2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/compat.h>
34 #include <linux/bit_spinlock.h>
35 #include <linux/xattr.h>
36 #include <linux/posix_acl.h>
37 #include <linux/falloc.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/mount.h>
41 #include <linux/btrfs.h>
42 #include <linux/blkdev.h>
43 #include <linux/posix_acl_xattr.h>
44 #include <linux/uio.h>
45 #include <linux/magic.h>
46 #include <linux/iversion.h>
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "ordered-data.h"
56 #include "compression.h"
58 #include "free-space-cache.h"
59 #include "inode-map.h"
66 struct btrfs_iget_args
{
67 struct btrfs_key
*location
;
68 struct btrfs_root
*root
;
71 struct btrfs_dio_data
{
73 u64 unsubmitted_oe_range_start
;
74 u64 unsubmitted_oe_range_end
;
78 static const struct inode_operations btrfs_dir_inode_operations
;
79 static const struct inode_operations btrfs_symlink_inode_operations
;
80 static const struct inode_operations btrfs_dir_ro_inode_operations
;
81 static const struct inode_operations btrfs_special_inode_operations
;
82 static const struct inode_operations btrfs_file_inode_operations
;
83 static const struct address_space_operations btrfs_aops
;
84 static const struct address_space_operations btrfs_symlink_aops
;
85 static const struct file_operations btrfs_dir_file_operations
;
86 static const struct extent_io_ops btrfs_extent_io_ops
;
88 static struct kmem_cache
*btrfs_inode_cachep
;
89 struct kmem_cache
*btrfs_trans_handle_cachep
;
90 struct kmem_cache
*btrfs_path_cachep
;
91 struct kmem_cache
*btrfs_free_space_cachep
;
94 static const unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
95 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
96 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
97 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
98 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
99 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
100 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
101 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
104 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
);
105 static int btrfs_truncate(struct inode
*inode
);
106 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
);
107 static noinline
int cow_file_range(struct inode
*inode
,
108 struct page
*locked_page
,
109 u64 start
, u64 end
, u64 delalloc_end
,
110 int *page_started
, unsigned long *nr_written
,
111 int unlock
, struct btrfs_dedupe_hash
*hash
);
112 static struct extent_map
*create_io_em(struct inode
*inode
, u64 start
, u64 len
,
113 u64 orig_start
, u64 block_start
,
114 u64 block_len
, u64 orig_block_len
,
115 u64 ram_bytes
, int compress_type
,
118 static void __endio_write_update_ordered(struct inode
*inode
,
119 const u64 offset
, const u64 bytes
,
120 const bool uptodate
);
123 * Cleanup all submitted ordered extents in specified range to handle errors
124 * from the fill_dellaloc() callback.
126 * NOTE: caller must ensure that when an error happens, it can not call
127 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
128 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
129 * to be released, which we want to happen only when finishing the ordered
130 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
131 * fill_delalloc() callback already does proper cleanup for the first page of
132 * the range, that is, it invokes the callback writepage_end_io_hook() for the
133 * range of the first page.
135 static inline void btrfs_cleanup_ordered_extents(struct inode
*inode
,
139 unsigned long index
= offset
>> PAGE_SHIFT
;
140 unsigned long end_index
= (offset
+ bytes
- 1) >> PAGE_SHIFT
;
143 while (index
<= end_index
) {
144 page
= find_get_page(inode
->i_mapping
, index
);
148 ClearPagePrivate2(page
);
151 return __endio_write_update_ordered(inode
, offset
+ PAGE_SIZE
,
152 bytes
- PAGE_SIZE
, false);
155 static int btrfs_dirty_inode(struct inode
*inode
);
157 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
158 void btrfs_test_inode_set_ops(struct inode
*inode
)
160 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
164 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
165 struct inode
*inode
, struct inode
*dir
,
166 const struct qstr
*qstr
)
170 err
= btrfs_init_acl(trans
, inode
, dir
);
172 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
177 * this does all the hard work for inserting an inline extent into
178 * the btree. The caller should have done a btrfs_drop_extents so that
179 * no overlapping inline items exist in the btree
181 static int insert_inline_extent(struct btrfs_trans_handle
*trans
,
182 struct btrfs_path
*path
, int extent_inserted
,
183 struct btrfs_root
*root
, struct inode
*inode
,
184 u64 start
, size_t size
, size_t compressed_size
,
186 struct page
**compressed_pages
)
188 struct extent_buffer
*leaf
;
189 struct page
*page
= NULL
;
192 struct btrfs_file_extent_item
*ei
;
194 size_t cur_size
= size
;
195 unsigned long offset
;
197 if (compressed_size
&& compressed_pages
)
198 cur_size
= compressed_size
;
200 inode_add_bytes(inode
, size
);
202 if (!extent_inserted
) {
203 struct btrfs_key key
;
206 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
208 key
.type
= BTRFS_EXTENT_DATA_KEY
;
210 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
211 path
->leave_spinning
= 1;
212 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
217 leaf
= path
->nodes
[0];
218 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
219 struct btrfs_file_extent_item
);
220 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
221 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
222 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
223 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
224 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
225 ptr
= btrfs_file_extent_inline_start(ei
);
227 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
230 while (compressed_size
> 0) {
231 cpage
= compressed_pages
[i
];
232 cur_size
= min_t(unsigned long, compressed_size
,
235 kaddr
= kmap_atomic(cpage
);
236 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
237 kunmap_atomic(kaddr
);
241 compressed_size
-= cur_size
;
243 btrfs_set_file_extent_compression(leaf
, ei
,
246 page
= find_get_page(inode
->i_mapping
,
247 start
>> PAGE_SHIFT
);
248 btrfs_set_file_extent_compression(leaf
, ei
, 0);
249 kaddr
= kmap_atomic(page
);
250 offset
= start
& (PAGE_SIZE
- 1);
251 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
252 kunmap_atomic(kaddr
);
255 btrfs_mark_buffer_dirty(leaf
);
256 btrfs_release_path(path
);
259 * we're an inline extent, so nobody can
260 * extend the file past i_size without locking
261 * a page we already have locked.
263 * We must do any isize and inode updates
264 * before we unlock the pages. Otherwise we
265 * could end up racing with unlink.
267 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
268 ret
= btrfs_update_inode(trans
, root
, inode
);
276 * conditionally insert an inline extent into the file. This
277 * does the checks required to make sure the data is small enough
278 * to fit as an inline extent.
280 static noinline
int cow_file_range_inline(struct btrfs_root
*root
,
281 struct inode
*inode
, u64 start
,
282 u64 end
, size_t compressed_size
,
284 struct page
**compressed_pages
)
286 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
287 struct btrfs_trans_handle
*trans
;
288 u64 isize
= i_size_read(inode
);
289 u64 actual_end
= min(end
+ 1, isize
);
290 u64 inline_len
= actual_end
- start
;
291 u64 aligned_end
= ALIGN(end
, fs_info
->sectorsize
);
292 u64 data_len
= inline_len
;
294 struct btrfs_path
*path
;
295 int extent_inserted
= 0;
296 u32 extent_item_size
;
299 data_len
= compressed_size
;
302 actual_end
> fs_info
->sectorsize
||
303 data_len
> BTRFS_MAX_INLINE_DATA_SIZE(fs_info
) ||
305 (actual_end
& (fs_info
->sectorsize
- 1)) == 0) ||
307 data_len
> fs_info
->max_inline
) {
311 path
= btrfs_alloc_path();
315 trans
= btrfs_join_transaction(root
);
317 btrfs_free_path(path
);
318 return PTR_ERR(trans
);
320 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
322 if (compressed_size
&& compressed_pages
)
323 extent_item_size
= btrfs_file_extent_calc_inline_size(
326 extent_item_size
= btrfs_file_extent_calc_inline_size(
329 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
,
330 start
, aligned_end
, NULL
,
331 1, 1, extent_item_size
, &extent_inserted
);
333 btrfs_abort_transaction(trans
, ret
);
337 if (isize
> actual_end
)
338 inline_len
= min_t(u64
, isize
, actual_end
);
339 ret
= insert_inline_extent(trans
, path
, extent_inserted
,
341 inline_len
, compressed_size
,
342 compress_type
, compressed_pages
);
343 if (ret
&& ret
!= -ENOSPC
) {
344 btrfs_abort_transaction(trans
, ret
);
346 } else if (ret
== -ENOSPC
) {
351 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
352 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, aligned_end
- 1, 0);
355 * Don't forget to free the reserved space, as for inlined extent
356 * it won't count as data extent, free them directly here.
357 * And at reserve time, it's always aligned to page size, so
358 * just free one page here.
360 btrfs_qgroup_free_data(inode
, NULL
, 0, PAGE_SIZE
);
361 btrfs_free_path(path
);
362 btrfs_end_transaction(trans
);
366 struct async_extent
{
371 unsigned long nr_pages
;
373 struct list_head list
;
378 struct btrfs_root
*root
;
379 struct page
*locked_page
;
382 unsigned int write_flags
;
383 struct list_head extents
;
384 struct btrfs_work work
;
387 static noinline
int add_async_extent(struct async_cow
*cow
,
388 u64 start
, u64 ram_size
,
391 unsigned long nr_pages
,
394 struct async_extent
*async_extent
;
396 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
397 BUG_ON(!async_extent
); /* -ENOMEM */
398 async_extent
->start
= start
;
399 async_extent
->ram_size
= ram_size
;
400 async_extent
->compressed_size
= compressed_size
;
401 async_extent
->pages
= pages
;
402 async_extent
->nr_pages
= nr_pages
;
403 async_extent
->compress_type
= compress_type
;
404 list_add_tail(&async_extent
->list
, &cow
->extents
);
408 static inline int inode_need_compress(struct inode
*inode
, u64 start
, u64 end
)
410 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
413 if (btrfs_test_opt(fs_info
, FORCE_COMPRESS
))
416 if (BTRFS_I(inode
)->defrag_compress
)
418 /* bad compression ratios */
419 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
421 if (btrfs_test_opt(fs_info
, COMPRESS
) ||
422 BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
||
423 BTRFS_I(inode
)->prop_compress
)
424 return btrfs_compress_heuristic(inode
, start
, end
);
428 static inline void inode_should_defrag(struct btrfs_inode
*inode
,
429 u64 start
, u64 end
, u64 num_bytes
, u64 small_write
)
431 /* If this is a small write inside eof, kick off a defrag */
432 if (num_bytes
< small_write
&&
433 (start
> 0 || end
+ 1 < inode
->disk_i_size
))
434 btrfs_add_inode_defrag(NULL
, inode
);
438 * we create compressed extents in two phases. The first
439 * phase compresses a range of pages that have already been
440 * locked (both pages and state bits are locked).
442 * This is done inside an ordered work queue, and the compression
443 * is spread across many cpus. The actual IO submission is step
444 * two, and the ordered work queue takes care of making sure that
445 * happens in the same order things were put onto the queue by
446 * writepages and friends.
448 * If this code finds it can't get good compression, it puts an
449 * entry onto the work queue to write the uncompressed bytes. This
450 * makes sure that both compressed inodes and uncompressed inodes
451 * are written in the same order that the flusher thread sent them
454 static noinline
void compress_file_range(struct inode
*inode
,
455 struct page
*locked_page
,
457 struct async_cow
*async_cow
,
460 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
461 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
462 u64 blocksize
= fs_info
->sectorsize
;
464 u64 isize
= i_size_read(inode
);
466 struct page
**pages
= NULL
;
467 unsigned long nr_pages
;
468 unsigned long total_compressed
= 0;
469 unsigned long total_in
= 0;
472 int compress_type
= fs_info
->compress_type
;
475 inode_should_defrag(BTRFS_I(inode
), start
, end
, end
- start
+ 1,
478 actual_end
= min_t(u64
, isize
, end
+ 1);
481 nr_pages
= (end
>> PAGE_SHIFT
) - (start
>> PAGE_SHIFT
) + 1;
482 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED
% PAGE_SIZE
) != 0);
483 nr_pages
= min_t(unsigned long, nr_pages
,
484 BTRFS_MAX_COMPRESSED
/ PAGE_SIZE
);
487 * we don't want to send crud past the end of i_size through
488 * compression, that's just a waste of CPU time. So, if the
489 * end of the file is before the start of our current
490 * requested range of bytes, we bail out to the uncompressed
491 * cleanup code that can deal with all of this.
493 * It isn't really the fastest way to fix things, but this is a
494 * very uncommon corner.
496 if (actual_end
<= start
)
497 goto cleanup_and_bail_uncompressed
;
499 total_compressed
= actual_end
- start
;
502 * skip compression for a small file range(<=blocksize) that
503 * isn't an inline extent, since it doesn't save disk space at all.
505 if (total_compressed
<= blocksize
&&
506 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
507 goto cleanup_and_bail_uncompressed
;
509 total_compressed
= min_t(unsigned long, total_compressed
,
510 BTRFS_MAX_UNCOMPRESSED
);
515 * we do compression for mount -o compress and when the
516 * inode has not been flagged as nocompress. This flag can
517 * change at any time if we discover bad compression ratios.
519 if (inode_need_compress(inode
, start
, end
)) {
521 pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_NOFS
);
523 /* just bail out to the uncompressed code */
527 if (BTRFS_I(inode
)->defrag_compress
)
528 compress_type
= BTRFS_I(inode
)->defrag_compress
;
529 else if (BTRFS_I(inode
)->prop_compress
)
530 compress_type
= BTRFS_I(inode
)->prop_compress
;
533 * we need to call clear_page_dirty_for_io on each
534 * page in the range. Otherwise applications with the file
535 * mmap'd can wander in and change the page contents while
536 * we are compressing them.
538 * If the compression fails for any reason, we set the pages
539 * dirty again later on.
541 * Note that the remaining part is redirtied, the start pointer
542 * has moved, the end is the original one.
545 extent_range_clear_dirty_for_io(inode
, start
, end
);
549 /* Compression level is applied here and only here */
550 ret
= btrfs_compress_pages(
551 compress_type
| (fs_info
->compress_level
<< 4),
552 inode
->i_mapping
, start
,
559 unsigned long offset
= total_compressed
&
561 struct page
*page
= pages
[nr_pages
- 1];
564 /* zero the tail end of the last page, we might be
565 * sending it down to disk
568 kaddr
= kmap_atomic(page
);
569 memset(kaddr
+ offset
, 0,
571 kunmap_atomic(kaddr
);
578 /* lets try to make an inline extent */
579 if (ret
|| total_in
< actual_end
) {
580 /* we didn't compress the entire range, try
581 * to make an uncompressed inline extent.
583 ret
= cow_file_range_inline(root
, inode
, start
, end
,
584 0, BTRFS_COMPRESS_NONE
, NULL
);
586 /* try making a compressed inline extent */
587 ret
= cow_file_range_inline(root
, inode
, start
, end
,
589 compress_type
, pages
);
592 unsigned long clear_flags
= EXTENT_DELALLOC
|
593 EXTENT_DELALLOC_NEW
| EXTENT_DEFRAG
|
594 EXTENT_DO_ACCOUNTING
;
595 unsigned long page_error_op
;
597 page_error_op
= ret
< 0 ? PAGE_SET_ERROR
: 0;
600 * inline extent creation worked or returned error,
601 * we don't need to create any more async work items.
602 * Unlock and free up our temp pages.
604 * We use DO_ACCOUNTING here because we need the
605 * delalloc_release_metadata to be done _after_ we drop
606 * our outstanding extent for clearing delalloc for this
609 extent_clear_unlock_delalloc(inode
, start
, end
, end
,
622 * we aren't doing an inline extent round the compressed size
623 * up to a block size boundary so the allocator does sane
626 total_compressed
= ALIGN(total_compressed
, blocksize
);
629 * one last check to make sure the compression is really a
630 * win, compare the page count read with the blocks on disk,
631 * compression must free at least one sector size
633 total_in
= ALIGN(total_in
, PAGE_SIZE
);
634 if (total_compressed
+ blocksize
<= total_in
) {
638 * The async work queues will take care of doing actual
639 * allocation on disk for these compressed pages, and
640 * will submit them to the elevator.
642 add_async_extent(async_cow
, start
, total_in
,
643 total_compressed
, pages
, nr_pages
,
646 if (start
+ total_in
< end
) {
657 * the compression code ran but failed to make things smaller,
658 * free any pages it allocated and our page pointer array
660 for (i
= 0; i
< nr_pages
; i
++) {
661 WARN_ON(pages
[i
]->mapping
);
666 total_compressed
= 0;
669 /* flag the file so we don't compress in the future */
670 if (!btrfs_test_opt(fs_info
, FORCE_COMPRESS
) &&
671 !(BTRFS_I(inode
)->prop_compress
)) {
672 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
675 cleanup_and_bail_uncompressed
:
677 * No compression, but we still need to write the pages in the file
678 * we've been given so far. redirty the locked page if it corresponds
679 * to our extent and set things up for the async work queue to run
680 * cow_file_range to do the normal delalloc dance.
682 if (page_offset(locked_page
) >= start
&&
683 page_offset(locked_page
) <= end
)
684 __set_page_dirty_nobuffers(locked_page
);
685 /* unlocked later on in the async handlers */
688 extent_range_redirty_for_io(inode
, start
, end
);
689 add_async_extent(async_cow
, start
, end
- start
+ 1, 0, NULL
, 0,
690 BTRFS_COMPRESS_NONE
);
696 for (i
= 0; i
< nr_pages
; i
++) {
697 WARN_ON(pages
[i
]->mapping
);
703 static void free_async_extent_pages(struct async_extent
*async_extent
)
707 if (!async_extent
->pages
)
710 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
711 WARN_ON(async_extent
->pages
[i
]->mapping
);
712 put_page(async_extent
->pages
[i
]);
714 kfree(async_extent
->pages
);
715 async_extent
->nr_pages
= 0;
716 async_extent
->pages
= NULL
;
720 * phase two of compressed writeback. This is the ordered portion
721 * of the code, which only gets called in the order the work was
722 * queued. We walk all the async extents created by compress_file_range
723 * and send them down to the disk.
725 static noinline
void submit_compressed_extents(struct inode
*inode
,
726 struct async_cow
*async_cow
)
728 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
729 struct async_extent
*async_extent
;
731 struct btrfs_key ins
;
732 struct extent_map
*em
;
733 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
734 struct extent_io_tree
*io_tree
;
738 while (!list_empty(&async_cow
->extents
)) {
739 async_extent
= list_entry(async_cow
->extents
.next
,
740 struct async_extent
, list
);
741 list_del(&async_extent
->list
);
743 io_tree
= &BTRFS_I(inode
)->io_tree
;
746 /* did the compression code fall back to uncompressed IO? */
747 if (!async_extent
->pages
) {
748 int page_started
= 0;
749 unsigned long nr_written
= 0;
751 lock_extent(io_tree
, async_extent
->start
,
752 async_extent
->start
+
753 async_extent
->ram_size
- 1);
755 /* allocate blocks */
756 ret
= cow_file_range(inode
, async_cow
->locked_page
,
758 async_extent
->start
+
759 async_extent
->ram_size
- 1,
760 async_extent
->start
+
761 async_extent
->ram_size
- 1,
762 &page_started
, &nr_written
, 0,
768 * if page_started, cow_file_range inserted an
769 * inline extent and took care of all the unlocking
770 * and IO for us. Otherwise, we need to submit
771 * all those pages down to the drive.
773 if (!page_started
&& !ret
)
774 extent_write_locked_range(inode
,
776 async_extent
->start
+
777 async_extent
->ram_size
- 1,
780 unlock_page(async_cow
->locked_page
);
786 lock_extent(io_tree
, async_extent
->start
,
787 async_extent
->start
+ async_extent
->ram_size
- 1);
789 ret
= btrfs_reserve_extent(root
, async_extent
->ram_size
,
790 async_extent
->compressed_size
,
791 async_extent
->compressed_size
,
792 0, alloc_hint
, &ins
, 1, 1);
794 free_async_extent_pages(async_extent
);
796 if (ret
== -ENOSPC
) {
797 unlock_extent(io_tree
, async_extent
->start
,
798 async_extent
->start
+
799 async_extent
->ram_size
- 1);
802 * we need to redirty the pages if we decide to
803 * fallback to uncompressed IO, otherwise we
804 * will not submit these pages down to lower
807 extent_range_redirty_for_io(inode
,
809 async_extent
->start
+
810 async_extent
->ram_size
- 1);
817 * here we're doing allocation and writeback of the
820 em
= create_io_em(inode
, async_extent
->start
,
821 async_extent
->ram_size
, /* len */
822 async_extent
->start
, /* orig_start */
823 ins
.objectid
, /* block_start */
824 ins
.offset
, /* block_len */
825 ins
.offset
, /* orig_block_len */
826 async_extent
->ram_size
, /* ram_bytes */
827 async_extent
->compress_type
,
828 BTRFS_ORDERED_COMPRESSED
);
830 /* ret value is not necessary due to void function */
831 goto out_free_reserve
;
834 ret
= btrfs_add_ordered_extent_compress(inode
,
837 async_extent
->ram_size
,
839 BTRFS_ORDERED_COMPRESSED
,
840 async_extent
->compress_type
);
842 btrfs_drop_extent_cache(BTRFS_I(inode
),
844 async_extent
->start
+
845 async_extent
->ram_size
- 1, 0);
846 goto out_free_reserve
;
848 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
851 * clear dirty, set writeback and unlock the pages.
853 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
854 async_extent
->start
+
855 async_extent
->ram_size
- 1,
856 async_extent
->start
+
857 async_extent
->ram_size
- 1,
858 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
,
859 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
861 if (btrfs_submit_compressed_write(inode
,
863 async_extent
->ram_size
,
865 ins
.offset
, async_extent
->pages
,
866 async_extent
->nr_pages
,
867 async_cow
->write_flags
)) {
868 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
869 struct page
*p
= async_extent
->pages
[0];
870 const u64 start
= async_extent
->start
;
871 const u64 end
= start
+ async_extent
->ram_size
- 1;
873 p
->mapping
= inode
->i_mapping
;
874 tree
->ops
->writepage_end_io_hook(p
, start
, end
,
877 extent_clear_unlock_delalloc(inode
, start
, end
, end
,
881 free_async_extent_pages(async_extent
);
883 alloc_hint
= ins
.objectid
+ ins
.offset
;
889 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
890 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 1);
892 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
893 async_extent
->start
+
894 async_extent
->ram_size
- 1,
895 async_extent
->start
+
896 async_extent
->ram_size
- 1,
897 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
|
898 EXTENT_DELALLOC_NEW
|
899 EXTENT_DEFRAG
| EXTENT_DO_ACCOUNTING
,
900 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
901 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
|
903 free_async_extent_pages(async_extent
);
908 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
911 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
912 struct extent_map
*em
;
915 read_lock(&em_tree
->lock
);
916 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
919 * if block start isn't an actual block number then find the
920 * first block in this inode and use that as a hint. If that
921 * block is also bogus then just don't worry about it.
923 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
925 em
= search_extent_mapping(em_tree
, 0, 0);
926 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
927 alloc_hint
= em
->block_start
;
931 alloc_hint
= em
->block_start
;
935 read_unlock(&em_tree
->lock
);
941 * when extent_io.c finds a delayed allocation range in the file,
942 * the call backs end up in this code. The basic idea is to
943 * allocate extents on disk for the range, and create ordered data structs
944 * in ram to track those extents.
946 * locked_page is the page that writepage had locked already. We use
947 * it to make sure we don't do extra locks or unlocks.
949 * *page_started is set to one if we unlock locked_page and do everything
950 * required to start IO on it. It may be clean and already done with
953 static noinline
int cow_file_range(struct inode
*inode
,
954 struct page
*locked_page
,
955 u64 start
, u64 end
, u64 delalloc_end
,
956 int *page_started
, unsigned long *nr_written
,
957 int unlock
, struct btrfs_dedupe_hash
*hash
)
959 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
960 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
963 unsigned long ram_size
;
965 u64 cur_alloc_size
= 0;
966 u64 blocksize
= fs_info
->sectorsize
;
967 struct btrfs_key ins
;
968 struct extent_map
*em
;
970 unsigned long page_ops
;
971 bool extent_reserved
= false;
974 if (btrfs_is_free_space_inode(BTRFS_I(inode
))) {
980 num_bytes
= ALIGN(end
- start
+ 1, blocksize
);
981 num_bytes
= max(blocksize
, num_bytes
);
982 disk_num_bytes
= num_bytes
;
984 inode_should_defrag(BTRFS_I(inode
), start
, end
, num_bytes
, SZ_64K
);
987 /* lets try to make an inline extent */
988 ret
= cow_file_range_inline(root
, inode
, start
, end
, 0,
989 BTRFS_COMPRESS_NONE
, NULL
);
992 * We use DO_ACCOUNTING here because we need the
993 * delalloc_release_metadata to be run _after_ we drop
994 * our outstanding extent for clearing delalloc for this
997 extent_clear_unlock_delalloc(inode
, start
, end
,
999 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1000 EXTENT_DELALLOC_NEW
| EXTENT_DEFRAG
|
1001 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
1002 PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
1003 PAGE_END_WRITEBACK
);
1004 *nr_written
= *nr_written
+
1005 (end
- start
+ PAGE_SIZE
) / PAGE_SIZE
;
1008 } else if (ret
< 0) {
1013 BUG_ON(disk_num_bytes
>
1014 btrfs_super_total_bytes(fs_info
->super_copy
));
1016 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
1017 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
1018 start
+ num_bytes
- 1, 0);
1020 while (disk_num_bytes
> 0) {
1021 cur_alloc_size
= disk_num_bytes
;
1022 ret
= btrfs_reserve_extent(root
, cur_alloc_size
, cur_alloc_size
,
1023 fs_info
->sectorsize
, 0, alloc_hint
,
1027 cur_alloc_size
= ins
.offset
;
1028 extent_reserved
= true;
1030 ram_size
= ins
.offset
;
1031 em
= create_io_em(inode
, start
, ins
.offset
, /* len */
1032 start
, /* orig_start */
1033 ins
.objectid
, /* block_start */
1034 ins
.offset
, /* block_len */
1035 ins
.offset
, /* orig_block_len */
1036 ram_size
, /* ram_bytes */
1037 BTRFS_COMPRESS_NONE
, /* compress_type */
1038 BTRFS_ORDERED_REGULAR
/* type */);
1041 free_extent_map(em
);
1043 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
1044 ram_size
, cur_alloc_size
, 0);
1046 goto out_drop_extent_cache
;
1048 if (root
->root_key
.objectid
==
1049 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1050 ret
= btrfs_reloc_clone_csums(inode
, start
,
1053 * Only drop cache here, and process as normal.
1055 * We must not allow extent_clear_unlock_delalloc()
1056 * at out_unlock label to free meta of this ordered
1057 * extent, as its meta should be freed by
1058 * btrfs_finish_ordered_io().
1060 * So we must continue until @start is increased to
1061 * skip current ordered extent.
1064 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
1065 start
+ ram_size
- 1, 0);
1068 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
1070 /* we're not doing compressed IO, don't unlock the first
1071 * page (which the caller expects to stay locked), don't
1072 * clear any dirty bits and don't set any writeback bits
1074 * Do set the Private2 bit so we know this page was properly
1075 * setup for writepage
1077 page_ops
= unlock
? PAGE_UNLOCK
: 0;
1078 page_ops
|= PAGE_SET_PRIVATE2
;
1080 extent_clear_unlock_delalloc(inode
, start
,
1081 start
+ ram_size
- 1,
1082 delalloc_end
, locked_page
,
1083 EXTENT_LOCKED
| EXTENT_DELALLOC
,
1085 if (disk_num_bytes
< cur_alloc_size
)
1088 disk_num_bytes
-= cur_alloc_size
;
1089 num_bytes
-= cur_alloc_size
;
1090 alloc_hint
= ins
.objectid
+ ins
.offset
;
1091 start
+= cur_alloc_size
;
1092 extent_reserved
= false;
1095 * btrfs_reloc_clone_csums() error, since start is increased
1096 * extent_clear_unlock_delalloc() at out_unlock label won't
1097 * free metadata of current ordered extent, we're OK to exit.
1105 out_drop_extent_cache
:
1106 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, start
+ ram_size
- 1, 0);
1108 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
1109 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 1);
1111 clear_bits
= EXTENT_LOCKED
| EXTENT_DELALLOC
| EXTENT_DELALLOC_NEW
|
1112 EXTENT_DEFRAG
| EXTENT_CLEAR_META_RESV
;
1113 page_ops
= PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
1116 * If we reserved an extent for our delalloc range (or a subrange) and
1117 * failed to create the respective ordered extent, then it means that
1118 * when we reserved the extent we decremented the extent's size from
1119 * the data space_info's bytes_may_use counter and incremented the
1120 * space_info's bytes_reserved counter by the same amount. We must make
1121 * sure extent_clear_unlock_delalloc() does not try to decrement again
1122 * the data space_info's bytes_may_use counter, therefore we do not pass
1123 * it the flag EXTENT_CLEAR_DATA_RESV.
1125 if (extent_reserved
) {
1126 extent_clear_unlock_delalloc(inode
, start
,
1127 start
+ cur_alloc_size
,
1128 start
+ cur_alloc_size
,
1132 start
+= cur_alloc_size
;
1136 extent_clear_unlock_delalloc(inode
, start
, end
, delalloc_end
,
1138 clear_bits
| EXTENT_CLEAR_DATA_RESV
,
1144 * work queue call back to started compression on a file and pages
1146 static noinline
void async_cow_start(struct btrfs_work
*work
)
1148 struct async_cow
*async_cow
;
1150 async_cow
= container_of(work
, struct async_cow
, work
);
1152 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
1153 async_cow
->start
, async_cow
->end
, async_cow
,
1155 if (num_added
== 0) {
1156 btrfs_add_delayed_iput(async_cow
->inode
);
1157 async_cow
->inode
= NULL
;
1162 * work queue call back to submit previously compressed pages
1164 static noinline
void async_cow_submit(struct btrfs_work
*work
)
1166 struct btrfs_fs_info
*fs_info
;
1167 struct async_cow
*async_cow
;
1168 struct btrfs_root
*root
;
1169 unsigned long nr_pages
;
1171 async_cow
= container_of(work
, struct async_cow
, work
);
1173 root
= async_cow
->root
;
1174 fs_info
= root
->fs_info
;
1175 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_SIZE
) >>
1179 * atomic_sub_return implies a barrier for waitqueue_active
1181 if (atomic_sub_return(nr_pages
, &fs_info
->async_delalloc_pages
) <
1183 waitqueue_active(&fs_info
->async_submit_wait
))
1184 wake_up(&fs_info
->async_submit_wait
);
1186 if (async_cow
->inode
)
1187 submit_compressed_extents(async_cow
->inode
, async_cow
);
1190 static noinline
void async_cow_free(struct btrfs_work
*work
)
1192 struct async_cow
*async_cow
;
1193 async_cow
= container_of(work
, struct async_cow
, work
);
1194 if (async_cow
->inode
)
1195 btrfs_add_delayed_iput(async_cow
->inode
);
1199 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
1200 u64 start
, u64 end
, int *page_started
,
1201 unsigned long *nr_written
,
1202 unsigned int write_flags
)
1204 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1205 struct async_cow
*async_cow
;
1206 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1207 unsigned long nr_pages
;
1210 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
1212 while (start
< end
) {
1213 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
1214 BUG_ON(!async_cow
); /* -ENOMEM */
1215 async_cow
->inode
= igrab(inode
);
1216 async_cow
->root
= root
;
1217 async_cow
->locked_page
= locked_page
;
1218 async_cow
->start
= start
;
1219 async_cow
->write_flags
= write_flags
;
1221 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
&&
1222 !btrfs_test_opt(fs_info
, FORCE_COMPRESS
))
1225 cur_end
= min(end
, start
+ SZ_512K
- 1);
1227 async_cow
->end
= cur_end
;
1228 INIT_LIST_HEAD(&async_cow
->extents
);
1230 btrfs_init_work(&async_cow
->work
,
1231 btrfs_delalloc_helper
,
1232 async_cow_start
, async_cow_submit
,
1235 nr_pages
= (cur_end
- start
+ PAGE_SIZE
) >>
1237 atomic_add(nr_pages
, &fs_info
->async_delalloc_pages
);
1239 btrfs_queue_work(fs_info
->delalloc_workers
, &async_cow
->work
);
1241 *nr_written
+= nr_pages
;
1242 start
= cur_end
+ 1;
1248 static noinline
int csum_exist_in_range(struct btrfs_fs_info
*fs_info
,
1249 u64 bytenr
, u64 num_bytes
)
1252 struct btrfs_ordered_sum
*sums
;
1255 ret
= btrfs_lookup_csums_range(fs_info
->csum_root
, bytenr
,
1256 bytenr
+ num_bytes
- 1, &list
, 0);
1257 if (ret
== 0 && list_empty(&list
))
1260 while (!list_empty(&list
)) {
1261 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1262 list_del(&sums
->list
);
1269 * when nowcow writeback call back. This checks for snapshots or COW copies
1270 * of the extents that exist in the file, and COWs the file as required.
1272 * If no cow copies or snapshots exist, we write directly to the existing
1275 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1276 struct page
*locked_page
,
1277 u64 start
, u64 end
, int *page_started
, int force
,
1278 unsigned long *nr_written
)
1280 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1281 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1282 struct extent_buffer
*leaf
;
1283 struct btrfs_path
*path
;
1284 struct btrfs_file_extent_item
*fi
;
1285 struct btrfs_key found_key
;
1286 struct extent_map
*em
;
1301 u64 ino
= btrfs_ino(BTRFS_I(inode
));
1303 path
= btrfs_alloc_path();
1305 extent_clear_unlock_delalloc(inode
, start
, end
, end
,
1307 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1308 EXTENT_DO_ACCOUNTING
|
1309 EXTENT_DEFRAG
, PAGE_UNLOCK
|
1311 PAGE_SET_WRITEBACK
|
1312 PAGE_END_WRITEBACK
);
1316 nolock
= btrfs_is_free_space_inode(BTRFS_I(inode
));
1318 cow_start
= (u64
)-1;
1321 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, ino
,
1325 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1326 leaf
= path
->nodes
[0];
1327 btrfs_item_key_to_cpu(leaf
, &found_key
,
1328 path
->slots
[0] - 1);
1329 if (found_key
.objectid
== ino
&&
1330 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1335 leaf
= path
->nodes
[0];
1336 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1337 ret
= btrfs_next_leaf(root
, path
);
1342 leaf
= path
->nodes
[0];
1348 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1350 if (found_key
.objectid
> ino
)
1352 if (WARN_ON_ONCE(found_key
.objectid
< ino
) ||
1353 found_key
.type
< BTRFS_EXTENT_DATA_KEY
) {
1357 if (found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1358 found_key
.offset
> end
)
1361 if (found_key
.offset
> cur_offset
) {
1362 extent_end
= found_key
.offset
;
1367 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1368 struct btrfs_file_extent_item
);
1369 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1371 ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
1372 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1373 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1374 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1375 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1376 extent_end
= found_key
.offset
+
1377 btrfs_file_extent_num_bytes(leaf
, fi
);
1379 btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1380 if (extent_end
<= start
) {
1384 if (disk_bytenr
== 0)
1386 if (btrfs_file_extent_compression(leaf
, fi
) ||
1387 btrfs_file_extent_encryption(leaf
, fi
) ||
1388 btrfs_file_extent_other_encoding(leaf
, fi
))
1390 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1392 if (btrfs_extent_readonly(fs_info
, disk_bytenr
))
1394 if (btrfs_cross_ref_exist(root
, ino
,
1396 extent_offset
, disk_bytenr
))
1398 disk_bytenr
+= extent_offset
;
1399 disk_bytenr
+= cur_offset
- found_key
.offset
;
1400 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1402 * if there are pending snapshots for this root,
1403 * we fall into common COW way.
1406 err
= btrfs_start_write_no_snapshotting(root
);
1411 * force cow if csum exists in the range.
1412 * this ensure that csum for a given extent are
1413 * either valid or do not exist.
1415 if (csum_exist_in_range(fs_info
, disk_bytenr
,
1418 btrfs_end_write_no_snapshotting(root
);
1421 if (!btrfs_inc_nocow_writers(fs_info
, disk_bytenr
)) {
1423 btrfs_end_write_no_snapshotting(root
);
1427 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1428 extent_end
= found_key
.offset
+
1429 btrfs_file_extent_inline_len(leaf
,
1430 path
->slots
[0], fi
);
1431 extent_end
= ALIGN(extent_end
,
1432 fs_info
->sectorsize
);
1437 if (extent_end
<= start
) {
1439 if (!nolock
&& nocow
)
1440 btrfs_end_write_no_snapshotting(root
);
1442 btrfs_dec_nocow_writers(fs_info
, disk_bytenr
);
1446 if (cow_start
== (u64
)-1)
1447 cow_start
= cur_offset
;
1448 cur_offset
= extent_end
;
1449 if (cur_offset
> end
)
1455 btrfs_release_path(path
);
1456 if (cow_start
!= (u64
)-1) {
1457 ret
= cow_file_range(inode
, locked_page
,
1458 cow_start
, found_key
.offset
- 1,
1459 end
, page_started
, nr_written
, 1,
1462 if (!nolock
&& nocow
)
1463 btrfs_end_write_no_snapshotting(root
);
1465 btrfs_dec_nocow_writers(fs_info
,
1469 cow_start
= (u64
)-1;
1472 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1473 u64 orig_start
= found_key
.offset
- extent_offset
;
1475 em
= create_io_em(inode
, cur_offset
, num_bytes
,
1477 disk_bytenr
, /* block_start */
1478 num_bytes
, /* block_len */
1479 disk_num_bytes
, /* orig_block_len */
1480 ram_bytes
, BTRFS_COMPRESS_NONE
,
1481 BTRFS_ORDERED_PREALLOC
);
1483 if (!nolock
&& nocow
)
1484 btrfs_end_write_no_snapshotting(root
);
1486 btrfs_dec_nocow_writers(fs_info
,
1491 free_extent_map(em
);
1494 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1495 type
= BTRFS_ORDERED_PREALLOC
;
1497 type
= BTRFS_ORDERED_NOCOW
;
1500 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1501 num_bytes
, num_bytes
, type
);
1503 btrfs_dec_nocow_writers(fs_info
, disk_bytenr
);
1504 BUG_ON(ret
); /* -ENOMEM */
1506 if (root
->root_key
.objectid
==
1507 BTRFS_DATA_RELOC_TREE_OBJECTID
)
1509 * Error handled later, as we must prevent
1510 * extent_clear_unlock_delalloc() in error handler
1511 * from freeing metadata of created ordered extent.
1513 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1516 extent_clear_unlock_delalloc(inode
, cur_offset
,
1517 cur_offset
+ num_bytes
- 1, end
,
1518 locked_page
, EXTENT_LOCKED
|
1520 EXTENT_CLEAR_DATA_RESV
,
1521 PAGE_UNLOCK
| PAGE_SET_PRIVATE2
);
1523 if (!nolock
&& nocow
)
1524 btrfs_end_write_no_snapshotting(root
);
1525 cur_offset
= extent_end
;
1528 * btrfs_reloc_clone_csums() error, now we're OK to call error
1529 * handler, as metadata for created ordered extent will only
1530 * be freed by btrfs_finish_ordered_io().
1534 if (cur_offset
> end
)
1537 btrfs_release_path(path
);
1539 if (cur_offset
<= end
&& cow_start
== (u64
)-1) {
1540 cow_start
= cur_offset
;
1544 if (cow_start
!= (u64
)-1) {
1545 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
, end
,
1546 page_started
, nr_written
, 1, NULL
);
1552 if (ret
&& cur_offset
< end
)
1553 extent_clear_unlock_delalloc(inode
, cur_offset
, end
, end
,
1554 locked_page
, EXTENT_LOCKED
|
1555 EXTENT_DELALLOC
| EXTENT_DEFRAG
|
1556 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
1558 PAGE_SET_WRITEBACK
|
1559 PAGE_END_WRITEBACK
);
1560 btrfs_free_path(path
);
1564 static inline int need_force_cow(struct inode
*inode
, u64 start
, u64 end
)
1567 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
1568 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
))
1572 * @defrag_bytes is a hint value, no spinlock held here,
1573 * if is not zero, it means the file is defragging.
1574 * Force cow if given extent needs to be defragged.
1576 if (BTRFS_I(inode
)->defrag_bytes
&&
1577 test_range_bit(&BTRFS_I(inode
)->io_tree
, start
, end
,
1578 EXTENT_DEFRAG
, 0, NULL
))
1585 * extent_io.c call back to do delayed allocation processing
1587 static int run_delalloc_range(void *private_data
, struct page
*locked_page
,
1588 u64 start
, u64 end
, int *page_started
,
1589 unsigned long *nr_written
,
1590 struct writeback_control
*wbc
)
1592 struct inode
*inode
= private_data
;
1594 int force_cow
= need_force_cow(inode
, start
, end
);
1595 unsigned int write_flags
= wbc_to_write_flags(wbc
);
1597 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
&& !force_cow
) {
1598 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1599 page_started
, 1, nr_written
);
1600 } else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
&& !force_cow
) {
1601 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1602 page_started
, 0, nr_written
);
1603 } else if (!inode_need_compress(inode
, start
, end
)) {
1604 ret
= cow_file_range(inode
, locked_page
, start
, end
, end
,
1605 page_started
, nr_written
, 1, NULL
);
1607 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1608 &BTRFS_I(inode
)->runtime_flags
);
1609 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1610 page_started
, nr_written
,
1614 btrfs_cleanup_ordered_extents(inode
, start
, end
- start
+ 1);
1618 static void btrfs_split_extent_hook(void *private_data
,
1619 struct extent_state
*orig
, u64 split
)
1621 struct inode
*inode
= private_data
;
1624 /* not delalloc, ignore it */
1625 if (!(orig
->state
& EXTENT_DELALLOC
))
1628 size
= orig
->end
- orig
->start
+ 1;
1629 if (size
> BTRFS_MAX_EXTENT_SIZE
) {
1634 * See the explanation in btrfs_merge_extent_hook, the same
1635 * applies here, just in reverse.
1637 new_size
= orig
->end
- split
+ 1;
1638 num_extents
= count_max_extents(new_size
);
1639 new_size
= split
- orig
->start
;
1640 num_extents
+= count_max_extents(new_size
);
1641 if (count_max_extents(size
) >= num_extents
)
1645 spin_lock(&BTRFS_I(inode
)->lock
);
1646 btrfs_mod_outstanding_extents(BTRFS_I(inode
), 1);
1647 spin_unlock(&BTRFS_I(inode
)->lock
);
1651 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1652 * extents so we can keep track of new extents that are just merged onto old
1653 * extents, such as when we are doing sequential writes, so we can properly
1654 * account for the metadata space we'll need.
1656 static void btrfs_merge_extent_hook(void *private_data
,
1657 struct extent_state
*new,
1658 struct extent_state
*other
)
1660 struct inode
*inode
= private_data
;
1661 u64 new_size
, old_size
;
1664 /* not delalloc, ignore it */
1665 if (!(other
->state
& EXTENT_DELALLOC
))
1668 if (new->start
> other
->start
)
1669 new_size
= new->end
- other
->start
+ 1;
1671 new_size
= other
->end
- new->start
+ 1;
1673 /* we're not bigger than the max, unreserve the space and go */
1674 if (new_size
<= BTRFS_MAX_EXTENT_SIZE
) {
1675 spin_lock(&BTRFS_I(inode
)->lock
);
1676 btrfs_mod_outstanding_extents(BTRFS_I(inode
), -1);
1677 spin_unlock(&BTRFS_I(inode
)->lock
);
1682 * We have to add up either side to figure out how many extents were
1683 * accounted for before we merged into one big extent. If the number of
1684 * extents we accounted for is <= the amount we need for the new range
1685 * then we can return, otherwise drop. Think of it like this
1689 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1690 * need 2 outstanding extents, on one side we have 1 and the other side
1691 * we have 1 so they are == and we can return. But in this case
1693 * [MAX_SIZE+4k][MAX_SIZE+4k]
1695 * Each range on their own accounts for 2 extents, but merged together
1696 * they are only 3 extents worth of accounting, so we need to drop in
1699 old_size
= other
->end
- other
->start
+ 1;
1700 num_extents
= count_max_extents(old_size
);
1701 old_size
= new->end
- new->start
+ 1;
1702 num_extents
+= count_max_extents(old_size
);
1703 if (count_max_extents(new_size
) >= num_extents
)
1706 spin_lock(&BTRFS_I(inode
)->lock
);
1707 btrfs_mod_outstanding_extents(BTRFS_I(inode
), -1);
1708 spin_unlock(&BTRFS_I(inode
)->lock
);
1711 static void btrfs_add_delalloc_inodes(struct btrfs_root
*root
,
1712 struct inode
*inode
)
1714 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1716 spin_lock(&root
->delalloc_lock
);
1717 if (list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1718 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1719 &root
->delalloc_inodes
);
1720 set_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1721 &BTRFS_I(inode
)->runtime_flags
);
1722 root
->nr_delalloc_inodes
++;
1723 if (root
->nr_delalloc_inodes
== 1) {
1724 spin_lock(&fs_info
->delalloc_root_lock
);
1725 BUG_ON(!list_empty(&root
->delalloc_root
));
1726 list_add_tail(&root
->delalloc_root
,
1727 &fs_info
->delalloc_roots
);
1728 spin_unlock(&fs_info
->delalloc_root_lock
);
1731 spin_unlock(&root
->delalloc_lock
);
1734 static void btrfs_del_delalloc_inode(struct btrfs_root
*root
,
1735 struct btrfs_inode
*inode
)
1737 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
1739 spin_lock(&root
->delalloc_lock
);
1740 if (!list_empty(&inode
->delalloc_inodes
)) {
1741 list_del_init(&inode
->delalloc_inodes
);
1742 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1743 &inode
->runtime_flags
);
1744 root
->nr_delalloc_inodes
--;
1745 if (!root
->nr_delalloc_inodes
) {
1746 spin_lock(&fs_info
->delalloc_root_lock
);
1747 BUG_ON(list_empty(&root
->delalloc_root
));
1748 list_del_init(&root
->delalloc_root
);
1749 spin_unlock(&fs_info
->delalloc_root_lock
);
1752 spin_unlock(&root
->delalloc_lock
);
1756 * extent_io.c set_bit_hook, used to track delayed allocation
1757 * bytes in this file, and to maintain the list of inodes that
1758 * have pending delalloc work to be done.
1760 static void btrfs_set_bit_hook(void *private_data
,
1761 struct extent_state
*state
, unsigned *bits
)
1763 struct inode
*inode
= private_data
;
1765 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1767 if ((*bits
& EXTENT_DEFRAG
) && !(*bits
& EXTENT_DELALLOC
))
1770 * set_bit and clear bit hooks normally require _irqsave/restore
1771 * but in this case, we are only testing for the DELALLOC
1772 * bit, which is only set or cleared with irqs on
1774 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1775 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1776 u64 len
= state
->end
+ 1 - state
->start
;
1777 u32 num_extents
= count_max_extents(len
);
1778 bool do_list
= !btrfs_is_free_space_inode(BTRFS_I(inode
));
1780 spin_lock(&BTRFS_I(inode
)->lock
);
1781 btrfs_mod_outstanding_extents(BTRFS_I(inode
), num_extents
);
1782 spin_unlock(&BTRFS_I(inode
)->lock
);
1784 /* For sanity tests */
1785 if (btrfs_is_testing(fs_info
))
1788 percpu_counter_add_batch(&fs_info
->delalloc_bytes
, len
,
1789 fs_info
->delalloc_batch
);
1790 spin_lock(&BTRFS_I(inode
)->lock
);
1791 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1792 if (*bits
& EXTENT_DEFRAG
)
1793 BTRFS_I(inode
)->defrag_bytes
+= len
;
1794 if (do_list
&& !test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1795 &BTRFS_I(inode
)->runtime_flags
))
1796 btrfs_add_delalloc_inodes(root
, inode
);
1797 spin_unlock(&BTRFS_I(inode
)->lock
);
1800 if (!(state
->state
& EXTENT_DELALLOC_NEW
) &&
1801 (*bits
& EXTENT_DELALLOC_NEW
)) {
1802 spin_lock(&BTRFS_I(inode
)->lock
);
1803 BTRFS_I(inode
)->new_delalloc_bytes
+= state
->end
+ 1 -
1805 spin_unlock(&BTRFS_I(inode
)->lock
);
1810 * extent_io.c clear_bit_hook, see set_bit_hook for why
1812 static void btrfs_clear_bit_hook(void *private_data
,
1813 struct extent_state
*state
,
1816 struct btrfs_inode
*inode
= BTRFS_I((struct inode
*)private_data
);
1817 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
1818 u64 len
= state
->end
+ 1 - state
->start
;
1819 u32 num_extents
= count_max_extents(len
);
1821 if ((state
->state
& EXTENT_DEFRAG
) && (*bits
& EXTENT_DEFRAG
)) {
1822 spin_lock(&inode
->lock
);
1823 inode
->defrag_bytes
-= len
;
1824 spin_unlock(&inode
->lock
);
1828 * set_bit and clear bit hooks normally require _irqsave/restore
1829 * but in this case, we are only testing for the DELALLOC
1830 * bit, which is only set or cleared with irqs on
1832 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1833 struct btrfs_root
*root
= inode
->root
;
1834 bool do_list
= !btrfs_is_free_space_inode(inode
);
1836 spin_lock(&inode
->lock
);
1837 btrfs_mod_outstanding_extents(inode
, -num_extents
);
1838 spin_unlock(&inode
->lock
);
1841 * We don't reserve metadata space for space cache inodes so we
1842 * don't need to call dellalloc_release_metadata if there is an
1845 if (*bits
& EXTENT_CLEAR_META_RESV
&&
1846 root
!= fs_info
->tree_root
)
1847 btrfs_delalloc_release_metadata(inode
, len
);
1849 /* For sanity tests. */
1850 if (btrfs_is_testing(fs_info
))
1853 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
&&
1854 do_list
&& !(state
->state
& EXTENT_NORESERVE
) &&
1855 (*bits
& EXTENT_CLEAR_DATA_RESV
))
1856 btrfs_free_reserved_data_space_noquota(
1860 percpu_counter_add_batch(&fs_info
->delalloc_bytes
, -len
,
1861 fs_info
->delalloc_batch
);
1862 spin_lock(&inode
->lock
);
1863 inode
->delalloc_bytes
-= len
;
1864 if (do_list
&& inode
->delalloc_bytes
== 0 &&
1865 test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1866 &inode
->runtime_flags
))
1867 btrfs_del_delalloc_inode(root
, inode
);
1868 spin_unlock(&inode
->lock
);
1871 if ((state
->state
& EXTENT_DELALLOC_NEW
) &&
1872 (*bits
& EXTENT_DELALLOC_NEW
)) {
1873 spin_lock(&inode
->lock
);
1874 ASSERT(inode
->new_delalloc_bytes
>= len
);
1875 inode
->new_delalloc_bytes
-= len
;
1876 spin_unlock(&inode
->lock
);
1881 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1882 * we don't create bios that span stripes or chunks
1884 * return 1 if page cannot be merged to bio
1885 * return 0 if page can be merged to bio
1886 * return error otherwise
1888 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1889 size_t size
, struct bio
*bio
,
1890 unsigned long bio_flags
)
1892 struct inode
*inode
= page
->mapping
->host
;
1893 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1894 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
1899 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1902 length
= bio
->bi_iter
.bi_size
;
1903 map_length
= length
;
1904 ret
= btrfs_map_block(fs_info
, btrfs_op(bio
), logical
, &map_length
,
1908 if (map_length
< length
+ size
)
1914 * in order to insert checksums into the metadata in large chunks,
1915 * we wait until bio submission time. All the pages in the bio are
1916 * checksummed and sums are attached onto the ordered extent record.
1918 * At IO completion time the cums attached on the ordered extent record
1919 * are inserted into the btree
1921 static blk_status_t
__btrfs_submit_bio_start(void *private_data
, struct bio
*bio
,
1922 int mirror_num
, unsigned long bio_flags
,
1925 struct inode
*inode
= private_data
;
1926 blk_status_t ret
= 0;
1928 ret
= btrfs_csum_one_bio(inode
, bio
, 0, 0);
1929 BUG_ON(ret
); /* -ENOMEM */
1934 * in order to insert checksums into the metadata in large chunks,
1935 * we wait until bio submission time. All the pages in the bio are
1936 * checksummed and sums are attached onto the ordered extent record.
1938 * At IO completion time the cums attached on the ordered extent record
1939 * are inserted into the btree
1941 static blk_status_t
__btrfs_submit_bio_done(void *private_data
, struct bio
*bio
,
1942 int mirror_num
, unsigned long bio_flags
,
1945 struct inode
*inode
= private_data
;
1946 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1949 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 1);
1951 bio
->bi_status
= ret
;
1958 * extent_io.c submission hook. This does the right thing for csum calculation
1959 * on write, or reading the csums from the tree before a read.
1961 * Rules about async/sync submit,
1962 * a) read: sync submit
1964 * b) write without checksum: sync submit
1966 * c) write with checksum:
1967 * c-1) if bio is issued by fsync: sync submit
1968 * (sync_writers != 0)
1970 * c-2) if root is reloc root: sync submit
1971 * (only in case of buffered IO)
1973 * c-3) otherwise: async submit
1975 static blk_status_t
btrfs_submit_bio_hook(void *private_data
, struct bio
*bio
,
1976 int mirror_num
, unsigned long bio_flags
,
1979 struct inode
*inode
= private_data
;
1980 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1981 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1982 enum btrfs_wq_endio_type metadata
= BTRFS_WQ_ENDIO_DATA
;
1983 blk_status_t ret
= 0;
1985 int async
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
1987 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1989 if (btrfs_is_free_space_inode(BTRFS_I(inode
)))
1990 metadata
= BTRFS_WQ_ENDIO_FREE_SPACE
;
1992 if (bio_op(bio
) != REQ_OP_WRITE
) {
1993 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, metadata
);
1997 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1998 ret
= btrfs_submit_compressed_read(inode
, bio
,
2002 } else if (!skip_sum
) {
2003 ret
= btrfs_lookup_bio_sums(inode
, bio
, NULL
);
2008 } else if (async
&& !skip_sum
) {
2009 /* csum items have already been cloned */
2010 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
2012 /* we're doing a write, do the async checksumming */
2013 ret
= btrfs_wq_submit_bio(fs_info
, bio
, mirror_num
, bio_flags
,
2015 __btrfs_submit_bio_start
,
2016 __btrfs_submit_bio_done
);
2018 } else if (!skip_sum
) {
2019 ret
= btrfs_csum_one_bio(inode
, bio
, 0, 0);
2025 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 0);
2029 bio
->bi_status
= ret
;
2036 * given a list of ordered sums record them in the inode. This happens
2037 * at IO completion time based on sums calculated at bio submission time.
2039 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
2040 struct inode
*inode
, struct list_head
*list
)
2042 struct btrfs_ordered_sum
*sum
;
2044 list_for_each_entry(sum
, list
, list
) {
2045 trans
->adding_csums
= true;
2046 btrfs_csum_file_blocks(trans
,
2047 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
2048 trans
->adding_csums
= false;
2053 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
2054 unsigned int extra_bits
,
2055 struct extent_state
**cached_state
, int dedupe
)
2057 WARN_ON((end
& (PAGE_SIZE
- 1)) == 0);
2058 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
2059 extra_bits
, cached_state
);
2062 /* see btrfs_writepage_start_hook for details on why this is required */
2063 struct btrfs_writepage_fixup
{
2065 struct btrfs_work work
;
2068 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
2070 struct btrfs_writepage_fixup
*fixup
;
2071 struct btrfs_ordered_extent
*ordered
;
2072 struct extent_state
*cached_state
= NULL
;
2073 struct extent_changeset
*data_reserved
= NULL
;
2075 struct inode
*inode
;
2080 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
2084 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
2085 ClearPageChecked(page
);
2089 inode
= page
->mapping
->host
;
2090 page_start
= page_offset(page
);
2091 page_end
= page_offset(page
) + PAGE_SIZE
- 1;
2093 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
2096 /* already ordered? We're done */
2097 if (PagePrivate2(page
))
2100 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), page_start
,
2103 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
2104 page_end
, &cached_state
);
2106 btrfs_start_ordered_extent(inode
, ordered
, 1);
2107 btrfs_put_ordered_extent(ordered
);
2111 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
, page_start
,
2114 mapping_set_error(page
->mapping
, ret
);
2115 end_extent_writepage(page
, ret
, page_start
, page_end
);
2116 ClearPageChecked(page
);
2120 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
, 0,
2123 mapping_set_error(page
->mapping
, ret
);
2124 end_extent_writepage(page
, ret
, page_start
, page_end
);
2125 ClearPageChecked(page
);
2129 ClearPageChecked(page
);
2130 set_page_dirty(page
);
2131 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
);
2133 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
2139 extent_changeset_free(data_reserved
);
2143 * There are a few paths in the higher layers of the kernel that directly
2144 * set the page dirty bit without asking the filesystem if it is a
2145 * good idea. This causes problems because we want to make sure COW
2146 * properly happens and the data=ordered rules are followed.
2148 * In our case any range that doesn't have the ORDERED bit set
2149 * hasn't been properly setup for IO. We kick off an async process
2150 * to fix it up. The async helper will wait for ordered extents, set
2151 * the delalloc bit and make it safe to write the page.
2153 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
2155 struct inode
*inode
= page
->mapping
->host
;
2156 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2157 struct btrfs_writepage_fixup
*fixup
;
2159 /* this page is properly in the ordered list */
2160 if (TestClearPagePrivate2(page
))
2163 if (PageChecked(page
))
2166 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
2170 SetPageChecked(page
);
2172 btrfs_init_work(&fixup
->work
, btrfs_fixup_helper
,
2173 btrfs_writepage_fixup_worker
, NULL
, NULL
);
2175 btrfs_queue_work(fs_info
->fixup_workers
, &fixup
->work
);
2179 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
2180 struct inode
*inode
, u64 file_pos
,
2181 u64 disk_bytenr
, u64 disk_num_bytes
,
2182 u64 num_bytes
, u64 ram_bytes
,
2183 u8 compression
, u8 encryption
,
2184 u16 other_encoding
, int extent_type
)
2186 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2187 struct btrfs_file_extent_item
*fi
;
2188 struct btrfs_path
*path
;
2189 struct extent_buffer
*leaf
;
2190 struct btrfs_key ins
;
2192 int extent_inserted
= 0;
2195 path
= btrfs_alloc_path();
2200 * we may be replacing one extent in the tree with another.
2201 * The new extent is pinned in the extent map, and we don't want
2202 * to drop it from the cache until it is completely in the btree.
2204 * So, tell btrfs_drop_extents to leave this extent in the cache.
2205 * the caller is expected to unpin it and allow it to be merged
2208 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
, file_pos
,
2209 file_pos
+ num_bytes
, NULL
, 0,
2210 1, sizeof(*fi
), &extent_inserted
);
2214 if (!extent_inserted
) {
2215 ins
.objectid
= btrfs_ino(BTRFS_I(inode
));
2216 ins
.offset
= file_pos
;
2217 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
2219 path
->leave_spinning
= 1;
2220 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
,
2225 leaf
= path
->nodes
[0];
2226 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2227 struct btrfs_file_extent_item
);
2228 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
2229 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
2230 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
2231 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
2232 btrfs_set_file_extent_offset(leaf
, fi
, 0);
2233 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
2234 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
2235 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
2236 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
2237 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
2239 btrfs_mark_buffer_dirty(leaf
);
2240 btrfs_release_path(path
);
2242 inode_add_bytes(inode
, num_bytes
);
2244 ins
.objectid
= disk_bytenr
;
2245 ins
.offset
= disk_num_bytes
;
2246 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2249 * Release the reserved range from inode dirty range map, as it is
2250 * already moved into delayed_ref_head
2252 ret
= btrfs_qgroup_release_data(inode
, file_pos
, ram_bytes
);
2256 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
2257 btrfs_ino(BTRFS_I(inode
)),
2258 file_pos
, qg_released
, &ins
);
2260 btrfs_free_path(path
);
2265 /* snapshot-aware defrag */
2266 struct sa_defrag_extent_backref
{
2267 struct rb_node node
;
2268 struct old_sa_defrag_extent
*old
;
2277 struct old_sa_defrag_extent
{
2278 struct list_head list
;
2279 struct new_sa_defrag_extent
*new;
2288 struct new_sa_defrag_extent
{
2289 struct rb_root root
;
2290 struct list_head head
;
2291 struct btrfs_path
*path
;
2292 struct inode
*inode
;
2300 static int backref_comp(struct sa_defrag_extent_backref
*b1
,
2301 struct sa_defrag_extent_backref
*b2
)
2303 if (b1
->root_id
< b2
->root_id
)
2305 else if (b1
->root_id
> b2
->root_id
)
2308 if (b1
->inum
< b2
->inum
)
2310 else if (b1
->inum
> b2
->inum
)
2313 if (b1
->file_pos
< b2
->file_pos
)
2315 else if (b1
->file_pos
> b2
->file_pos
)
2319 * [------------------------------] ===> (a range of space)
2320 * |<--->| |<---->| =============> (fs/file tree A)
2321 * |<---------------------------->| ===> (fs/file tree B)
2323 * A range of space can refer to two file extents in one tree while
2324 * refer to only one file extent in another tree.
2326 * So we may process a disk offset more than one time(two extents in A)
2327 * and locate at the same extent(one extent in B), then insert two same
2328 * backrefs(both refer to the extent in B).
2333 static void backref_insert(struct rb_root
*root
,
2334 struct sa_defrag_extent_backref
*backref
)
2336 struct rb_node
**p
= &root
->rb_node
;
2337 struct rb_node
*parent
= NULL
;
2338 struct sa_defrag_extent_backref
*entry
;
2343 entry
= rb_entry(parent
, struct sa_defrag_extent_backref
, node
);
2345 ret
= backref_comp(backref
, entry
);
2349 p
= &(*p
)->rb_right
;
2352 rb_link_node(&backref
->node
, parent
, p
);
2353 rb_insert_color(&backref
->node
, root
);
2357 * Note the backref might has changed, and in this case we just return 0.
2359 static noinline
int record_one_backref(u64 inum
, u64 offset
, u64 root_id
,
2362 struct btrfs_file_extent_item
*extent
;
2363 struct old_sa_defrag_extent
*old
= ctx
;
2364 struct new_sa_defrag_extent
*new = old
->new;
2365 struct btrfs_path
*path
= new->path
;
2366 struct btrfs_key key
;
2367 struct btrfs_root
*root
;
2368 struct sa_defrag_extent_backref
*backref
;
2369 struct extent_buffer
*leaf
;
2370 struct inode
*inode
= new->inode
;
2371 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2377 if (BTRFS_I(inode
)->root
->root_key
.objectid
== root_id
&&
2378 inum
== btrfs_ino(BTRFS_I(inode
)))
2381 key
.objectid
= root_id
;
2382 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2383 key
.offset
= (u64
)-1;
2385 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2387 if (PTR_ERR(root
) == -ENOENT
)
2390 btrfs_debug(fs_info
, "inum=%llu, offset=%llu, root_id=%llu",
2391 inum
, offset
, root_id
);
2392 return PTR_ERR(root
);
2395 key
.objectid
= inum
;
2396 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2397 if (offset
> (u64
)-1 << 32)
2400 key
.offset
= offset
;
2402 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2403 if (WARN_ON(ret
< 0))
2410 leaf
= path
->nodes
[0];
2411 slot
= path
->slots
[0];
2413 if (slot
>= btrfs_header_nritems(leaf
)) {
2414 ret
= btrfs_next_leaf(root
, path
);
2417 } else if (ret
> 0) {
2426 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2428 if (key
.objectid
> inum
)
2431 if (key
.objectid
< inum
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2434 extent
= btrfs_item_ptr(leaf
, slot
,
2435 struct btrfs_file_extent_item
);
2437 if (btrfs_file_extent_disk_bytenr(leaf
, extent
) != old
->bytenr
)
2441 * 'offset' refers to the exact key.offset,
2442 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2443 * (key.offset - extent_offset).
2445 if (key
.offset
!= offset
)
2448 extent_offset
= btrfs_file_extent_offset(leaf
, extent
);
2449 num_bytes
= btrfs_file_extent_num_bytes(leaf
, extent
);
2451 if (extent_offset
>= old
->extent_offset
+ old
->offset
+
2452 old
->len
|| extent_offset
+ num_bytes
<=
2453 old
->extent_offset
+ old
->offset
)
2458 backref
= kmalloc(sizeof(*backref
), GFP_NOFS
);
2464 backref
->root_id
= root_id
;
2465 backref
->inum
= inum
;
2466 backref
->file_pos
= offset
;
2467 backref
->num_bytes
= num_bytes
;
2468 backref
->extent_offset
= extent_offset
;
2469 backref
->generation
= btrfs_file_extent_generation(leaf
, extent
);
2471 backref_insert(&new->root
, backref
);
2474 btrfs_release_path(path
);
2479 static noinline
bool record_extent_backrefs(struct btrfs_path
*path
,
2480 struct new_sa_defrag_extent
*new)
2482 struct btrfs_fs_info
*fs_info
= btrfs_sb(new->inode
->i_sb
);
2483 struct old_sa_defrag_extent
*old
, *tmp
;
2488 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2489 ret
= iterate_inodes_from_logical(old
->bytenr
+
2490 old
->extent_offset
, fs_info
,
2491 path
, record_one_backref
,
2493 if (ret
< 0 && ret
!= -ENOENT
)
2496 /* no backref to be processed for this extent */
2498 list_del(&old
->list
);
2503 if (list_empty(&new->head
))
2509 static int relink_is_mergable(struct extent_buffer
*leaf
,
2510 struct btrfs_file_extent_item
*fi
,
2511 struct new_sa_defrag_extent
*new)
2513 if (btrfs_file_extent_disk_bytenr(leaf
, fi
) != new->bytenr
)
2516 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
)
2519 if (btrfs_file_extent_compression(leaf
, fi
) != new->compress_type
)
2522 if (btrfs_file_extent_encryption(leaf
, fi
) ||
2523 btrfs_file_extent_other_encoding(leaf
, fi
))
2530 * Note the backref might has changed, and in this case we just return 0.
2532 static noinline
int relink_extent_backref(struct btrfs_path
*path
,
2533 struct sa_defrag_extent_backref
*prev
,
2534 struct sa_defrag_extent_backref
*backref
)
2536 struct btrfs_file_extent_item
*extent
;
2537 struct btrfs_file_extent_item
*item
;
2538 struct btrfs_ordered_extent
*ordered
;
2539 struct btrfs_trans_handle
*trans
;
2540 struct btrfs_root
*root
;
2541 struct btrfs_key key
;
2542 struct extent_buffer
*leaf
;
2543 struct old_sa_defrag_extent
*old
= backref
->old
;
2544 struct new_sa_defrag_extent
*new = old
->new;
2545 struct btrfs_fs_info
*fs_info
= btrfs_sb(new->inode
->i_sb
);
2546 struct inode
*inode
;
2547 struct extent_state
*cached
= NULL
;
2556 if (prev
&& prev
->root_id
== backref
->root_id
&&
2557 prev
->inum
== backref
->inum
&&
2558 prev
->file_pos
+ prev
->num_bytes
== backref
->file_pos
)
2561 /* step 1: get root */
2562 key
.objectid
= backref
->root_id
;
2563 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2564 key
.offset
= (u64
)-1;
2566 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
2568 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2570 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2571 if (PTR_ERR(root
) == -ENOENT
)
2573 return PTR_ERR(root
);
2576 if (btrfs_root_readonly(root
)) {
2577 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2581 /* step 2: get inode */
2582 key
.objectid
= backref
->inum
;
2583 key
.type
= BTRFS_INODE_ITEM_KEY
;
2586 inode
= btrfs_iget(fs_info
->sb
, &key
, root
, NULL
);
2587 if (IS_ERR(inode
)) {
2588 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2592 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2594 /* step 3: relink backref */
2595 lock_start
= backref
->file_pos
;
2596 lock_end
= backref
->file_pos
+ backref
->num_bytes
- 1;
2597 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2600 ordered
= btrfs_lookup_first_ordered_extent(inode
, lock_end
);
2602 btrfs_put_ordered_extent(ordered
);
2606 trans
= btrfs_join_transaction(root
);
2607 if (IS_ERR(trans
)) {
2608 ret
= PTR_ERR(trans
);
2612 key
.objectid
= backref
->inum
;
2613 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2614 key
.offset
= backref
->file_pos
;
2616 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2619 } else if (ret
> 0) {
2624 extent
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2625 struct btrfs_file_extent_item
);
2627 if (btrfs_file_extent_generation(path
->nodes
[0], extent
) !=
2628 backref
->generation
)
2631 btrfs_release_path(path
);
2633 start
= backref
->file_pos
;
2634 if (backref
->extent_offset
< old
->extent_offset
+ old
->offset
)
2635 start
+= old
->extent_offset
+ old
->offset
-
2636 backref
->extent_offset
;
2638 len
= min(backref
->extent_offset
+ backref
->num_bytes
,
2639 old
->extent_offset
+ old
->offset
+ old
->len
);
2640 len
-= max(backref
->extent_offset
, old
->extent_offset
+ old
->offset
);
2642 ret
= btrfs_drop_extents(trans
, root
, inode
, start
,
2647 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
2648 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2651 path
->leave_spinning
= 1;
2653 struct btrfs_file_extent_item
*fi
;
2655 struct btrfs_key found_key
;
2657 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2662 leaf
= path
->nodes
[0];
2663 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2665 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2666 struct btrfs_file_extent_item
);
2667 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
2669 if (extent_len
+ found_key
.offset
== start
&&
2670 relink_is_mergable(leaf
, fi
, new)) {
2671 btrfs_set_file_extent_num_bytes(leaf
, fi
,
2673 btrfs_mark_buffer_dirty(leaf
);
2674 inode_add_bytes(inode
, len
);
2680 btrfs_release_path(path
);
2685 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
2688 btrfs_abort_transaction(trans
, ret
);
2692 leaf
= path
->nodes
[0];
2693 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2694 struct btrfs_file_extent_item
);
2695 btrfs_set_file_extent_disk_bytenr(leaf
, item
, new->bytenr
);
2696 btrfs_set_file_extent_disk_num_bytes(leaf
, item
, new->disk_len
);
2697 btrfs_set_file_extent_offset(leaf
, item
, start
- new->file_pos
);
2698 btrfs_set_file_extent_num_bytes(leaf
, item
, len
);
2699 btrfs_set_file_extent_ram_bytes(leaf
, item
, new->len
);
2700 btrfs_set_file_extent_generation(leaf
, item
, trans
->transid
);
2701 btrfs_set_file_extent_type(leaf
, item
, BTRFS_FILE_EXTENT_REG
);
2702 btrfs_set_file_extent_compression(leaf
, item
, new->compress_type
);
2703 btrfs_set_file_extent_encryption(leaf
, item
, 0);
2704 btrfs_set_file_extent_other_encoding(leaf
, item
, 0);
2706 btrfs_mark_buffer_dirty(leaf
);
2707 inode_add_bytes(inode
, len
);
2708 btrfs_release_path(path
);
2710 ret
= btrfs_inc_extent_ref(trans
, root
, new->bytenr
,
2712 backref
->root_id
, backref
->inum
,
2713 new->file_pos
); /* start - extent_offset */
2715 btrfs_abort_transaction(trans
, ret
);
2721 btrfs_release_path(path
);
2722 path
->leave_spinning
= 0;
2723 btrfs_end_transaction(trans
);
2725 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2731 static void free_sa_defrag_extent(struct new_sa_defrag_extent
*new)
2733 struct old_sa_defrag_extent
*old
, *tmp
;
2738 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2744 static void relink_file_extents(struct new_sa_defrag_extent
*new)
2746 struct btrfs_fs_info
*fs_info
= btrfs_sb(new->inode
->i_sb
);
2747 struct btrfs_path
*path
;
2748 struct sa_defrag_extent_backref
*backref
;
2749 struct sa_defrag_extent_backref
*prev
= NULL
;
2750 struct inode
*inode
;
2751 struct btrfs_root
*root
;
2752 struct rb_node
*node
;
2756 root
= BTRFS_I(inode
)->root
;
2758 path
= btrfs_alloc_path();
2762 if (!record_extent_backrefs(path
, new)) {
2763 btrfs_free_path(path
);
2766 btrfs_release_path(path
);
2769 node
= rb_first(&new->root
);
2772 rb_erase(node
, &new->root
);
2774 backref
= rb_entry(node
, struct sa_defrag_extent_backref
, node
);
2776 ret
= relink_extent_backref(path
, prev
, backref
);
2789 btrfs_free_path(path
);
2791 free_sa_defrag_extent(new);
2793 atomic_dec(&fs_info
->defrag_running
);
2794 wake_up(&fs_info
->transaction_wait
);
2797 static struct new_sa_defrag_extent
*
2798 record_old_file_extents(struct inode
*inode
,
2799 struct btrfs_ordered_extent
*ordered
)
2801 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2802 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2803 struct btrfs_path
*path
;
2804 struct btrfs_key key
;
2805 struct old_sa_defrag_extent
*old
;
2806 struct new_sa_defrag_extent
*new;
2809 new = kmalloc(sizeof(*new), GFP_NOFS
);
2814 new->file_pos
= ordered
->file_offset
;
2815 new->len
= ordered
->len
;
2816 new->bytenr
= ordered
->start
;
2817 new->disk_len
= ordered
->disk_len
;
2818 new->compress_type
= ordered
->compress_type
;
2819 new->root
= RB_ROOT
;
2820 INIT_LIST_HEAD(&new->head
);
2822 path
= btrfs_alloc_path();
2826 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
2827 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2828 key
.offset
= new->file_pos
;
2830 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2833 if (ret
> 0 && path
->slots
[0] > 0)
2836 /* find out all the old extents for the file range */
2838 struct btrfs_file_extent_item
*extent
;
2839 struct extent_buffer
*l
;
2848 slot
= path
->slots
[0];
2850 if (slot
>= btrfs_header_nritems(l
)) {
2851 ret
= btrfs_next_leaf(root
, path
);
2859 btrfs_item_key_to_cpu(l
, &key
, slot
);
2861 if (key
.objectid
!= btrfs_ino(BTRFS_I(inode
)))
2863 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2865 if (key
.offset
>= new->file_pos
+ new->len
)
2868 extent
= btrfs_item_ptr(l
, slot
, struct btrfs_file_extent_item
);
2870 num_bytes
= btrfs_file_extent_num_bytes(l
, extent
);
2871 if (key
.offset
+ num_bytes
< new->file_pos
)
2874 disk_bytenr
= btrfs_file_extent_disk_bytenr(l
, extent
);
2878 extent_offset
= btrfs_file_extent_offset(l
, extent
);
2880 old
= kmalloc(sizeof(*old
), GFP_NOFS
);
2884 offset
= max(new->file_pos
, key
.offset
);
2885 end
= min(new->file_pos
+ new->len
, key
.offset
+ num_bytes
);
2887 old
->bytenr
= disk_bytenr
;
2888 old
->extent_offset
= extent_offset
;
2889 old
->offset
= offset
- key
.offset
;
2890 old
->len
= end
- offset
;
2893 list_add_tail(&old
->list
, &new->head
);
2899 btrfs_free_path(path
);
2900 atomic_inc(&fs_info
->defrag_running
);
2905 btrfs_free_path(path
);
2907 free_sa_defrag_extent(new);
2911 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info
*fs_info
,
2914 struct btrfs_block_group_cache
*cache
;
2916 cache
= btrfs_lookup_block_group(fs_info
, start
);
2919 spin_lock(&cache
->lock
);
2920 cache
->delalloc_bytes
-= len
;
2921 spin_unlock(&cache
->lock
);
2923 btrfs_put_block_group(cache
);
2926 /* as ordered data IO finishes, this gets called so we can finish
2927 * an ordered extent if the range of bytes in the file it covers are
2930 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
)
2932 struct inode
*inode
= ordered_extent
->inode
;
2933 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2934 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2935 struct btrfs_trans_handle
*trans
= NULL
;
2936 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2937 struct extent_state
*cached_state
= NULL
;
2938 struct new_sa_defrag_extent
*new = NULL
;
2939 int compress_type
= 0;
2941 u64 logical_len
= ordered_extent
->len
;
2943 bool truncated
= false;
2944 bool range_locked
= false;
2945 bool clear_new_delalloc_bytes
= false;
2947 if (!test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
2948 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
) &&
2949 !test_bit(BTRFS_ORDERED_DIRECT
, &ordered_extent
->flags
))
2950 clear_new_delalloc_bytes
= true;
2952 nolock
= btrfs_is_free_space_inode(BTRFS_I(inode
));
2954 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered_extent
->flags
)) {
2959 btrfs_free_io_failure_record(BTRFS_I(inode
),
2960 ordered_extent
->file_offset
,
2961 ordered_extent
->file_offset
+
2962 ordered_extent
->len
- 1);
2964 if (test_bit(BTRFS_ORDERED_TRUNCATED
, &ordered_extent
->flags
)) {
2966 logical_len
= ordered_extent
->truncated_len
;
2967 /* Truncated the entire extent, don't bother adding */
2972 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
2973 BUG_ON(!list_empty(&ordered_extent
->list
)); /* Logic error */
2976 * For mwrite(mmap + memset to write) case, we still reserve
2977 * space for NOCOW range.
2978 * As NOCOW won't cause a new delayed ref, just free the space
2980 btrfs_qgroup_free_data(inode
, NULL
, ordered_extent
->file_offset
,
2981 ordered_extent
->len
);
2982 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
2984 trans
= btrfs_join_transaction_nolock(root
);
2986 trans
= btrfs_join_transaction(root
);
2987 if (IS_ERR(trans
)) {
2988 ret
= PTR_ERR(trans
);
2992 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
2993 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
2994 if (ret
) /* -ENOMEM or corruption */
2995 btrfs_abort_transaction(trans
, ret
);
2999 range_locked
= true;
3000 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
3001 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
3004 ret
= test_range_bit(io_tree
, ordered_extent
->file_offset
,
3005 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
3006 EXTENT_DEFRAG
, 0, cached_state
);
3008 u64 last_snapshot
= btrfs_root_last_snapshot(&root
->root_item
);
3009 if (0 && last_snapshot
>= BTRFS_I(inode
)->generation
)
3010 /* the inode is shared */
3011 new = record_old_file_extents(inode
, ordered_extent
);
3013 clear_extent_bit(io_tree
, ordered_extent
->file_offset
,
3014 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
3015 EXTENT_DEFRAG
, 0, 0, &cached_state
);
3019 trans
= btrfs_join_transaction_nolock(root
);
3021 trans
= btrfs_join_transaction(root
);
3022 if (IS_ERR(trans
)) {
3023 ret
= PTR_ERR(trans
);
3028 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
3030 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
3031 compress_type
= ordered_extent
->compress_type
;
3032 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
3033 BUG_ON(compress_type
);
3034 btrfs_qgroup_free_data(inode
, NULL
, ordered_extent
->file_offset
,
3035 ordered_extent
->len
);
3036 ret
= btrfs_mark_extent_written(trans
, BTRFS_I(inode
),
3037 ordered_extent
->file_offset
,
3038 ordered_extent
->file_offset
+
3041 BUG_ON(root
== fs_info
->tree_root
);
3042 ret
= insert_reserved_file_extent(trans
, inode
,
3043 ordered_extent
->file_offset
,
3044 ordered_extent
->start
,
3045 ordered_extent
->disk_len
,
3046 logical_len
, logical_len
,
3047 compress_type
, 0, 0,
3048 BTRFS_FILE_EXTENT_REG
);
3050 btrfs_release_delalloc_bytes(fs_info
,
3051 ordered_extent
->start
,
3052 ordered_extent
->disk_len
);
3054 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
3055 ordered_extent
->file_offset
, ordered_extent
->len
,
3058 btrfs_abort_transaction(trans
, ret
);
3062 add_pending_csums(trans
, inode
, &ordered_extent
->list
);
3064 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
3065 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
3066 if (ret
) { /* -ENOMEM or corruption */
3067 btrfs_abort_transaction(trans
, ret
);
3072 if (range_locked
|| clear_new_delalloc_bytes
) {
3073 unsigned int clear_bits
= 0;
3076 clear_bits
|= EXTENT_LOCKED
;
3077 if (clear_new_delalloc_bytes
)
3078 clear_bits
|= EXTENT_DELALLOC_NEW
;
3079 clear_extent_bit(&BTRFS_I(inode
)->io_tree
,
3080 ordered_extent
->file_offset
,
3081 ordered_extent
->file_offset
+
3082 ordered_extent
->len
- 1,
3084 (clear_bits
& EXTENT_LOCKED
) ? 1 : 0,
3089 btrfs_end_transaction(trans
);
3091 if (ret
|| truncated
) {
3095 start
= ordered_extent
->file_offset
+ logical_len
;
3097 start
= ordered_extent
->file_offset
;
3098 end
= ordered_extent
->file_offset
+ ordered_extent
->len
- 1;
3099 clear_extent_uptodate(io_tree
, start
, end
, NULL
);
3101 /* Drop the cache for the part of the extent we didn't write. */
3102 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, end
, 0);
3105 * If the ordered extent had an IOERR or something else went
3106 * wrong we need to return the space for this ordered extent
3107 * back to the allocator. We only free the extent in the
3108 * truncated case if we didn't write out the extent at all.
3110 if ((ret
|| !logical_len
) &&
3111 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
3112 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
))
3113 btrfs_free_reserved_extent(fs_info
,
3114 ordered_extent
->start
,
3115 ordered_extent
->disk_len
, 1);
3120 * This needs to be done to make sure anybody waiting knows we are done
3121 * updating everything for this ordered extent.
3123 btrfs_remove_ordered_extent(inode
, ordered_extent
);
3125 /* for snapshot-aware defrag */
3128 free_sa_defrag_extent(new);
3129 atomic_dec(&fs_info
->defrag_running
);
3131 relink_file_extents(new);
3136 btrfs_put_ordered_extent(ordered_extent
);
3137 /* once for the tree */
3138 btrfs_put_ordered_extent(ordered_extent
);
3143 static void finish_ordered_fn(struct btrfs_work
*work
)
3145 struct btrfs_ordered_extent
*ordered_extent
;
3146 ordered_extent
= container_of(work
, struct btrfs_ordered_extent
, work
);
3147 btrfs_finish_ordered_io(ordered_extent
);
3150 static void btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
3151 struct extent_state
*state
, int uptodate
)
3153 struct inode
*inode
= page
->mapping
->host
;
3154 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3155 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
3156 struct btrfs_workqueue
*wq
;
3157 btrfs_work_func_t func
;
3159 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
3161 ClearPagePrivate2(page
);
3162 if (!btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
3163 end
- start
+ 1, uptodate
))
3166 if (btrfs_is_free_space_inode(BTRFS_I(inode
))) {
3167 wq
= fs_info
->endio_freespace_worker
;
3168 func
= btrfs_freespace_write_helper
;
3170 wq
= fs_info
->endio_write_workers
;
3171 func
= btrfs_endio_write_helper
;
3174 btrfs_init_work(&ordered_extent
->work
, func
, finish_ordered_fn
, NULL
,
3176 btrfs_queue_work(wq
, &ordered_extent
->work
);
3179 static int __readpage_endio_check(struct inode
*inode
,
3180 struct btrfs_io_bio
*io_bio
,
3181 int icsum
, struct page
*page
,
3182 int pgoff
, u64 start
, size_t len
)
3188 csum_expected
= *(((u32
*)io_bio
->csum
) + icsum
);
3190 kaddr
= kmap_atomic(page
);
3191 csum
= btrfs_csum_data(kaddr
+ pgoff
, csum
, len
);
3192 btrfs_csum_final(csum
, (u8
*)&csum
);
3193 if (csum
!= csum_expected
)
3196 kunmap_atomic(kaddr
);
3199 btrfs_print_data_csum_error(BTRFS_I(inode
), start
, csum
, csum_expected
,
3200 io_bio
->mirror_num
);
3201 memset(kaddr
+ pgoff
, 1, len
);
3202 flush_dcache_page(page
);
3203 kunmap_atomic(kaddr
);
3208 * when reads are done, we need to check csums to verify the data is correct
3209 * if there's a match, we allow the bio to finish. If not, the code in
3210 * extent_io.c will try to find good copies for us.
3212 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
3213 u64 phy_offset
, struct page
*page
,
3214 u64 start
, u64 end
, int mirror
)
3216 size_t offset
= start
- page_offset(page
);
3217 struct inode
*inode
= page
->mapping
->host
;
3218 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3219 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3221 if (PageChecked(page
)) {
3222 ClearPageChecked(page
);
3226 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
3229 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
3230 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
3231 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
);
3235 phy_offset
>>= inode
->i_sb
->s_blocksize_bits
;
3236 return __readpage_endio_check(inode
, io_bio
, phy_offset
, page
, offset
,
3237 start
, (size_t)(end
- start
+ 1));
3240 void btrfs_add_delayed_iput(struct inode
*inode
)
3242 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3243 struct btrfs_inode
*binode
= BTRFS_I(inode
);
3245 if (atomic_add_unless(&inode
->i_count
, -1, 1))
3248 spin_lock(&fs_info
->delayed_iput_lock
);
3249 if (binode
->delayed_iput_count
== 0) {
3250 ASSERT(list_empty(&binode
->delayed_iput
));
3251 list_add_tail(&binode
->delayed_iput
, &fs_info
->delayed_iputs
);
3253 binode
->delayed_iput_count
++;
3255 spin_unlock(&fs_info
->delayed_iput_lock
);
3258 void btrfs_run_delayed_iputs(struct btrfs_fs_info
*fs_info
)
3261 spin_lock(&fs_info
->delayed_iput_lock
);
3262 while (!list_empty(&fs_info
->delayed_iputs
)) {
3263 struct btrfs_inode
*inode
;
3265 inode
= list_first_entry(&fs_info
->delayed_iputs
,
3266 struct btrfs_inode
, delayed_iput
);
3267 if (inode
->delayed_iput_count
) {
3268 inode
->delayed_iput_count
--;
3269 list_move_tail(&inode
->delayed_iput
,
3270 &fs_info
->delayed_iputs
);
3272 list_del_init(&inode
->delayed_iput
);
3274 spin_unlock(&fs_info
->delayed_iput_lock
);
3275 iput(&inode
->vfs_inode
);
3276 spin_lock(&fs_info
->delayed_iput_lock
);
3278 spin_unlock(&fs_info
->delayed_iput_lock
);
3282 * This is called in transaction commit time. If there are no orphan
3283 * files in the subvolume, it removes orphan item and frees block_rsv
3286 void btrfs_orphan_commit_root(struct btrfs_trans_handle
*trans
,
3287 struct btrfs_root
*root
)
3289 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3290 struct btrfs_block_rsv
*block_rsv
;
3293 if (atomic_read(&root
->orphan_inodes
) ||
3294 root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
)
3297 spin_lock(&root
->orphan_lock
);
3298 if (atomic_read(&root
->orphan_inodes
)) {
3299 spin_unlock(&root
->orphan_lock
);
3303 if (root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
) {
3304 spin_unlock(&root
->orphan_lock
);
3308 block_rsv
= root
->orphan_block_rsv
;
3309 root
->orphan_block_rsv
= NULL
;
3310 spin_unlock(&root
->orphan_lock
);
3312 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
) &&
3313 btrfs_root_refs(&root
->root_item
) > 0) {
3314 ret
= btrfs_del_orphan_item(trans
, fs_info
->tree_root
,
3315 root
->root_key
.objectid
);
3317 btrfs_abort_transaction(trans
, ret
);
3319 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
,
3324 WARN_ON(block_rsv
->size
> 0);
3325 btrfs_free_block_rsv(fs_info
, block_rsv
);
3330 * This creates an orphan entry for the given inode in case something goes
3331 * wrong in the middle of an unlink/truncate.
3333 * NOTE: caller of this function should reserve 5 units of metadata for
3336 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
,
3337 struct btrfs_inode
*inode
)
3339 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
3340 struct btrfs_root
*root
= inode
->root
;
3341 struct btrfs_block_rsv
*block_rsv
= NULL
;
3346 if (!root
->orphan_block_rsv
) {
3347 block_rsv
= btrfs_alloc_block_rsv(fs_info
,
3348 BTRFS_BLOCK_RSV_TEMP
);
3353 spin_lock(&root
->orphan_lock
);
3354 if (!root
->orphan_block_rsv
) {
3355 root
->orphan_block_rsv
= block_rsv
;
3356 } else if (block_rsv
) {
3357 btrfs_free_block_rsv(fs_info
, block_rsv
);
3361 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3362 &inode
->runtime_flags
)) {
3365 * For proper ENOSPC handling, we should do orphan
3366 * cleanup when mounting. But this introduces backward
3367 * compatibility issue.
3369 if (!xchg(&root
->orphan_item_inserted
, 1))
3375 atomic_inc(&root
->orphan_inodes
);
3378 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3379 &inode
->runtime_flags
))
3381 spin_unlock(&root
->orphan_lock
);
3383 /* grab metadata reservation from transaction handle */
3385 ret
= btrfs_orphan_reserve_metadata(trans
, inode
);
3388 atomic_dec(&root
->orphan_inodes
);
3389 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3390 &inode
->runtime_flags
);
3392 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3393 &inode
->runtime_flags
);
3398 /* insert an orphan item to track this unlinked/truncated file */
3400 ret
= btrfs_insert_orphan_item(trans
, root
, btrfs_ino(inode
));
3402 atomic_dec(&root
->orphan_inodes
);
3404 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3405 &inode
->runtime_flags
);
3406 btrfs_orphan_release_metadata(inode
);
3408 if (ret
!= -EEXIST
) {
3409 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3410 &inode
->runtime_flags
);
3411 btrfs_abort_transaction(trans
, ret
);
3418 /* insert an orphan item to track subvolume contains orphan files */
3420 ret
= btrfs_insert_orphan_item(trans
, fs_info
->tree_root
,
3421 root
->root_key
.objectid
);
3422 if (ret
&& ret
!= -EEXIST
) {
3423 btrfs_abort_transaction(trans
, ret
);
3431 * We have done the truncate/delete so we can go ahead and remove the orphan
3432 * item for this particular inode.
3434 static int btrfs_orphan_del(struct btrfs_trans_handle
*trans
,
3435 struct btrfs_inode
*inode
)
3437 struct btrfs_root
*root
= inode
->root
;
3438 int delete_item
= 0;
3439 int release_rsv
= 0;
3442 spin_lock(&root
->orphan_lock
);
3443 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3444 &inode
->runtime_flags
))
3447 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3448 &inode
->runtime_flags
))
3450 spin_unlock(&root
->orphan_lock
);
3453 atomic_dec(&root
->orphan_inodes
);
3455 ret
= btrfs_del_orphan_item(trans
, root
,
3460 btrfs_orphan_release_metadata(inode
);
3466 * this cleans up any orphans that may be left on the list from the last use
3469 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
3471 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3472 struct btrfs_path
*path
;
3473 struct extent_buffer
*leaf
;
3474 struct btrfs_key key
, found_key
;
3475 struct btrfs_trans_handle
*trans
;
3476 struct inode
*inode
;
3477 u64 last_objectid
= 0;
3478 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
3480 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
3483 path
= btrfs_alloc_path();
3488 path
->reada
= READA_BACK
;
3490 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
3491 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
3492 key
.offset
= (u64
)-1;
3495 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3500 * if ret == 0 means we found what we were searching for, which
3501 * is weird, but possible, so only screw with path if we didn't
3502 * find the key and see if we have stuff that matches
3506 if (path
->slots
[0] == 0)
3511 /* pull out the item */
3512 leaf
= path
->nodes
[0];
3513 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3515 /* make sure the item matches what we want */
3516 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
3518 if (found_key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
3521 /* release the path since we're done with it */
3522 btrfs_release_path(path
);
3525 * this is where we are basically btrfs_lookup, without the
3526 * crossing root thing. we store the inode number in the
3527 * offset of the orphan item.
3530 if (found_key
.offset
== last_objectid
) {
3532 "Error removing orphan entry, stopping orphan cleanup");
3537 last_objectid
= found_key
.offset
;
3539 found_key
.objectid
= found_key
.offset
;
3540 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
3541 found_key
.offset
= 0;
3542 inode
= btrfs_iget(fs_info
->sb
, &found_key
, root
, NULL
);
3543 ret
= PTR_ERR_OR_ZERO(inode
);
3544 if (ret
&& ret
!= -ENOENT
)
3547 if (ret
== -ENOENT
&& root
== fs_info
->tree_root
) {
3548 struct btrfs_root
*dead_root
;
3549 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3550 int is_dead_root
= 0;
3553 * this is an orphan in the tree root. Currently these
3554 * could come from 2 sources:
3555 * a) a snapshot deletion in progress
3556 * b) a free space cache inode
3557 * We need to distinguish those two, as the snapshot
3558 * orphan must not get deleted.
3559 * find_dead_roots already ran before us, so if this
3560 * is a snapshot deletion, we should find the root
3561 * in the dead_roots list
3563 spin_lock(&fs_info
->trans_lock
);
3564 list_for_each_entry(dead_root
, &fs_info
->dead_roots
,
3566 if (dead_root
->root_key
.objectid
==
3567 found_key
.objectid
) {
3572 spin_unlock(&fs_info
->trans_lock
);
3574 /* prevent this orphan from being found again */
3575 key
.offset
= found_key
.objectid
- 1;
3580 * Inode is already gone but the orphan item is still there,
3581 * kill the orphan item.
3583 if (ret
== -ENOENT
) {
3584 trans
= btrfs_start_transaction(root
, 1);
3585 if (IS_ERR(trans
)) {
3586 ret
= PTR_ERR(trans
);
3589 btrfs_debug(fs_info
, "auto deleting %Lu",
3590 found_key
.objectid
);
3591 ret
= btrfs_del_orphan_item(trans
, root
,
3592 found_key
.objectid
);
3593 btrfs_end_transaction(trans
);
3600 * add this inode to the orphan list so btrfs_orphan_del does
3601 * the proper thing when we hit it
3603 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3604 &BTRFS_I(inode
)->runtime_flags
);
3605 atomic_inc(&root
->orphan_inodes
);
3607 /* if we have links, this was a truncate, lets do that */
3608 if (inode
->i_nlink
) {
3609 if (WARN_ON(!S_ISREG(inode
->i_mode
))) {
3615 /* 1 for the orphan item deletion. */
3616 trans
= btrfs_start_transaction(root
, 1);
3617 if (IS_ERR(trans
)) {
3619 ret
= PTR_ERR(trans
);
3622 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
3623 btrfs_end_transaction(trans
);
3629 ret
= btrfs_truncate(inode
);
3631 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
3636 /* this will do delete_inode and everything for us */
3641 /* release the path since we're done with it */
3642 btrfs_release_path(path
);
3644 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
3646 if (root
->orphan_block_rsv
)
3647 btrfs_block_rsv_release(fs_info
, root
->orphan_block_rsv
,
3650 if (root
->orphan_block_rsv
||
3651 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
)) {
3652 trans
= btrfs_join_transaction(root
);
3654 btrfs_end_transaction(trans
);
3658 btrfs_debug(fs_info
, "unlinked %d orphans", nr_unlink
);
3660 btrfs_debug(fs_info
, "truncated %d orphans", nr_truncate
);
3664 btrfs_err(fs_info
, "could not do orphan cleanup %d", ret
);
3665 btrfs_free_path(path
);
3670 * very simple check to peek ahead in the leaf looking for xattrs. If we
3671 * don't find any xattrs, we know there can't be any acls.
3673 * slot is the slot the inode is in, objectid is the objectid of the inode
3675 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
3676 int slot
, u64 objectid
,
3677 int *first_xattr_slot
)
3679 u32 nritems
= btrfs_header_nritems(leaf
);
3680 struct btrfs_key found_key
;
3681 static u64 xattr_access
= 0;
3682 static u64 xattr_default
= 0;
3685 if (!xattr_access
) {
3686 xattr_access
= btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS
,
3687 strlen(XATTR_NAME_POSIX_ACL_ACCESS
));
3688 xattr_default
= btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT
,
3689 strlen(XATTR_NAME_POSIX_ACL_DEFAULT
));
3693 *first_xattr_slot
= -1;
3694 while (slot
< nritems
) {
3695 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3697 /* we found a different objectid, there must not be acls */
3698 if (found_key
.objectid
!= objectid
)
3701 /* we found an xattr, assume we've got an acl */
3702 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
) {
3703 if (*first_xattr_slot
== -1)
3704 *first_xattr_slot
= slot
;
3705 if (found_key
.offset
== xattr_access
||
3706 found_key
.offset
== xattr_default
)
3711 * we found a key greater than an xattr key, there can't
3712 * be any acls later on
3714 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
3721 * it goes inode, inode backrefs, xattrs, extents,
3722 * so if there are a ton of hard links to an inode there can
3723 * be a lot of backrefs. Don't waste time searching too hard,
3724 * this is just an optimization
3729 /* we hit the end of the leaf before we found an xattr or
3730 * something larger than an xattr. We have to assume the inode
3733 if (*first_xattr_slot
== -1)
3734 *first_xattr_slot
= slot
;
3739 * read an inode from the btree into the in-memory inode
3741 static int btrfs_read_locked_inode(struct inode
*inode
)
3743 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3744 struct btrfs_path
*path
;
3745 struct extent_buffer
*leaf
;
3746 struct btrfs_inode_item
*inode_item
;
3747 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3748 struct btrfs_key location
;
3753 bool filled
= false;
3754 int first_xattr_slot
;
3756 ret
= btrfs_fill_inode(inode
, &rdev
);
3760 path
= btrfs_alloc_path();
3766 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
3768 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
3775 leaf
= path
->nodes
[0];
3780 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3781 struct btrfs_inode_item
);
3782 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
3783 set_nlink(inode
, btrfs_inode_nlink(leaf
, inode_item
));
3784 i_uid_write(inode
, btrfs_inode_uid(leaf
, inode_item
));
3785 i_gid_write(inode
, btrfs_inode_gid(leaf
, inode_item
));
3786 btrfs_i_size_write(BTRFS_I(inode
), btrfs_inode_size(leaf
, inode_item
));
3788 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->atime
);
3789 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->atime
);
3791 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->mtime
);
3792 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->mtime
);
3794 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->ctime
);
3795 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->ctime
);
3797 BTRFS_I(inode
)->i_otime
.tv_sec
=
3798 btrfs_timespec_sec(leaf
, &inode_item
->otime
);
3799 BTRFS_I(inode
)->i_otime
.tv_nsec
=
3800 btrfs_timespec_nsec(leaf
, &inode_item
->otime
);
3802 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
3803 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
3804 BTRFS_I(inode
)->last_trans
= btrfs_inode_transid(leaf
, inode_item
);
3806 inode_set_iversion_queried(inode
,
3807 btrfs_inode_sequence(leaf
, inode_item
));
3808 inode
->i_generation
= BTRFS_I(inode
)->generation
;
3810 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
3812 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
3813 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
3817 * If we were modified in the current generation and evicted from memory
3818 * and then re-read we need to do a full sync since we don't have any
3819 * idea about which extents were modified before we were evicted from
3822 * This is required for both inode re-read from disk and delayed inode
3823 * in delayed_nodes_tree.
3825 if (BTRFS_I(inode
)->last_trans
== fs_info
->generation
)
3826 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3827 &BTRFS_I(inode
)->runtime_flags
);
3830 * We don't persist the id of the transaction where an unlink operation
3831 * against the inode was last made. So here we assume the inode might
3832 * have been evicted, and therefore the exact value of last_unlink_trans
3833 * lost, and set it to last_trans to avoid metadata inconsistencies
3834 * between the inode and its parent if the inode is fsync'ed and the log
3835 * replayed. For example, in the scenario:
3838 * ln mydir/foo mydir/bar
3841 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3842 * xfs_io -c fsync mydir/foo
3844 * mount fs, triggers fsync log replay
3846 * We must make sure that when we fsync our inode foo we also log its
3847 * parent inode, otherwise after log replay the parent still has the
3848 * dentry with the "bar" name but our inode foo has a link count of 1
3849 * and doesn't have an inode ref with the name "bar" anymore.
3851 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3852 * but it guarantees correctness at the expense of occasional full
3853 * transaction commits on fsync if our inode is a directory, or if our
3854 * inode is not a directory, logging its parent unnecessarily.
3856 BTRFS_I(inode
)->last_unlink_trans
= BTRFS_I(inode
)->last_trans
;
3859 if (inode
->i_nlink
!= 1 ||
3860 path
->slots
[0] >= btrfs_header_nritems(leaf
))
3863 btrfs_item_key_to_cpu(leaf
, &location
, path
->slots
[0]);
3864 if (location
.objectid
!= btrfs_ino(BTRFS_I(inode
)))
3867 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3868 if (location
.type
== BTRFS_INODE_REF_KEY
) {
3869 struct btrfs_inode_ref
*ref
;
3871 ref
= (struct btrfs_inode_ref
*)ptr
;
3872 BTRFS_I(inode
)->dir_index
= btrfs_inode_ref_index(leaf
, ref
);
3873 } else if (location
.type
== BTRFS_INODE_EXTREF_KEY
) {
3874 struct btrfs_inode_extref
*extref
;
3876 extref
= (struct btrfs_inode_extref
*)ptr
;
3877 BTRFS_I(inode
)->dir_index
= btrfs_inode_extref_index(leaf
,
3882 * try to precache a NULL acl entry for files that don't have
3883 * any xattrs or acls
3885 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0],
3886 btrfs_ino(BTRFS_I(inode
)), &first_xattr_slot
);
3887 if (first_xattr_slot
!= -1) {
3888 path
->slots
[0] = first_xattr_slot
;
3889 ret
= btrfs_load_inode_props(inode
, path
);
3892 "error loading props for ino %llu (root %llu): %d",
3893 btrfs_ino(BTRFS_I(inode
)),
3894 root
->root_key
.objectid
, ret
);
3896 btrfs_free_path(path
);
3899 cache_no_acl(inode
);
3901 switch (inode
->i_mode
& S_IFMT
) {
3903 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3904 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
3905 inode
->i_fop
= &btrfs_file_operations
;
3906 inode
->i_op
= &btrfs_file_inode_operations
;
3909 inode
->i_fop
= &btrfs_dir_file_operations
;
3910 inode
->i_op
= &btrfs_dir_inode_operations
;
3913 inode
->i_op
= &btrfs_symlink_inode_operations
;
3914 inode_nohighmem(inode
);
3915 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
3918 inode
->i_op
= &btrfs_special_inode_operations
;
3919 init_special_inode(inode
, inode
->i_mode
, rdev
);
3923 btrfs_update_iflags(inode
);
3927 btrfs_free_path(path
);
3928 make_bad_inode(inode
);
3933 * given a leaf and an inode, copy the inode fields into the leaf
3935 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3936 struct extent_buffer
*leaf
,
3937 struct btrfs_inode_item
*item
,
3938 struct inode
*inode
)
3940 struct btrfs_map_token token
;
3942 btrfs_init_map_token(&token
);
3944 btrfs_set_token_inode_uid(leaf
, item
, i_uid_read(inode
), &token
);
3945 btrfs_set_token_inode_gid(leaf
, item
, i_gid_read(inode
), &token
);
3946 btrfs_set_token_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
,
3948 btrfs_set_token_inode_mode(leaf
, item
, inode
->i_mode
, &token
);
3949 btrfs_set_token_inode_nlink(leaf
, item
, inode
->i_nlink
, &token
);
3951 btrfs_set_token_timespec_sec(leaf
, &item
->atime
,
3952 inode
->i_atime
.tv_sec
, &token
);
3953 btrfs_set_token_timespec_nsec(leaf
, &item
->atime
,
3954 inode
->i_atime
.tv_nsec
, &token
);
3956 btrfs_set_token_timespec_sec(leaf
, &item
->mtime
,
3957 inode
->i_mtime
.tv_sec
, &token
);
3958 btrfs_set_token_timespec_nsec(leaf
, &item
->mtime
,
3959 inode
->i_mtime
.tv_nsec
, &token
);
3961 btrfs_set_token_timespec_sec(leaf
, &item
->ctime
,
3962 inode
->i_ctime
.tv_sec
, &token
);
3963 btrfs_set_token_timespec_nsec(leaf
, &item
->ctime
,
3964 inode
->i_ctime
.tv_nsec
, &token
);
3966 btrfs_set_token_timespec_sec(leaf
, &item
->otime
,
3967 BTRFS_I(inode
)->i_otime
.tv_sec
, &token
);
3968 btrfs_set_token_timespec_nsec(leaf
, &item
->otime
,
3969 BTRFS_I(inode
)->i_otime
.tv_nsec
, &token
);
3971 btrfs_set_token_inode_nbytes(leaf
, item
, inode_get_bytes(inode
),
3973 btrfs_set_token_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
,
3975 btrfs_set_token_inode_sequence(leaf
, item
, inode_peek_iversion(inode
),
3977 btrfs_set_token_inode_transid(leaf
, item
, trans
->transid
, &token
);
3978 btrfs_set_token_inode_rdev(leaf
, item
, inode
->i_rdev
, &token
);
3979 btrfs_set_token_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
, &token
);
3980 btrfs_set_token_inode_block_group(leaf
, item
, 0, &token
);
3984 * copy everything in the in-memory inode into the btree.
3986 static noinline
int btrfs_update_inode_item(struct btrfs_trans_handle
*trans
,
3987 struct btrfs_root
*root
, struct inode
*inode
)
3989 struct btrfs_inode_item
*inode_item
;
3990 struct btrfs_path
*path
;
3991 struct extent_buffer
*leaf
;
3994 path
= btrfs_alloc_path();
3998 path
->leave_spinning
= 1;
3999 ret
= btrfs_lookup_inode(trans
, root
, path
, &BTRFS_I(inode
)->location
,
4007 leaf
= path
->nodes
[0];
4008 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
4009 struct btrfs_inode_item
);
4011 fill_inode_item(trans
, leaf
, inode_item
, inode
);
4012 btrfs_mark_buffer_dirty(leaf
);
4013 btrfs_set_inode_last_trans(trans
, inode
);
4016 btrfs_free_path(path
);
4021 * copy everything in the in-memory inode into the btree.
4023 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
4024 struct btrfs_root
*root
, struct inode
*inode
)
4026 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4030 * If the inode is a free space inode, we can deadlock during commit
4031 * if we put it into the delayed code.
4033 * The data relocation inode should also be directly updated
4036 if (!btrfs_is_free_space_inode(BTRFS_I(inode
))
4037 && root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
4038 && !test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
)) {
4039 btrfs_update_root_times(trans
, root
);
4041 ret
= btrfs_delayed_update_inode(trans
, root
, inode
);
4043 btrfs_set_inode_last_trans(trans
, inode
);
4047 return btrfs_update_inode_item(trans
, root
, inode
);
4050 noinline
int btrfs_update_inode_fallback(struct btrfs_trans_handle
*trans
,
4051 struct btrfs_root
*root
,
4052 struct inode
*inode
)
4056 ret
= btrfs_update_inode(trans
, root
, inode
);
4058 return btrfs_update_inode_item(trans
, root
, inode
);
4063 * unlink helper that gets used here in inode.c and in the tree logging
4064 * recovery code. It remove a link in a directory with a given name, and
4065 * also drops the back refs in the inode to the directory
4067 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
4068 struct btrfs_root
*root
,
4069 struct btrfs_inode
*dir
,
4070 struct btrfs_inode
*inode
,
4071 const char *name
, int name_len
)
4073 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4074 struct btrfs_path
*path
;
4076 struct extent_buffer
*leaf
;
4077 struct btrfs_dir_item
*di
;
4078 struct btrfs_key key
;
4080 u64 ino
= btrfs_ino(inode
);
4081 u64 dir_ino
= btrfs_ino(dir
);
4083 path
= btrfs_alloc_path();
4089 path
->leave_spinning
= 1;
4090 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
4091 name
, name_len
, -1);
4100 leaf
= path
->nodes
[0];
4101 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
4102 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
4105 btrfs_release_path(path
);
4108 * If we don't have dir index, we have to get it by looking up
4109 * the inode ref, since we get the inode ref, remove it directly,
4110 * it is unnecessary to do delayed deletion.
4112 * But if we have dir index, needn't search inode ref to get it.
4113 * Since the inode ref is close to the inode item, it is better
4114 * that we delay to delete it, and just do this deletion when
4115 * we update the inode item.
4117 if (inode
->dir_index
) {
4118 ret
= btrfs_delayed_delete_inode_ref(inode
);
4120 index
= inode
->dir_index
;
4125 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
, ino
,
4129 "failed to delete reference to %.*s, inode %llu parent %llu",
4130 name_len
, name
, ino
, dir_ino
);
4131 btrfs_abort_transaction(trans
, ret
);
4135 ret
= btrfs_delete_delayed_dir_index(trans
, fs_info
, dir
, index
);
4137 btrfs_abort_transaction(trans
, ret
);
4141 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
, inode
,
4143 if (ret
!= 0 && ret
!= -ENOENT
) {
4144 btrfs_abort_transaction(trans
, ret
);
4148 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
, dir
,
4153 btrfs_abort_transaction(trans
, ret
);
4155 btrfs_free_path(path
);
4159 btrfs_i_size_write(dir
, dir
->vfs_inode
.i_size
- name_len
* 2);
4160 inode_inc_iversion(&inode
->vfs_inode
);
4161 inode_inc_iversion(&dir
->vfs_inode
);
4162 inode
->vfs_inode
.i_ctime
= dir
->vfs_inode
.i_mtime
=
4163 dir
->vfs_inode
.i_ctime
= current_time(&inode
->vfs_inode
);
4164 ret
= btrfs_update_inode(trans
, root
, &dir
->vfs_inode
);
4169 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
4170 struct btrfs_root
*root
,
4171 struct btrfs_inode
*dir
, struct btrfs_inode
*inode
,
4172 const char *name
, int name_len
)
4175 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
4177 drop_nlink(&inode
->vfs_inode
);
4178 ret
= btrfs_update_inode(trans
, root
, &inode
->vfs_inode
);
4184 * helper to start transaction for unlink and rmdir.
4186 * unlink and rmdir are special in btrfs, they do not always free space, so
4187 * if we cannot make our reservations the normal way try and see if there is
4188 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4189 * allow the unlink to occur.
4191 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
)
4193 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4196 * 1 for the possible orphan item
4197 * 1 for the dir item
4198 * 1 for the dir index
4199 * 1 for the inode ref
4202 return btrfs_start_transaction_fallback_global_rsv(root
, 5, 5);
4205 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
4207 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4208 struct btrfs_trans_handle
*trans
;
4209 struct inode
*inode
= d_inode(dentry
);
4212 trans
= __unlink_start_trans(dir
);
4214 return PTR_ERR(trans
);
4216 btrfs_record_unlink_dir(trans
, BTRFS_I(dir
), BTRFS_I(d_inode(dentry
)),
4219 ret
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
4220 BTRFS_I(d_inode(dentry
)), dentry
->d_name
.name
,
4221 dentry
->d_name
.len
);
4225 if (inode
->i_nlink
== 0) {
4226 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
4232 btrfs_end_transaction(trans
);
4233 btrfs_btree_balance_dirty(root
->fs_info
);
4237 int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
4238 struct btrfs_root
*root
,
4239 struct inode
*dir
, u64 objectid
,
4240 const char *name
, int name_len
)
4242 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4243 struct btrfs_path
*path
;
4244 struct extent_buffer
*leaf
;
4245 struct btrfs_dir_item
*di
;
4246 struct btrfs_key key
;
4249 u64 dir_ino
= btrfs_ino(BTRFS_I(dir
));
4251 path
= btrfs_alloc_path();
4255 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
4256 name
, name_len
, -1);
4257 if (IS_ERR_OR_NULL(di
)) {
4265 leaf
= path
->nodes
[0];
4266 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
4267 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
4268 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
4270 btrfs_abort_transaction(trans
, ret
);
4273 btrfs_release_path(path
);
4275 ret
= btrfs_del_root_ref(trans
, fs_info
, objectid
,
4276 root
->root_key
.objectid
, dir_ino
,
4277 &index
, name
, name_len
);
4279 if (ret
!= -ENOENT
) {
4280 btrfs_abort_transaction(trans
, ret
);
4283 di
= btrfs_search_dir_index_item(root
, path
, dir_ino
,
4285 if (IS_ERR_OR_NULL(di
)) {
4290 btrfs_abort_transaction(trans
, ret
);
4294 leaf
= path
->nodes
[0];
4295 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4296 btrfs_release_path(path
);
4299 btrfs_release_path(path
);
4301 ret
= btrfs_delete_delayed_dir_index(trans
, fs_info
, BTRFS_I(dir
), index
);
4303 btrfs_abort_transaction(trans
, ret
);
4307 btrfs_i_size_write(BTRFS_I(dir
), dir
->i_size
- name_len
* 2);
4308 inode_inc_iversion(dir
);
4309 dir
->i_mtime
= dir
->i_ctime
= current_time(dir
);
4310 ret
= btrfs_update_inode_fallback(trans
, root
, dir
);
4312 btrfs_abort_transaction(trans
, ret
);
4314 btrfs_free_path(path
);
4318 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
4320 struct inode
*inode
= d_inode(dentry
);
4322 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4323 struct btrfs_trans_handle
*trans
;
4324 u64 last_unlink_trans
;
4326 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
4328 if (btrfs_ino(BTRFS_I(inode
)) == BTRFS_FIRST_FREE_OBJECTID
)
4331 trans
= __unlink_start_trans(dir
);
4333 return PTR_ERR(trans
);
4335 if (unlikely(btrfs_ino(BTRFS_I(inode
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
4336 err
= btrfs_unlink_subvol(trans
, root
, dir
,
4337 BTRFS_I(inode
)->location
.objectid
,
4338 dentry
->d_name
.name
,
4339 dentry
->d_name
.len
);
4343 err
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
4347 last_unlink_trans
= BTRFS_I(inode
)->last_unlink_trans
;
4349 /* now the directory is empty */
4350 err
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
4351 BTRFS_I(d_inode(dentry
)), dentry
->d_name
.name
,
4352 dentry
->d_name
.len
);
4354 btrfs_i_size_write(BTRFS_I(inode
), 0);
4356 * Propagate the last_unlink_trans value of the deleted dir to
4357 * its parent directory. This is to prevent an unrecoverable
4358 * log tree in the case we do something like this:
4360 * 2) create snapshot under dir foo
4361 * 3) delete the snapshot
4364 * 6) fsync foo or some file inside foo
4366 if (last_unlink_trans
>= trans
->transid
)
4367 BTRFS_I(dir
)->last_unlink_trans
= last_unlink_trans
;
4370 btrfs_end_transaction(trans
);
4371 btrfs_btree_balance_dirty(root
->fs_info
);
4376 static int truncate_space_check(struct btrfs_trans_handle
*trans
,
4377 struct btrfs_root
*root
,
4380 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4384 * This is only used to apply pressure to the enospc system, we don't
4385 * intend to use this reservation at all.
4387 bytes_deleted
= btrfs_csum_bytes_to_leaves(fs_info
, bytes_deleted
);
4388 bytes_deleted
*= fs_info
->nodesize
;
4389 ret
= btrfs_block_rsv_add(root
, &fs_info
->trans_block_rsv
,
4390 bytes_deleted
, BTRFS_RESERVE_NO_FLUSH
);
4392 trace_btrfs_space_reservation(fs_info
, "transaction",
4395 trans
->bytes_reserved
+= bytes_deleted
;
4402 * Return this if we need to call truncate_block for the last bit of the
4405 #define NEED_TRUNCATE_BLOCK 1
4408 * this can truncate away extent items, csum items and directory items.
4409 * It starts at a high offset and removes keys until it can't find
4410 * any higher than new_size
4412 * csum items that cross the new i_size are truncated to the new size
4415 * min_type is the minimum key type to truncate down to. If set to 0, this
4416 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4418 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
4419 struct btrfs_root
*root
,
4420 struct inode
*inode
,
4421 u64 new_size
, u32 min_type
)
4423 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4424 struct btrfs_path
*path
;
4425 struct extent_buffer
*leaf
;
4426 struct btrfs_file_extent_item
*fi
;
4427 struct btrfs_key key
;
4428 struct btrfs_key found_key
;
4429 u64 extent_start
= 0;
4430 u64 extent_num_bytes
= 0;
4431 u64 extent_offset
= 0;
4433 u64 last_size
= new_size
;
4434 u32 found_type
= (u8
)-1;
4437 int pending_del_nr
= 0;
4438 int pending_del_slot
= 0;
4439 int extent_type
= -1;
4442 u64 ino
= btrfs_ino(BTRFS_I(inode
));
4443 u64 bytes_deleted
= 0;
4444 bool be_nice
= false;
4445 bool should_throttle
= false;
4446 bool should_end
= false;
4448 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
4451 * for non-free space inodes and ref cows, we want to back off from
4454 if (!btrfs_is_free_space_inode(BTRFS_I(inode
)) &&
4455 test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4458 path
= btrfs_alloc_path();
4461 path
->reada
= READA_BACK
;
4464 * We want to drop from the next block forward in case this new size is
4465 * not block aligned since we will be keeping the last block of the
4466 * extent just the way it is.
4468 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
4469 root
== fs_info
->tree_root
)
4470 btrfs_drop_extent_cache(BTRFS_I(inode
), ALIGN(new_size
,
4471 fs_info
->sectorsize
),
4475 * This function is also used to drop the items in the log tree before
4476 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4477 * it is used to drop the loged items. So we shouldn't kill the delayed
4480 if (min_type
== 0 && root
== BTRFS_I(inode
)->root
)
4481 btrfs_kill_delayed_inode_items(BTRFS_I(inode
));
4484 key
.offset
= (u64
)-1;
4489 * with a 16K leaf size and 128MB extents, you can actually queue
4490 * up a huge file in a single leaf. Most of the time that
4491 * bytes_deleted is > 0, it will be huge by the time we get here
4493 if (be_nice
&& bytes_deleted
> SZ_32M
) {
4494 if (btrfs_should_end_transaction(trans
)) {
4501 path
->leave_spinning
= 1;
4502 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
4509 /* there are no items in the tree for us to truncate, we're
4512 if (path
->slots
[0] == 0)
4519 leaf
= path
->nodes
[0];
4520 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4521 found_type
= found_key
.type
;
4523 if (found_key
.objectid
!= ino
)
4526 if (found_type
< min_type
)
4529 item_end
= found_key
.offset
;
4530 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
4531 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4532 struct btrfs_file_extent_item
);
4533 extent_type
= btrfs_file_extent_type(leaf
, fi
);
4534 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4536 btrfs_file_extent_num_bytes(leaf
, fi
);
4538 trace_btrfs_truncate_show_fi_regular(
4539 BTRFS_I(inode
), leaf
, fi
,
4541 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4542 item_end
+= btrfs_file_extent_inline_len(leaf
,
4543 path
->slots
[0], fi
);
4545 trace_btrfs_truncate_show_fi_inline(
4546 BTRFS_I(inode
), leaf
, fi
, path
->slots
[0],
4551 if (found_type
> min_type
) {
4554 if (item_end
< new_size
)
4556 if (found_key
.offset
>= new_size
)
4562 /* FIXME, shrink the extent if the ref count is only 1 */
4563 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
4566 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4568 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
4570 u64 orig_num_bytes
=
4571 btrfs_file_extent_num_bytes(leaf
, fi
);
4572 extent_num_bytes
= ALIGN(new_size
-
4574 fs_info
->sectorsize
);
4575 btrfs_set_file_extent_num_bytes(leaf
, fi
,
4577 num_dec
= (orig_num_bytes
-
4579 if (test_bit(BTRFS_ROOT_REF_COWS
,
4582 inode_sub_bytes(inode
, num_dec
);
4583 btrfs_mark_buffer_dirty(leaf
);
4586 btrfs_file_extent_disk_num_bytes(leaf
,
4588 extent_offset
= found_key
.offset
-
4589 btrfs_file_extent_offset(leaf
, fi
);
4591 /* FIXME blocksize != 4096 */
4592 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
4593 if (extent_start
!= 0) {
4595 if (test_bit(BTRFS_ROOT_REF_COWS
,
4597 inode_sub_bytes(inode
, num_dec
);
4600 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4602 * we can't truncate inline items that have had
4606 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
4607 btrfs_file_extent_other_encoding(leaf
, fi
) == 0 &&
4608 btrfs_file_extent_compression(leaf
, fi
) == 0) {
4609 u32 size
= (u32
)(new_size
- found_key
.offset
);
4611 btrfs_set_file_extent_ram_bytes(leaf
, fi
, size
);
4612 size
= btrfs_file_extent_calc_inline_size(size
);
4613 btrfs_truncate_item(root
->fs_info
, path
, size
, 1);
4614 } else if (!del_item
) {
4616 * We have to bail so the last_size is set to
4617 * just before this extent.
4619 err
= NEED_TRUNCATE_BLOCK
;
4623 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4624 inode_sub_bytes(inode
, item_end
+ 1 - new_size
);
4628 last_size
= found_key
.offset
;
4630 last_size
= new_size
;
4632 if (!pending_del_nr
) {
4633 /* no pending yet, add ourselves */
4634 pending_del_slot
= path
->slots
[0];
4636 } else if (pending_del_nr
&&
4637 path
->slots
[0] + 1 == pending_del_slot
) {
4638 /* hop on the pending chunk */
4640 pending_del_slot
= path
->slots
[0];
4647 should_throttle
= false;
4650 (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
4651 root
== fs_info
->tree_root
)) {
4652 btrfs_set_path_blocking(path
);
4653 bytes_deleted
+= extent_num_bytes
;
4654 ret
= btrfs_free_extent(trans
, root
, extent_start
,
4655 extent_num_bytes
, 0,
4656 btrfs_header_owner(leaf
),
4657 ino
, extent_offset
);
4659 if (btrfs_should_throttle_delayed_refs(trans
, fs_info
))
4660 btrfs_async_run_delayed_refs(fs_info
,
4661 trans
->delayed_ref_updates
* 2,
4664 if (truncate_space_check(trans
, root
,
4665 extent_num_bytes
)) {
4668 if (btrfs_should_throttle_delayed_refs(trans
,
4670 should_throttle
= true;
4674 if (found_type
== BTRFS_INODE_ITEM_KEY
)
4677 if (path
->slots
[0] == 0 ||
4678 path
->slots
[0] != pending_del_slot
||
4679 should_throttle
|| should_end
) {
4680 if (pending_del_nr
) {
4681 ret
= btrfs_del_items(trans
, root
, path
,
4685 btrfs_abort_transaction(trans
, ret
);
4690 btrfs_release_path(path
);
4691 if (should_throttle
) {
4692 unsigned long updates
= trans
->delayed_ref_updates
;
4694 trans
->delayed_ref_updates
= 0;
4695 ret
= btrfs_run_delayed_refs(trans
,
4703 * if we failed to refill our space rsv, bail out
4704 * and let the transaction restart
4716 if (pending_del_nr
) {
4717 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
4720 btrfs_abort_transaction(trans
, ret
);
4723 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4724 ASSERT(last_size
>= new_size
);
4725 if (!err
&& last_size
> new_size
)
4726 last_size
= new_size
;
4727 btrfs_ordered_update_i_size(inode
, last_size
, NULL
);
4730 btrfs_free_path(path
);
4732 if (be_nice
&& bytes_deleted
> SZ_32M
) {
4733 unsigned long updates
= trans
->delayed_ref_updates
;
4735 trans
->delayed_ref_updates
= 0;
4736 ret
= btrfs_run_delayed_refs(trans
, fs_info
,
4746 * btrfs_truncate_block - read, zero a chunk and write a block
4747 * @inode - inode that we're zeroing
4748 * @from - the offset to start zeroing
4749 * @len - the length to zero, 0 to zero the entire range respective to the
4751 * @front - zero up to the offset instead of from the offset on
4753 * This will find the block for the "from" offset and cow the block and zero the
4754 * part we want to zero. This is used with truncate and hole punching.
4756 int btrfs_truncate_block(struct inode
*inode
, loff_t from
, loff_t len
,
4759 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4760 struct address_space
*mapping
= inode
->i_mapping
;
4761 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4762 struct btrfs_ordered_extent
*ordered
;
4763 struct extent_state
*cached_state
= NULL
;
4764 struct extent_changeset
*data_reserved
= NULL
;
4766 u32 blocksize
= fs_info
->sectorsize
;
4767 pgoff_t index
= from
>> PAGE_SHIFT
;
4768 unsigned offset
= from
& (blocksize
- 1);
4770 gfp_t mask
= btrfs_alloc_write_mask(mapping
);
4775 if (IS_ALIGNED(offset
, blocksize
) &&
4776 (!len
|| IS_ALIGNED(len
, blocksize
)))
4779 block_start
= round_down(from
, blocksize
);
4780 block_end
= block_start
+ blocksize
- 1;
4782 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
,
4783 block_start
, blocksize
);
4788 page
= find_or_create_page(mapping
, index
, mask
);
4790 btrfs_delalloc_release_space(inode
, data_reserved
,
4791 block_start
, blocksize
);
4792 btrfs_delalloc_release_extents(BTRFS_I(inode
), blocksize
);
4797 if (!PageUptodate(page
)) {
4798 ret
= btrfs_readpage(NULL
, page
);
4800 if (page
->mapping
!= mapping
) {
4805 if (!PageUptodate(page
)) {
4810 wait_on_page_writeback(page
);
4812 lock_extent_bits(io_tree
, block_start
, block_end
, &cached_state
);
4813 set_page_extent_mapped(page
);
4815 ordered
= btrfs_lookup_ordered_extent(inode
, block_start
);
4817 unlock_extent_cached(io_tree
, block_start
, block_end
,
4821 btrfs_start_ordered_extent(inode
, ordered
, 1);
4822 btrfs_put_ordered_extent(ordered
);
4826 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, block_start
, block_end
,
4827 EXTENT_DIRTY
| EXTENT_DELALLOC
|
4828 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
4829 0, 0, &cached_state
);
4831 ret
= btrfs_set_extent_delalloc(inode
, block_start
, block_end
, 0,
4834 unlock_extent_cached(io_tree
, block_start
, block_end
,
4839 if (offset
!= blocksize
) {
4841 len
= blocksize
- offset
;
4844 memset(kaddr
+ (block_start
- page_offset(page
)),
4847 memset(kaddr
+ (block_start
- page_offset(page
)) + offset
,
4849 flush_dcache_page(page
);
4852 ClearPageChecked(page
);
4853 set_page_dirty(page
);
4854 unlock_extent_cached(io_tree
, block_start
, block_end
, &cached_state
);
4858 btrfs_delalloc_release_space(inode
, data_reserved
, block_start
,
4860 btrfs_delalloc_release_extents(BTRFS_I(inode
), blocksize
);
4864 extent_changeset_free(data_reserved
);
4868 static int maybe_insert_hole(struct btrfs_root
*root
, struct inode
*inode
,
4869 u64 offset
, u64 len
)
4871 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4872 struct btrfs_trans_handle
*trans
;
4876 * Still need to make sure the inode looks like it's been updated so
4877 * that any holes get logged if we fsync.
4879 if (btrfs_fs_incompat(fs_info
, NO_HOLES
)) {
4880 BTRFS_I(inode
)->last_trans
= fs_info
->generation
;
4881 BTRFS_I(inode
)->last_sub_trans
= root
->log_transid
;
4882 BTRFS_I(inode
)->last_log_commit
= root
->last_log_commit
;
4887 * 1 - for the one we're dropping
4888 * 1 - for the one we're adding
4889 * 1 - for updating the inode.
4891 trans
= btrfs_start_transaction(root
, 3);
4893 return PTR_ERR(trans
);
4895 ret
= btrfs_drop_extents(trans
, root
, inode
, offset
, offset
+ len
, 1);
4897 btrfs_abort_transaction(trans
, ret
);
4898 btrfs_end_transaction(trans
);
4902 ret
= btrfs_insert_file_extent(trans
, root
, btrfs_ino(BTRFS_I(inode
)),
4903 offset
, 0, 0, len
, 0, len
, 0, 0, 0);
4905 btrfs_abort_transaction(trans
, ret
);
4907 btrfs_update_inode(trans
, root
, inode
);
4908 btrfs_end_transaction(trans
);
4913 * This function puts in dummy file extents for the area we're creating a hole
4914 * for. So if we are truncating this file to a larger size we need to insert
4915 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4916 * the range between oldsize and size
4918 int btrfs_cont_expand(struct inode
*inode
, loff_t oldsize
, loff_t size
)
4920 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4921 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4922 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4923 struct extent_map
*em
= NULL
;
4924 struct extent_state
*cached_state
= NULL
;
4925 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4926 u64 hole_start
= ALIGN(oldsize
, fs_info
->sectorsize
);
4927 u64 block_end
= ALIGN(size
, fs_info
->sectorsize
);
4934 * If our size started in the middle of a block we need to zero out the
4935 * rest of the block before we expand the i_size, otherwise we could
4936 * expose stale data.
4938 err
= btrfs_truncate_block(inode
, oldsize
, 0, 0);
4942 if (size
<= hole_start
)
4946 struct btrfs_ordered_extent
*ordered
;
4948 lock_extent_bits(io_tree
, hole_start
, block_end
- 1,
4950 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), hole_start
,
4951 block_end
- hole_start
);
4954 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1,
4956 btrfs_start_ordered_extent(inode
, ordered
, 1);
4957 btrfs_put_ordered_extent(ordered
);
4960 cur_offset
= hole_start
;
4962 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, cur_offset
,
4963 block_end
- cur_offset
, 0);
4969 last_byte
= min(extent_map_end(em
), block_end
);
4970 last_byte
= ALIGN(last_byte
, fs_info
->sectorsize
);
4971 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
4972 struct extent_map
*hole_em
;
4973 hole_size
= last_byte
- cur_offset
;
4975 err
= maybe_insert_hole(root
, inode
, cur_offset
,
4979 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
4980 cur_offset
+ hole_size
- 1, 0);
4981 hole_em
= alloc_extent_map();
4983 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4984 &BTRFS_I(inode
)->runtime_flags
);
4987 hole_em
->start
= cur_offset
;
4988 hole_em
->len
= hole_size
;
4989 hole_em
->orig_start
= cur_offset
;
4991 hole_em
->block_start
= EXTENT_MAP_HOLE
;
4992 hole_em
->block_len
= 0;
4993 hole_em
->orig_block_len
= 0;
4994 hole_em
->ram_bytes
= hole_size
;
4995 hole_em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
4996 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
4997 hole_em
->generation
= fs_info
->generation
;
5000 write_lock(&em_tree
->lock
);
5001 err
= add_extent_mapping(em_tree
, hole_em
, 1);
5002 write_unlock(&em_tree
->lock
);
5005 btrfs_drop_extent_cache(BTRFS_I(inode
),
5010 free_extent_map(hole_em
);
5013 free_extent_map(em
);
5015 cur_offset
= last_byte
;
5016 if (cur_offset
>= block_end
)
5019 free_extent_map(em
);
5020 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
);
5024 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
)
5026 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5027 struct btrfs_trans_handle
*trans
;
5028 loff_t oldsize
= i_size_read(inode
);
5029 loff_t newsize
= attr
->ia_size
;
5030 int mask
= attr
->ia_valid
;
5034 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5035 * special case where we need to update the times despite not having
5036 * these flags set. For all other operations the VFS set these flags
5037 * explicitly if it wants a timestamp update.
5039 if (newsize
!= oldsize
) {
5040 inode_inc_iversion(inode
);
5041 if (!(mask
& (ATTR_CTIME
| ATTR_MTIME
)))
5042 inode
->i_ctime
= inode
->i_mtime
=
5043 current_time(inode
);
5046 if (newsize
> oldsize
) {
5048 * Don't do an expanding truncate while snapshotting is ongoing.
5049 * This is to ensure the snapshot captures a fully consistent
5050 * state of this file - if the snapshot captures this expanding
5051 * truncation, it must capture all writes that happened before
5054 btrfs_wait_for_snapshot_creation(root
);
5055 ret
= btrfs_cont_expand(inode
, oldsize
, newsize
);
5057 btrfs_end_write_no_snapshotting(root
);
5061 trans
= btrfs_start_transaction(root
, 1);
5062 if (IS_ERR(trans
)) {
5063 btrfs_end_write_no_snapshotting(root
);
5064 return PTR_ERR(trans
);
5067 i_size_write(inode
, newsize
);
5068 btrfs_ordered_update_i_size(inode
, i_size_read(inode
), NULL
);
5069 pagecache_isize_extended(inode
, oldsize
, newsize
);
5070 ret
= btrfs_update_inode(trans
, root
, inode
);
5071 btrfs_end_write_no_snapshotting(root
);
5072 btrfs_end_transaction(trans
);
5076 * We're truncating a file that used to have good data down to
5077 * zero. Make sure it gets into the ordered flush list so that
5078 * any new writes get down to disk quickly.
5081 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
5082 &BTRFS_I(inode
)->runtime_flags
);
5085 * 1 for the orphan item we're going to add
5086 * 1 for the orphan item deletion.
5088 trans
= btrfs_start_transaction(root
, 2);
5090 return PTR_ERR(trans
);
5093 * We need to do this in case we fail at _any_ point during the
5094 * actual truncate. Once we do the truncate_setsize we could
5095 * invalidate pages which forces any outstanding ordered io to
5096 * be instantly completed which will give us extents that need
5097 * to be truncated. If we fail to get an orphan inode down we
5098 * could have left over extents that were never meant to live,
5099 * so we need to guarantee from this point on that everything
5100 * will be consistent.
5102 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
5103 btrfs_end_transaction(trans
);
5107 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5108 truncate_setsize(inode
, newsize
);
5110 /* Disable nonlocked read DIO to avoid the end less truncate */
5111 btrfs_inode_block_unlocked_dio(BTRFS_I(inode
));
5112 inode_dio_wait(inode
);
5113 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode
));
5115 ret
= btrfs_truncate(inode
);
5116 if (ret
&& inode
->i_nlink
) {
5119 /* To get a stable disk_i_size */
5120 err
= btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
5122 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5127 * failed to truncate, disk_i_size is only adjusted down
5128 * as we remove extents, so it should represent the true
5129 * size of the inode, so reset the in memory size and
5130 * delete our orphan entry.
5132 trans
= btrfs_join_transaction(root
);
5133 if (IS_ERR(trans
)) {
5134 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5137 i_size_write(inode
, BTRFS_I(inode
)->disk_i_size
);
5138 err
= btrfs_orphan_del(trans
, BTRFS_I(inode
));
5140 btrfs_abort_transaction(trans
, err
);
5141 btrfs_end_transaction(trans
);
5148 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
5150 struct inode
*inode
= d_inode(dentry
);
5151 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5154 if (btrfs_root_readonly(root
))
5157 err
= setattr_prepare(dentry
, attr
);
5161 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
5162 err
= btrfs_setsize(inode
, attr
);
5167 if (attr
->ia_valid
) {
5168 setattr_copy(inode
, attr
);
5169 inode_inc_iversion(inode
);
5170 err
= btrfs_dirty_inode(inode
);
5172 if (!err
&& attr
->ia_valid
& ATTR_MODE
)
5173 err
= posix_acl_chmod(inode
, inode
->i_mode
);
5180 * While truncating the inode pages during eviction, we get the VFS calling
5181 * btrfs_invalidatepage() against each page of the inode. This is slow because
5182 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5183 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5184 * extent_state structures over and over, wasting lots of time.
5186 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5187 * those expensive operations on a per page basis and do only the ordered io
5188 * finishing, while we release here the extent_map and extent_state structures,
5189 * without the excessive merging and splitting.
5191 static void evict_inode_truncate_pages(struct inode
*inode
)
5193 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
5194 struct extent_map_tree
*map_tree
= &BTRFS_I(inode
)->extent_tree
;
5195 struct rb_node
*node
;
5197 ASSERT(inode
->i_state
& I_FREEING
);
5198 truncate_inode_pages_final(&inode
->i_data
);
5200 write_lock(&map_tree
->lock
);
5201 while (!RB_EMPTY_ROOT(&map_tree
->map
)) {
5202 struct extent_map
*em
;
5204 node
= rb_first(&map_tree
->map
);
5205 em
= rb_entry(node
, struct extent_map
, rb_node
);
5206 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5207 clear_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
5208 remove_extent_mapping(map_tree
, em
);
5209 free_extent_map(em
);
5210 if (need_resched()) {
5211 write_unlock(&map_tree
->lock
);
5213 write_lock(&map_tree
->lock
);
5216 write_unlock(&map_tree
->lock
);
5219 * Keep looping until we have no more ranges in the io tree.
5220 * We can have ongoing bios started by readpages (called from readahead)
5221 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5222 * still in progress (unlocked the pages in the bio but did not yet
5223 * unlocked the ranges in the io tree). Therefore this means some
5224 * ranges can still be locked and eviction started because before
5225 * submitting those bios, which are executed by a separate task (work
5226 * queue kthread), inode references (inode->i_count) were not taken
5227 * (which would be dropped in the end io callback of each bio).
5228 * Therefore here we effectively end up waiting for those bios and
5229 * anyone else holding locked ranges without having bumped the inode's
5230 * reference count - if we don't do it, when they access the inode's
5231 * io_tree to unlock a range it may be too late, leading to an
5232 * use-after-free issue.
5234 spin_lock(&io_tree
->lock
);
5235 while (!RB_EMPTY_ROOT(&io_tree
->state
)) {
5236 struct extent_state
*state
;
5237 struct extent_state
*cached_state
= NULL
;
5241 node
= rb_first(&io_tree
->state
);
5242 state
= rb_entry(node
, struct extent_state
, rb_node
);
5243 start
= state
->start
;
5245 spin_unlock(&io_tree
->lock
);
5247 lock_extent_bits(io_tree
, start
, end
, &cached_state
);
5250 * If still has DELALLOC flag, the extent didn't reach disk,
5251 * and its reserved space won't be freed by delayed_ref.
5252 * So we need to free its reserved space here.
5253 * (Refer to comment in btrfs_invalidatepage, case 2)
5255 * Note, end is the bytenr of last byte, so we need + 1 here.
5257 if (state
->state
& EXTENT_DELALLOC
)
5258 btrfs_qgroup_free_data(inode
, NULL
, start
, end
- start
+ 1);
5260 clear_extent_bit(io_tree
, start
, end
,
5261 EXTENT_LOCKED
| EXTENT_DIRTY
|
5262 EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
|
5263 EXTENT_DEFRAG
, 1, 1, &cached_state
);
5266 spin_lock(&io_tree
->lock
);
5268 spin_unlock(&io_tree
->lock
);
5271 void btrfs_evict_inode(struct inode
*inode
)
5273 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5274 struct btrfs_trans_handle
*trans
;
5275 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5276 struct btrfs_block_rsv
*rsv
, *global_rsv
;
5277 int steal_from_global
= 0;
5281 trace_btrfs_inode_evict(inode
);
5284 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
5288 min_size
= btrfs_calc_trunc_metadata_size(fs_info
, 1);
5290 evict_inode_truncate_pages(inode
);
5292 if (inode
->i_nlink
&&
5293 ((btrfs_root_refs(&root
->root_item
) != 0 &&
5294 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
) ||
5295 btrfs_is_free_space_inode(BTRFS_I(inode
))))
5298 if (is_bad_inode(inode
)) {
5299 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5302 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5303 if (!special_file(inode
->i_mode
))
5304 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
5306 btrfs_free_io_failure_record(BTRFS_I(inode
), 0, (u64
)-1);
5308 if (test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
)) {
5309 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
5310 &BTRFS_I(inode
)->runtime_flags
));
5314 if (inode
->i_nlink
> 0) {
5315 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0 &&
5316 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
);
5320 ret
= btrfs_commit_inode_delayed_inode(BTRFS_I(inode
));
5322 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5326 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
5328 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5331 rsv
->size
= min_size
;
5333 global_rsv
= &fs_info
->global_block_rsv
;
5335 btrfs_i_size_write(BTRFS_I(inode
), 0);
5338 * This is a bit simpler than btrfs_truncate since we've already
5339 * reserved our space for our orphan item in the unlink, so we just
5340 * need to reserve some slack space in case we add bytes and update
5341 * inode item when doing the truncate.
5344 ret
= btrfs_block_rsv_refill(root
, rsv
, min_size
,
5345 BTRFS_RESERVE_FLUSH_LIMIT
);
5348 * Try and steal from the global reserve since we will
5349 * likely not use this space anyway, we want to try as
5350 * hard as possible to get this to work.
5353 steal_from_global
++;
5355 steal_from_global
= 0;
5359 * steal_from_global == 0: we reserved stuff, hooray!
5360 * steal_from_global == 1: we didn't reserve stuff, boo!
5361 * steal_from_global == 2: we've committed, still not a lot of
5362 * room but maybe we'll have room in the global reserve this
5364 * steal_from_global == 3: abandon all hope!
5366 if (steal_from_global
> 2) {
5368 "Could not get space for a delete, will truncate on mount %d",
5370 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5371 btrfs_free_block_rsv(fs_info
, rsv
);
5375 trans
= btrfs_join_transaction(root
);
5376 if (IS_ERR(trans
)) {
5377 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5378 btrfs_free_block_rsv(fs_info
, rsv
);
5383 * We can't just steal from the global reserve, we need to make
5384 * sure there is room to do it, if not we need to commit and try
5387 if (steal_from_global
) {
5388 if (!btrfs_check_space_for_delayed_refs(trans
, fs_info
))
5389 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
,
5396 * Couldn't steal from the global reserve, we have too much
5397 * pending stuff built up, commit the transaction and try it
5401 ret
= btrfs_commit_transaction(trans
);
5403 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5404 btrfs_free_block_rsv(fs_info
, rsv
);
5409 steal_from_global
= 0;
5412 trans
->block_rsv
= rsv
;
5414 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
5415 if (ret
!= -ENOSPC
&& ret
!= -EAGAIN
)
5418 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
5419 btrfs_end_transaction(trans
);
5421 btrfs_btree_balance_dirty(fs_info
);
5424 btrfs_free_block_rsv(fs_info
, rsv
);
5427 * Errors here aren't a big deal, it just means we leave orphan items
5428 * in the tree. They will be cleaned up on the next mount.
5431 trans
->block_rsv
= root
->orphan_block_rsv
;
5432 btrfs_orphan_del(trans
, BTRFS_I(inode
));
5434 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5437 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
5438 if (!(root
== fs_info
->tree_root
||
5439 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
))
5440 btrfs_return_ino(root
, btrfs_ino(BTRFS_I(inode
)));
5442 btrfs_end_transaction(trans
);
5443 btrfs_btree_balance_dirty(fs_info
);
5445 btrfs_remove_delayed_node(BTRFS_I(inode
));
5450 * this returns the key found in the dir entry in the location pointer.
5451 * If no dir entries were found, location->objectid is 0.
5453 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
5454 struct btrfs_key
*location
)
5456 const char *name
= dentry
->d_name
.name
;
5457 int namelen
= dentry
->d_name
.len
;
5458 struct btrfs_dir_item
*di
;
5459 struct btrfs_path
*path
;
5460 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5463 path
= btrfs_alloc_path();
5467 di
= btrfs_lookup_dir_item(NULL
, root
, path
, btrfs_ino(BTRFS_I(dir
)),
5472 if (IS_ERR_OR_NULL(di
))
5475 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
5476 if (location
->type
!= BTRFS_INODE_ITEM_KEY
&&
5477 location
->type
!= BTRFS_ROOT_ITEM_KEY
) {
5478 btrfs_warn(root
->fs_info
,
5479 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5480 __func__
, name
, btrfs_ino(BTRFS_I(dir
)),
5481 location
->objectid
, location
->type
, location
->offset
);
5485 btrfs_free_path(path
);
5488 location
->objectid
= 0;
5493 * when we hit a tree root in a directory, the btrfs part of the inode
5494 * needs to be changed to reflect the root directory of the tree root. This
5495 * is kind of like crossing a mount point.
5497 static int fixup_tree_root_location(struct btrfs_fs_info
*fs_info
,
5499 struct dentry
*dentry
,
5500 struct btrfs_key
*location
,
5501 struct btrfs_root
**sub_root
)
5503 struct btrfs_path
*path
;
5504 struct btrfs_root
*new_root
;
5505 struct btrfs_root_ref
*ref
;
5506 struct extent_buffer
*leaf
;
5507 struct btrfs_key key
;
5511 path
= btrfs_alloc_path();
5518 key
.objectid
= BTRFS_I(dir
)->root
->root_key
.objectid
;
5519 key
.type
= BTRFS_ROOT_REF_KEY
;
5520 key
.offset
= location
->objectid
;
5522 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
5529 leaf
= path
->nodes
[0];
5530 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
5531 if (btrfs_root_ref_dirid(leaf
, ref
) != btrfs_ino(BTRFS_I(dir
)) ||
5532 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
5535 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
5536 (unsigned long)(ref
+ 1),
5537 dentry
->d_name
.len
);
5541 btrfs_release_path(path
);
5543 new_root
= btrfs_read_fs_root_no_name(fs_info
, location
);
5544 if (IS_ERR(new_root
)) {
5545 err
= PTR_ERR(new_root
);
5549 *sub_root
= new_root
;
5550 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
5551 location
->type
= BTRFS_INODE_ITEM_KEY
;
5552 location
->offset
= 0;
5555 btrfs_free_path(path
);
5559 static void inode_tree_add(struct inode
*inode
)
5561 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5562 struct btrfs_inode
*entry
;
5564 struct rb_node
*parent
;
5565 struct rb_node
*new = &BTRFS_I(inode
)->rb_node
;
5566 u64 ino
= btrfs_ino(BTRFS_I(inode
));
5568 if (inode_unhashed(inode
))
5571 spin_lock(&root
->inode_lock
);
5572 p
= &root
->inode_tree
.rb_node
;
5575 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
5577 if (ino
< btrfs_ino(BTRFS_I(&entry
->vfs_inode
)))
5578 p
= &parent
->rb_left
;
5579 else if (ino
> btrfs_ino(BTRFS_I(&entry
->vfs_inode
)))
5580 p
= &parent
->rb_right
;
5582 WARN_ON(!(entry
->vfs_inode
.i_state
&
5583 (I_WILL_FREE
| I_FREEING
)));
5584 rb_replace_node(parent
, new, &root
->inode_tree
);
5585 RB_CLEAR_NODE(parent
);
5586 spin_unlock(&root
->inode_lock
);
5590 rb_link_node(new, parent
, p
);
5591 rb_insert_color(new, &root
->inode_tree
);
5592 spin_unlock(&root
->inode_lock
);
5595 static void inode_tree_del(struct inode
*inode
)
5597 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5598 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5601 spin_lock(&root
->inode_lock
);
5602 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
5603 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
5604 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
5605 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5607 spin_unlock(&root
->inode_lock
);
5609 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0) {
5610 synchronize_srcu(&fs_info
->subvol_srcu
);
5611 spin_lock(&root
->inode_lock
);
5612 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5613 spin_unlock(&root
->inode_lock
);
5615 btrfs_add_dead_root(root
);
5619 void btrfs_invalidate_inodes(struct btrfs_root
*root
)
5621 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5622 struct rb_node
*node
;
5623 struct rb_node
*prev
;
5624 struct btrfs_inode
*entry
;
5625 struct inode
*inode
;
5628 if (!test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
5629 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
5631 spin_lock(&root
->inode_lock
);
5633 node
= root
->inode_tree
.rb_node
;
5637 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
5639 if (objectid
< btrfs_ino(BTRFS_I(&entry
->vfs_inode
)))
5640 node
= node
->rb_left
;
5641 else if (objectid
> btrfs_ino(BTRFS_I(&entry
->vfs_inode
)))
5642 node
= node
->rb_right
;
5648 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
5649 if (objectid
<= btrfs_ino(BTRFS_I(&entry
->vfs_inode
))) {
5653 prev
= rb_next(prev
);
5657 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
5658 objectid
= btrfs_ino(BTRFS_I(&entry
->vfs_inode
)) + 1;
5659 inode
= igrab(&entry
->vfs_inode
);
5661 spin_unlock(&root
->inode_lock
);
5662 if (atomic_read(&inode
->i_count
) > 1)
5663 d_prune_aliases(inode
);
5665 * btrfs_drop_inode will have it removed from
5666 * the inode cache when its usage count
5671 spin_lock(&root
->inode_lock
);
5675 if (cond_resched_lock(&root
->inode_lock
))
5678 node
= rb_next(node
);
5680 spin_unlock(&root
->inode_lock
);
5683 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
5685 struct btrfs_iget_args
*args
= p
;
5686 inode
->i_ino
= args
->location
->objectid
;
5687 memcpy(&BTRFS_I(inode
)->location
, args
->location
,
5688 sizeof(*args
->location
));
5689 BTRFS_I(inode
)->root
= args
->root
;
5693 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
5695 struct btrfs_iget_args
*args
= opaque
;
5696 return args
->location
->objectid
== BTRFS_I(inode
)->location
.objectid
&&
5697 args
->root
== BTRFS_I(inode
)->root
;
5700 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
5701 struct btrfs_key
*location
,
5702 struct btrfs_root
*root
)
5704 struct inode
*inode
;
5705 struct btrfs_iget_args args
;
5706 unsigned long hashval
= btrfs_inode_hash(location
->objectid
, root
);
5708 args
.location
= location
;
5711 inode
= iget5_locked(s
, hashval
, btrfs_find_actor
,
5712 btrfs_init_locked_inode
,
5717 /* Get an inode object given its location and corresponding root.
5718 * Returns in *is_new if the inode was read from disk
5720 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
5721 struct btrfs_root
*root
, int *new)
5723 struct inode
*inode
;
5725 inode
= btrfs_iget_locked(s
, location
, root
);
5727 return ERR_PTR(-ENOMEM
);
5729 if (inode
->i_state
& I_NEW
) {
5732 ret
= btrfs_read_locked_inode(inode
);
5733 if (!is_bad_inode(inode
)) {
5734 inode_tree_add(inode
);
5735 unlock_new_inode(inode
);
5739 unlock_new_inode(inode
);
5742 inode
= ERR_PTR(ret
< 0 ? ret
: -ESTALE
);
5749 static struct inode
*new_simple_dir(struct super_block
*s
,
5750 struct btrfs_key
*key
,
5751 struct btrfs_root
*root
)
5753 struct inode
*inode
= new_inode(s
);
5756 return ERR_PTR(-ENOMEM
);
5758 BTRFS_I(inode
)->root
= root
;
5759 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
5760 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
5762 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
5763 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
5764 inode
->i_opflags
&= ~IOP_XATTR
;
5765 inode
->i_fop
= &simple_dir_operations
;
5766 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
5767 inode
->i_mtime
= current_time(inode
);
5768 inode
->i_atime
= inode
->i_mtime
;
5769 inode
->i_ctime
= inode
->i_mtime
;
5770 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
5775 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
5777 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
5778 struct inode
*inode
;
5779 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5780 struct btrfs_root
*sub_root
= root
;
5781 struct btrfs_key location
;
5785 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
5786 return ERR_PTR(-ENAMETOOLONG
);
5788 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
5790 return ERR_PTR(ret
);
5792 if (location
.objectid
== 0)
5793 return ERR_PTR(-ENOENT
);
5795 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
5796 inode
= btrfs_iget(dir
->i_sb
, &location
, root
, NULL
);
5800 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
5801 ret
= fixup_tree_root_location(fs_info
, dir
, dentry
,
5802 &location
, &sub_root
);
5805 inode
= ERR_PTR(ret
);
5807 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
5809 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, NULL
);
5811 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
5813 if (!IS_ERR(inode
) && root
!= sub_root
) {
5814 down_read(&fs_info
->cleanup_work_sem
);
5815 if (!sb_rdonly(inode
->i_sb
))
5816 ret
= btrfs_orphan_cleanup(sub_root
);
5817 up_read(&fs_info
->cleanup_work_sem
);
5820 inode
= ERR_PTR(ret
);
5827 static int btrfs_dentry_delete(const struct dentry
*dentry
)
5829 struct btrfs_root
*root
;
5830 struct inode
*inode
= d_inode(dentry
);
5832 if (!inode
&& !IS_ROOT(dentry
))
5833 inode
= d_inode(dentry
->d_parent
);
5836 root
= BTRFS_I(inode
)->root
;
5837 if (btrfs_root_refs(&root
->root_item
) == 0)
5840 if (btrfs_ino(BTRFS_I(inode
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
5846 static void btrfs_dentry_release(struct dentry
*dentry
)
5848 kfree(dentry
->d_fsdata
);
5851 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
5854 struct inode
*inode
;
5856 inode
= btrfs_lookup_dentry(dir
, dentry
);
5857 if (IS_ERR(inode
)) {
5858 if (PTR_ERR(inode
) == -ENOENT
)
5861 return ERR_CAST(inode
);
5864 return d_splice_alias(inode
, dentry
);
5867 unsigned char btrfs_filetype_table
[] = {
5868 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
5872 * All this infrastructure exists because dir_emit can fault, and we are holding
5873 * the tree lock when doing readdir. For now just allocate a buffer and copy
5874 * our information into that, and then dir_emit from the buffer. This is
5875 * similar to what NFS does, only we don't keep the buffer around in pagecache
5876 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5877 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5880 static int btrfs_opendir(struct inode
*inode
, struct file
*file
)
5882 struct btrfs_file_private
*private;
5884 private = kzalloc(sizeof(struct btrfs_file_private
), GFP_KERNEL
);
5887 private->filldir_buf
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
5888 if (!private->filldir_buf
) {
5892 file
->private_data
= private;
5903 static int btrfs_filldir(void *addr
, int entries
, struct dir_context
*ctx
)
5906 struct dir_entry
*entry
= addr
;
5907 char *name
= (char *)(entry
+ 1);
5909 ctx
->pos
= entry
->offset
;
5910 if (!dir_emit(ctx
, name
, entry
->name_len
, entry
->ino
,
5913 addr
+= sizeof(struct dir_entry
) + entry
->name_len
;
5919 static int btrfs_real_readdir(struct file
*file
, struct dir_context
*ctx
)
5921 struct inode
*inode
= file_inode(file
);
5922 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5923 struct btrfs_file_private
*private = file
->private_data
;
5924 struct btrfs_dir_item
*di
;
5925 struct btrfs_key key
;
5926 struct btrfs_key found_key
;
5927 struct btrfs_path
*path
;
5929 struct list_head ins_list
;
5930 struct list_head del_list
;
5932 struct extent_buffer
*leaf
;
5939 struct btrfs_key location
;
5941 if (!dir_emit_dots(file
, ctx
))
5944 path
= btrfs_alloc_path();
5948 addr
= private->filldir_buf
;
5949 path
->reada
= READA_FORWARD
;
5951 INIT_LIST_HEAD(&ins_list
);
5952 INIT_LIST_HEAD(&del_list
);
5953 put
= btrfs_readdir_get_delayed_items(inode
, &ins_list
, &del_list
);
5956 key
.type
= BTRFS_DIR_INDEX_KEY
;
5957 key
.offset
= ctx
->pos
;
5958 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
5960 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5965 struct dir_entry
*entry
;
5967 leaf
= path
->nodes
[0];
5968 slot
= path
->slots
[0];
5969 if (slot
>= btrfs_header_nritems(leaf
)) {
5970 ret
= btrfs_next_leaf(root
, path
);
5978 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
5980 if (found_key
.objectid
!= key
.objectid
)
5982 if (found_key
.type
!= BTRFS_DIR_INDEX_KEY
)
5984 if (found_key
.offset
< ctx
->pos
)
5986 if (btrfs_should_delete_dir_index(&del_list
, found_key
.offset
))
5988 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
5989 name_len
= btrfs_dir_name_len(leaf
, di
);
5990 if ((total_len
+ sizeof(struct dir_entry
) + name_len
) >=
5992 btrfs_release_path(path
);
5993 ret
= btrfs_filldir(private->filldir_buf
, entries
, ctx
);
5996 addr
= private->filldir_buf
;
6003 entry
->name_len
= name_len
;
6004 name_ptr
= (char *)(entry
+ 1);
6005 read_extent_buffer(leaf
, name_ptr
, (unsigned long)(di
+ 1),
6007 entry
->type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
6008 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
6009 entry
->ino
= location
.objectid
;
6010 entry
->offset
= found_key
.offset
;
6012 addr
+= sizeof(struct dir_entry
) + name_len
;
6013 total_len
+= sizeof(struct dir_entry
) + name_len
;
6017 btrfs_release_path(path
);
6019 ret
= btrfs_filldir(private->filldir_buf
, entries
, ctx
);
6023 ret
= btrfs_readdir_delayed_dir_index(ctx
, &ins_list
);
6028 * Stop new entries from being returned after we return the last
6031 * New directory entries are assigned a strictly increasing
6032 * offset. This means that new entries created during readdir
6033 * are *guaranteed* to be seen in the future by that readdir.
6034 * This has broken buggy programs which operate on names as
6035 * they're returned by readdir. Until we re-use freed offsets
6036 * we have this hack to stop new entries from being returned
6037 * under the assumption that they'll never reach this huge
6040 * This is being careful not to overflow 32bit loff_t unless the
6041 * last entry requires it because doing so has broken 32bit apps
6044 if (ctx
->pos
>= INT_MAX
)
6045 ctx
->pos
= LLONG_MAX
;
6052 btrfs_readdir_put_delayed_items(inode
, &ins_list
, &del_list
);
6053 btrfs_free_path(path
);
6057 int btrfs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
6059 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6060 struct btrfs_trans_handle
*trans
;
6062 bool nolock
= false;
6064 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
6067 if (btrfs_fs_closing(root
->fs_info
) &&
6068 btrfs_is_free_space_inode(BTRFS_I(inode
)))
6071 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
6073 trans
= btrfs_join_transaction_nolock(root
);
6075 trans
= btrfs_join_transaction(root
);
6077 return PTR_ERR(trans
);
6078 ret
= btrfs_commit_transaction(trans
);
6084 * This is somewhat expensive, updating the tree every time the
6085 * inode changes. But, it is most likely to find the inode in cache.
6086 * FIXME, needs more benchmarking...there are no reasons other than performance
6087 * to keep or drop this code.
6089 static int btrfs_dirty_inode(struct inode
*inode
)
6091 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
6092 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6093 struct btrfs_trans_handle
*trans
;
6096 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
6099 trans
= btrfs_join_transaction(root
);
6101 return PTR_ERR(trans
);
6103 ret
= btrfs_update_inode(trans
, root
, inode
);
6104 if (ret
&& ret
== -ENOSPC
) {
6105 /* whoops, lets try again with the full transaction */
6106 btrfs_end_transaction(trans
);
6107 trans
= btrfs_start_transaction(root
, 1);
6109 return PTR_ERR(trans
);
6111 ret
= btrfs_update_inode(trans
, root
, inode
);
6113 btrfs_end_transaction(trans
);
6114 if (BTRFS_I(inode
)->delayed_node
)
6115 btrfs_balance_delayed_items(fs_info
);
6121 * This is a copy of file_update_time. We need this so we can return error on
6122 * ENOSPC for updating the inode in the case of file write and mmap writes.
6124 static int btrfs_update_time(struct inode
*inode
, struct timespec
*now
,
6127 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6128 bool dirty
= flags
& ~S_VERSION
;
6130 if (btrfs_root_readonly(root
))
6133 if (flags
& S_VERSION
)
6134 dirty
|= inode_maybe_inc_iversion(inode
, dirty
);
6135 if (flags
& S_CTIME
)
6136 inode
->i_ctime
= *now
;
6137 if (flags
& S_MTIME
)
6138 inode
->i_mtime
= *now
;
6139 if (flags
& S_ATIME
)
6140 inode
->i_atime
= *now
;
6141 return dirty
? btrfs_dirty_inode(inode
) : 0;
6145 * find the highest existing sequence number in a directory
6146 * and then set the in-memory index_cnt variable to reflect
6147 * free sequence numbers
6149 static int btrfs_set_inode_index_count(struct btrfs_inode
*inode
)
6151 struct btrfs_root
*root
= inode
->root
;
6152 struct btrfs_key key
, found_key
;
6153 struct btrfs_path
*path
;
6154 struct extent_buffer
*leaf
;
6157 key
.objectid
= btrfs_ino(inode
);
6158 key
.type
= BTRFS_DIR_INDEX_KEY
;
6159 key
.offset
= (u64
)-1;
6161 path
= btrfs_alloc_path();
6165 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6168 /* FIXME: we should be able to handle this */
6174 * MAGIC NUMBER EXPLANATION:
6175 * since we search a directory based on f_pos we have to start at 2
6176 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6177 * else has to start at 2
6179 if (path
->slots
[0] == 0) {
6180 inode
->index_cnt
= 2;
6186 leaf
= path
->nodes
[0];
6187 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6189 if (found_key
.objectid
!= btrfs_ino(inode
) ||
6190 found_key
.type
!= BTRFS_DIR_INDEX_KEY
) {
6191 inode
->index_cnt
= 2;
6195 inode
->index_cnt
= found_key
.offset
+ 1;
6197 btrfs_free_path(path
);
6202 * helper to find a free sequence number in a given directory. This current
6203 * code is very simple, later versions will do smarter things in the btree
6205 int btrfs_set_inode_index(struct btrfs_inode
*dir
, u64
*index
)
6209 if (dir
->index_cnt
== (u64
)-1) {
6210 ret
= btrfs_inode_delayed_dir_index_count(dir
);
6212 ret
= btrfs_set_inode_index_count(dir
);
6218 *index
= dir
->index_cnt
;
6224 static int btrfs_insert_inode_locked(struct inode
*inode
)
6226 struct btrfs_iget_args args
;
6227 args
.location
= &BTRFS_I(inode
)->location
;
6228 args
.root
= BTRFS_I(inode
)->root
;
6230 return insert_inode_locked4(inode
,
6231 btrfs_inode_hash(inode
->i_ino
, BTRFS_I(inode
)->root
),
6232 btrfs_find_actor
, &args
);
6236 * Inherit flags from the parent inode.
6238 * Currently only the compression flags and the cow flags are inherited.
6240 static void btrfs_inherit_iflags(struct inode
*inode
, struct inode
*dir
)
6247 flags
= BTRFS_I(dir
)->flags
;
6249 if (flags
& BTRFS_INODE_NOCOMPRESS
) {
6250 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_COMPRESS
;
6251 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
6252 } else if (flags
& BTRFS_INODE_COMPRESS
) {
6253 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
6254 BTRFS_I(inode
)->flags
|= BTRFS_INODE_COMPRESS
;
6257 if (flags
& BTRFS_INODE_NODATACOW
) {
6258 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
6259 if (S_ISREG(inode
->i_mode
))
6260 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
6263 btrfs_update_iflags(inode
);
6266 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
6267 struct btrfs_root
*root
,
6269 const char *name
, int name_len
,
6270 u64 ref_objectid
, u64 objectid
,
6271 umode_t mode
, u64
*index
)
6273 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6274 struct inode
*inode
;
6275 struct btrfs_inode_item
*inode_item
;
6276 struct btrfs_key
*location
;
6277 struct btrfs_path
*path
;
6278 struct btrfs_inode_ref
*ref
;
6279 struct btrfs_key key
[2];
6281 int nitems
= name
? 2 : 1;
6285 path
= btrfs_alloc_path();
6287 return ERR_PTR(-ENOMEM
);
6289 inode
= new_inode(fs_info
->sb
);
6291 btrfs_free_path(path
);
6292 return ERR_PTR(-ENOMEM
);
6296 * O_TMPFILE, set link count to 0, so that after this point,
6297 * we fill in an inode item with the correct link count.
6300 set_nlink(inode
, 0);
6303 * we have to initialize this early, so we can reclaim the inode
6304 * number if we fail afterwards in this function.
6306 inode
->i_ino
= objectid
;
6309 trace_btrfs_inode_request(dir
);
6311 ret
= btrfs_set_inode_index(BTRFS_I(dir
), index
);
6313 btrfs_free_path(path
);
6315 return ERR_PTR(ret
);
6321 * index_cnt is ignored for everything but a dir,
6322 * btrfs_set_inode_index_count has an explanation for the magic
6325 BTRFS_I(inode
)->index_cnt
= 2;
6326 BTRFS_I(inode
)->dir_index
= *index
;
6327 BTRFS_I(inode
)->root
= root
;
6328 BTRFS_I(inode
)->generation
= trans
->transid
;
6329 inode
->i_generation
= BTRFS_I(inode
)->generation
;
6332 * We could have gotten an inode number from somebody who was fsynced
6333 * and then removed in this same transaction, so let's just set full
6334 * sync since it will be a full sync anyway and this will blow away the
6335 * old info in the log.
6337 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
6339 key
[0].objectid
= objectid
;
6340 key
[0].type
= BTRFS_INODE_ITEM_KEY
;
6343 sizes
[0] = sizeof(struct btrfs_inode_item
);
6347 * Start new inodes with an inode_ref. This is slightly more
6348 * efficient for small numbers of hard links since they will
6349 * be packed into one item. Extended refs will kick in if we
6350 * add more hard links than can fit in the ref item.
6352 key
[1].objectid
= objectid
;
6353 key
[1].type
= BTRFS_INODE_REF_KEY
;
6354 key
[1].offset
= ref_objectid
;
6356 sizes
[1] = name_len
+ sizeof(*ref
);
6359 location
= &BTRFS_I(inode
)->location
;
6360 location
->objectid
= objectid
;
6361 location
->offset
= 0;
6362 location
->type
= BTRFS_INODE_ITEM_KEY
;
6364 ret
= btrfs_insert_inode_locked(inode
);
6368 path
->leave_spinning
= 1;
6369 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, nitems
);
6373 inode_init_owner(inode
, dir
, mode
);
6374 inode_set_bytes(inode
, 0);
6376 inode
->i_mtime
= current_time(inode
);
6377 inode
->i_atime
= inode
->i_mtime
;
6378 inode
->i_ctime
= inode
->i_mtime
;
6379 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
6381 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
6382 struct btrfs_inode_item
);
6383 memzero_extent_buffer(path
->nodes
[0], (unsigned long)inode_item
,
6384 sizeof(*inode_item
));
6385 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
6388 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
6389 struct btrfs_inode_ref
);
6390 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
6391 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
6392 ptr
= (unsigned long)(ref
+ 1);
6393 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
6396 btrfs_mark_buffer_dirty(path
->nodes
[0]);
6397 btrfs_free_path(path
);
6399 btrfs_inherit_iflags(inode
, dir
);
6401 if (S_ISREG(mode
)) {
6402 if (btrfs_test_opt(fs_info
, NODATASUM
))
6403 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
6404 if (btrfs_test_opt(fs_info
, NODATACOW
))
6405 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
|
6406 BTRFS_INODE_NODATASUM
;
6409 inode_tree_add(inode
);
6411 trace_btrfs_inode_new(inode
);
6412 btrfs_set_inode_last_trans(trans
, inode
);
6414 btrfs_update_root_times(trans
, root
);
6416 ret
= btrfs_inode_inherit_props(trans
, inode
, dir
);
6419 "error inheriting props for ino %llu (root %llu): %d",
6420 btrfs_ino(BTRFS_I(inode
)), root
->root_key
.objectid
, ret
);
6425 unlock_new_inode(inode
);
6428 BTRFS_I(dir
)->index_cnt
--;
6429 btrfs_free_path(path
);
6431 return ERR_PTR(ret
);
6434 static inline u8
btrfs_inode_type(struct inode
*inode
)
6436 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
6440 * utility function to add 'inode' into 'parent_inode' with
6441 * a give name and a given sequence number.
6442 * if 'add_backref' is true, also insert a backref from the
6443 * inode to the parent directory.
6445 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
6446 struct btrfs_inode
*parent_inode
, struct btrfs_inode
*inode
,
6447 const char *name
, int name_len
, int add_backref
, u64 index
)
6449 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
6451 struct btrfs_key key
;
6452 struct btrfs_root
*root
= parent_inode
->root
;
6453 u64 ino
= btrfs_ino(inode
);
6454 u64 parent_ino
= btrfs_ino(parent_inode
);
6456 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6457 memcpy(&key
, &inode
->root
->root_key
, sizeof(key
));
6460 key
.type
= BTRFS_INODE_ITEM_KEY
;
6464 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6465 ret
= btrfs_add_root_ref(trans
, fs_info
, key
.objectid
,
6466 root
->root_key
.objectid
, parent_ino
,
6467 index
, name
, name_len
);
6468 } else if (add_backref
) {
6469 ret
= btrfs_insert_inode_ref(trans
, root
, name
, name_len
, ino
,
6473 /* Nothing to clean up yet */
6477 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
6479 btrfs_inode_type(&inode
->vfs_inode
), index
);
6480 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
)
6483 btrfs_abort_transaction(trans
, ret
);
6487 btrfs_i_size_write(parent_inode
, parent_inode
->vfs_inode
.i_size
+
6489 inode_inc_iversion(&parent_inode
->vfs_inode
);
6490 parent_inode
->vfs_inode
.i_mtime
= parent_inode
->vfs_inode
.i_ctime
=
6491 current_time(&parent_inode
->vfs_inode
);
6492 ret
= btrfs_update_inode(trans
, root
, &parent_inode
->vfs_inode
);
6494 btrfs_abort_transaction(trans
, ret
);
6498 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6501 err
= btrfs_del_root_ref(trans
, fs_info
, key
.objectid
,
6502 root
->root_key
.objectid
, parent_ino
,
6503 &local_index
, name
, name_len
);
6505 } else if (add_backref
) {
6509 err
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
6510 ino
, parent_ino
, &local_index
);
6515 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
6516 struct btrfs_inode
*dir
, struct dentry
*dentry
,
6517 struct btrfs_inode
*inode
, int backref
, u64 index
)
6519 int err
= btrfs_add_link(trans
, dir
, inode
,
6520 dentry
->d_name
.name
, dentry
->d_name
.len
,
6527 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
6528 umode_t mode
, dev_t rdev
)
6530 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6531 struct btrfs_trans_handle
*trans
;
6532 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6533 struct inode
*inode
= NULL
;
6540 * 2 for inode item and ref
6542 * 1 for xattr if selinux is on
6544 trans
= btrfs_start_transaction(root
, 5);
6546 return PTR_ERR(trans
);
6548 err
= btrfs_find_free_ino(root
, &objectid
);
6552 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6553 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6555 if (IS_ERR(inode
)) {
6556 err
= PTR_ERR(inode
);
6561 * If the active LSM wants to access the inode during
6562 * d_instantiate it needs these. Smack checks to see
6563 * if the filesystem supports xattrs by looking at the
6566 inode
->i_op
= &btrfs_special_inode_operations
;
6567 init_special_inode(inode
, inode
->i_mode
, rdev
);
6569 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6571 goto out_unlock_inode
;
6573 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6576 goto out_unlock_inode
;
6578 btrfs_update_inode(trans
, root
, inode
);
6579 unlock_new_inode(inode
);
6580 d_instantiate(dentry
, inode
);
6584 btrfs_end_transaction(trans
);
6585 btrfs_btree_balance_dirty(fs_info
);
6587 inode_dec_link_count(inode
);
6594 unlock_new_inode(inode
);
6599 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
6600 umode_t mode
, bool excl
)
6602 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6603 struct btrfs_trans_handle
*trans
;
6604 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6605 struct inode
*inode
= NULL
;
6606 int drop_inode_on_err
= 0;
6612 * 2 for inode item and ref
6614 * 1 for xattr if selinux is on
6616 trans
= btrfs_start_transaction(root
, 5);
6618 return PTR_ERR(trans
);
6620 err
= btrfs_find_free_ino(root
, &objectid
);
6624 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6625 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6627 if (IS_ERR(inode
)) {
6628 err
= PTR_ERR(inode
);
6631 drop_inode_on_err
= 1;
6633 * If the active LSM wants to access the inode during
6634 * d_instantiate it needs these. Smack checks to see
6635 * if the filesystem supports xattrs by looking at the
6638 inode
->i_fop
= &btrfs_file_operations
;
6639 inode
->i_op
= &btrfs_file_inode_operations
;
6640 inode
->i_mapping
->a_ops
= &btrfs_aops
;
6642 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6644 goto out_unlock_inode
;
6646 err
= btrfs_update_inode(trans
, root
, inode
);
6648 goto out_unlock_inode
;
6650 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6653 goto out_unlock_inode
;
6655 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
6656 unlock_new_inode(inode
);
6657 d_instantiate(dentry
, inode
);
6660 btrfs_end_transaction(trans
);
6661 if (err
&& drop_inode_on_err
) {
6662 inode_dec_link_count(inode
);
6665 btrfs_btree_balance_dirty(fs_info
);
6669 unlock_new_inode(inode
);
6674 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
6675 struct dentry
*dentry
)
6677 struct btrfs_trans_handle
*trans
= NULL
;
6678 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6679 struct inode
*inode
= d_inode(old_dentry
);
6680 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
6685 /* do not allow sys_link's with other subvols of the same device */
6686 if (root
->objectid
!= BTRFS_I(inode
)->root
->objectid
)
6689 if (inode
->i_nlink
>= BTRFS_LINK_MAX
)
6692 err
= btrfs_set_inode_index(BTRFS_I(dir
), &index
);
6697 * 2 items for inode and inode ref
6698 * 2 items for dir items
6699 * 1 item for parent inode
6701 trans
= btrfs_start_transaction(root
, 5);
6702 if (IS_ERR(trans
)) {
6703 err
= PTR_ERR(trans
);
6708 /* There are several dir indexes for this inode, clear the cache. */
6709 BTRFS_I(inode
)->dir_index
= 0ULL;
6711 inode_inc_iversion(inode
);
6712 inode
->i_ctime
= current_time(inode
);
6714 set_bit(BTRFS_INODE_COPY_EVERYTHING
, &BTRFS_I(inode
)->runtime_flags
);
6716 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6722 struct dentry
*parent
= dentry
->d_parent
;
6723 err
= btrfs_update_inode(trans
, root
, inode
);
6726 if (inode
->i_nlink
== 1) {
6728 * If new hard link count is 1, it's a file created
6729 * with open(2) O_TMPFILE flag.
6731 err
= btrfs_orphan_del(trans
, BTRFS_I(inode
));
6735 d_instantiate(dentry
, inode
);
6736 btrfs_log_new_name(trans
, BTRFS_I(inode
), NULL
, parent
);
6741 btrfs_end_transaction(trans
);
6743 inode_dec_link_count(inode
);
6746 btrfs_btree_balance_dirty(fs_info
);
6750 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
6752 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6753 struct inode
*inode
= NULL
;
6754 struct btrfs_trans_handle
*trans
;
6755 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6757 int drop_on_err
= 0;
6762 * 2 items for inode and ref
6763 * 2 items for dir items
6764 * 1 for xattr if selinux is on
6766 trans
= btrfs_start_transaction(root
, 5);
6768 return PTR_ERR(trans
);
6770 err
= btrfs_find_free_ino(root
, &objectid
);
6774 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6775 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6776 S_IFDIR
| mode
, &index
);
6777 if (IS_ERR(inode
)) {
6778 err
= PTR_ERR(inode
);
6783 /* these must be set before we unlock the inode */
6784 inode
->i_op
= &btrfs_dir_inode_operations
;
6785 inode
->i_fop
= &btrfs_dir_file_operations
;
6787 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6789 goto out_fail_inode
;
6791 btrfs_i_size_write(BTRFS_I(inode
), 0);
6792 err
= btrfs_update_inode(trans
, root
, inode
);
6794 goto out_fail_inode
;
6796 err
= btrfs_add_link(trans
, BTRFS_I(dir
), BTRFS_I(inode
),
6797 dentry
->d_name
.name
,
6798 dentry
->d_name
.len
, 0, index
);
6800 goto out_fail_inode
;
6802 d_instantiate(dentry
, inode
);
6804 * mkdir is special. We're unlocking after we call d_instantiate
6805 * to avoid a race with nfsd calling d_instantiate.
6807 unlock_new_inode(inode
);
6811 btrfs_end_transaction(trans
);
6813 inode_dec_link_count(inode
);
6816 btrfs_btree_balance_dirty(fs_info
);
6820 unlock_new_inode(inode
);
6824 static noinline
int uncompress_inline(struct btrfs_path
*path
,
6826 size_t pg_offset
, u64 extent_offset
,
6827 struct btrfs_file_extent_item
*item
)
6830 struct extent_buffer
*leaf
= path
->nodes
[0];
6833 unsigned long inline_size
;
6837 WARN_ON(pg_offset
!= 0);
6838 compress_type
= btrfs_file_extent_compression(leaf
, item
);
6839 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
6840 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
6841 btrfs_item_nr(path
->slots
[0]));
6842 tmp
= kmalloc(inline_size
, GFP_NOFS
);
6845 ptr
= btrfs_file_extent_inline_start(item
);
6847 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
6849 max_size
= min_t(unsigned long, PAGE_SIZE
, max_size
);
6850 ret
= btrfs_decompress(compress_type
, tmp
, page
,
6851 extent_offset
, inline_size
, max_size
);
6854 * decompression code contains a memset to fill in any space between the end
6855 * of the uncompressed data and the end of max_size in case the decompressed
6856 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6857 * the end of an inline extent and the beginning of the next block, so we
6858 * cover that region here.
6861 if (max_size
+ pg_offset
< PAGE_SIZE
) {
6862 char *map
= kmap(page
);
6863 memset(map
+ pg_offset
+ max_size
, 0, PAGE_SIZE
- max_size
- pg_offset
);
6871 * a bit scary, this does extent mapping from logical file offset to the disk.
6872 * the ugly parts come from merging extents from the disk with the in-ram
6873 * representation. This gets more complex because of the data=ordered code,
6874 * where the in-ram extents might be locked pending data=ordered completion.
6876 * This also copies inline extents directly into the page.
6878 struct extent_map
*btrfs_get_extent(struct btrfs_inode
*inode
,
6880 size_t pg_offset
, u64 start
, u64 len
,
6883 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
6886 u64 extent_start
= 0;
6888 u64 objectid
= btrfs_ino(inode
);
6890 struct btrfs_path
*path
= NULL
;
6891 struct btrfs_root
*root
= inode
->root
;
6892 struct btrfs_file_extent_item
*item
;
6893 struct extent_buffer
*leaf
;
6894 struct btrfs_key found_key
;
6895 struct extent_map
*em
= NULL
;
6896 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
6897 struct extent_io_tree
*io_tree
= &inode
->io_tree
;
6898 const bool new_inline
= !page
|| create
;
6900 read_lock(&em_tree
->lock
);
6901 em
= lookup_extent_mapping(em_tree
, start
, len
);
6903 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
6904 read_unlock(&em_tree
->lock
);
6907 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
6908 free_extent_map(em
);
6909 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
6910 free_extent_map(em
);
6914 em
= alloc_extent_map();
6919 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
6920 em
->start
= EXTENT_MAP_HOLE
;
6921 em
->orig_start
= EXTENT_MAP_HOLE
;
6923 em
->block_len
= (u64
)-1;
6926 path
= btrfs_alloc_path();
6932 * Chances are we'll be called again, so go ahead and do
6935 path
->reada
= READA_FORWARD
;
6938 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, objectid
, start
, 0);
6945 if (path
->slots
[0] == 0)
6950 leaf
= path
->nodes
[0];
6951 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
6952 struct btrfs_file_extent_item
);
6953 /* are we inside the extent that was found? */
6954 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6955 found_type
= found_key
.type
;
6956 if (found_key
.objectid
!= objectid
||
6957 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
6959 * If we backup past the first extent we want to move forward
6960 * and see if there is an extent in front of us, otherwise we'll
6961 * say there is a hole for our whole search range which can
6968 found_type
= btrfs_file_extent_type(leaf
, item
);
6969 extent_start
= found_key
.offset
;
6970 if (found_type
== BTRFS_FILE_EXTENT_REG
||
6971 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6972 extent_end
= extent_start
+
6973 btrfs_file_extent_num_bytes(leaf
, item
);
6975 trace_btrfs_get_extent_show_fi_regular(inode
, leaf
, item
,
6977 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
6979 size
= btrfs_file_extent_inline_len(leaf
, path
->slots
[0], item
);
6980 extent_end
= ALIGN(extent_start
+ size
,
6981 fs_info
->sectorsize
);
6983 trace_btrfs_get_extent_show_fi_inline(inode
, leaf
, item
,
6988 if (start
>= extent_end
) {
6990 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
6991 ret
= btrfs_next_leaf(root
, path
);
6998 leaf
= path
->nodes
[0];
7000 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
7001 if (found_key
.objectid
!= objectid
||
7002 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
7004 if (start
+ len
<= found_key
.offset
)
7006 if (start
> found_key
.offset
)
7009 em
->orig_start
= start
;
7010 em
->len
= found_key
.offset
- start
;
7014 btrfs_extent_item_to_extent_map(inode
, path
, item
,
7017 if (found_type
== BTRFS_FILE_EXTENT_REG
||
7018 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
7020 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
7024 size_t extent_offset
;
7030 size
= btrfs_file_extent_inline_len(leaf
, path
->slots
[0], item
);
7031 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
7032 copy_size
= min_t(u64
, PAGE_SIZE
- pg_offset
,
7033 size
- extent_offset
);
7034 em
->start
= extent_start
+ extent_offset
;
7035 em
->len
= ALIGN(copy_size
, fs_info
->sectorsize
);
7036 em
->orig_block_len
= em
->len
;
7037 em
->orig_start
= em
->start
;
7038 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
7039 if (!PageUptodate(page
)) {
7040 if (btrfs_file_extent_compression(leaf
, item
) !=
7041 BTRFS_COMPRESS_NONE
) {
7042 ret
= uncompress_inline(path
, page
, pg_offset
,
7043 extent_offset
, item
);
7050 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
7052 if (pg_offset
+ copy_size
< PAGE_SIZE
) {
7053 memset(map
+ pg_offset
+ copy_size
, 0,
7054 PAGE_SIZE
- pg_offset
-
7059 flush_dcache_page(page
);
7061 set_extent_uptodate(io_tree
, em
->start
,
7062 extent_map_end(em
) - 1, NULL
, GFP_NOFS
);
7067 em
->orig_start
= start
;
7070 em
->block_start
= EXTENT_MAP_HOLE
;
7072 btrfs_release_path(path
);
7073 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
7075 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7076 em
->start
, em
->len
, start
, len
);
7082 write_lock(&em_tree
->lock
);
7083 err
= btrfs_add_extent_mapping(em_tree
, &em
, start
, len
);
7084 write_unlock(&em_tree
->lock
);
7087 trace_btrfs_get_extent(root
, inode
, em
);
7089 btrfs_free_path(path
);
7091 free_extent_map(em
);
7092 return ERR_PTR(err
);
7094 BUG_ON(!em
); /* Error is always set */
7098 struct extent_map
*btrfs_get_extent_fiemap(struct btrfs_inode
*inode
,
7100 size_t pg_offset
, u64 start
, u64 len
,
7103 struct extent_map
*em
;
7104 struct extent_map
*hole_em
= NULL
;
7105 u64 range_start
= start
;
7111 em
= btrfs_get_extent(inode
, page
, pg_offset
, start
, len
, create
);
7115 * If our em maps to:
7117 * - a pre-alloc extent,
7118 * there might actually be delalloc bytes behind it.
7120 if (em
->block_start
!= EXTENT_MAP_HOLE
&&
7121 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7126 /* check to see if we've wrapped (len == -1 or similar) */
7135 /* ok, we didn't find anything, lets look for delalloc */
7136 found
= count_range_bits(&inode
->io_tree
, &range_start
,
7137 end
, len
, EXTENT_DELALLOC
, 1);
7138 found_end
= range_start
+ found
;
7139 if (found_end
< range_start
)
7140 found_end
= (u64
)-1;
7143 * we didn't find anything useful, return
7144 * the original results from get_extent()
7146 if (range_start
> end
|| found_end
<= start
) {
7152 /* adjust the range_start to make sure it doesn't
7153 * go backwards from the start they passed in
7155 range_start
= max(start
, range_start
);
7156 found
= found_end
- range_start
;
7159 u64 hole_start
= start
;
7162 em
= alloc_extent_map();
7168 * when btrfs_get_extent can't find anything it
7169 * returns one huge hole
7171 * make sure what it found really fits our range, and
7172 * adjust to make sure it is based on the start from
7176 u64 calc_end
= extent_map_end(hole_em
);
7178 if (calc_end
<= start
|| (hole_em
->start
> end
)) {
7179 free_extent_map(hole_em
);
7182 hole_start
= max(hole_em
->start
, start
);
7183 hole_len
= calc_end
- hole_start
;
7187 if (hole_em
&& range_start
> hole_start
) {
7188 /* our hole starts before our delalloc, so we
7189 * have to return just the parts of the hole
7190 * that go until the delalloc starts
7192 em
->len
= min(hole_len
,
7193 range_start
- hole_start
);
7194 em
->start
= hole_start
;
7195 em
->orig_start
= hole_start
;
7197 * don't adjust block start at all,
7198 * it is fixed at EXTENT_MAP_HOLE
7200 em
->block_start
= hole_em
->block_start
;
7201 em
->block_len
= hole_len
;
7202 if (test_bit(EXTENT_FLAG_PREALLOC
, &hole_em
->flags
))
7203 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
7205 em
->start
= range_start
;
7207 em
->orig_start
= range_start
;
7208 em
->block_start
= EXTENT_MAP_DELALLOC
;
7209 em
->block_len
= found
;
7216 free_extent_map(hole_em
);
7218 free_extent_map(em
);
7219 return ERR_PTR(err
);
7224 static struct extent_map
*btrfs_create_dio_extent(struct inode
*inode
,
7227 const u64 orig_start
,
7228 const u64 block_start
,
7229 const u64 block_len
,
7230 const u64 orig_block_len
,
7231 const u64 ram_bytes
,
7234 struct extent_map
*em
= NULL
;
7237 if (type
!= BTRFS_ORDERED_NOCOW
) {
7238 em
= create_io_em(inode
, start
, len
, orig_start
,
7239 block_start
, block_len
, orig_block_len
,
7241 BTRFS_COMPRESS_NONE
, /* compress_type */
7246 ret
= btrfs_add_ordered_extent_dio(inode
, start
, block_start
,
7247 len
, block_len
, type
);
7250 free_extent_map(em
);
7251 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
7252 start
+ len
- 1, 0);
7261 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
7264 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7265 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7266 struct extent_map
*em
;
7267 struct btrfs_key ins
;
7271 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
7272 ret
= btrfs_reserve_extent(root
, len
, len
, fs_info
->sectorsize
,
7273 0, alloc_hint
, &ins
, 1, 1);
7275 return ERR_PTR(ret
);
7277 em
= btrfs_create_dio_extent(inode
, start
, ins
.offset
, start
,
7278 ins
.objectid
, ins
.offset
, ins
.offset
,
7279 ins
.offset
, BTRFS_ORDERED_REGULAR
);
7280 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
7282 btrfs_free_reserved_extent(fs_info
, ins
.objectid
,
7289 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7290 * block must be cow'd
7292 noinline
int can_nocow_extent(struct inode
*inode
, u64 offset
, u64
*len
,
7293 u64
*orig_start
, u64
*orig_block_len
,
7296 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7297 struct btrfs_path
*path
;
7299 struct extent_buffer
*leaf
;
7300 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7301 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
7302 struct btrfs_file_extent_item
*fi
;
7303 struct btrfs_key key
;
7310 bool nocow
= (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
);
7312 path
= btrfs_alloc_path();
7316 ret
= btrfs_lookup_file_extent(NULL
, root
, path
,
7317 btrfs_ino(BTRFS_I(inode
)), offset
, 0);
7321 slot
= path
->slots
[0];
7324 /* can't find the item, must cow */
7331 leaf
= path
->nodes
[0];
7332 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
7333 if (key
.objectid
!= btrfs_ino(BTRFS_I(inode
)) ||
7334 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
7335 /* not our file or wrong item type, must cow */
7339 if (key
.offset
> offset
) {
7340 /* Wrong offset, must cow */
7344 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
7345 found_type
= btrfs_file_extent_type(leaf
, fi
);
7346 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
7347 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
7348 /* not a regular extent, must cow */
7352 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_REG
)
7355 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
7356 if (extent_end
<= offset
)
7359 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
7360 if (disk_bytenr
== 0)
7363 if (btrfs_file_extent_compression(leaf
, fi
) ||
7364 btrfs_file_extent_encryption(leaf
, fi
) ||
7365 btrfs_file_extent_other_encoding(leaf
, fi
))
7368 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
7371 *orig_start
= key
.offset
- backref_offset
;
7372 *orig_block_len
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
7373 *ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
7376 if (btrfs_extent_readonly(fs_info
, disk_bytenr
))
7379 num_bytes
= min(offset
+ *len
, extent_end
) - offset
;
7380 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
7383 range_end
= round_up(offset
+ num_bytes
,
7384 root
->fs_info
->sectorsize
) - 1;
7385 ret
= test_range_bit(io_tree
, offset
, range_end
,
7386 EXTENT_DELALLOC
, 0, NULL
);
7393 btrfs_release_path(path
);
7396 * look for other files referencing this extent, if we
7397 * find any we must cow
7400 ret
= btrfs_cross_ref_exist(root
, btrfs_ino(BTRFS_I(inode
)),
7401 key
.offset
- backref_offset
, disk_bytenr
);
7408 * adjust disk_bytenr and num_bytes to cover just the bytes
7409 * in this extent we are about to write. If there
7410 * are any csums in that range we have to cow in order
7411 * to keep the csums correct
7413 disk_bytenr
+= backref_offset
;
7414 disk_bytenr
+= offset
- key
.offset
;
7415 if (csum_exist_in_range(fs_info
, disk_bytenr
, num_bytes
))
7418 * all of the above have passed, it is safe to overwrite this extent
7424 btrfs_free_path(path
);
7428 bool btrfs_page_exists_in_range(struct inode
*inode
, loff_t start
, loff_t end
)
7430 struct radix_tree_root
*root
= &inode
->i_mapping
->page_tree
;
7432 void **pagep
= NULL
;
7433 struct page
*page
= NULL
;
7434 unsigned long start_idx
;
7435 unsigned long end_idx
;
7437 start_idx
= start
>> PAGE_SHIFT
;
7440 * end is the last byte in the last page. end == start is legal
7442 end_idx
= end
>> PAGE_SHIFT
;
7446 /* Most of the code in this while loop is lifted from
7447 * find_get_page. It's been modified to begin searching from a
7448 * page and return just the first page found in that range. If the
7449 * found idx is less than or equal to the end idx then we know that
7450 * a page exists. If no pages are found or if those pages are
7451 * outside of the range then we're fine (yay!) */
7452 while (page
== NULL
&&
7453 radix_tree_gang_lookup_slot(root
, &pagep
, NULL
, start_idx
, 1)) {
7454 page
= radix_tree_deref_slot(pagep
);
7455 if (unlikely(!page
))
7458 if (radix_tree_exception(page
)) {
7459 if (radix_tree_deref_retry(page
)) {
7464 * Otherwise, shmem/tmpfs must be storing a swap entry
7465 * here as an exceptional entry: so return it without
7466 * attempting to raise page count.
7469 break; /* TODO: Is this relevant for this use case? */
7472 if (!page_cache_get_speculative(page
)) {
7478 * Has the page moved?
7479 * This is part of the lockless pagecache protocol. See
7480 * include/linux/pagemap.h for details.
7482 if (unlikely(page
!= *pagep
)) {
7489 if (page
->index
<= end_idx
)
7498 static int lock_extent_direct(struct inode
*inode
, u64 lockstart
, u64 lockend
,
7499 struct extent_state
**cached_state
, int writing
)
7501 struct btrfs_ordered_extent
*ordered
;
7505 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7508 * We're concerned with the entire range that we're going to be
7509 * doing DIO to, so we need to make sure there's no ordered
7510 * extents in this range.
7512 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), lockstart
,
7513 lockend
- lockstart
+ 1);
7516 * We need to make sure there are no buffered pages in this
7517 * range either, we could have raced between the invalidate in
7518 * generic_file_direct_write and locking the extent. The
7519 * invalidate needs to happen so that reads after a write do not
7524 !btrfs_page_exists_in_range(inode
, lockstart
, lockend
)))
7527 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7532 * If we are doing a DIO read and the ordered extent we
7533 * found is for a buffered write, we can not wait for it
7534 * to complete and retry, because if we do so we can
7535 * deadlock with concurrent buffered writes on page
7536 * locks. This happens only if our DIO read covers more
7537 * than one extent map, if at this point has already
7538 * created an ordered extent for a previous extent map
7539 * and locked its range in the inode's io tree, and a
7540 * concurrent write against that previous extent map's
7541 * range and this range started (we unlock the ranges
7542 * in the io tree only when the bios complete and
7543 * buffered writes always lock pages before attempting
7544 * to lock range in the io tree).
7547 test_bit(BTRFS_ORDERED_DIRECT
, &ordered
->flags
))
7548 btrfs_start_ordered_extent(inode
, ordered
, 1);
7551 btrfs_put_ordered_extent(ordered
);
7554 * We could trigger writeback for this range (and wait
7555 * for it to complete) and then invalidate the pages for
7556 * this range (through invalidate_inode_pages2_range()),
7557 * but that can lead us to a deadlock with a concurrent
7558 * call to readpages() (a buffered read or a defrag call
7559 * triggered a readahead) on a page lock due to an
7560 * ordered dio extent we created before but did not have
7561 * yet a corresponding bio submitted (whence it can not
7562 * complete), which makes readpages() wait for that
7563 * ordered extent to complete while holding a lock on
7578 /* The callers of this must take lock_extent() */
7579 static struct extent_map
*create_io_em(struct inode
*inode
, u64 start
, u64 len
,
7580 u64 orig_start
, u64 block_start
,
7581 u64 block_len
, u64 orig_block_len
,
7582 u64 ram_bytes
, int compress_type
,
7585 struct extent_map_tree
*em_tree
;
7586 struct extent_map
*em
;
7587 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7590 ASSERT(type
== BTRFS_ORDERED_PREALLOC
||
7591 type
== BTRFS_ORDERED_COMPRESSED
||
7592 type
== BTRFS_ORDERED_NOCOW
||
7593 type
== BTRFS_ORDERED_REGULAR
);
7595 em_tree
= &BTRFS_I(inode
)->extent_tree
;
7596 em
= alloc_extent_map();
7598 return ERR_PTR(-ENOMEM
);
7601 em
->orig_start
= orig_start
;
7603 em
->block_len
= block_len
;
7604 em
->block_start
= block_start
;
7605 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
7606 em
->orig_block_len
= orig_block_len
;
7607 em
->ram_bytes
= ram_bytes
;
7608 em
->generation
= -1;
7609 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
7610 if (type
== BTRFS_ORDERED_PREALLOC
) {
7611 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
7612 } else if (type
== BTRFS_ORDERED_COMPRESSED
) {
7613 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
7614 em
->compress_type
= compress_type
;
7618 btrfs_drop_extent_cache(BTRFS_I(inode
), em
->start
,
7619 em
->start
+ em
->len
- 1, 0);
7620 write_lock(&em_tree
->lock
);
7621 ret
= add_extent_mapping(em_tree
, em
, 1);
7622 write_unlock(&em_tree
->lock
);
7624 * The caller has taken lock_extent(), who could race with us
7627 } while (ret
== -EEXIST
);
7630 free_extent_map(em
);
7631 return ERR_PTR(ret
);
7634 /* em got 2 refs now, callers needs to do free_extent_map once. */
7638 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
7639 struct buffer_head
*bh_result
, int create
)
7641 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7642 struct extent_map
*em
;
7643 struct extent_state
*cached_state
= NULL
;
7644 struct btrfs_dio_data
*dio_data
= NULL
;
7645 u64 start
= iblock
<< inode
->i_blkbits
;
7646 u64 lockstart
, lockend
;
7647 u64 len
= bh_result
->b_size
;
7648 int unlock_bits
= EXTENT_LOCKED
;
7652 unlock_bits
|= EXTENT_DIRTY
;
7654 len
= min_t(u64
, len
, fs_info
->sectorsize
);
7657 lockend
= start
+ len
- 1;
7659 if (current
->journal_info
) {
7661 * Need to pull our outstanding extents and set journal_info to NULL so
7662 * that anything that needs to check if there's a transaction doesn't get
7665 dio_data
= current
->journal_info
;
7666 current
->journal_info
= NULL
;
7670 * If this errors out it's because we couldn't invalidate pagecache for
7671 * this range and we need to fallback to buffered.
7673 if (lock_extent_direct(inode
, lockstart
, lockend
, &cached_state
,
7679 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, start
, len
, 0);
7686 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7687 * io. INLINE is special, and we could probably kludge it in here, but
7688 * it's still buffered so for safety lets just fall back to the generic
7691 * For COMPRESSED we _have_ to read the entire extent in so we can
7692 * decompress it, so there will be buffering required no matter what we
7693 * do, so go ahead and fallback to buffered.
7695 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7696 * to buffered IO. Don't blame me, this is the price we pay for using
7699 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
7700 em
->block_start
== EXTENT_MAP_INLINE
) {
7701 free_extent_map(em
);
7706 /* Just a good old fashioned hole, return */
7707 if (!create
&& (em
->block_start
== EXTENT_MAP_HOLE
||
7708 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
7709 free_extent_map(em
);
7714 * We don't allocate a new extent in the following cases
7716 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7718 * 2) The extent is marked as PREALLOC. We're good to go here and can
7719 * just use the extent.
7723 len
= min(len
, em
->len
- (start
- em
->start
));
7724 lockstart
= start
+ len
;
7728 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
7729 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
7730 em
->block_start
!= EXTENT_MAP_HOLE
)) {
7732 u64 block_start
, orig_start
, orig_block_len
, ram_bytes
;
7734 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7735 type
= BTRFS_ORDERED_PREALLOC
;
7737 type
= BTRFS_ORDERED_NOCOW
;
7738 len
= min(len
, em
->len
- (start
- em
->start
));
7739 block_start
= em
->block_start
+ (start
- em
->start
);
7741 if (can_nocow_extent(inode
, start
, &len
, &orig_start
,
7742 &orig_block_len
, &ram_bytes
) == 1 &&
7743 btrfs_inc_nocow_writers(fs_info
, block_start
)) {
7744 struct extent_map
*em2
;
7746 em2
= btrfs_create_dio_extent(inode
, start
, len
,
7747 orig_start
, block_start
,
7748 len
, orig_block_len
,
7750 btrfs_dec_nocow_writers(fs_info
, block_start
);
7751 if (type
== BTRFS_ORDERED_PREALLOC
) {
7752 free_extent_map(em
);
7755 if (em2
&& IS_ERR(em2
)) {
7760 * For inode marked NODATACOW or extent marked PREALLOC,
7761 * use the existing or preallocated extent, so does not
7762 * need to adjust btrfs_space_info's bytes_may_use.
7764 btrfs_free_reserved_data_space_noquota(inode
,
7771 * this will cow the extent, reset the len in case we changed
7774 len
= bh_result
->b_size
;
7775 free_extent_map(em
);
7776 em
= btrfs_new_extent_direct(inode
, start
, len
);
7781 len
= min(len
, em
->len
- (start
- em
->start
));
7783 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
7785 bh_result
->b_size
= len
;
7786 bh_result
->b_bdev
= em
->bdev
;
7787 set_buffer_mapped(bh_result
);
7789 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7790 set_buffer_new(bh_result
);
7793 * Need to update the i_size under the extent lock so buffered
7794 * readers will get the updated i_size when we unlock.
7796 if (!dio_data
->overwrite
&& start
+ len
> i_size_read(inode
))
7797 i_size_write(inode
, start
+ len
);
7799 WARN_ON(dio_data
->reserve
< len
);
7800 dio_data
->reserve
-= len
;
7801 dio_data
->unsubmitted_oe_range_end
= start
+ len
;
7802 current
->journal_info
= dio_data
;
7806 * In the case of write we need to clear and unlock the entire range,
7807 * in the case of read we need to unlock only the end area that we
7808 * aren't using if there is any left over space.
7810 if (lockstart
< lockend
) {
7811 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
7812 lockend
, unlock_bits
, 1, 0,
7815 free_extent_state(cached_state
);
7818 free_extent_map(em
);
7823 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7824 unlock_bits
, 1, 0, &cached_state
);
7827 current
->journal_info
= dio_data
;
7831 static inline blk_status_t
submit_dio_repair_bio(struct inode
*inode
,
7835 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7838 BUG_ON(bio_op(bio
) == REQ_OP_WRITE
);
7840 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DIO_REPAIR
);
7844 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 0);
7849 static int btrfs_check_dio_repairable(struct inode
*inode
,
7850 struct bio
*failed_bio
,
7851 struct io_failure_record
*failrec
,
7854 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7857 num_copies
= btrfs_num_copies(fs_info
, failrec
->logical
, failrec
->len
);
7858 if (num_copies
== 1) {
7860 * we only have a single copy of the data, so don't bother with
7861 * all the retry and error correction code that follows. no
7862 * matter what the error is, it is very likely to persist.
7864 btrfs_debug(fs_info
,
7865 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7866 num_copies
, failrec
->this_mirror
, failed_mirror
);
7870 failrec
->failed_mirror
= failed_mirror
;
7871 failrec
->this_mirror
++;
7872 if (failrec
->this_mirror
== failed_mirror
)
7873 failrec
->this_mirror
++;
7875 if (failrec
->this_mirror
> num_copies
) {
7876 btrfs_debug(fs_info
,
7877 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7878 num_copies
, failrec
->this_mirror
, failed_mirror
);
7885 static blk_status_t
dio_read_error(struct inode
*inode
, struct bio
*failed_bio
,
7886 struct page
*page
, unsigned int pgoff
,
7887 u64 start
, u64 end
, int failed_mirror
,
7888 bio_end_io_t
*repair_endio
, void *repair_arg
)
7890 struct io_failure_record
*failrec
;
7891 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
7892 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
7895 unsigned int read_mode
= 0;
7898 blk_status_t status
;
7899 struct bio_vec bvec
;
7901 BUG_ON(bio_op(failed_bio
) == REQ_OP_WRITE
);
7903 ret
= btrfs_get_io_failure_record(inode
, start
, end
, &failrec
);
7905 return errno_to_blk_status(ret
);
7907 ret
= btrfs_check_dio_repairable(inode
, failed_bio
, failrec
,
7910 free_io_failure(failure_tree
, io_tree
, failrec
);
7911 return BLK_STS_IOERR
;
7914 segs
= bio_segments(failed_bio
);
7915 bio_get_first_bvec(failed_bio
, &bvec
);
7917 (bvec
.bv_len
> btrfs_inode_sectorsize(inode
)))
7918 read_mode
|= REQ_FAILFAST_DEV
;
7920 isector
= start
- btrfs_io_bio(failed_bio
)->logical
;
7921 isector
>>= inode
->i_sb
->s_blocksize_bits
;
7922 bio
= btrfs_create_repair_bio(inode
, failed_bio
, failrec
, page
,
7923 pgoff
, isector
, repair_endio
, repair_arg
);
7924 bio_set_op_attrs(bio
, REQ_OP_READ
, read_mode
);
7926 btrfs_debug(BTRFS_I(inode
)->root
->fs_info
,
7927 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7928 read_mode
, failrec
->this_mirror
, failrec
->in_validation
);
7930 status
= submit_dio_repair_bio(inode
, bio
, failrec
->this_mirror
);
7932 free_io_failure(failure_tree
, io_tree
, failrec
);
7939 struct btrfs_retry_complete
{
7940 struct completion done
;
7941 struct inode
*inode
;
7946 static void btrfs_retry_endio_nocsum(struct bio
*bio
)
7948 struct btrfs_retry_complete
*done
= bio
->bi_private
;
7949 struct inode
*inode
= done
->inode
;
7950 struct bio_vec
*bvec
;
7951 struct extent_io_tree
*io_tree
, *failure_tree
;
7957 ASSERT(bio
->bi_vcnt
== 1);
7958 io_tree
= &BTRFS_I(inode
)->io_tree
;
7959 failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
7960 ASSERT(bio_first_bvec_all(bio
)->bv_len
== btrfs_inode_sectorsize(inode
));
7963 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
7964 bio_for_each_segment_all(bvec
, bio
, i
)
7965 clean_io_failure(BTRFS_I(inode
)->root
->fs_info
, failure_tree
,
7966 io_tree
, done
->start
, bvec
->bv_page
,
7967 btrfs_ino(BTRFS_I(inode
)), 0);
7969 complete(&done
->done
);
7973 static blk_status_t
__btrfs_correct_data_nocsum(struct inode
*inode
,
7974 struct btrfs_io_bio
*io_bio
)
7976 struct btrfs_fs_info
*fs_info
;
7977 struct bio_vec bvec
;
7978 struct bvec_iter iter
;
7979 struct btrfs_retry_complete done
;
7985 blk_status_t err
= BLK_STS_OK
;
7987 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
7988 sectorsize
= fs_info
->sectorsize
;
7990 start
= io_bio
->logical
;
7992 io_bio
->bio
.bi_iter
= io_bio
->iter
;
7994 bio_for_each_segment(bvec
, &io_bio
->bio
, iter
) {
7995 nr_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, bvec
.bv_len
);
7996 pgoff
= bvec
.bv_offset
;
7998 next_block_or_try_again
:
8001 init_completion(&done
.done
);
8003 ret
= dio_read_error(inode
, &io_bio
->bio
, bvec
.bv_page
,
8004 pgoff
, start
, start
+ sectorsize
- 1,
8006 btrfs_retry_endio_nocsum
, &done
);
8012 wait_for_completion_io(&done
.done
);
8014 if (!done
.uptodate
) {
8015 /* We might have another mirror, so try again */
8016 goto next_block_or_try_again
;
8020 start
+= sectorsize
;
8024 pgoff
+= sectorsize
;
8025 ASSERT(pgoff
< PAGE_SIZE
);
8026 goto next_block_or_try_again
;
8033 static void btrfs_retry_endio(struct bio
*bio
)
8035 struct btrfs_retry_complete
*done
= bio
->bi_private
;
8036 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
8037 struct extent_io_tree
*io_tree
, *failure_tree
;
8038 struct inode
*inode
= done
->inode
;
8039 struct bio_vec
*bvec
;
8049 ASSERT(bio
->bi_vcnt
== 1);
8050 ASSERT(bio_first_bvec_all(bio
)->bv_len
== btrfs_inode_sectorsize(done
->inode
));
8052 io_tree
= &BTRFS_I(inode
)->io_tree
;
8053 failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
8055 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
8056 bio_for_each_segment_all(bvec
, bio
, i
) {
8057 ret
= __readpage_endio_check(inode
, io_bio
, i
, bvec
->bv_page
,
8058 bvec
->bv_offset
, done
->start
,
8061 clean_io_failure(BTRFS_I(inode
)->root
->fs_info
,
8062 failure_tree
, io_tree
, done
->start
,
8064 btrfs_ino(BTRFS_I(inode
)),
8070 done
->uptodate
= uptodate
;
8072 complete(&done
->done
);
8076 static blk_status_t
__btrfs_subio_endio_read(struct inode
*inode
,
8077 struct btrfs_io_bio
*io_bio
, blk_status_t err
)
8079 struct btrfs_fs_info
*fs_info
;
8080 struct bio_vec bvec
;
8081 struct bvec_iter iter
;
8082 struct btrfs_retry_complete done
;
8089 bool uptodate
= (err
== 0);
8091 blk_status_t status
;
8093 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
8094 sectorsize
= fs_info
->sectorsize
;
8097 start
= io_bio
->logical
;
8099 io_bio
->bio
.bi_iter
= io_bio
->iter
;
8101 bio_for_each_segment(bvec
, &io_bio
->bio
, iter
) {
8102 nr_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, bvec
.bv_len
);
8104 pgoff
= bvec
.bv_offset
;
8107 csum_pos
= BTRFS_BYTES_TO_BLKS(fs_info
, offset
);
8108 ret
= __readpage_endio_check(inode
, io_bio
, csum_pos
,
8109 bvec
.bv_page
, pgoff
, start
, sectorsize
);
8116 init_completion(&done
.done
);
8118 status
= dio_read_error(inode
, &io_bio
->bio
, bvec
.bv_page
,
8119 pgoff
, start
, start
+ sectorsize
- 1,
8120 io_bio
->mirror_num
, btrfs_retry_endio
,
8127 wait_for_completion_io(&done
.done
);
8129 if (!done
.uptodate
) {
8130 /* We might have another mirror, so try again */
8134 offset
+= sectorsize
;
8135 start
+= sectorsize
;
8141 pgoff
+= sectorsize
;
8142 ASSERT(pgoff
< PAGE_SIZE
);
8150 static blk_status_t
btrfs_subio_endio_read(struct inode
*inode
,
8151 struct btrfs_io_bio
*io_bio
, blk_status_t err
)
8153 bool skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
8157 return __btrfs_correct_data_nocsum(inode
, io_bio
);
8161 return __btrfs_subio_endio_read(inode
, io_bio
, err
);
8165 static void btrfs_endio_direct_read(struct bio
*bio
)
8167 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8168 struct inode
*inode
= dip
->inode
;
8169 struct bio
*dio_bio
;
8170 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
8171 blk_status_t err
= bio
->bi_status
;
8173 if (dip
->flags
& BTRFS_DIO_ORIG_BIO_SUBMITTED
)
8174 err
= btrfs_subio_endio_read(inode
, io_bio
, err
);
8176 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
8177 dip
->logical_offset
+ dip
->bytes
- 1);
8178 dio_bio
= dip
->dio_bio
;
8182 dio_bio
->bi_status
= err
;
8183 dio_end_io(dio_bio
);
8186 io_bio
->end_io(io_bio
, blk_status_to_errno(err
));
8190 static void __endio_write_update_ordered(struct inode
*inode
,
8191 const u64 offset
, const u64 bytes
,
8192 const bool uptodate
)
8194 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8195 struct btrfs_ordered_extent
*ordered
= NULL
;
8196 struct btrfs_workqueue
*wq
;
8197 btrfs_work_func_t func
;
8198 u64 ordered_offset
= offset
;
8199 u64 ordered_bytes
= bytes
;
8203 if (btrfs_is_free_space_inode(BTRFS_I(inode
))) {
8204 wq
= fs_info
->endio_freespace_worker
;
8205 func
= btrfs_freespace_write_helper
;
8207 wq
= fs_info
->endio_write_workers
;
8208 func
= btrfs_endio_write_helper
;
8212 last_offset
= ordered_offset
;
8213 ret
= btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
8220 btrfs_init_work(&ordered
->work
, func
, finish_ordered_fn
, NULL
, NULL
);
8221 btrfs_queue_work(wq
, &ordered
->work
);
8224 * If btrfs_dec_test_ordered_pending does not find any ordered extent
8225 * in the range, we can exit.
8227 if (ordered_offset
== last_offset
)
8230 * our bio might span multiple ordered extents. If we haven't
8231 * completed the accounting for the whole dio, go back and try again
8233 if (ordered_offset
< offset
+ bytes
) {
8234 ordered_bytes
= offset
+ bytes
- ordered_offset
;
8240 static void btrfs_endio_direct_write(struct bio
*bio
)
8242 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8243 struct bio
*dio_bio
= dip
->dio_bio
;
8245 __endio_write_update_ordered(dip
->inode
, dip
->logical_offset
,
8246 dip
->bytes
, !bio
->bi_status
);
8250 dio_bio
->bi_status
= bio
->bi_status
;
8251 dio_end_io(dio_bio
);
8255 static blk_status_t
__btrfs_submit_bio_start_direct_io(void *private_data
,
8256 struct bio
*bio
, int mirror_num
,
8257 unsigned long bio_flags
, u64 offset
)
8259 struct inode
*inode
= private_data
;
8261 ret
= btrfs_csum_one_bio(inode
, bio
, offset
, 1);
8262 BUG_ON(ret
); /* -ENOMEM */
8266 static void btrfs_end_dio_bio(struct bio
*bio
)
8268 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8269 blk_status_t err
= bio
->bi_status
;
8272 btrfs_warn(BTRFS_I(dip
->inode
)->root
->fs_info
,
8273 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8274 btrfs_ino(BTRFS_I(dip
->inode
)), bio_op(bio
),
8276 (unsigned long long)bio
->bi_iter
.bi_sector
,
8277 bio
->bi_iter
.bi_size
, err
);
8279 if (dip
->subio_endio
)
8280 err
= dip
->subio_endio(dip
->inode
, btrfs_io_bio(bio
), err
);
8286 * before atomic variable goto zero, we must make sure
8287 * dip->errors is perceived to be set.
8289 smp_mb__before_atomic();
8292 /* if there are more bios still pending for this dio, just exit */
8293 if (!atomic_dec_and_test(&dip
->pending_bios
))
8297 bio_io_error(dip
->orig_bio
);
8299 dip
->dio_bio
->bi_status
= BLK_STS_OK
;
8300 bio_endio(dip
->orig_bio
);
8306 static inline blk_status_t
btrfs_lookup_and_bind_dio_csum(struct inode
*inode
,
8307 struct btrfs_dio_private
*dip
,
8311 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
8312 struct btrfs_io_bio
*orig_io_bio
= btrfs_io_bio(dip
->orig_bio
);
8316 * We load all the csum data we need when we submit
8317 * the first bio to reduce the csum tree search and
8320 if (dip
->logical_offset
== file_offset
) {
8321 ret
= btrfs_lookup_bio_sums_dio(inode
, dip
->orig_bio
,
8327 if (bio
== dip
->orig_bio
)
8330 file_offset
-= dip
->logical_offset
;
8331 file_offset
>>= inode
->i_sb
->s_blocksize_bits
;
8332 io_bio
->csum
= (u8
*)(((u32
*)orig_io_bio
->csum
) + file_offset
);
8337 static inline blk_status_t
8338 __btrfs_submit_dio_bio(struct bio
*bio
, struct inode
*inode
, u64 file_offset
,
8341 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8342 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8343 bool write
= bio_op(bio
) == REQ_OP_WRITE
;
8346 /* Check btrfs_submit_bio_hook() for rules about async submit. */
8348 async_submit
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
8351 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DATA
);
8356 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
8359 if (write
&& async_submit
) {
8360 ret
= btrfs_wq_submit_bio(fs_info
, bio
, 0, 0,
8362 __btrfs_submit_bio_start_direct_io
,
8363 __btrfs_submit_bio_done
);
8367 * If we aren't doing async submit, calculate the csum of the
8370 ret
= btrfs_csum_one_bio(inode
, bio
, file_offset
, 1);
8374 ret
= btrfs_lookup_and_bind_dio_csum(inode
, dip
, bio
,
8380 ret
= btrfs_map_bio(fs_info
, bio
, 0, 0);
8385 static int btrfs_submit_direct_hook(struct btrfs_dio_private
*dip
)
8387 struct inode
*inode
= dip
->inode
;
8388 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8390 struct bio
*orig_bio
= dip
->orig_bio
;
8391 u64 start_sector
= orig_bio
->bi_iter
.bi_sector
;
8392 u64 file_offset
= dip
->logical_offset
;
8394 int async_submit
= 0;
8396 int clone_offset
= 0;
8399 blk_status_t status
;
8401 map_length
= orig_bio
->bi_iter
.bi_size
;
8402 submit_len
= map_length
;
8403 ret
= btrfs_map_block(fs_info
, btrfs_op(orig_bio
), start_sector
<< 9,
8404 &map_length
, NULL
, 0);
8408 if (map_length
>= submit_len
) {
8410 dip
->flags
|= BTRFS_DIO_ORIG_BIO_SUBMITTED
;
8414 /* async crcs make it difficult to collect full stripe writes. */
8415 if (btrfs_data_alloc_profile(fs_info
) & BTRFS_BLOCK_GROUP_RAID56_MASK
)
8421 ASSERT(map_length
<= INT_MAX
);
8422 atomic_inc(&dip
->pending_bios
);
8424 clone_len
= min_t(int, submit_len
, map_length
);
8427 * This will never fail as it's passing GPF_NOFS and
8428 * the allocation is backed by btrfs_bioset.
8430 bio
= btrfs_bio_clone_partial(orig_bio
, clone_offset
,
8432 bio
->bi_private
= dip
;
8433 bio
->bi_end_io
= btrfs_end_dio_bio
;
8434 btrfs_io_bio(bio
)->logical
= file_offset
;
8436 ASSERT(submit_len
>= clone_len
);
8437 submit_len
-= clone_len
;
8438 if (submit_len
== 0)
8442 * Increase the count before we submit the bio so we know
8443 * the end IO handler won't happen before we increase the
8444 * count. Otherwise, the dip might get freed before we're
8445 * done setting it up.
8447 atomic_inc(&dip
->pending_bios
);
8449 status
= __btrfs_submit_dio_bio(bio
, inode
, file_offset
,
8453 atomic_dec(&dip
->pending_bios
);
8457 clone_offset
+= clone_len
;
8458 start_sector
+= clone_len
>> 9;
8459 file_offset
+= clone_len
;
8461 map_length
= submit_len
;
8462 ret
= btrfs_map_block(fs_info
, btrfs_op(orig_bio
),
8463 start_sector
<< 9, &map_length
, NULL
, 0);
8466 } while (submit_len
> 0);
8469 status
= __btrfs_submit_dio_bio(bio
, inode
, file_offset
, async_submit
);
8477 * before atomic variable goto zero, we must
8478 * make sure dip->errors is perceived to be set.
8480 smp_mb__before_atomic();
8481 if (atomic_dec_and_test(&dip
->pending_bios
))
8482 bio_io_error(dip
->orig_bio
);
8484 /* bio_end_io() will handle error, so we needn't return it */
8488 static void btrfs_submit_direct(struct bio
*dio_bio
, struct inode
*inode
,
8491 struct btrfs_dio_private
*dip
= NULL
;
8492 struct bio
*bio
= NULL
;
8493 struct btrfs_io_bio
*io_bio
;
8494 bool write
= (bio_op(dio_bio
) == REQ_OP_WRITE
);
8497 bio
= btrfs_bio_clone(dio_bio
);
8499 dip
= kzalloc(sizeof(*dip
), GFP_NOFS
);
8505 dip
->private = dio_bio
->bi_private
;
8507 dip
->logical_offset
= file_offset
;
8508 dip
->bytes
= dio_bio
->bi_iter
.bi_size
;
8509 dip
->disk_bytenr
= (u64
)dio_bio
->bi_iter
.bi_sector
<< 9;
8510 bio
->bi_private
= dip
;
8511 dip
->orig_bio
= bio
;
8512 dip
->dio_bio
= dio_bio
;
8513 atomic_set(&dip
->pending_bios
, 0);
8514 io_bio
= btrfs_io_bio(bio
);
8515 io_bio
->logical
= file_offset
;
8518 bio
->bi_end_io
= btrfs_endio_direct_write
;
8520 bio
->bi_end_io
= btrfs_endio_direct_read
;
8521 dip
->subio_endio
= btrfs_subio_endio_read
;
8525 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8526 * even if we fail to submit a bio, because in such case we do the
8527 * corresponding error handling below and it must not be done a second
8528 * time by btrfs_direct_IO().
8531 struct btrfs_dio_data
*dio_data
= current
->journal_info
;
8533 dio_data
->unsubmitted_oe_range_end
= dip
->logical_offset
+
8535 dio_data
->unsubmitted_oe_range_start
=
8536 dio_data
->unsubmitted_oe_range_end
;
8539 ret
= btrfs_submit_direct_hook(dip
);
8544 io_bio
->end_io(io_bio
, ret
);
8548 * If we arrived here it means either we failed to submit the dip
8549 * or we either failed to clone the dio_bio or failed to allocate the
8550 * dip. If we cloned the dio_bio and allocated the dip, we can just
8551 * call bio_endio against our io_bio so that we get proper resource
8552 * cleanup if we fail to submit the dip, otherwise, we must do the
8553 * same as btrfs_endio_direct_[write|read] because we can't call these
8554 * callbacks - they require an allocated dip and a clone of dio_bio.
8559 * The end io callbacks free our dip, do the final put on bio
8560 * and all the cleanup and final put for dio_bio (through
8567 __endio_write_update_ordered(inode
,
8569 dio_bio
->bi_iter
.bi_size
,
8572 unlock_extent(&BTRFS_I(inode
)->io_tree
, file_offset
,
8573 file_offset
+ dio_bio
->bi_iter
.bi_size
- 1);
8575 dio_bio
->bi_status
= BLK_STS_IOERR
;
8577 * Releases and cleans up our dio_bio, no need to bio_put()
8578 * nor bio_endio()/bio_io_error() against dio_bio.
8580 dio_end_io(dio_bio
);
8587 static ssize_t
check_direct_IO(struct btrfs_fs_info
*fs_info
,
8588 const struct iov_iter
*iter
, loff_t offset
)
8592 unsigned int blocksize_mask
= fs_info
->sectorsize
- 1;
8593 ssize_t retval
= -EINVAL
;
8595 if (offset
& blocksize_mask
)
8598 if (iov_iter_alignment(iter
) & blocksize_mask
)
8601 /* If this is a write we don't need to check anymore */
8602 if (iov_iter_rw(iter
) != READ
|| !iter_is_iovec(iter
))
8605 * Check to make sure we don't have duplicate iov_base's in this
8606 * iovec, if so return EINVAL, otherwise we'll get csum errors
8607 * when reading back.
8609 for (seg
= 0; seg
< iter
->nr_segs
; seg
++) {
8610 for (i
= seg
+ 1; i
< iter
->nr_segs
; i
++) {
8611 if (iter
->iov
[seg
].iov_base
== iter
->iov
[i
].iov_base
)
8620 static ssize_t
btrfs_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
)
8622 struct file
*file
= iocb
->ki_filp
;
8623 struct inode
*inode
= file
->f_mapping
->host
;
8624 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8625 struct btrfs_dio_data dio_data
= { 0 };
8626 struct extent_changeset
*data_reserved
= NULL
;
8627 loff_t offset
= iocb
->ki_pos
;
8631 bool relock
= false;
8634 if (check_direct_IO(fs_info
, iter
, offset
))
8637 inode_dio_begin(inode
);
8640 * The generic stuff only does filemap_write_and_wait_range, which
8641 * isn't enough if we've written compressed pages to this area, so
8642 * we need to flush the dirty pages again to make absolutely sure
8643 * that any outstanding dirty pages are on disk.
8645 count
= iov_iter_count(iter
);
8646 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
8647 &BTRFS_I(inode
)->runtime_flags
))
8648 filemap_fdatawrite_range(inode
->i_mapping
, offset
,
8649 offset
+ count
- 1);
8651 if (iov_iter_rw(iter
) == WRITE
) {
8653 * If the write DIO is beyond the EOF, we need update
8654 * the isize, but it is protected by i_mutex. So we can
8655 * not unlock the i_mutex at this case.
8657 if (offset
+ count
<= inode
->i_size
) {
8658 dio_data
.overwrite
= 1;
8659 inode_unlock(inode
);
8661 } else if (iocb
->ki_flags
& IOCB_NOWAIT
) {
8665 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
,
8671 * We need to know how many extents we reserved so that we can
8672 * do the accounting properly if we go over the number we
8673 * originally calculated. Abuse current->journal_info for this.
8675 dio_data
.reserve
= round_up(count
,
8676 fs_info
->sectorsize
);
8677 dio_data
.unsubmitted_oe_range_start
= (u64
)offset
;
8678 dio_data
.unsubmitted_oe_range_end
= (u64
)offset
;
8679 current
->journal_info
= &dio_data
;
8680 down_read(&BTRFS_I(inode
)->dio_sem
);
8681 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK
,
8682 &BTRFS_I(inode
)->runtime_flags
)) {
8683 inode_dio_end(inode
);
8684 flags
= DIO_LOCKING
| DIO_SKIP_HOLES
;
8688 ret
= __blockdev_direct_IO(iocb
, inode
,
8689 fs_info
->fs_devices
->latest_bdev
,
8690 iter
, btrfs_get_blocks_direct
, NULL
,
8691 btrfs_submit_direct
, flags
);
8692 if (iov_iter_rw(iter
) == WRITE
) {
8693 up_read(&BTRFS_I(inode
)->dio_sem
);
8694 current
->journal_info
= NULL
;
8695 if (ret
< 0 && ret
!= -EIOCBQUEUED
) {
8696 if (dio_data
.reserve
)
8697 btrfs_delalloc_release_space(inode
, data_reserved
,
8698 offset
, dio_data
.reserve
);
8700 * On error we might have left some ordered extents
8701 * without submitting corresponding bios for them, so
8702 * cleanup them up to avoid other tasks getting them
8703 * and waiting for them to complete forever.
8705 if (dio_data
.unsubmitted_oe_range_start
<
8706 dio_data
.unsubmitted_oe_range_end
)
8707 __endio_write_update_ordered(inode
,
8708 dio_data
.unsubmitted_oe_range_start
,
8709 dio_data
.unsubmitted_oe_range_end
-
8710 dio_data
.unsubmitted_oe_range_start
,
8712 } else if (ret
>= 0 && (size_t)ret
< count
)
8713 btrfs_delalloc_release_space(inode
, data_reserved
,
8714 offset
, count
- (size_t)ret
);
8715 btrfs_delalloc_release_extents(BTRFS_I(inode
), count
);
8719 inode_dio_end(inode
);
8723 extent_changeset_free(data_reserved
);
8727 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8729 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
8730 __u64 start
, __u64 len
)
8734 ret
= fiemap_check_flags(fieinfo
, BTRFS_FIEMAP_FLAGS
);
8738 return extent_fiemap(inode
, fieinfo
, start
, len
);
8741 int btrfs_readpage(struct file
*file
, struct page
*page
)
8743 struct extent_io_tree
*tree
;
8744 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8745 return extent_read_full_page(tree
, page
, btrfs_get_extent
, 0);
8748 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
8750 struct inode
*inode
= page
->mapping
->host
;
8753 if (current
->flags
& PF_MEMALLOC
) {
8754 redirty_page_for_writepage(wbc
, page
);
8760 * If we are under memory pressure we will call this directly from the
8761 * VM, we need to make sure we have the inode referenced for the ordered
8762 * extent. If not just return like we didn't do anything.
8764 if (!igrab(inode
)) {
8765 redirty_page_for_writepage(wbc
, page
);
8766 return AOP_WRITEPAGE_ACTIVATE
;
8768 ret
= extent_write_full_page(page
, wbc
);
8769 btrfs_add_delayed_iput(inode
);
8773 static int btrfs_writepages(struct address_space
*mapping
,
8774 struct writeback_control
*wbc
)
8776 struct extent_io_tree
*tree
;
8778 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
8779 return extent_writepages(tree
, mapping
, wbc
);
8783 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
8784 struct list_head
*pages
, unsigned nr_pages
)
8786 struct extent_io_tree
*tree
;
8787 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
8788 return extent_readpages(tree
, mapping
, pages
, nr_pages
);
8790 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8792 struct extent_io_tree
*tree
;
8793 struct extent_map_tree
*map
;
8796 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8797 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
8798 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
8800 ClearPagePrivate(page
);
8801 set_page_private(page
, 0);
8807 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8809 if (PageWriteback(page
) || PageDirty(page
))
8811 return __btrfs_releasepage(page
, gfp_flags
);
8814 static void btrfs_invalidatepage(struct page
*page
, unsigned int offset
,
8815 unsigned int length
)
8817 struct inode
*inode
= page
->mapping
->host
;
8818 struct extent_io_tree
*tree
;
8819 struct btrfs_ordered_extent
*ordered
;
8820 struct extent_state
*cached_state
= NULL
;
8821 u64 page_start
= page_offset(page
);
8822 u64 page_end
= page_start
+ PAGE_SIZE
- 1;
8825 int inode_evicting
= inode
->i_state
& I_FREEING
;
8828 * we have the page locked, so new writeback can't start,
8829 * and the dirty bit won't be cleared while we are here.
8831 * Wait for IO on this page so that we can safely clear
8832 * the PagePrivate2 bit and do ordered accounting
8834 wait_on_page_writeback(page
);
8836 tree
= &BTRFS_I(inode
)->io_tree
;
8838 btrfs_releasepage(page
, GFP_NOFS
);
8842 if (!inode_evicting
)
8843 lock_extent_bits(tree
, page_start
, page_end
, &cached_state
);
8846 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), start
,
8847 page_end
- start
+ 1);
8849 end
= min(page_end
, ordered
->file_offset
+ ordered
->len
- 1);
8851 * IO on this page will never be started, so we need
8852 * to account for any ordered extents now
8854 if (!inode_evicting
)
8855 clear_extent_bit(tree
, start
, end
,
8856 EXTENT_DIRTY
| EXTENT_DELALLOC
|
8857 EXTENT_DELALLOC_NEW
|
8858 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
|
8859 EXTENT_DEFRAG
, 1, 0, &cached_state
);
8861 * whoever cleared the private bit is responsible
8862 * for the finish_ordered_io
8864 if (TestClearPagePrivate2(page
)) {
8865 struct btrfs_ordered_inode_tree
*tree
;
8868 tree
= &BTRFS_I(inode
)->ordered_tree
;
8870 spin_lock_irq(&tree
->lock
);
8871 set_bit(BTRFS_ORDERED_TRUNCATED
, &ordered
->flags
);
8872 new_len
= start
- ordered
->file_offset
;
8873 if (new_len
< ordered
->truncated_len
)
8874 ordered
->truncated_len
= new_len
;
8875 spin_unlock_irq(&tree
->lock
);
8877 if (btrfs_dec_test_ordered_pending(inode
, &ordered
,
8879 end
- start
+ 1, 1))
8880 btrfs_finish_ordered_io(ordered
);
8882 btrfs_put_ordered_extent(ordered
);
8883 if (!inode_evicting
) {
8884 cached_state
= NULL
;
8885 lock_extent_bits(tree
, start
, end
,
8890 if (start
< page_end
)
8895 * Qgroup reserved space handler
8896 * Page here will be either
8897 * 1) Already written to disk
8898 * In this case, its reserved space is released from data rsv map
8899 * and will be freed by delayed_ref handler finally.
8900 * So even we call qgroup_free_data(), it won't decrease reserved
8902 * 2) Not written to disk
8903 * This means the reserved space should be freed here. However,
8904 * if a truncate invalidates the page (by clearing PageDirty)
8905 * and the page is accounted for while allocating extent
8906 * in btrfs_check_data_free_space() we let delayed_ref to
8907 * free the entire extent.
8909 if (PageDirty(page
))
8910 btrfs_qgroup_free_data(inode
, NULL
, page_start
, PAGE_SIZE
);
8911 if (!inode_evicting
) {
8912 clear_extent_bit(tree
, page_start
, page_end
,
8913 EXTENT_LOCKED
| EXTENT_DIRTY
|
8914 EXTENT_DELALLOC
| EXTENT_DELALLOC_NEW
|
8915 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 1, 1,
8918 __btrfs_releasepage(page
, GFP_NOFS
);
8921 ClearPageChecked(page
);
8922 if (PagePrivate(page
)) {
8923 ClearPagePrivate(page
);
8924 set_page_private(page
, 0);
8930 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8931 * called from a page fault handler when a page is first dirtied. Hence we must
8932 * be careful to check for EOF conditions here. We set the page up correctly
8933 * for a written page which means we get ENOSPC checking when writing into
8934 * holes and correct delalloc and unwritten extent mapping on filesystems that
8935 * support these features.
8937 * We are not allowed to take the i_mutex here so we have to play games to
8938 * protect against truncate races as the page could now be beyond EOF. Because
8939 * vmtruncate() writes the inode size before removing pages, once we have the
8940 * page lock we can determine safely if the page is beyond EOF. If it is not
8941 * beyond EOF, then the page is guaranteed safe against truncation until we
8944 int btrfs_page_mkwrite(struct vm_fault
*vmf
)
8946 struct page
*page
= vmf
->page
;
8947 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
8948 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8949 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
8950 struct btrfs_ordered_extent
*ordered
;
8951 struct extent_state
*cached_state
= NULL
;
8952 struct extent_changeset
*data_reserved
= NULL
;
8954 unsigned long zero_start
;
8963 reserved_space
= PAGE_SIZE
;
8965 sb_start_pagefault(inode
->i_sb
);
8966 page_start
= page_offset(page
);
8967 page_end
= page_start
+ PAGE_SIZE
- 1;
8971 * Reserving delalloc space after obtaining the page lock can lead to
8972 * deadlock. For example, if a dirty page is locked by this function
8973 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8974 * dirty page write out, then the btrfs_writepage() function could
8975 * end up waiting indefinitely to get a lock on the page currently
8976 * being processed by btrfs_page_mkwrite() function.
8978 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
, page_start
,
8981 ret
= file_update_time(vmf
->vma
->vm_file
);
8987 else /* -ENOSPC, -EIO, etc */
8988 ret
= VM_FAULT_SIGBUS
;
8994 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
8997 size
= i_size_read(inode
);
8999 if ((page
->mapping
!= inode
->i_mapping
) ||
9000 (page_start
>= size
)) {
9001 /* page got truncated out from underneath us */
9004 wait_on_page_writeback(page
);
9006 lock_extent_bits(io_tree
, page_start
, page_end
, &cached_state
);
9007 set_page_extent_mapped(page
);
9010 * we can't set the delalloc bits if there are pending ordered
9011 * extents. Drop our locks and wait for them to finish
9013 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), page_start
,
9016 unlock_extent_cached(io_tree
, page_start
, page_end
,
9019 btrfs_start_ordered_extent(inode
, ordered
, 1);
9020 btrfs_put_ordered_extent(ordered
);
9024 if (page
->index
== ((size
- 1) >> PAGE_SHIFT
)) {
9025 reserved_space
= round_up(size
- page_start
,
9026 fs_info
->sectorsize
);
9027 if (reserved_space
< PAGE_SIZE
) {
9028 end
= page_start
+ reserved_space
- 1;
9029 btrfs_delalloc_release_space(inode
, data_reserved
,
9030 page_start
, PAGE_SIZE
- reserved_space
);
9035 * page_mkwrite gets called when the page is firstly dirtied after it's
9036 * faulted in, but write(2) could also dirty a page and set delalloc
9037 * bits, thus in this case for space account reason, we still need to
9038 * clear any delalloc bits within this page range since we have to
9039 * reserve data&meta space before lock_page() (see above comments).
9041 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, end
,
9042 EXTENT_DIRTY
| EXTENT_DELALLOC
|
9043 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
9044 0, 0, &cached_state
);
9046 ret
= btrfs_set_extent_delalloc(inode
, page_start
, end
, 0,
9049 unlock_extent_cached(io_tree
, page_start
, page_end
,
9051 ret
= VM_FAULT_SIGBUS
;
9056 /* page is wholly or partially inside EOF */
9057 if (page_start
+ PAGE_SIZE
> size
)
9058 zero_start
= size
& ~PAGE_MASK
;
9060 zero_start
= PAGE_SIZE
;
9062 if (zero_start
!= PAGE_SIZE
) {
9064 memset(kaddr
+ zero_start
, 0, PAGE_SIZE
- zero_start
);
9065 flush_dcache_page(page
);
9068 ClearPageChecked(page
);
9069 set_page_dirty(page
);
9070 SetPageUptodate(page
);
9072 BTRFS_I(inode
)->last_trans
= fs_info
->generation
;
9073 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
9074 BTRFS_I(inode
)->last_log_commit
= BTRFS_I(inode
)->root
->last_log_commit
;
9076 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
);
9080 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
);
9081 sb_end_pagefault(inode
->i_sb
);
9082 extent_changeset_free(data_reserved
);
9083 return VM_FAULT_LOCKED
;
9087 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
);
9088 btrfs_delalloc_release_space(inode
, data_reserved
, page_start
,
9091 sb_end_pagefault(inode
->i_sb
);
9092 extent_changeset_free(data_reserved
);
9096 static int btrfs_truncate(struct inode
*inode
)
9098 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
9099 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9100 struct btrfs_block_rsv
*rsv
;
9103 struct btrfs_trans_handle
*trans
;
9104 u64 mask
= fs_info
->sectorsize
- 1;
9105 u64 min_size
= btrfs_calc_trunc_metadata_size(fs_info
, 1);
9107 ret
= btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
),
9113 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
9114 * 3 things going on here
9116 * 1) We need to reserve space for our orphan item and the space to
9117 * delete our orphan item. Lord knows we don't want to have a dangling
9118 * orphan item because we didn't reserve space to remove it.
9120 * 2) We need to reserve space to update our inode.
9122 * 3) We need to have something to cache all the space that is going to
9123 * be free'd up by the truncate operation, but also have some slack
9124 * space reserved in case it uses space during the truncate (thank you
9125 * very much snapshotting).
9127 * And we need these to all be separate. The fact is we can use a lot of
9128 * space doing the truncate, and we have no earthly idea how much space
9129 * we will use, so we need the truncate reservation to be separate so it
9130 * doesn't end up using space reserved for updating the inode or
9131 * removing the orphan item. We also need to be able to stop the
9132 * transaction and start a new one, which means we need to be able to
9133 * update the inode several times, and we have no idea of knowing how
9134 * many times that will be, so we can't just reserve 1 item for the
9135 * entirety of the operation, so that has to be done separately as well.
9136 * Then there is the orphan item, which does indeed need to be held on
9137 * to for the whole operation, and we need nobody to touch this reserved
9138 * space except the orphan code.
9140 * So that leaves us with
9142 * 1) root->orphan_block_rsv - for the orphan deletion.
9143 * 2) rsv - for the truncate reservation, which we will steal from the
9144 * transaction reservation.
9145 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9146 * updating the inode.
9148 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
9151 rsv
->size
= min_size
;
9155 * 1 for the truncate slack space
9156 * 1 for updating the inode.
9158 trans
= btrfs_start_transaction(root
, 2);
9159 if (IS_ERR(trans
)) {
9160 err
= PTR_ERR(trans
);
9164 /* Migrate the slack space for the truncate to our reserve */
9165 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
, rsv
,
9170 * So if we truncate and then write and fsync we normally would just
9171 * write the extents that changed, which is a problem if we need to
9172 * first truncate that entire inode. So set this flag so we write out
9173 * all of the extents in the inode to the sync log so we're completely
9176 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
9177 trans
->block_rsv
= rsv
;
9180 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
9182 BTRFS_EXTENT_DATA_KEY
);
9183 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
9184 if (ret
!= -ENOSPC
&& ret
!= -EAGAIN
) {
9189 ret
= btrfs_update_inode(trans
, root
, inode
);
9195 btrfs_end_transaction(trans
);
9196 btrfs_btree_balance_dirty(fs_info
);
9198 trans
= btrfs_start_transaction(root
, 2);
9199 if (IS_ERR(trans
)) {
9200 ret
= err
= PTR_ERR(trans
);
9205 btrfs_block_rsv_release(fs_info
, rsv
, -1);
9206 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
,
9208 BUG_ON(ret
); /* shouldn't happen */
9209 trans
->block_rsv
= rsv
;
9213 * We can't call btrfs_truncate_block inside a trans handle as we could
9214 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9215 * we've truncated everything except the last little bit, and can do
9216 * btrfs_truncate_block and then update the disk_i_size.
9218 if (ret
== NEED_TRUNCATE_BLOCK
) {
9219 btrfs_end_transaction(trans
);
9220 btrfs_btree_balance_dirty(fs_info
);
9222 ret
= btrfs_truncate_block(inode
, inode
->i_size
, 0, 0);
9225 trans
= btrfs_start_transaction(root
, 1);
9226 if (IS_ERR(trans
)) {
9227 ret
= PTR_ERR(trans
);
9230 btrfs_ordered_update_i_size(inode
, inode
->i_size
, NULL
);
9233 if (ret
== 0 && inode
->i_nlink
> 0) {
9234 trans
->block_rsv
= root
->orphan_block_rsv
;
9235 ret
= btrfs_orphan_del(trans
, BTRFS_I(inode
));
9241 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
9242 ret
= btrfs_update_inode(trans
, root
, inode
);
9246 ret
= btrfs_end_transaction(trans
);
9247 btrfs_btree_balance_dirty(fs_info
);
9250 btrfs_free_block_rsv(fs_info
, rsv
);
9259 * create a new subvolume directory/inode (helper for the ioctl).
9261 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
9262 struct btrfs_root
*new_root
,
9263 struct btrfs_root
*parent_root
,
9266 struct inode
*inode
;
9270 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2,
9271 new_dirid
, new_dirid
,
9272 S_IFDIR
| (~current_umask() & S_IRWXUGO
),
9275 return PTR_ERR(inode
);
9276 inode
->i_op
= &btrfs_dir_inode_operations
;
9277 inode
->i_fop
= &btrfs_dir_file_operations
;
9279 set_nlink(inode
, 1);
9280 btrfs_i_size_write(BTRFS_I(inode
), 0);
9281 unlock_new_inode(inode
);
9283 err
= btrfs_subvol_inherit_props(trans
, new_root
, parent_root
);
9285 btrfs_err(new_root
->fs_info
,
9286 "error inheriting subvolume %llu properties: %d",
9287 new_root
->root_key
.objectid
, err
);
9289 err
= btrfs_update_inode(trans
, new_root
, inode
);
9295 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
9297 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
9298 struct btrfs_inode
*ei
;
9299 struct inode
*inode
;
9301 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_KERNEL
);
9308 ei
->last_sub_trans
= 0;
9309 ei
->logged_trans
= 0;
9310 ei
->delalloc_bytes
= 0;
9311 ei
->new_delalloc_bytes
= 0;
9312 ei
->defrag_bytes
= 0;
9313 ei
->disk_i_size
= 0;
9316 ei
->index_cnt
= (u64
)-1;
9318 ei
->last_unlink_trans
= 0;
9319 ei
->last_log_commit
= 0;
9320 ei
->delayed_iput_count
= 0;
9322 spin_lock_init(&ei
->lock
);
9323 ei
->outstanding_extents
= 0;
9324 if (sb
->s_magic
!= BTRFS_TEST_MAGIC
)
9325 btrfs_init_metadata_block_rsv(fs_info
, &ei
->block_rsv
,
9326 BTRFS_BLOCK_RSV_DELALLOC
);
9327 ei
->runtime_flags
= 0;
9328 ei
->prop_compress
= BTRFS_COMPRESS_NONE
;
9329 ei
->defrag_compress
= BTRFS_COMPRESS_NONE
;
9331 ei
->delayed_node
= NULL
;
9333 ei
->i_otime
.tv_sec
= 0;
9334 ei
->i_otime
.tv_nsec
= 0;
9336 inode
= &ei
->vfs_inode
;
9337 extent_map_tree_init(&ei
->extent_tree
);
9338 extent_io_tree_init(&ei
->io_tree
, inode
);
9339 extent_io_tree_init(&ei
->io_failure_tree
, inode
);
9340 ei
->io_tree
.track_uptodate
= 1;
9341 ei
->io_failure_tree
.track_uptodate
= 1;
9342 atomic_set(&ei
->sync_writers
, 0);
9343 mutex_init(&ei
->log_mutex
);
9344 mutex_init(&ei
->delalloc_mutex
);
9345 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
9346 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
9347 INIT_LIST_HEAD(&ei
->delayed_iput
);
9348 RB_CLEAR_NODE(&ei
->rb_node
);
9349 init_rwsem(&ei
->dio_sem
);
9354 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9355 void btrfs_test_destroy_inode(struct inode
*inode
)
9357 btrfs_drop_extent_cache(BTRFS_I(inode
), 0, (u64
)-1, 0);
9358 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
9362 static void btrfs_i_callback(struct rcu_head
*head
)
9364 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
9365 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
9368 void btrfs_destroy_inode(struct inode
*inode
)
9370 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
9371 struct btrfs_ordered_extent
*ordered
;
9372 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9374 WARN_ON(!hlist_empty(&inode
->i_dentry
));
9375 WARN_ON(inode
->i_data
.nrpages
);
9376 WARN_ON(BTRFS_I(inode
)->block_rsv
.reserved
);
9377 WARN_ON(BTRFS_I(inode
)->block_rsv
.size
);
9378 WARN_ON(BTRFS_I(inode
)->outstanding_extents
);
9379 WARN_ON(BTRFS_I(inode
)->delalloc_bytes
);
9380 WARN_ON(BTRFS_I(inode
)->new_delalloc_bytes
);
9381 WARN_ON(BTRFS_I(inode
)->csum_bytes
);
9382 WARN_ON(BTRFS_I(inode
)->defrag_bytes
);
9385 * This can happen where we create an inode, but somebody else also
9386 * created the same inode and we need to destroy the one we already
9392 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
9393 &BTRFS_I(inode
)->runtime_flags
)) {
9394 btrfs_info(fs_info
, "inode %llu still on the orphan list",
9395 btrfs_ino(BTRFS_I(inode
)));
9396 atomic_dec(&root
->orphan_inodes
);
9400 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
9405 "found ordered extent %llu %llu on inode cleanup",
9406 ordered
->file_offset
, ordered
->len
);
9407 btrfs_remove_ordered_extent(inode
, ordered
);
9408 btrfs_put_ordered_extent(ordered
);
9409 btrfs_put_ordered_extent(ordered
);
9412 btrfs_qgroup_check_reserved_leak(inode
);
9413 inode_tree_del(inode
);
9414 btrfs_drop_extent_cache(BTRFS_I(inode
), 0, (u64
)-1, 0);
9416 call_rcu(&inode
->i_rcu
, btrfs_i_callback
);
9419 int btrfs_drop_inode(struct inode
*inode
)
9421 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9426 /* the snap/subvol tree is on deleting */
9427 if (btrfs_root_refs(&root
->root_item
) == 0)
9430 return generic_drop_inode(inode
);
9433 static void init_once(void *foo
)
9435 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
9437 inode_init_once(&ei
->vfs_inode
);
9440 void btrfs_destroy_cachep(void)
9443 * Make sure all delayed rcu free inodes are flushed before we
9447 kmem_cache_destroy(btrfs_inode_cachep
);
9448 kmem_cache_destroy(btrfs_trans_handle_cachep
);
9449 kmem_cache_destroy(btrfs_path_cachep
);
9450 kmem_cache_destroy(btrfs_free_space_cachep
);
9453 int __init
btrfs_init_cachep(void)
9455 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode",
9456 sizeof(struct btrfs_inode
), 0,
9457 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
| SLAB_ACCOUNT
,
9459 if (!btrfs_inode_cachep
)
9462 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle",
9463 sizeof(struct btrfs_trans_handle
), 0,
9464 SLAB_TEMPORARY
| SLAB_MEM_SPREAD
, NULL
);
9465 if (!btrfs_trans_handle_cachep
)
9468 btrfs_path_cachep
= kmem_cache_create("btrfs_path",
9469 sizeof(struct btrfs_path
), 0,
9470 SLAB_MEM_SPREAD
, NULL
);
9471 if (!btrfs_path_cachep
)
9474 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space",
9475 sizeof(struct btrfs_free_space
), 0,
9476 SLAB_MEM_SPREAD
, NULL
);
9477 if (!btrfs_free_space_cachep
)
9482 btrfs_destroy_cachep();
9486 static int btrfs_getattr(const struct path
*path
, struct kstat
*stat
,
9487 u32 request_mask
, unsigned int flags
)
9490 struct inode
*inode
= d_inode(path
->dentry
);
9491 u32 blocksize
= inode
->i_sb
->s_blocksize
;
9492 u32 bi_flags
= BTRFS_I(inode
)->flags
;
9494 stat
->result_mask
|= STATX_BTIME
;
9495 stat
->btime
.tv_sec
= BTRFS_I(inode
)->i_otime
.tv_sec
;
9496 stat
->btime
.tv_nsec
= BTRFS_I(inode
)->i_otime
.tv_nsec
;
9497 if (bi_flags
& BTRFS_INODE_APPEND
)
9498 stat
->attributes
|= STATX_ATTR_APPEND
;
9499 if (bi_flags
& BTRFS_INODE_COMPRESS
)
9500 stat
->attributes
|= STATX_ATTR_COMPRESSED
;
9501 if (bi_flags
& BTRFS_INODE_IMMUTABLE
)
9502 stat
->attributes
|= STATX_ATTR_IMMUTABLE
;
9503 if (bi_flags
& BTRFS_INODE_NODUMP
)
9504 stat
->attributes
|= STATX_ATTR_NODUMP
;
9506 stat
->attributes_mask
|= (STATX_ATTR_APPEND
|
9507 STATX_ATTR_COMPRESSED
|
9508 STATX_ATTR_IMMUTABLE
|
9511 generic_fillattr(inode
, stat
);
9512 stat
->dev
= BTRFS_I(inode
)->root
->anon_dev
;
9514 spin_lock(&BTRFS_I(inode
)->lock
);
9515 delalloc_bytes
= BTRFS_I(inode
)->new_delalloc_bytes
;
9516 spin_unlock(&BTRFS_I(inode
)->lock
);
9517 stat
->blocks
= (ALIGN(inode_get_bytes(inode
), blocksize
) +
9518 ALIGN(delalloc_bytes
, blocksize
)) >> 9;
9522 static int btrfs_rename_exchange(struct inode
*old_dir
,
9523 struct dentry
*old_dentry
,
9524 struct inode
*new_dir
,
9525 struct dentry
*new_dentry
)
9527 struct btrfs_fs_info
*fs_info
= btrfs_sb(old_dir
->i_sb
);
9528 struct btrfs_trans_handle
*trans
;
9529 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
9530 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
9531 struct inode
*new_inode
= new_dentry
->d_inode
;
9532 struct inode
*old_inode
= old_dentry
->d_inode
;
9533 struct timespec ctime
= current_time(old_inode
);
9534 struct dentry
*parent
;
9535 u64 old_ino
= btrfs_ino(BTRFS_I(old_inode
));
9536 u64 new_ino
= btrfs_ino(BTRFS_I(new_inode
));
9541 bool root_log_pinned
= false;
9542 bool dest_log_pinned
= false;
9544 /* we only allow rename subvolume link between subvolumes */
9545 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
9548 /* close the race window with snapshot create/destroy ioctl */
9549 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9550 down_read(&fs_info
->subvol_sem
);
9551 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9552 down_read(&fs_info
->subvol_sem
);
9555 * We want to reserve the absolute worst case amount of items. So if
9556 * both inodes are subvols and we need to unlink them then that would
9557 * require 4 item modifications, but if they are both normal inodes it
9558 * would require 5 item modifications, so we'll assume their normal
9559 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9560 * should cover the worst case number of items we'll modify.
9562 trans
= btrfs_start_transaction(root
, 12);
9563 if (IS_ERR(trans
)) {
9564 ret
= PTR_ERR(trans
);
9569 * We need to find a free sequence number both in the source and
9570 * in the destination directory for the exchange.
9572 ret
= btrfs_set_inode_index(BTRFS_I(new_dir
), &old_idx
);
9575 ret
= btrfs_set_inode_index(BTRFS_I(old_dir
), &new_idx
);
9579 BTRFS_I(old_inode
)->dir_index
= 0ULL;
9580 BTRFS_I(new_inode
)->dir_index
= 0ULL;
9582 /* Reference for the source. */
9583 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9584 /* force full log commit if subvolume involved. */
9585 btrfs_set_log_full_commit(fs_info
, trans
);
9587 btrfs_pin_log_trans(root
);
9588 root_log_pinned
= true;
9589 ret
= btrfs_insert_inode_ref(trans
, dest
,
9590 new_dentry
->d_name
.name
,
9591 new_dentry
->d_name
.len
,
9593 btrfs_ino(BTRFS_I(new_dir
)),
9599 /* And now for the dest. */
9600 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9601 /* force full log commit if subvolume involved. */
9602 btrfs_set_log_full_commit(fs_info
, trans
);
9604 btrfs_pin_log_trans(dest
);
9605 dest_log_pinned
= true;
9606 ret
= btrfs_insert_inode_ref(trans
, root
,
9607 old_dentry
->d_name
.name
,
9608 old_dentry
->d_name
.len
,
9610 btrfs_ino(BTRFS_I(old_dir
)),
9616 /* Update inode version and ctime/mtime. */
9617 inode_inc_iversion(old_dir
);
9618 inode_inc_iversion(new_dir
);
9619 inode_inc_iversion(old_inode
);
9620 inode_inc_iversion(new_inode
);
9621 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
9622 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
9623 old_inode
->i_ctime
= ctime
;
9624 new_inode
->i_ctime
= ctime
;
9626 if (old_dentry
->d_parent
!= new_dentry
->d_parent
) {
9627 btrfs_record_unlink_dir(trans
, BTRFS_I(old_dir
),
9628 BTRFS_I(old_inode
), 1);
9629 btrfs_record_unlink_dir(trans
, BTRFS_I(new_dir
),
9630 BTRFS_I(new_inode
), 1);
9633 /* src is a subvolume */
9634 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9635 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
9636 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
,
9638 old_dentry
->d_name
.name
,
9639 old_dentry
->d_name
.len
);
9640 } else { /* src is an inode */
9641 ret
= __btrfs_unlink_inode(trans
, root
, BTRFS_I(old_dir
),
9642 BTRFS_I(old_dentry
->d_inode
),
9643 old_dentry
->d_name
.name
,
9644 old_dentry
->d_name
.len
);
9646 ret
= btrfs_update_inode(trans
, root
, old_inode
);
9649 btrfs_abort_transaction(trans
, ret
);
9653 /* dest is a subvolume */
9654 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9655 root_objectid
= BTRFS_I(new_inode
)->root
->root_key
.objectid
;
9656 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
9658 new_dentry
->d_name
.name
,
9659 new_dentry
->d_name
.len
);
9660 } else { /* dest is an inode */
9661 ret
= __btrfs_unlink_inode(trans
, dest
, BTRFS_I(new_dir
),
9662 BTRFS_I(new_dentry
->d_inode
),
9663 new_dentry
->d_name
.name
,
9664 new_dentry
->d_name
.len
);
9666 ret
= btrfs_update_inode(trans
, dest
, new_inode
);
9669 btrfs_abort_transaction(trans
, ret
);
9673 ret
= btrfs_add_link(trans
, BTRFS_I(new_dir
), BTRFS_I(old_inode
),
9674 new_dentry
->d_name
.name
,
9675 new_dentry
->d_name
.len
, 0, old_idx
);
9677 btrfs_abort_transaction(trans
, ret
);
9681 ret
= btrfs_add_link(trans
, BTRFS_I(old_dir
), BTRFS_I(new_inode
),
9682 old_dentry
->d_name
.name
,
9683 old_dentry
->d_name
.len
, 0, new_idx
);
9685 btrfs_abort_transaction(trans
, ret
);
9689 if (old_inode
->i_nlink
== 1)
9690 BTRFS_I(old_inode
)->dir_index
= old_idx
;
9691 if (new_inode
->i_nlink
== 1)
9692 BTRFS_I(new_inode
)->dir_index
= new_idx
;
9694 if (root_log_pinned
) {
9695 parent
= new_dentry
->d_parent
;
9696 btrfs_log_new_name(trans
, BTRFS_I(old_inode
), BTRFS_I(old_dir
),
9698 btrfs_end_log_trans(root
);
9699 root_log_pinned
= false;
9701 if (dest_log_pinned
) {
9702 parent
= old_dentry
->d_parent
;
9703 btrfs_log_new_name(trans
, BTRFS_I(new_inode
), BTRFS_I(new_dir
),
9705 btrfs_end_log_trans(dest
);
9706 dest_log_pinned
= false;
9710 * If we have pinned a log and an error happened, we unpin tasks
9711 * trying to sync the log and force them to fallback to a transaction
9712 * commit if the log currently contains any of the inodes involved in
9713 * this rename operation (to ensure we do not persist a log with an
9714 * inconsistent state for any of these inodes or leading to any
9715 * inconsistencies when replayed). If the transaction was aborted, the
9716 * abortion reason is propagated to userspace when attempting to commit
9717 * the transaction. If the log does not contain any of these inodes, we
9718 * allow the tasks to sync it.
9720 if (ret
&& (root_log_pinned
|| dest_log_pinned
)) {
9721 if (btrfs_inode_in_log(BTRFS_I(old_dir
), fs_info
->generation
) ||
9722 btrfs_inode_in_log(BTRFS_I(new_dir
), fs_info
->generation
) ||
9723 btrfs_inode_in_log(BTRFS_I(old_inode
), fs_info
->generation
) ||
9725 btrfs_inode_in_log(BTRFS_I(new_inode
), fs_info
->generation
)))
9726 btrfs_set_log_full_commit(fs_info
, trans
);
9728 if (root_log_pinned
) {
9729 btrfs_end_log_trans(root
);
9730 root_log_pinned
= false;
9732 if (dest_log_pinned
) {
9733 btrfs_end_log_trans(dest
);
9734 dest_log_pinned
= false;
9737 ret
= btrfs_end_transaction(trans
);
9739 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9740 up_read(&fs_info
->subvol_sem
);
9741 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9742 up_read(&fs_info
->subvol_sem
);
9747 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle
*trans
,
9748 struct btrfs_root
*root
,
9750 struct dentry
*dentry
)
9753 struct inode
*inode
;
9757 ret
= btrfs_find_free_ino(root
, &objectid
);
9761 inode
= btrfs_new_inode(trans
, root
, dir
,
9762 dentry
->d_name
.name
,
9764 btrfs_ino(BTRFS_I(dir
)),
9766 S_IFCHR
| WHITEOUT_MODE
,
9769 if (IS_ERR(inode
)) {
9770 ret
= PTR_ERR(inode
);
9774 inode
->i_op
= &btrfs_special_inode_operations
;
9775 init_special_inode(inode
, inode
->i_mode
,
9778 ret
= btrfs_init_inode_security(trans
, inode
, dir
,
9783 ret
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
,
9784 BTRFS_I(inode
), 0, index
);
9788 ret
= btrfs_update_inode(trans
, root
, inode
);
9790 unlock_new_inode(inode
);
9792 inode_dec_link_count(inode
);
9798 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
9799 struct inode
*new_dir
, struct dentry
*new_dentry
,
9802 struct btrfs_fs_info
*fs_info
= btrfs_sb(old_dir
->i_sb
);
9803 struct btrfs_trans_handle
*trans
;
9804 unsigned int trans_num_items
;
9805 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
9806 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
9807 struct inode
*new_inode
= d_inode(new_dentry
);
9808 struct inode
*old_inode
= d_inode(old_dentry
);
9812 u64 old_ino
= btrfs_ino(BTRFS_I(old_inode
));
9813 bool log_pinned
= false;
9815 if (btrfs_ino(BTRFS_I(new_dir
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
9818 /* we only allow rename subvolume link between subvolumes */
9819 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
9822 if (old_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
9823 (new_inode
&& btrfs_ino(BTRFS_I(new_inode
)) == BTRFS_FIRST_FREE_OBJECTID
))
9826 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
9827 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
9831 /* check for collisions, even if the name isn't there */
9832 ret
= btrfs_check_dir_item_collision(dest
, new_dir
->i_ino
,
9833 new_dentry
->d_name
.name
,
9834 new_dentry
->d_name
.len
);
9837 if (ret
== -EEXIST
) {
9839 * eexist without a new_inode */
9840 if (WARN_ON(!new_inode
)) {
9844 /* maybe -EOVERFLOW */
9851 * we're using rename to replace one file with another. Start IO on it
9852 * now so we don't add too much work to the end of the transaction
9854 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
)
9855 filemap_flush(old_inode
->i_mapping
);
9857 /* close the racy window with snapshot create/destroy ioctl */
9858 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9859 down_read(&fs_info
->subvol_sem
);
9861 * We want to reserve the absolute worst case amount of items. So if
9862 * both inodes are subvols and we need to unlink them then that would
9863 * require 4 item modifications, but if they are both normal inodes it
9864 * would require 5 item modifications, so we'll assume they are normal
9865 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9866 * should cover the worst case number of items we'll modify.
9867 * If our rename has the whiteout flag, we need more 5 units for the
9868 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9869 * when selinux is enabled).
9871 trans_num_items
= 11;
9872 if (flags
& RENAME_WHITEOUT
)
9873 trans_num_items
+= 5;
9874 trans
= btrfs_start_transaction(root
, trans_num_items
);
9875 if (IS_ERR(trans
)) {
9876 ret
= PTR_ERR(trans
);
9881 btrfs_record_root_in_trans(trans
, dest
);
9883 ret
= btrfs_set_inode_index(BTRFS_I(new_dir
), &index
);
9887 BTRFS_I(old_inode
)->dir_index
= 0ULL;
9888 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
9889 /* force full log commit if subvolume involved. */
9890 btrfs_set_log_full_commit(fs_info
, trans
);
9892 btrfs_pin_log_trans(root
);
9894 ret
= btrfs_insert_inode_ref(trans
, dest
,
9895 new_dentry
->d_name
.name
,
9896 new_dentry
->d_name
.len
,
9898 btrfs_ino(BTRFS_I(new_dir
)), index
);
9903 inode_inc_iversion(old_dir
);
9904 inode_inc_iversion(new_dir
);
9905 inode_inc_iversion(old_inode
);
9906 old_dir
->i_ctime
= old_dir
->i_mtime
=
9907 new_dir
->i_ctime
= new_dir
->i_mtime
=
9908 old_inode
->i_ctime
= current_time(old_dir
);
9910 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
9911 btrfs_record_unlink_dir(trans
, BTRFS_I(old_dir
),
9912 BTRFS_I(old_inode
), 1);
9914 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
9915 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
9916 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
, root_objectid
,
9917 old_dentry
->d_name
.name
,
9918 old_dentry
->d_name
.len
);
9920 ret
= __btrfs_unlink_inode(trans
, root
, BTRFS_I(old_dir
),
9921 BTRFS_I(d_inode(old_dentry
)),
9922 old_dentry
->d_name
.name
,
9923 old_dentry
->d_name
.len
);
9925 ret
= btrfs_update_inode(trans
, root
, old_inode
);
9928 btrfs_abort_transaction(trans
, ret
);
9933 inode_inc_iversion(new_inode
);
9934 new_inode
->i_ctime
= current_time(new_inode
);
9935 if (unlikely(btrfs_ino(BTRFS_I(new_inode
)) ==
9936 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
9937 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
9938 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
9940 new_dentry
->d_name
.name
,
9941 new_dentry
->d_name
.len
);
9942 BUG_ON(new_inode
->i_nlink
== 0);
9944 ret
= btrfs_unlink_inode(trans
, dest
, BTRFS_I(new_dir
),
9945 BTRFS_I(d_inode(new_dentry
)),
9946 new_dentry
->d_name
.name
,
9947 new_dentry
->d_name
.len
);
9949 if (!ret
&& new_inode
->i_nlink
== 0)
9950 ret
= btrfs_orphan_add(trans
,
9951 BTRFS_I(d_inode(new_dentry
)));
9953 btrfs_abort_transaction(trans
, ret
);
9958 ret
= btrfs_add_link(trans
, BTRFS_I(new_dir
), BTRFS_I(old_inode
),
9959 new_dentry
->d_name
.name
,
9960 new_dentry
->d_name
.len
, 0, index
);
9962 btrfs_abort_transaction(trans
, ret
);
9966 if (old_inode
->i_nlink
== 1)
9967 BTRFS_I(old_inode
)->dir_index
= index
;
9970 struct dentry
*parent
= new_dentry
->d_parent
;
9972 btrfs_log_new_name(trans
, BTRFS_I(old_inode
), BTRFS_I(old_dir
),
9974 btrfs_end_log_trans(root
);
9978 if (flags
& RENAME_WHITEOUT
) {
9979 ret
= btrfs_whiteout_for_rename(trans
, root
, old_dir
,
9983 btrfs_abort_transaction(trans
, ret
);
9989 * If we have pinned the log and an error happened, we unpin tasks
9990 * trying to sync the log and force them to fallback to a transaction
9991 * commit if the log currently contains any of the inodes involved in
9992 * this rename operation (to ensure we do not persist a log with an
9993 * inconsistent state for any of these inodes or leading to any
9994 * inconsistencies when replayed). If the transaction was aborted, the
9995 * abortion reason is propagated to userspace when attempting to commit
9996 * the transaction. If the log does not contain any of these inodes, we
9997 * allow the tasks to sync it.
9999 if (ret
&& log_pinned
) {
10000 if (btrfs_inode_in_log(BTRFS_I(old_dir
), fs_info
->generation
) ||
10001 btrfs_inode_in_log(BTRFS_I(new_dir
), fs_info
->generation
) ||
10002 btrfs_inode_in_log(BTRFS_I(old_inode
), fs_info
->generation
) ||
10004 btrfs_inode_in_log(BTRFS_I(new_inode
), fs_info
->generation
)))
10005 btrfs_set_log_full_commit(fs_info
, trans
);
10007 btrfs_end_log_trans(root
);
10008 log_pinned
= false;
10010 btrfs_end_transaction(trans
);
10012 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
10013 up_read(&fs_info
->subvol_sem
);
10018 static int btrfs_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
,
10019 struct inode
*new_dir
, struct dentry
*new_dentry
,
10020 unsigned int flags
)
10022 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
10025 if (flags
& RENAME_EXCHANGE
)
10026 return btrfs_rename_exchange(old_dir
, old_dentry
, new_dir
,
10029 return btrfs_rename(old_dir
, old_dentry
, new_dir
, new_dentry
, flags
);
10032 static void btrfs_run_delalloc_work(struct btrfs_work
*work
)
10034 struct btrfs_delalloc_work
*delalloc_work
;
10035 struct inode
*inode
;
10037 delalloc_work
= container_of(work
, struct btrfs_delalloc_work
,
10039 inode
= delalloc_work
->inode
;
10040 filemap_flush(inode
->i_mapping
);
10041 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
10042 &BTRFS_I(inode
)->runtime_flags
))
10043 filemap_flush(inode
->i_mapping
);
10045 if (delalloc_work
->delay_iput
)
10046 btrfs_add_delayed_iput(inode
);
10049 complete(&delalloc_work
->completion
);
10052 struct btrfs_delalloc_work
*btrfs_alloc_delalloc_work(struct inode
*inode
,
10055 struct btrfs_delalloc_work
*work
;
10057 work
= kmalloc(sizeof(*work
), GFP_NOFS
);
10061 init_completion(&work
->completion
);
10062 INIT_LIST_HEAD(&work
->list
);
10063 work
->inode
= inode
;
10064 work
->delay_iput
= delay_iput
;
10065 WARN_ON_ONCE(!inode
);
10066 btrfs_init_work(&work
->work
, btrfs_flush_delalloc_helper
,
10067 btrfs_run_delalloc_work
, NULL
, NULL
);
10072 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work
*work
)
10074 wait_for_completion(&work
->completion
);
10079 * some fairly slow code that needs optimization. This walks the list
10080 * of all the inodes with pending delalloc and forces them to disk.
10082 static int __start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
,
10085 struct btrfs_inode
*binode
;
10086 struct inode
*inode
;
10087 struct btrfs_delalloc_work
*work
, *next
;
10088 struct list_head works
;
10089 struct list_head splice
;
10092 INIT_LIST_HEAD(&works
);
10093 INIT_LIST_HEAD(&splice
);
10095 mutex_lock(&root
->delalloc_mutex
);
10096 spin_lock(&root
->delalloc_lock
);
10097 list_splice_init(&root
->delalloc_inodes
, &splice
);
10098 while (!list_empty(&splice
)) {
10099 binode
= list_entry(splice
.next
, struct btrfs_inode
,
10102 list_move_tail(&binode
->delalloc_inodes
,
10103 &root
->delalloc_inodes
);
10104 inode
= igrab(&binode
->vfs_inode
);
10106 cond_resched_lock(&root
->delalloc_lock
);
10109 spin_unlock(&root
->delalloc_lock
);
10111 work
= btrfs_alloc_delalloc_work(inode
, delay_iput
);
10114 btrfs_add_delayed_iput(inode
);
10120 list_add_tail(&work
->list
, &works
);
10121 btrfs_queue_work(root
->fs_info
->flush_workers
,
10124 if (nr
!= -1 && ret
>= nr
)
10127 spin_lock(&root
->delalloc_lock
);
10129 spin_unlock(&root
->delalloc_lock
);
10132 list_for_each_entry_safe(work
, next
, &works
, list
) {
10133 list_del_init(&work
->list
);
10134 btrfs_wait_and_free_delalloc_work(work
);
10137 if (!list_empty_careful(&splice
)) {
10138 spin_lock(&root
->delalloc_lock
);
10139 list_splice_tail(&splice
, &root
->delalloc_inodes
);
10140 spin_unlock(&root
->delalloc_lock
);
10142 mutex_unlock(&root
->delalloc_mutex
);
10146 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
)
10148 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
10151 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
10154 ret
= __start_delalloc_inodes(root
, delay_iput
, -1);
10160 int btrfs_start_delalloc_roots(struct btrfs_fs_info
*fs_info
, int delay_iput
,
10163 struct btrfs_root
*root
;
10164 struct list_head splice
;
10167 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
10170 INIT_LIST_HEAD(&splice
);
10172 mutex_lock(&fs_info
->delalloc_root_mutex
);
10173 spin_lock(&fs_info
->delalloc_root_lock
);
10174 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
10175 while (!list_empty(&splice
) && nr
) {
10176 root
= list_first_entry(&splice
, struct btrfs_root
,
10178 root
= btrfs_grab_fs_root(root
);
10180 list_move_tail(&root
->delalloc_root
,
10181 &fs_info
->delalloc_roots
);
10182 spin_unlock(&fs_info
->delalloc_root_lock
);
10184 ret
= __start_delalloc_inodes(root
, delay_iput
, nr
);
10185 btrfs_put_fs_root(root
);
10193 spin_lock(&fs_info
->delalloc_root_lock
);
10195 spin_unlock(&fs_info
->delalloc_root_lock
);
10199 if (!list_empty_careful(&splice
)) {
10200 spin_lock(&fs_info
->delalloc_root_lock
);
10201 list_splice_tail(&splice
, &fs_info
->delalloc_roots
);
10202 spin_unlock(&fs_info
->delalloc_root_lock
);
10204 mutex_unlock(&fs_info
->delalloc_root_mutex
);
10208 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
10209 const char *symname
)
10211 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
10212 struct btrfs_trans_handle
*trans
;
10213 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
10214 struct btrfs_path
*path
;
10215 struct btrfs_key key
;
10216 struct inode
*inode
= NULL
;
10218 int drop_inode
= 0;
10224 struct btrfs_file_extent_item
*ei
;
10225 struct extent_buffer
*leaf
;
10227 name_len
= strlen(symname
);
10228 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(fs_info
))
10229 return -ENAMETOOLONG
;
10232 * 2 items for inode item and ref
10233 * 2 items for dir items
10234 * 1 item for updating parent inode item
10235 * 1 item for the inline extent item
10236 * 1 item for xattr if selinux is on
10238 trans
= btrfs_start_transaction(root
, 7);
10240 return PTR_ERR(trans
);
10242 err
= btrfs_find_free_ino(root
, &objectid
);
10246 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
10247 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)),
10248 objectid
, S_IFLNK
|S_IRWXUGO
, &index
);
10249 if (IS_ERR(inode
)) {
10250 err
= PTR_ERR(inode
);
10255 * If the active LSM wants to access the inode during
10256 * d_instantiate it needs these. Smack checks to see
10257 * if the filesystem supports xattrs by looking at the
10260 inode
->i_fop
= &btrfs_file_operations
;
10261 inode
->i_op
= &btrfs_file_inode_operations
;
10262 inode
->i_mapping
->a_ops
= &btrfs_aops
;
10263 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
10265 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
10267 goto out_unlock_inode
;
10269 path
= btrfs_alloc_path();
10272 goto out_unlock_inode
;
10274 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
10276 key
.type
= BTRFS_EXTENT_DATA_KEY
;
10277 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
10278 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
10281 btrfs_free_path(path
);
10282 goto out_unlock_inode
;
10284 leaf
= path
->nodes
[0];
10285 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
10286 struct btrfs_file_extent_item
);
10287 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
10288 btrfs_set_file_extent_type(leaf
, ei
,
10289 BTRFS_FILE_EXTENT_INLINE
);
10290 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
10291 btrfs_set_file_extent_compression(leaf
, ei
, 0);
10292 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
10293 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
10295 ptr
= btrfs_file_extent_inline_start(ei
);
10296 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
10297 btrfs_mark_buffer_dirty(leaf
);
10298 btrfs_free_path(path
);
10300 inode
->i_op
= &btrfs_symlink_inode_operations
;
10301 inode_nohighmem(inode
);
10302 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
10303 inode_set_bytes(inode
, name_len
);
10304 btrfs_i_size_write(BTRFS_I(inode
), name_len
);
10305 err
= btrfs_update_inode(trans
, root
, inode
);
10307 * Last step, add directory indexes for our symlink inode. This is the
10308 * last step to avoid extra cleanup of these indexes if an error happens
10312 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
,
10313 BTRFS_I(inode
), 0, index
);
10316 goto out_unlock_inode
;
10319 unlock_new_inode(inode
);
10320 d_instantiate(dentry
, inode
);
10323 btrfs_end_transaction(trans
);
10325 inode_dec_link_count(inode
);
10328 btrfs_btree_balance_dirty(fs_info
);
10333 unlock_new_inode(inode
);
10337 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
10338 u64 start
, u64 num_bytes
, u64 min_size
,
10339 loff_t actual_len
, u64
*alloc_hint
,
10340 struct btrfs_trans_handle
*trans
)
10342 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
10343 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
10344 struct extent_map
*em
;
10345 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
10346 struct btrfs_key ins
;
10347 u64 cur_offset
= start
;
10350 u64 last_alloc
= (u64
)-1;
10352 bool own_trans
= true;
10353 u64 end
= start
+ num_bytes
- 1;
10357 while (num_bytes
> 0) {
10359 trans
= btrfs_start_transaction(root
, 3);
10360 if (IS_ERR(trans
)) {
10361 ret
= PTR_ERR(trans
);
10366 cur_bytes
= min_t(u64
, num_bytes
, SZ_256M
);
10367 cur_bytes
= max(cur_bytes
, min_size
);
10369 * If we are severely fragmented we could end up with really
10370 * small allocations, so if the allocator is returning small
10371 * chunks lets make its job easier by only searching for those
10374 cur_bytes
= min(cur_bytes
, last_alloc
);
10375 ret
= btrfs_reserve_extent(root
, cur_bytes
, cur_bytes
,
10376 min_size
, 0, *alloc_hint
, &ins
, 1, 0);
10379 btrfs_end_transaction(trans
);
10382 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
10384 last_alloc
= ins
.offset
;
10385 ret
= insert_reserved_file_extent(trans
, inode
,
10386 cur_offset
, ins
.objectid
,
10387 ins
.offset
, ins
.offset
,
10388 ins
.offset
, 0, 0, 0,
10389 BTRFS_FILE_EXTENT_PREALLOC
);
10391 btrfs_free_reserved_extent(fs_info
, ins
.objectid
,
10393 btrfs_abort_transaction(trans
, ret
);
10395 btrfs_end_transaction(trans
);
10399 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
10400 cur_offset
+ ins
.offset
-1, 0);
10402 em
= alloc_extent_map();
10404 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
10405 &BTRFS_I(inode
)->runtime_flags
);
10409 em
->start
= cur_offset
;
10410 em
->orig_start
= cur_offset
;
10411 em
->len
= ins
.offset
;
10412 em
->block_start
= ins
.objectid
;
10413 em
->block_len
= ins
.offset
;
10414 em
->orig_block_len
= ins
.offset
;
10415 em
->ram_bytes
= ins
.offset
;
10416 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
10417 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
10418 em
->generation
= trans
->transid
;
10421 write_lock(&em_tree
->lock
);
10422 ret
= add_extent_mapping(em_tree
, em
, 1);
10423 write_unlock(&em_tree
->lock
);
10424 if (ret
!= -EEXIST
)
10426 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
10427 cur_offset
+ ins
.offset
- 1,
10430 free_extent_map(em
);
10432 num_bytes
-= ins
.offset
;
10433 cur_offset
+= ins
.offset
;
10434 *alloc_hint
= ins
.objectid
+ ins
.offset
;
10436 inode_inc_iversion(inode
);
10437 inode
->i_ctime
= current_time(inode
);
10438 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
10439 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
10440 (actual_len
> inode
->i_size
) &&
10441 (cur_offset
> inode
->i_size
)) {
10442 if (cur_offset
> actual_len
)
10443 i_size
= actual_len
;
10445 i_size
= cur_offset
;
10446 i_size_write(inode
, i_size
);
10447 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
10450 ret
= btrfs_update_inode(trans
, root
, inode
);
10453 btrfs_abort_transaction(trans
, ret
);
10455 btrfs_end_transaction(trans
);
10460 btrfs_end_transaction(trans
);
10462 if (cur_offset
< end
)
10463 btrfs_free_reserved_data_space(inode
, NULL
, cur_offset
,
10464 end
- cur_offset
+ 1);
10468 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
10469 u64 start
, u64 num_bytes
, u64 min_size
,
10470 loff_t actual_len
, u64
*alloc_hint
)
10472 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
10473 min_size
, actual_len
, alloc_hint
,
10477 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
10478 struct btrfs_trans_handle
*trans
, int mode
,
10479 u64 start
, u64 num_bytes
, u64 min_size
,
10480 loff_t actual_len
, u64
*alloc_hint
)
10482 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
10483 min_size
, actual_len
, alloc_hint
, trans
);
10486 static int btrfs_set_page_dirty(struct page
*page
)
10488 return __set_page_dirty_nobuffers(page
);
10491 static int btrfs_permission(struct inode
*inode
, int mask
)
10493 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
10494 umode_t mode
= inode
->i_mode
;
10496 if (mask
& MAY_WRITE
&&
10497 (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
))) {
10498 if (btrfs_root_readonly(root
))
10500 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
)
10503 return generic_permission(inode
, mask
);
10506 static int btrfs_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
10508 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
10509 struct btrfs_trans_handle
*trans
;
10510 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
10511 struct inode
*inode
= NULL
;
10517 * 5 units required for adding orphan entry
10519 trans
= btrfs_start_transaction(root
, 5);
10521 return PTR_ERR(trans
);
10523 ret
= btrfs_find_free_ino(root
, &objectid
);
10527 inode
= btrfs_new_inode(trans
, root
, dir
, NULL
, 0,
10528 btrfs_ino(BTRFS_I(dir
)), objectid
, mode
, &index
);
10529 if (IS_ERR(inode
)) {
10530 ret
= PTR_ERR(inode
);
10535 inode
->i_fop
= &btrfs_file_operations
;
10536 inode
->i_op
= &btrfs_file_inode_operations
;
10538 inode
->i_mapping
->a_ops
= &btrfs_aops
;
10539 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
10541 ret
= btrfs_init_inode_security(trans
, inode
, dir
, NULL
);
10545 ret
= btrfs_update_inode(trans
, root
, inode
);
10548 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
10553 * We set number of links to 0 in btrfs_new_inode(), and here we set
10554 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10557 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10559 set_nlink(inode
, 1);
10560 unlock_new_inode(inode
);
10561 d_tmpfile(dentry
, inode
);
10562 mark_inode_dirty(inode
);
10565 btrfs_end_transaction(trans
);
10568 btrfs_btree_balance_dirty(fs_info
);
10572 unlock_new_inode(inode
);
10577 __attribute__((const))
10578 static int btrfs_readpage_io_failed_hook(struct page
*page
, int failed_mirror
)
10583 static struct btrfs_fs_info
*iotree_fs_info(void *private_data
)
10585 struct inode
*inode
= private_data
;
10586 return btrfs_sb(inode
->i_sb
);
10589 static void btrfs_check_extent_io_range(void *private_data
, const char *caller
,
10590 u64 start
, u64 end
)
10592 struct inode
*inode
= private_data
;
10595 isize
= i_size_read(inode
);
10596 if (end
>= PAGE_SIZE
&& (end
% 2) == 0 && end
!= isize
- 1) {
10597 btrfs_debug_rl(BTRFS_I(inode
)->root
->fs_info
,
10598 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10599 caller
, btrfs_ino(BTRFS_I(inode
)), isize
, start
, end
);
10603 void btrfs_set_range_writeback(void *private_data
, u64 start
, u64 end
)
10605 struct inode
*inode
= private_data
;
10606 unsigned long index
= start
>> PAGE_SHIFT
;
10607 unsigned long end_index
= end
>> PAGE_SHIFT
;
10610 while (index
<= end_index
) {
10611 page
= find_get_page(inode
->i_mapping
, index
);
10612 ASSERT(page
); /* Pages should be in the extent_io_tree */
10613 set_page_writeback(page
);
10619 static const struct inode_operations btrfs_dir_inode_operations
= {
10620 .getattr
= btrfs_getattr
,
10621 .lookup
= btrfs_lookup
,
10622 .create
= btrfs_create
,
10623 .unlink
= btrfs_unlink
,
10624 .link
= btrfs_link
,
10625 .mkdir
= btrfs_mkdir
,
10626 .rmdir
= btrfs_rmdir
,
10627 .rename
= btrfs_rename2
,
10628 .symlink
= btrfs_symlink
,
10629 .setattr
= btrfs_setattr
,
10630 .mknod
= btrfs_mknod
,
10631 .listxattr
= btrfs_listxattr
,
10632 .permission
= btrfs_permission
,
10633 .get_acl
= btrfs_get_acl
,
10634 .set_acl
= btrfs_set_acl
,
10635 .update_time
= btrfs_update_time
,
10636 .tmpfile
= btrfs_tmpfile
,
10638 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
10639 .lookup
= btrfs_lookup
,
10640 .permission
= btrfs_permission
,
10641 .update_time
= btrfs_update_time
,
10644 static const struct file_operations btrfs_dir_file_operations
= {
10645 .llseek
= generic_file_llseek
,
10646 .read
= generic_read_dir
,
10647 .iterate_shared
= btrfs_real_readdir
,
10648 .open
= btrfs_opendir
,
10649 .unlocked_ioctl
= btrfs_ioctl
,
10650 #ifdef CONFIG_COMPAT
10651 .compat_ioctl
= btrfs_compat_ioctl
,
10653 .release
= btrfs_release_file
,
10654 .fsync
= btrfs_sync_file
,
10657 static const struct extent_io_ops btrfs_extent_io_ops
= {
10658 /* mandatory callbacks */
10659 .submit_bio_hook
= btrfs_submit_bio_hook
,
10660 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
10661 .merge_bio_hook
= btrfs_merge_bio_hook
,
10662 .readpage_io_failed_hook
= btrfs_readpage_io_failed_hook
,
10663 .tree_fs_info
= iotree_fs_info
,
10664 .set_range_writeback
= btrfs_set_range_writeback
,
10666 /* optional callbacks */
10667 .fill_delalloc
= run_delalloc_range
,
10668 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
10669 .writepage_start_hook
= btrfs_writepage_start_hook
,
10670 .set_bit_hook
= btrfs_set_bit_hook
,
10671 .clear_bit_hook
= btrfs_clear_bit_hook
,
10672 .merge_extent_hook
= btrfs_merge_extent_hook
,
10673 .split_extent_hook
= btrfs_split_extent_hook
,
10674 .check_extent_io_range
= btrfs_check_extent_io_range
,
10678 * btrfs doesn't support the bmap operation because swapfiles
10679 * use bmap to make a mapping of extents in the file. They assume
10680 * these extents won't change over the life of the file and they
10681 * use the bmap result to do IO directly to the drive.
10683 * the btrfs bmap call would return logical addresses that aren't
10684 * suitable for IO and they also will change frequently as COW
10685 * operations happen. So, swapfile + btrfs == corruption.
10687 * For now we're avoiding this by dropping bmap.
10689 static const struct address_space_operations btrfs_aops
= {
10690 .readpage
= btrfs_readpage
,
10691 .writepage
= btrfs_writepage
,
10692 .writepages
= btrfs_writepages
,
10693 .readpages
= btrfs_readpages
,
10694 .direct_IO
= btrfs_direct_IO
,
10695 .invalidatepage
= btrfs_invalidatepage
,
10696 .releasepage
= btrfs_releasepage
,
10697 .set_page_dirty
= btrfs_set_page_dirty
,
10698 .error_remove_page
= generic_error_remove_page
,
10701 static const struct address_space_operations btrfs_symlink_aops
= {
10702 .readpage
= btrfs_readpage
,
10703 .writepage
= btrfs_writepage
,
10704 .invalidatepage
= btrfs_invalidatepage
,
10705 .releasepage
= btrfs_releasepage
,
10708 static const struct inode_operations btrfs_file_inode_operations
= {
10709 .getattr
= btrfs_getattr
,
10710 .setattr
= btrfs_setattr
,
10711 .listxattr
= btrfs_listxattr
,
10712 .permission
= btrfs_permission
,
10713 .fiemap
= btrfs_fiemap
,
10714 .get_acl
= btrfs_get_acl
,
10715 .set_acl
= btrfs_set_acl
,
10716 .update_time
= btrfs_update_time
,
10718 static const struct inode_operations btrfs_special_inode_operations
= {
10719 .getattr
= btrfs_getattr
,
10720 .setattr
= btrfs_setattr
,
10721 .permission
= btrfs_permission
,
10722 .listxattr
= btrfs_listxattr
,
10723 .get_acl
= btrfs_get_acl
,
10724 .set_acl
= btrfs_set_acl
,
10725 .update_time
= btrfs_update_time
,
10727 static const struct inode_operations btrfs_symlink_inode_operations
= {
10728 .get_link
= page_get_link
,
10729 .getattr
= btrfs_getattr
,
10730 .setattr
= btrfs_setattr
,
10731 .permission
= btrfs_permission
,
10732 .listxattr
= btrfs_listxattr
,
10733 .update_time
= btrfs_update_time
,
10736 const struct dentry_operations btrfs_dentry_operations
= {
10737 .d_delete
= btrfs_dentry_delete
,
10738 .d_release
= btrfs_dentry_release
,