_extent->list);
3064 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3065 ret = btrfs_update_inode_fallback(trans, root, inode);
3066 if (ret) { /* -ENOMEM or corruption */
3067 btrfs_abort_transaction(trans, ret);
3068 goto out;
3070 ret = 0;
3071 out:
3072 if (range_locked || clear_new_delalloc_bytes) {
3073 unsigned int clear_bits = 0;
3075 if (range_locked)
3076 clear_bits |= EXTENT_LOCKED;
3077 if (clear_new_delalloc_bytes)
3078 clear_bits |= EXTENT_DELALLOC_NEW;
3079 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3080 ordered_extent->file_offset,
3081 ordered_extent->file_offset +
3082 ordered_extent->len - 1,
3083 clear_bits,
3084 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3085 0, &cached_state);
3088 if (trans)
3089 btrfs_end_transaction(trans);
3091 if (ret || truncated) {
3092 u64 start, end;
3094 if (truncated)
3095 start = ordered_extent->file_offset + logical_len;
3096 else
3097 start = ordered_extent->file_offset;
3098 end = ordered_extent->file_offset + ordered_extent->len - 1;
3099 clear_extent_uptodate(io_tree, start, end, NULL);
3101 /* Drop the cache for the part of the extent we didn't write. */
3102 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3105 * If the ordered extent had an IOERR or something else went
3106 * wrong we need to return the space for this ordered extent
3107 * back to the allocator. We only free the extent in the
3108 * truncated case if we didn't write out the extent at all.
3110 if ((ret || !logical_len) &&
3111 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3112 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3113 btrfs_free_reserved_extent(fs_info,
3114 ordered_extent->start,
3115 ordered_extent->disk_len, 1);
3120 * This needs to be done to make sure anybody waiting knows we are done
3121 * updating everything for this ordered extent.
3123 btrfs_remove_ordered_extent(inode, ordered_extent);
3125 /* for snapshot-aware defrag */
3126 if (new) {
3127 if (ret) {
3128 free_sa_defrag_extent(new);
3129 atomic_dec(&fs_info->defrag_running);
3130 } else {
3131 relink_file_extents(new);
3135 /* once for us */
3136 btrfs_put_ordered_extent(ordered_extent);
3137 /* once for the tree */
3138 btrfs_put_ordered_extent(ordered_extent);
3140 return ret;
3143 static void finish_ordered_fn(struct btrfs_work *work)
3145 struct btrfs_ordered_extent *ordered_extent;
3146 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3147 btrfs_finish_ordered_io(ordered_extent);
3150 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3151 struct extent_state *state, int uptodate)
3153 struct inode *inode = page->mapping->host;
3154 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3155 struct btrfs_ordered_extent *ordered_extent = NULL;
3156 struct btrfs_workqueue *wq;
3157 btrfs_work_func_t func;
3159 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3161 ClearPagePrivate2(page);
3162 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3163 end - start + 1, uptodate))
3164 return;
3166 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3167 wq = fs_info->endio_freespace_worker;
3168 func = btrfs_freespace_write_helper;
3169 } else {
3170 wq = fs_info->endio_write_workers;
3171 func = btrfs_endio_write_helper;
3174 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3175 NULL);
3176 btrfs_queue_work(wq, &ordered_extent->work);
3179 static int __readpage_endio_check(struct inode *inode,
3180 struct btrfs_io_bio *io_bio,
3181 int icsum, struct page *page,
3182 int pgoff, u64 start, size_t len)
3184 char *kaddr;
3185 u32 csum_expected;
3186 u32 csum = ~(u32)0;
3188 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3190 kaddr = kmap_atomic(page);
3191 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3192 btrfs_csum_final(csum, (u8 *)&csum);
3193 if (csum != csum_expected)
3194 goto zeroit;
3196 kunmap_atomic(kaddr);
3197 return 0;
3198 zeroit:
3199 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3200 io_bio->mirror_num);
3201 memset(kaddr + pgoff, 1, len);
3202 flush_dcache_page(page);
3203 kunmap_atomic(kaddr);
3204 return -EIO;
3208 * when reads are done, we need to check csums to verify the data is correct
3209 * if there's a match, we allow the bio to finish. If not, the code in
3210 * extent_io.c will try to find good copies for us.
3212 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3213 u64 phy_offset, struct page *page,
3214 u64 start, u64 end, int mirror)
3216 size_t offset = start - page_offset(page);
3217 struct inode *inode = page->mapping->host;
3218 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3219 struct btrfs_root *root = BTRFS_I(inode)->root;
3221 if (PageChecked(page)) {
3222 ClearPageChecked(page);
3223 return 0;
3226 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3227 return 0;
3229 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3230 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3231 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3232 return 0;
3235 phy_offset >>= inode->i_sb->s_blocksize_bits;
3236 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3237 start, (size_t)(end - start + 1));
3240 void btrfs_add_delayed_iput(struct inode *inode)
3242 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3243 struct btrfs_inode *binode = BTRFS_I(inode);
3245 if (atomic_add_unless(&inode->i_count, -1, 1))
3246 return;
3248 spin_lock(&fs_info->delayed_iput_lock);
3249 if (binode->delayed_iput_count == 0) {
3250 ASSERT(list_empty(&binode->delayed_iput));
3251 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3252 } else {
3253 binode->delayed_iput_count++;
3255 spin_unlock(&fs_info->delayed_iput_lock);
3258 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3261 spin_lock(&fs_info->delayed_iput_lock);
3262 while (!list_empty(&fs_info->delayed_iputs)) {
3263 struct btrfs_inode *inode;
3265 inode = list_first_entry(&fs_info->delayed_iputs,
3266 struct btrfs_inode, delayed_iput);
3267 if (inode->delayed_iput_count) {
3268 inode->delayed_iput_count--;
3269 list_move_tail(&inode->delayed_iput,
3270 &fs_info->delayed_iputs);
3271 } else {
3272 list_del_init(&inode->delayed_iput);
3274 spin_unlock(&fs_info->delayed_iput_lock);
3275 iput(&inode->vfs_inode);
3276 spin_lock(&fs_info->delayed_iput_lock);
3278 spin_unlock(&fs_info->delayed_iput_lock);
3282 * This is called in transaction commit time. If there are no orphan
3283 * files in the subvolume, it removes orphan item and frees block_rsv
3284 * structure.
3286 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3287 struct btrfs_root *root)
3289 struct btrfs_fs_info *fs_info = root->fs_info;
3290 struct btrfs_block_rsv *block_rsv;
3291 int ret;
3293 if (atomic_read(&root->orphan_inodes) ||
3294 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3295 return;
3297 spin_lock(&root->orphan_lock);
3298 if (atomic_read(&root->orphan_inodes)) {
3299 spin_unlock(&root->orphan_lock);
3300 return;
3303 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3304 spin_unlock(&root->orphan_lock);
3305 return;
3308 block_rsv = root->orphan_block_rsv;
3309 root->orphan_block_rsv = NULL;
3310 spin_unlock(&root->orphan_lock);
3312 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3313 btrfs_root_refs(&root->root_item) > 0) {
3314 ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
3315 root->root_key.objectid);
3316 if (ret)
3317 btrfs_abort_transaction(trans, ret);
3318 else
3319 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3320 &root->state);
3323 if (block_rsv) {
3324 WARN_ON(block_rsv->size > 0);
3325 btrfs_free_block_rsv(fs_info, block_rsv);
3330 * This creates an orphan entry for the given inode in case something goes
3331 * wrong in the middle of an unlink/truncate.
3333 * NOTE: caller of this function should reserve 5 units of metadata for
3334 * this function.
3336 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3337 struct btrfs_inode *inode)
3339 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3340 struct btrfs_root *root = inode->root;
3341 struct btrfs_block_rsv *block_rsv = NULL;
3342 int reserve = 0;
3343 int insert = 0;
3344 int ret;
3346 if (!root->orphan_block_rsv) {
3347 block_rsv = btrfs_alloc_block_rsv(fs_info,
3348 BTRFS_BLOCK_RSV_TEMP);
3349 if (!block_rsv)
3350 return -ENOMEM;
3353 spin_lock(&root->orphan_lock);
3354 if (!root->orphan_block_rsv) {
3355 root->orphan_block_rsv = block_rsv;
3356 } else if (block_rsv) {
3357 btrfs_free_block_rsv(fs_info, block_rsv);
3358 block_rsv = NULL;
3361 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3362 &inode->runtime_flags)) {
3363 #if 0
3365 * For proper ENOSPC handling, we should do orphan
3366 * cleanup when mounting. But this introduces backward
3367 * compatibility issue.
3369 if (!xchg(&root->orphan_item_inserted, 1))
3370 insert = 2;
3371 else
3372 insert = 1;
3373 #endif
3374 insert = 1;
3375 atomic_inc(&root->orphan_inodes);
3378 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3379 &inode->runtime_flags))
3380 reserve = 1;
3381 spin_unlock(&root->orphan_lock);
3383 /* grab metadata reservation from transaction handle */
3384 if (reserve) {
3385 ret = btrfs_orphan_reserve_metadata(trans, inode);
3386 ASSERT(!ret);
3387 if (ret) {
3388 atomic_dec(&root->orphan_inodes);
3389 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3390 &inode->runtime_flags);
3391 if (insert)
3392 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3393 &inode->runtime_flags);
3394 return ret;
3398 /* insert an orphan item to track this unlinked/truncated file */
3399 if (insert >= 1) {
3400 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3401 if (ret) {
3402 atomic_dec(&root->orphan_inodes);
3403 if (reserve) {
3404 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3405 &inode->runtime_flags);
3406 btrfs_orphan_release_metadata(inode);
3408 if (ret != -EEXIST) {
3409 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3410 &inode->runtime_flags);
3411 btrfs_abort_transaction(trans, ret);
3412 return ret;
3415 ret = 0;
3418 /* insert an orphan item to track subvolume contains orphan files */
3419 if (insert >= 2) {
3420 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root,
3421 root->root_key.objectid);
3422 if (ret && ret != -EEXIST) {
3423 btrfs_abort_transaction(trans, ret);
3424 return ret;
3427 return 0;
3431 * We have done the truncate/delete so we can go ahead and remove the orphan
3432 * item for this particular inode.
3434 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3435 struct btrfs_inode *inode)
3437 struct btrfs_root *root = inode->root;
3438 int delete_item = 0;
3439 int release_rsv = 0;
3440 int ret = 0;
3442 spin_lock(&root->orphan_lock);
3443 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3444 &inode->runtime_flags))
3445 delete_item = 1;
3447 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3448 &inode->runtime_flags))
3449 release_rsv = 1;
3450 spin_unlock(&root->orphan_lock);
3452 if (delete_item) {
3453 atomic_dec(&root->orphan_inodes);
3454 if (trans)
3455 ret = btrfs_del_orphan_item(trans, root,
3456 btrfs_ino(inode));
3459 if (release_rsv)
3460 btrfs_orphan_release_metadata(inode);
3462 return ret;
3466 * this cleans up any orphans that may be left on the list from the last use
3467 * of this root.
3469 int btrfs_orphan_cleanup(struct btrfs_root *root)
3471 struct btrfs_fs_info *fs_info = root->fs_info;
3472 struct btrfs_path *path;
3473 struct extent_buffer *leaf;
3474 struct btrfs_key key, found_key;
3475 struct btrfs_trans_handle *trans;
3476 struct inode *inode;
3477 u64 last_objectid = 0;
3478 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3480 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3481 return 0;
3483 path = btrfs_alloc_path();
3484 if (!path) {
3485 ret = -ENOMEM;
3486 goto out;
3488 path->reada = READA_BACK;
3490 key.objectid = BTRFS_ORPHAN_OBJECTID;
3491 key.type = BTRFS_ORPHAN_ITEM_KEY;
3492 key.offset = (u64)-1;
3494 while (1) {
3495 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3496 if (ret < 0)
3497 goto out;
3500 * if ret == 0 means we found what we were searching for, which
3501 * is weird, but possible, so only screw with path if we didn't
3502 * find the key and see if we have stuff that matches
3504 if (ret > 0) {
3505 ret = 0;
3506 if (path->slots[0] == 0)
3507 break;
3508 path->slots[0]--;
3511 /* pull out the item */
3512 leaf = path->nodes[0];
3513 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3515 /* make sure the item matches what we want */
3516 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3517 break;
3518 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3519 break;
3521 /* release the path since we're done with it */
3522 btrfs_release_path(path);
3525 * this is where we are basically btrfs_lookup, without the
3526 * crossing root thing. we store the inode number in the
3527 * offset of the orphan item.
3530 if (found_key.offset == last_objectid) {
3531 btrfs_err(fs_info,
3532 "Error removing orphan entry, stopping orphan cleanup");
3533 ret = -EINVAL;
3534 goto out;
3537 last_objectid = found_key.offset;
3539 found_key.objectid = found_key.offset;
3540 found_key.type = BTRFS_INODE_ITEM_KEY;
3541 found_key.offset = 0;
3542 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3543 ret = PTR_ERR_OR_ZERO(inode);
3544 if (ret && ret != -ENOENT)
3545 goto out;
3547 if (ret == -ENOENT && root == fs_info->tree_root) {
3548 struct btrfs_root *dead_root;
3549 struct btrfs_fs_info *fs_info = root->fs_info;
3550 int is_dead_root = 0;
3553 * this is an orphan in the tree root. Currently these
3554 * could come from 2 sources:
3555 * a) a snapshot deletion in progress
3556 * b) a free space cache inode
3557 * We need to distinguish those two, as the snapshot
3558 * orphan must not get deleted.
3559 * find_dead_roots already ran before us, so if this
3560 * is a snapshot deletion, we should find the root
3561 * in the dead_roots list
3563 spin_lock(&fs_info->trans_lock);
3564 list_for_each_entry(dead_root, &fs_info->dead_roots,
3565 root_list) {
3566 if (dead_root->root_key.objectid ==
3567 found_key.objectid) {
3568 is_dead_root = 1;
3569 break;
3572 spin_unlock(&fs_info->trans_lock);
3573 if (is_dead_root) {
3574 /* prevent this orphan from being found again */
3575 key.offset = found_key.objectid - 1;
3576 continue;
3580 * Inode is already gone but the orphan item is still there,
3581 * kill the orphan item.
3583 if (ret == -ENOENT) {
3584 trans = btrfs_start_transaction(root, 1);
3585 if (IS_ERR(trans)) {
3586 ret = PTR_ERR(trans);
3587 goto out;
3589 btrfs_debug(fs_info, "auto deleting %Lu",
3590 found_key.objectid);
3591 ret = btrfs_del_orphan_item(trans, root,
3592 found_key.objectid);
3593 btrfs_end_transaction(trans);
3594 if (ret)
3595 goto out;
3596 continue;
3600 * add this inode to the orphan list so btrfs_orphan_del does
3601 * the proper thing when we hit it
3603 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3604 &BTRFS_I(inode)->runtime_flags);
3605 atomic_inc(&root->orphan_inodes);
3607 /* if we have links, this was a truncate, lets do that */
3608 if (inode->i_nlink) {
3609 if (WARN_ON(!S_ISREG(inode->i_mode))) {
3610 iput(inode);
3611 continue;
3613 nr_truncate++;
3615 /* 1 for the orphan item deletion. */
3616 trans = btrfs_start_transaction(root, 1);
3617 if (IS_ERR(trans)) {
3618 iput(inode);
3619 ret = PTR_ERR(trans);
3620 goto out;
3622 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3623 btrfs_end_transaction(trans);
3624 if (ret) {
3625 iput(inode);
3626 goto out;
3629 ret = btrfs_truncate(inode);
3630 if (ret)
3631 btrfs_orphan_del(NULL, BTRFS_I(inode));
3632 } else {
3633 nr_unlink++;
3636 /* this will do delete_inode and everything for us */
3637 iput(inode);
3638 if (ret)
3639 goto out;
3641 /* release the path since we're done with it */
3642 btrfs_release_path(path);
3644 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3646 if (root->orphan_block_rsv)
3647 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
3648 (u64)-1);
3650 if (root->orphan_block_rsv ||
3651 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3652 trans = btrfs_join_transaction(root);
3653 if (!IS_ERR(trans))
3654 btrfs_end_transaction(trans);
3657 if (nr_unlink)
3658 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3659 if (nr_truncate)
3660 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
3662 out:
3663 if (ret)
3664 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3665 btrfs_free_path(path);
3666 return ret;
3670 * very simple check to peek ahead in the leaf looking for xattrs. If we
3671 * don't find any xattrs, we know there can't be any acls.
3673 * slot is the slot the inode is in, objectid is the objectid of the inode
3675 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3676 int slot, u64 objectid,
3677 int *first_xattr_slot)
3679 u32 nritems = btrfs_header_nritems(leaf);
3680 struct btrfs_key found_key;
3681 static u64 xattr_access = 0;
3682 static u64 xattr_default = 0;
3683 int scanned = 0;
3685 if (!xattr_access) {
3686 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3687 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3688 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3689 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3692 slot++;
3693 *first_xattr_slot = -1;
3694 while (slot < nritems) {
3695 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3697 /* we found a different objectid, there must not be acls */
3698 if (found_key.objectid != objectid)
3699 return 0;
3701 /* we found an xattr, assume we've got an acl */
3702 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3703 if (*first_xattr_slot == -1)
3704 *first_xattr_slot = slot;
3705 if (found_key.offset == xattr_access ||
3706 found_key.offset == xattr_default)
3707 return 1;
3711 * we found a key greater than an xattr key, there can't
3712 * be any acls later on
3714 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3715 return 0;
3717 slot++;
3718 scanned++;
3721 * it goes inode, inode backrefs, xattrs, extents,
3722 * so if there are a ton of hard links to an inode there can
3723 * be a lot of backrefs. Don't waste time searching too hard,
3724 * this is just an optimization
3726 if (scanned >= 8)
3727 break;
3729 /* we hit the end of the leaf before we found an xattr or
3730 * something larger than an xattr. We have to assume the inode
3731 * has acls
3733 if (*first_xattr_slot == -1)
3734 *first_xattr_slot = slot;
3735 return 1;
3739 * read an inode from the btree into the in-memory inode
3741 static int btrfs_read_locked_inode(struct inode *inode)
3743 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3744 struct btrfs_path *path;
3745 struct extent_buffer *leaf;
3746 struct btrfs_inode_item *inode_item;
3747 struct btrfs_root *root = BTRFS_I(inode)->root;
3748 struct btrfs_key location;
3749 unsigned long ptr;
3750 int maybe_acls;
3751 u32 rdev;
3752 int ret;
3753 bool filled = false;
3754 int first_xattr_slot;
3756 ret = btrfs_fill_inode(inode, &rdev);
3757 if (!ret)
3758 filled = true;
3760 path = btrfs_alloc_path();
3761 if (!path) {
3762 ret = -ENOMEM;
3763 goto make_bad;
3766 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3768 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3769 if (ret) {
3770 if (ret > 0)
3771 ret = -ENOENT;
3772 goto make_bad;
3775 leaf = path->nodes[0];
3777 if (filled)
3778 goto cache_index;
3780 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3781 struct btrfs_inode_item);
3782 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3783 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3784 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3785 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3786 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3788 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3789 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3791 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3792 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3794 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3795 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3797 BTRFS_I(inode)->i_otime.tv_sec =
3798 btrfs_timespec_sec(leaf, &inode_item->otime);
3799 BTRFS_I(inode)->i_otime.tv_nsec =
3800 btrfs_timespec_nsec(leaf, &inode_item->otime);
3802 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3803 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3804 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3806 inode_set_iversion_queried(inode,
3807 btrfs_inode_sequence(leaf, inode_item));
3808 inode->i_generation = BTRFS_I(inode)->generation;
3809 inode->i_rdev = 0;
3810 rdev = btrfs_inode_rdev(leaf, inode_item);
3812 BTRFS_I(inode)->index_cnt = (u64)-1;
3813 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3815 cache_index:
3817 * If we were modified in the current generation and evicted from memory
3818 * and then re-read we need to do a full sync since we don't have any
3819 * idea about which extents were modified before we were evicted from
3820 * cache.
3822 * This is required for both inode re-read from disk and delayed inode
3823 * in delayed_nodes_tree.
3825 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3826 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3827 &BTRFS_I(inode)->runtime_flags);
3830 * We don't persist the id of the transaction where an unlink operation
3831 * against the inode was last made. So here we assume the inode might
3832 * have been evicted, and therefore the exact value of last_unlink_trans
3833 * lost, and set it to last_trans to avoid metadata inconsistencies
3834 * between the inode and its parent if the inode is fsync'ed and the log
3835 * replayed. For example, in the scenario:
3837 * touch mydir/foo
3838 * ln mydir/foo mydir/bar
3839 * sync
3840 * unlink mydir/bar
3841 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3842 * xfs_io -c fsync mydir/foo
3843 * <power failure>
3844 * mount fs, triggers fsync log replay
3846 * We must make sure that when we fsync our inode foo we also log its
3847 * parent inode, otherwise after log replay the parent still has the
3848 * dentry with the "bar" name but our inode foo has a link count of 1
3849 * and doesn't have an inode ref with the name "bar" anymore.
3851 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3852 * but it guarantees correctness at the expense of occasional full
3853 * transaction commits on fsync if our inode is a directory, or if our
3854 * inode is not a directory, logging its parent unnecessarily.
3856 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3858 path->slots[0]++;
3859 if (inode->i_nlink != 1 ||
3860 path->slots[0] >= btrfs_header_nritems(leaf))
3861 goto cache_acl;
3863 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3864 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3865 goto cache_acl;
3867 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3868 if (location.type == BTRFS_INODE_REF_KEY) {
3869 struct btrfs_inode_ref *ref;
3871 ref = (struct btrfs_inode_ref *)ptr;
3872 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3873 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3874 struct btrfs_inode_extref *extref;
3876 extref = (struct btrfs_inode_extref *)ptr;
3877 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3878 extref);
3880 cache_acl:
3882 * try to precache a NULL acl entry for files that don't have
3883 * any xattrs or acls
3885 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3886 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3887 if (first_xattr_slot != -1) {
3888 path->slots[0] = first_xattr_slot;
3889 ret = btrfs_load_inode_props(inode, path);
3890 if (ret)
3891 btrfs_err(fs_info,
3892 "error loading props for ino %llu (root %llu): %d",
3893 btrfs_ino(BTRFS_I(inode)),
3894 root->root_key.objectid, ret);
3896 btrfs_free_path(path);
3898 if (!maybe_acls)
3899 cache_no_acl(inode);
3901 switch (inode->i_mode & S_IFMT) {
3902 case S_IFREG:
3903 inode->i_mapping->a_ops = &btrfs_aops;
3904 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3905 inode->i_fop = &btrfs_file_operations;
3906 inode->i_op = &btrfs_file_inode_operations;
3907 break;
3908 case S_IFDIR:
3909 inode->i_fop = &btrfs_dir_file_operations;
3910 inode->i_op = &btrfs_dir_inode_operations;
3911 break;
3912 case S_IFLNK:
3913 inode->i_op = &btrfs_symlink_inode_operations;
3914 inode_nohighmem(inode);
3915 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3916 break;
3917 default:
3918 inode->i_op = &btrfs_special_inode_operations;
3919 init_special_inode(inode, inode->i_mode, rdev);
3920 break;
3923 btrfs_update_iflags(inode);
3924 return 0;
3926 make_bad:
3927 btrfs_free_path(path);
3928 make_bad_inode(inode);
3929 return ret;
3933 * given a leaf and an inode, copy the inode fields into the leaf
3935 static void fill_inode_item(struct btrfs_trans_handle *trans,
3936 struct extent_buffer *leaf,
3937 struct btrfs_inode_item *item,
3938 struct inode *inode)
3940 struct btrfs_map_token token;
3942 btrfs_init_map_token(&token);
3944 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3945 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3946 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3947 &token);
3948 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3949 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3951 btrfs_set_token_timespec_sec(leaf, &item->atime,
3952 inode->i_atime.tv_sec, &token);
3953 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3954 inode->i_atime.tv_nsec, &token);
3956 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3957 inode->i_mtime.tv_sec, &token);
3958 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3959 inode->i_mtime.tv_nsec, &token);
3961 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3962 inode->i_ctime.tv_sec, &token);
3963 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3964 inode->i_ctime.tv_nsec, &token);
3966 btrfs_set_token_timespec_sec(leaf, &item->otime,
3967 BTRFS_I(inode)->i_otime.tv_sec, &token);
3968 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3969 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3971 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3972 &token);
3973 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3974 &token);
3975 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3976 &token);
3977 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3978 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3979 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3980 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3984 * copy everything in the in-memory inode into the btree.
3986 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3987 struct btrfs_root *root, struct inode *inode)
3989 struct btrfs_inode_item *inode_item;
3990 struct btrfs_path *path;
3991 struct extent_buffer *leaf;
3992 int ret;
3994 path = btrfs_alloc_path();
3995 if (!path)
3996 return -ENOMEM;
3998 path->leave_spinning = 1;
3999 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
4001 if (ret) {
4002 if (ret > 0)
4003 ret = -ENOENT;
4004 goto failed;
4007 leaf = path->nodes[0];
4008 inode_item = btrfs_item_ptr(leaf, path->slots[0],
4009 struct btrfs_inode_item);
4011 fill_inode_item(trans, leaf, inode_item, inode);
4012 btrfs_mark_buffer_dirty(leaf);
4013 btrfs_set_inode_last_trans(trans, inode);
4014 ret = 0;
4015 failed:
4016 btrfs_free_path(path);
4017 return ret;
4021 * copy everything in the in-memory inode into the btree.
4023 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4024 struct btrfs_root *root, struct inode *inode)
4026 struct btrfs_fs_info *fs_info = root->fs_info;
4027 int ret;
4030 * If the inode is a free space inode, we can deadlock during commit
4031 * if we put it into the delayed code.
4033 * The data relocation inode should also be directly updated
4034 * without delay
4036 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
4037 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
4038 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4039 btrfs_update_root_times(trans, root);
4041 ret = btrfs_delayed_update_inode(trans, root, inode);
4042 if (!ret)
4043 btrfs_set_inode_last_trans(trans, inode);
4044 return ret;
4047 return btrfs_update_inode_item(trans, root, inode);
4050 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4051 struct btrfs_root *root,
4052 struct inode *inode)
4054 int ret;
4056 ret = btrfs_update_inode(trans, root, inode);
4057 if (ret == -ENOSPC)
4058 return btrfs_update_inode_item(trans, root, inode);
4059 return ret;
4063 * unlink helper that gets used here in inode.c and in the tree logging
4064 * recovery code. It remove a link in a directory with a given name, and
4065 * also drops the back refs in the inode to the directory
4067 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4068 struct btrfs_root *root,
4069 struct btrfs_inode *dir,
4070 struct btrfs_inode *inode,
4071 const char *name, int name_len)
4073 struct btrfs_fs_info *fs_info = root->fs_info;
4074 struct btrfs_path *path;
4075 int ret = 0;
4076 struct extent_buffer *leaf;
4077 struct btrfs_dir_item *di;
4078 struct btrfs_key key;
4079 u64 index;
4080 u64 ino = btrfs_ino(inode);
4081 u64 dir_ino = btrfs_ino(dir);
4083 path = btrfs_alloc_path();
4084 if (!path) {
4085 ret = -ENOMEM;
4086 goto out;
4089 path->leave_spinning = 1;
4090 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4091 name, name_len, -1);
4092 if (IS_ERR(di)) {
4093 ret = PTR_ERR(di);
4094 goto err;
4096 if (!di) {
4097 ret = -ENOENT;
4098 goto err;
4100 leaf = path->nodes[0];
4101 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4102 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4103 if (ret)
4104 goto err;
4105 btrfs_release_path(path);
4108 * If we don't have dir index, we have to get it by looking up
4109 * the inode ref, since we get the inode ref, remove it directly,
4110 * it is unnecessary to do delayed deletion.
4112 * But if we have dir index, needn't search inode ref to get it.
4113 * Since the inode ref is close to the inode item, it is better
4114 * that we delay to delete it, and just do this deletion when
4115 * we update the inode item.
4117 if (inode->dir_index) {
4118 ret = btrfs_delayed_delete_inode_ref(inode);
4119 if (!ret) {
4120 index = inode->dir_index;
4121 goto skip_backref;
4125 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4126 dir_ino, &index);
4127 if (ret) {
4128 btrfs_info(fs_info,
4129 "failed to delete reference to %.*s, inode %llu parent %llu",
4130 name_len, name, ino, dir_ino);
4131 btrfs_abort_transaction(trans, ret);
4132 goto err;
4134 skip_backref:
4135 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
4136 if (ret) {
4137 btrfs_abort_transaction(trans, ret);
4138 goto err;
4141 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4142 dir_ino);
4143 if (ret != 0 && ret != -ENOENT) {
4144 btrfs_abort_transaction(trans, ret);
4145 goto err;
4148 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4149 index);
4150 if (ret == -ENOENT)
4151 ret = 0;
4152 else if (ret)
4153 btrfs_abort_transaction(trans, ret);
4154 err:
4155 btrfs_free_path(path);
4156 if (ret)
4157 goto out;
4159 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4160 inode_inc_iversion(&inode->vfs_inode);
4161 inode_inc_iversion(&dir->vfs_inode);
4162 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4163 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4164 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4165 out:
4166 return ret;
4169 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4170 struct btrfs_root *root,
4171 struct btrfs_inode *dir, struct btrfs_inode *inode,
4172 const char *name, int name_len)
4174 int ret;
4175 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4176 if (!ret) {
4177 drop_nlink(&inode->vfs_inode);
4178 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4180 return ret;
4184 * helper to start transaction for unlink and rmdir.
4186 * unlink and rmdir are special in btrfs, they do not always free space, so
4187 * if we cannot make our reservations the normal way try and see if there is
4188 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4189 * allow the unlink to occur.
4191 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4193 struct btrfs_root *root = BTRFS_I(dir)->root;
4196 * 1 for the possible orphan item
4197 * 1 for the dir item
4198 * 1 for the dir index
4199 * 1 for the inode ref
4200 * 1 for the inode
4202 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4205 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4207 struct btrfs_root *root = BTRFS_I(dir)->root;
4208 struct btrfs_trans_handle *trans;
4209 struct inode *inode = d_inode(dentry);
4210 int ret;
4212 trans = __unlink_start_trans(dir);
4213 if (IS_ERR(trans))
4214 return PTR_ERR(trans);
4216 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4219 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4220 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4221 dentry->d_name.len);
4222 if (ret)
4223 goto out;
4225 if (inode->i_nlink == 0) {
4226 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4227 if (ret)
4228 goto out;
4231 out:
4232 btrfs_end_transaction(trans);
4233 btrfs_btree_balance_dirty(root->fs_info);
4234 return ret;
4237 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4238 struct btrfs_root *root,
4239 struct inode *dir, u64 objectid,
4240 const char *name, int name_len)
4242 struct btrfs_fs_info *fs_info = root->fs_info;
4243 struct btrfs_path *path;
4244 struct extent_buffer *leaf;
4245 struct btrfs_dir_item *di;
4246 struct btrfs_key key;
4247 u64 index;
4248 int ret;
4249 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4251 path = btrfs_alloc_path();
4252 if (!path)
4253 return -ENOMEM;
4255 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4256 name, name_len, -1);
4257 if (IS_ERR_OR_NULL(di)) {
4258 if (!di)
4259 ret = -ENOENT;
4260 else
4261 ret = PTR_ERR(di);
4262 goto out;
4265 leaf = path->nodes[0];
4266 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4267 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4268 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4269 if (ret) {
4270 btrfs_abort_transaction(trans, ret);
4271 goto out;
4273 btrfs_release_path(path);
4275 ret = btrfs_del_root_ref(trans, fs_info, objectid,
4276 root->root_key.objectid, dir_ino,
4277 &index, name, name_len);
4278 if (ret < 0) {
4279 if (ret != -ENOENT) {
4280 btrfs_abort_transaction(trans, ret);
4281 goto out;
4283 di = btrfs_search_dir_index_item(root, path, dir_ino,
4284 name, name_len);
4285 if (IS_ERR_OR_NULL(di)) {
4286 if (!di)
4287 ret = -ENOENT;
4288 else
4289 ret = PTR_ERR(di);
4290 btrfs_abort_transaction(trans, ret);
4291 goto out;
4294 leaf = path->nodes[0];
4295 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4296 btrfs_release_path(path);
4297 index = key.offset;
4299 btrfs_release_path(path);
4301 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
4302 if (ret) {
4303 btrfs_abort_transaction(trans, ret);
4304 goto out;
4307 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4308 inode_inc_iversion(dir);
4309 dir->i_mtime = dir->i_ctime = current_time(dir);
4310 ret = btrfs_update_inode_fallback(trans, root, dir);
4311 if (ret)
4312 btrfs_abort_transaction(trans, ret);
4313 out:
4314 btrfs_free_path(path);
4315 return ret;
4318 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4320 struct inode *inode = d_inode(dentry);
4321 int err = 0;
4322 struct btrfs_root *root = BTRFS_I(dir)->root;
4323 struct btrfs_trans_handle *trans;
4324 u64 last_unlink_trans;
4326 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4327 return -ENOTEMPTY;
4328 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4329 return -EPERM;
4331 trans = __unlink_start_trans(dir);
4332 if (IS_ERR(trans))
4333 return PTR_ERR(trans);
4335 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4336 err = btrfs_unlink_subvol(trans, root, dir,
4337 BTRFS_I(inode)->location.objectid,
4338 dentry->d_name.name,
4339 dentry->d_name.len);
4340 goto out;
4343 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4344 if (err)
4345 goto out;
4347 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4349 /* now the directory is empty */
4350 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4351 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4352 dentry->d_name.len);
4353 if (!err) {
4354 btrfs_i_size_write(BTRFS_I(inode), 0);
4356 * Propagate the last_unlink_trans value of the deleted dir to
4357 * its parent directory. This is to prevent an unrecoverable
4358 * log tree in the case we do something like this:
4359 * 1) create dir foo
4360 * 2) create snapshot under dir foo
4361 * 3) delete the snapshot
4362 * 4) rmdir foo
4363 * 5) mkdir foo
4364 * 6) fsync foo or some file inside foo
4366 if (last_unlink_trans >= trans->transid)
4367 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4369 out:
4370 btrfs_end_transaction(trans);
4371 btrfs_btree_balance_dirty(root->fs_info);
4373 return err;
4376 static int truncate_space_check(struct btrfs_trans_handle *trans,
4377 struct btrfs_root *root,
4378 u64 bytes_deleted)
4380 struct btrfs_fs_info *fs_info = root->fs_info;
4381 int ret;
4384 * This is only used to apply pressure to the enospc system, we don't
4385 * intend to use this reservation at all.
4387 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
4388 bytes_deleted *= fs_info->nodesize;
4389 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
4390 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4391 if (!ret) {
4392 trace_btrfs_space_reservation(fs_info, "transaction",
4393 trans->transid,
4394 bytes_deleted, 1);
4395 trans->bytes_reserved += bytes_deleted;
4397 return ret;
4402 * Return this if we need to call truncate_block for the last bit of the
4403 * truncate.
4405 #define NEED_TRUNCATE_BLOCK 1
4408 * this can truncate away extent items, csum items and directory items.
4409 * It starts at a high offset and removes keys until it can't find
4410 * any higher than new_size
4412 * csum items that cross the new i_size are truncated to the new size
4413 * as well.
4415 * min_type is the minimum key type to truncate down to. If set to 0, this
4416 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4418 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4419 struct btrfs_root *root,
4420 struct inode *inode,
4421 u64 new_size, u32 min_type)
4423 struct btrfs_fs_info *fs_info = root->fs_info;
4424 struct btrfs_path *path;
4425 struct extent_buffer *leaf;
4426 struct btrfs_file_extent_item *fi;
4427 struct btrfs_key key;
4428 struct btrfs_key found_key;
4429 u64 extent_start = 0;
4430 u64 extent_num_bytes = 0;
4431 u64 extent_offset = 0;
4432 u64 item_end = 0;
4433 u64 last_size = new_size;
4434 u32 found_type = (u8)-1;
4435 int found_extent;
4436 int del_item;
4437 int pending_del_nr = 0;
4438 int pending_del_slot = 0;
4439 int extent_type = -1;
4440 int ret;
4441 int err = 0;
4442 u64 ino = btrfs_ino(BTRFS_I(inode));
4443 u64 bytes_deleted = 0;
4444 bool be_nice = false;
4445 bool should_throttle = false;
4446 bool should_end = false;
4448 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4451 * for non-free space inodes and ref cows, we want to back off from
4452 * time to time
4454 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4455 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4456 be_nice = true;
4458 path = btrfs_alloc_path();
4459 if (!path)
4460 return -ENOMEM;
4461 path->reada = READA_BACK;
4464 * We want to drop from the next block forward in case this new size is
4465 * not block aligned since we will be keeping the last block of the
4466 * extent just the way it is.
4468 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4469 root == fs_info->tree_root)
4470 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4471 fs_info->sectorsize),
4472 (u64)-1, 0);
4475 * This function is also used to drop the items in the log tree before
4476 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4477 * it is used to drop the loged items. So we shouldn't kill the delayed
4478 * items.
4480 if (min_type == 0 && root == BTRFS_I(inode)->root)
4481 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4483 key.objectid = ino;
4484 key.offset = (u64)-1;
4485 key.type = (u8)-1;
4487 search_again:
4489 * with a 16K leaf size and 128MB extents, you can actually queue
4490 * up a huge file in a single leaf. Most of the time that
4491 * bytes_deleted is > 0, it will be huge by the time we get here
4493 if (be_nice && bytes_deleted > SZ_32M) {
4494 if (btrfs_should_end_transaction(trans)) {
4495 err = -EAGAIN;
4496 goto error;
4501 path->leave_spinning = 1;
4502 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4503 if (ret < 0) {
4504 err = ret;
4505 goto out;
4508 if (ret > 0) {
4509 /* there are no items in the tree for us to truncate, we're
4510 * done
4512 if (path->slots[0] == 0)
4513 goto out;
4514 path->slots[0]--;
4517 while (1) {
4518 fi = NULL;
4519 leaf = path->nodes[0];
4520 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4521 found_type = found_key.type;
4523 if (found_key.objectid != ino)
4524 break;
4526 if (found_type < min_type)
4527 break;
4529 item_end = found_key.offset;
4530 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4531 fi = btrfs_item_ptr(leaf, path->slots[0],
4532 struct btrfs_file_extent_item);
4533 extent_type = btrfs_file_extent_type(leaf, fi);
4534 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4535 item_end +=
4536 btrfs_file_extent_num_bytes(leaf, fi);
4538 trace_btrfs_truncate_show_fi_regular(
4539 BTRFS_I(inode), leaf, fi,
4540 found_key.offset);
4541 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4542 item_end += btrfs_file_extent_inline_len(leaf,
4543 path->slots[0], fi);
4545 trace_btrfs_truncate_show_fi_inline(
4546 BTRFS_I(inode), leaf, fi, path->slots[0],
4547 found_key.offset);
4549 item_end--;
4551 if (found_type > min_type) {
4552 del_item = 1;
4553 } else {
4554 if (item_end < new_size)
4555 break;
4556 if (found_key.offset >= new_size)
4557 del_item = 1;
4558 else
4559 del_item = 0;
4561 found_extent = 0;
4562 /* FIXME, shrink the extent if the ref count is only 1 */
4563 if (found_type != BTRFS_EXTENT_DATA_KEY)
4564 goto delete;
4566 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4567 u64 num_dec;
4568 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4569 if (!del_item) {
4570 u64 orig_num_bytes =
4571 btrfs_file_extent_num_bytes(leaf, fi);
4572 extent_num_bytes = ALIGN(new_size -
4573 found_key.offset,
4574 fs_info->sectorsize);
4575 btrfs_set_file_extent_num_bytes(leaf, fi,
4576 extent_num_bytes);
4577 num_dec = (orig_num_bytes -
4578 extent_num_bytes);
4579 if (test_bit(BTRFS_ROOT_REF_COWS,
4580 &root->state) &&
4581 extent_start != 0)
4582 inode_sub_bytes(inode, num_dec);
4583 btrfs_mark_buffer_dirty(leaf);
4584 } else {
4585 extent_num_bytes =
4586 btrfs_file_extent_disk_num_bytes(leaf,
4587 fi);
4588 extent_offset = found_key.offset -
4589 btrfs_file_extent_offset(leaf, fi);
4591 /* FIXME blocksize != 4096 */
4592 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4593 if (extent_start != 0) {
4594 found_extent = 1;
4595 if (test_bit(BTRFS_ROOT_REF_COWS,
4596 &root->state))
4597 inode_sub_bytes(inode, num_dec);
4600 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4602 * we can't truncate inline items that have had
4603 * special encodings
4605 if (!del_item &&
4606 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4607 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4608 btrfs_file_extent_compression(leaf, fi) == 0) {
4609 u32 size = (u32)(new_size - found_key.offset);
4611 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4612 size = btrfs_file_extent_calc_inline_size(size);
4613 btrfs_truncate_item(root->fs_info, path, size, 1);
4614 } else if (!del_item) {
4616 * We have to bail so the last_size is set to
4617 * just before this extent.
4619 err = NEED_TRUNCATE_BLOCK;
4620 break;
4623 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4624 inode_sub_bytes(inode, item_end + 1 - new_size);
4626 delete:
4627 if (del_item)
4628 last_size = found_key.offset;
4629 else
4630 last_size = new_size;
4631 if (del_item) {
4632 if (!pending_del_nr) {
4633 /* no pending yet, add ourselves */
4634 pending_del_slot = path->slots[0];
4635 pending_del_nr = 1;
4636 } else if (pending_del_nr &&
4637 path->slots[0] + 1 == pending_del_slot) {
4638 /* hop on the pending chunk */
4639 pending_del_nr++;
4640 pending_del_slot = path->slots[0];
4641 } else {
4642 BUG();
4644 } else {
4645 break;
4647 should_throttle = false;
4649 if (found_extent &&
4650 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4651 root == fs_info->tree_root)) {
4652 btrfs_set_path_blocking(path);
4653 bytes_deleted += extent_num_bytes;
4654 ret = btrfs_free_extent(trans, root, extent_start,
4655 extent_num_bytes, 0,
4656 btrfs_header_owner(leaf),
4657 ino, extent_offset);
4658 BUG_ON(ret);
4659 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4660 btrfs_async_run_delayed_refs(fs_info,
4661 trans->delayed_ref_updates * 2,
4662 trans->transid, 0);
4663 if (be_nice) {
4664 if (truncate_space_check(trans, root,
4665 extent_num_bytes)) {
4666 should_end = true;
4668 if (btrfs_should_throttle_delayed_refs(trans,
4669 fs_info))
4670 should_throttle = true;
4674 if (found_type == BTRFS_INODE_ITEM_KEY)
4675 break;
4677 if (path->slots[0] == 0 ||
4678 path->slots[0] != pending_del_slot ||
4679 should_throttle || should_end) {
4680 if (pending_del_nr) {
4681 ret = btrfs_del_items(trans, root, path,
4682 pending_del_slot,
4683 pending_del_nr);
4684 if (ret) {
4685 btrfs_abort_transaction(trans, ret);
4686 goto error;
4688 pending_del_nr = 0;
4690 btrfs_release_path(path);
4691 if (should_throttle) {
4692 unsigned long updates = trans->delayed_ref_updates;
4693 if (updates) {
4694 trans->delayed_ref_updates = 0;
4695 ret = btrfs_run_delayed_refs(trans,
4696 fs_info,
4697 updates * 2);
4698 if (ret && !err)
4699 err = ret;
4703 * if we failed to refill our space rsv, bail out
4704 * and let the transaction restart
4706 if (should_end) {
4707 err = -EAGAIN;
4708 goto error;
4710 goto search_again;
4711 } else {
4712 path->slots[0]--;
4715 out:
4716 if (pending_del_nr) {
4717 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4718 pending_del_nr);
4719 if (ret)
4720 btrfs_abort_transaction(trans, ret);
4722 error:
4723 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4724 ASSERT(last_size >= new_size);
4725 if (!err && last_size > new_size)
4726 last_size = new_size;
4727 btrfs_ordered_update_i_size(inode, last_size, NULL);
4730 btrfs_free_path(path);
4732 if (be_nice && bytes_deleted > SZ_32M) {
4733 unsigned long updates = trans->delayed_ref_updates;
4734 if (updates) {
4735 trans->delayed_ref_updates = 0;
4736 ret = btrfs_run_delayed_refs(trans, fs_info,
4737 updates * 2);
4738 if (ret && !err)
4739 err = ret;
4742 return err;
4746 * btrfs_truncate_block - read, zero a chunk and write a block
4747 * @inode - inode that we're zeroing
4748 * @from - the offset to start zeroing
4749 * @len - the length to zero, 0 to zero the entire range respective to the
4750 * offset
4751 * @front - zero up to the offset instead of from the offset on
4753 * This will find the block for the "from" offset and cow the block and zero the
4754 * part we want to zero. This is used with truncate and hole punching.
4756 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4757 int front)
4759 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4760 struct address_space *mapping = inode->i_mapping;
4761 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4762 struct btrfs_ordered_extent *ordered;
4763 struct extent_state *cached_state = NULL;
4764 struct extent_changeset *data_reserved = NULL;
4765 char *kaddr;
4766 u32 blocksize = fs_info->sectorsize;
4767 pgoff_t index = from >> PAGE_SHIFT;
4768 unsigned offset = from & (blocksize - 1);
4769 struct page *page;
4770 gfp_t mask = btrfs_alloc_write_mask(mapping);
4771 int ret = 0;
4772 u64 block_start;
4773 u64 block_end;
4775 if (IS_ALIGNED(offset, blocksize) &&
4776 (!len || IS_ALIGNED(len, blocksize)))
4777 goto out;
4779 block_start = round_down(from, blocksize);
4780 block_end = block_start + blocksize - 1;
4782 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4783 block_start, blocksize);
4784 if (ret)
4785 goto out;
4787 again:
4788 page = find_or_create_page(mapping, index, mask);
4789 if (!page) {
4790 btrfs_delalloc_release_space(inode, data_reserved,
4791 block_start, blocksize);
4792 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
4793 ret = -ENOMEM;
4794 goto out;
4797 if (!PageUptodate(page)) {
4798 ret = btrfs_readpage(NULL, page);
4799 lock_page(page);
4800 if (page->mapping != mapping) {
4801 unlock_page(page);
4802 put_page(page);
4803 goto again;
4805 if (!PageUptodate(page)) {
4806 ret = -EIO;
4807 goto out_unlock;
4810 wait_on_page_writeback(page);
4812 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4813 set_page_extent_mapped(page);
4815 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4816 if (ordered) {
4817 unlock_extent_cached(io_tree, block_start, block_end,
4818 &cached_state);
4819 unlock_page(page);
4820 put_page(page);
4821 btrfs_start_ordered_extent(inode, ordered, 1);
4822 btrfs_put_ordered_extent(ordered);
4823 goto again;
4826 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4827 EXTENT_DIRTY | EXTENT_DELALLOC |
4828 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4829 0, 0, &cached_state);
4831 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4832 &cached_state, 0);
4833 if (ret) {
4834 unlock_extent_cached(io_tree, block_start, block_end,
4835 &cached_state);
4836 goto out_unlock;
4839 if (offset != blocksize) {
4840 if (!len)
4841 len = blocksize - offset;
4842 kaddr = kmap(page);
4843 if (front)
4844 memset(kaddr + (block_start - page_offset(page)),
4845 0, offset);
4846 else
4847 memset(kaddr + (block_start - page_offset(page)) + offset,
4848 0, len);
4849 flush_dcache_page(page);
4850 kunmap(page);
4852 ClearPageChecked(page);
4853 set_page_dirty(page);
4854 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4856 out_unlock:
4857 if (ret)
4858 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4859 blocksize);
4860 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
4861 unlock_page(page);
4862 put_page(page);
4863 out:
4864 extent_changeset_free(data_reserved);
4865 return ret;
4868 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4869 u64 offset, u64 len)
4871 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4872 struct btrfs_trans_handle *trans;
4873 int ret;
4876 * Still need to make sure the inode looks like it's been updated so
4877 * that any holes get logged if we fsync.
4879 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4880 BTRFS_I(inode)->last_trans = fs_info->generation;
4881 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4882 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4883 return 0;
4887 * 1 - for the one we're dropping
4888 * 1 - for the one we're adding
4889 * 1 - for updating the inode.
4891 trans = btrfs_start_transaction(root, 3);
4892 if (IS_ERR(trans))
4893 return PTR_ERR(trans);
4895 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4896 if (ret) {
4897 btrfs_abort_transaction(trans, ret);
4898 btrfs_end_transaction(trans);
4899 return ret;
4902 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4903 offset, 0, 0, len, 0, len, 0, 0, 0);
4904 if (ret)
4905 btrfs_abort_transaction(trans, ret);
4906 else
4907 btrfs_update_inode(trans, root, inode);
4908 btrfs_end_transaction(trans);
4909 return ret;
4913 * This function puts in dummy file extents for the area we're creating a hole
4914 * for. So if we are truncating this file to a larger size we need to insert
4915 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4916 * the range between oldsize and size
4918 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4920 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4921 struct btrfs_root *root = BTRFS_I(inode)->root;
4922 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4923 struct extent_map *em = NULL;
4924 struct extent_state *cached_state = NULL;
4925 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4926 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4927 u64 block_end = ALIGN(size, fs_info->sectorsize);
4928 u64 last_byte;
4929 u64 cur_offset;
4930 u64 hole_size;
4931 int err = 0;
4934 * If our size started in the middle of a block we need to zero out the
4935 * rest of the block before we expand the i_size, otherwise we could
4936 * expose stale data.
4938 err = btrfs_truncate_block(inode, oldsize, 0, 0);
4939 if (err)
4940 return err;
4942 if (size <= hole_start)
4943 return 0;
4945 while (1) {
4946 struct btrfs_ordered_extent *ordered;
4948 lock_extent_bits(io_tree, hole_start, block_end - 1,
4949 &cached_state);
4950 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
4951 block_end - hole_start);
4952 if (!ordered)
4953 break;
4954 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4955 &cached_state);
4956 btrfs_start_ordered_extent(inode, ordered, 1);
4957 btrfs_put_ordered_extent(ordered);
4960 cur_offset = hole_start;
4961 while (1) {
4962 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
4963 block_end - cur_offset, 0);
4964 if (IS_ERR(em)) {
4965 err = PTR_ERR(em);
4966 em = NULL;
4967 break;
4969 last_byte = min(extent_map_end(em), block_end);
4970 last_byte = ALIGN(last_byte, fs_info->sectorsize);
4971 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4972 struct extent_map *hole_em;
4973 hole_size = last_byte - cur_offset;
4975 err = maybe_insert_hole(root, inode, cur_offset,
4976 hole_size);
4977 if (err)
4978 break;
4979 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
4980 cur_offset + hole_size - 1, 0);
4981 hole_em = alloc_extent_map();
4982 if (!hole_em) {
4983 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4984 &BTRFS_I(inode)->runtime_flags);
4985 goto next;
4987 hole_em->start = cur_offset;
4988 hole_em->len = hole_size;
4989 hole_em->orig_start = cur_offset;
4991 hole_em->block_start = EXTENT_MAP_HOLE;
4992 hole_em->block_len = 0;
4993 hole_em->orig_block_len = 0;
4994 hole_em->ram_bytes = hole_size;
4995 hole_em->bdev = fs_info->fs_devices->latest_bdev;
4996 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4997 hole_em->generation = fs_info->generation;
4999 while (1) {
5000 write_lock(&em_tree->lock);
5001 err = add_extent_mapping(em_tree, hole_em, 1);
5002 write_unlock(&em_tree->lock);
5003 if (err != -EEXIST)
5004 break;
5005 btrfs_drop_extent_cache(BTRFS_I(inode),
5006 cur_offset,
5007 cur_offset +
5008 hole_size - 1, 0);
5010 free_extent_map(hole_em);
5012 next:
5013 free_extent_map(em);
5014 em = NULL;
5015 cur_offset = last_byte;
5016 if (cur_offset >= block_end)
5017 break;
5019 free_extent_map(em);
5020 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5021 return err;
5024 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5026 struct btrfs_root *root = BTRFS_I(inode)->root;
5027 struct btrfs_trans_handle *trans;
5028 loff_t oldsize = i_size_read(inode);
5029 loff_t newsize = attr->ia_size;
5030 int mask = attr->ia_valid;
5031 int ret;
5034 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5035 * special case where we need to update the times despite not having
5036 * these flags set. For all other operations the VFS set these flags
5037 * explicitly if it wants a timestamp update.
5039 if (newsize != oldsize) {
5040 inode_inc_iversion(inode);
5041 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5042 inode->i_ctime = inode->i_mtime =
5043 current_time(inode);
5046 if (newsize > oldsize) {
5048 * Don't do an expanding truncate while snapshotting is ongoing.
5049 * This is to ensure the snapshot captures a fully consistent
5050 * state of this file - if the snapshot captures this expanding
5051 * truncation, it must capture all writes that happened before
5052 * this truncation.
5054 btrfs_wait_for_snapshot_creation(root);
5055 ret = btrfs_cont_expand(inode, oldsize, newsize);
5056 if (ret) {
5057 btrfs_end_write_no_snapshotting(root);
5058 return ret;
5061 trans = btrfs_start_transaction(root, 1);
5062 if (IS_ERR(trans)) {
5063 btrfs_end_write_no_snapshotting(root);
5064 return PTR_ERR(trans);
5067 i_size_write(inode, newsize);
5068 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5069 pagecache_isize_extended(inode, oldsize, newsize);
5070 ret = btrfs_update_inode(trans, root, inode);
5071 btrfs_end_write_no_snapshotting(root);
5072 btrfs_end_transaction(trans);
5073 } else {
5076 * We're truncating a file that used to have good data down to
5077 * zero. Make sure it gets into the ordered flush list so that
5078 * any new writes get down to disk quickly.
5080 if (newsize == 0)
5081 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5082 &BTRFS_I(inode)->runtime_flags);
5085 * 1 for the orphan item we're going to add
5086 * 1 for the orphan item deletion.
5088 trans = btrfs_start_transaction(root, 2);
5089 if (IS_ERR(trans))
5090 return PTR_ERR(trans);
5093 * We need to do this in case we fail at _any_ point during the
5094 * actual truncate. Once we do the truncate_setsize we could
5095 * invalidate pages which forces any outstanding ordered io to
5096 * be instantly completed which will give us extents that need
5097 * to be truncated. If we fail to get an orphan inode down we
5098 * could have left over extents that were never meant to live,
5099 * so we need to guarantee from this point on that everything
5100 * will be consistent.
5102 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
5103 btrfs_end_transaction(trans);
5104 if (ret)
5105 return ret;
5107 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5108 truncate_setsize(inode, newsize);
5110 /* Disable nonlocked read DIO to avoid the end less truncate */
5111 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5112 inode_dio_wait(inode);
5113 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5115 ret = btrfs_truncate(inode);
5116 if (ret && inode->i_nlink) {
5117 int err;
5119 /* To get a stable disk_i_size */
5120 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5121 if (err) {
5122 btrfs_orphan_del(NULL, BTRFS_I(inode));
5123 return err;
5127 * failed to truncate, disk_i_size is only adjusted down
5128 * as we remove extents, so it should represent the true
5129 * size of the inode, so reset the in memory size and
5130 * delete our orphan entry.
5132 trans = btrfs_join_transaction(root);
5133 if (IS_ERR(trans)) {
5134 btrfs_orphan_del(NULL, BTRFS_I(inode));
5135 return ret;
5137 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5138 err = btrfs_orphan_del(trans, BTRFS_I(inode));
5139 if (err)
5140 btrfs_abort_transaction(trans, err);
5141 btrfs_end_transaction(trans);
5145 return ret;
5148 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5150 struct inode *inode = d_inode(dentry);
5151 struct btrfs_root *root = BTRFS_I(inode)->root;
5152 int err;
5154 if (btrfs_root_readonly(root))
5155 return -EROFS;
5157 err = setattr_prepare(dentry, attr);
5158 if (err)
5159 return err;
5161 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5162 err = btrfs_setsize(inode, attr);
5163 if (err)
5164 return err;
5167 if (attr->ia_valid) {
5168 setattr_copy(inode, attr);
5169 inode_inc_iversion(inode);
5170 err = btrfs_dirty_inode(inode);
5172 if (!err && attr->ia_valid & ATTR_MODE)
5173 err = posix_acl_chmod(inode, inode->i_mode);
5176 return err;
5180 * While truncating the inode pages during eviction, we get the VFS calling
5181 * btrfs_invalidatepage() against each page of the inode. This is slow because
5182 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5183 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5184 * extent_state structures over and over, wasting lots of time.
5186 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5187 * those expensive operations on a per page basis and do only the ordered io
5188 * finishing, while we release here the extent_map and extent_state structures,
5189 * without the excessive merging and splitting.
5191 static void evict_inode_truncate_pages(struct inode *inode)
5193 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5194 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5195 struct rb_node *node;
5197 ASSERT(inode->i_state & I_FREEING);
5198 truncate_inode_pages_final(&inode->i_data);
5200 write_lock(&map_tree->lock);
5201 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5202 struct extent_map *em;
5204 node = rb_first(&map_tree->map);
5205 em = rb_entry(node, struct extent_map, rb_node);
5206 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5207 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5208 remove_extent_mapping(map_tree, em);
5209 free_extent_map(em);
5210 if (need_resched()) {
5211 write_unlock(&map_tree->lock);
5212 cond_resched();
5213 write_lock(&map_tree->lock);
5216 write_unlock(&map_tree->lock);
5219 * Keep looping until we have no more ranges in the io tree.
5220 * We can have ongoing bios started by readpages (called from readahead)
5221 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5222 * still in progress (unlocked the pages in the bio but did not yet
5223 * unlocked the ranges in the io tree). Therefore this means some
5224 * ranges can still be locked and eviction started because before
5225 * submitting those bios, which are executed by a separate task (work
5226 * queue kthread), inode references (inode->i_count) were not taken
5227 * (which would be dropped in the end io callback of each bio).
5228 * Therefore here we effectively end up waiting for those bios and
5229 * anyone else holding locked ranges without having bumped the inode's
5230 * reference count - if we don't do it, when they access the inode's
5231 * io_tree to unlock a range it may be too late, leading to an
5232 * use-after-free issue.
5234 spin_lock(&io_tree->lock);
5235 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5236 struct extent_state *state;
5237 struct extent_state *cached_state = NULL;
5238 u64 start;
5239 u64 end;
5241 node = rb_first(&io_tree->state);
5242 state = rb_entry(node, struct extent_state, rb_node);
5243 start = state->start;
5244 end = state->end;
5245 spin_unlock(&io_tree->lock);
5247 lock_extent_bits(io_tree, start, end, &cached_state);
5250 * If still has DELALLOC flag, the extent didn't reach disk,
5251 * and its reserved space won't be freed by delayed_ref.
5252 * So we need to free its reserved space here.
5253 * (Refer to comment in btrfs_invalidatepage, case 2)
5255 * Note, end is the bytenr of last byte, so we need + 1 here.
5257 if (state->state & EXTENT_DELALLOC)
5258 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5260 clear_extent_bit(io_tree, start, end,
5261 EXTENT_LOCKED | EXTENT_DIRTY |
5262 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5263 EXTENT_DEFRAG, 1, 1, &cached_state);
5265 cond_resched();
5266 spin_lock(&io_tree->lock);
5268 spin_unlock(&io_tree->lock);
5271 void btrfs_evict_inode(struct inode *inode)
5273 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5274 struct btrfs_trans_handle *trans;
5275 struct btrfs_root *root = BTRFS_I(inode)->root;
5276 struct btrfs_block_rsv *rsv, *global_rsv;
5277 int steal_from_global = 0;
5278 u64 min_size;
5279 int ret;
5281 trace_btrfs_inode_evict(inode);
5283 if (!root) {
5284 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5285 return;
5288 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5290 evict_inode_truncate_pages(inode);
5292 if (inode->i_nlink &&
5293 ((btrfs_root_refs(&root->root_item) != 0 &&
5294 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5295 btrfs_is_free_space_inode(BTRFS_I(inode))))
5296 goto no_delete;
5298 if (is_bad_inode(inode)) {
5299 btrfs_orphan_del(NULL, BTRFS_I(inode));
5300 goto no_delete;
5302 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5303 if (!special_file(inode->i_mode))
5304 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5306 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5308 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
5309 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5310 &BTRFS_I(inode)->runtime_flags));
5311 goto no_delete;
5314 if (inode->i_nlink > 0) {
5315 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5316 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5317 goto no_delete;
5320 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5321 if (ret) {
5322 btrfs_orphan_del(NULL, BTRFS_I(inode));
5323 goto no_delete;
5326 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5327 if (!rsv) {
5328 btrfs_orphan_del(NULL, BTRFS_I(inode));
5329 goto no_delete;
5331 rsv->size = min_size;
5332 rsv->failfast = 1;
5333 global_rsv = &fs_info->global_block_rsv;
5335 btrfs_i_size_write(BTRFS_I(inode), 0);
5338 * This is a bit simpler than btrfs_truncate since we've already
5339 * reserved our space for our orphan item in the unlink, so we just
5340 * need to reserve some slack space in case we add bytes and update
5341 * inode item when doing the truncate.
5343 while (1) {
5344 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5345 BTRFS_RESERVE_FLUSH_LIMIT);
5348 * Try and steal from the global reserve since we will
5349 * likely not use this space anyway, we want to try as
5350 * hard as possible to get this to work.
5352 if (ret)
5353 steal_from_global++;
5354 else
5355 steal_from_global = 0;
5356 ret = 0;
5359 * steal_from_global == 0: we reserved stuff, hooray!
5360 * steal_from_global == 1: we didn't reserve stuff, boo!
5361 * steal_from_global == 2: we've committed, still not a lot of
5362 * room but maybe we'll have room in the global reserve this
5363 * time.
5364 * steal_from_global == 3: abandon all hope!
5366 if (steal_from_global > 2) {
5367 btrfs_warn(fs_info,
5368 "Could not get space for a delete, will truncate on mount %d",
5369 ret);
5370 btrfs_orphan_del(NULL, BTRFS_I(inode));
5371 btrfs_free_block_rsv(fs_info, rsv);
5372 goto no_delete;
5375 trans = btrfs_join_transaction(root);
5376 if (IS_ERR(trans)) {
5377 btrfs_orphan_del(NULL, BTRFS_I(inode));
5378 btrfs_free_block_rsv(fs_info, rsv);
5379 goto no_delete;
5383 * We can't just steal from the global reserve, we need to make
5384 * sure there is room to do it, if not we need to commit and try
5385 * again.
5387 if (steal_from_global) {
5388 if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
5389 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5390 min_size, 0);
5391 else
5392 ret = -ENOSPC;
5396 * Couldn't steal from the global reserve, we have too much
5397 * pending stuff built up, commit the transaction and try it
5398 * again.
5400 if (ret) {
5401 ret = btrfs_commit_transaction(trans);
5402 if (ret) {
5403 btrfs_orphan_del(NULL, BTRFS_I(inode));
5404 btrfs_free_block_rsv(fs_info, rsv);
5405 goto no_delete;
5407 continue;
5408 } else {
5409 steal_from_global = 0;
5412 trans->block_rsv = rsv;
5414 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5415 if (ret != -ENOSPC && ret != -EAGAIN)
5416 break;
5418 trans->block_rsv = &fs_info->trans_block_rsv;
5419 btrfs_end_transaction(trans);
5420 trans = NULL;
5421 btrfs_btree_balance_dirty(fs_info);
5424 btrfs_free_block_rsv(fs_info, rsv);
5427 * Errors here aren't a big deal, it just means we leave orphan items
5428 * in the tree. They will be cleaned up on the next mount.
5430 if (ret == 0) {
5431 trans->block_rsv = root->orphan_block_rsv;
5432 btrfs_orphan_del(trans, BTRFS_I(inode));
5433 } else {
5434 btrfs_orphan_del(NULL, BTRFS_I(inode));
5437 trans->block_rsv = &fs_info->trans_block_rsv;
5438 if (!(root == fs_info->tree_root ||
5439 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5440 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5442 btrfs_end_transaction(trans);
5443 btrfs_btree_balance_dirty(fs_info);
5444 no_delete:
5445 btrfs_remove_delayed_node(BTRFS_I(inode));
5446 clear_inode(inode);
5450 * this returns the key found in the dir entry in the location pointer.
5451 * If no dir entries were found, location->objectid is 0.
5453 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5454 struct btrfs_key *location)
5456 const char *name = dentry->d_name.name;
5457 int namelen = dentry->d_name.len;
5458 struct btrfs_dir_item *di;
5459 struct btrfs_path *path;
5460 struct btrfs_root *root = BTRFS_I(dir)->root;
5461 int ret = 0;
5463 path = btrfs_alloc_path();
5464 if (!path)
5465 return -ENOMEM;
5467 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5468 name, namelen, 0);
5469 if (IS_ERR(di))
5470 ret = PTR_ERR(di);
5472 if (IS_ERR_OR_NULL(di))
5473 goto out_err;
5475 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5476 if (location->type != BTRFS_INODE_ITEM_KEY &&
5477 location->type != BTRFS_ROOT_ITEM_KEY) {
5478 btrfs_warn(root->fs_info,
5479 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5480 __func__, name, btrfs_ino(BTRFS_I(dir)),
5481 location->objectid, location->type, location->offset);
5482 goto out_err;
5484 out:
5485 btrfs_free_path(path);
5486 return ret;
5487 out_err:
5488 location->objectid = 0;
5489 goto out;
5493 * when we hit a tree root in a directory, the btrfs part of the inode
5494 * needs to be changed to reflect the root directory of the tree root. This
5495 * is kind of like crossing a mount point.
5497 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5498 struct inode *dir,
5499 struct dentry *dentry,
5500 struct btrfs_key *location,
5501 struct btrfs_root **sub_root)
5503 struct btrfs_path *path;
5504 struct btrfs_root *new_root;
5505 struct btrfs_root_ref *ref;
5506 struct extent_buffer *leaf;
5507 struct btrfs_key key;
5508 int ret;
5509 int err = 0;
5511 path = btrfs_alloc_path();
5512 if (!path) {
5513 err = -ENOMEM;
5514 goto out;
5517 err = -ENOENT;
5518 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5519 key.type = BTRFS_ROOT_REF_KEY;
5520 key.offset = location->objectid;
5522 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5523 if (ret) {
5524 if (ret < 0)
5525 err = ret;
5526 goto out;
5529 leaf = path->nodes[0];
5530 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5531 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5532 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5533 goto out;
5535 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5536 (unsigned long)(ref + 1),
5537 dentry->d_name.len);
5538 if (ret)
5539 goto out;
5541 btrfs_release_path(path);
5543 new_root = btrfs_read_fs_root_no_name(fs_info, location);
5544 if (IS_ERR(new_root)) {
5545 err = PTR_ERR(new_root);
5546 goto out;
5549 *sub_root = new_root;
5550 location->objectid = btrfs_root_dirid(&new_root->root_item);
5551 location->type = BTRFS_INODE_ITEM_KEY;
5552 location->offset = 0;
5553 err = 0;
5554 out:
5555 btrfs_free_path(path);
5556 return err;
5559 static void inode_tree_add(struct inode *inode)
5561 struct btrfs_root *root = BTRFS_I(inode)->root;
5562 struct btrfs_inode *entry;
5563 struct rb_node **p;
5564 struct rb_node *parent;
5565 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5566 u64 ino = btrfs_ino(BTRFS_I(inode));
5568 if (inode_unhashed(inode))
5569 return;
5570 parent = NULL;
5571 spin_lock(&root->inode_lock);
5572 p = &root->inode_tree.rb_node;
5573 while (*p) {
5574 parent = *p;
5575 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5577 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5578 p = &parent->rb_left;
5579 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5580 p = &parent->rb_right;
5581 else {
5582 WARN_ON(!(entry->vfs_inode.i_state &
5583 (I_WILL_FREE | I_FREEING)));
5584 rb_replace_node(parent, new, &root->inode_tree);
5585 RB_CLEAR_NODE(parent);
5586 spin_unlock(&root->inode_lock);
5587 return;
5590 rb_link_node(new, parent, p);
5591 rb_insert_color(new, &root->inode_tree);
5592 spin_unlock(&root->inode_lock);
5595 static void inode_tree_del(struct inode *inode)
5597 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5598 struct btrfs_root *root = BTRFS_I(inode)->root;
5599 int empty = 0;
5601 spin_lock(&root->inode_lock);
5602 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5603 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5604 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5605 empty = RB_EMPTY_ROOT(&root->inode_tree);
5607 spin_unlock(&root->inode_lock);
5609 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5610 synchronize_srcu(&fs_info->subvol_srcu);
5611 spin_lock(&root->inode_lock);
5612 empty = RB_EMPTY_ROOT(&root->inode_tree);
5613 spin_unlock(&root->inode_lock);
5614 if (empty)
5615 btrfs_add_dead_root(root);
5619 void btrfs_invalidate_inodes(struct btrfs_root *root)
5621 struct btrfs_fs_info *fs_info = root->fs_info;
5622 struct rb_node *node;
5623 struct rb_node *prev;
5624 struct btrfs_inode *entry;
5625 struct inode *inode;
5626 u64 objectid = 0;
5628 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
5629 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5631 spin_lock(&root->inode_lock);
5632 again:
5633 node = root->inode_tree.rb_node;
5634 prev = NULL;
5635 while (node) {
5636 prev = node;
5637 entry = rb_entry(node, struct btrfs_inode, rb_node);
5639 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5640 node = node->rb_left;
5641 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5642 node = node->rb_right;
5643 else
5644 break;
5646 if (!node) {
5647 while (prev) {
5648 entry = rb_entry(prev, struct btrfs_inode, rb_node);
5649 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
5650 node = prev;
5651 break;
5653 prev = rb_next(prev);
5656 while (node) {
5657 entry = rb_entry(node, struct btrfs_inode, rb_node);
5658 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
5659 inode = igrab(&entry->vfs_inode);
5660 if (inode) {
5661 spin_unlock(&root->inode_lock);
5662 if (atomic_read(&inode->i_count) > 1)
5663 d_prune_aliases(inode);
5665 * btrfs_drop_inode will have it removed from
5666 * the inode cache when its usage count
5667 * hits zero.
5669 iput(inode);
5670 cond_resched();
5671 spin_lock(&root->inode_lock);
5672 goto again;
5675 if (cond_resched_lock(&root->inode_lock))
5676 goto again;
5678 node = rb_next(node);
5680 spin_unlock(&root->inode_lock);
5683 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5685 struct btrfs_iget_args *args = p;
5686 inode->i_ino = args->location->objectid;
5687 memcpy(&BTRFS_I(inode)->location, args->location,
5688 sizeof(*args->location));
5689 BTRFS_I(inode)->root = args->root;
5690 return 0;
5693 static int btrfs_find_actor(struct inode *inode, void *opaque)
5695 struct btrfs_iget_args *args = opaque;
5696 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5697 args->root == BTRFS_I(inode)->root;
5700 static struct inode *btrfs_iget_locked(struct super_block *s,
5701 struct btrfs_key *location,
5702 struct btrfs_root *root)
5704 struct inode *inode;
5705 struct btrfs_iget_args args;
5706 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5708 args.location = location;
5709 args.root = root;
5711 inode = iget5_locked(s, hashval, btrfs_find_actor,
5712 btrfs_init_locked_inode,
5713 (void *)&args);
5714 return inode;
5717 /* Get an inode object given its location and corresponding root.
5718 * Returns in *is_new if the inode was read from disk
5720 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5721 struct btrfs_root *root, int *new)
5723 struct inode *inode;
5725 inode = btrfs_iget_locked(s, location, root);
5726 if (!inode)
5727 return ERR_PTR(-ENOMEM);
5729 if (inode->i_state & I_NEW) {
5730 int ret;
5732 ret = btrfs_read_locked_inode(inode);
5733 if (!is_bad_inode(inode)) {
5734 inode_tree_add(inode);
5735 unlock_new_inode(inode);
5736 if (new)
5737 *new = 1;
5738 } else {
5739 unlock_new_inode(inode);
5740 iput(inode);
5741 ASSERT(ret < 0);
5742 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
5746 return inode;
5749 static struct inode *new_simple_dir(struct super_block *s,
5750 struct btrfs_key *key,
5751 struct btrfs_root *root)
5753 struct inode *inode = new_inode(s);
5755 if (!inode)
5756 return ERR_PTR(-ENOMEM);
5758 BTRFS_I(inode)->root = root;
5759 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5760 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5762 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5763 inode->i_op = &btrfs_dir_ro_inode_operations;
5764 inode->i_opflags &= ~IOP_XATTR;
5765 inode->i_fop = &simple_dir_operations;
5766 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5767 inode->i_mtime = current_time(inode);
5768 inode->i_atime = inode->i_mtime;
5769 inode->i_ctime = inode->i_mtime;
5770 BTRFS_I(inode)->i_otime = inode->i_mtime;
5772 return inode;
5775 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5777 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5778 struct inode *inode;
5779 struct btrfs_root *root = BTRFS_I(dir)->root;
5780 struct btrfs_root *sub_root = root;
5781 struct btrfs_key location;
5782 int index;
5783 int ret = 0;
5785 if (dentry->d_name.len > BTRFS_NAME_LEN)
5786 return ERR_PTR(-ENAMETOOLONG);
5788 ret = btrfs_inode_by_name(dir, dentry, &location);
5789 if (ret < 0)
5790 return ERR_PTR(ret);
5792 if (location.objectid == 0)
5793 return ERR_PTR(-ENOENT);
5795 if (location.type == BTRFS_INODE_ITEM_KEY) {
5796 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5797 return inode;
5800 index = srcu_read_lock(&fs_info->subvol_srcu);
5801 ret = fixup_tree_root_location(fs_info, dir, dentry,
5802 &location, &sub_root);
5803 if (ret < 0) {
5804 if (ret != -ENOENT)
5805 inode = ERR_PTR(ret);
5806 else
5807 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5808 } else {
5809 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5811 srcu_read_unlock(&fs_info->subvol_srcu, index);
5813 if (!IS_ERR(inode) && root != sub_root) {
5814 down_read(&fs_info->cleanup_work_sem);
5815 if (!sb_rdonly(inode->i_sb))
5816 ret = btrfs_orphan_cleanup(sub_root);
5817 up_read(&fs_info->cleanup_work_sem);
5818 if (ret) {
5819 iput(inode);
5820 inode = ERR_PTR(ret);
5824 return inode;
5827 static int btrfs_dentry_delete(const struct dentry *dentry)
5829 struct btrfs_root *root;
5830 struct inode *inode = d_inode(dentry);
5832 if (!inode && !IS_ROOT(dentry))
5833 inode = d_inode(dentry->d_parent);
5835 if (inode) {
5836 root = BTRFS_I(inode)->root;
5837 if (btrfs_root_refs(&root->root_item) == 0)
5838 return 1;
5840 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5841 return 1;
5843 return 0;
5846 static void btrfs_dentry_release(struct dentry *dentry)
5848 kfree(dentry->d_fsdata);
5851 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5852 unsigned int flags)
5854 struct inode *inode;
5856 inode = btrfs_lookup_dentry(dir, dentry);
5857 if (IS_ERR(inode)) {
5858 if (PTR_ERR(inode) == -ENOENT)
5859 inode = NULL;
5860 else
5861 return ERR_CAST(inode);
5864 return d_splice_alias(inode, dentry);
5867 unsigned char btrfs_filetype_table[] = {
5868 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5872 * All this infrastructure exists because dir_emit can fault, and we are holding
5873 * the tree lock when doing readdir. For now just allocate a buffer and copy
5874 * our information into that, and then dir_emit from the buffer. This is
5875 * similar to what NFS does, only we don't keep the buffer around in pagecache
5876 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5877 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5878 * tree lock.
5880 static int btrfs_opendir(struct inode *inode, struct file *file)
5882 struct btrfs_file_private *private;
5884 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5885 if (!private)
5886 return -ENOMEM;
5887 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5888 if (!private->filldir_buf) {
5889 kfree(private);
5890 return -ENOMEM;
5892 file->private_data = private;
5893 return 0;
5896 struct dir_entry {
5897 u64 ino;
5898 u64 offset;
5899 unsigned type;
5900 int name_len;
5903 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5905 while (entries--) {
5906 struct dir_entry *entry = addr;
5907 char *name = (char *)(entry + 1);
5909 ctx->pos = entry->offset;
5910 if (!dir_emit(ctx, name, entry->name_len, entry->ino,
5911 entry->type))
5912 return 1;
5913 addr += sizeof(struct dir_entry) + entry->name_len;
5914 ctx->pos++;
5916 return 0;
5919 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5921 struct inode *inode = file_inode(file);
5922 struct btrfs_root *root = BTRFS_I(inode)->root;
5923 struct btrfs_file_private *private = file->private_data;
5924 struct btrfs_dir_item *di;
5925 struct btrfs_key key;
5926 struct btrfs_key found_key;
5927 struct btrfs_path *path;
5928 void *addr;
5929 struct list_head ins_list;
5930 struct list_head del_list;
5931 int ret;
5932 struct extent_buffer *leaf;
5933 int slot;
5934 char *name_ptr;
5935 int name_len;
5936 int entries = 0;
5937 int total_len = 0;
5938 bool put = false;
5939 struct btrfs_key location;
5941 if (!dir_emit_dots(file, ctx))
5942 return 0;
5944 path = btrfs_alloc_path();
5945 if (!path)
5946 return -ENOMEM;
5948 addr = private->filldir_buf;
5949 path->reada = READA_FORWARD;
5951 INIT_LIST_HEAD(&ins_list);
5952 INIT_LIST_HEAD(&del_list);
5953 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5955 again:
5956 key.type = BTRFS_DIR_INDEX_KEY;
5957 key.offset = ctx->pos;
5958 key.objectid = btrfs_ino(BTRFS_I(inode));
5960 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5961 if (ret < 0)
5962 goto err;
5964 while (1) {
5965 struct dir_entry *entry;
5967 leaf = path->nodes[0];
5968 slot = path->slots[0];
5969 if (slot >= btrfs_header_nritems(leaf)) {
5970 ret = btrfs_next_leaf(root, path);
5971 if (ret < 0)
5972 goto err;
5973 else if (ret > 0)
5974 break;
5975 continue;
5978 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5980 if (found_key.objectid != key.objectid)
5981 break;
5982 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5983 break;
5984 if (found_key.offset < ctx->pos)
5985 goto next;
5986 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5987 goto next;
5988 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5989 name_len = btrfs_dir_name_len(leaf, di);
5990 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5991 PAGE_SIZE) {
5992 btrfs_release_path(path);
5993 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5994 if (ret)
5995 goto nopos;
5996 addr = private->filldir_buf;
5997 entries = 0;
5998 total_len = 0;
5999 goto again;
6002 entry = addr;
6003 entry->name_len = name_len;
6004 name_ptr = (char *)(entry + 1);
6005 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6006 name_len);
6007 entry->type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
6008 btrfs_dir_item_key_to_cpu(leaf, di, &location);
6009 entry->ino = location.objectid;
6010 entry->offset = found_key.offset;
6011 entries++;
6012 addr += sizeof(struct dir_entry) + name_len;
6013 total_len += sizeof(struct dir_entry) + name_len;
6014 next:
6015 path->slots[0]++;
6017 btrfs_release_path(path);
6019 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6020 if (ret)
6021 goto nopos;
6023 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6024 if (ret)
6025 goto nopos;
6028 * Stop new entries from being returned after we return the last
6029 * entry.
6031 * New directory entries are assigned a strictly increasing
6032 * offset. This means that new entries created during readdir
6033 * are *guaranteed* to be seen in the future by that readdir.
6034 * This has broken buggy programs which operate on names as
6035 * they're returned by readdir. Until we re-use freed offsets
6036 * we have this hack to stop new entries from being returned
6037 * under the assumption that they'll never reach this huge
6038 * offset.
6040 * This is being careful not to overflow 32bit loff_t unless the
6041 * last entry requires it because doing so has broken 32bit apps
6042 * in the past.
6044 if (ctx->pos >= INT_MAX)
6045 ctx->pos = LLONG_MAX;
6046 else
6047 ctx->pos = INT_MAX;
6048 nopos:
6049 ret = 0;
6050 err:
6051 if (put)
6052 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6053 btrfs_free_path(path);
6054 return ret;
6057 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
6059 struct btrfs_root *root = BTRFS_I(inode)->root;
6060 struct btrfs_trans_handle *trans;
6061 int ret = 0;
6062 bool nolock = false;
6064 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6065 return 0;
6067 if (btrfs_fs_closing(root->fs_info) &&
6068 btrfs_is_free_space_inode(BTRFS_I(inode)))
6069 nolock = true;
6071 if (wbc->sync_mode == WB_SYNC_ALL) {
6072 if (nolock)
6073 trans = btrfs_join_transaction_nolock(root);
6074 else
6075 trans = btrfs_join_transaction(root);
6076 if (IS_ERR(trans))
6077 return PTR_ERR(trans);
6078 ret = btrfs_commit_transaction(trans);
6080 return ret;
6084 * This is somewhat expensive, updating the tree every time the
6085 * inode changes. But, it is most likely to find the inode in cache.
6086 * FIXME, needs more benchmarking...there are no reasons other than performance
6087 * to keep or drop this code.
6089 static int btrfs_dirty_inode(struct inode *inode)
6091 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6092 struct btrfs_root *root = BTRFS_I(inode)->root;
6093 struct btrfs_trans_handle *trans;
6094 int ret;
6096 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6097 return 0;
6099 trans = btrfs_join_transaction(root);
6100 if (IS_ERR(trans))
6101 return PTR_ERR(trans);
6103 ret = btrfs_update_inode(trans, root, inode);
6104 if (ret && ret == -ENOSPC) {
6105 /* whoops, lets try again with the full transaction */
6106 btrfs_end_transaction(trans);
6107 trans = btrfs_start_transaction(root, 1);
6108 if (IS_ERR(trans))
6109 return PTR_ERR(trans);
6111 ret = btrfs_update_inode(trans, root, inode);
6113 btrfs_end_transaction(trans);
6114 if (BTRFS_I(inode)->delayed_node)
6115 btrfs_balance_delayed_items(fs_info);
6117 return ret;
6121 * This is a copy of file_update_time. We need this so we can return error on
6122 * ENOSPC for updating the inode in the case of file write and mmap writes.
6124 static int btrfs_update_time(struct inode *inode, struct timespec *now,
6125 int flags)
6127 struct btrfs_root *root = BTRFS_I(inode)->root;
6128 bool dirty = flags & ~S_VERSION;
6130 if (btrfs_root_readonly(root))
6131 return -EROFS;
6133 if (flags & S_VERSION)
6134 dirty |= inode_maybe_inc_iversion(inode, dirty);
6135 if (flags & S_CTIME)
6136 inode->i_ctime = *now;
6137 if (flags & S_MTIME)
6138 inode->i_mtime = *now;
6139 if (flags & S_ATIME)
6140 inode->i_atime = *now;
6141 return dirty ? btrfs_dirty_inode(inode) : 0;
6145 * find the highest existing sequence number in a directory
6146 * and then set the in-memory index_cnt variable to reflect
6147 * free sequence numbers
6149 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6151 struct btrfs_root *root = inode->root;
6152 struct btrfs_key key, found_key;
6153 struct btrfs_path *path;
6154 struct extent_buffer *leaf;
6155 int ret;
6157 key.objectid = btrfs_ino(inode);
6158 key.type = BTRFS_DIR_INDEX_KEY;
6159 key.offset = (u64)-1;
6161 path = btrfs_alloc_path();
6162 if (!path)
6163 return -ENOMEM;
6165 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6166 if (ret < 0)
6167 goto out;
6168 /* FIXME: we should be able to handle this */
6169 if (ret == 0)
6170 goto out;
6171 ret = 0;
6174 * MAGIC NUMBER EXPLANATION:
6175 * since we search a directory based on f_pos we have to start at 2
6176 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6177 * else has to start at 2
6179 if (path->slots[0] == 0) {
6180 inode->index_cnt = 2;
6181 goto out;
6184 path->slots[0]--;
6186 leaf = path->nodes[0];
6187 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6189 if (found_key.objectid != btrfs_ino(inode) ||
6190 found_key.type != BTRFS_DIR_INDEX_KEY) {
6191 inode->index_cnt = 2;
6192 goto out;
6195 inode->index_cnt = found_key.offset + 1;
6196 out:
6197 btrfs_free_path(path);
6198 return ret;
6202 * helper to find a free sequence number in a given directory. This current
6203 * code is very simple, later versions will do smarter things in the btree
6205 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6207 int ret = 0;
6209 if (dir->index_cnt == (u64)-1) {
6210 ret = btrfs_inode_delayed_dir_index_count(dir);
6211 if (ret) {
6212 ret = btrfs_set_inode_index_count(dir);
6213 if (ret)
6214 return ret;
6218 *index = dir->index_cnt;
6219 dir->index_cnt++;
6221 return ret;
6224 static int btrfs_insert_inode_locked(struct inode *inode)
6226 struct btrfs_iget_args args;
6227 args.location = &BTRFS_I(inode)->location;
6228 args.root = BTRFS_I(inode)->root;
6230 return insert_inode_locked4(inode,
6231 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6232 btrfs_find_actor, &args);
6236 * Inherit flags from the parent inode.
6238 * Currently only the compression flags and the cow flags are inherited.
6240 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6242 unsigned int flags;
6244 if (!dir)
6245 return;
6247 flags = BTRFS_I(dir)->flags;
6249 if (flags & BTRFS_INODE_NOCOMPRESS) {
6250 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6251 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6252 } else if (flags & BTRFS_INODE_COMPRESS) {
6253 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6254 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6257 if (flags & BTRFS_INODE_NODATACOW) {
6258 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6259 if (S_ISREG(inode->i_mode))
6260 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6263 btrfs_update_iflags(inode);
6266 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6267 struct btrfs_root *root,
6268 struct inode *dir,
6269 const char *name, int name_len,
6270 u64 ref_objectid, u64 objectid,
6271 umode_t mode, u64 *index)
6273 struct btrfs_fs_info *fs_info = root->fs_info;
6274 struct inode *inode;
6275 struct btrfs_inode_item *inode_item;
6276 struct btrfs_key *location;
6277 struct btrfs_path *path;
6278 struct btrfs_inode_ref *ref;
6279 struct btrfs_key key[2];
6280 u32 sizes[2];
6281 int nitems = name ? 2 : 1;
6282 unsigned long ptr;
6283 int ret;
6285 path = btrfs_alloc_path();
6286 if (!path)
6287 return ERR_PTR(-ENOMEM);
6289 inode = new_inode(fs_info->sb);
6290 if (!inode) {
6291 btrfs_free_path(path);
6292 return ERR_PTR(-ENOMEM);
6296 * O_TMPFILE, set link count to 0, so that after this point,
6297 * we fill in an inode item with the correct link count.
6299 if (!name)
6300 set_nlink(inode, 0);
6303 * we have to initialize this early, so we can reclaim the inode
6304 * number if we fail afterwards in this function.
6306 inode->i_ino = objectid;
6308 if (dir && name) {
6309 trace_btrfs_inode_request(dir);
6311 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6312 if (ret) {
6313 btrfs_free_path(path);
6314 iput(inode);
6315 return ERR_PTR(ret);
6317 } else if (dir) {
6318 *index = 0;
6321 * index_cnt is ignored for everything but a dir,
6322 * btrfs_set_inode_index_count has an explanation for the magic
6323 * number
6325 BTRFS_I(inode)->index_cnt = 2;
6326 BTRFS_I(inode)->dir_index = *index;
6327 BTRFS_I(inode)->root = root;
6328 BTRFS_I(inode)->generation = trans->transid;
6329 inode->i_generation = BTRFS_I(inode)->generation;
6332 * We could have gotten an inode number from somebody who was fsynced
6333 * and then removed in this same transaction, so let's just set full
6334 * sync since it will be a full sync anyway and this will blow away the
6335 * old info in the log.
6337 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6339 key[0].objectid = objectid;
6340 key[0].type = BTRFS_INODE_ITEM_KEY;
6341 key[0].offset = 0;
6343 sizes[0] = sizeof(struct btrfs_inode_item);
6345 if (name) {
6347 * Start new inodes with an inode_ref. This is slightly more
6348 * efficient for small numbers of hard links since they will
6349 * be packed into one item. Extended refs will kick in if we
6350 * add more hard links than can fit in the ref item.
6352 key[1].objectid = objectid;
6353 key[1].type = BTRFS_INODE_REF_KEY;
6354 key[1].offset = ref_objectid;
6356 sizes[1] = name_len + sizeof(*ref);
6359 location = &BTRFS_I(inode)->location;
6360 location->objectid = objectid;
6361 location->offset = 0;
6362 location->type = BTRFS_INODE_ITEM_KEY;
6364 ret = btrfs_insert_inode_locked(inode);
6365 if (ret < 0)
6366 goto fail;
6368 path->leave_spinning = 1;
6369 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6370 if (ret != 0)
6371 goto fail_unlock;
6373 inode_init_owner(inode, dir, mode);
6374 inode_set_bytes(inode, 0);
6376 inode->i_mtime = current_time(inode);
6377 inode->i_atime = inode->i_mtime;
6378 inode->i_ctime = inode->i_mtime;
6379 BTRFS_I(inode)->i_otime = inode->i_mtime;
6381 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6382 struct btrfs_inode_item);
6383 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6384 sizeof(*inode_item));
6385 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6387 if (name) {
6388 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6389 struct btrfs_inode_ref);
6390 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6391 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6392 ptr = (unsigned long)(ref + 1);
6393 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6396 btrfs_mark_buffer_dirty(path->nodes[0]);
6397 btrfs_free_path(path);
6399 btrfs_inherit_iflags(inode, dir);
6401 if (S_ISREG(mode)) {
6402 if (btrfs_test_opt(fs_info, NODATASUM))
6403 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6404 if (btrfs_test_opt(fs_info, NODATACOW))
6405 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6406 BTRFS_INODE_NODATASUM;
6409 inode_tree_add(inode);
6411 trace_btrfs_inode_new(inode);
6412 btrfs_set_inode_last_trans(trans, inode);
6414 btrfs_update_root_times(trans, root);
6416 ret = btrfs_inode_inherit_props(trans, inode, dir);
6417 if (ret)
6418 btrfs_err(fs_info,
6419 "error inheriting props for ino %llu (root %llu): %d",
6420 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6422 return inode;
6424 fail_unlock:
6425 unlock_new_inode(inode);
6426 fail:
6427 if (dir && name)
6428 BTRFS_I(dir)->index_cnt--;
6429 btrfs_free_path(path);
6430 iput(inode);
6431 return ERR_PTR(ret);
6434 static inline u8 btrfs_inode_type(struct inode *inode)
6436 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6440 * utility function to add 'inode' into 'parent_inode' with
6441 * a give name and a given sequence number.
6442 * if 'add_backref' is true, also insert a backref from the
6443 * inode to the parent directory.
6445 int btrfs_add_link(struct btrfs_trans_handle *trans,
6446 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6447 const char *name, int name_len, int add_backref, u64 index)
6449 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6450 int ret = 0;
6451 struct btrfs_key key;
6452 struct btrfs_root *root = parent_inode->root;
6453 u64 ino = btrfs_ino(inode);
6454 u64 parent_ino = btrfs_ino(parent_inode);
6456 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6457 memcpy(&key, &inode->root->root_key, sizeof(key));
6458 } else {
6459 key.objectid = ino;
6460 key.type = BTRFS_INODE_ITEM_KEY;
6461 key.offset = 0;
6464 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6465 ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6466 root->root_key.objectid, parent_ino,
6467 index, name, name_len);
6468 } else if (add_backref) {
6469 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6470 parent_ino, index);
6473 /* Nothing to clean up yet */
6474 if (ret)
6475 return ret;
6477 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6478 parent_inode, &key,
6479 btrfs_inode_type(&inode->vfs_inode), index);
6480 if (ret == -EEXIST || ret == -EOVERFLOW)
6481 goto fail_dir_item;
6482 else if (ret) {
6483 btrfs_abort_transaction(trans, ret);
6484 return ret;
6487 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6488 name_len * 2);
6489 inode_inc_iversion(&parent_inode->vfs_inode);
6490 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6491 current_time(&parent_inode->vfs_inode);
6492 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6493 if (ret)
6494 btrfs_abort_transaction(trans, ret);
6495 return ret;
6497 fail_dir_item:
6498 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6499 u64 local_index;
6500 int err;
6501 err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6502 root->root_key.objectid, parent_ino,
6503 &local_index, name, name_len);
6505 } else if (add_backref) {
6506 u64 local_index;
6507 int err;
6509 err = btrfs_del_inode_ref(trans, root, name, name_len,
6510 ino, parent_ino, &local_index);
6512 return ret;
6515 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6516 struct btrfs_inode *dir, struct dentry *dentry,
6517 struct btrfs_inode *inode, int backref, u64 index)
6519 int err = btrfs_add_link(trans, dir, inode,
6520 dentry->d_name.name, dentry->d_name.len,
6521 backref, index);
6522 if (err > 0)
6523 err = -EEXIST;
6524 return err;
6527 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6528 umode_t mode, dev_t rdev)
6530 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6531 struct btrfs_trans_handle *trans;
6532 struct btrfs_root *root = BTRFS_I(dir)->root;
6533 struct inode *inode = NULL;
6534 int err;
6535 int drop_inode = 0;
6536 u64 objectid;
6537 u64 index = 0;
6540 * 2 for inode item and ref
6541 * 2 for dir items
6542 * 1 for xattr if selinux is on
6544 trans = btrfs_start_transaction(root, 5);
6545 if (IS_ERR(trans))
6546 return PTR_ERR(trans);
6548 err = btrfs_find_free_ino(root, &objectid);
6549 if (err)
6550 goto out_unlock;
6552 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6553 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6554 mode, &index);
6555 if (IS_ERR(inode)) {
6556 err = PTR_ERR(inode);
6557 goto out_unlock;
6561 * If the active LSM wants to access the inode during
6562 * d_instantiate it needs these. Smack checks to see
6563 * if the filesystem supports xattrs by looking at the
6564 * ops vector.
6566 inode->i_op = &btrfs_special_inode_operations;
6567 init_special_inode(inode, inode->i_mode, rdev);
6569 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6570 if (err)
6571 goto out_unlock_inode;
6573 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6574 0, index);
6575 if (err) {
6576 goto out_unlock_inode;
6577 } else {
6578 btrfs_update_inode(trans, root, inode);
6579 unlock_new_inode(inode);
6580 d_instantiate(dentry, inode);
6583 out_unlock:
6584 btrfs_end_transaction(trans);
6585 btrfs_btree_balance_dirty(fs_info);
6586 if (drop_inode) {
6587 inode_dec_link_count(inode);
6588 iput(inode);
6590 return err;
6592 out_unlock_inode:
6593 drop_inode = 1;
6594 unlock_new_inode(inode);
6595 goto out_unlock;
6599 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6600 umode_t mode, bool excl)
6602 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6603 struct btrfs_trans_handle *trans;
6604 struct btrfs_root *root = BTRFS_I(dir)->root;
6605 struct inode *inode = NULL;
6606 int drop_inode_on_err = 0;
6607 int err;
6608 u64 objectid;
6609 u64 index = 0;
6612 * 2 for inode item and ref
6613 * 2 for dir items
6614 * 1 for xattr if selinux is on
6616 trans = btrfs_start_transaction(root, 5);
6617 if (IS_ERR(trans))
6618 return PTR_ERR(trans);
6620 err = btrfs_find_free_ino(root, &objectid);
6621 if (err)
6622 goto out_unlock;
6624 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6625 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6626 mode, &index);
6627 if (IS_ERR(inode)) {
6628 err = PTR_ERR(inode);
6629 goto out_unlock;
6631 drop_inode_on_err = 1;
6633 * If the active LSM wants to access the inode during
6634 * d_instantiate it needs these. Smack checks to see
6635 * if the filesystem supports xattrs by looking at the
6636 * ops vector.
6638 inode->i_fop = &btrfs_file_operations;
6639 inode->i_op = &btrfs_file_inode_operations;
6640 inode->i_mapping->a_ops = &btrfs_aops;
6642 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6643 if (err)
6644 goto out_unlock_inode;
6646 err = btrfs_update_inode(trans, root, inode);
6647 if (err)
6648 goto out_unlock_inode;
6650 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6651 0, index);
6652 if (err)
6653 goto out_unlock_inode;
6655 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6656 unlock_new_inode(inode);
6657 d_instantiate(dentry, inode);
6659 out_unlock:
6660 btrfs_end_transaction(trans);
6661 if (err && drop_inode_on_err) {
6662 inode_dec_link_count(inode);
6663 iput(inode);
6665 btrfs_btree_balance_dirty(fs_info);
6666 return err;
6668 out_unlock_inode:
6669 unlock_new_inode(inode);
6670 goto out_unlock;
6674 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6675 struct dentry *dentry)
6677 struct btrfs_trans_handle *trans = NULL;
6678 struct btrfs_root *root = BTRFS_I(dir)->root;
6679 struct inode *inode = d_inode(old_dentry);
6680 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6681 u64 index;
6682 int err;
6683 int drop_inode = 0;
6685 /* do not allow sys_link's with other subvols of the same device */
6686 if (root->objectid != BTRFS_I(inode)->root->objectid)
6687 return -EXDEV;
6689 if (inode->i_nlink >= BTRFS_LINK_MAX)
6690 return -EMLINK;
6692 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6693 if (err)
6694 goto fail;
6697 * 2 items for inode and inode ref
6698 * 2 items for dir items
6699 * 1 item for parent inode
6701 trans = btrfs_start_transaction(root, 5);
6702 if (IS_ERR(trans)) {
6703 err = PTR_ERR(trans);
6704 trans = NULL;
6705 goto fail;
6708 /* There are several dir indexes for this inode, clear the cache. */
6709 BTRFS_I(inode)->dir_index = 0ULL;
6710 inc_nlink(inode);
6711 inode_inc_iversion(inode);
6712 inode->i_ctime = current_time(inode);
6713 ihold(inode);
6714 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6716 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6717 1, index);
6719 if (err) {
6720 drop_inode = 1;
6721 } else {
6722 struct dentry *parent = dentry->d_parent;
6723 err = btrfs_update_inode(trans, root, inode);
6724 if (err)
6725 goto fail;
6726 if (inode->i_nlink == 1) {
6728 * If new hard link count is 1, it's a file created
6729 * with open(2) O_TMPFILE flag.
6731 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6732 if (err)
6733 goto fail;
6735 d_instantiate(dentry, inode);
6736 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6739 fail:
6740 if (trans)
6741 btrfs_end_transaction(trans);
6742 if (drop_inode) {
6743 inode_dec_link_count(inode);
6744 iput(inode);
6746 btrfs_btree_balance_dirty(fs_info);
6747 return err;
6750 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6752 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6753 struct inode *inode = NULL;
6754 struct btrfs_trans_handle *trans;
6755 struct btrfs_root *root = BTRFS_I(dir)->root;
6756 int err = 0;
6757 int drop_on_err = 0;
6758 u64 objectid = 0;
6759 u64 index = 0;
6762 * 2 items for inode and ref
6763 * 2 items for dir items
6764 * 1 for xattr if selinux is on
6766 trans = btrfs_start_transaction(root, 5);
6767 if (IS_ERR(trans))
6768 return PTR_ERR(trans);
6770 err = btrfs_find_free_ino(root, &objectid);
6771 if (err)
6772 goto out_fail;
6774 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6775 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6776 S_IFDIR | mode, &index);
6777 if (IS_ERR(inode)) {
6778 err = PTR_ERR(inode);
6779 goto out_fail;
6782 drop_on_err = 1;
6783 /* these must be set before we unlock the inode */
6784 inode->i_op = &btrfs_dir_inode_operations;
6785 inode->i_fop = &btrfs_dir_file_operations;
6787 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6788 if (err)
6789 goto out_fail_inode;
6791 btrfs_i_size_write(BTRFS_I(inode), 0);
6792 err = btrfs_update_inode(trans, root, inode);
6793 if (err)
6794 goto out_fail_inode;
6796 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6797 dentry->d_name.name,
6798 dentry->d_name.len, 0, index);
6799 if (err)
6800 goto out_fail_inode;
6802 d_instantiate(dentry, inode);
6804 * mkdir is special. We're unlocking after we call d_instantiate
6805 * to avoid a race with nfsd calling d_instantiate.
6807 unlock_new_inode(inode);
6808 drop_on_err = 0;
6810 out_fail:
6811 btrfs_end_transaction(trans);
6812 if (drop_on_err) {
6813 inode_dec_link_count(inode);
6814 iput(inode);
6816 btrfs_btree_balance_dirty(fs_info);
6817 return err;
6819 out_fail_inode:
6820 unlock_new_inode(inode);
6821 goto out_fail;
6824 static noinline int uncompress_inline(struct btrfs_path *path,
6825 struct page *page,
6826 size_t pg_offset, u64 extent_offset,
6827 struct btrfs_file_extent_item *item)
6829 int ret;
6830 struct extent_buffer *leaf = path->nodes[0];
6831 char *tmp;
6832 size_t max_size;
6833 unsigned long inline_size;
6834 unsigned long ptr;
6835 int compress_type;
6837 WARN_ON(pg_offset != 0);
6838 compress_type = btrfs_file_extent_compression(leaf, item);
6839 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6840 inline_size = btrfs_file_extent_inline_item_len(leaf,
6841 btrfs_item_nr(path->slots[0]));
6842 tmp = kmalloc(inline_size, GFP_NOFS);
6843 if (!tmp)
6844 return -ENOMEM;
6845 ptr = btrfs_file_extent_inline_start(item);
6847 read_extent_buffer(leaf, tmp, ptr, inline_size);
6849 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6850 ret = btrfs_decompress(compress_type, tmp, page,
6851 extent_offset, inline_size, max_size);
6854 * decompression code contains a memset to fill in any space between the end
6855 * of the uncompressed data and the end of max_size in case the decompressed
6856 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6857 * the end of an inline extent and the beginning of the next block, so we
6858 * cover that region here.
6861 if (max_size + pg_offset < PAGE_SIZE) {
6862 char *map = kmap(page);
6863 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6864 kunmap(page);
6866 kfree(tmp);
6867 return ret;
6871 * a bit scary, this does extent mapping from logical file offset to the disk.
6872 * the ugly parts come from merging extents from the disk with the in-ram
6873 * representation. This gets more complex because of the data=ordered code,
6874 * where the in-ram extents might be locked pending data=ordered completion.
6876 * This also copies inline extents directly into the page.
6878 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6879 struct page *page,
6880 size_t pg_offset, u64 start, u64 len,
6881 int create)
6883 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6884 int ret;
6885 int err = 0;
6886 u64 extent_start = 0;
6887 u64 extent_end = 0;
6888 u64 objectid = btrfs_ino(inode);
6889 u32 found_type;
6890 struct btrfs_path *path = NULL;
6891 struct btrfs_root *root = inode->root;
6892 struct btrfs_file_extent_item *item;
6893 struct extent_buffer *leaf;
6894 struct btrfs_key found_key;
6895 struct extent_map *em = NULL;
6896 struct extent_map_tree *em_tree = &inode->extent_tree;
6897 struct extent_io_tree *io_tree = &inode->io_tree;
6898 const bool new_inline = !page || create;
6900 read_lock(&em_tree->lock);
6901 em = lookup_extent_mapping(em_tree, start, len);
6902 if (em)
6903 em->bdev = fs_info->fs_devices->latest_bdev;
6904 read_unlock(&em_tree->lock);
6906 if (em) {
6907 if (em->start > start || em->start + em->len <= start)
6908 free_extent_map(em);
6909 else if (em->block_start == EXTENT_MAP_INLINE && page)
6910 free_extent_map(em);
6911 else
6912 goto out;
6914 em = alloc_extent_map();
6915 if (!em) {
6916 err = -ENOMEM;
6917 goto out;
6919 em->bdev = fs_info->fs_devices->latest_bdev;
6920 em->start = EXTENT_MAP_HOLE;
6921 em->orig_start = EXTENT_MAP_HOLE;
6922 em->len = (u64)-1;
6923 em->block_len = (u64)-1;
6925 if (!path) {
6926 path = btrfs_alloc_path();
6927 if (!path) {
6928 err = -ENOMEM;
6929 goto out;
6932 * Chances are we'll be called again, so go ahead and do
6933 * readahead
6935 path->reada = READA_FORWARD;
6938 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6939 if (ret < 0) {
6940 err = ret;
6941 goto out;
6944 if (ret != 0) {
6945 if (path->slots[0] == 0)
6946 goto not_found;
6947 path->slots[0]--;
6950 leaf = path->nodes[0];
6951 item = btrfs_item_ptr(leaf, path->slots[0],
6952 struct btrfs_file_extent_item);
6953 /* are we inside the extent that was found? */
6954 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6955 found_type = found_key.type;
6956 if (found_key.objectid != objectid ||
6957 found_type != BTRFS_EXTENT_DATA_KEY) {
6959 * If we backup past the first extent we want to move forward
6960 * and see if there is an extent in front of us, otherwise we'll
6961 * say there is a hole for our whole search range which can
6962 * cause problems.
6964 extent_end = start;
6965 goto next;
6968 found_type = btrfs_file_extent_type(leaf, item);
6969 extent_start = found_key.offset;
6970 if (found_type == BTRFS_FILE_EXTENT_REG ||
6971 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6972 extent_end = extent_start +
6973 btrfs_file_extent_num_bytes(leaf, item);
6975 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6976 extent_start);
6977 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6978 size_t size;
6979 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6980 extent_end = ALIGN(extent_start + size,
6981 fs_info->sectorsize);
6983 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6984 path->slots[0],
6985 extent_start);
6987 next:
6988 if (start >= extent_end) {
6989 path->slots[0]++;
6990 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6991 ret = btrfs_next_leaf(root, path);
6992 if (ret < 0) {
6993 err = ret;
6994 goto out;
6996 if (ret > 0)
6997 goto not_found;
6998 leaf = path->nodes[0];
7000 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7001 if (found_key.objectid != objectid ||
7002 found_key.type != BTRFS_EXTENT_DATA_KEY)
7003 goto not_found;
7004 if (start + len <= found_key.offset)
7005 goto not_found;
7006 if (start > found_key.offset)
7007 goto next;
7008 em->start = start;
7009 em->orig_start = start;
7010 em->len = found_key.offset - start;
7011 goto not_found_em;
7014 btrfs_extent_item_to_extent_map(inode, path, item,
7015 new_inline, em);
7017 if (found_type == BTRFS_FILE_EXTENT_REG ||
7018 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7019 goto insert;
7020 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
7021 unsigned long ptr;
7022 char *map;
7023 size_t size;
7024 size_t extent_offset;
7025 size_t copy_size;
7027 if (new_inline)
7028 goto out;
7030 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
7031 extent_offset = page_offset(page) + pg_offset - extent_start;
7032 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7033 size - extent_offset);
7034 em->start = extent_start + extent_offset;
7035 em->len = ALIGN(copy_size, fs_info->sectorsize);
7036 em->orig_block_len = em->len;
7037 em->orig_start = em->start;
7038 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7039 if (!PageUptodate(page)) {
7040 if (btrfs_file_extent_compression(leaf, item) !=
7041 BTRFS_COMPRESS_NONE) {
7042 ret = uncompress_inline(path, page, pg_offset,
7043 extent_offset, item);
7044 if (ret) {
7045 err = ret;
7046 goto out;
7048 } else {
7049 map = kmap(page);
7050 read_extent_buffer(leaf, map + pg_offset, ptr,
7051 copy_size);
7052 if (pg_offset + copy_size < PAGE_SIZE) {
7053 memset(map + pg_offset + copy_size, 0,
7054 PAGE_SIZE - pg_offset -
7055 copy_size);
7057 kunmap(page);
7059 flush_dcache_page(page);
7061 set_extent_uptodate(io_tree, em->start,
7062 extent_map_end(em) - 1, NULL, GFP_NOFS);
7063 goto insert;
7065 not_found:
7066 em->start = start;
7067 em->orig_start = start;
7068 em->len = len;
7069 not_found_em:
7070 em->block_start = EXTENT_MAP_HOLE;
7071 insert:
7072 btrfs_release_path(path);
7073 if (em->start > start || extent_map_end(em) <= start) {
7074 btrfs_err(fs_info,
7075 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7076 em->start, em->len, start, len);
7077 err = -EIO;
7078 goto out;
7081 err = 0;
7082 write_lock(&em_tree->lock);
7083 err = btrfs_add_extent_mapping(em_tree, &em, start, len);
7084 write_unlock(&em_tree->lock);
7085 out:
7087 trace_btrfs_get_extent(root, inode, em);
7089 btrfs_free_path(path);
7090 if (err) {
7091 free_extent_map(em);
7092 return ERR_PTR(err);
7094 BUG_ON(!em); /* Error is always set */
7095 return em;
7098 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7099 struct page *page,
7100 size_t pg_offset, u64 start, u64 len,
7101 int create)
7103 struct extent_map *em;
7104 struct extent_map *hole_em = NULL;
7105 u64 range_start = start;
7106 u64 end;
7107 u64 found;
7108 u64 found_end;
7109 int err = 0;
7111 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7112 if (IS_ERR(em))
7113 return em;
7115 * If our em maps to:
7116 * - a hole or
7117 * - a pre-alloc extent,
7118 * there might actually be delalloc bytes behind it.
7120 if (em->block_start != EXTENT_MAP_HOLE &&
7121 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7122 return em;
7123 else
7124 hole_em = em;
7126 /* check to see if we've wrapped (len == -1 or similar) */
7127 end = start + len;
7128 if (end < start)
7129 end = (u64)-1;
7130 else
7131 end -= 1;
7133 em = NULL;
7135 /* ok, we didn't find anything, lets look for delalloc */
7136 found = count_range_bits(&inode->io_tree, &range_start,
7137 end, len, EXTENT_DELALLOC, 1);
7138 found_end = range_start + found;
7139 if (found_end < range_start)
7140 found_end = (u64)-1;
7143 * we didn't find anything useful, return
7144 * the original results from get_extent()
7146 if (range_start > end || found_end <= start) {
7147 em = hole_em;
7148 hole_em = NULL;
7149 goto out;
7152 /* adjust the range_start to make sure it doesn't
7153 * go backwards from the start they passed in
7155 range_start = max(start, range_start);
7156 found = found_end - range_start;
7158 if (found > 0) {
7159 u64 hole_start = start;
7160 u64 hole_len = len;
7162 em = alloc_extent_map();
7163 if (!em) {
7164 err = -ENOMEM;
7165 goto out;
7168 * when btrfs_get_extent can't find anything it
7169 * returns one huge hole
7171 * make sure what it found really fits our range, and
7172 * adjust to make sure it is based on the start from
7173 * the caller
7175 if (hole_em) {
7176 u64 calc_end = extent_map_end(hole_em);
7178 if (calc_end <= start || (hole_em->start > end)) {
7179 free_extent_map(hole_em);
7180 hole_em = NULL;
7181 } else {
7182 hole_start = max(hole_em->start, start);
7183 hole_len = calc_end - hole_start;
7186 em->bdev = NULL;
7187 if (hole_em && range_start > hole_start) {
7188 /* our hole starts before our delalloc, so we
7189 * have to return just the parts of the hole
7190 * that go until the delalloc starts
7192 em->len = min(hole_len,
7193 range_start - hole_start);
7194 em->start = hole_start;
7195 em->orig_start = hole_start;
7197 * don't adjust block start at all,
7198 * it is fixed at EXTENT_MAP_HOLE
7200 em->block_start = hole_em->block_start;
7201 em->block_len = hole_len;
7202 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7203 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7204 } else {
7205 em->start = range_start;
7206 em->len = found;
7207 em->orig_start = range_start;
7208 em->block_start = EXTENT_MAP_DELALLOC;
7209 em->block_len = found;
7211 } else {
7212 return hole_em;
7214 out:
7216 free_extent_map(hole_em);
7217 if (err) {
7218 free_extent_map(em);
7219 return ERR_PTR(err);
7221 return em;
7224 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7225 const u64 start,
7226 const u64 len,
7227 const u64 orig_start,
7228 const u64 block_start,
7229 const u64 block_len,
7230 const u64 orig_block_len,
7231 const u64 ram_bytes,
7232 const int type)
7234 struct extent_map *em = NULL;
7235 int ret;
7237 if (type != BTRFS_ORDERED_NOCOW) {
7238 em = create_io_em(inode, start, len, orig_start,
7239 block_start, block_len, orig_block_len,
7240 ram_bytes,
7241 BTRFS_COMPRESS_NONE, /* compress_type */
7242 type);
7243 if (IS_ERR(em))
7244 goto out;
7246 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7247 len, block_len, type);
7248 if (ret) {
7249 if (em) {
7250 free_extent_map(em);
7251 btrfs_drop_extent_cache(BTRFS_I(inode), start,
7252 start + len - 1, 0);
7254 em = ERR_PTR(ret);
7256 out:
7258 return em;
7261 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7262 u64 start, u64 len)
7264 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7265 struct btrfs_root *root = BTRFS_I(inode)->root;
7266 struct extent_map *em;
7267 struct btrfs_key ins;
7268 u64 alloc_hint;
7269 int ret;
7271 alloc_hint = get_extent_allocation_hint(inode, start, len);
7272 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7273 0, alloc_hint, &ins, 1, 1);
7274 if (ret)
7275 return ERR_PTR(ret);
7277 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7278 ins.objectid, ins.offset, ins.offset,
7279 ins.offset, BTRFS_ORDERED_REGULAR);
7280 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7281 if (IS_ERR(em))
7282 btrfs_free_reserved_extent(fs_info, ins.objectid,
7283 ins.offset, 1);
7285 return em;
7289 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7290 * block must be cow'd
7292 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7293 u64 *orig_start, u64 *orig_block_len,
7294 u64 *ram_bytes)
7296 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7297 struct btrfs_path *path;
7298 int ret;
7299 struct extent_buffer *leaf;
7300 struct btrfs_root *root = BTRFS_I(inode)->root;
7301 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7302 struct btrfs_file_extent_item *fi;
7303 struct btrfs_key key;
7304 u64 disk_bytenr;
7305 u64 backref_offset;
7306 u64 extent_end;
7307 u64 num_bytes;
7308 int slot;
7309 int found_type;
7310 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7312 path = btrfs_alloc_path();
7313 if (!path)
7314 return -ENOMEM;
7316 ret = btrfs_lookup_file_extent(NULL, root, path,
7317 btrfs_ino(BTRFS_I(inode)), offset, 0);
7318 if (ret < 0)
7319 goto out;
7321 slot = path->slots[0];
7322 if (ret == 1) {
7323 if (slot == 0) {
7324 /* can't find the item, must cow */
7325 ret = 0;
7326 goto out;
7328 slot--;
7330 ret = 0;
7331 leaf = path->nodes[0];
7332 btrfs_item_key_to_cpu(leaf, &key, slot);
7333 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7334 key.type != BTRFS_EXTENT_DATA_KEY) {
7335 /* not our file or wrong item type, must cow */
7336 goto out;
7339 if (key.offset > offset) {
7340 /* Wrong offset, must cow */
7341 goto out;
7344 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7345 found_type = btrfs_file_extent_type(leaf, fi);
7346 if (found_type != BTRFS_FILE_EXTENT_REG &&
7347 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7348 /* not a regular extent, must cow */
7349 goto out;
7352 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7353 goto out;
7355 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7356 if (extent_end <= offset)
7357 goto out;
7359 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7360 if (disk_bytenr == 0)
7361 goto out;
7363 if (btrfs_file_extent_compression(leaf, fi) ||
7364 btrfs_file_extent_encryption(leaf, fi) ||
7365 btrfs_file_extent_other_encoding(leaf, fi))
7366 goto out;
7368 backref_offset = btrfs_file_extent_offset(leaf, fi);
7370 if (orig_start) {
7371 *orig_start = key.offset - backref_offset;
7372 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7373 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7376 if (btrfs_extent_readonly(fs_info, disk_bytenr))
7377 goto out;
7379 num_bytes = min(offset + *len, extent_end) - offset;
7380 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7381 u64 range_end;
7383 range_end = round_up(offset + num_bytes,
7384 root->fs_info->sectorsize) - 1;
7385 ret = test_range_bit(io_tree, offset, range_end,
7386 EXTENT_DELALLOC, 0, NULL);
7387 if (ret) {
7388 ret = -EAGAIN;
7389 goto out;
7393 btrfs_release_path(path);
7396 * look for other files referencing this extent, if we
7397 * find any we must cow
7400 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7401 key.offset - backref_offset, disk_bytenr);
7402 if (ret) {
7403 ret = 0;
7404 goto out;
7408 * adjust disk_bytenr and num_bytes to cover just the bytes
7409 * in this extent we are about to write. If there
7410 * are any csums in that range we have to cow in order
7411 * to keep the csums correct
7413 disk_bytenr += backref_offset;
7414 disk_bytenr += offset - key.offset;
7415 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7416 goto out;
7418 * all of the above have passed, it is safe to overwrite this extent
7419 * without cow
7421 *len = num_bytes;
7422 ret = 1;
7423 out:
7424 btrfs_free_path(path);
7425 return ret;
7428 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7430 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7431 bool found = false;
7432 void **pagep = NULL;
7433 struct page *page = NULL;
7434 unsigned long start_idx;
7435 unsigned long end_idx;
7437 start_idx = start >> PAGE_SHIFT;
7440 * end is the last byte in the last page. end == start is legal
7442 end_idx = end >> PAGE_SHIFT;
7444 rcu_read_lock();
7446 /* Most of the code in this while loop is lifted from
7447 * find_get_page. It's been modified to begin searching from a
7448 * page and return just the first page found in that range. If the
7449 * found idx is less than or equal to the end idx then we know that
7450 * a page exists. If no pages are found or if those pages are
7451 * outside of the range then we're fine (yay!) */
7452 while (page == NULL &&
7453 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7454 page = radix_tree_deref_slot(pagep);
7455 if (unlikely(!page))
7456 break;
7458 if (radix_tree_exception(page)) {
7459 if (radix_tree_deref_retry(page)) {
7460 page = NULL;
7461 continue;
7464 * Otherwise, shmem/tmpfs must be storing a swap entry
7465 * here as an exceptional entry: so return it without
7466 * attempting to raise page count.
7468 page = NULL;
7469 break; /* TODO: Is this relevant for this use case? */
7472 if (!page_cache_get_speculative(page)) {
7473 page = NULL;
7474 continue;
7478 * Has the page moved?
7479 * This is part of the lockless pagecache protocol. See
7480 * include/linux/pagemap.h for details.
7482 if (unlikely(page != *pagep)) {
7483 put_page(page);
7484 page = NULL;
7488 if (page) {
7489 if (page->index <= end_idx)
7490 found = true;
7491 put_page(page);
7494 rcu_read_unlock();
7495 return found;
7498 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7499 struct extent_state **cached_state, int writing)
7501 struct btrfs_ordered_extent *ordered;
7502 int ret = 0;
7504 while (1) {
7505 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7506 cached_state);
7508 * We're concerned with the entire range that we're going to be
7509 * doing DIO to, so we need to make sure there's no ordered
7510 * extents in this range.
7512 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7513 lockend - lockstart + 1);
7516 * We need to make sure there are no buffered pages in this
7517 * range either, we could have raced between the invalidate in
7518 * generic_file_direct_write and locking the extent. The
7519 * invalidate needs to happen so that reads after a write do not
7520 * get stale data.
7522 if (!ordered &&
7523 (!writing ||
7524 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7525 break;
7527 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7528 cached_state);
7530 if (ordered) {
7532 * If we are doing a DIO read and the ordered extent we
7533 * found is for a buffered write, we can not wait for it
7534 * to complete and retry, because if we do so we can
7535 * deadlock with concurrent buffered writes on page
7536 * locks. This happens only if our DIO read covers more
7537 * than one extent map, if at this point has already
7538 * created an ordered extent for a previous extent map
7539 * and locked its range in the inode's io tree, and a
7540 * concurrent write against that previous extent map's
7541 * range and this range started (we unlock the ranges
7542 * in the io tree only when the bios complete and
7543 * buffered writes always lock pages before attempting
7544 * to lock range in the io tree).
7546 if (writing ||
7547 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7548 btrfs_start_ordered_extent(inode, ordered, 1);
7549 else
7550 ret = -ENOTBLK;
7551 btrfs_put_ordered_extent(ordered);
7552 } else {
7554 * We could trigger writeback for this range (and wait
7555 * for it to complete) and then invalidate the pages for
7556 * this range (through invalidate_inode_pages2_range()),
7557 * but that can lead us to a deadlock with a concurrent
7558 * call to readpages() (a buffered read or a defrag call
7559 * triggered a readahead) on a page lock due to an
7560 * ordered dio extent we created before but did not have
7561 * yet a corresponding bio submitted (whence it can not
7562 * complete), which makes readpages() wait for that
7563 * ordered extent to complete while holding a lock on
7564 * that page.
7566 ret = -ENOTBLK;
7569 if (ret)
7570 break;
7572 cond_resched();
7575 return ret;
7578 /* The callers of this must take lock_extent() */
7579 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7580 u64 orig_start, u64 block_start,
7581 u64 block_len, u64 orig_block_len,
7582 u64 ram_bytes, int compress_type,
7583 int type)
7585 struct extent_map_tree *em_tree;
7586 struct extent_map *em;
7587 struct btrfs_root *root = BTRFS_I(inode)->root;
7588 int ret;
7590 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7591 type == BTRFS_ORDERED_COMPRESSED ||
7592 type == BTRFS_ORDERED_NOCOW ||
7593 type == BTRFS_ORDERED_REGULAR);
7595 em_tree = &BTRFS_I(inode)->extent_tree;
7596 em = alloc_extent_map();
7597 if (!em)
7598 return ERR_PTR(-ENOMEM);
7600 em->start = start;
7601 em->orig_start = orig_start;
7602 em->len = len;
7603 em->block_len = block_len;
7604 em->block_start = block_start;
7605 em->bdev = root->fs_info->fs_devices->latest_bdev;
7606 em->orig_block_len = orig_block_len;
7607 em->ram_bytes = ram_bytes;
7608 em->generation = -1;
7609 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7610 if (type == BTRFS_ORDERED_PREALLOC) {
7611 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7612 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7613 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7614 em->compress_type = compress_type;
7617 do {
7618 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7619 em->start + em->len - 1, 0);
7620 write_lock(&em_tree->lock);
7621 ret = add_extent_mapping(em_tree, em, 1);
7622 write_unlock(&em_tree->lock);
7624 * The caller has taken lock_extent(), who could race with us
7625 * to add em?
7627 } while (ret == -EEXIST);
7629 if (ret) {
7630 free_extent_map(em);
7631 return ERR_PTR(ret);
7634 /* em got 2 refs now, callers needs to do free_extent_map once. */
7635 return em;
7638 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7639 struct buffer_head *bh_result, int create)
7641 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7642 struct extent_map *em;
7643 struct extent_state *cached_state = NULL;
7644 struct btrfs_dio_data *dio_data = NULL;
7645 u64 start = iblock << inode->i_blkbits;
7646 u64 lockstart, lockend;
7647 u64 len = bh_result->b_size;
7648 int unlock_bits = EXTENT_LOCKED;
7649 int ret = 0;
7651 if (create)
7652 unlock_bits |= EXTENT_DIRTY;
7653 else
7654 len = min_t(u64, len, fs_info->sectorsize);
7656 lockstart = start;
7657 lockend = start + len - 1;
7659 if (current->journal_info) {
7661 * Need to pull our outstanding extents and set journal_info to NULL so
7662 * that anything that needs to check if there's a transaction doesn't get
7663 * confused.
7665 dio_data = current->journal_info;
7666 current->journal_info = NULL;
7670 * If this errors out it's because we couldn't invalidate pagecache for
7671 * this range and we need to fallback to buffered.
7673 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7674 create)) {
7675 ret = -ENOTBLK;
7676 goto err;
7679 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7680 if (IS_ERR(em)) {
7681 ret = PTR_ERR(em);
7682 goto unlock_err;
7686 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7687 * io. INLINE is special, and we could probably kludge it in here, but
7688 * it's still buffered so for safety lets just fall back to the generic
7689 * buffered path.
7691 * For COMPRESSED we _have_ to read the entire extent in so we can
7692 * decompress it, so there will be buffering required no matter what we
7693 * do, so go ahead and fallback to buffered.
7695 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7696 * to buffered IO. Don't blame me, this is the price we pay for using
7697 * the generic code.
7699 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7700 em->block_start == EXTENT_MAP_INLINE) {
7701 free_extent_map(em);
7702 ret = -ENOTBLK;
7703 goto unlock_err;
7706 /* Just a good old fashioned hole, return */
7707 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7708 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7709 free_extent_map(em);
7710 goto unlock_err;
7714 * We don't allocate a new extent in the following cases
7716 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7717 * existing extent.
7718 * 2) The extent is marked as PREALLOC. We're good to go here and can
7719 * just use the extent.
7722 if (!create) {
7723 len = min(len, em->len - (start - em->start));
7724 lockstart = start + len;
7725 goto unlock;
7728 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7729 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7730 em->block_start != EXTENT_MAP_HOLE)) {
7731 int type;
7732 u64 block_start, orig_start, orig_block_len, ram_bytes;
7734 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7735 type = BTRFS_ORDERED_PREALLOC;
7736 else
7737 type = BTRFS_ORDERED_NOCOW;
7738 len = min(len, em->len - (start - em->start));
7739 block_start = em->block_start + (start - em->start);
7741 if (can_nocow_extent(inode, start, &len, &orig_start,
7742 &orig_block_len, &ram_bytes) == 1 &&
7743 btrfs_inc_nocow_writers(fs_info, block_start)) {
7744 struct extent_map *em2;
7746 em2 = btrfs_create_dio_extent(inode, start, len,
7747 orig_start, block_start,
7748 len, orig_block_len,
7749 ram_bytes, type);
7750 btrfs_dec_nocow_writers(fs_info, block_start);
7751 if (type == BTRFS_ORDERED_PREALLOC) {
7752 free_extent_map(em);
7753 em = em2;
7755 if (em2 && IS_ERR(em2)) {
7756 ret = PTR_ERR(em2);
7757 goto unlock_err;
7760 * For inode marked NODATACOW or extent marked PREALLOC,
7761 * use the existing or preallocated extent, so does not
7762 * need to adjust btrfs_space_info's bytes_may_use.
7764 btrfs_free_reserved_data_space_noquota(inode,
7765 start, len);
7766 goto unlock;
7771 * this will cow the extent, reset the len in case we changed
7772 * it above
7774 len = bh_result->b_size;
7775 free_extent_map(em);
7776 em = btrfs_new_extent_direct(inode, start, len);
7777 if (IS_ERR(em)) {
7778 ret = PTR_ERR(em);
7779 goto unlock_err;
7781 len = min(len, em->len - (start - em->start));
7782 unlock:
7783 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7784 inode->i_blkbits;
7785 bh_result->b_size = len;
7786 bh_result->b_bdev = em->bdev;
7787 set_buffer_mapped(bh_result);
7788 if (create) {
7789 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7790 set_buffer_new(bh_result);
7793 * Need to update the i_size under the extent lock so buffered
7794 * readers will get the updated i_size when we unlock.
7796 if (!dio_data->overwrite && start + len > i_size_read(inode))
7797 i_size_write(inode, start + len);
7799 WARN_ON(dio_data->reserve < len);
7800 dio_data->reserve -= len;
7801 dio_data->unsubmitted_oe_range_end = start + len;
7802 current->journal_info = dio_data;
7806 * In the case of write we need to clear and unlock the entire range,
7807 * in the case of read we need to unlock only the end area that we
7808 * aren't using if there is any left over space.
7810 if (lockstart < lockend) {
7811 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7812 lockend, unlock_bits, 1, 0,
7813 &cached_state);
7814 } else {
7815 free_extent_state(cached_state);
7818 free_extent_map(em);
7820 return 0;
7822 unlock_err:
7823 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7824 unlock_bits, 1, 0, &cached_state);
7825 err:
7826 if (dio_data)
7827 current->journal_info = dio_data;
7828 return ret;
7831 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7832 struct bio *bio,
7833 int mirror_num)
7835 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7836 blk_status_t ret;
7838 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7840 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7841 if (ret)
7842 return ret;
7844 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7846 return ret;
7849 static int btrfs_check_dio_repairable(struct inode *inode,
7850 struct bio *failed_bio,
7851 struct io_failure_record *failrec,
7852 int failed_mirror)
7854 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7855 int num_copies;
7857 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7858 if (num_copies == 1) {
7860 * we only have a single copy of the data, so don't bother with
7861 * all the retry and error correction code that follows. no
7862 * matter what the error is, it is very likely to persist.
7864 btrfs_debug(fs_info,
7865 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7866 num_copies, failrec->this_mirror, failed_mirror);
7867 return 0;
7870 failrec->failed_mirror = failed_mirror;
7871 failrec->this_mirror++;
7872 if (failrec->this_mirror == failed_mirror)
7873 failrec->this_mirror++;
7875 if (failrec->this_mirror > num_copies) {
7876 btrfs_debug(fs_info,
7877 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7878 num_copies, failrec->this_mirror, failed_mirror);
7879 return 0;
7882 return 1;
7885 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7886 struct page *page, unsigned int pgoff,
7887 u64 start, u64 end, int failed_mirror,
7888 bio_end_io_t *repair_endio, void *repair_arg)
7890 struct io_failure_record *failrec;
7891 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7892 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7893 struct bio *bio;
7894 int isector;
7895 unsigned int read_mode = 0;
7896 int segs;
7897 int ret;
7898 blk_status_t status;
7899 struct bio_vec bvec;
7901 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7903 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7904 if (ret)
7905 return errno_to_blk_status(ret);
7907 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7908 failed_mirror);
7909 if (!ret) {
7910 free_io_failure(failure_tree, io_tree, failrec);
7911 return BLK_STS_IOERR;
7914 segs = bio_segments(failed_bio);
7915 bio_get_first_bvec(failed_bio, &bvec);
7916 if (segs > 1 ||
7917 (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7918 read_mode |= REQ_FAILFAST_DEV;
7920 isector = start - btrfs_io_bio(failed_bio)->logical;
7921 isector >>= inode->i_sb->s_blocksize_bits;
7922 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7923 pgoff, isector, repair_endio, repair_arg);
7924 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
7926 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7927 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7928 read_mode, failrec->this_mirror, failrec->in_validation);
7930 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7931 if (status) {
7932 free_io_failure(failure_tree, io_tree, failrec);
7933 bio_put(bio);
7936 return status;
7939 struct btrfs_retry_complete {
7940 struct completion done;
7941 struct inode *inode;
7942 u64 start;
7943 int uptodate;
7946 static void btrfs_retry_endio_nocsum(struct bio *bio)
7948 struct btrfs_retry_complete *done = bio->bi_private;
7949 struct inode *inode = done->inode;
7950 struct bio_vec *bvec;
7951 struct extent_io_tree *io_tree, *failure_tree;
7952 int i;
7954 if (bio->bi_status)
7955 goto end;
7957 ASSERT(bio->bi_vcnt == 1);
7958 io_tree = &BTRFS_I(inode)->io_tree;
7959 failure_tree = &BTRFS_I(inode)->io_failure_tree;
7960 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
7962 done->uptodate = 1;
7963 ASSERT(!bio_flagged(bio, BIO_CLONED));
7964 bio_for_each_segment_all(bvec, bio, i)
7965 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7966 io_tree, done->start, bvec->bv_page,
7967 btrfs_ino(BTRFS_I(inode)), 0);
7968 end:
7969 complete(&done->done);
7970 bio_put(bio);
7973 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7974 struct btrfs_io_bio *io_bio)
7976 struct btrfs_fs_info *fs_info;
7977 struct bio_vec bvec;
7978 struct bvec_iter iter;
7979 struct btrfs_retry_complete done;
7980 u64 start;
7981 unsigned int pgoff;
7982 u32 sectorsize;
7983 int nr_sectors;
7984 blk_status_t ret;
7985 blk_status_t err = BLK_STS_OK;
7987 fs_info = BTRFS_I(inode)->root->fs_info;
7988 sectorsize = fs_info->sectorsize;
7990 start = io_bio->logical;
7991 done.inode = inode;
7992 io_bio->bio.bi_iter = io_bio->iter;
7994 bio_for_each_segment(bvec, &io_bio->bio, iter) {
7995 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7996 pgoff = bvec.bv_offset;
7998 next_block_or_try_again:
7999 done.uptodate = 0;
8000 done.start = start;
8001 init_completion(&done.done);
8003 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8004 pgoff, start, start + sectorsize - 1,
8005 io_bio->mirror_num,
8006 btrfs_retry_endio_nocsum, &done);
8007 if (ret) {
8008 err = ret;
8009 goto next;
8012 wait_for_completion_io(&done.done);
8014 if (!done.uptodate) {
8015 /* We might have another mirror, so try again */
8016 goto next_block_or_try_again;
8019 next:
8020 start += sectorsize;
8022 nr_sectors--;
8023 if (nr_sectors) {
8024 pgoff += sectorsize;
8025 ASSERT(pgoff < PAGE_SIZE);
8026 goto next_block_or_try_again;
8030 return err;
8033 static void btrfs_retry_endio(struct bio *bio)
8035 struct btrfs_retry_complete *done = bio->bi_private;
8036 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8037 struct extent_io_tree *io_tree, *failure_tree;
8038 struct inode *inode = done->inode;
8039 struct bio_vec *bvec;
8040 int uptodate;
8041 int ret;
8042 int i;
8044 if (bio->bi_status)
8045 goto end;
8047 uptodate = 1;
8049 ASSERT(bio->bi_vcnt == 1);
8050 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
8052 io_tree = &BTRFS_I(inode)->io_tree;
8053 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8055 ASSERT(!bio_flagged(bio, BIO_CLONED));
8056 bio_for_each_segment_all(bvec, bio, i) {
8057 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8058 bvec->bv_offset, done->start,
8059 bvec->bv_len);
8060 if (!ret)
8061 clean_io_failure(BTRFS_I(inode)->root->fs_info,
8062 failure_tree, io_tree, done->start,
8063 bvec->bv_page,
8064 btrfs_ino(BTRFS_I(inode)),
8065 bvec->bv_offset);
8066 else
8067 uptodate = 0;
8070 done->uptodate = uptodate;
8071 end:
8072 complete(&done->done);
8073 bio_put(bio);
8076 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8077 struct btrfs_io_bio *io_bio, blk_status_t err)
8079 struct btrfs_fs_info *fs_info;
8080 struct bio_vec bvec;
8081 struct bvec_iter iter;
8082 struct btrfs_retry_complete done;
8083 u64 start;
8084 u64 offset = 0;
8085 u32 sectorsize;
8086 int nr_sectors;
8087 unsigned int pgoff;
8088 int csum_pos;
8089 bool uptodate = (err == 0);
8090 int ret;
8091 blk_status_t status;
8093 fs_info = BTRFS_I(inode)->root->fs_info;
8094 sectorsize = fs_info->sectorsize;
8096 err = BLK_STS_OK;
8097 start = io_bio->logical;
8098 done.inode = inode;
8099 io_bio->bio.bi_iter = io_bio->iter;
8101 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8102 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8104 pgoff = bvec.bv_offset;
8105 next_block:
8106 if (uptodate) {
8107 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8108 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8109 bvec.bv_page, pgoff, start, sectorsize);
8110 if (likely(!ret))
8111 goto next;
8113 try_again:
8114 done.uptodate = 0;
8115 done.start = start;
8116 init_completion(&done.done);
8118 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8119 pgoff, start, start + sectorsize - 1,
8120 io_bio->mirror_num, btrfs_retry_endio,
8121 &done);
8122 if (status) {
8123 err = status;
8124 goto next;
8127 wait_for_completion_io(&done.done);
8129 if (!done.uptodate) {
8130 /* We might have another mirror, so try again */
8131 goto try_again;
8133 next:
8134 offset += sectorsize;
8135 start += sectorsize;
8137 ASSERT(nr_sectors);
8139 nr_sectors--;
8140 if (nr_sectors) {
8141 pgoff += sectorsize;
8142 ASSERT(pgoff < PAGE_SIZE);
8143 goto next_block;
8147 return err;
8150 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8151 struct btrfs_io_bio *io_bio, blk_status_t err)
8153 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8155 if (skip_csum) {
8156 if (unlikely(err))
8157 return __btrfs_correct_data_nocsum(inode, io_bio);
8158 else
8159 return BLK_STS_OK;
8160 } else {
8161 return __btrfs_subio_endio_read(inode, io_bio, err);
8165 static void btrfs_endio_direct_read(struct bio *bio)
8167 struct btrfs_dio_private *dip = bio->bi_private;
8168 struct inode *inode = dip->inode;
8169 struct bio *dio_bio;
8170 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8171 blk_status_t err = bio->bi_status;
8173 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8174 err = btrfs_subio_endio_read(inode, io_bio, err);
8176 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8177 dip->logical_offset + dip->bytes - 1);
8178 dio_bio = dip->dio_bio;
8180 kfree(dip);
8182 dio_bio->bi_status = err;
8183 dio_end_io(dio_bio);
8185 if (io_bio->end_io)
8186 io_bio->end_io(io_bio, blk_status_to_errno(err));
8187 bio_put(bio);
8190 static void __endio_write_update_ordered(struct inode *inode,
8191 const u64 offset, const u64 bytes,
8192 const bool uptodate)
8194 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8195 struct btrfs_ordered_extent *ordered = NULL;
8196 struct btrfs_workqueue *wq;
8197 btrfs_work_func_t func;
8198 u64 ordered_offset = offset;
8199 u64 ordered_bytes = bytes;
8200 u64 last_offset;
8201 int ret;
8203 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8204 wq = fs_info->endio_freespace_worker;
8205 func = btrfs_freespace_write_helper;
8206 } else {
8207 wq = fs_info->endio_write_workers;
8208 func = btrfs_endio_write_helper;
8211 again:
8212 last_offset = ordered_offset;
8213 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8214 &ordered_offset,
8215 ordered_bytes,
8216 uptodate);
8217 if (!ret)
8218 goto out_test;
8220 btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL);
8221 btrfs_queue_work(wq, &ordered->work);
8222 out_test:
8224 * If btrfs_dec_test_ordered_pending does not find any ordered extent
8225 * in the range, we can exit.
8227 if (ordered_offset == last_offset)
8228 return;
8230 * our bio might span multiple ordered extents. If we haven't
8231 * completed the accounting for the whole dio, go back and try again
8233 if (ordered_offset < offset + bytes) {
8234 ordered_bytes = offset + bytes - ordered_offset;
8235 ordered = NULL;
8236 goto again;
8240 static void btrfs_endio_direct_write(struct bio *bio)
8242 struct btrfs_dio_private *dip = bio->bi_private;
8243 struct bio *dio_bio = dip->dio_bio;
8245 __endio_write_update_ordered(dip->inode, dip->logical_offset,
8246 dip->bytes, !bio->bi_status);
8248 kfree(dip);
8250 dio_bio->bi_status = bio->bi_status;
8251 dio_end_io(dio_bio);
8252 bio_put(bio);
8255 static blk_status_t __btrfs_submit_bio_start_direct_io(void *private_data,
8256 struct bio *bio, int mirror_num,
8257 unsigned long bio_flags, u64 offset)
8259 struct inode *inode = private_data;
8260 blk_status_t ret;
8261 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8262 BUG_ON(ret); /* -ENOMEM */
8263 return 0;
8266 static void btrfs_end_dio_bio(struct bio *bio)
8268 struct btrfs_dio_private *dip = bio->bi_private;
8269 blk_status_t err = bio->bi_status;
8271 if (err)
8272 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8273 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8274 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8275 bio->bi_opf,
8276 (unsigned long long)bio->bi_iter.bi_sector,
8277 bio->bi_iter.bi_size, err);
8279 if (dip->subio_endio)
8280 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8282 if (err) {
8283 dip->errors = 1;
8286 * before atomic variable goto zero, we must make sure
8287 * dip->errors is perceived to be set.
8289 smp_mb__before_atomic();
8292 /* if there are more bios still pending for this dio, just exit */
8293 if (!atomic_dec_and_test(&dip->pending_bios))
8294 goto out;
8296 if (dip->errors) {
8297 bio_io_error(dip->orig_bio);
8298 } else {
8299 dip->dio_bio->bi_status = BLK_STS_OK;
8300 bio_endio(dip->orig_bio);
8302 out:
8303 bio_put(bio);
8306 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8307 struct btrfs_dio_private *dip,
8308 struct bio *bio,
8309 u64 file_offset)
8311 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8312 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8313 blk_status_t ret;
8316 * We load all the csum data we need when we submit
8317 * the first bio to reduce the csum tree search and
8318 * contention.
8320 if (dip->logical_offset == file_offset) {
8321 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8322 file_offset);
8323 if (ret)
8324 return ret;
8327 if (bio == dip->orig_bio)
8328 return 0;
8330 file_offset -= dip->logical_offset;
8331 file_offset >>= inode->i_sb->s_blocksize_bits;
8332 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8334 return 0;
8337 static inline blk_status_t
8338 __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, u64 file_offset,
8339 int async_submit)
8341 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8342 struct btrfs_dio_private *dip = bio->bi_private;
8343 bool write = bio_op(bio) == REQ_OP_WRITE;
8344 blk_status_t ret;
8346 /* Check btrfs_submit_bio_hook() for rules about async submit. */
8347 if (async_submit)
8348 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8350 if (!write) {
8351 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8352 if (ret)
8353 goto err;
8356 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8357 goto map;
8359 if (write && async_submit) {
8360 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8361 file_offset, inode,
8362 __btrfs_submit_bio_start_direct_io,
8363 __btrfs_submit_bio_done);
8364 goto err;
8365 } else if (write) {
8367 * If we aren't doing async submit, calculate the csum of the
8368 * bio now.
8370 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8371 if (ret)
8372 goto err;
8373 } else {
8374 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8375 file_offset);
8376 if (ret)
8377 goto err;
8379 map:
8380 ret = btrfs_map_bio(fs_info, bio, 0, 0);
8381 err:
8382 return ret;
8385 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8387 struct inode *inode = dip->inode;
8388 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8389 struct bio *bio;
8390 struct bio *orig_bio = dip->orig_bio;
8391 u64 start_sector = orig_bio->bi_iter.bi_sector;
8392 u64 file_offset = dip->logical_offset;
8393 u64 map_length;
8394 int async_submit = 0;
8395 u64 submit_len;
8396 int clone_offset = 0;
8397 int clone_len;
8398 int ret;
8399 blk_status_t status;
8401 map_length = orig_bio->bi_iter.bi_size;
8402 submit_len = map_length;
8403 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8404 &map_length, NULL, 0);
8405 if (ret)
8406 return -EIO;
8408 if (map_length >= submit_len) {
8409 bio = orig_bio;
8410 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8411 goto submit;
8414 /* async crcs make it difficult to collect full stripe writes. */
8415 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8416 async_submit = 0;
8417 else
8418 async_submit = 1;
8420 /* bio split */
8421 ASSERT(map_length <= INT_MAX);
8422 atomic_inc(&dip->pending_bios);
8423 do {
8424 clone_len = min_t(int, submit_len, map_length);
8427 * This will never fail as it's passing GPF_NOFS and
8428 * the allocation is backed by btrfs_bioset.
8430 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8431 clone_len);
8432 bio->bi_private = dip;
8433 bio->bi_end_io = btrfs_end_dio_bio;
8434 btrfs_io_bio(bio)->logical = file_offset;
8436 ASSERT(submit_len >= clone_len);
8437 submit_len -= clone_len;
8438 if (submit_len == 0)
8439 break;
8442 * Increase the count before we submit the bio so we know
8443 * the end IO handler won't happen before we increase the
8444 * count. Otherwise, the dip might get freed before we're
8445 * done setting it up.
8447 atomic_inc(&dip->pending_bios);
8449 status = __btrfs_submit_dio_bio(bio, inode, file_offset,
8450 async_submit);
8451 if (status) {
8452 bio_put(bio);
8453 atomic_dec(&dip->pending_bios);
8454 goto out_err;
8457 clone_offset += clone_len;
8458 start_sector += clone_len >> 9;
8459 file_offset += clone_len;
8461 map_length = submit_len;
8462 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8463 start_sector << 9, &map_length, NULL, 0);
8464 if (ret)
8465 goto out_err;
8466 } while (submit_len > 0);
8468 submit:
8469 status = __btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8470 if (!status)
8471 return 0;
8473 bio_put(bio);
8474 out_err:
8475 dip->errors = 1;
8477 * before atomic variable goto zero, we must
8478 * make sure dip->errors is perceived to be set.
8480 smp_mb__before_atomic();
8481 if (atomic_dec_and_test(&dip->pending_bios))
8482 bio_io_error(dip->orig_bio);
8484 /* bio_end_io() will handle error, so we needn't return it */
8485 return 0;
8488 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8489 loff_t file_offset)
8491 struct btrfs_dio_private *dip = NULL;
8492 struct bio *bio = NULL;
8493 struct btrfs_io_bio *io_bio;
8494 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8495 int ret = 0;
8497 bio = btrfs_bio_clone(dio_bio);
8499 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8500 if (!dip) {
8501 ret = -ENOMEM;
8502 goto free_ordered;
8505 dip->private = dio_bio->bi_private;
8506 dip->inode = inode;
8507 dip->logical_offset = file_offset;
8508 dip->bytes = dio_bio->bi_iter.bi_size;
8509 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8510 bio->bi_private = dip;
8511 dip->orig_bio = bio;
8512 dip->dio_bio = dio_bio;
8513 atomic_set(&dip->pending_bios, 0);
8514 io_bio = btrfs_io_bio(bio);
8515 io_bio->logical = file_offset;
8517 if (write) {
8518 bio->bi_end_io = btrfs_endio_direct_write;
8519 } else {
8520 bio->bi_end_io = btrfs_endio_direct_read;
8521 dip->subio_endio = btrfs_subio_endio_read;
8525 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8526 * even if we fail to submit a bio, because in such case we do the
8527 * corresponding error handling below and it must not be done a second
8528 * time by btrfs_direct_IO().
8530 if (write) {
8531 struct btrfs_dio_data *dio_data = current->journal_info;
8533 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8534 dip->bytes;
8535 dio_data->unsubmitted_oe_range_start =
8536 dio_data->unsubmitted_oe_range_end;
8539 ret = btrfs_submit_direct_hook(dip);
8540 if (!ret)
8541 return;
8543 if (io_bio->end_io)
8544 io_bio->end_io(io_bio, ret);
8546 free_ordered:
8548 * If we arrived here it means either we failed to submit the dip
8549 * or we either failed to clone the dio_bio or failed to allocate the
8550 * dip. If we cloned the dio_bio and allocated the dip, we can just
8551 * call bio_endio against our io_bio so that we get proper resource
8552 * cleanup if we fail to submit the dip, otherwise, we must do the
8553 * same as btrfs_endio_direct_[write|read] because we can't call these
8554 * callbacks - they require an allocated dip and a clone of dio_bio.
8556 if (bio && dip) {
8557 bio_io_error(bio);
8559 * The end io callbacks free our dip, do the final put on bio
8560 * and all the cleanup and final put for dio_bio (through
8561 * dio_end_io()).
8563 dip = NULL;
8564 bio = NULL;
8565 } else {
8566 if (write)
8567 __endio_write_update_ordered(inode,
8568 file_offset,
8569 dio_bio->bi_iter.bi_size,
8570 false);
8571 else
8572 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8573 file_offset + dio_bio->bi_iter.bi_size - 1);
8575 dio_bio->bi_status = BLK_STS_IOERR;
8577 * Releases and cleans up our dio_bio, no need to bio_put()
8578 * nor bio_endio()/bio_io_error() against dio_bio.
8580 dio_end_io(dio_bio);
8582 if (bio)
8583 bio_put(bio);
8584 kfree(dip);
8587 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8588 const struct iov_iter *iter, loff_t offset)
8590 int seg;
8591 int i;
8592 unsigned int blocksize_mask = fs_info->sectorsize - 1;
8593 ssize_t retval = -EINVAL;
8595 if (offset & blocksize_mask)
8596 goto out;
8598 if (iov_iter_alignment(iter) & blocksize_mask)
8599 goto out;
8601 /* If this is a write we don't need to check anymore */
8602 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8603 return 0;
8605 * Check to make sure we don't have duplicate iov_base's in this
8606 * iovec, if so return EINVAL, otherwise we'll get csum errors
8607 * when reading back.
8609 for (seg = 0; seg < iter->nr_segs; seg++) {
8610 for (i = seg + 1; i < iter->nr_segs; i++) {
8611 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8612 goto out;
8615 retval = 0;
8616 out:
8617 return retval;
8620 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8622 struct file *file = iocb->ki_filp;
8623 struct inode *inode = file->f_mapping->host;
8624 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8625 struct btrfs_dio_data dio_data = { 0 };
8626 struct extent_changeset *data_reserved = NULL;
8627 loff_t offset = iocb->ki_pos;
8628 size_t count = 0;
8629 int flags = 0;
8630 bool wakeup = true;
8631 bool relock = false;
8632 ssize_t ret;
8634 if (check_direct_IO(fs_info, iter, offset))
8635 return 0;
8637 inode_dio_begin(inode);
8640 * The generic stuff only does filemap_write_and_wait_range, which
8641 * isn't enough if we've written compressed pages to this area, so
8642 * we need to flush the dirty pages again to make absolutely sure
8643 * that any outstanding dirty pages are on disk.
8645 count = iov_iter_count(iter);
8646 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8647 &BTRFS_I(inode)->runtime_flags))
8648 filemap_fdatawrite_range(inode->i_mapping, offset,
8649 offset + count - 1);
8651 if (iov_iter_rw(iter) == WRITE) {
8653 * If the write DIO is beyond the EOF, we need update
8654 * the isize, but it is protected by i_mutex. So we can
8655 * not unlock the i_mutex at this case.
8657 if (offset + count <= inode->i_size) {
8658 dio_data.overwrite = 1;
8659 inode_unlock(inode);
8660 relock = true;
8661 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8662 ret = -EAGAIN;
8663 goto out;
8665 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8666 offset, count);
8667 if (ret)
8668 goto out;
8671 * We need to know how many extents we reserved so that we can
8672 * do the accounting properly if we go over the number we
8673 * originally calculated. Abuse current->journal_info for this.
8675 dio_data.reserve = round_up(count,
8676 fs_info->sectorsize);
8677 dio_data.unsubmitted_oe_range_start = (u64)offset;
8678 dio_data.unsubmitted_oe_range_end = (u64)offset;
8679 current->journal_info = &dio_data;
8680 down_read(&BTRFS_I(inode)->dio_sem);
8681 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8682 &BTRFS_I(inode)->runtime_flags)) {
8683 inode_dio_end(inode);
8684 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8685 wakeup = false;
8688 ret = __blockdev_direct_IO(iocb, inode,
8689 fs_info->fs_devices->latest_bdev,
8690 iter, btrfs_get_blocks_direct, NULL,
8691 btrfs_submit_direct, flags);
8692 if (iov_iter_rw(iter) == WRITE) {
8693 up_read(&BTRFS_I(inode)->dio_sem);
8694 current->journal_info = NULL;
8695 if (ret < 0 && ret != -EIOCBQUEUED) {
8696 if (dio_data.reserve)
8697 btrfs_delalloc_release_space(inode, data_reserved,
8698 offset, dio_data.reserve);
8700 * On error we might have left some ordered extents
8701 * without submitting corresponding bios for them, so
8702 * cleanup them up to avoid other tasks getting them
8703 * and waiting for them to complete forever.
8705 if (dio_data.unsubmitted_oe_range_start <
8706 dio_data.unsubmitted_oe_range_end)
8707 __endio_write_update_ordered(inode,
8708 dio_data.unsubmitted_oe_range_start,
8709 dio_data.unsubmitted_oe_range_end -
8710 dio_data.unsubmitted_oe_range_start,
8711 false);
8712 } else if (ret >= 0 && (size_t)ret < count)
8713 btrfs_delalloc_release_space(inode, data_reserved,
8714 offset, count - (size_t)ret);
8715 btrfs_delalloc_release_extents(BTRFS_I(inode), count);
8717 out:
8718 if (wakeup)
8719 inode_dio_end(inode);
8720 if (relock)
8721 inode_lock(inode);
8723 extent_changeset_free(data_reserved);
8724 return ret;
8727 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8729 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8730 __u64 start, __u64 len)
8732 int ret;
8734 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8735 if (ret)
8736 return ret;
8738 return extent_fiemap(inode, fieinfo, start, len);
8741 int btrfs_readpage(struct file *file, struct page *page)
8743 struct extent_io_tree *tree;
8744 tree = &BTRFS_I(page->mapping->host)->io_tree;
8745 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8748 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8750 struct inode *inode = page->mapping->host;
8751 int ret;
8753 if (current->flags & PF_MEMALLOC) {
8754 redirty_page_for_writepage(wbc, page);
8755 unlock_page(page);
8756 return 0;
8760 * If we are under memory pressure we will call this directly from the
8761 * VM, we need to make sure we have the inode referenced for the ordered
8762 * extent. If not just return like we didn't do anything.
8764 if (!igrab(inode)) {
8765 redirty_page_for_writepage(wbc, page);
8766 return AOP_WRITEPAGE_ACTIVATE;
8768 ret = extent_write_full_page(page, wbc);
8769 btrfs_add_delayed_iput(inode);
8770 return ret;
8773 static int btrfs_writepages(struct address_space *mapping,
8774 struct writeback_control *wbc)
8776 struct extent_io_tree *tree;
8778 tree = &BTRFS_I(mapping->host)->io_tree;
8779 return extent_writepages(tree, mapping, wbc);
8782 static int
8783 btrfs_readpages(struct file *file, struct address_space *mapping,
8784 struct list_head *pages, unsigned nr_pages)
8786 struct extent_io_tree *tree;
8787 tree = &BTRFS_I(mapping->host)->io_tree;
8788 return extent_readpages(tree, mapping, pages, nr_pages);
8790 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8792 struct extent_io_tree *tree;
8793 struct extent_map_tree *map;
8794 int ret;
8796 tree = &BTRFS_I(page->mapping->host)->io_tree;
8797 map = &BTRFS_I(page->mapping->host)->extent_tree;
8798 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8799 if (ret == 1) {
8800 ClearPagePrivate(page);
8801 set_page_private(page, 0);
8802 put_page(page);
8804 return ret;
8807 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8809 if (PageWriteback(page) || PageDirty(page))
8810 return 0;
8811 return __btrfs_releasepage(page, gfp_flags);
8814 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8815 unsigned int length)
8817 struct inode *inode = page->mapping->host;
8818 struct extent_io_tree *tree;
8819 struct btrfs_ordered_extent *ordered;
8820 struct extent_state *cached_state = NULL;
8821 u64 page_start = page_offset(page);
8822 u64 page_end = page_start + PAGE_SIZE - 1;
8823 u64 start;
8824 u64 end;
8825 int inode_evicting = inode->i_state & I_FREEING;
8828 * we have the page locked, so new writeback can't start,
8829 * and the dirty bit won't be cleared while we are here.
8831 * Wait for IO on this page so that we can safely clear
8832 * the PagePrivate2 bit and do ordered accounting
8834 wait_on_page_writeback(page);
8836 tree = &BTRFS_I(inode)->io_tree;
8837 if (offset) {
8838 btrfs_releasepage(page, GFP_NOFS);
8839 return;
8842 if (!inode_evicting)
8843 lock_extent_bits(tree, page_start, page_end, &cached_state);
8844 again:
8845 start = page_start;
8846 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8847 page_end - start + 1);
8848 if (ordered) {
8849 end = min(page_end, ordered->file_offset + ordered->len - 1);
8851 * IO on this page will never be started, so we need
8852 * to account for any ordered extents now
8854 if (!inode_evicting)
8855 clear_extent_bit(tree, start, end,
8856 EXTENT_DIRTY | EXTENT_DELALLOC |
8857 EXTENT_DELALLOC_NEW |
8858 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8859 EXTENT_DEFRAG, 1, 0, &cached_state);
8861 * whoever cleared the private bit is responsible
8862 * for the finish_ordered_io
8864 if (TestClearPagePrivate2(page)) {
8865 struct btrfs_ordered_inode_tree *tree;
8866 u64 new_len;
8868 tree = &BTRFS_I(inode)->ordered_tree;
8870 spin_lock_irq(&tree->lock);
8871 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8872 new_len = start - ordered->file_offset;
8873 if (new_len < ordered->truncated_len)
8874 ordered->truncated_len = new_len;
8875 spin_unlock_irq(&tree->lock);
8877 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8878 start,
8879 end - start + 1, 1))
8880 btrfs_finish_ordered_io(ordered);
8882 btrfs_put_ordered_extent(ordered);
8883 if (!inode_evicting) {
8884 cached_state = NULL;
8885 lock_extent_bits(tree, start, end,
8886 &cached_state);
8889 start = end + 1;
8890 if (start < page_end)
8891 goto again;
8895 * Qgroup reserved space handler
8896 * Page here will be either
8897 * 1) Already written to disk
8898 * In this case, its reserved space is released from data rsv map
8899 * and will be freed by delayed_ref handler finally.
8900 * So even we call qgroup_free_data(), it won't decrease reserved
8901 * space.
8902 * 2) Not written to disk
8903 * This means the reserved space should be freed here. However,
8904 * if a truncate invalidates the page (by clearing PageDirty)
8905 * and the page is accounted for while allocating extent
8906 * in btrfs_check_data_free_space() we let delayed_ref to
8907 * free the entire extent.
8909 if (PageDirty(page))
8910 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8911 if (!inode_evicting) {
8912 clear_extent_bit(tree, page_start, page_end,
8913 EXTENT_LOCKED | EXTENT_DIRTY |
8914 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8915 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8916 &cached_state);
8918 __btrfs_releasepage(page, GFP_NOFS);
8921 ClearPageChecked(page);
8922 if (PagePrivate(page)) {
8923 ClearPagePrivate(page);
8924 set_page_private(page, 0);
8925 put_page(page);
8930 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8931 * called from a page fault handler when a page is first dirtied. Hence we must
8932 * be careful to check for EOF conditions here. We set the page up correctly
8933 * for a written page which means we get ENOSPC checking when writing into
8934 * holes and correct delalloc and unwritten extent mapping on filesystems that
8935 * support these features.
8937 * We are not allowed to take the i_mutex here so we have to play games to
8938 * protect against truncate races as the page could now be beyond EOF. Because
8939 * vmtruncate() writes the inode size before removing pages, once we have the
8940 * page lock we can determine safely if the page is beyond EOF. If it is not
8941 * beyond EOF, then the page is guaranteed safe against truncation until we
8942 * unlock the page.
8944 int btrfs_page_mkwrite(struct vm_fault *vmf)
8946 struct page *page = vmf->page;
8947 struct inode *inode = file_inode(vmf->vma->vm_file);
8948 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8949 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8950 struct btrfs_ordered_extent *ordered;
8951 struct extent_state *cached_state = NULL;
8952 struct extent_changeset *data_reserved = NULL;
8953 char *kaddr;
8954 unsigned long zero_start;
8955 loff_t size;
8956 int ret;
8957 int reserved = 0;
8958 u64 reserved_space;
8959 u64 page_start;
8960 u64 page_end;
8961 u64 end;
8963 reserved_space = PAGE_SIZE;
8965 sb_start_pagefault(inode->i_sb);
8966 page_start = page_offset(page);
8967 page_end = page_start + PAGE_SIZE - 1;
8968 end = page_end;
8971 * Reserving delalloc space after obtaining the page lock can lead to
8972 * deadlock. For example, if a dirty page is locked by this function
8973 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8974 * dirty page write out, then the btrfs_writepage() function could
8975 * end up waiting indefinitely to get a lock on the page currently
8976 * being processed by btrfs_page_mkwrite() function.
8978 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
8979 reserved_space);
8980 if (!ret) {
8981 ret = file_update_time(vmf->vma->vm_file);
8982 reserved = 1;
8984 if (ret) {
8985 if (ret == -ENOMEM)
8986 ret = VM_FAULT_OOM;
8987 else /* -ENOSPC, -EIO, etc */
8988 ret = VM_FAULT_SIGBUS;
8989 if (reserved)
8990 goto out;
8991 goto out_noreserve;
8994 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8995 again:
8996 lock_page(page);
8997 size = i_size_read(inode);
8999 if ((page->mapping != inode->i_mapping) ||
9000 (page_start >= size)) {
9001 /* page got truncated out from underneath us */
9002 goto out_unlock;
9004 wait_on_page_writeback(page);
9006 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
9007 set_page_extent_mapped(page);
9010 * we can't set the delalloc bits if there are pending ordered
9011 * extents. Drop our locks and wait for them to finish
9013 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9014 PAGE_SIZE);
9015 if (ordered) {
9016 unlock_extent_cached(io_tree, page_start, page_end,
9017 &cached_state);
9018 unlock_page(page);
9019 btrfs_start_ordered_extent(inode, ordered, 1);
9020 btrfs_put_ordered_extent(ordered);
9021 goto again;
9024 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
9025 reserved_space = round_up(size - page_start,
9026 fs_info->sectorsize);
9027 if (reserved_space < PAGE_SIZE) {
9028 end = page_start + reserved_space - 1;
9029 btrfs_delalloc_release_space(inode, data_reserved,
9030 page_start, PAGE_SIZE - reserved_space);
9035 * page_mkwrite gets called when the page is firstly dirtied after it's
9036 * faulted in, but write(2) could also dirty a page and set delalloc
9037 * bits, thus in this case for space account reason, we still need to
9038 * clear any delalloc bits within this page range since we have to
9039 * reserve data&meta space before lock_page() (see above comments).
9041 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9042 EXTENT_DIRTY | EXTENT_DELALLOC |
9043 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
9044 0, 0, &cached_state);
9046 ret = btrfs_set_extent_delalloc(inode, page_start, end, 0,
9047 &cached_state, 0);
9048 if (ret) {
9049 unlock_extent_cached(io_tree, page_start, page_end,
9050 &cached_state);
9051 ret = VM_FAULT_SIGBUS;
9052 goto out_unlock;
9054 ret = 0;
9056 /* page is wholly or partially inside EOF */
9057 if (page_start + PAGE_SIZE > size)
9058 zero_start = size & ~PAGE_MASK;
9059 else
9060 zero_start = PAGE_SIZE;
9062 if (zero_start != PAGE_SIZE) {
9063 kaddr = kmap(page);
9064 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9065 flush_dcache_page(page);
9066 kunmap(page);
9068 ClearPageChecked(page);
9069 set_page_dirty(page);
9070 SetPageUptodate(page);
9072 BTRFS_I(inode)->last_trans = fs_info->generation;
9073 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9074 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9076 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9078 out_unlock:
9079 if (!ret) {
9080 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
9081 sb_end_pagefault(inode->i_sb);
9082 extent_changeset_free(data_reserved);
9083 return VM_FAULT_LOCKED;
9085 unlock_page(page);
9086 out:
9087 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
9088 btrfs_delalloc_release_space(inode, data_reserved, page_start,
9089 reserved_space);
9090 out_noreserve:
9091 sb_end_pagefault(inode->i_sb);
9092 extent_changeset_free(data_reserved);
9093 return ret;
9096 static int btrfs_truncate(struct inode *inode)
9098 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9099 struct btrfs_root *root = BTRFS_I(inode)->root;
9100 struct btrfs_block_rsv *rsv;
9101 int ret = 0;
9102 int err = 0;
9103 struct btrfs_trans_handle *trans;
9104 u64 mask = fs_info->sectorsize - 1;
9105 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
9107 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9108 (u64)-1);
9109 if (ret)
9110 return ret;
9113 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
9114 * 3 things going on here
9116 * 1) We need to reserve space for our orphan item and the space to
9117 * delete our orphan item. Lord knows we don't want to have a dangling
9118 * orphan item because we didn't reserve space to remove it.
9120 * 2) We need to reserve space to update our inode.
9122 * 3) We need to have something to cache all the space that is going to
9123 * be free'd up by the truncate operation, but also have some slack
9124 * space reserved in case it uses space during the truncate (thank you
9125 * very much snapshotting).
9127 * And we need these to all be separate. The fact is we can use a lot of
9128 * space doing the truncate, and we have no earthly idea how much space
9129 * we will use, so we need the truncate reservation to be separate so it
9130 * doesn't end up using space reserved for updating the inode or
9131 * removing the orphan item. We also need to be able to stop the
9132 * transaction and start a new one, which means we need to be able to
9133 * update the inode several times, and we have no idea of knowing how
9134 * many times that will be, so we can't just reserve 1 item for the
9135 * entirety of the operation, so that has to be done separately as well.
9136 * Then there is the orphan item, which does indeed need to be held on
9137 * to for the whole operation, and we need nobody to touch this reserved
9138 * space except the orphan code.
9140 * So that leaves us with
9142 * 1) root->orphan_block_rsv - for the orphan deletion.
9143 * 2) rsv - for the truncate reservation, which we will steal from the
9144 * transaction reservation.
9145 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9146 * updating the inode.
9148 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9149 if (!rsv)
9150 return -ENOMEM;
9151 rsv->size = min_size;
9152 rsv->failfast = 1;
9155 * 1 for the truncate slack space
9156 * 1 for updating the inode.
9158 trans = btrfs_start_transaction(root, 2);
9159 if (IS_ERR(trans)) {
9160 err = PTR_ERR(trans);
9161 goto out;
9164 /* Migrate the slack space for the truncate to our reserve */
9165 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9166 min_size, 0);
9167 BUG_ON(ret);
9170 * So if we truncate and then write and fsync we normally would just
9171 * write the extents that changed, which is a problem if we need to
9172 * first truncate that entire inode. So set this flag so we write out
9173 * all of the extents in the inode to the sync log so we're completely
9174 * safe.
9176 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9177 trans->block_rsv = rsv;
9179 while (1) {
9180 ret = btrfs_truncate_inode_items(trans, root, inode,
9181 inode->i_size,
9182 BTRFS_EXTENT_DATA_KEY);
9183 trans->block_rsv = &fs_info->trans_block_rsv;
9184 if (ret != -ENOSPC && ret != -EAGAIN) {
9185 err = ret;
9186 break;
9189 ret = btrfs_update_inode(trans, root, inode);
9190 if (ret) {
9191 err = ret;
9192 break;
9195 btrfs_end_transaction(trans);
9196 btrfs_btree_balance_dirty(fs_info);
9198 trans = btrfs_start_transaction(root, 2);
9199 if (IS_ERR(trans)) {
9200 ret = err = PTR_ERR(trans);
9201 trans = NULL;
9202 break;
9205 btrfs_block_rsv_release(fs_info, rsv, -1);
9206 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9207 rsv, min_size, 0);
9208 BUG_ON(ret); /* shouldn't happen */
9209 trans->block_rsv = rsv;
9213 * We can't call btrfs_truncate_block inside a trans handle as we could
9214 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9215 * we've truncated everything except the last little bit, and can do
9216 * btrfs_truncate_block and then update the disk_i_size.
9218 if (ret == NEED_TRUNCATE_BLOCK) {
9219 btrfs_end_transaction(trans);
9220 btrfs_btree_balance_dirty(fs_info);
9222 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9223 if (ret)
9224 goto out;
9225 trans = btrfs_start_transaction(root, 1);
9226 if (IS_ERR(trans)) {
9227 ret = PTR_ERR(trans);
9228 goto out;
9230 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9233 if (ret == 0 && inode->i_nlink > 0) {
9234 trans->block_rsv = root->orphan_block_rsv;
9235 ret = btrfs_orphan_del(trans, BTRFS_I(inode));
9236 if (ret)
9237 err = ret;
9240 if (trans) {
9241 trans->block_rsv = &fs_info->trans_block_rsv;
9242 ret = btrfs_update_inode(trans, root, inode);
9243 if (ret && !err)
9244 err = ret;
9246 ret = btrfs_end_transaction(trans);
9247 btrfs_btree_balance_dirty(fs_info);
9249 out:
9250 btrfs_free_block_rsv(fs_info, rsv);
9252 if (ret && !err)
9253 err = ret;
9255 return err;
9259 * create a new subvolume directory/inode (helper for the ioctl).
9261 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9262 struct btrfs_root *new_root,
9263 struct btrfs_root *parent_root,
9264 u64 new_dirid)
9266 struct inode *inode;
9267 int err;
9268 u64 index = 0;
9270 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9271 new_dirid, new_dirid,
9272 S_IFDIR | (~current_umask() & S_IRWXUGO),
9273 &index);
9274 if (IS_ERR(inode))
9275 return PTR_ERR(inode);
9276 inode->i_op = &btrfs_dir_inode_operations;
9277 inode->i_fop = &btrfs_dir_file_operations;
9279 set_nlink(inode, 1);
9280 btrfs_i_size_write(BTRFS_I(inode), 0);
9281 unlock_new_inode(inode);
9283 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9284 if (err)
9285 btrfs_err(new_root->fs_info,
9286 "error inheriting subvolume %llu properties: %d",
9287 new_root->root_key.objectid, err);
9289 err = btrfs_update_inode(trans, new_root, inode);
9291 iput(inode);
9292 return err;
9295 struct inode *btrfs_alloc_inode(struct super_block *sb)
9297 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9298 struct btrfs_inode *ei;
9299 struct inode *inode;
9301 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9302 if (!ei)
9303 return NULL;
9305 ei->root = NULL;
9306 ei->generation = 0;
9307 ei->last_trans = 0;
9308 ei->last_sub_trans = 0;
9309 ei->logged_trans = 0;
9310 ei->delalloc_bytes = 0;
9311 ei->new_delalloc_bytes = 0;
9312 ei->defrag_bytes = 0;
9313 ei->disk_i_size = 0;
9314 ei->flags = 0;
9315 ei->csum_bytes = 0;
9316 ei->index_cnt = (u64)-1;
9317 ei->dir_index = 0;
9318 ei->last_unlink_trans = 0;
9319 ei->last_log_commit = 0;
9320 ei->delayed_iput_count = 0;
9322 spin_lock_init(&ei->lock);
9323 ei->outstanding_extents = 0;
9324 if (sb->s_magic != BTRFS_TEST_MAGIC)
9325 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9326 BTRFS_BLOCK_RSV_DELALLOC);
9327 ei->runtime_flags = 0;
9328 ei->prop_compress = BTRFS_COMPRESS_NONE;
9329 ei->defrag_compress = BTRFS_COMPRESS_NONE;
9331 ei->delayed_node = NULL;
9333 ei->i_otime.tv_sec = 0;
9334 ei->i_otime.tv_nsec = 0;
9336 inode = &ei->vfs_inode;
9337 extent_map_tree_init(&ei->extent_tree);
9338 extent_io_tree_init(&ei->io_tree, inode);
9339 extent_io_tree_init(&ei->io_failure_tree, inode);
9340 ei->io_tree.track_uptodate = 1;
9341 ei->io_failure_tree.track_uptodate = 1;
9342 atomic_set(&ei->sync_writers, 0);
9343 mutex_init(&ei->log_mutex);
9344 mutex_init(&ei->delalloc_mutex);
9345 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9346 INIT_LIST_HEAD(&ei->delalloc_inodes);
9347 INIT_LIST_HEAD(&ei->delayed_iput);
9348 RB_CLEAR_NODE(&ei->rb_node);
9349 init_rwsem(&ei->dio_sem);
9351 return inode;
9354 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9355 void btrfs_test_destroy_inode(struct inode *inode)
9357 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9358 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9360 #endif
9362 static void btrfs_i_callback(struct rcu_head *head)
9364 struct inode *inode = container_of(head, struct inode, i_rcu);
9365 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9368 void btrfs_destroy_inode(struct inode *inode)
9370 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9371 struct btrfs_ordered_extent *ordered;
9372 struct btrfs_root *root = BTRFS_I(inode)->root;
9374 WARN_ON(!hlist_empty(&inode->i_dentry));
9375 WARN_ON(inode->i_data.nrpages);
9376 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9377 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9378 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9379 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9380 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9381 WARN_ON(BTRFS_I(inode)->csum_bytes);
9382 WARN_ON(BTRFS_I(inode)->defrag_bytes);
9385 * This can happen where we create an inode, but somebody else also
9386 * created the same inode and we need to destroy the one we already
9387 * created.
9389 if (!root)
9390 goto free;
9392 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9393 &BTRFS_I(inode)->runtime_flags)) {
9394 btrfs_info(fs_info, "inode %llu still on the orphan list",
9395 btrfs_ino(BTRFS_I(inode)));
9396 atomic_dec(&root->orphan_inodes);
9399 while (1) {
9400 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9401 if (!ordered)
9402 break;
9403 else {
9404 btrfs_err(fs_info,
9405 "found ordered extent %llu %llu on inode cleanup",
9406 ordered->file_offset, ordered->len);
9407 btrfs_remove_ordered_extent(inode, ordered);
9408 btrfs_put_ordered_extent(ordered);
9409 btrfs_put_ordered_extent(ordered);
9412 btrfs_qgroup_check_reserved_leak(inode);
9413 inode_tree_del(inode);
9414 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9415 free:
9416 call_rcu(&inode->i_rcu, btrfs_i_callback);
9419 int btrfs_drop_inode(struct inode *inode)
9421 struct btrfs_root *root = BTRFS_I(inode)->root;
9423 if (root == NULL)
9424 return 1;
9426 /* the snap/subvol tree is on deleting */
9427 if (btrfs_root_refs(&root->root_item) == 0)
9428 return 1;
9429 else
9430 return generic_drop_inode(inode);
9433 static void init_once(void *foo)
9435 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9437 inode_init_once(&ei->vfs_inode);
9440 void btrfs_destroy_cachep(void)
9443 * Make sure all delayed rcu free inodes are flushed before we
9444 * destroy cache.
9446 rcu_barrier();
9447 kmem_cache_destroy(btrfs_inode_cachep);
9448 kmem_cache_destroy(btrfs_trans_handle_cachep);
9449 kmem_cache_destroy(btrfs_path_cachep);
9450 kmem_cache_destroy(btrfs_free_space_cachep);
9453 int __init btrfs_init_cachep(void)
9455 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9456 sizeof(struct btrfs_inode), 0,
9457 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9458 init_once);
9459 if (!btrfs_inode_cachep)
9460 goto fail;
9462 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9463 sizeof(struct btrfs_trans_handle), 0,
9464 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9465 if (!btrfs_trans_handle_cachep)
9466 goto fail;
9468 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9469 sizeof(struct btrfs_path), 0,
9470 SLAB_MEM_SPREAD, NULL);
9471 if (!btrfs_path_cachep)
9472 goto fail;
9474 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9475 sizeof(struct btrfs_free_space), 0,
9476 SLAB_MEM_SPREAD, NULL);
9477 if (!btrfs_free_space_cachep)
9478 goto fail;
9480 return 0;
9481 fail:
9482 btrfs_destroy_cachep();
9483 return -ENOMEM;
9486 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9487 u32 request_mask, unsigned int flags)
9489 u64 delalloc_bytes;
9490 struct inode *inode = d_inode(path->dentry);
9491 u32 blocksize = inode->i_sb->s_blocksize;
9492 u32 bi_flags = BTRFS_I(inode)->flags;
9494 stat->result_mask |= STATX_BTIME;
9495 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9496 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9497 if (bi_flags & BTRFS_INODE_APPEND)
9498 stat->attributes |= STATX_ATTR_APPEND;
9499 if (bi_flags & BTRFS_INODE_COMPRESS)
9500 stat->attributes |= STATX_ATTR_COMPRESSED;
9501 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9502 stat->attributes |= STATX_ATTR_IMMUTABLE;
9503 if (bi_flags & BTRFS_INODE_NODUMP)
9504 stat->attributes |= STATX_ATTR_NODUMP;
9506 stat->attributes_mask |= (STATX_ATTR_APPEND |
9507 STATX_ATTR_COMPRESSED |
9508 STATX_ATTR_IMMUTABLE |
9509 STATX_ATTR_NODUMP);
9511 generic_fillattr(inode, stat);
9512 stat->dev = BTRFS_I(inode)->root->anon_dev;
9514 spin_lock(&BTRFS_I(inode)->lock);
9515 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9516 spin_unlock(&BTRFS_I(inode)->lock);
9517 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9518 ALIGN(delalloc_bytes, blocksize)) >> 9;
9519 return 0;
9522 static int btrfs_rename_exchange(struct inode *old_dir,
9523 struct dentry *old_dentry,
9524 struct inode *new_dir,
9525 struct dentry *new_dentry)
9527 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9528 struct btrfs_trans_handle *trans;
9529 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9530 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9531 struct inode *new_inode = new_dentry->d_inode;
9532 struct inode *old_inode = old_dentry->d_inode;
9533 struct timespec ctime = current_time(old_inode);
9534 struct dentry *parent;
9535 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9536 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9537 u64 old_idx = 0;
9538 u64 new_idx = 0;
9539 u64 root_objectid;
9540 int ret;
9541 bool root_log_pinned = false;
9542 bool dest_log_pinned = false;
9544 /* we only allow rename subvolume link between subvolumes */
9545 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9546 return -EXDEV;
9548 /* close the race window with snapshot create/destroy ioctl */
9549 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9550 down_read(&fs_info->subvol_sem);
9551 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9552 down_read(&fs_info->subvol_sem);
9555 * We want to reserve the absolute worst case amount of items. So if
9556 * both inodes are subvols and we need to unlink them then that would
9557 * require 4 item modifications, but if they are both normal inodes it
9558 * would require 5 item modifications, so we'll assume their normal
9559 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9560 * should cover the worst case number of items we'll modify.
9562 trans = btrfs_start_transaction(root, 12);
9563 if (IS_ERR(trans)) {
9564 ret = PTR_ERR(trans);
9565 goto out_notrans;
9569 * We need to find a free sequence number both in the source and
9570 * in the destination directory for the exchange.
9572 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9573 if (ret)
9574 goto out_fail;
9575 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9576 if (ret)
9577 goto out_fail;
9579 BTRFS_I(old_inode)->dir_index = 0ULL;
9580 BTRFS_I(new_inode)->dir_index = 0ULL;
9582 /* Reference for the source. */
9583 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9584 /* force full log commit if subvolume involved. */
9585 btrfs_set_log_full_commit(fs_info, trans);
9586 } else {
9587 btrfs_pin_log_trans(root);
9588 root_log_pinned = true;
9589 ret = btrfs_insert_inode_ref(trans, dest,
9590 new_dentry->d_name.name,
9591 new_dentry->d_name.len,
9592 old_ino,
9593 btrfs_ino(BTRFS_I(new_dir)),
9594 old_idx);
9595 if (ret)
9596 goto out_fail;
9599 /* And now for the dest. */
9600 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9601 /* force full log commit if subvolume involved. */
9602 btrfs_set_log_full_commit(fs_info, trans);
9603 } else {
9604 btrfs_pin_log_trans(dest);
9605 dest_log_pinned = true;
9606 ret = btrfs_insert_inode_ref(trans, root,
9607 old_dentry->d_name.name,
9608 old_dentry->d_name.len,
9609 new_ino,
9610 btrfs_ino(BTRFS_I(old_dir)),
9611 new_idx);
9612 if (ret)
9613 goto out_fail;
9616 /* Update inode version and ctime/mtime. */
9617 inode_inc_iversion(old_dir);
9618 inode_inc_iversion(new_dir);
9619 inode_inc_iversion(old_inode);
9620 inode_inc_iversion(new_inode);
9621 old_dir->i_ctime = old_dir->i_mtime = ctime;
9622 new_dir->i_ctime = new_dir->i_mtime = ctime;
9623 old_inode->i_ctime = ctime;
9624 new_inode->i_ctime = ctime;
9626 if (old_dentry->d_parent != new_dentry->d_parent) {
9627 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9628 BTRFS_I(old_inode), 1);
9629 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9630 BTRFS_I(new_inode), 1);
9633 /* src is a subvolume */
9634 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9635 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9636 ret = btrfs_unlink_subvol(trans, root, old_dir,
9637 root_objectid,
9638 old_dentry->d_name.name,
9639 old_dentry->d_name.len);
9640 } else { /* src is an inode */
9641 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9642 BTRFS_I(old_dentry->d_inode),
9643 old_dentry->d_name.name,
9644 old_dentry->d_name.len);
9645 if (!ret)
9646 ret = btrfs_update_inode(trans, root, old_inode);
9648 if (ret) {
9649 btrfs_abort_transaction(trans, ret);
9650 goto out_fail;
9653 /* dest is a subvolume */
9654 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9655 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9656 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9657 root_objectid,
9658 new_dentry->d_name.name,
9659 new_dentry->d_name.len);
9660 } else { /* dest is an inode */
9661 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9662 BTRFS_I(new_dentry->d_inode),
9663 new_dentry->d_name.name,
9664 new_dentry->d_name.len);
9665 if (!ret)
9666 ret = btrfs_update_inode(trans, dest, new_inode);
9668 if (ret) {
9669 btrfs_abort_transaction(trans, ret);
9670 goto out_fail;
9673 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9674 new_dentry->d_name.name,
9675 new_dentry->d_name.len, 0, old_idx);
9676 if (ret) {
9677 btrfs_abort_transaction(trans, ret);
9678 goto out_fail;
9681 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9682 old_dentry->d_name.name,
9683 old_dentry->d_name.len, 0, new_idx);
9684 if (ret) {
9685 btrfs_abort_transaction(trans, ret);
9686 goto out_fail;
9689 if (old_inode->i_nlink == 1)
9690 BTRFS_I(old_inode)->dir_index = old_idx;
9691 if (new_inode->i_nlink == 1)
9692 BTRFS_I(new_inode)->dir_index = new_idx;
9694 if (root_log_pinned) {
9695 parent = new_dentry->d_parent;
9696 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9697 parent);
9698 btrfs_end_log_trans(root);
9699 root_log_pinned = false;
9701 if (dest_log_pinned) {
9702 parent = old_dentry->d_parent;
9703 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9704 parent);
9705 btrfs_end_log_trans(dest);
9706 dest_log_pinned = false;
9708 out_fail:
9710 * If we have pinned a log and an error happened, we unpin tasks
9711 * trying to sync the log and force them to fallback to a transaction
9712 * commit if the log currently contains any of the inodes involved in
9713 * this rename operation (to ensure we do not persist a log with an
9714 * inconsistent state for any of these inodes or leading to any
9715 * inconsistencies when replayed). If the transaction was aborted, the
9716 * abortion reason is propagated to userspace when attempting to commit
9717 * the transaction. If the log does not contain any of these inodes, we
9718 * allow the tasks to sync it.
9720 if (ret && (root_log_pinned || dest_log_pinned)) {
9721 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9722 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9723 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9724 (new_inode &&
9725 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9726 btrfs_set_log_full_commit(fs_info, trans);
9728 if (root_log_pinned) {
9729 btrfs_end_log_trans(root);
9730 root_log_pinned = false;
9732 if (dest_log_pinned) {
9733 btrfs_end_log_trans(dest);
9734 dest_log_pinned = false;
9737 ret = btrfs_end_transaction(trans);
9738 out_notrans:
9739 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9740 up_read(&fs_info->subvol_sem);
9741 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9742 up_read(&fs_info->subvol_sem);
9744 return ret;
9747 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9748 struct btrfs_root *root,
9749 struct inode *dir,
9750 struct dentry *dentry)
9752 int ret;
9753 struct inode *inode;
9754 u64 objectid;
9755 u64 index;
9757 ret = btrfs_find_free_ino(root, &objectid);
9758 if (ret)
9759 return ret;
9761 inode = btrfs_new_inode(trans, root, dir,
9762 dentry->d_name.name,
9763 dentry->d_name.len,
9764 btrfs_ino(BTRFS_I(dir)),
9765 objectid,
9766 S_IFCHR | WHITEOUT_MODE,
9767 &index);
9769 if (IS_ERR(inode)) {
9770 ret = PTR_ERR(inode);
9771 return ret;
9774 inode->i_op = &btrfs_special_inode_operations;
9775 init_special_inode(inode, inode->i_mode,
9776 WHITEOUT_DEV);
9778 ret = btrfs_init_inode_security(trans, inode, dir,
9779 &dentry->d_name);
9780 if (ret)
9781 goto out;
9783 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9784 BTRFS_I(inode), 0, index);
9785 if (ret)
9786 goto out;
9788 ret = btrfs_update_inode(trans, root, inode);
9789 out:
9790 unlock_new_inode(inode);
9791 if (ret)
9792 inode_dec_link_count(inode);
9793 iput(inode);
9795 return ret;
9798 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9799 struct inode *new_dir, struct dentry *new_dentry,
9800 unsigned int flags)
9802 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9803 struct btrfs_trans_handle *trans;
9804 unsigned int trans_num_items;
9805 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9806 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9807 struct inode *new_inode = d_inode(new_dentry);
9808 struct inode *old_inode = d_inode(old_dentry);
9809 u64 index = 0;
9810 u64 root_objectid;
9811 int ret;
9812 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9813 bool log_pinned = false;
9815 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9816 return -EPERM;
9818 /* we only allow rename subvolume link between subvolumes */
9819 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9820 return -EXDEV;
9822 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9823 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9824 return -ENOTEMPTY;
9826 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9827 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9828 return -ENOTEMPTY;
9831 /* check for collisions, even if the name isn't there */
9832 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9833 new_dentry->d_name.name,
9834 new_dentry->d_name.len);
9836 if (ret) {
9837 if (ret == -EEXIST) {
9838 /* we shouldn't get
9839 * eexist without a new_inode */
9840 if (WARN_ON(!new_inode)) {
9841 return ret;
9843 } else {
9844 /* maybe -EOVERFLOW */
9845 return ret;
9848 ret = 0;
9851 * we're using rename to replace one file with another. Start IO on it
9852 * now so we don't add too much work to the end of the transaction
9854 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9855 filemap_flush(old_inode->i_mapping);
9857 /* close the racy window with snapshot create/destroy ioctl */
9858 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9859 down_read(&fs_info->subvol_sem);
9861 * We want to reserve the absolute worst case amount of items. So if
9862 * both inodes are subvols and we need to unlink them then that would
9863 * require 4 item modifications, but if they are both normal inodes it
9864 * would require 5 item modifications, so we'll assume they are normal
9865 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9866 * should cover the worst case number of items we'll modify.
9867 * If our rename has the whiteout flag, we need more 5 units for the
9868 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9869 * when selinux is enabled).
9871 trans_num_items = 11;
9872 if (flags & RENAME_WHITEOUT)
9873 trans_num_items += 5;
9874 trans = btrfs_start_transaction(root, trans_num_items);
9875 if (IS_ERR(trans)) {
9876 ret = PTR_ERR(trans);
9877 goto out_notrans;
9880 if (dest != root)
9881 btrfs_record_root_in_trans(trans, dest);
9883 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9884 if (ret)
9885 goto out_fail;
9887 BTRFS_I(old_inode)->dir_index = 0ULL;
9888 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9889 /* force full log commit if subvolume involved. */
9890 btrfs_set_log_full_commit(fs_info, trans);
9891 } else {
9892 btrfs_pin_log_trans(root);
9893 log_pinned = true;
9894 ret = btrfs_insert_inode_ref(trans, dest,
9895 new_dentry->d_name.name,
9896 new_dentry->d_name.len,
9897 old_ino,
9898 btrfs_ino(BTRFS_I(new_dir)), index);
9899 if (ret)
9900 goto out_fail;
9903 inode_inc_iversion(old_dir);
9904 inode_inc_iversion(new_dir);
9905 inode_inc_iversion(old_inode);
9906 old_dir->i_ctime = old_dir->i_mtime =
9907 new_dir->i_ctime = new_dir->i_mtime =
9908 old_inode->i_ctime = current_time(old_dir);
9910 if (old_dentry->d_parent != new_dentry->d_parent)
9911 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9912 BTRFS_I(old_inode), 1);
9914 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9915 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9916 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9917 old_dentry->d_name.name,
9918 old_dentry->d_name.len);
9919 } else {
9920 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9921 BTRFS_I(d_inode(old_dentry)),
9922 old_dentry->d_name.name,
9923 old_dentry->d_name.len);
9924 if (!ret)
9925 ret = btrfs_update_inode(trans, root, old_inode);
9927 if (ret) {
9928 btrfs_abort_transaction(trans, ret);
9929 goto out_fail;
9932 if (new_inode) {
9933 inode_inc_iversion(new_inode);
9934 new_inode->i_ctime = current_time(new_inode);
9935 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9936 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9937 root_objectid = BTRFS_I(new_inode)->location.objectid;
9938 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9939 root_objectid,
9940 new_dentry->d_name.name,
9941 new_dentry->d_name.len);
9942 BUG_ON(new_inode->i_nlink == 0);
9943 } else {
9944 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9945 BTRFS_I(d_inode(new_dentry)),
9946 new_dentry->d_name.name,
9947 new_dentry->d_name.len);
9949 if (!ret && new_inode->i_nlink == 0)
9950 ret = btrfs_orphan_add(trans,
9951 BTRFS_I(d_inode(new_dentry)));
9952 if (ret) {
9953 btrfs_abort_transaction(trans, ret);
9954 goto out_fail;
9958 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9959 new_dentry->d_name.name,
9960 new_dentry->d_name.len, 0, index);
9961 if (ret) {
9962 btrfs_abort_transaction(trans, ret);
9963 goto out_fail;
9966 if (old_inode->i_nlink == 1)
9967 BTRFS_I(old_inode)->dir_index = index;
9969 if (log_pinned) {
9970 struct dentry *parent = new_dentry->d_parent;
9972 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9973 parent);
9974 btrfs_end_log_trans(root);
9975 log_pinned = false;
9978 if (flags & RENAME_WHITEOUT) {
9979 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9980 old_dentry);
9982 if (ret) {
9983 btrfs_abort_transaction(trans, ret);
9984 goto out_fail;
9987 out_fail:
9989 * If we have pinned the log and an error happened, we unpin tasks
9990 * trying to sync the log and force them to fallback to a transaction
9991 * commit if the log currently contains any of the inodes involved in
9992 * this rename operation (to ensure we do not persist a log with an
9993 * inconsistent state for any of these inodes or leading to any
9994 * inconsistencies when replayed). If the transaction was aborted, the
9995 * abortion reason is propagated to userspace when attempting to commit
9996 * the transaction. If the log does not contain any of these inodes, we
9997 * allow the tasks to sync it.
9999 if (ret && log_pinned) {
10000 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10001 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10002 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
10003 (new_inode &&
10004 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
10005 btrfs_set_log_full_commit(fs_info, trans);
10007 btrfs_end_log_trans(root);
10008 log_pinned = false;
10010 btrfs_end_transaction(trans);
10011 out_notrans:
10012 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10013 up_read(&fs_info->subvol_sem);
10015 return ret;
10018 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10019 struct inode *new_dir, struct dentry *new_dentry,
10020 unsigned int flags)
10022 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
10023 return -EINVAL;
10025 if (flags & RENAME_EXCHANGE)
10026 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10027 new_dentry);
10029 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
10032 static void btrfs_run_delalloc_work(struct btrfs_work *work)
10034 struct btrfs_delalloc_work *delalloc_work;
10035 struct inode *inode;
10037 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10038 work);
10039 inode = delalloc_work->inode;
10040 filemap_flush(inode->i_mapping);
10041 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10042 &BTRFS_I(inode)->runtime_flags))
10043 filemap_flush(inode->i_mapping);
10045 if (delalloc_work->delay_iput)
10046 btrfs_add_delayed_iput(inode);
10047 else
10048 iput(inode);
10049 complete(&delalloc_work->completion);
10052 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
10053 int delay_iput)
10055 struct btrfs_delalloc_work *work;
10057 work = kmalloc(sizeof(*work), GFP_NOFS);
10058 if (!work)
10059 return NULL;
10061 init_completion(&work->completion);
10062 INIT_LIST_HEAD(&work->list);
10063 work->inode = inode;
10064 work->delay_iput = delay_iput;
10065 WARN_ON_ONCE(!inode);
10066 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10067 btrfs_run_delalloc_work, NULL, NULL);
10069 return work;
10072 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10074 wait_for_completion(&work->completion);
10075 kfree(work);
10079 * some fairly slow code that needs optimization. This walks the list
10080 * of all the inodes with pending delalloc and forces them to disk.
10082 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10083 int nr)
10085 struct btrfs_inode *binode;
10086 struct inode *inode;
10087 struct btrfs_delalloc_work *work, *next;
10088 struct list_head works;
10089 struct list_head splice;
10090 int ret = 0;
10092 INIT_LIST_HEAD(&works);
10093 INIT_LIST_HEAD(&splice);
10095 mutex_lock(&root->delalloc_mutex);
10096 spin_lock(&root->delalloc_lock);
10097 list_splice_init(&root->delalloc_inodes, &splice);
10098 while (!list_empty(&splice)) {
10099 binode = list_entry(splice.next, struct btrfs_inode,
10100 delalloc_inodes);
10102 list_move_tail(&binode->delalloc_inodes,
10103 &root->delalloc_inodes);
10104 inode = igrab(&binode->vfs_inode);
10105 if (!inode) {
10106 cond_resched_lock(&root->delalloc_lock);
10107 continue;
10109 spin_unlock(&root->delalloc_lock);
10111 work = btrfs_alloc_delalloc_work(inode, delay_iput);
10112 if (!work) {
10113 if (delay_iput)
10114 btrfs_add_delayed_iput(inode);
10115 else
10116 iput(inode);
10117 ret = -ENOMEM;
10118 goto out;
10120 list_add_tail(&work->list, &works);
10121 btrfs_queue_work(root->fs_info->flush_workers,
10122 &work->work);
10123 ret++;
10124 if (nr != -1 && ret >= nr)
10125 goto out;
10126 cond_resched();
10127 spin_lock(&root->delalloc_lock);
10129 spin_unlock(&root->delalloc_lock);
10131 out:
10132 list_for_each_entry_safe(work, next, &works, list) {
10133 list_del_init(&work->list);
10134 btrfs_wait_and_free_delalloc_work(work);
10137 if (!list_empty_careful(&splice)) {
10138 spin_lock(&root->delalloc_lock);
10139 list_splice_tail(&splice, &root->delalloc_inodes);
10140 spin_unlock(&root->delalloc_lock);
10142 mutex_unlock(&root->delalloc_mutex);
10143 return ret;
10146 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10148 struct btrfs_fs_info *fs_info = root->fs_info;
10149 int ret;
10151 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10152 return -EROFS;
10154 ret = __start_delalloc_inodes(root, delay_iput, -1);
10155 if (ret > 0)
10156 ret = 0;
10157 return ret;
10160 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10161 int nr)
10163 struct btrfs_root *root;
10164 struct list_head splice;
10165 int ret;
10167 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10168 return -EROFS;
10170 INIT_LIST_HEAD(&splice);
10172 mutex_lock(&fs_info->delalloc_root_mutex);
10173 spin_lock(&fs_info->delalloc_root_lock);
10174 list_splice_init(&fs_info->delalloc_roots, &splice);
10175 while (!list_empty(&splice) && nr) {
10176 root = list_first_entry(&splice, struct btrfs_root,
10177 delalloc_root);
10178 root = btrfs_grab_fs_root(root);
10179 BUG_ON(!root);
10180 list_move_tail(&root->delalloc_root,
10181 &fs_info->delalloc_roots);
10182 spin_unlock(&fs_info->delalloc_root_lock);
10184 ret = __start_delalloc_inodes(root, delay_iput, nr);
10185 btrfs_put_fs_root(root);
10186 if (ret < 0)
10187 goto out;
10189 if (nr != -1) {
10190 nr -= ret;
10191 WARN_ON(nr < 0);
10193 spin_lock(&fs_info->delalloc_root_lock);
10195 spin_unlock(&fs_info->delalloc_root_lock);
10197 ret = 0;
10198 out:
10199 if (!list_empty_careful(&splice)) {
10200 spin_lock(&fs_info->delalloc_root_lock);
10201 list_splice_tail(&splice, &fs_info->delalloc_roots);
10202 spin_unlock(&fs_info->delalloc_root_lock);
10204 mutex_unlock(&fs_info->delalloc_root_mutex);
10205 return ret;
10208 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10209 const char *symname)
10211 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10212 struct btrfs_trans_handle *trans;
10213 struct btrfs_root *root = BTRFS_I(dir)->root;
10214 struct btrfs_path *path;
10215 struct btrfs_key key;
10216 struct inode *inode = NULL;
10217 int err;
10218 int drop_inode = 0;
10219 u64 objectid;
10220 u64 index = 0;
10221 int name_len;
10222 int datasize;
10223 unsigned long ptr;
10224 struct btrfs_file_extent_item *ei;
10225 struct extent_buffer *leaf;
10227 name_len = strlen(symname);
10228 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10229 return -ENAMETOOLONG;
10232 * 2 items for inode item and ref
10233 * 2 items for dir items
10234 * 1 item for updating parent inode item
10235 * 1 item for the inline extent item
10236 * 1 item for xattr if selinux is on
10238 trans = btrfs_start_transaction(root, 7);
10239 if (IS_ERR(trans))
10240 return PTR_ERR(trans);
10242 err = btrfs_find_free_ino(root, &objectid);
10243 if (err)
10244 goto out_unlock;
10246 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10247 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10248 objectid, S_IFLNK|S_IRWXUGO, &index);
10249 if (IS_ERR(inode)) {
10250 err = PTR_ERR(inode);
10251 goto out_unlock;
10255 * If the active LSM wants to access the inode during
10256 * d_instantiate it needs these. Smack checks to see
10257 * if the filesystem supports xattrs by looking at the
10258 * ops vector.
10260 inode->i_fop = &btrfs_file_operations;
10261 inode->i_op = &btrfs_file_inode_operations;
10262 inode->i_mapping->a_ops = &btrfs_aops;
10263 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10265 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10266 if (err)
10267 goto out_unlock_inode;
10269 path = btrfs_alloc_path();
10270 if (!path) {
10271 err = -ENOMEM;
10272 goto out_unlock_inode;
10274 key.objectid = btrfs_ino(BTRFS_I(inode));
10275 key.offset = 0;
10276 key.type = BTRFS_EXTENT_DATA_KEY;
10277 datasize = btrfs_file_extent_calc_inline_size(name_len);
10278 err = btrfs_insert_empty_item(trans, root, path, &key,
10279 datasize);
10280 if (err) {
10281 btrfs_free_path(path);
10282 goto out_unlock_inode;
10284 leaf = path->nodes[0];
10285 ei = btrfs_item_ptr(leaf, path->slots[0],
10286 struct btrfs_file_extent_item);
10287 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10288 btrfs_set_file_extent_type(leaf, ei,
10289 BTRFS_FILE_EXTENT_INLINE);
10290 btrfs_set_file_extent_encryption(leaf, ei, 0);
10291 btrfs_set_file_extent_compression(leaf, ei, 0);
10292 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10293 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10295 ptr = btrfs_file_extent_inline_start(ei);
10296 write_extent_buffer(leaf, symname, ptr, name_len);
10297 btrfs_mark_buffer_dirty(leaf);
10298 btrfs_free_path(path);
10300 inode->i_op = &btrfs_symlink_inode_operations;
10301 inode_nohighmem(inode);
10302 inode->i_mapping->a_ops = &btrfs_symlink_aops;
10303 inode_set_bytes(inode, name_len);
10304 btrfs_i_size_write(BTRFS_I(inode), name_len);
10305 err = btrfs_update_inode(trans, root, inode);
10307 * Last step, add directory indexes for our symlink inode. This is the
10308 * last step to avoid extra cleanup of these indexes if an error happens
10309 * elsewhere above.
10311 if (!err)
10312 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10313 BTRFS_I(inode), 0, index);
10314 if (err) {
10315 drop_inode = 1;
10316 goto out_unlock_inode;
10319 unlock_new_inode(inode);
10320 d_instantiate(dentry, inode);
10322 out_unlock:
10323 btrfs_end_transaction(trans);
10324 if (drop_inode) {
10325 inode_dec_link_count(inode);
10326 iput(inode);
10328 btrfs_btree_balance_dirty(fs_info);
10329 return err;
10331 out_unlock_inode:
10332 drop_inode = 1;
10333 unlock_new_inode(inode);
10334 goto out_unlock;
10337 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10338 u64 start, u64 num_bytes, u64 min_size,
10339 loff_t actual_len, u64 *alloc_hint,
10340 struct btrfs_trans_handle *trans)
10342 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10343 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10344 struct extent_map *em;
10345 struct btrfs_root *root = BTRFS_I(inode)->root;
10346 struct btrfs_key ins;
10347 u64 cur_offset = start;
10348 u64 i_size;
10349 u64 cur_bytes;
10350 u64 last_alloc = (u64)-1;
10351 int ret = 0;
10352 bool own_trans = true;
10353 u64 end = start + num_bytes - 1;
10355 if (trans)
10356 own_trans = false;
10357 while (num_bytes > 0) {
10358 if (own_trans) {
10359 trans = btrfs_start_transaction(root, 3);
10360 if (IS_ERR(trans)) {
10361 ret = PTR_ERR(trans);
10362 break;
10366 cur_bytes = min_t(u64, num_bytes, SZ_256M);
10367 cur_bytes = max(cur_bytes, min_size);
10369 * If we are severely fragmented we could end up with really
10370 * small allocations, so if the allocator is returning small
10371 * chunks lets make its job easier by only searching for those
10372 * sized chunks.
10374 cur_bytes = min(cur_bytes, last_alloc);
10375 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10376 min_size, 0, *alloc_hint, &ins, 1, 0);
10377 if (ret) {
10378 if (own_trans)
10379 btrfs_end_transaction(trans);
10380 break;
10382 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10384 last_alloc = ins.offset;
10385 ret = insert_reserved_file_extent(trans, inode,
10386 cur_offset, ins.objectid,
10387 ins.offset, ins.offset,
10388 ins.offset, 0, 0, 0,
10389 BTRFS_FILE_EXTENT_PREALLOC);
10390 if (ret) {
10391 btrfs_free_reserved_extent(fs_info, ins.objectid,
10392 ins.offset, 0);
10393 btrfs_abort_transaction(trans, ret);
10394 if (own_trans)
10395 btrfs_end_transaction(trans);
10396 break;
10399 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10400 cur_offset + ins.offset -1, 0);
10402 em = alloc_extent_map();
10403 if (!em) {
10404 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10405 &BTRFS_I(inode)->runtime_flags);
10406 goto next;
10409 em->start = cur_offset;
10410 em->orig_start = cur_offset;
10411 em->len = ins.offset;
10412 em->block_start = ins.objectid;
10413 em->block_len = ins.offset;
10414 em->orig_block_len = ins.offset;
10415 em->ram_bytes = ins.offset;
10416 em->bdev = fs_info->fs_devices->latest_bdev;
10417 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10418 em->generation = trans->transid;
10420 while (1) {
10421 write_lock(&em_tree->lock);
10422 ret = add_extent_mapping(em_tree, em, 1);
10423 write_unlock(&em_tree->lock);
10424 if (ret != -EEXIST)
10425 break;
10426 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10427 cur_offset + ins.offset - 1,
10430 free_extent_map(em);
10431 next:
10432 num_bytes -= ins.offset;
10433 cur_offset += ins.offset;
10434 *alloc_hint = ins.objectid + ins.offset;
10436 inode_inc_iversion(inode);
10437 inode->i_ctime = current_time(inode);
10438 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10439 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10440 (actual_len > inode->i_size) &&
10441 (cur_offset > inode->i_size)) {
10442 if (cur_offset > actual_len)
10443 i_size = actual_len;
10444 else
10445 i_size = cur_offset;
10446 i_size_write(inode, i_size);
10447 btrfs_ordered_update_i_size(inode, i_size, NULL);
10450 ret = btrfs_update_inode(trans, root, inode);
10452 if (ret) {
10453 btrfs_abort_transaction(trans, ret);
10454 if (own_trans)
10455 btrfs_end_transaction(trans);
10456 break;
10459 if (own_trans)
10460 btrfs_end_transaction(trans);
10462 if (cur_offset < end)
10463 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10464 end - cur_offset + 1);
10465 return ret;
10468 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10469 u64 start, u64 num_bytes, u64 min_size,
10470 loff_t actual_len, u64 *alloc_hint)
10472 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10473 min_size, actual_len, alloc_hint,
10474 NULL);
10477 int btrfs_prealloc_file_range_trans(struct inode *inode,
10478 struct btrfs_trans_handle *trans, int mode,
10479 u64 start, u64 num_bytes, u64 min_size,
10480 loff_t actual_len, u64 *alloc_hint)
10482 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10483 min_size, actual_len, alloc_hint, trans);
10486 static int btrfs_set_page_dirty(struct page *page)
10488 return __set_page_dirty_nobuffers(page);
10491 static int btrfs_permission(struct inode *inode, int mask)
10493 struct btrfs_root *root = BTRFS_I(inode)->root;
10494 umode_t mode = inode->i_mode;
10496 if (mask & MAY_WRITE &&
10497 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10498 if (btrfs_root_readonly(root))
10499 return -EROFS;
10500 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10501 return -EACCES;
10503 return generic_permission(inode, mask);
10506 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10508 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10509 struct btrfs_trans_handle *trans;
10510 struct btrfs_root *root = BTRFS_I(dir)->root;
10511 struct inode *inode = NULL;
10512 u64 objectid;
10513 u64 index;
10514 int ret = 0;
10517 * 5 units required for adding orphan entry
10519 trans = btrfs_start_transaction(root, 5);
10520 if (IS_ERR(trans))
10521 return PTR_ERR(trans);
10523 ret = btrfs_find_free_ino(root, &objectid);
10524 if (ret)
10525 goto out;
10527 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10528 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10529 if (IS_ERR(inode)) {
10530 ret = PTR_ERR(inode);
10531 inode = NULL;
10532 goto out;
10535 inode->i_fop = &btrfs_file_operations;
10536 inode->i_op = &btrfs_file_inode_operations;
10538 inode->i_mapping->a_ops = &btrfs_aops;
10539 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10541 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10542 if (ret)
10543 goto out_inode;
10545 ret = btrfs_update_inode(trans, root, inode);
10546 if (ret)
10547 goto out_inode;
10548 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10549 if (ret)
10550 goto out_inode;
10553 * We set number of links to 0 in btrfs_new_inode(), and here we set
10554 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10555 * through:
10557 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10559 set_nlink(inode, 1);
10560 unlock_new_inode(inode);
10561 d_tmpfile(dentry, inode);
10562 mark_inode_dirty(inode);
10564 out:
10565 btrfs_end_transaction(trans);
10566 if (ret)
10567 iput(inode);
10568 btrfs_btree_balance_dirty(fs_info);
10569 return ret;
10571 out_inode:
10572 unlock_new_inode(inode);
10573 goto out;
10577 __attribute__((const))
10578 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
10580 return -EAGAIN;
10583 static struct btrfs_fs_info *iotree_fs_info(void *private_data)
10585 struct inode *inode = private_data;
10586 return btrfs_sb(inode->i_sb);
10589 static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10590 u64 start, u64 end)
10592 struct inode *inode = private_data;
10593 u64 isize;
10595 isize = i_size_read(inode);
10596 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10597 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10598 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10599 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10603 void btrfs_set_range_writeback(void *private_data, u64 start, u64 end)
10605 struct inode *inode = private_data;
10606 unsigned long index = start >> PAGE_SHIFT;
10607 unsigned long end_index = end >> PAGE_SHIFT;
10608 struct page *page;
10610 while (index <= end_index) {
10611 page = find_get_page(inode->i_mapping, index);
10612 ASSERT(page); /* Pages should be in the extent_io_tree */
10613 set_page_writeback(page);
10614 put_page(page);
10615 index++;
10619 static const struct inode_operations btrfs_dir_inode_operations = {
10620 .getattr = btrfs_getattr,
10621 .lookup = btrfs_lookup,
10622 .create = btrfs_create,
10623 .unlink = btrfs_unlink,
10624 .link = btrfs_link,
10625 .mkdir = btrfs_mkdir,
10626 .rmdir = btrfs_rmdir,
10627 .rename = btrfs_rename2,
10628 .symlink = btrfs_symlink,
10629 .setattr = btrfs_setattr,
10630 .mknod = btrfs_mknod,
10631 .listxattr = btrfs_listxattr,
10632 .permission = btrfs_permission,
10633 .get_acl = btrfs_get_acl,
10634 .set_acl = btrfs_set_acl,
10635 .update_time = btrfs_update_time,
10636 .tmpfile = btrfs_tmpfile,
10638 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10639 .lookup = btrfs_lookup,
10640 .permission = btrfs_permission,
10641 .update_time = btrfs_update_time,
10644 static const struct file_operations btrfs_dir_file_operations = {
10645 .llseek = generic_file_llseek,
10646 .read = generic_read_dir,
10647 .iterate_shared = btrfs_real_readdir,
10648 .open = btrfs_opendir,
10649 .unlocked_ioctl = btrfs_ioctl,
10650 #ifdef CONFIG_COMPAT
10651 .compat_ioctl = btrfs_compat_ioctl,
10652 #endif
10653 .release = btrfs_release_file,
10654 .fsync = btrfs_sync_file,
10657 static const struct extent_io_ops btrfs_extent_io_ops = {
10658 /* mandatory callbacks */
10659 .submit_bio_hook = btrfs_submit_bio_hook,
10660 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10661 .merge_bio_hook = btrfs_merge_bio_hook,
10662 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
10663 .tree_fs_info = iotree_fs_info,
10664 .set_range_writeback = btrfs_set_range_writeback,
10666 /* optional callbacks */
10667 .fill_delalloc = run_delalloc_range,
10668 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
10669 .writepage_start_hook = btrfs_writepage_start_hook,
10670 .set_bit_hook = btrfs_set_bit_hook,
10671 .clear_bit_hook = btrfs_clear_bit_hook,
10672 .merge_extent_hook = btrfs_merge_extent_hook,
10673 .split_extent_hook = btrfs_split_extent_hook,
10674 .check_extent_io_range = btrfs_check_extent_io_range,
10678 * btrfs doesn't support the bmap operation because swapfiles
10679 * use bmap to make a mapping of extents in the file. They assume
10680 * these extents won't change over the life of the file and they
10681 * use the bmap result to do IO directly to the drive.
10683 * the btrfs bmap call would return logical addresses that aren't
10684 * suitable for IO and they also will change frequently as COW
10685 * operations happen. So, swapfile + btrfs == corruption.
10687 * For now we're avoiding this by dropping bmap.
10689 static const struct address_space_operations btrfs_aops = {
10690 .readpage = btrfs_readpage,
10691 .writepage = btrfs_writepage,
10692 .writepages = btrfs_writepages,
10693 .readpages = btrfs_readpages,
10694 .direct_IO = btrfs_direct_IO,
10695 .invalidatepage = btrfs_invalidatepage,
10696 .releasepage = btrfs_releasepage,
10697 .set_page_dirty = btrfs_set_page_dirty,
10698 .error_remove_page = generic_error_remove_page,
10701 static const struct address_space_operations btrfs_symlink_aops = {
10702 .readpage = btrfs_readpage,
10703 .writepage = btrfs_writepage,
10704 .invalidatepage = btrfs_invalidatepage,
10705 .releasepage = btrfs_releasepage,
10708 static const struct inode_operations btrfs_file_inode_operations = {
10709 .getattr = btrfs_getattr,
10710 .setattr = btrfs_setattr,
10711 .listxattr = btrfs_listxattr,
10712 .permission = btrfs_permission,
10713 .fiemap = btrfs_fiemap,
10714 .get_acl = btrfs_get_acl,
10715 .set_acl = btrfs_set_acl,
10716 .update_time = btrfs_update_time,
10718 static const struct inode_operations btrfs_special_inode_operations = {
10719 .getattr = btrfs_getattr,
10720 .setattr = btrfs_setattr,
10721 .permission = btrfs_permission,
10722 .listxattr = btrfs_listxattr,
10723 .get_acl = btrfs_get_acl,
10724 .set_acl = btrfs_set_acl,
10725 .update_time = btrfs_update_time,
10727 static const struct inode_operations btrfs_symlink_inode_operations = {
10728 .get_link = page_get_link,
10729 .getattr = btrfs_getattr,
10730 .setattr = btrfs_setattr,
10731 .permission = btrfs_permission,
10732 .listxattr = btrfs_listxattr,
10733 .update_time = btrfs_update_time,
10736 const struct dentry_operations btrfs_dentry_operations = {
10737 .d_delete = btrfs_dentry_delete,
10738 .d_release = btrfs_dentry_release,