2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
32 #include "extent_map.h"
34 #include "transaction.h"
35 #include "print-tree.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
42 #include "dev-replace.h"
45 const struct btrfs_raid_attr btrfs_raid_array
[BTRFS_NR_RAID_TYPES
] = {
46 [BTRFS_RAID_RAID10
] = {
49 .devs_max
= 0, /* 0 == as many as possible */
51 .tolerated_failures
= 1,
55 [BTRFS_RAID_RAID1
] = {
60 .tolerated_failures
= 1,
69 .tolerated_failures
= 0,
73 [BTRFS_RAID_RAID0
] = {
78 .tolerated_failures
= 0,
82 [BTRFS_RAID_SINGLE
] = {
87 .tolerated_failures
= 0,
91 [BTRFS_RAID_RAID5
] = {
96 .tolerated_failures
= 1,
100 [BTRFS_RAID_RAID6
] = {
105 .tolerated_failures
= 2,
111 const u64 btrfs_raid_group
[BTRFS_NR_RAID_TYPES
] = {
112 [BTRFS_RAID_RAID10
] = BTRFS_BLOCK_GROUP_RAID10
,
113 [BTRFS_RAID_RAID1
] = BTRFS_BLOCK_GROUP_RAID1
,
114 [BTRFS_RAID_DUP
] = BTRFS_BLOCK_GROUP_DUP
,
115 [BTRFS_RAID_RAID0
] = BTRFS_BLOCK_GROUP_RAID0
,
116 [BTRFS_RAID_SINGLE
] = 0,
117 [BTRFS_RAID_RAID5
] = BTRFS_BLOCK_GROUP_RAID5
,
118 [BTRFS_RAID_RAID6
] = BTRFS_BLOCK_GROUP_RAID6
,
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
126 const int btrfs_raid_mindev_error
[BTRFS_NR_RAID_TYPES
] = {
127 [BTRFS_RAID_RAID10
] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET
,
128 [BTRFS_RAID_RAID1
] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET
,
129 [BTRFS_RAID_DUP
] = 0,
130 [BTRFS_RAID_RAID0
] = 0,
131 [BTRFS_RAID_SINGLE
] = 0,
132 [BTRFS_RAID_RAID5
] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET
,
133 [BTRFS_RAID_RAID6
] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET
,
136 static int init_first_rw_device(struct btrfs_trans_handle
*trans
,
137 struct btrfs_fs_info
*fs_info
);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info
*fs_info
);
139 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*device
);
142 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
,
143 enum btrfs_map_op op
,
144 u64 logical
, u64
*length
,
145 struct btrfs_bio
**bbio_ret
,
146 int mirror_num
, int need_raid_map
);
152 * There are several mutexes that protect manipulation of devices and low-level
153 * structures like chunks but not block groups, extents or files
155 * uuid_mutex (global lock)
156 * ------------------------
157 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
158 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
159 * device) or requested by the device= mount option
161 * the mutex can be very coarse and can cover long-running operations
163 * protects: updates to fs_devices counters like missing devices, rw devices,
164 * seeding, structure cloning, openning/closing devices at mount/umount time
166 * global::fs_devs - add, remove, updates to the global list
168 * does not protect: manipulation of the fs_devices::devices list!
170 * btrfs_device::name - renames (write side), read is RCU
172 * fs_devices::device_list_mutex (per-fs, with RCU)
173 * ------------------------------------------------
174 * protects updates to fs_devices::devices, ie. adding and deleting
176 * simple list traversal with read-only actions can be done with RCU protection
178 * may be used to exclude some operations from running concurrently without any
179 * modifications to the list (see write_all_supers)
183 * coarse lock owned by a mounted filesystem; used to exclude some operations
184 * that cannot run in parallel and affect the higher-level properties of the
185 * filesystem like: device add/deleting/resize/replace, or balance
189 * protects balance structures (status, state) and context accessed from
190 * several places (internally, ioctl)
194 * protects chunks, adding or removing during allocation, trim or when a new
195 * device is added/removed
199 * a big lock that is held by the cleaner thread and prevents running subvolume
200 * cleaning together with relocation or delayed iputs
213 DEFINE_MUTEX(uuid_mutex
);
214 static LIST_HEAD(fs_uuids
);
215 struct list_head
*btrfs_get_fs_uuids(void)
221 * alloc_fs_devices - allocate struct btrfs_fs_devices
222 * @fsid: if not NULL, copy the uuid to fs_devices::fsid
224 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
225 * The returned struct is not linked onto any lists and can be destroyed with
226 * kfree() right away.
228 static struct btrfs_fs_devices
*alloc_fs_devices(const u8
*fsid
)
230 struct btrfs_fs_devices
*fs_devs
;
232 fs_devs
= kzalloc(sizeof(*fs_devs
), GFP_KERNEL
);
234 return ERR_PTR(-ENOMEM
);
236 mutex_init(&fs_devs
->device_list_mutex
);
238 INIT_LIST_HEAD(&fs_devs
->devices
);
239 INIT_LIST_HEAD(&fs_devs
->resized_devices
);
240 INIT_LIST_HEAD(&fs_devs
->alloc_list
);
241 INIT_LIST_HEAD(&fs_devs
->list
);
243 memcpy(fs_devs
->fsid
, fsid
, BTRFS_FSID_SIZE
);
248 static void free_device(struct btrfs_device
*device
)
250 rcu_string_free(device
->name
);
251 bio_put(device
->flush_bio
);
255 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
257 struct btrfs_device
*device
;
258 WARN_ON(fs_devices
->opened
);
259 while (!list_empty(&fs_devices
->devices
)) {
260 device
= list_entry(fs_devices
->devices
.next
,
261 struct btrfs_device
, dev_list
);
262 list_del(&device
->dev_list
);
268 static void btrfs_kobject_uevent(struct block_device
*bdev
,
269 enum kobject_action action
)
273 ret
= kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, action
);
275 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
277 kobject_name(&disk_to_dev(bdev
->bd_disk
)->kobj
),
278 &disk_to_dev(bdev
->bd_disk
)->kobj
);
281 void btrfs_cleanup_fs_uuids(void)
283 struct btrfs_fs_devices
*fs_devices
;
285 while (!list_empty(&fs_uuids
)) {
286 fs_devices
= list_entry(fs_uuids
.next
,
287 struct btrfs_fs_devices
, list
);
288 list_del(&fs_devices
->list
);
289 free_fs_devices(fs_devices
);
294 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
295 * Returned struct is not linked onto any lists and must be destroyed using
298 static struct btrfs_device
*__alloc_device(void)
300 struct btrfs_device
*dev
;
302 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
304 return ERR_PTR(-ENOMEM
);
307 * Preallocate a bio that's always going to be used for flushing device
308 * barriers and matches the device lifespan
310 dev
->flush_bio
= bio_alloc_bioset(GFP_KERNEL
, 0, NULL
);
311 if (!dev
->flush_bio
) {
313 return ERR_PTR(-ENOMEM
);
316 INIT_LIST_HEAD(&dev
->dev_list
);
317 INIT_LIST_HEAD(&dev
->dev_alloc_list
);
318 INIT_LIST_HEAD(&dev
->resized_list
);
320 spin_lock_init(&dev
->io_lock
);
322 atomic_set(&dev
->reada_in_flight
, 0);
323 atomic_set(&dev
->dev_stats_ccnt
, 0);
324 btrfs_device_data_ordered_init(dev
);
325 INIT_RADIX_TREE(&dev
->reada_zones
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
326 INIT_RADIX_TREE(&dev
->reada_extents
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
332 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
335 * If devid and uuid are both specified, the match must be exact, otherwise
336 * only devid is used.
338 static struct btrfs_device
*find_device(struct btrfs_fs_devices
*fs_devices
,
339 u64 devid
, const u8
*uuid
)
341 struct list_head
*head
= &fs_devices
->devices
;
342 struct btrfs_device
*dev
;
344 list_for_each_entry(dev
, head
, dev_list
) {
345 if (dev
->devid
== devid
&&
346 (!uuid
|| !memcmp(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
))) {
353 static noinline
struct btrfs_fs_devices
*find_fsid(u8
*fsid
)
355 struct btrfs_fs_devices
*fs_devices
;
357 list_for_each_entry(fs_devices
, &fs_uuids
, list
) {
358 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
365 btrfs_get_bdev_and_sb(const char *device_path
, fmode_t flags
, void *holder
,
366 int flush
, struct block_device
**bdev
,
367 struct buffer_head
**bh
)
371 *bdev
= blkdev_get_by_path(device_path
, flags
, holder
);
374 ret
= PTR_ERR(*bdev
);
379 filemap_write_and_wait((*bdev
)->bd_inode
->i_mapping
);
380 ret
= set_blocksize(*bdev
, BTRFS_BDEV_BLOCKSIZE
);
382 blkdev_put(*bdev
, flags
);
385 invalidate_bdev(*bdev
);
386 *bh
= btrfs_read_dev_super(*bdev
);
389 blkdev_put(*bdev
, flags
);
401 static void requeue_list(struct btrfs_pending_bios
*pending_bios
,
402 struct bio
*head
, struct bio
*tail
)
405 struct bio
*old_head
;
407 old_head
= pending_bios
->head
;
408 pending_bios
->head
= head
;
409 if (pending_bios
->tail
)
410 tail
->bi_next
= old_head
;
412 pending_bios
->tail
= tail
;
416 * we try to collect pending bios for a device so we don't get a large
417 * number of procs sending bios down to the same device. This greatly
418 * improves the schedulers ability to collect and merge the bios.
420 * But, it also turns into a long list of bios to process and that is sure
421 * to eventually make the worker thread block. The solution here is to
422 * make some progress and then put this work struct back at the end of
423 * the list if the block device is congested. This way, multiple devices
424 * can make progress from a single worker thread.
426 static noinline
void run_scheduled_bios(struct btrfs_device
*device
)
428 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
430 struct backing_dev_info
*bdi
;
431 struct btrfs_pending_bios
*pending_bios
;
435 unsigned long num_run
;
436 unsigned long batch_run
= 0;
437 unsigned long last_waited
= 0;
439 int sync_pending
= 0;
440 struct blk_plug plug
;
443 * this function runs all the bios we've collected for
444 * a particular device. We don't want to wander off to
445 * another device without first sending all of these down.
446 * So, setup a plug here and finish it off before we return
448 blk_start_plug(&plug
);
450 bdi
= device
->bdev
->bd_bdi
;
453 spin_lock(&device
->io_lock
);
458 /* take all the bios off the list at once and process them
459 * later on (without the lock held). But, remember the
460 * tail and other pointers so the bios can be properly reinserted
461 * into the list if we hit congestion
463 if (!force_reg
&& device
->pending_sync_bios
.head
) {
464 pending_bios
= &device
->pending_sync_bios
;
467 pending_bios
= &device
->pending_bios
;
471 pending
= pending_bios
->head
;
472 tail
= pending_bios
->tail
;
473 WARN_ON(pending
&& !tail
);
476 * if pending was null this time around, no bios need processing
477 * at all and we can stop. Otherwise it'll loop back up again
478 * and do an additional check so no bios are missed.
480 * device->running_pending is used to synchronize with the
483 if (device
->pending_sync_bios
.head
== NULL
&&
484 device
->pending_bios
.head
== NULL
) {
486 device
->running_pending
= 0;
489 device
->running_pending
= 1;
492 pending_bios
->head
= NULL
;
493 pending_bios
->tail
= NULL
;
495 spin_unlock(&device
->io_lock
);
500 /* we want to work on both lists, but do more bios on the
501 * sync list than the regular list
504 pending_bios
!= &device
->pending_sync_bios
&&
505 device
->pending_sync_bios
.head
) ||
506 (num_run
> 64 && pending_bios
== &device
->pending_sync_bios
&&
507 device
->pending_bios
.head
)) {
508 spin_lock(&device
->io_lock
);
509 requeue_list(pending_bios
, pending
, tail
);
514 pending
= pending
->bi_next
;
517 BUG_ON(atomic_read(&cur
->__bi_cnt
) == 0);
520 * if we're doing the sync list, record that our
521 * plug has some sync requests on it
523 * If we're doing the regular list and there are
524 * sync requests sitting around, unplug before
527 if (pending_bios
== &device
->pending_sync_bios
) {
529 } else if (sync_pending
) {
530 blk_finish_plug(&plug
);
531 blk_start_plug(&plug
);
535 btrfsic_submit_bio(cur
);
542 * we made progress, there is more work to do and the bdi
543 * is now congested. Back off and let other work structs
546 if (pending
&& bdi_write_congested(bdi
) && batch_run
> 8 &&
547 fs_info
->fs_devices
->open_devices
> 1) {
548 struct io_context
*ioc
;
550 ioc
= current
->io_context
;
553 * the main goal here is that we don't want to
554 * block if we're going to be able to submit
555 * more requests without blocking.
557 * This code does two great things, it pokes into
558 * the elevator code from a filesystem _and_
559 * it makes assumptions about how batching works.
561 if (ioc
&& ioc
->nr_batch_requests
> 0 &&
562 time_before(jiffies
, ioc
->last_waited
+ HZ
/50UL) &&
564 ioc
->last_waited
== last_waited
)) {
566 * we want to go through our batch of
567 * requests and stop. So, we copy out
568 * the ioc->last_waited time and test
569 * against it before looping
571 last_waited
= ioc
->last_waited
;
575 spin_lock(&device
->io_lock
);
576 requeue_list(pending_bios
, pending
, tail
);
577 device
->running_pending
= 1;
579 spin_unlock(&device
->io_lock
);
580 btrfs_queue_work(fs_info
->submit_workers
,
590 spin_lock(&device
->io_lock
);
591 if (device
->pending_bios
.head
|| device
->pending_sync_bios
.head
)
593 spin_unlock(&device
->io_lock
);
596 blk_finish_plug(&plug
);
599 static void pending_bios_fn(struct btrfs_work
*work
)
601 struct btrfs_device
*device
;
603 device
= container_of(work
, struct btrfs_device
, work
);
604 run_scheduled_bios(device
);
608 * Search and remove all stale (devices which are not mounted) devices.
609 * When both inputs are NULL, it will search and release all stale devices.
610 * path: Optional. When provided will it release all unmounted devices
611 * matching this path only.
612 * skip_dev: Optional. Will skip this device when searching for the stale
615 static void btrfs_free_stale_devices(const char *path
,
616 struct btrfs_device
*skip_dev
)
618 struct btrfs_fs_devices
*fs_devs
, *tmp_fs_devs
;
619 struct btrfs_device
*dev
, *tmp_dev
;
621 list_for_each_entry_safe(fs_devs
, tmp_fs_devs
, &fs_uuids
, list
) {
626 list_for_each_entry_safe(dev
, tmp_dev
,
627 &fs_devs
->devices
, dev_list
) {
630 if (skip_dev
&& skip_dev
== dev
)
632 if (path
&& !dev
->name
)
637 not_found
= strcmp(rcu_str_deref(dev
->name
),
643 /* delete the stale device */
644 if (fs_devs
->num_devices
== 1) {
645 btrfs_sysfs_remove_fsid(fs_devs
);
646 list_del(&fs_devs
->list
);
647 free_fs_devices(fs_devs
);
649 fs_devs
->num_devices
--;
650 list_del(&dev
->dev_list
);
657 static int btrfs_open_one_device(struct btrfs_fs_devices
*fs_devices
,
658 struct btrfs_device
*device
, fmode_t flags
,
661 struct request_queue
*q
;
662 struct block_device
*bdev
;
663 struct buffer_head
*bh
;
664 struct btrfs_super_block
*disk_super
;
673 ret
= btrfs_get_bdev_and_sb(device
->name
->str
, flags
, holder
, 1,
678 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
679 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
680 if (devid
!= device
->devid
)
683 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
, BTRFS_UUID_SIZE
))
686 device
->generation
= btrfs_super_generation(disk_super
);
688 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
689 clear_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
690 fs_devices
->seeding
= 1;
692 if (bdev_read_only(bdev
))
693 clear_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
695 set_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
698 q
= bdev_get_queue(bdev
);
699 if (!blk_queue_nonrot(q
))
700 fs_devices
->rotating
= 1;
703 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
704 device
->mode
= flags
;
706 fs_devices
->open_devices
++;
707 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
708 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
709 fs_devices
->rw_devices
++;
710 list_add(&device
->dev_alloc_list
, &fs_devices
->alloc_list
);
718 blkdev_put(bdev
, flags
);
724 * Add new device to list of registered devices
727 * device pointer which was just added or updated when successful
728 * error pointer when failed
730 static noinline
struct btrfs_device
*device_list_add(const char *path
,
731 struct btrfs_super_block
*disk_super
)
733 struct btrfs_device
*device
;
734 struct btrfs_fs_devices
*fs_devices
;
735 struct rcu_string
*name
;
736 u64 found_transid
= btrfs_super_generation(disk_super
);
737 u64 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
739 fs_devices
= find_fsid(disk_super
->fsid
);
741 fs_devices
= alloc_fs_devices(disk_super
->fsid
);
742 if (IS_ERR(fs_devices
))
743 return ERR_CAST(fs_devices
);
745 list_add(&fs_devices
->list
, &fs_uuids
);
749 device
= find_device(fs_devices
, devid
,
750 disk_super
->dev_item
.uuid
);
754 if (fs_devices
->opened
)
755 return ERR_PTR(-EBUSY
);
757 device
= btrfs_alloc_device(NULL
, &devid
,
758 disk_super
->dev_item
.uuid
);
759 if (IS_ERR(device
)) {
760 /* we can safely leave the fs_devices entry around */
764 name
= rcu_string_strdup(path
, GFP_NOFS
);
767 return ERR_PTR(-ENOMEM
);
769 rcu_assign_pointer(device
->name
, name
);
771 mutex_lock(&fs_devices
->device_list_mutex
);
772 list_add_rcu(&device
->dev_list
, &fs_devices
->devices
);
773 fs_devices
->num_devices
++;
774 mutex_unlock(&fs_devices
->device_list_mutex
);
776 device
->fs_devices
= fs_devices
;
777 btrfs_free_stale_devices(path
, device
);
779 if (disk_super
->label
[0])
780 pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
781 disk_super
->label
, devid
, found_transid
, path
);
783 pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
784 disk_super
->fsid
, devid
, found_transid
, path
);
786 } else if (!device
->name
|| strcmp(device
->name
->str
, path
)) {
788 * When FS is already mounted.
789 * 1. If you are here and if the device->name is NULL that
790 * means this device was missing at time of FS mount.
791 * 2. If you are here and if the device->name is different
792 * from 'path' that means either
793 * a. The same device disappeared and reappeared with
795 * b. The missing-disk-which-was-replaced, has
798 * We must allow 1 and 2a above. But 2b would be a spurious
801 * Further in case of 1 and 2a above, the disk at 'path'
802 * would have missed some transaction when it was away and
803 * in case of 2a the stale bdev has to be updated as well.
804 * 2b must not be allowed at all time.
808 * For now, we do allow update to btrfs_fs_device through the
809 * btrfs dev scan cli after FS has been mounted. We're still
810 * tracking a problem where systems fail mount by subvolume id
811 * when we reject replacement on a mounted FS.
813 if (!fs_devices
->opened
&& found_transid
< device
->generation
) {
815 * That is if the FS is _not_ mounted and if you
816 * are here, that means there is more than one
817 * disk with same uuid and devid.We keep the one
818 * with larger generation number or the last-in if
819 * generation are equal.
821 return ERR_PTR(-EEXIST
);
824 name
= rcu_string_strdup(path
, GFP_NOFS
);
826 return ERR_PTR(-ENOMEM
);
827 rcu_string_free(device
->name
);
828 rcu_assign_pointer(device
->name
, name
);
829 if (test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
)) {
830 fs_devices
->missing_devices
--;
831 clear_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
);
836 * Unmount does not free the btrfs_device struct but would zero
837 * generation along with most of the other members. So just update
838 * it back. We need it to pick the disk with largest generation
841 if (!fs_devices
->opened
)
842 device
->generation
= found_transid
;
844 fs_devices
->total_devices
= btrfs_super_num_devices(disk_super
);
849 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
851 struct btrfs_fs_devices
*fs_devices
;
852 struct btrfs_device
*device
;
853 struct btrfs_device
*orig_dev
;
855 fs_devices
= alloc_fs_devices(orig
->fsid
);
856 if (IS_ERR(fs_devices
))
859 mutex_lock(&orig
->device_list_mutex
);
860 fs_devices
->total_devices
= orig
->total_devices
;
862 /* We have held the volume lock, it is safe to get the devices. */
863 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
864 struct rcu_string
*name
;
866 device
= btrfs_alloc_device(NULL
, &orig_dev
->devid
,
872 * This is ok to do without rcu read locked because we hold the
873 * uuid mutex so nothing we touch in here is going to disappear.
875 if (orig_dev
->name
) {
876 name
= rcu_string_strdup(orig_dev
->name
->str
,
882 rcu_assign_pointer(device
->name
, name
);
885 list_add(&device
->dev_list
, &fs_devices
->devices
);
886 device
->fs_devices
= fs_devices
;
887 fs_devices
->num_devices
++;
889 mutex_unlock(&orig
->device_list_mutex
);
892 mutex_unlock(&orig
->device_list_mutex
);
893 free_fs_devices(fs_devices
);
894 return ERR_PTR(-ENOMEM
);
897 void btrfs_close_extra_devices(struct btrfs_fs_devices
*fs_devices
, int step
)
899 struct btrfs_device
*device
, *next
;
900 struct btrfs_device
*latest_dev
= NULL
;
902 mutex_lock(&uuid_mutex
);
904 /* This is the initialized path, it is safe to release the devices. */
905 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
906 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
907 &device
->dev_state
)) {
908 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT
,
909 &device
->dev_state
) &&
911 device
->generation
> latest_dev
->generation
)) {
917 if (device
->devid
== BTRFS_DEV_REPLACE_DEVID
) {
919 * In the first step, keep the device which has
920 * the correct fsid and the devid that is used
921 * for the dev_replace procedure.
922 * In the second step, the dev_replace state is
923 * read from the device tree and it is known
924 * whether the procedure is really active or
925 * not, which means whether this device is
926 * used or whether it should be removed.
928 if (step
== 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT
,
929 &device
->dev_state
)) {
934 blkdev_put(device
->bdev
, device
->mode
);
936 fs_devices
->open_devices
--;
938 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
939 list_del_init(&device
->dev_alloc_list
);
940 clear_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
941 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT
,
943 fs_devices
->rw_devices
--;
945 list_del_init(&device
->dev_list
);
946 fs_devices
->num_devices
--;
950 if (fs_devices
->seed
) {
951 fs_devices
= fs_devices
->seed
;
955 fs_devices
->latest_bdev
= latest_dev
->bdev
;
957 mutex_unlock(&uuid_mutex
);
960 static void free_device_rcu(struct rcu_head
*head
)
962 struct btrfs_device
*device
;
964 device
= container_of(head
, struct btrfs_device
, rcu
);
968 static void btrfs_close_bdev(struct btrfs_device
*device
)
973 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
974 sync_blockdev(device
->bdev
);
975 invalidate_bdev(device
->bdev
);
978 blkdev_put(device
->bdev
, device
->mode
);
981 static void btrfs_prepare_close_one_device(struct btrfs_device
*device
)
983 struct btrfs_fs_devices
*fs_devices
= device
->fs_devices
;
984 struct btrfs_device
*new_device
;
985 struct rcu_string
*name
;
988 fs_devices
->open_devices
--;
990 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
991 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
992 list_del_init(&device
->dev_alloc_list
);
993 fs_devices
->rw_devices
--;
996 if (test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
))
997 fs_devices
->missing_devices
--;
999 new_device
= btrfs_alloc_device(NULL
, &device
->devid
,
1001 BUG_ON(IS_ERR(new_device
)); /* -ENOMEM */
1003 /* Safe because we are under uuid_mutex */
1005 name
= rcu_string_strdup(device
->name
->str
, GFP_NOFS
);
1006 BUG_ON(!name
); /* -ENOMEM */
1007 rcu_assign_pointer(new_device
->name
, name
);
1010 list_replace_rcu(&device
->dev_list
, &new_device
->dev_list
);
1011 new_device
->fs_devices
= device
->fs_devices
;
1014 static int __btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
1016 struct btrfs_device
*device
, *tmp
;
1017 struct list_head pending_put
;
1019 INIT_LIST_HEAD(&pending_put
);
1021 if (--fs_devices
->opened
> 0)
1024 mutex_lock(&fs_devices
->device_list_mutex
);
1025 list_for_each_entry_safe(device
, tmp
, &fs_devices
->devices
, dev_list
) {
1026 btrfs_prepare_close_one_device(device
);
1027 list_add(&device
->dev_list
, &pending_put
);
1029 mutex_unlock(&fs_devices
->device_list_mutex
);
1032 * btrfs_show_devname() is using the device_list_mutex,
1033 * sometimes call to blkdev_put() leads vfs calling
1034 * into this func. So do put outside of device_list_mutex,
1037 while (!list_empty(&pending_put
)) {
1038 device
= list_first_entry(&pending_put
,
1039 struct btrfs_device
, dev_list
);
1040 list_del(&device
->dev_list
);
1041 btrfs_close_bdev(device
);
1042 call_rcu(&device
->rcu
, free_device_rcu
);
1045 WARN_ON(fs_devices
->open_devices
);
1046 WARN_ON(fs_devices
->rw_devices
);
1047 fs_devices
->opened
= 0;
1048 fs_devices
->seeding
= 0;
1053 int btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
1055 struct btrfs_fs_devices
*seed_devices
= NULL
;
1058 mutex_lock(&uuid_mutex
);
1059 ret
= __btrfs_close_devices(fs_devices
);
1060 if (!fs_devices
->opened
) {
1061 seed_devices
= fs_devices
->seed
;
1062 fs_devices
->seed
= NULL
;
1064 mutex_unlock(&uuid_mutex
);
1066 while (seed_devices
) {
1067 fs_devices
= seed_devices
;
1068 seed_devices
= fs_devices
->seed
;
1069 __btrfs_close_devices(fs_devices
);
1070 free_fs_devices(fs_devices
);
1075 static int __btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
1076 fmode_t flags
, void *holder
)
1078 struct list_head
*head
= &fs_devices
->devices
;
1079 struct btrfs_device
*device
;
1080 struct btrfs_device
*latest_dev
= NULL
;
1083 flags
|= FMODE_EXCL
;
1085 list_for_each_entry(device
, head
, dev_list
) {
1086 /* Just open everything we can; ignore failures here */
1087 if (btrfs_open_one_device(fs_devices
, device
, flags
, holder
))
1091 device
->generation
> latest_dev
->generation
)
1092 latest_dev
= device
;
1094 if (fs_devices
->open_devices
== 0) {
1098 fs_devices
->opened
= 1;
1099 fs_devices
->latest_bdev
= latest_dev
->bdev
;
1100 fs_devices
->total_rw_bytes
= 0;
1105 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
1106 fmode_t flags
, void *holder
)
1110 mutex_lock(&uuid_mutex
);
1111 if (fs_devices
->opened
) {
1112 fs_devices
->opened
++;
1115 ret
= __btrfs_open_devices(fs_devices
, flags
, holder
);
1117 mutex_unlock(&uuid_mutex
);
1121 static void btrfs_release_disk_super(struct page
*page
)
1127 static int btrfs_read_disk_super(struct block_device
*bdev
, u64 bytenr
,
1129 struct btrfs_super_block
**disk_super
)
1134 /* make sure our super fits in the device */
1135 if (bytenr
+ PAGE_SIZE
>= i_size_read(bdev
->bd_inode
))
1138 /* make sure our super fits in the page */
1139 if (sizeof(**disk_super
) > PAGE_SIZE
)
1142 /* make sure our super doesn't straddle pages on disk */
1143 index
= bytenr
>> PAGE_SHIFT
;
1144 if ((bytenr
+ sizeof(**disk_super
) - 1) >> PAGE_SHIFT
!= index
)
1147 /* pull in the page with our super */
1148 *page
= read_cache_page_gfp(bdev
->bd_inode
->i_mapping
,
1151 if (IS_ERR_OR_NULL(*page
))
1156 /* align our pointer to the offset of the super block */
1157 *disk_super
= p
+ (bytenr
& ~PAGE_MASK
);
1159 if (btrfs_super_bytenr(*disk_super
) != bytenr
||
1160 btrfs_super_magic(*disk_super
) != BTRFS_MAGIC
) {
1161 btrfs_release_disk_super(*page
);
1165 if ((*disk_super
)->label
[0] &&
1166 (*disk_super
)->label
[BTRFS_LABEL_SIZE
- 1])
1167 (*disk_super
)->label
[BTRFS_LABEL_SIZE
- 1] = '\0';
1173 * Look for a btrfs signature on a device. This may be called out of the mount path
1174 * and we are not allowed to call set_blocksize during the scan. The superblock
1175 * is read via pagecache
1177 int btrfs_scan_one_device(const char *path
, fmode_t flags
, void *holder
,
1178 struct btrfs_fs_devices
**fs_devices_ret
)
1180 struct btrfs_super_block
*disk_super
;
1181 struct btrfs_device
*device
;
1182 struct block_device
*bdev
;
1188 * we would like to check all the supers, but that would make
1189 * a btrfs mount succeed after a mkfs from a different FS.
1190 * So, we need to add a special mount option to scan for
1191 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1193 bytenr
= btrfs_sb_offset(0);
1194 flags
|= FMODE_EXCL
;
1195 mutex_lock(&uuid_mutex
);
1197 bdev
= blkdev_get_by_path(path
, flags
, holder
);
1199 ret
= PTR_ERR(bdev
);
1203 if (btrfs_read_disk_super(bdev
, bytenr
, &page
, &disk_super
)) {
1205 goto error_bdev_put
;
1208 device
= device_list_add(path
, disk_super
);
1210 ret
= PTR_ERR(device
);
1212 *fs_devices_ret
= device
->fs_devices
;
1214 btrfs_release_disk_super(page
);
1217 blkdev_put(bdev
, flags
);
1219 mutex_unlock(&uuid_mutex
);
1223 /* helper to account the used device space in the range */
1224 int btrfs_account_dev_extents_size(struct btrfs_device
*device
, u64 start
,
1225 u64 end
, u64
*length
)
1227 struct btrfs_key key
;
1228 struct btrfs_root
*root
= device
->fs_info
->dev_root
;
1229 struct btrfs_dev_extent
*dev_extent
;
1230 struct btrfs_path
*path
;
1234 struct extent_buffer
*l
;
1238 if (start
>= device
->total_bytes
||
1239 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
))
1242 path
= btrfs_alloc_path();
1245 path
->reada
= READA_FORWARD
;
1247 key
.objectid
= device
->devid
;
1249 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1251 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1255 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1262 slot
= path
->slots
[0];
1263 if (slot
>= btrfs_header_nritems(l
)) {
1264 ret
= btrfs_next_leaf(root
, path
);
1272 btrfs_item_key_to_cpu(l
, &key
, slot
);
1274 if (key
.objectid
< device
->devid
)
1277 if (key
.objectid
> device
->devid
)
1280 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1283 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1284 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1286 if (key
.offset
<= start
&& extent_end
> end
) {
1287 *length
= end
- start
+ 1;
1289 } else if (key
.offset
<= start
&& extent_end
> start
)
1290 *length
+= extent_end
- start
;
1291 else if (key
.offset
> start
&& extent_end
<= end
)
1292 *length
+= extent_end
- key
.offset
;
1293 else if (key
.offset
> start
&& key
.offset
<= end
) {
1294 *length
+= end
- key
.offset
+ 1;
1296 } else if (key
.offset
> end
)
1304 btrfs_free_path(path
);
1308 static int contains_pending_extent(struct btrfs_transaction
*transaction
,
1309 struct btrfs_device
*device
,
1310 u64
*start
, u64 len
)
1312 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1313 struct extent_map
*em
;
1314 struct list_head
*search_list
= &fs_info
->pinned_chunks
;
1316 u64 physical_start
= *start
;
1319 search_list
= &transaction
->pending_chunks
;
1321 list_for_each_entry(em
, search_list
, list
) {
1322 struct map_lookup
*map
;
1325 map
= em
->map_lookup
;
1326 for (i
= 0; i
< map
->num_stripes
; i
++) {
1329 if (map
->stripes
[i
].dev
!= device
)
1331 if (map
->stripes
[i
].physical
>= physical_start
+ len
||
1332 map
->stripes
[i
].physical
+ em
->orig_block_len
<=
1336 * Make sure that while processing the pinned list we do
1337 * not override our *start with a lower value, because
1338 * we can have pinned chunks that fall within this
1339 * device hole and that have lower physical addresses
1340 * than the pending chunks we processed before. If we
1341 * do not take this special care we can end up getting
1342 * 2 pending chunks that start at the same physical
1343 * device offsets because the end offset of a pinned
1344 * chunk can be equal to the start offset of some
1347 end
= map
->stripes
[i
].physical
+ em
->orig_block_len
;
1354 if (search_list
!= &fs_info
->pinned_chunks
) {
1355 search_list
= &fs_info
->pinned_chunks
;
1364 * find_free_dev_extent_start - find free space in the specified device
1365 * @device: the device which we search the free space in
1366 * @num_bytes: the size of the free space that we need
1367 * @search_start: the position from which to begin the search
1368 * @start: store the start of the free space.
1369 * @len: the size of the free space. that we find, or the size
1370 * of the max free space if we don't find suitable free space
1372 * this uses a pretty simple search, the expectation is that it is
1373 * called very infrequently and that a given device has a small number
1376 * @start is used to store the start of the free space if we find. But if we
1377 * don't find suitable free space, it will be used to store the start position
1378 * of the max free space.
1380 * @len is used to store the size of the free space that we find.
1381 * But if we don't find suitable free space, it is used to store the size of
1382 * the max free space.
1384 int find_free_dev_extent_start(struct btrfs_transaction
*transaction
,
1385 struct btrfs_device
*device
, u64 num_bytes
,
1386 u64 search_start
, u64
*start
, u64
*len
)
1388 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1389 struct btrfs_root
*root
= fs_info
->dev_root
;
1390 struct btrfs_key key
;
1391 struct btrfs_dev_extent
*dev_extent
;
1392 struct btrfs_path
*path
;
1397 u64 search_end
= device
->total_bytes
;
1400 struct extent_buffer
*l
;
1403 * We don't want to overwrite the superblock on the drive nor any area
1404 * used by the boot loader (grub for example), so we make sure to start
1405 * at an offset of at least 1MB.
1407 search_start
= max_t(u64
, search_start
, SZ_1M
);
1409 path
= btrfs_alloc_path();
1413 max_hole_start
= search_start
;
1417 if (search_start
>= search_end
||
1418 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
1423 path
->reada
= READA_FORWARD
;
1424 path
->search_commit_root
= 1;
1425 path
->skip_locking
= 1;
1427 key
.objectid
= device
->devid
;
1428 key
.offset
= search_start
;
1429 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1431 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1435 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1442 slot
= path
->slots
[0];
1443 if (slot
>= btrfs_header_nritems(l
)) {
1444 ret
= btrfs_next_leaf(root
, path
);
1452 btrfs_item_key_to_cpu(l
, &key
, slot
);
1454 if (key
.objectid
< device
->devid
)
1457 if (key
.objectid
> device
->devid
)
1460 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1463 if (key
.offset
> search_start
) {
1464 hole_size
= key
.offset
- search_start
;
1467 * Have to check before we set max_hole_start, otherwise
1468 * we could end up sending back this offset anyway.
1470 if (contains_pending_extent(transaction
, device
,
1473 if (key
.offset
>= search_start
) {
1474 hole_size
= key
.offset
- search_start
;
1481 if (hole_size
> max_hole_size
) {
1482 max_hole_start
= search_start
;
1483 max_hole_size
= hole_size
;
1487 * If this free space is greater than which we need,
1488 * it must be the max free space that we have found
1489 * until now, so max_hole_start must point to the start
1490 * of this free space and the length of this free space
1491 * is stored in max_hole_size. Thus, we return
1492 * max_hole_start and max_hole_size and go back to the
1495 if (hole_size
>= num_bytes
) {
1501 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1502 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1504 if (extent_end
> search_start
)
1505 search_start
= extent_end
;
1512 * At this point, search_start should be the end of
1513 * allocated dev extents, and when shrinking the device,
1514 * search_end may be smaller than search_start.
1516 if (search_end
> search_start
) {
1517 hole_size
= search_end
- search_start
;
1519 if (contains_pending_extent(transaction
, device
, &search_start
,
1521 btrfs_release_path(path
);
1525 if (hole_size
> max_hole_size
) {
1526 max_hole_start
= search_start
;
1527 max_hole_size
= hole_size
;
1532 if (max_hole_size
< num_bytes
)
1538 btrfs_free_path(path
);
1539 *start
= max_hole_start
;
1541 *len
= max_hole_size
;
1545 int find_free_dev_extent(struct btrfs_trans_handle
*trans
,
1546 struct btrfs_device
*device
, u64 num_bytes
,
1547 u64
*start
, u64
*len
)
1549 /* FIXME use last free of some kind */
1550 return find_free_dev_extent_start(trans
->transaction
, device
,
1551 num_bytes
, 0, start
, len
);
1554 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
1555 struct btrfs_device
*device
,
1556 u64 start
, u64
*dev_extent_len
)
1558 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1559 struct btrfs_root
*root
= fs_info
->dev_root
;
1561 struct btrfs_path
*path
;
1562 struct btrfs_key key
;
1563 struct btrfs_key found_key
;
1564 struct extent_buffer
*leaf
= NULL
;
1565 struct btrfs_dev_extent
*extent
= NULL
;
1567 path
= btrfs_alloc_path();
1571 key
.objectid
= device
->devid
;
1573 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1575 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1577 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
1578 BTRFS_DEV_EXTENT_KEY
);
1581 leaf
= path
->nodes
[0];
1582 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1583 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1584 struct btrfs_dev_extent
);
1585 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
1586 btrfs_dev_extent_length(leaf
, extent
) < start
);
1588 btrfs_release_path(path
);
1590 } else if (ret
== 0) {
1591 leaf
= path
->nodes
[0];
1592 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1593 struct btrfs_dev_extent
);
1595 btrfs_handle_fs_error(fs_info
, ret
, "Slot search failed");
1599 *dev_extent_len
= btrfs_dev_extent_length(leaf
, extent
);
1601 ret
= btrfs_del_item(trans
, root
, path
);
1603 btrfs_handle_fs_error(fs_info
, ret
,
1604 "Failed to remove dev extent item");
1606 set_bit(BTRFS_TRANS_HAVE_FREE_BGS
, &trans
->transaction
->flags
);
1609 btrfs_free_path(path
);
1613 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
1614 struct btrfs_device
*device
,
1615 u64 chunk_offset
, u64 start
, u64 num_bytes
)
1618 struct btrfs_path
*path
;
1619 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1620 struct btrfs_root
*root
= fs_info
->dev_root
;
1621 struct btrfs_dev_extent
*extent
;
1622 struct extent_buffer
*leaf
;
1623 struct btrfs_key key
;
1625 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
));
1626 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
));
1627 path
= btrfs_alloc_path();
1631 key
.objectid
= device
->devid
;
1633 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1634 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1639 leaf
= path
->nodes
[0];
1640 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1641 struct btrfs_dev_extent
);
1642 btrfs_set_dev_extent_chunk_tree(leaf
, extent
,
1643 BTRFS_CHUNK_TREE_OBJECTID
);
1644 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
,
1645 BTRFS_FIRST_CHUNK_TREE_OBJECTID
);
1646 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
1648 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
1649 btrfs_mark_buffer_dirty(leaf
);
1651 btrfs_free_path(path
);
1655 static u64
find_next_chunk(struct btrfs_fs_info
*fs_info
)
1657 struct extent_map_tree
*em_tree
;
1658 struct extent_map
*em
;
1662 em_tree
= &fs_info
->mapping_tree
.map_tree
;
1663 read_lock(&em_tree
->lock
);
1664 n
= rb_last(&em_tree
->map
);
1666 em
= rb_entry(n
, struct extent_map
, rb_node
);
1667 ret
= em
->start
+ em
->len
;
1669 read_unlock(&em_tree
->lock
);
1674 static noinline
int find_next_devid(struct btrfs_fs_info
*fs_info
,
1678 struct btrfs_key key
;
1679 struct btrfs_key found_key
;
1680 struct btrfs_path
*path
;
1682 path
= btrfs_alloc_path();
1686 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1687 key
.type
= BTRFS_DEV_ITEM_KEY
;
1688 key
.offset
= (u64
)-1;
1690 ret
= btrfs_search_slot(NULL
, fs_info
->chunk_root
, &key
, path
, 0, 0);
1694 BUG_ON(ret
== 0); /* Corruption */
1696 ret
= btrfs_previous_item(fs_info
->chunk_root
, path
,
1697 BTRFS_DEV_ITEMS_OBJECTID
,
1698 BTRFS_DEV_ITEM_KEY
);
1702 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1704 *devid_ret
= found_key
.offset
+ 1;
1708 btrfs_free_path(path
);
1713 * the device information is stored in the chunk root
1714 * the btrfs_device struct should be fully filled in
1716 static int btrfs_add_dev_item(struct btrfs_trans_handle
*trans
,
1717 struct btrfs_fs_info
*fs_info
,
1718 struct btrfs_device
*device
)
1720 struct btrfs_root
*root
= fs_info
->chunk_root
;
1722 struct btrfs_path
*path
;
1723 struct btrfs_dev_item
*dev_item
;
1724 struct extent_buffer
*leaf
;
1725 struct btrfs_key key
;
1728 path
= btrfs_alloc_path();
1732 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1733 key
.type
= BTRFS_DEV_ITEM_KEY
;
1734 key
.offset
= device
->devid
;
1736 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1741 leaf
= path
->nodes
[0];
1742 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1744 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1745 btrfs_set_device_generation(leaf
, dev_item
, 0);
1746 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1747 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1748 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1749 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1750 btrfs_set_device_total_bytes(leaf
, dev_item
,
1751 btrfs_device_get_disk_total_bytes(device
));
1752 btrfs_set_device_bytes_used(leaf
, dev_item
,
1753 btrfs_device_get_bytes_used(device
));
1754 btrfs_set_device_group(leaf
, dev_item
, 0);
1755 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
1756 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
1757 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
1759 ptr
= btrfs_device_uuid(dev_item
);
1760 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
1761 ptr
= btrfs_device_fsid(dev_item
);
1762 write_extent_buffer(leaf
, fs_info
->fsid
, ptr
, BTRFS_FSID_SIZE
);
1763 btrfs_mark_buffer_dirty(leaf
);
1767 btrfs_free_path(path
);
1772 * Function to update ctime/mtime for a given device path.
1773 * Mainly used for ctime/mtime based probe like libblkid.
1775 static void update_dev_time(const char *path_name
)
1779 filp
= filp_open(path_name
, O_RDWR
, 0);
1782 file_update_time(filp
);
1783 filp_close(filp
, NULL
);
1786 static int btrfs_rm_dev_item(struct btrfs_fs_info
*fs_info
,
1787 struct btrfs_device
*device
)
1789 struct btrfs_root
*root
= fs_info
->chunk_root
;
1791 struct btrfs_path
*path
;
1792 struct btrfs_key key
;
1793 struct btrfs_trans_handle
*trans
;
1795 path
= btrfs_alloc_path();
1799 trans
= btrfs_start_transaction(root
, 0);
1800 if (IS_ERR(trans
)) {
1801 btrfs_free_path(path
);
1802 return PTR_ERR(trans
);
1804 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1805 key
.type
= BTRFS_DEV_ITEM_KEY
;
1806 key
.offset
= device
->devid
;
1808 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1812 btrfs_abort_transaction(trans
, ret
);
1813 btrfs_end_transaction(trans
);
1817 ret
= btrfs_del_item(trans
, root
, path
);
1819 btrfs_abort_transaction(trans
, ret
);
1820 btrfs_end_transaction(trans
);
1824 btrfs_free_path(path
);
1826 ret
= btrfs_commit_transaction(trans
);
1831 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1832 * filesystem. It's up to the caller to adjust that number regarding eg. device
1835 static int btrfs_check_raid_min_devices(struct btrfs_fs_info
*fs_info
,
1843 seq
= read_seqbegin(&fs_info
->profiles_lock
);
1845 all_avail
= fs_info
->avail_data_alloc_bits
|
1846 fs_info
->avail_system_alloc_bits
|
1847 fs_info
->avail_metadata_alloc_bits
;
1848 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
1850 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
1851 if (!(all_avail
& btrfs_raid_group
[i
]))
1854 if (num_devices
< btrfs_raid_array
[i
].devs_min
) {
1855 int ret
= btrfs_raid_mindev_error
[i
];
1865 static struct btrfs_device
* btrfs_find_next_active_device(
1866 struct btrfs_fs_devices
*fs_devs
, struct btrfs_device
*device
)
1868 struct btrfs_device
*next_device
;
1870 list_for_each_entry(next_device
, &fs_devs
->devices
, dev_list
) {
1871 if (next_device
!= device
&&
1872 !test_bit(BTRFS_DEV_STATE_MISSING
, &next_device
->dev_state
)
1873 && next_device
->bdev
)
1881 * Helper function to check if the given device is part of s_bdev / latest_bdev
1882 * and replace it with the provided or the next active device, in the context
1883 * where this function called, there should be always be another device (or
1884 * this_dev) which is active.
1886 void btrfs_assign_next_active_device(struct btrfs_fs_info
*fs_info
,
1887 struct btrfs_device
*device
, struct btrfs_device
*this_dev
)
1889 struct btrfs_device
*next_device
;
1892 next_device
= this_dev
;
1894 next_device
= btrfs_find_next_active_device(fs_info
->fs_devices
,
1896 ASSERT(next_device
);
1898 if (fs_info
->sb
->s_bdev
&&
1899 (fs_info
->sb
->s_bdev
== device
->bdev
))
1900 fs_info
->sb
->s_bdev
= next_device
->bdev
;
1902 if (fs_info
->fs_devices
->latest_bdev
== device
->bdev
)
1903 fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1906 int btrfs_rm_device(struct btrfs_fs_info
*fs_info
, const char *device_path
,
1909 struct btrfs_device
*device
;
1910 struct btrfs_fs_devices
*cur_devices
;
1914 mutex_lock(&fs_info
->volume_mutex
);
1915 mutex_lock(&uuid_mutex
);
1917 num_devices
= fs_info
->fs_devices
->num_devices
;
1918 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
1919 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
1920 WARN_ON(num_devices
< 1);
1923 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
1925 ret
= btrfs_check_raid_min_devices(fs_info
, num_devices
- 1);
1929 ret
= btrfs_find_device_by_devspec(fs_info
, devid
, device_path
,
1934 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
1935 ret
= BTRFS_ERROR_DEV_TGT_REPLACE
;
1939 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
1940 fs_info
->fs_devices
->rw_devices
== 1) {
1941 ret
= BTRFS_ERROR_DEV_ONLY_WRITABLE
;
1945 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
1946 mutex_lock(&fs_info
->chunk_mutex
);
1947 list_del_init(&device
->dev_alloc_list
);
1948 device
->fs_devices
->rw_devices
--;
1949 mutex_unlock(&fs_info
->chunk_mutex
);
1952 mutex_unlock(&uuid_mutex
);
1953 ret
= btrfs_shrink_device(device
, 0);
1954 mutex_lock(&uuid_mutex
);
1959 * TODO: the superblock still includes this device in its num_devices
1960 * counter although write_all_supers() is not locked out. This
1961 * could give a filesystem state which requires a degraded mount.
1963 ret
= btrfs_rm_dev_item(fs_info
, device
);
1967 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
1968 btrfs_scrub_cancel_dev(fs_info
, device
);
1971 * the device list mutex makes sure that we don't change
1972 * the device list while someone else is writing out all
1973 * the device supers. Whoever is writing all supers, should
1974 * lock the device list mutex before getting the number of
1975 * devices in the super block (super_copy). Conversely,
1976 * whoever updates the number of devices in the super block
1977 * (super_copy) should hold the device list mutex.
1980 cur_devices
= device
->fs_devices
;
1981 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
1982 list_del_rcu(&device
->dev_list
);
1984 device
->fs_devices
->num_devices
--;
1985 device
->fs_devices
->total_devices
--;
1987 if (test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
))
1988 device
->fs_devices
->missing_devices
--;
1990 btrfs_assign_next_active_device(fs_info
, device
, NULL
);
1993 device
->fs_devices
->open_devices
--;
1994 /* remove sysfs entry */
1995 btrfs_sysfs_rm_device_link(fs_info
->fs_devices
, device
);
1998 num_devices
= btrfs_super_num_devices(fs_info
->super_copy
) - 1;
1999 btrfs_set_super_num_devices(fs_info
->super_copy
, num_devices
);
2000 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2003 * at this point, the device is zero sized and detached from
2004 * the devices list. All that's left is to zero out the old
2005 * supers and free the device.
2007 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
))
2008 btrfs_scratch_superblocks(device
->bdev
, device
->name
->str
);
2010 btrfs_close_bdev(device
);
2011 call_rcu(&device
->rcu
, free_device_rcu
);
2013 if (cur_devices
->open_devices
== 0) {
2014 struct btrfs_fs_devices
*fs_devices
;
2015 fs_devices
= fs_info
->fs_devices
;
2016 while (fs_devices
) {
2017 if (fs_devices
->seed
== cur_devices
) {
2018 fs_devices
->seed
= cur_devices
->seed
;
2021 fs_devices
= fs_devices
->seed
;
2023 cur_devices
->seed
= NULL
;
2024 __btrfs_close_devices(cur_devices
);
2025 free_fs_devices(cur_devices
);
2029 mutex_unlock(&uuid_mutex
);
2030 mutex_unlock(&fs_info
->volume_mutex
);
2034 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
2035 mutex_lock(&fs_info
->chunk_mutex
);
2036 list_add(&device
->dev_alloc_list
,
2037 &fs_info
->fs_devices
->alloc_list
);
2038 device
->fs_devices
->rw_devices
++;
2039 mutex_unlock(&fs_info
->chunk_mutex
);
2044 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info
*fs_info
,
2045 struct btrfs_device
*srcdev
)
2047 struct btrfs_fs_devices
*fs_devices
;
2049 WARN_ON(!mutex_is_locked(&fs_info
->fs_devices
->device_list_mutex
));
2052 * in case of fs with no seed, srcdev->fs_devices will point
2053 * to fs_devices of fs_info. However when the dev being replaced is
2054 * a seed dev it will point to the seed's local fs_devices. In short
2055 * srcdev will have its correct fs_devices in both the cases.
2057 fs_devices
= srcdev
->fs_devices
;
2059 list_del_rcu(&srcdev
->dev_list
);
2060 list_del(&srcdev
->dev_alloc_list
);
2061 fs_devices
->num_devices
--;
2062 if (test_bit(BTRFS_DEV_STATE_MISSING
, &srcdev
->dev_state
))
2063 fs_devices
->missing_devices
--;
2065 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &srcdev
->dev_state
))
2066 fs_devices
->rw_devices
--;
2069 fs_devices
->open_devices
--;
2072 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info
*fs_info
,
2073 struct btrfs_device
*srcdev
)
2075 struct btrfs_fs_devices
*fs_devices
= srcdev
->fs_devices
;
2077 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &srcdev
->dev_state
)) {
2078 /* zero out the old super if it is writable */
2079 btrfs_scratch_superblocks(srcdev
->bdev
, srcdev
->name
->str
);
2082 btrfs_close_bdev(srcdev
);
2083 call_rcu(&srcdev
->rcu
, free_device_rcu
);
2085 /* if this is no devs we rather delete the fs_devices */
2086 if (!fs_devices
->num_devices
) {
2087 struct btrfs_fs_devices
*tmp_fs_devices
;
2090 * On a mounted FS, num_devices can't be zero unless it's a
2091 * seed. In case of a seed device being replaced, the replace
2092 * target added to the sprout FS, so there will be no more
2093 * device left under the seed FS.
2095 ASSERT(fs_devices
->seeding
);
2097 tmp_fs_devices
= fs_info
->fs_devices
;
2098 while (tmp_fs_devices
) {
2099 if (tmp_fs_devices
->seed
== fs_devices
) {
2100 tmp_fs_devices
->seed
= fs_devices
->seed
;
2103 tmp_fs_devices
= tmp_fs_devices
->seed
;
2105 fs_devices
->seed
= NULL
;
2106 __btrfs_close_devices(fs_devices
);
2107 free_fs_devices(fs_devices
);
2111 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info
*fs_info
,
2112 struct btrfs_device
*tgtdev
)
2114 mutex_lock(&uuid_mutex
);
2116 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2118 btrfs_sysfs_rm_device_link(fs_info
->fs_devices
, tgtdev
);
2121 fs_info
->fs_devices
->open_devices
--;
2123 fs_info
->fs_devices
->num_devices
--;
2125 btrfs_assign_next_active_device(fs_info
, tgtdev
, NULL
);
2127 list_del_rcu(&tgtdev
->dev_list
);
2129 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2130 mutex_unlock(&uuid_mutex
);
2133 * The update_dev_time() with in btrfs_scratch_superblocks()
2134 * may lead to a call to btrfs_show_devname() which will try
2135 * to hold device_list_mutex. And here this device
2136 * is already out of device list, so we don't have to hold
2137 * the device_list_mutex lock.
2139 btrfs_scratch_superblocks(tgtdev
->bdev
, tgtdev
->name
->str
);
2141 btrfs_close_bdev(tgtdev
);
2142 call_rcu(&tgtdev
->rcu
, free_device_rcu
);
2145 static int btrfs_find_device_by_path(struct btrfs_fs_info
*fs_info
,
2146 const char *device_path
,
2147 struct btrfs_device
**device
)
2150 struct btrfs_super_block
*disk_super
;
2153 struct block_device
*bdev
;
2154 struct buffer_head
*bh
;
2157 ret
= btrfs_get_bdev_and_sb(device_path
, FMODE_READ
,
2158 fs_info
->bdev_holder
, 0, &bdev
, &bh
);
2161 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
2162 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
2163 dev_uuid
= disk_super
->dev_item
.uuid
;
2164 *device
= btrfs_find_device(fs_info
, devid
, dev_uuid
, disk_super
->fsid
);
2168 blkdev_put(bdev
, FMODE_READ
);
2172 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info
*fs_info
,
2173 const char *device_path
,
2174 struct btrfs_device
**device
)
2177 if (strcmp(device_path
, "missing") == 0) {
2178 struct list_head
*devices
;
2179 struct btrfs_device
*tmp
;
2181 devices
= &fs_info
->fs_devices
->devices
;
2183 * It is safe to read the devices since the volume_mutex
2184 * is held by the caller.
2186 list_for_each_entry(tmp
, devices
, dev_list
) {
2187 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
2188 &tmp
->dev_state
) && !tmp
->bdev
) {
2195 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND
;
2199 return btrfs_find_device_by_path(fs_info
, device_path
, device
);
2204 * Lookup a device given by device id, or the path if the id is 0.
2206 int btrfs_find_device_by_devspec(struct btrfs_fs_info
*fs_info
, u64 devid
,
2207 const char *devpath
,
2208 struct btrfs_device
**device
)
2214 *device
= btrfs_find_device(fs_info
, devid
, NULL
, NULL
);
2218 if (!devpath
|| !devpath
[0])
2221 ret
= btrfs_find_device_missing_or_by_path(fs_info
, devpath
,
2228 * does all the dirty work required for changing file system's UUID.
2230 static int btrfs_prepare_sprout(struct btrfs_fs_info
*fs_info
)
2232 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2233 struct btrfs_fs_devices
*old_devices
;
2234 struct btrfs_fs_devices
*seed_devices
;
2235 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2236 struct btrfs_device
*device
;
2239 BUG_ON(!mutex_is_locked(&uuid_mutex
));
2240 if (!fs_devices
->seeding
)
2243 seed_devices
= alloc_fs_devices(NULL
);
2244 if (IS_ERR(seed_devices
))
2245 return PTR_ERR(seed_devices
);
2247 old_devices
= clone_fs_devices(fs_devices
);
2248 if (IS_ERR(old_devices
)) {
2249 kfree(seed_devices
);
2250 return PTR_ERR(old_devices
);
2253 list_add(&old_devices
->list
, &fs_uuids
);
2255 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
2256 seed_devices
->opened
= 1;
2257 INIT_LIST_HEAD(&seed_devices
->devices
);
2258 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
2259 mutex_init(&seed_devices
->device_list_mutex
);
2261 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2262 list_splice_init_rcu(&fs_devices
->devices
, &seed_devices
->devices
,
2264 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
)
2265 device
->fs_devices
= seed_devices
;
2267 mutex_lock(&fs_info
->chunk_mutex
);
2268 list_splice_init(&fs_devices
->alloc_list
, &seed_devices
->alloc_list
);
2269 mutex_unlock(&fs_info
->chunk_mutex
);
2271 fs_devices
->seeding
= 0;
2272 fs_devices
->num_devices
= 0;
2273 fs_devices
->open_devices
= 0;
2274 fs_devices
->missing_devices
= 0;
2275 fs_devices
->rotating
= 0;
2276 fs_devices
->seed
= seed_devices
;
2278 generate_random_uuid(fs_devices
->fsid
);
2279 memcpy(fs_info
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2280 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2281 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2283 super_flags
= btrfs_super_flags(disk_super
) &
2284 ~BTRFS_SUPER_FLAG_SEEDING
;
2285 btrfs_set_super_flags(disk_super
, super_flags
);
2291 * Store the expected generation for seed devices in device items.
2293 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
,
2294 struct btrfs_fs_info
*fs_info
)
2296 struct btrfs_root
*root
= fs_info
->chunk_root
;
2297 struct btrfs_path
*path
;
2298 struct extent_buffer
*leaf
;
2299 struct btrfs_dev_item
*dev_item
;
2300 struct btrfs_device
*device
;
2301 struct btrfs_key key
;
2302 u8 fs_uuid
[BTRFS_FSID_SIZE
];
2303 u8 dev_uuid
[BTRFS_UUID_SIZE
];
2307 path
= btrfs_alloc_path();
2311 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2313 key
.type
= BTRFS_DEV_ITEM_KEY
;
2316 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2320 leaf
= path
->nodes
[0];
2322 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
2323 ret
= btrfs_next_leaf(root
, path
);
2328 leaf
= path
->nodes
[0];
2329 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2330 btrfs_release_path(path
);
2334 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2335 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
2336 key
.type
!= BTRFS_DEV_ITEM_KEY
)
2339 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2340 struct btrfs_dev_item
);
2341 devid
= btrfs_device_id(leaf
, dev_item
);
2342 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
2344 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
2346 device
= btrfs_find_device(fs_info
, devid
, dev_uuid
, fs_uuid
);
2347 BUG_ON(!device
); /* Logic error */
2349 if (device
->fs_devices
->seeding
) {
2350 btrfs_set_device_generation(leaf
, dev_item
,
2351 device
->generation
);
2352 btrfs_mark_buffer_dirty(leaf
);
2360 btrfs_free_path(path
);
2364 int btrfs_init_new_device(struct btrfs_fs_info
*fs_info
, const char *device_path
)
2366 struct btrfs_root
*root
= fs_info
->dev_root
;
2367 struct request_queue
*q
;
2368 struct btrfs_trans_handle
*trans
;
2369 struct btrfs_device
*device
;
2370 struct block_device
*bdev
;
2371 struct list_head
*devices
;
2372 struct super_block
*sb
= fs_info
->sb
;
2373 struct rcu_string
*name
;
2375 int seeding_dev
= 0;
2377 bool unlocked
= false;
2379 if (sb_rdonly(sb
) && !fs_info
->fs_devices
->seeding
)
2382 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2383 fs_info
->bdev_holder
);
2385 return PTR_ERR(bdev
);
2387 if (fs_info
->fs_devices
->seeding
) {
2389 down_write(&sb
->s_umount
);
2390 mutex_lock(&uuid_mutex
);
2393 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2395 devices
= &fs_info
->fs_devices
->devices
;
2397 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2398 list_for_each_entry(device
, devices
, dev_list
) {
2399 if (device
->bdev
== bdev
) {
2402 &fs_info
->fs_devices
->device_list_mutex
);
2406 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2408 device
= btrfs_alloc_device(fs_info
, NULL
, NULL
);
2409 if (IS_ERR(device
)) {
2410 /* we can safely leave the fs_devices entry around */
2411 ret
= PTR_ERR(device
);
2415 name
= rcu_string_strdup(device_path
, GFP_KERNEL
);
2418 goto error_free_device
;
2420 rcu_assign_pointer(device
->name
, name
);
2422 trans
= btrfs_start_transaction(root
, 0);
2423 if (IS_ERR(trans
)) {
2424 ret
= PTR_ERR(trans
);
2425 goto error_free_device
;
2428 q
= bdev_get_queue(bdev
);
2429 set_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
2430 device
->generation
= trans
->transid
;
2431 device
->io_width
= fs_info
->sectorsize
;
2432 device
->io_align
= fs_info
->sectorsize
;
2433 device
->sector_size
= fs_info
->sectorsize
;
2434 device
->total_bytes
= round_down(i_size_read(bdev
->bd_inode
),
2435 fs_info
->sectorsize
);
2436 device
->disk_total_bytes
= device
->total_bytes
;
2437 device
->commit_total_bytes
= device
->total_bytes
;
2438 device
->fs_info
= fs_info
;
2439 device
->bdev
= bdev
;
2440 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
2441 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
);
2442 device
->mode
= FMODE_EXCL
;
2443 device
->dev_stats_valid
= 1;
2444 set_blocksize(device
->bdev
, BTRFS_BDEV_BLOCKSIZE
);
2447 sb
->s_flags
&= ~SB_RDONLY
;
2448 ret
= btrfs_prepare_sprout(fs_info
);
2450 btrfs_abort_transaction(trans
, ret
);
2455 device
->fs_devices
= fs_info
->fs_devices
;
2457 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2458 mutex_lock(&fs_info
->chunk_mutex
);
2459 list_add_rcu(&device
->dev_list
, &fs_info
->fs_devices
->devices
);
2460 list_add(&device
->dev_alloc_list
,
2461 &fs_info
->fs_devices
->alloc_list
);
2462 fs_info
->fs_devices
->num_devices
++;
2463 fs_info
->fs_devices
->open_devices
++;
2464 fs_info
->fs_devices
->rw_devices
++;
2465 fs_info
->fs_devices
->total_devices
++;
2466 fs_info
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
2468 atomic64_add(device
->total_bytes
, &fs_info
->free_chunk_space
);
2470 if (!blk_queue_nonrot(q
))
2471 fs_info
->fs_devices
->rotating
= 1;
2473 tmp
= btrfs_super_total_bytes(fs_info
->super_copy
);
2474 btrfs_set_super_total_bytes(fs_info
->super_copy
,
2475 round_down(tmp
+ device
->total_bytes
, fs_info
->sectorsize
));
2477 tmp
= btrfs_super_num_devices(fs_info
->super_copy
);
2478 btrfs_set_super_num_devices(fs_info
->super_copy
, tmp
+ 1);
2480 /* add sysfs device entry */
2481 btrfs_sysfs_add_device_link(fs_info
->fs_devices
, device
);
2484 * we've got more storage, clear any full flags on the space
2487 btrfs_clear_space_info_full(fs_info
);
2489 mutex_unlock(&fs_info
->chunk_mutex
);
2490 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2493 mutex_lock(&fs_info
->chunk_mutex
);
2494 ret
= init_first_rw_device(trans
, fs_info
);
2495 mutex_unlock(&fs_info
->chunk_mutex
);
2497 btrfs_abort_transaction(trans
, ret
);
2502 ret
= btrfs_add_dev_item(trans
, fs_info
, device
);
2504 btrfs_abort_transaction(trans
, ret
);
2509 char fsid_buf
[BTRFS_UUID_UNPARSED_SIZE
];
2511 ret
= btrfs_finish_sprout(trans
, fs_info
);
2513 btrfs_abort_transaction(trans
, ret
);
2517 /* Sprouting would change fsid of the mounted root,
2518 * so rename the fsid on the sysfs
2520 snprintf(fsid_buf
, BTRFS_UUID_UNPARSED_SIZE
, "%pU",
2522 if (kobject_rename(&fs_info
->fs_devices
->fsid_kobj
, fsid_buf
))
2524 "sysfs: failed to create fsid for sprout");
2527 ret
= btrfs_commit_transaction(trans
);
2530 mutex_unlock(&uuid_mutex
);
2531 up_write(&sb
->s_umount
);
2534 if (ret
) /* transaction commit */
2537 ret
= btrfs_relocate_sys_chunks(fs_info
);
2539 btrfs_handle_fs_error(fs_info
, ret
,
2540 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2541 trans
= btrfs_attach_transaction(root
);
2542 if (IS_ERR(trans
)) {
2543 if (PTR_ERR(trans
) == -ENOENT
)
2545 ret
= PTR_ERR(trans
);
2549 ret
= btrfs_commit_transaction(trans
);
2552 /* Update ctime/mtime for libblkid */
2553 update_dev_time(device_path
);
2557 btrfs_sysfs_rm_device_link(fs_info
->fs_devices
, device
);
2560 sb
->s_flags
|= SB_RDONLY
;
2562 btrfs_end_transaction(trans
);
2564 free_device(device
);
2566 blkdev_put(bdev
, FMODE_EXCL
);
2567 if (seeding_dev
&& !unlocked
) {
2568 mutex_unlock(&uuid_mutex
);
2569 up_write(&sb
->s_umount
);
2574 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info
*fs_info
,
2575 const char *device_path
,
2576 struct btrfs_device
*srcdev
,
2577 struct btrfs_device
**device_out
)
2579 struct btrfs_device
*device
;
2580 struct block_device
*bdev
;
2581 struct list_head
*devices
;
2582 struct rcu_string
*name
;
2583 u64 devid
= BTRFS_DEV_REPLACE_DEVID
;
2587 if (fs_info
->fs_devices
->seeding
) {
2588 btrfs_err(fs_info
, "the filesystem is a seed filesystem!");
2592 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2593 fs_info
->bdev_holder
);
2595 btrfs_err(fs_info
, "target device %s is invalid!", device_path
);
2596 return PTR_ERR(bdev
);
2599 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2601 devices
= &fs_info
->fs_devices
->devices
;
2602 list_for_each_entry(device
, devices
, dev_list
) {
2603 if (device
->bdev
== bdev
) {
2605 "target device is in the filesystem!");
2612 if (i_size_read(bdev
->bd_inode
) <
2613 btrfs_device_get_total_bytes(srcdev
)) {
2615 "target device is smaller than source device!");
2621 device
= btrfs_alloc_device(NULL
, &devid
, NULL
);
2622 if (IS_ERR(device
)) {
2623 ret
= PTR_ERR(device
);
2627 name
= rcu_string_strdup(device_path
, GFP_KERNEL
);
2629 free_device(device
);
2633 rcu_assign_pointer(device
->name
, name
);
2635 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2636 set_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
2637 device
->generation
= 0;
2638 device
->io_width
= fs_info
->sectorsize
;
2639 device
->io_align
= fs_info
->sectorsize
;
2640 device
->sector_size
= fs_info
->sectorsize
;
2641 device
->total_bytes
= btrfs_device_get_total_bytes(srcdev
);
2642 device
->disk_total_bytes
= btrfs_device_get_disk_total_bytes(srcdev
);
2643 device
->bytes_used
= btrfs_device_get_bytes_used(srcdev
);
2644 ASSERT(list_empty(&srcdev
->resized_list
));
2645 device
->commit_total_bytes
= srcdev
->commit_total_bytes
;
2646 device
->commit_bytes_used
= device
->bytes_used
;
2647 device
->fs_info
= fs_info
;
2648 device
->bdev
= bdev
;
2649 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
2650 set_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
);
2651 device
->mode
= FMODE_EXCL
;
2652 device
->dev_stats_valid
= 1;
2653 set_blocksize(device
->bdev
, BTRFS_BDEV_BLOCKSIZE
);
2654 device
->fs_devices
= fs_info
->fs_devices
;
2655 list_add(&device
->dev_list
, &fs_info
->fs_devices
->devices
);
2656 fs_info
->fs_devices
->num_devices
++;
2657 fs_info
->fs_devices
->open_devices
++;
2658 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2660 *device_out
= device
;
2664 blkdev_put(bdev
, FMODE_EXCL
);
2668 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info
*fs_info
,
2669 struct btrfs_device
*tgtdev
)
2671 u32 sectorsize
= fs_info
->sectorsize
;
2673 WARN_ON(fs_info
->fs_devices
->rw_devices
== 0);
2674 tgtdev
->io_width
= sectorsize
;
2675 tgtdev
->io_align
= sectorsize
;
2676 tgtdev
->sector_size
= sectorsize
;
2677 tgtdev
->fs_info
= fs_info
;
2678 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &tgtdev
->dev_state
);
2681 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
2682 struct btrfs_device
*device
)
2685 struct btrfs_path
*path
;
2686 struct btrfs_root
*root
= device
->fs_info
->chunk_root
;
2687 struct btrfs_dev_item
*dev_item
;
2688 struct extent_buffer
*leaf
;
2689 struct btrfs_key key
;
2691 path
= btrfs_alloc_path();
2695 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2696 key
.type
= BTRFS_DEV_ITEM_KEY
;
2697 key
.offset
= device
->devid
;
2699 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2708 leaf
= path
->nodes
[0];
2709 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
2711 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
2712 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
2713 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
2714 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
2715 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
2716 btrfs_set_device_total_bytes(leaf
, dev_item
,
2717 btrfs_device_get_disk_total_bytes(device
));
2718 btrfs_set_device_bytes_used(leaf
, dev_item
,
2719 btrfs_device_get_bytes_used(device
));
2720 btrfs_mark_buffer_dirty(leaf
);
2723 btrfs_free_path(path
);
2727 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
2728 struct btrfs_device
*device
, u64 new_size
)
2730 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
2731 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
2732 struct btrfs_fs_devices
*fs_devices
;
2736 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
))
2739 new_size
= round_down(new_size
, fs_info
->sectorsize
);
2741 mutex_lock(&fs_info
->chunk_mutex
);
2742 old_total
= btrfs_super_total_bytes(super_copy
);
2743 diff
= round_down(new_size
- device
->total_bytes
, fs_info
->sectorsize
);
2745 if (new_size
<= device
->total_bytes
||
2746 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
2747 mutex_unlock(&fs_info
->chunk_mutex
);
2751 fs_devices
= fs_info
->fs_devices
;
2753 btrfs_set_super_total_bytes(super_copy
,
2754 round_down(old_total
+ diff
, fs_info
->sectorsize
));
2755 device
->fs_devices
->total_rw_bytes
+= diff
;
2757 btrfs_device_set_total_bytes(device
, new_size
);
2758 btrfs_device_set_disk_total_bytes(device
, new_size
);
2759 btrfs_clear_space_info_full(device
->fs_info
);
2760 if (list_empty(&device
->resized_list
))
2761 list_add_tail(&device
->resized_list
,
2762 &fs_devices
->resized_devices
);
2763 mutex_unlock(&fs_info
->chunk_mutex
);
2765 return btrfs_update_device(trans
, device
);
2768 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
,
2769 struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2771 struct btrfs_root
*root
= fs_info
->chunk_root
;
2773 struct btrfs_path
*path
;
2774 struct btrfs_key key
;
2776 path
= btrfs_alloc_path();
2780 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2781 key
.offset
= chunk_offset
;
2782 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2784 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2787 else if (ret
> 0) { /* Logic error or corruption */
2788 btrfs_handle_fs_error(fs_info
, -ENOENT
,
2789 "Failed lookup while freeing chunk.");
2794 ret
= btrfs_del_item(trans
, root
, path
);
2796 btrfs_handle_fs_error(fs_info
, ret
,
2797 "Failed to delete chunk item.");
2799 btrfs_free_path(path
);
2803 static int btrfs_del_sys_chunk(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2805 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
2806 struct btrfs_disk_key
*disk_key
;
2807 struct btrfs_chunk
*chunk
;
2814 struct btrfs_key key
;
2816 mutex_lock(&fs_info
->chunk_mutex
);
2817 array_size
= btrfs_super_sys_array_size(super_copy
);
2819 ptr
= super_copy
->sys_chunk_array
;
2822 while (cur
< array_size
) {
2823 disk_key
= (struct btrfs_disk_key
*)ptr
;
2824 btrfs_disk_key_to_cpu(&key
, disk_key
);
2826 len
= sizeof(*disk_key
);
2828 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
2829 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
2830 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
2831 len
+= btrfs_chunk_item_size(num_stripes
);
2836 if (key
.objectid
== BTRFS_FIRST_CHUNK_TREE_OBJECTID
&&
2837 key
.offset
== chunk_offset
) {
2838 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
2840 btrfs_set_super_sys_array_size(super_copy
, array_size
);
2846 mutex_unlock(&fs_info
->chunk_mutex
);
2850 static struct extent_map
*get_chunk_map(struct btrfs_fs_info
*fs_info
,
2851 u64 logical
, u64 length
)
2853 struct extent_map_tree
*em_tree
;
2854 struct extent_map
*em
;
2856 em_tree
= &fs_info
->mapping_tree
.map_tree
;
2857 read_lock(&em_tree
->lock
);
2858 em
= lookup_extent_mapping(em_tree
, logical
, length
);
2859 read_unlock(&em_tree
->lock
);
2862 btrfs_crit(fs_info
, "unable to find logical %llu length %llu",
2864 return ERR_PTR(-EINVAL
);
2867 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
2869 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2870 logical
, length
, em
->start
, em
->start
+ em
->len
);
2871 free_extent_map(em
);
2872 return ERR_PTR(-EINVAL
);
2875 /* callers are responsible for dropping em's ref. */
2879 int btrfs_remove_chunk(struct btrfs_trans_handle
*trans
,
2880 struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2882 struct extent_map
*em
;
2883 struct map_lookup
*map
;
2884 u64 dev_extent_len
= 0;
2886 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2888 em
= get_chunk_map(fs_info
, chunk_offset
, 1);
2891 * This is a logic error, but we don't want to just rely on the
2892 * user having built with ASSERT enabled, so if ASSERT doesn't
2893 * do anything we still error out.
2898 map
= em
->map_lookup
;
2899 mutex_lock(&fs_info
->chunk_mutex
);
2900 check_system_chunk(trans
, fs_info
, map
->type
);
2901 mutex_unlock(&fs_info
->chunk_mutex
);
2904 * Take the device list mutex to prevent races with the final phase of
2905 * a device replace operation that replaces the device object associated
2906 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2908 mutex_lock(&fs_devices
->device_list_mutex
);
2909 for (i
= 0; i
< map
->num_stripes
; i
++) {
2910 struct btrfs_device
*device
= map
->stripes
[i
].dev
;
2911 ret
= btrfs_free_dev_extent(trans
, device
,
2912 map
->stripes
[i
].physical
,
2915 mutex_unlock(&fs_devices
->device_list_mutex
);
2916 btrfs_abort_transaction(trans
, ret
);
2920 if (device
->bytes_used
> 0) {
2921 mutex_lock(&fs_info
->chunk_mutex
);
2922 btrfs_device_set_bytes_used(device
,
2923 device
->bytes_used
- dev_extent_len
);
2924 atomic64_add(dev_extent_len
, &fs_info
->free_chunk_space
);
2925 btrfs_clear_space_info_full(fs_info
);
2926 mutex_unlock(&fs_info
->chunk_mutex
);
2929 if (map
->stripes
[i
].dev
) {
2930 ret
= btrfs_update_device(trans
, map
->stripes
[i
].dev
);
2932 mutex_unlock(&fs_devices
->device_list_mutex
);
2933 btrfs_abort_transaction(trans
, ret
);
2938 mutex_unlock(&fs_devices
->device_list_mutex
);
2940 ret
= btrfs_free_chunk(trans
, fs_info
, chunk_offset
);
2942 btrfs_abort_transaction(trans
, ret
);
2946 trace_btrfs_chunk_free(fs_info
, map
, chunk_offset
, em
->len
);
2948 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2949 ret
= btrfs_del_sys_chunk(fs_info
, chunk_offset
);
2951 btrfs_abort_transaction(trans
, ret
);
2956 ret
= btrfs_remove_block_group(trans
, fs_info
, chunk_offset
, em
);
2958 btrfs_abort_transaction(trans
, ret
);
2964 free_extent_map(em
);
2968 static int btrfs_relocate_chunk(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2970 struct btrfs_root
*root
= fs_info
->chunk_root
;
2971 struct btrfs_trans_handle
*trans
;
2975 * Prevent races with automatic removal of unused block groups.
2976 * After we relocate and before we remove the chunk with offset
2977 * chunk_offset, automatic removal of the block group can kick in,
2978 * resulting in a failure when calling btrfs_remove_chunk() below.
2980 * Make sure to acquire this mutex before doing a tree search (dev
2981 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2982 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2983 * we release the path used to search the chunk/dev tree and before
2984 * the current task acquires this mutex and calls us.
2986 ASSERT(mutex_is_locked(&fs_info
->delete_unused_bgs_mutex
));
2988 ret
= btrfs_can_relocate(fs_info
, chunk_offset
);
2992 /* step one, relocate all the extents inside this chunk */
2993 btrfs_scrub_pause(fs_info
);
2994 ret
= btrfs_relocate_block_group(fs_info
, chunk_offset
);
2995 btrfs_scrub_continue(fs_info
);
2999 trans
= btrfs_start_trans_remove_block_group(root
->fs_info
,
3001 if (IS_ERR(trans
)) {
3002 ret
= PTR_ERR(trans
);
3003 btrfs_handle_fs_error(root
->fs_info
, ret
, NULL
);
3008 * step two, delete the device extents and the
3009 * chunk tree entries
3011 ret
= btrfs_remove_chunk(trans
, fs_info
, chunk_offset
);
3012 btrfs_end_transaction(trans
);
3016 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info
*fs_info
)
3018 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
3019 struct btrfs_path
*path
;
3020 struct extent_buffer
*leaf
;
3021 struct btrfs_chunk
*chunk
;
3022 struct btrfs_key key
;
3023 struct btrfs_key found_key
;
3025 bool retried
= false;
3029 path
= btrfs_alloc_path();
3034 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
3035 key
.offset
= (u64
)-1;
3036 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
3039 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
3040 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
3042 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3045 BUG_ON(ret
== 0); /* Corruption */
3047 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
3050 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3056 leaf
= path
->nodes
[0];
3057 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3059 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
3060 struct btrfs_chunk
);
3061 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3062 btrfs_release_path(path
);
3064 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
3065 ret
= btrfs_relocate_chunk(fs_info
, found_key
.offset
);
3071 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3073 if (found_key
.offset
== 0)
3075 key
.offset
= found_key
.offset
- 1;
3078 if (failed
&& !retried
) {
3082 } else if (WARN_ON(failed
&& retried
)) {
3086 btrfs_free_path(path
);
3091 * return 1 : allocate a data chunk successfully,
3092 * return <0: errors during allocating a data chunk,
3093 * return 0 : no need to allocate a data chunk.
3095 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info
*fs_info
,
3098 struct btrfs_block_group_cache
*cache
;
3102 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3104 chunk_type
= cache
->flags
;
3105 btrfs_put_block_group(cache
);
3107 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
) {
3108 spin_lock(&fs_info
->data_sinfo
->lock
);
3109 bytes_used
= fs_info
->data_sinfo
->bytes_used
;
3110 spin_unlock(&fs_info
->data_sinfo
->lock
);
3113 struct btrfs_trans_handle
*trans
;
3116 trans
= btrfs_join_transaction(fs_info
->tree_root
);
3118 return PTR_ERR(trans
);
3120 ret
= btrfs_force_chunk_alloc(trans
, fs_info
,
3121 BTRFS_BLOCK_GROUP_DATA
);
3122 btrfs_end_transaction(trans
);
3132 static int insert_balance_item(struct btrfs_fs_info
*fs_info
,
3133 struct btrfs_balance_control
*bctl
)
3135 struct btrfs_root
*root
= fs_info
->tree_root
;
3136 struct btrfs_trans_handle
*trans
;
3137 struct btrfs_balance_item
*item
;
3138 struct btrfs_disk_balance_args disk_bargs
;
3139 struct btrfs_path
*path
;
3140 struct extent_buffer
*leaf
;
3141 struct btrfs_key key
;
3144 path
= btrfs_alloc_path();
3148 trans
= btrfs_start_transaction(root
, 0);
3149 if (IS_ERR(trans
)) {
3150 btrfs_free_path(path
);
3151 return PTR_ERR(trans
);
3154 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3155 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3158 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
3163 leaf
= path
->nodes
[0];
3164 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
3166 memzero_extent_buffer(leaf
, (unsigned long)item
, sizeof(*item
));
3168 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->data
);
3169 btrfs_set_balance_data(leaf
, item
, &disk_bargs
);
3170 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->meta
);
3171 btrfs_set_balance_meta(leaf
, item
, &disk_bargs
);
3172 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->sys
);
3173 btrfs_set_balance_sys(leaf
, item
, &disk_bargs
);
3175 btrfs_set_balance_flags(leaf
, item
, bctl
->flags
);
3177 btrfs_mark_buffer_dirty(leaf
);
3179 btrfs_free_path(path
);
3180 err
= btrfs_commit_transaction(trans
);
3186 static int del_balance_item(struct btrfs_fs_info
*fs_info
)
3188 struct btrfs_root
*root
= fs_info
->tree_root
;
3189 struct btrfs_trans_handle
*trans
;
3190 struct btrfs_path
*path
;
3191 struct btrfs_key key
;
3194 path
= btrfs_alloc_path();
3198 trans
= btrfs_start_transaction(root
, 0);
3199 if (IS_ERR(trans
)) {
3200 btrfs_free_path(path
);
3201 return PTR_ERR(trans
);
3204 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3205 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3208 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3216 ret
= btrfs_del_item(trans
, root
, path
);
3218 btrfs_free_path(path
);
3219 err
= btrfs_commit_transaction(trans
);
3226 * This is a heuristic used to reduce the number of chunks balanced on
3227 * resume after balance was interrupted.
3229 static void update_balance_args(struct btrfs_balance_control
*bctl
)
3232 * Turn on soft mode for chunk types that were being converted.
3234 if (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3235 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3236 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3237 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3238 if (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3239 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3242 * Turn on usage filter if is not already used. The idea is
3243 * that chunks that we have already balanced should be
3244 * reasonably full. Don't do it for chunks that are being
3245 * converted - that will keep us from relocating unconverted
3246 * (albeit full) chunks.
3248 if (!(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3249 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3250 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3251 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3252 bctl
->data
.usage
= 90;
3254 if (!(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3255 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3256 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3257 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3258 bctl
->sys
.usage
= 90;
3260 if (!(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3261 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3262 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3263 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3264 bctl
->meta
.usage
= 90;
3269 * Should be called with both balance and volume mutexes held to
3270 * serialize other volume operations (add_dev/rm_dev/resize) with
3271 * restriper. Same goes for unset_balance_control.
3273 static void set_balance_control(struct btrfs_balance_control
*bctl
)
3275 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3277 BUG_ON(fs_info
->balance_ctl
);
3279 spin_lock(&fs_info
->balance_lock
);
3280 fs_info
->balance_ctl
= bctl
;
3281 spin_unlock(&fs_info
->balance_lock
);
3284 static void unset_balance_control(struct btrfs_fs_info
*fs_info
)
3286 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3288 BUG_ON(!fs_info
->balance_ctl
);
3290 spin_lock(&fs_info
->balance_lock
);
3291 fs_info
->balance_ctl
= NULL
;
3292 spin_unlock(&fs_info
->balance_lock
);
3298 * Balance filters. Return 1 if chunk should be filtered out
3299 * (should not be balanced).
3301 static int chunk_profiles_filter(u64 chunk_type
,
3302 struct btrfs_balance_args
*bargs
)
3304 chunk_type
= chunk_to_extended(chunk_type
) &
3305 BTRFS_EXTENDED_PROFILE_MASK
;
3307 if (bargs
->profiles
& chunk_type
)
3313 static int chunk_usage_range_filter(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
,
3314 struct btrfs_balance_args
*bargs
)
3316 struct btrfs_block_group_cache
*cache
;
3318 u64 user_thresh_min
;
3319 u64 user_thresh_max
;
3322 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3323 chunk_used
= btrfs_block_group_used(&cache
->item
);
3325 if (bargs
->usage_min
== 0)
3326 user_thresh_min
= 0;
3328 user_thresh_min
= div_factor_fine(cache
->key
.offset
,
3331 if (bargs
->usage_max
== 0)
3332 user_thresh_max
= 1;
3333 else if (bargs
->usage_max
> 100)
3334 user_thresh_max
= cache
->key
.offset
;
3336 user_thresh_max
= div_factor_fine(cache
->key
.offset
,
3339 if (user_thresh_min
<= chunk_used
&& chunk_used
< user_thresh_max
)
3342 btrfs_put_block_group(cache
);
3346 static int chunk_usage_filter(struct btrfs_fs_info
*fs_info
,
3347 u64 chunk_offset
, struct btrfs_balance_args
*bargs
)
3349 struct btrfs_block_group_cache
*cache
;
3350 u64 chunk_used
, user_thresh
;
3353 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3354 chunk_used
= btrfs_block_group_used(&cache
->item
);
3356 if (bargs
->usage_min
== 0)
3358 else if (bargs
->usage
> 100)
3359 user_thresh
= cache
->key
.offset
;
3361 user_thresh
= div_factor_fine(cache
->key
.offset
,
3364 if (chunk_used
< user_thresh
)
3367 btrfs_put_block_group(cache
);
3371 static int chunk_devid_filter(struct extent_buffer
*leaf
,
3372 struct btrfs_chunk
*chunk
,
3373 struct btrfs_balance_args
*bargs
)
3375 struct btrfs_stripe
*stripe
;
3376 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3379 for (i
= 0; i
< num_stripes
; i
++) {
3380 stripe
= btrfs_stripe_nr(chunk
, i
);
3381 if (btrfs_stripe_devid(leaf
, stripe
) == bargs
->devid
)
3388 /* [pstart, pend) */
3389 static int chunk_drange_filter(struct extent_buffer
*leaf
,
3390 struct btrfs_chunk
*chunk
,
3391 struct btrfs_balance_args
*bargs
)
3393 struct btrfs_stripe
*stripe
;
3394 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3400 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
))
3403 if (btrfs_chunk_type(leaf
, chunk
) & (BTRFS_BLOCK_GROUP_DUP
|
3404 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
)) {
3405 factor
= num_stripes
/ 2;
3406 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID5
) {
3407 factor
= num_stripes
- 1;
3408 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID6
) {
3409 factor
= num_stripes
- 2;
3411 factor
= num_stripes
;
3414 for (i
= 0; i
< num_stripes
; i
++) {
3415 stripe
= btrfs_stripe_nr(chunk
, i
);
3416 if (btrfs_stripe_devid(leaf
, stripe
) != bargs
->devid
)
3419 stripe_offset
= btrfs_stripe_offset(leaf
, stripe
);
3420 stripe_length
= btrfs_chunk_length(leaf
, chunk
);
3421 stripe_length
= div_u64(stripe_length
, factor
);
3423 if (stripe_offset
< bargs
->pend
&&
3424 stripe_offset
+ stripe_length
> bargs
->pstart
)
3431 /* [vstart, vend) */
3432 static int chunk_vrange_filter(struct extent_buffer
*leaf
,
3433 struct btrfs_chunk
*chunk
,
3435 struct btrfs_balance_args
*bargs
)
3437 if (chunk_offset
< bargs
->vend
&&
3438 chunk_offset
+ btrfs_chunk_length(leaf
, chunk
) > bargs
->vstart
)
3439 /* at least part of the chunk is inside this vrange */
3445 static int chunk_stripes_range_filter(struct extent_buffer
*leaf
,
3446 struct btrfs_chunk
*chunk
,
3447 struct btrfs_balance_args
*bargs
)
3449 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3451 if (bargs
->stripes_min
<= num_stripes
3452 && num_stripes
<= bargs
->stripes_max
)
3458 static int chunk_soft_convert_filter(u64 chunk_type
,
3459 struct btrfs_balance_args
*bargs
)
3461 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_CONVERT
))
3464 chunk_type
= chunk_to_extended(chunk_type
) &
3465 BTRFS_EXTENDED_PROFILE_MASK
;
3467 if (bargs
->target
== chunk_type
)
3473 static int should_balance_chunk(struct btrfs_fs_info
*fs_info
,
3474 struct extent_buffer
*leaf
,
3475 struct btrfs_chunk
*chunk
, u64 chunk_offset
)
3477 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3478 struct btrfs_balance_args
*bargs
= NULL
;
3479 u64 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3482 if (!((chunk_type
& BTRFS_BLOCK_GROUP_TYPE_MASK
) &
3483 (bctl
->flags
& BTRFS_BALANCE_TYPE_MASK
))) {
3487 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3488 bargs
= &bctl
->data
;
3489 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3491 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3492 bargs
= &bctl
->meta
;
3494 /* profiles filter */
3495 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_PROFILES
) &&
3496 chunk_profiles_filter(chunk_type
, bargs
)) {
3501 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3502 chunk_usage_filter(fs_info
, chunk_offset
, bargs
)) {
3504 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3505 chunk_usage_range_filter(fs_info
, chunk_offset
, bargs
)) {
3510 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
) &&
3511 chunk_devid_filter(leaf
, chunk
, bargs
)) {
3515 /* drange filter, makes sense only with devid filter */
3516 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DRANGE
) &&
3517 chunk_drange_filter(leaf
, chunk
, bargs
)) {
3522 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_VRANGE
) &&
3523 chunk_vrange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3527 /* stripes filter */
3528 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_STRIPES_RANGE
) &&
3529 chunk_stripes_range_filter(leaf
, chunk
, bargs
)) {
3533 /* soft profile changing mode */
3534 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_SOFT
) &&
3535 chunk_soft_convert_filter(chunk_type
, bargs
)) {
3540 * limited by count, must be the last filter
3542 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT
)) {
3543 if (bargs
->limit
== 0)
3547 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT_RANGE
)) {
3549 * Same logic as the 'limit' filter; the minimum cannot be
3550 * determined here because we do not have the global information
3551 * about the count of all chunks that satisfy the filters.
3553 if (bargs
->limit_max
== 0)
3562 static int __btrfs_balance(struct btrfs_fs_info
*fs_info
)
3564 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3565 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
3566 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
3567 struct list_head
*devices
;
3568 struct btrfs_device
*device
;
3572 struct btrfs_chunk
*chunk
;
3573 struct btrfs_path
*path
= NULL
;
3574 struct btrfs_key key
;
3575 struct btrfs_key found_key
;
3576 struct btrfs_trans_handle
*trans
;
3577 struct extent_buffer
*leaf
;
3580 int enospc_errors
= 0;
3581 bool counting
= true;
3582 /* The single value limit and min/max limits use the same bytes in the */
3583 u64 limit_data
= bctl
->data
.limit
;
3584 u64 limit_meta
= bctl
->meta
.limit
;
3585 u64 limit_sys
= bctl
->sys
.limit
;
3589 int chunk_reserved
= 0;
3591 /* step one make some room on all the devices */
3592 devices
= &fs_info
->fs_devices
->devices
;
3593 list_for_each_entry(device
, devices
, dev_list
) {
3594 old_size
= btrfs_device_get_total_bytes(device
);
3595 size_to_free
= div_factor(old_size
, 1);
3596 size_to_free
= min_t(u64
, size_to_free
, SZ_1M
);
3597 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) ||
3598 btrfs_device_get_total_bytes(device
) -
3599 btrfs_device_get_bytes_used(device
) > size_to_free
||
3600 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
))
3603 ret
= btrfs_shrink_device(device
, old_size
- size_to_free
);
3607 /* btrfs_shrink_device never returns ret > 0 */
3612 trans
= btrfs_start_transaction(dev_root
, 0);
3613 if (IS_ERR(trans
)) {
3614 ret
= PTR_ERR(trans
);
3615 btrfs_info_in_rcu(fs_info
,
3616 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3617 rcu_str_deref(device
->name
), ret
,
3618 old_size
, old_size
- size_to_free
);
3622 ret
= btrfs_grow_device(trans
, device
, old_size
);
3624 btrfs_end_transaction(trans
);
3625 /* btrfs_grow_device never returns ret > 0 */
3627 btrfs_info_in_rcu(fs_info
,
3628 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3629 rcu_str_deref(device
->name
), ret
,
3630 old_size
, old_size
- size_to_free
);
3634 btrfs_end_transaction(trans
);
3637 /* step two, relocate all the chunks */
3638 path
= btrfs_alloc_path();
3644 /* zero out stat counters */
3645 spin_lock(&fs_info
->balance_lock
);
3646 memset(&bctl
->stat
, 0, sizeof(bctl
->stat
));
3647 spin_unlock(&fs_info
->balance_lock
);
3651 * The single value limit and min/max limits use the same bytes
3654 bctl
->data
.limit
= limit_data
;
3655 bctl
->meta
.limit
= limit_meta
;
3656 bctl
->sys
.limit
= limit_sys
;
3658 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
3659 key
.offset
= (u64
)-1;
3660 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
3663 if ((!counting
&& atomic_read(&fs_info
->balance_pause_req
)) ||
3664 atomic_read(&fs_info
->balance_cancel_req
)) {
3669 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
3670 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
3672 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3677 * this shouldn't happen, it means the last relocate
3681 BUG(); /* FIXME break ? */
3683 ret
= btrfs_previous_item(chunk_root
, path
, 0,
3684 BTRFS_CHUNK_ITEM_KEY
);
3686 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3691 leaf
= path
->nodes
[0];
3692 slot
= path
->slots
[0];
3693 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3695 if (found_key
.objectid
!= key
.objectid
) {
3696 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3700 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
3701 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3704 spin_lock(&fs_info
->balance_lock
);
3705 bctl
->stat
.considered
++;
3706 spin_unlock(&fs_info
->balance_lock
);
3709 ret
= should_balance_chunk(fs_info
, leaf
, chunk
,
3712 btrfs_release_path(path
);
3714 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3719 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3720 spin_lock(&fs_info
->balance_lock
);
3721 bctl
->stat
.expected
++;
3722 spin_unlock(&fs_info
->balance_lock
);
3724 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3726 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3728 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3735 * Apply limit_min filter, no need to check if the LIMITS
3736 * filter is used, limit_min is 0 by default
3738 if (((chunk_type
& BTRFS_BLOCK_GROUP_DATA
) &&
3739 count_data
< bctl
->data
.limit_min
)
3740 || ((chunk_type
& BTRFS_BLOCK_GROUP_METADATA
) &&
3741 count_meta
< bctl
->meta
.limit_min
)
3742 || ((chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) &&
3743 count_sys
< bctl
->sys
.limit_min
)) {
3744 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3748 if (!chunk_reserved
) {
3750 * We may be relocating the only data chunk we have,
3751 * which could potentially end up with losing data's
3752 * raid profile, so lets allocate an empty one in
3755 ret
= btrfs_may_alloc_data_chunk(fs_info
,
3758 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3760 } else if (ret
== 1) {
3765 ret
= btrfs_relocate_chunk(fs_info
, found_key
.offset
);
3766 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3767 if (ret
&& ret
!= -ENOSPC
)
3769 if (ret
== -ENOSPC
) {
3772 spin_lock(&fs_info
->balance_lock
);
3773 bctl
->stat
.completed
++;
3774 spin_unlock(&fs_info
->balance_lock
);
3777 if (found_key
.offset
== 0)
3779 key
.offset
= found_key
.offset
- 1;
3783 btrfs_release_path(path
);
3788 btrfs_free_path(path
);
3789 if (enospc_errors
) {
3790 btrfs_info(fs_info
, "%d enospc errors during balance",
3800 * alloc_profile_is_valid - see if a given profile is valid and reduced
3801 * @flags: profile to validate
3802 * @extended: if true @flags is treated as an extended profile
3804 static int alloc_profile_is_valid(u64 flags
, int extended
)
3806 u64 mask
= (extended
? BTRFS_EXTENDED_PROFILE_MASK
:
3807 BTRFS_BLOCK_GROUP_PROFILE_MASK
);
3809 flags
&= ~BTRFS_BLOCK_GROUP_TYPE_MASK
;
3811 /* 1) check that all other bits are zeroed */
3815 /* 2) see if profile is reduced */
3817 return !extended
; /* "0" is valid for usual profiles */
3819 /* true if exactly one bit set */
3820 return (flags
& (flags
- 1)) == 0;
3823 static inline int balance_need_close(struct btrfs_fs_info
*fs_info
)
3825 /* cancel requested || normal exit path */
3826 return atomic_read(&fs_info
->balance_cancel_req
) ||
3827 (atomic_read(&fs_info
->balance_pause_req
) == 0 &&
3828 atomic_read(&fs_info
->balance_cancel_req
) == 0);
3831 static void __cancel_balance(struct btrfs_fs_info
*fs_info
)
3835 unset_balance_control(fs_info
);
3836 ret
= del_balance_item(fs_info
);
3838 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
3840 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
3843 /* Non-zero return value signifies invalidity */
3844 static inline int validate_convert_profile(struct btrfs_balance_args
*bctl_arg
,
3847 return ((bctl_arg
->flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3848 (!alloc_profile_is_valid(bctl_arg
->target
, 1) ||
3849 (bctl_arg
->target
& ~allowed
)));
3853 * Should be called with both balance and volume mutexes held
3855 int btrfs_balance(struct btrfs_balance_control
*bctl
,
3856 struct btrfs_ioctl_balance_args
*bargs
)
3858 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3859 u64 meta_target
, data_target
;
3866 if (btrfs_fs_closing(fs_info
) ||
3867 atomic_read(&fs_info
->balance_pause_req
) ||
3868 atomic_read(&fs_info
->balance_cancel_req
)) {
3873 allowed
= btrfs_super_incompat_flags(fs_info
->super_copy
);
3874 if (allowed
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
3878 * In case of mixed groups both data and meta should be picked,
3879 * and identical options should be given for both of them.
3881 allowed
= BTRFS_BALANCE_DATA
| BTRFS_BALANCE_METADATA
;
3882 if (mixed
&& (bctl
->flags
& allowed
)) {
3883 if (!(bctl
->flags
& BTRFS_BALANCE_DATA
) ||
3884 !(bctl
->flags
& BTRFS_BALANCE_METADATA
) ||
3885 memcmp(&bctl
->data
, &bctl
->meta
, sizeof(bctl
->data
))) {
3887 "with mixed groups data and metadata balance options must be the same");
3893 num_devices
= fs_info
->fs_devices
->num_devices
;
3894 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
3895 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
3896 BUG_ON(num_devices
< 1);
3899 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
3900 allowed
= BTRFS_AVAIL_ALLOC_BIT_SINGLE
| BTRFS_BLOCK_GROUP_DUP
;
3901 if (num_devices
> 1)
3902 allowed
|= (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID1
);
3903 if (num_devices
> 2)
3904 allowed
|= BTRFS_BLOCK_GROUP_RAID5
;
3905 if (num_devices
> 3)
3906 allowed
|= (BTRFS_BLOCK_GROUP_RAID10
|
3907 BTRFS_BLOCK_GROUP_RAID6
);
3908 if (validate_convert_profile(&bctl
->data
, allowed
)) {
3910 "unable to start balance with target data profile %llu",
3915 if (validate_convert_profile(&bctl
->meta
, allowed
)) {
3917 "unable to start balance with target metadata profile %llu",
3922 if (validate_convert_profile(&bctl
->sys
, allowed
)) {
3924 "unable to start balance with target system profile %llu",
3930 /* allow to reduce meta or sys integrity only if force set */
3931 allowed
= BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3932 BTRFS_BLOCK_GROUP_RAID10
|
3933 BTRFS_BLOCK_GROUP_RAID5
|
3934 BTRFS_BLOCK_GROUP_RAID6
;
3936 seq
= read_seqbegin(&fs_info
->profiles_lock
);
3938 if (((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3939 (fs_info
->avail_system_alloc_bits
& allowed
) &&
3940 !(bctl
->sys
.target
& allowed
)) ||
3941 ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3942 (fs_info
->avail_metadata_alloc_bits
& allowed
) &&
3943 !(bctl
->meta
.target
& allowed
))) {
3944 if (bctl
->flags
& BTRFS_BALANCE_FORCE
) {
3946 "force reducing metadata integrity");
3949 "balance will reduce metadata integrity, use force if you want this");
3954 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
3956 /* if we're not converting, the target field is uninitialized */
3957 meta_target
= (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) ?
3958 bctl
->meta
.target
: fs_info
->avail_metadata_alloc_bits
;
3959 data_target
= (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) ?
3960 bctl
->data
.target
: fs_info
->avail_data_alloc_bits
;
3961 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target
) <
3962 btrfs_get_num_tolerated_disk_barrier_failures(data_target
)) {
3964 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3965 meta_target
, data_target
);
3968 ret
= insert_balance_item(fs_info
, bctl
);
3969 if (ret
&& ret
!= -EEXIST
)
3972 if (!(bctl
->flags
& BTRFS_BALANCE_RESUME
)) {
3973 BUG_ON(ret
== -EEXIST
);
3974 set_balance_control(bctl
);
3976 BUG_ON(ret
!= -EEXIST
);
3977 spin_lock(&fs_info
->balance_lock
);
3978 update_balance_args(bctl
);
3979 spin_unlock(&fs_info
->balance_lock
);
3982 atomic_inc(&fs_info
->balance_running
);
3983 mutex_unlock(&fs_info
->balance_mutex
);
3985 ret
= __btrfs_balance(fs_info
);
3987 mutex_lock(&fs_info
->balance_mutex
);
3988 atomic_dec(&fs_info
->balance_running
);
3991 memset(bargs
, 0, sizeof(*bargs
));
3992 update_ioctl_balance_args(fs_info
, 0, bargs
);
3995 if ((ret
&& ret
!= -ECANCELED
&& ret
!= -ENOSPC
) ||
3996 balance_need_close(fs_info
)) {
3997 __cancel_balance(fs_info
);
4000 wake_up(&fs_info
->balance_wait_q
);
4004 if (bctl
->flags
& BTRFS_BALANCE_RESUME
)
4005 __cancel_balance(fs_info
);
4008 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
4013 static int balance_kthread(void *data
)
4015 struct btrfs_fs_info
*fs_info
= data
;
4018 mutex_lock(&fs_info
->volume_mutex
);
4019 mutex_lock(&fs_info
->balance_mutex
);
4021 if (fs_info
->balance_ctl
) {
4022 btrfs_info(fs_info
, "continuing balance");
4023 ret
= btrfs_balance(fs_info
->balance_ctl
, NULL
);
4026 mutex_unlock(&fs_info
->balance_mutex
);
4027 mutex_unlock(&fs_info
->volume_mutex
);
4032 int btrfs_resume_balance_async(struct btrfs_fs_info
*fs_info
)
4034 struct task_struct
*tsk
;
4036 spin_lock(&fs_info
->balance_lock
);
4037 if (!fs_info
->balance_ctl
) {
4038 spin_unlock(&fs_info
->balance_lock
);
4041 spin_unlock(&fs_info
->balance_lock
);
4043 if (btrfs_test_opt(fs_info
, SKIP_BALANCE
)) {
4044 btrfs_info(fs_info
, "force skipping balance");
4048 tsk
= kthread_run(balance_kthread
, fs_info
, "btrfs-balance");
4049 return PTR_ERR_OR_ZERO(tsk
);
4052 int btrfs_recover_balance(struct btrfs_fs_info
*fs_info
)
4054 struct btrfs_balance_control
*bctl
;
4055 struct btrfs_balance_item
*item
;
4056 struct btrfs_disk_balance_args disk_bargs
;
4057 struct btrfs_path
*path
;
4058 struct extent_buffer
*leaf
;
4059 struct btrfs_key key
;
4062 path
= btrfs_alloc_path();
4066 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
4067 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
4070 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
4073 if (ret
> 0) { /* ret = -ENOENT; */
4078 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
4084 leaf
= path
->nodes
[0];
4085 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
4087 bctl
->fs_info
= fs_info
;
4088 bctl
->flags
= btrfs_balance_flags(leaf
, item
);
4089 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
4091 btrfs_balance_data(leaf
, item
, &disk_bargs
);
4092 btrfs_disk_balance_args_to_cpu(&bctl
->data
, &disk_bargs
);
4093 btrfs_balance_meta(leaf
, item
, &disk_bargs
);
4094 btrfs_disk_balance_args_to_cpu(&bctl
->meta
, &disk_bargs
);
4095 btrfs_balance_sys(leaf
, item
, &disk_bargs
);
4096 btrfs_disk_balance_args_to_cpu(&bctl
->sys
, &disk_bargs
);
4098 WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
));
4100 mutex_lock(&fs_info
->volume_mutex
);
4101 mutex_lock(&fs_info
->balance_mutex
);
4103 set_balance_control(bctl
);
4105 mutex_unlock(&fs_info
->balance_mutex
);
4106 mutex_unlock(&fs_info
->volume_mutex
);
4108 btrfs_free_path(path
);
4112 int btrfs_pause_balance(struct btrfs_fs_info
*fs_info
)
4116 mutex_lock(&fs_info
->balance_mutex
);
4117 if (!fs_info
->balance_ctl
) {
4118 mutex_unlock(&fs_info
->balance_mutex
);
4122 if (atomic_read(&fs_info
->balance_running
)) {
4123 atomic_inc(&fs_info
->balance_pause_req
);
4124 mutex_unlock(&fs_info
->balance_mutex
);
4126 wait_event(fs_info
->balance_wait_q
,
4127 atomic_read(&fs_info
->balance_running
) == 0);
4129 mutex_lock(&fs_info
->balance_mutex
);
4130 /* we are good with balance_ctl ripped off from under us */
4131 BUG_ON(atomic_read(&fs_info
->balance_running
));
4132 atomic_dec(&fs_info
->balance_pause_req
);
4137 mutex_unlock(&fs_info
->balance_mutex
);
4141 int btrfs_cancel_balance(struct btrfs_fs_info
*fs_info
)
4143 if (sb_rdonly(fs_info
->sb
))
4146 mutex_lock(&fs_info
->balance_mutex
);
4147 if (!fs_info
->balance_ctl
) {
4148 mutex_unlock(&fs_info
->balance_mutex
);
4152 atomic_inc(&fs_info
->balance_cancel_req
);
4154 * if we are running just wait and return, balance item is
4155 * deleted in btrfs_balance in this case
4157 if (atomic_read(&fs_info
->balance_running
)) {
4158 mutex_unlock(&fs_info
->balance_mutex
);
4159 wait_event(fs_info
->balance_wait_q
,
4160 atomic_read(&fs_info
->balance_running
) == 0);
4161 mutex_lock(&fs_info
->balance_mutex
);
4163 /* __cancel_balance needs volume_mutex */
4164 mutex_unlock(&fs_info
->balance_mutex
);
4165 mutex_lock(&fs_info
->volume_mutex
);
4166 mutex_lock(&fs_info
->balance_mutex
);
4168 if (fs_info
->balance_ctl
)
4169 __cancel_balance(fs_info
);
4171 mutex_unlock(&fs_info
->volume_mutex
);
4174 BUG_ON(fs_info
->balance_ctl
|| atomic_read(&fs_info
->balance_running
));
4175 atomic_dec(&fs_info
->balance_cancel_req
);
4176 mutex_unlock(&fs_info
->balance_mutex
);
4180 static int btrfs_uuid_scan_kthread(void *data
)
4182 struct btrfs_fs_info
*fs_info
= data
;
4183 struct btrfs_root
*root
= fs_info
->tree_root
;
4184 struct btrfs_key key
;
4185 struct btrfs_path
*path
= NULL
;
4187 struct extent_buffer
*eb
;
4189 struct btrfs_root_item root_item
;
4191 struct btrfs_trans_handle
*trans
= NULL
;
4193 path
= btrfs_alloc_path();
4200 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4204 ret
= btrfs_search_forward(root
, &key
, path
, 0);
4211 if (key
.type
!= BTRFS_ROOT_ITEM_KEY
||
4212 (key
.objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
4213 key
.objectid
!= BTRFS_FS_TREE_OBJECTID
) ||
4214 key
.objectid
> BTRFS_LAST_FREE_OBJECTID
)
4217 eb
= path
->nodes
[0];
4218 slot
= path
->slots
[0];
4219 item_size
= btrfs_item_size_nr(eb
, slot
);
4220 if (item_size
< sizeof(root_item
))
4223 read_extent_buffer(eb
, &root_item
,
4224 btrfs_item_ptr_offset(eb
, slot
),
4225 (int)sizeof(root_item
));
4226 if (btrfs_root_refs(&root_item
) == 0)
4229 if (!btrfs_is_empty_uuid(root_item
.uuid
) ||
4230 !btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4234 btrfs_release_path(path
);
4236 * 1 - subvol uuid item
4237 * 1 - received_subvol uuid item
4239 trans
= btrfs_start_transaction(fs_info
->uuid_root
, 2);
4240 if (IS_ERR(trans
)) {
4241 ret
= PTR_ERR(trans
);
4249 if (!btrfs_is_empty_uuid(root_item
.uuid
)) {
4250 ret
= btrfs_uuid_tree_add(trans
, fs_info
,
4252 BTRFS_UUID_KEY_SUBVOL
,
4255 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4261 if (!btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4262 ret
= btrfs_uuid_tree_add(trans
, fs_info
,
4263 root_item
.received_uuid
,
4264 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
4267 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4275 ret
= btrfs_end_transaction(trans
);
4281 btrfs_release_path(path
);
4282 if (key
.offset
< (u64
)-1) {
4284 } else if (key
.type
< BTRFS_ROOT_ITEM_KEY
) {
4286 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4287 } else if (key
.objectid
< (u64
)-1) {
4289 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4298 btrfs_free_path(path
);
4299 if (trans
&& !IS_ERR(trans
))
4300 btrfs_end_transaction(trans
);
4302 btrfs_warn(fs_info
, "btrfs_uuid_scan_kthread failed %d", ret
);
4304 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
);
4305 up(&fs_info
->uuid_tree_rescan_sem
);
4310 * Callback for btrfs_uuid_tree_iterate().
4312 * 0 check succeeded, the entry is not outdated.
4313 * < 0 if an error occurred.
4314 * > 0 if the check failed, which means the caller shall remove the entry.
4316 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info
*fs_info
,
4317 u8
*uuid
, u8 type
, u64 subid
)
4319 struct btrfs_key key
;
4321 struct btrfs_root
*subvol_root
;
4323 if (type
!= BTRFS_UUID_KEY_SUBVOL
&&
4324 type
!= BTRFS_UUID_KEY_RECEIVED_SUBVOL
)
4327 key
.objectid
= subid
;
4328 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4329 key
.offset
= (u64
)-1;
4330 subvol_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
4331 if (IS_ERR(subvol_root
)) {
4332 ret
= PTR_ERR(subvol_root
);
4339 case BTRFS_UUID_KEY_SUBVOL
:
4340 if (memcmp(uuid
, subvol_root
->root_item
.uuid
, BTRFS_UUID_SIZE
))
4343 case BTRFS_UUID_KEY_RECEIVED_SUBVOL
:
4344 if (memcmp(uuid
, subvol_root
->root_item
.received_uuid
,
4354 static int btrfs_uuid_rescan_kthread(void *data
)
4356 struct btrfs_fs_info
*fs_info
= (struct btrfs_fs_info
*)data
;
4360 * 1st step is to iterate through the existing UUID tree and
4361 * to delete all entries that contain outdated data.
4362 * 2nd step is to add all missing entries to the UUID tree.
4364 ret
= btrfs_uuid_tree_iterate(fs_info
, btrfs_check_uuid_tree_entry
);
4366 btrfs_warn(fs_info
, "iterating uuid_tree failed %d", ret
);
4367 up(&fs_info
->uuid_tree_rescan_sem
);
4370 return btrfs_uuid_scan_kthread(data
);
4373 int btrfs_create_uuid_tree(struct btrfs_fs_info
*fs_info
)
4375 struct btrfs_trans_handle
*trans
;
4376 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
4377 struct btrfs_root
*uuid_root
;
4378 struct task_struct
*task
;
4385 trans
= btrfs_start_transaction(tree_root
, 2);
4387 return PTR_ERR(trans
);
4389 uuid_root
= btrfs_create_tree(trans
, fs_info
,
4390 BTRFS_UUID_TREE_OBJECTID
);
4391 if (IS_ERR(uuid_root
)) {
4392 ret
= PTR_ERR(uuid_root
);
4393 btrfs_abort_transaction(trans
, ret
);
4394 btrfs_end_transaction(trans
);
4398 fs_info
->uuid_root
= uuid_root
;
4400 ret
= btrfs_commit_transaction(trans
);
4404 down(&fs_info
->uuid_tree_rescan_sem
);
4405 task
= kthread_run(btrfs_uuid_scan_kthread
, fs_info
, "btrfs-uuid");
4407 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4408 btrfs_warn(fs_info
, "failed to start uuid_scan task");
4409 up(&fs_info
->uuid_tree_rescan_sem
);
4410 return PTR_ERR(task
);
4416 int btrfs_check_uuid_tree(struct btrfs_fs_info
*fs_info
)
4418 struct task_struct
*task
;
4420 down(&fs_info
->uuid_tree_rescan_sem
);
4421 task
= kthread_run(btrfs_uuid_rescan_kthread
, fs_info
, "btrfs-uuid");
4423 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4424 btrfs_warn(fs_info
, "failed to start uuid_rescan task");
4425 up(&fs_info
->uuid_tree_rescan_sem
);
4426 return PTR_ERR(task
);
4433 * shrinking a device means finding all of the device extents past
4434 * the new size, and then following the back refs to the chunks.
4435 * The chunk relocation code actually frees the device extent
4437 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
4439 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
4440 struct btrfs_root
*root
= fs_info
->dev_root
;
4441 struct btrfs_trans_handle
*trans
;
4442 struct btrfs_dev_extent
*dev_extent
= NULL
;
4443 struct btrfs_path
*path
;
4449 bool retried
= false;
4450 bool checked_pending_chunks
= false;
4451 struct extent_buffer
*l
;
4452 struct btrfs_key key
;
4453 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
4454 u64 old_total
= btrfs_super_total_bytes(super_copy
);
4455 u64 old_size
= btrfs_device_get_total_bytes(device
);
4458 new_size
= round_down(new_size
, fs_info
->sectorsize
);
4459 diff
= round_down(old_size
- new_size
, fs_info
->sectorsize
);
4461 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
))
4464 path
= btrfs_alloc_path();
4468 path
->reada
= READA_FORWARD
;
4470 mutex_lock(&fs_info
->chunk_mutex
);
4472 btrfs_device_set_total_bytes(device
, new_size
);
4473 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
4474 device
->fs_devices
->total_rw_bytes
-= diff
;
4475 atomic64_sub(diff
, &fs_info
->free_chunk_space
);
4477 mutex_unlock(&fs_info
->chunk_mutex
);
4480 key
.objectid
= device
->devid
;
4481 key
.offset
= (u64
)-1;
4482 key
.type
= BTRFS_DEV_EXTENT_KEY
;
4485 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
4486 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4488 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4492 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
4494 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4499 btrfs_release_path(path
);
4504 slot
= path
->slots
[0];
4505 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
4507 if (key
.objectid
!= device
->devid
) {
4508 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4509 btrfs_release_path(path
);
4513 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
4514 length
= btrfs_dev_extent_length(l
, dev_extent
);
4516 if (key
.offset
+ length
<= new_size
) {
4517 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4518 btrfs_release_path(path
);
4522 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
4523 btrfs_release_path(path
);
4526 * We may be relocating the only data chunk we have,
4527 * which could potentially end up with losing data's
4528 * raid profile, so lets allocate an empty one in
4531 ret
= btrfs_may_alloc_data_chunk(fs_info
, chunk_offset
);
4533 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4537 ret
= btrfs_relocate_chunk(fs_info
, chunk_offset
);
4538 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4539 if (ret
&& ret
!= -ENOSPC
)
4543 } while (key
.offset
-- > 0);
4545 if (failed
&& !retried
) {
4549 } else if (failed
&& retried
) {
4554 /* Shrinking succeeded, else we would be at "done". */
4555 trans
= btrfs_start_transaction(root
, 0);
4556 if (IS_ERR(trans
)) {
4557 ret
= PTR_ERR(trans
);
4561 mutex_lock(&fs_info
->chunk_mutex
);
4564 * We checked in the above loop all device extents that were already in
4565 * the device tree. However before we have updated the device's
4566 * total_bytes to the new size, we might have had chunk allocations that
4567 * have not complete yet (new block groups attached to transaction
4568 * handles), and therefore their device extents were not yet in the
4569 * device tree and we missed them in the loop above. So if we have any
4570 * pending chunk using a device extent that overlaps the device range
4571 * that we can not use anymore, commit the current transaction and
4572 * repeat the search on the device tree - this way we guarantee we will
4573 * not have chunks using device extents that end beyond 'new_size'.
4575 if (!checked_pending_chunks
) {
4576 u64 start
= new_size
;
4577 u64 len
= old_size
- new_size
;
4579 if (contains_pending_extent(trans
->transaction
, device
,
4581 mutex_unlock(&fs_info
->chunk_mutex
);
4582 checked_pending_chunks
= true;
4585 ret
= btrfs_commit_transaction(trans
);
4592 btrfs_device_set_disk_total_bytes(device
, new_size
);
4593 if (list_empty(&device
->resized_list
))
4594 list_add_tail(&device
->resized_list
,
4595 &fs_info
->fs_devices
->resized_devices
);
4597 WARN_ON(diff
> old_total
);
4598 btrfs_set_super_total_bytes(super_copy
,
4599 round_down(old_total
- diff
, fs_info
->sectorsize
));
4600 mutex_unlock(&fs_info
->chunk_mutex
);
4602 /* Now btrfs_update_device() will change the on-disk size. */
4603 ret
= btrfs_update_device(trans
, device
);
4604 btrfs_end_transaction(trans
);
4606 btrfs_free_path(path
);
4608 mutex_lock(&fs_info
->chunk_mutex
);
4609 btrfs_device_set_total_bytes(device
, old_size
);
4610 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
))
4611 device
->fs_devices
->total_rw_bytes
+= diff
;
4612 atomic64_add(diff
, &fs_info
->free_chunk_space
);
4613 mutex_unlock(&fs_info
->chunk_mutex
);
4618 static int btrfs_add_system_chunk(struct btrfs_fs_info
*fs_info
,
4619 struct btrfs_key
*key
,
4620 struct btrfs_chunk
*chunk
, int item_size
)
4622 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
4623 struct btrfs_disk_key disk_key
;
4627 mutex_lock(&fs_info
->chunk_mutex
);
4628 array_size
= btrfs_super_sys_array_size(super_copy
);
4629 if (array_size
+ item_size
+ sizeof(disk_key
)
4630 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
4631 mutex_unlock(&fs_info
->chunk_mutex
);
4635 ptr
= super_copy
->sys_chunk_array
+ array_size
;
4636 btrfs_cpu_key_to_disk(&disk_key
, key
);
4637 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
4638 ptr
+= sizeof(disk_key
);
4639 memcpy(ptr
, chunk
, item_size
);
4640 item_size
+= sizeof(disk_key
);
4641 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
4642 mutex_unlock(&fs_info
->chunk_mutex
);
4648 * sort the devices in descending order by max_avail, total_avail
4650 static int btrfs_cmp_device_info(const void *a
, const void *b
)
4652 const struct btrfs_device_info
*di_a
= a
;
4653 const struct btrfs_device_info
*di_b
= b
;
4655 if (di_a
->max_avail
> di_b
->max_avail
)
4657 if (di_a
->max_avail
< di_b
->max_avail
)
4659 if (di_a
->total_avail
> di_b
->total_avail
)
4661 if (di_a
->total_avail
< di_b
->total_avail
)
4666 static void check_raid56_incompat_flag(struct btrfs_fs_info
*info
, u64 type
)
4668 if (!(type
& BTRFS_BLOCK_GROUP_RAID56_MASK
))
4671 btrfs_set_fs_incompat(info
, RAID56
);
4674 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \
4675 - sizeof(struct btrfs_chunk)) \
4676 / sizeof(struct btrfs_stripe) + 1)
4678 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4679 - 2 * sizeof(struct btrfs_disk_key) \
4680 - 2 * sizeof(struct btrfs_chunk)) \
4681 / sizeof(struct btrfs_stripe) + 1)
4683 static int __btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4684 u64 start
, u64 type
)
4686 struct btrfs_fs_info
*info
= trans
->fs_info
;
4687 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
4688 struct btrfs_device
*device
;
4689 struct map_lookup
*map
= NULL
;
4690 struct extent_map_tree
*em_tree
;
4691 struct extent_map
*em
;
4692 struct btrfs_device_info
*devices_info
= NULL
;
4694 int num_stripes
; /* total number of stripes to allocate */
4695 int data_stripes
; /* number of stripes that count for
4697 int sub_stripes
; /* sub_stripes info for map */
4698 int dev_stripes
; /* stripes per dev */
4699 int devs_max
; /* max devs to use */
4700 int devs_min
; /* min devs needed */
4701 int devs_increment
; /* ndevs has to be a multiple of this */
4702 int ncopies
; /* how many copies to data has */
4704 u64 max_stripe_size
;
4713 BUG_ON(!alloc_profile_is_valid(type
, 0));
4715 if (list_empty(&fs_devices
->alloc_list
))
4718 index
= __get_raid_index(type
);
4720 sub_stripes
= btrfs_raid_array
[index
].sub_stripes
;
4721 dev_stripes
= btrfs_raid_array
[index
].dev_stripes
;
4722 devs_max
= btrfs_raid_array
[index
].devs_max
;
4723 devs_min
= btrfs_raid_array
[index
].devs_min
;
4724 devs_increment
= btrfs_raid_array
[index
].devs_increment
;
4725 ncopies
= btrfs_raid_array
[index
].ncopies
;
4727 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
4728 max_stripe_size
= SZ_1G
;
4729 max_chunk_size
= 10 * max_stripe_size
;
4731 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4732 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
4733 /* for larger filesystems, use larger metadata chunks */
4734 if (fs_devices
->total_rw_bytes
> 50ULL * SZ_1G
)
4735 max_stripe_size
= SZ_1G
;
4737 max_stripe_size
= SZ_256M
;
4738 max_chunk_size
= max_stripe_size
;
4740 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4741 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4742 max_stripe_size
= SZ_32M
;
4743 max_chunk_size
= 2 * max_stripe_size
;
4745 devs_max
= BTRFS_MAX_DEVS_SYS_CHUNK
;
4747 btrfs_err(info
, "invalid chunk type 0x%llx requested",
4752 /* we don't want a chunk larger than 10% of writeable space */
4753 max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
4756 devices_info
= kcalloc(fs_devices
->rw_devices
, sizeof(*devices_info
),
4762 * in the first pass through the devices list, we gather information
4763 * about the available holes on each device.
4766 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
4770 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
4772 "BTRFS: read-only device in alloc_list\n");
4776 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
4777 &device
->dev_state
) ||
4778 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
))
4781 if (device
->total_bytes
> device
->bytes_used
)
4782 total_avail
= device
->total_bytes
- device
->bytes_used
;
4786 /* If there is no space on this device, skip it. */
4787 if (total_avail
== 0)
4790 ret
= find_free_dev_extent(trans
, device
,
4791 max_stripe_size
* dev_stripes
,
4792 &dev_offset
, &max_avail
);
4793 if (ret
&& ret
!= -ENOSPC
)
4797 max_avail
= max_stripe_size
* dev_stripes
;
4799 if (max_avail
< BTRFS_STRIPE_LEN
* dev_stripes
)
4802 if (ndevs
== fs_devices
->rw_devices
) {
4803 WARN(1, "%s: found more than %llu devices\n",
4804 __func__
, fs_devices
->rw_devices
);
4807 devices_info
[ndevs
].dev_offset
= dev_offset
;
4808 devices_info
[ndevs
].max_avail
= max_avail
;
4809 devices_info
[ndevs
].total_avail
= total_avail
;
4810 devices_info
[ndevs
].dev
= device
;
4815 * now sort the devices by hole size / available space
4817 sort(devices_info
, ndevs
, sizeof(struct btrfs_device_info
),
4818 btrfs_cmp_device_info
, NULL
);
4820 /* round down to number of usable stripes */
4821 ndevs
= round_down(ndevs
, devs_increment
);
4823 if (ndevs
< devs_increment
* sub_stripes
|| ndevs
< devs_min
) {
4828 ndevs
= min(ndevs
, devs_max
);
4831 * the primary goal is to maximize the number of stripes, so use as many
4832 * devices as possible, even if the stripes are not maximum sized.
4834 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4835 num_stripes
= ndevs
* dev_stripes
;
4838 * this will have to be fixed for RAID1 and RAID10 over
4841 data_stripes
= num_stripes
/ ncopies
;
4843 if (type
& BTRFS_BLOCK_GROUP_RAID5
)
4844 data_stripes
= num_stripes
- 1;
4846 if (type
& BTRFS_BLOCK_GROUP_RAID6
)
4847 data_stripes
= num_stripes
- 2;
4850 * Use the number of data stripes to figure out how big this chunk
4851 * is really going to be in terms of logical address space,
4852 * and compare that answer with the max chunk size
4854 if (stripe_size
* data_stripes
> max_chunk_size
) {
4855 u64 mask
= (1ULL << 24) - 1;
4857 stripe_size
= div_u64(max_chunk_size
, data_stripes
);
4859 /* bump the answer up to a 16MB boundary */
4860 stripe_size
= (stripe_size
+ mask
) & ~mask
;
4862 /* but don't go higher than the limits we found
4863 * while searching for free extents
4865 if (stripe_size
> devices_info
[ndevs
-1].max_avail
)
4866 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4869 stripe_size
= div_u64(stripe_size
, dev_stripes
);
4871 /* align to BTRFS_STRIPE_LEN */
4872 stripe_size
= round_down(stripe_size
, BTRFS_STRIPE_LEN
);
4874 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
4879 map
->num_stripes
= num_stripes
;
4881 for (i
= 0; i
< ndevs
; ++i
) {
4882 for (j
= 0; j
< dev_stripes
; ++j
) {
4883 int s
= i
* dev_stripes
+ j
;
4884 map
->stripes
[s
].dev
= devices_info
[i
].dev
;
4885 map
->stripes
[s
].physical
= devices_info
[i
].dev_offset
+
4889 map
->stripe_len
= BTRFS_STRIPE_LEN
;
4890 map
->io_align
= BTRFS_STRIPE_LEN
;
4891 map
->io_width
= BTRFS_STRIPE_LEN
;
4893 map
->sub_stripes
= sub_stripes
;
4895 num_bytes
= stripe_size
* data_stripes
;
4897 trace_btrfs_chunk_alloc(info
, map
, start
, num_bytes
);
4899 em
= alloc_extent_map();
4905 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
4906 em
->map_lookup
= map
;
4908 em
->len
= num_bytes
;
4909 em
->block_start
= 0;
4910 em
->block_len
= em
->len
;
4911 em
->orig_block_len
= stripe_size
;
4913 em_tree
= &info
->mapping_tree
.map_tree
;
4914 write_lock(&em_tree
->lock
);
4915 ret
= add_extent_mapping(em_tree
, em
, 0);
4917 write_unlock(&em_tree
->lock
);
4918 free_extent_map(em
);
4922 list_add_tail(&em
->list
, &trans
->transaction
->pending_chunks
);
4923 refcount_inc(&em
->refs
);
4924 write_unlock(&em_tree
->lock
);
4926 ret
= btrfs_make_block_group(trans
, info
, 0, type
, start
, num_bytes
);
4928 goto error_del_extent
;
4930 for (i
= 0; i
< map
->num_stripes
; i
++) {
4931 num_bytes
= map
->stripes
[i
].dev
->bytes_used
+ stripe_size
;
4932 btrfs_device_set_bytes_used(map
->stripes
[i
].dev
, num_bytes
);
4935 atomic64_sub(stripe_size
* map
->num_stripes
, &info
->free_chunk_space
);
4937 free_extent_map(em
);
4938 check_raid56_incompat_flag(info
, type
);
4940 kfree(devices_info
);
4944 write_lock(&em_tree
->lock
);
4945 remove_extent_mapping(em_tree
, em
);
4946 write_unlock(&em_tree
->lock
);
4948 /* One for our allocation */
4949 free_extent_map(em
);
4950 /* One for the tree reference */
4951 free_extent_map(em
);
4952 /* One for the pending_chunks list reference */
4953 free_extent_map(em
);
4955 kfree(devices_info
);
4959 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
4960 struct btrfs_fs_info
*fs_info
,
4961 u64 chunk_offset
, u64 chunk_size
)
4963 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
4964 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
4965 struct btrfs_key key
;
4966 struct btrfs_device
*device
;
4967 struct btrfs_chunk
*chunk
;
4968 struct btrfs_stripe
*stripe
;
4969 struct extent_map
*em
;
4970 struct map_lookup
*map
;
4977 em
= get_chunk_map(fs_info
, chunk_offset
, chunk_size
);
4981 map
= em
->map_lookup
;
4982 item_size
= btrfs_chunk_item_size(map
->num_stripes
);
4983 stripe_size
= em
->orig_block_len
;
4985 chunk
= kzalloc(item_size
, GFP_NOFS
);
4992 * Take the device list mutex to prevent races with the final phase of
4993 * a device replace operation that replaces the device object associated
4994 * with the map's stripes, because the device object's id can change
4995 * at any time during that final phase of the device replace operation
4996 * (dev-replace.c:btrfs_dev_replace_finishing()).
4998 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
4999 for (i
= 0; i
< map
->num_stripes
; i
++) {
5000 device
= map
->stripes
[i
].dev
;
5001 dev_offset
= map
->stripes
[i
].physical
;
5003 ret
= btrfs_update_device(trans
, device
);
5006 ret
= btrfs_alloc_dev_extent(trans
, device
, chunk_offset
,
5007 dev_offset
, stripe_size
);
5012 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
5016 stripe
= &chunk
->stripe
;
5017 for (i
= 0; i
< map
->num_stripes
; i
++) {
5018 device
= map
->stripes
[i
].dev
;
5019 dev_offset
= map
->stripes
[i
].physical
;
5021 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
5022 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
5023 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
5026 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
5028 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
5029 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
5030 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
5031 btrfs_set_stack_chunk_type(chunk
, map
->type
);
5032 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
5033 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
5034 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
5035 btrfs_set_stack_chunk_sector_size(chunk
, fs_info
->sectorsize
);
5036 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
5038 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
5039 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
5040 key
.offset
= chunk_offset
;
5042 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
5043 if (ret
== 0 && map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
5045 * TODO: Cleanup of inserted chunk root in case of
5048 ret
= btrfs_add_system_chunk(fs_info
, &key
, chunk
, item_size
);
5053 free_extent_map(em
);
5058 * Chunk allocation falls into two parts. The first part does works
5059 * that make the new allocated chunk useable, but not do any operation
5060 * that modifies the chunk tree. The second part does the works that
5061 * require modifying the chunk tree. This division is important for the
5062 * bootstrap process of adding storage to a seed btrfs.
5064 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
5065 struct btrfs_fs_info
*fs_info
, u64 type
)
5069 ASSERT(mutex_is_locked(&fs_info
->chunk_mutex
));
5070 chunk_offset
= find_next_chunk(fs_info
);
5071 return __btrfs_alloc_chunk(trans
, chunk_offset
, type
);
5074 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
,
5075 struct btrfs_fs_info
*fs_info
)
5078 u64 sys_chunk_offset
;
5082 chunk_offset
= find_next_chunk(fs_info
);
5083 alloc_profile
= btrfs_metadata_alloc_profile(fs_info
);
5084 ret
= __btrfs_alloc_chunk(trans
, chunk_offset
, alloc_profile
);
5088 sys_chunk_offset
= find_next_chunk(fs_info
);
5089 alloc_profile
= btrfs_system_alloc_profile(fs_info
);
5090 ret
= __btrfs_alloc_chunk(trans
, sys_chunk_offset
, alloc_profile
);
5094 static inline int btrfs_chunk_max_errors(struct map_lookup
*map
)
5098 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
5099 BTRFS_BLOCK_GROUP_RAID10
|
5100 BTRFS_BLOCK_GROUP_RAID5
|
5101 BTRFS_BLOCK_GROUP_DUP
)) {
5103 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
) {
5112 int btrfs_chunk_readonly(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
5114 struct extent_map
*em
;
5115 struct map_lookup
*map
;
5120 em
= get_chunk_map(fs_info
, chunk_offset
, 1);
5124 map
= em
->map_lookup
;
5125 for (i
= 0; i
< map
->num_stripes
; i
++) {
5126 if (test_bit(BTRFS_DEV_STATE_MISSING
,
5127 &map
->stripes
[i
].dev
->dev_state
)) {
5131 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
,
5132 &map
->stripes
[i
].dev
->dev_state
)) {
5139 * If the number of missing devices is larger than max errors,
5140 * we can not write the data into that chunk successfully, so
5143 if (miss_ndevs
> btrfs_chunk_max_errors(map
))
5146 free_extent_map(em
);
5150 void btrfs_mapping_init(struct btrfs_mapping_tree
*tree
)
5152 extent_map_tree_init(&tree
->map_tree
);
5155 void btrfs_mapping_tree_free(struct btrfs_mapping_tree
*tree
)
5157 struct extent_map
*em
;
5160 write_lock(&tree
->map_tree
.lock
);
5161 em
= lookup_extent_mapping(&tree
->map_tree
, 0, (u64
)-1);
5163 remove_extent_mapping(&tree
->map_tree
, em
);
5164 write_unlock(&tree
->map_tree
.lock
);
5168 free_extent_map(em
);
5169 /* once for the tree */
5170 free_extent_map(em
);
5174 int btrfs_num_copies(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
5176 struct extent_map
*em
;
5177 struct map_lookup
*map
;
5180 em
= get_chunk_map(fs_info
, logical
, len
);
5183 * We could return errors for these cases, but that could get
5184 * ugly and we'd probably do the same thing which is just not do
5185 * anything else and exit, so return 1 so the callers don't try
5186 * to use other copies.
5190 map
= em
->map_lookup
;
5191 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
))
5192 ret
= map
->num_stripes
;
5193 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5194 ret
= map
->sub_stripes
;
5195 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID5
)
5197 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5199 * There could be two corrupted data stripes, we need
5200 * to loop retry in order to rebuild the correct data.
5202 * Fail a stripe at a time on every retry except the
5203 * stripe under reconstruction.
5205 ret
= map
->num_stripes
;
5208 free_extent_map(em
);
5210 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
5211 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
) &&
5212 fs_info
->dev_replace
.tgtdev
)
5214 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
5219 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info
*fs_info
,
5222 struct extent_map
*em
;
5223 struct map_lookup
*map
;
5224 unsigned long len
= fs_info
->sectorsize
;
5226 em
= get_chunk_map(fs_info
, logical
, len
);
5228 if (!WARN_ON(IS_ERR(em
))) {
5229 map
= em
->map_lookup
;
5230 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5231 len
= map
->stripe_len
* nr_data_stripes(map
);
5232 free_extent_map(em
);
5237 int btrfs_is_parity_mirror(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
5239 struct extent_map
*em
;
5240 struct map_lookup
*map
;
5243 em
= get_chunk_map(fs_info
, logical
, len
);
5245 if(!WARN_ON(IS_ERR(em
))) {
5246 map
= em
->map_lookup
;
5247 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5249 free_extent_map(em
);
5254 static int find_live_mirror(struct btrfs_fs_info
*fs_info
,
5255 struct map_lookup
*map
, int first
, int num
,
5256 int optimal
, int dev_replace_is_ongoing
)
5260 struct btrfs_device
*srcdev
;
5262 if (dev_replace_is_ongoing
&&
5263 fs_info
->dev_replace
.cont_reading_from_srcdev_mode
==
5264 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID
)
5265 srcdev
= fs_info
->dev_replace
.srcdev
;
5270 * try to avoid the drive that is the source drive for a
5271 * dev-replace procedure, only choose it if no other non-missing
5272 * mirror is available
5274 for (tolerance
= 0; tolerance
< 2; tolerance
++) {
5275 if (map
->stripes
[optimal
].dev
->bdev
&&
5276 (tolerance
|| map
->stripes
[optimal
].dev
!= srcdev
))
5278 for (i
= first
; i
< first
+ num
; i
++) {
5279 if (map
->stripes
[i
].dev
->bdev
&&
5280 (tolerance
|| map
->stripes
[i
].dev
!= srcdev
))
5285 /* we couldn't find one that doesn't fail. Just return something
5286 * and the io error handling code will clean up eventually
5291 static inline int parity_smaller(u64 a
, u64 b
)
5296 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5297 static void sort_parity_stripes(struct btrfs_bio
*bbio
, int num_stripes
)
5299 struct btrfs_bio_stripe s
;
5306 for (i
= 0; i
< num_stripes
- 1; i
++) {
5307 if (parity_smaller(bbio
->raid_map
[i
],
5308 bbio
->raid_map
[i
+1])) {
5309 s
= bbio
->stripes
[i
];
5310 l
= bbio
->raid_map
[i
];
5311 bbio
->stripes
[i
] = bbio
->stripes
[i
+1];
5312 bbio
->raid_map
[i
] = bbio
->raid_map
[i
+1];
5313 bbio
->stripes
[i
+1] = s
;
5314 bbio
->raid_map
[i
+1] = l
;
5322 static struct btrfs_bio
*alloc_btrfs_bio(int total_stripes
, int real_stripes
)
5324 struct btrfs_bio
*bbio
= kzalloc(
5325 /* the size of the btrfs_bio */
5326 sizeof(struct btrfs_bio
) +
5327 /* plus the variable array for the stripes */
5328 sizeof(struct btrfs_bio_stripe
) * (total_stripes
) +
5329 /* plus the variable array for the tgt dev */
5330 sizeof(int) * (real_stripes
) +
5332 * plus the raid_map, which includes both the tgt dev
5335 sizeof(u64
) * (total_stripes
),
5336 GFP_NOFS
|__GFP_NOFAIL
);
5338 atomic_set(&bbio
->error
, 0);
5339 refcount_set(&bbio
->refs
, 1);
5344 void btrfs_get_bbio(struct btrfs_bio
*bbio
)
5346 WARN_ON(!refcount_read(&bbio
->refs
));
5347 refcount_inc(&bbio
->refs
);
5350 void btrfs_put_bbio(struct btrfs_bio
*bbio
)
5354 if (refcount_dec_and_test(&bbio
->refs
))
5358 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5360 * Please note that, discard won't be sent to target device of device
5363 static int __btrfs_map_block_for_discard(struct btrfs_fs_info
*fs_info
,
5364 u64 logical
, u64 length
,
5365 struct btrfs_bio
**bbio_ret
)
5367 struct extent_map
*em
;
5368 struct map_lookup
*map
;
5369 struct btrfs_bio
*bbio
;
5373 u64 stripe_end_offset
;
5380 u32 sub_stripes
= 0;
5381 u64 stripes_per_dev
= 0;
5382 u32 remaining_stripes
= 0;
5383 u32 last_stripe
= 0;
5387 /* discard always return a bbio */
5390 em
= get_chunk_map(fs_info
, logical
, length
);
5394 map
= em
->map_lookup
;
5395 /* we don't discard raid56 yet */
5396 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5401 offset
= logical
- em
->start
;
5402 length
= min_t(u64
, em
->len
- offset
, length
);
5404 stripe_len
= map
->stripe_len
;
5406 * stripe_nr counts the total number of stripes we have to stride
5407 * to get to this block
5409 stripe_nr
= div64_u64(offset
, stripe_len
);
5411 /* stripe_offset is the offset of this block in its stripe */
5412 stripe_offset
= offset
- stripe_nr
* stripe_len
;
5414 stripe_nr_end
= round_up(offset
+ length
, map
->stripe_len
);
5415 stripe_nr_end
= div64_u64(stripe_nr_end
, map
->stripe_len
);
5416 stripe_cnt
= stripe_nr_end
- stripe_nr
;
5417 stripe_end_offset
= stripe_nr_end
* map
->stripe_len
-
5420 * after this, stripe_nr is the number of stripes on this
5421 * device we have to walk to find the data, and stripe_index is
5422 * the number of our device in the stripe array
5426 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5427 BTRFS_BLOCK_GROUP_RAID10
)) {
5428 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5431 sub_stripes
= map
->sub_stripes
;
5433 factor
= map
->num_stripes
/ sub_stripes
;
5434 num_stripes
= min_t(u64
, map
->num_stripes
,
5435 sub_stripes
* stripe_cnt
);
5436 stripe_nr
= div_u64_rem(stripe_nr
, factor
, &stripe_index
);
5437 stripe_index
*= sub_stripes
;
5438 stripes_per_dev
= div_u64_rem(stripe_cnt
, factor
,
5439 &remaining_stripes
);
5440 div_u64_rem(stripe_nr_end
- 1, factor
, &last_stripe
);
5441 last_stripe
*= sub_stripes
;
5442 } else if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
5443 BTRFS_BLOCK_GROUP_DUP
)) {
5444 num_stripes
= map
->num_stripes
;
5446 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5450 bbio
= alloc_btrfs_bio(num_stripes
, 0);
5456 for (i
= 0; i
< num_stripes
; i
++) {
5457 bbio
->stripes
[i
].physical
=
5458 map
->stripes
[stripe_index
].physical
+
5459 stripe_offset
+ stripe_nr
* map
->stripe_len
;
5460 bbio
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
5462 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5463 BTRFS_BLOCK_GROUP_RAID10
)) {
5464 bbio
->stripes
[i
].length
= stripes_per_dev
*
5467 if (i
/ sub_stripes
< remaining_stripes
)
5468 bbio
->stripes
[i
].length
+=
5472 * Special for the first stripe and
5475 * |-------|...|-------|
5479 if (i
< sub_stripes
)
5480 bbio
->stripes
[i
].length
-=
5483 if (stripe_index
>= last_stripe
&&
5484 stripe_index
<= (last_stripe
+
5486 bbio
->stripes
[i
].length
-=
5489 if (i
== sub_stripes
- 1)
5492 bbio
->stripes
[i
].length
= length
;
5496 if (stripe_index
== map
->num_stripes
) {
5503 bbio
->map_type
= map
->type
;
5504 bbio
->num_stripes
= num_stripes
;
5506 free_extent_map(em
);
5511 * In dev-replace case, for repair case (that's the only case where the mirror
5512 * is selected explicitly when calling btrfs_map_block), blocks left of the
5513 * left cursor can also be read from the target drive.
5515 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5517 * For READ, it also needs to be supported using the same mirror number.
5519 * If the requested block is not left of the left cursor, EIO is returned. This
5520 * can happen because btrfs_num_copies() returns one more in the dev-replace
5523 static int get_extra_mirror_from_replace(struct btrfs_fs_info
*fs_info
,
5524 u64 logical
, u64 length
,
5525 u64 srcdev_devid
, int *mirror_num
,
5528 struct btrfs_bio
*bbio
= NULL
;
5530 int index_srcdev
= 0;
5532 u64 physical_of_found
= 0;
5536 ret
= __btrfs_map_block(fs_info
, BTRFS_MAP_GET_READ_MIRRORS
,
5537 logical
, &length
, &bbio
, 0, 0);
5539 ASSERT(bbio
== NULL
);
5543 num_stripes
= bbio
->num_stripes
;
5544 if (*mirror_num
> num_stripes
) {
5546 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5547 * that means that the requested area is not left of the left
5550 btrfs_put_bbio(bbio
);
5555 * process the rest of the function using the mirror_num of the source
5556 * drive. Therefore look it up first. At the end, patch the device
5557 * pointer to the one of the target drive.
5559 for (i
= 0; i
< num_stripes
; i
++) {
5560 if (bbio
->stripes
[i
].dev
->devid
!= srcdev_devid
)
5564 * In case of DUP, in order to keep it simple, only add the
5565 * mirror with the lowest physical address
5568 physical_of_found
<= bbio
->stripes
[i
].physical
)
5573 physical_of_found
= bbio
->stripes
[i
].physical
;
5576 btrfs_put_bbio(bbio
);
5582 *mirror_num
= index_srcdev
+ 1;
5583 *physical
= physical_of_found
;
5587 static void handle_ops_on_dev_replace(enum btrfs_map_op op
,
5588 struct btrfs_bio
**bbio_ret
,
5589 struct btrfs_dev_replace
*dev_replace
,
5590 int *num_stripes_ret
, int *max_errors_ret
)
5592 struct btrfs_bio
*bbio
= *bbio_ret
;
5593 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5594 int tgtdev_indexes
= 0;
5595 int num_stripes
= *num_stripes_ret
;
5596 int max_errors
= *max_errors_ret
;
5599 if (op
== BTRFS_MAP_WRITE
) {
5600 int index_where_to_add
;
5603 * duplicate the write operations while the dev replace
5604 * procedure is running. Since the copying of the old disk to
5605 * the new disk takes place at run time while the filesystem is
5606 * mounted writable, the regular write operations to the old
5607 * disk have to be duplicated to go to the new disk as well.
5609 * Note that device->missing is handled by the caller, and that
5610 * the write to the old disk is already set up in the stripes
5613 index_where_to_add
= num_stripes
;
5614 for (i
= 0; i
< num_stripes
; i
++) {
5615 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5616 /* write to new disk, too */
5617 struct btrfs_bio_stripe
*new =
5618 bbio
->stripes
+ index_where_to_add
;
5619 struct btrfs_bio_stripe
*old
=
5622 new->physical
= old
->physical
;
5623 new->length
= old
->length
;
5624 new->dev
= dev_replace
->tgtdev
;
5625 bbio
->tgtdev_map
[i
] = index_where_to_add
;
5626 index_where_to_add
++;
5631 num_stripes
= index_where_to_add
;
5632 } else if (op
== BTRFS_MAP_GET_READ_MIRRORS
) {
5633 int index_srcdev
= 0;
5635 u64 physical_of_found
= 0;
5638 * During the dev-replace procedure, the target drive can also
5639 * be used to read data in case it is needed to repair a corrupt
5640 * block elsewhere. This is possible if the requested area is
5641 * left of the left cursor. In this area, the target drive is a
5642 * full copy of the source drive.
5644 for (i
= 0; i
< num_stripes
; i
++) {
5645 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5647 * In case of DUP, in order to keep it simple,
5648 * only add the mirror with the lowest physical
5652 physical_of_found
<=
5653 bbio
->stripes
[i
].physical
)
5657 physical_of_found
= bbio
->stripes
[i
].physical
;
5661 struct btrfs_bio_stripe
*tgtdev_stripe
=
5662 bbio
->stripes
+ num_stripes
;
5664 tgtdev_stripe
->physical
= physical_of_found
;
5665 tgtdev_stripe
->length
=
5666 bbio
->stripes
[index_srcdev
].length
;
5667 tgtdev_stripe
->dev
= dev_replace
->tgtdev
;
5668 bbio
->tgtdev_map
[index_srcdev
] = num_stripes
;
5675 *num_stripes_ret
= num_stripes
;
5676 *max_errors_ret
= max_errors
;
5677 bbio
->num_tgtdevs
= tgtdev_indexes
;
5681 static bool need_full_stripe(enum btrfs_map_op op
)
5683 return (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_GET_READ_MIRRORS
);
5686 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
,
5687 enum btrfs_map_op op
,
5688 u64 logical
, u64
*length
,
5689 struct btrfs_bio
**bbio_ret
,
5690 int mirror_num
, int need_raid_map
)
5692 struct extent_map
*em
;
5693 struct map_lookup
*map
;
5703 int tgtdev_indexes
= 0;
5704 struct btrfs_bio
*bbio
= NULL
;
5705 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
5706 int dev_replace_is_ongoing
= 0;
5707 int num_alloc_stripes
;
5708 int patch_the_first_stripe_for_dev_replace
= 0;
5709 u64 physical_to_patch_in_first_stripe
= 0;
5710 u64 raid56_full_stripe_start
= (u64
)-1;
5712 if (op
== BTRFS_MAP_DISCARD
)
5713 return __btrfs_map_block_for_discard(fs_info
, logical
,
5716 em
= get_chunk_map(fs_info
, logical
, *length
);
5720 map
= em
->map_lookup
;
5721 offset
= logical
- em
->start
;
5723 stripe_len
= map
->stripe_len
;
5726 * stripe_nr counts the total number of stripes we have to stride
5727 * to get to this block
5729 stripe_nr
= div64_u64(stripe_nr
, stripe_len
);
5731 stripe_offset
= stripe_nr
* stripe_len
;
5732 if (offset
< stripe_offset
) {
5734 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5735 stripe_offset
, offset
, em
->start
, logical
,
5737 free_extent_map(em
);
5741 /* stripe_offset is the offset of this block in its stripe*/
5742 stripe_offset
= offset
- stripe_offset
;
5744 /* if we're here for raid56, we need to know the stripe aligned start */
5745 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5746 unsigned long full_stripe_len
= stripe_len
* nr_data_stripes(map
);
5747 raid56_full_stripe_start
= offset
;
5749 /* allow a write of a full stripe, but make sure we don't
5750 * allow straddling of stripes
5752 raid56_full_stripe_start
= div64_u64(raid56_full_stripe_start
,
5754 raid56_full_stripe_start
*= full_stripe_len
;
5757 if (map
->type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
5759 /* For writes to RAID[56], allow a full stripeset across all disks.
5760 For other RAID types and for RAID[56] reads, just allow a single
5761 stripe (on a single disk). */
5762 if ((map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
5763 (op
== BTRFS_MAP_WRITE
)) {
5764 max_len
= stripe_len
* nr_data_stripes(map
) -
5765 (offset
- raid56_full_stripe_start
);
5767 /* we limit the length of each bio to what fits in a stripe */
5768 max_len
= stripe_len
- stripe_offset
;
5770 *length
= min_t(u64
, em
->len
- offset
, max_len
);
5772 *length
= em
->len
- offset
;
5775 /* This is for when we're called from btrfs_merge_bio_hook() and all
5776 it cares about is the length */
5780 btrfs_dev_replace_lock(dev_replace
, 0);
5781 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(dev_replace
);
5782 if (!dev_replace_is_ongoing
)
5783 btrfs_dev_replace_unlock(dev_replace
, 0);
5785 btrfs_dev_replace_set_lock_blocking(dev_replace
);
5787 if (dev_replace_is_ongoing
&& mirror_num
== map
->num_stripes
+ 1 &&
5788 !need_full_stripe(op
) && dev_replace
->tgtdev
!= NULL
) {
5789 ret
= get_extra_mirror_from_replace(fs_info
, logical
, *length
,
5790 dev_replace
->srcdev
->devid
,
5792 &physical_to_patch_in_first_stripe
);
5796 patch_the_first_stripe_for_dev_replace
= 1;
5797 } else if (mirror_num
> map
->num_stripes
) {
5803 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5804 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5806 if (!need_full_stripe(op
))
5808 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
5809 if (need_full_stripe(op
))
5810 num_stripes
= map
->num_stripes
;
5811 else if (mirror_num
)
5812 stripe_index
= mirror_num
- 1;
5814 stripe_index
= find_live_mirror(fs_info
, map
, 0,
5816 current
->pid
% map
->num_stripes
,
5817 dev_replace_is_ongoing
);
5818 mirror_num
= stripe_index
+ 1;
5821 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
5822 if (need_full_stripe(op
)) {
5823 num_stripes
= map
->num_stripes
;
5824 } else if (mirror_num
) {
5825 stripe_index
= mirror_num
- 1;
5830 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5831 u32 factor
= map
->num_stripes
/ map
->sub_stripes
;
5833 stripe_nr
= div_u64_rem(stripe_nr
, factor
, &stripe_index
);
5834 stripe_index
*= map
->sub_stripes
;
5836 if (need_full_stripe(op
))
5837 num_stripes
= map
->sub_stripes
;
5838 else if (mirror_num
)
5839 stripe_index
+= mirror_num
- 1;
5841 int old_stripe_index
= stripe_index
;
5842 stripe_index
= find_live_mirror(fs_info
, map
,
5844 map
->sub_stripes
, stripe_index
+
5845 current
->pid
% map
->sub_stripes
,
5846 dev_replace_is_ongoing
);
5847 mirror_num
= stripe_index
- old_stripe_index
+ 1;
5850 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5851 if (need_raid_map
&& (need_full_stripe(op
) || mirror_num
> 1)) {
5852 /* push stripe_nr back to the start of the full stripe */
5853 stripe_nr
= div64_u64(raid56_full_stripe_start
,
5854 stripe_len
* nr_data_stripes(map
));
5856 /* RAID[56] write or recovery. Return all stripes */
5857 num_stripes
= map
->num_stripes
;
5858 max_errors
= nr_parity_stripes(map
);
5860 *length
= map
->stripe_len
;
5865 * Mirror #0 or #1 means the original data block.
5866 * Mirror #2 is RAID5 parity block.
5867 * Mirror #3 is RAID6 Q block.
5869 stripe_nr
= div_u64_rem(stripe_nr
,
5870 nr_data_stripes(map
), &stripe_index
);
5872 stripe_index
= nr_data_stripes(map
) +
5875 /* We distribute the parity blocks across stripes */
5876 div_u64_rem(stripe_nr
+ stripe_index
, map
->num_stripes
,
5878 if (!need_full_stripe(op
) && mirror_num
<= 1)
5883 * after this, stripe_nr is the number of stripes on this
5884 * device we have to walk to find the data, and stripe_index is
5885 * the number of our device in the stripe array
5887 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5889 mirror_num
= stripe_index
+ 1;
5891 if (stripe_index
>= map
->num_stripes
) {
5893 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5894 stripe_index
, map
->num_stripes
);
5899 num_alloc_stripes
= num_stripes
;
5900 if (dev_replace_is_ongoing
&& dev_replace
->tgtdev
!= NULL
) {
5901 if (op
== BTRFS_MAP_WRITE
)
5902 num_alloc_stripes
<<= 1;
5903 if (op
== BTRFS_MAP_GET_READ_MIRRORS
)
5904 num_alloc_stripes
++;
5905 tgtdev_indexes
= num_stripes
;
5908 bbio
= alloc_btrfs_bio(num_alloc_stripes
, tgtdev_indexes
);
5913 if (dev_replace_is_ongoing
&& dev_replace
->tgtdev
!= NULL
)
5914 bbio
->tgtdev_map
= (int *)(bbio
->stripes
+ num_alloc_stripes
);
5916 /* build raid_map */
5917 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
&& need_raid_map
&&
5918 (need_full_stripe(op
) || mirror_num
> 1)) {
5922 bbio
->raid_map
= (u64
*)((void *)bbio
->stripes
+
5923 sizeof(struct btrfs_bio_stripe
) *
5925 sizeof(int) * tgtdev_indexes
);
5927 /* Work out the disk rotation on this stripe-set */
5928 div_u64_rem(stripe_nr
, num_stripes
, &rot
);
5930 /* Fill in the logical address of each stripe */
5931 tmp
= stripe_nr
* nr_data_stripes(map
);
5932 for (i
= 0; i
< nr_data_stripes(map
); i
++)
5933 bbio
->raid_map
[(i
+rot
) % num_stripes
] =
5934 em
->start
+ (tmp
+ i
) * map
->stripe_len
;
5936 bbio
->raid_map
[(i
+rot
) % map
->num_stripes
] = RAID5_P_STRIPE
;
5937 if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5938 bbio
->raid_map
[(i
+rot
+1) % num_stripes
] =
5943 for (i
= 0; i
< num_stripes
; i
++) {
5944 bbio
->stripes
[i
].physical
=
5945 map
->stripes
[stripe_index
].physical
+
5947 stripe_nr
* map
->stripe_len
;
5948 bbio
->stripes
[i
].dev
=
5949 map
->stripes
[stripe_index
].dev
;
5953 if (need_full_stripe(op
))
5954 max_errors
= btrfs_chunk_max_errors(map
);
5957 sort_parity_stripes(bbio
, num_stripes
);
5959 if (dev_replace_is_ongoing
&& dev_replace
->tgtdev
!= NULL
&&
5960 need_full_stripe(op
)) {
5961 handle_ops_on_dev_replace(op
, &bbio
, dev_replace
, &num_stripes
,
5966 bbio
->map_type
= map
->type
;
5967 bbio
->num_stripes
= num_stripes
;
5968 bbio
->max_errors
= max_errors
;
5969 bbio
->mirror_num
= mirror_num
;
5972 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5973 * mirror_num == num_stripes + 1 && dev_replace target drive is
5974 * available as a mirror
5976 if (patch_the_first_stripe_for_dev_replace
&& num_stripes
> 0) {
5977 WARN_ON(num_stripes
> 1);
5978 bbio
->stripes
[0].dev
= dev_replace
->tgtdev
;
5979 bbio
->stripes
[0].physical
= physical_to_patch_in_first_stripe
;
5980 bbio
->mirror_num
= map
->num_stripes
+ 1;
5983 if (dev_replace_is_ongoing
) {
5984 btrfs_dev_replace_clear_lock_blocking(dev_replace
);
5985 btrfs_dev_replace_unlock(dev_replace
, 0);
5987 free_extent_map(em
);
5991 int btrfs_map_block(struct btrfs_fs_info
*fs_info
, enum btrfs_map_op op
,
5992 u64 logical
, u64
*length
,
5993 struct btrfs_bio
**bbio_ret
, int mirror_num
)
5995 return __btrfs_map_block(fs_info
, op
, logical
, length
, bbio_ret
,
5999 /* For Scrub/replace */
6000 int btrfs_map_sblock(struct btrfs_fs_info
*fs_info
, enum btrfs_map_op op
,
6001 u64 logical
, u64
*length
,
6002 struct btrfs_bio
**bbio_ret
)
6004 return __btrfs_map_block(fs_info
, op
, logical
, length
, bbio_ret
, 0, 1);
6007 int btrfs_rmap_block(struct btrfs_fs_info
*fs_info
,
6008 u64 chunk_start
, u64 physical
, u64 devid
,
6009 u64
**logical
, int *naddrs
, int *stripe_len
)
6011 struct extent_map
*em
;
6012 struct map_lookup
*map
;
6020 em
= get_chunk_map(fs_info
, chunk_start
, 1);
6024 map
= em
->map_lookup
;
6026 rmap_len
= map
->stripe_len
;
6028 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
6029 length
= div_u64(length
, map
->num_stripes
/ map
->sub_stripes
);
6030 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
6031 length
= div_u64(length
, map
->num_stripes
);
6032 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
6033 length
= div_u64(length
, nr_data_stripes(map
));
6034 rmap_len
= map
->stripe_len
* nr_data_stripes(map
);
6037 buf
= kcalloc(map
->num_stripes
, sizeof(u64
), GFP_NOFS
);
6038 BUG_ON(!buf
); /* -ENOMEM */
6040 for (i
= 0; i
< map
->num_stripes
; i
++) {
6041 if (devid
&& map
->stripes
[i
].dev
->devid
!= devid
)
6043 if (map
->stripes
[i
].physical
> physical
||
6044 map
->stripes
[i
].physical
+ length
<= physical
)
6047 stripe_nr
= physical
- map
->stripes
[i
].physical
;
6048 stripe_nr
= div64_u64(stripe_nr
, map
->stripe_len
);
6050 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
6051 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
6052 stripe_nr
= div_u64(stripe_nr
, map
->sub_stripes
);
6053 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
6054 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
6055 } /* else if RAID[56], multiply by nr_data_stripes().
6056 * Alternatively, just use rmap_len below instead of
6057 * map->stripe_len */
6059 bytenr
= chunk_start
+ stripe_nr
* rmap_len
;
6060 WARN_ON(nr
>= map
->num_stripes
);
6061 for (j
= 0; j
< nr
; j
++) {
6062 if (buf
[j
] == bytenr
)
6066 WARN_ON(nr
>= map
->num_stripes
);
6073 *stripe_len
= rmap_len
;
6075 free_extent_map(em
);
6079 static inline void btrfs_end_bbio(struct btrfs_bio
*bbio
, struct bio
*bio
)
6081 bio
->bi_private
= bbio
->private;
6082 bio
->bi_end_io
= bbio
->end_io
;
6085 btrfs_put_bbio(bbio
);
6088 static void btrfs_end_bio(struct bio
*bio
)
6090 struct btrfs_bio
*bbio
= bio
->bi_private
;
6091 int is_orig_bio
= 0;
6093 if (bio
->bi_status
) {
6094 atomic_inc(&bbio
->error
);
6095 if (bio
->bi_status
== BLK_STS_IOERR
||
6096 bio
->bi_status
== BLK_STS_TARGET
) {
6097 unsigned int stripe_index
=
6098 btrfs_io_bio(bio
)->stripe_index
;
6099 struct btrfs_device
*dev
;
6101 BUG_ON(stripe_index
>= bbio
->num_stripes
);
6102 dev
= bbio
->stripes
[stripe_index
].dev
;
6104 if (bio_op(bio
) == REQ_OP_WRITE
)
6105 btrfs_dev_stat_inc_and_print(dev
,
6106 BTRFS_DEV_STAT_WRITE_ERRS
);
6108 btrfs_dev_stat_inc_and_print(dev
,
6109 BTRFS_DEV_STAT_READ_ERRS
);
6110 if (bio
->bi_opf
& REQ_PREFLUSH
)
6111 btrfs_dev_stat_inc_and_print(dev
,
6112 BTRFS_DEV_STAT_FLUSH_ERRS
);
6117 if (bio
== bbio
->orig_bio
)
6120 btrfs_bio_counter_dec(bbio
->fs_info
);
6122 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6125 bio
= bbio
->orig_bio
;
6128 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6129 /* only send an error to the higher layers if it is
6130 * beyond the tolerance of the btrfs bio
6132 if (atomic_read(&bbio
->error
) > bbio
->max_errors
) {
6133 bio
->bi_status
= BLK_STS_IOERR
;
6136 * this bio is actually up to date, we didn't
6137 * go over the max number of errors
6139 bio
->bi_status
= BLK_STS_OK
;
6142 btrfs_end_bbio(bbio
, bio
);
6143 } else if (!is_orig_bio
) {
6149 * see run_scheduled_bios for a description of why bios are collected for
6152 * This will add one bio to the pending list for a device and make sure
6153 * the work struct is scheduled.
6155 static noinline
void btrfs_schedule_bio(struct btrfs_device
*device
,
6158 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
6159 int should_queue
= 1;
6160 struct btrfs_pending_bios
*pending_bios
;
6162 if (test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
) ||
6168 /* don't bother with additional async steps for reads, right now */
6169 if (bio_op(bio
) == REQ_OP_READ
) {
6170 btrfsic_submit_bio(bio
);
6174 WARN_ON(bio
->bi_next
);
6175 bio
->bi_next
= NULL
;
6177 spin_lock(&device
->io_lock
);
6178 if (op_is_sync(bio
->bi_opf
))
6179 pending_bios
= &device
->pending_sync_bios
;
6181 pending_bios
= &device
->pending_bios
;
6183 if (pending_bios
->tail
)
6184 pending_bios
->tail
->bi_next
= bio
;
6186 pending_bios
->tail
= bio
;
6187 if (!pending_bios
->head
)
6188 pending_bios
->head
= bio
;
6189 if (device
->running_pending
)
6192 spin_unlock(&device
->io_lock
);
6195 btrfs_queue_work(fs_info
->submit_workers
, &device
->work
);
6198 static void submit_stripe_bio(struct btrfs_bio
*bbio
, struct bio
*bio
,
6199 u64 physical
, int dev_nr
, int async
)
6201 struct btrfs_device
*dev
= bbio
->stripes
[dev_nr
].dev
;
6202 struct btrfs_fs_info
*fs_info
= bbio
->fs_info
;
6204 bio
->bi_private
= bbio
;
6205 btrfs_io_bio(bio
)->stripe_index
= dev_nr
;
6206 bio
->bi_end_io
= btrfs_end_bio
;
6207 bio
->bi_iter
.bi_sector
= physical
>> 9;
6210 struct rcu_string
*name
;
6213 name
= rcu_dereference(dev
->name
);
6214 btrfs_debug(fs_info
,
6215 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6216 bio_op(bio
), bio
->bi_opf
,
6217 (u64
)bio
->bi_iter
.bi_sector
,
6218 (u_long
)dev
->bdev
->bd_dev
, name
->str
, dev
->devid
,
6219 bio
->bi_iter
.bi_size
);
6223 bio_set_dev(bio
, dev
->bdev
);
6225 btrfs_bio_counter_inc_noblocked(fs_info
);
6228 btrfs_schedule_bio(dev
, bio
);
6230 btrfsic_submit_bio(bio
);
6233 static void bbio_error(struct btrfs_bio
*bbio
, struct bio
*bio
, u64 logical
)
6235 atomic_inc(&bbio
->error
);
6236 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6237 /* Should be the original bio. */
6238 WARN_ON(bio
!= bbio
->orig_bio
);
6240 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6241 bio
->bi_iter
.bi_sector
= logical
>> 9;
6242 if (atomic_read(&bbio
->error
) > bbio
->max_errors
)
6243 bio
->bi_status
= BLK_STS_IOERR
;
6245 bio
->bi_status
= BLK_STS_OK
;
6246 btrfs_end_bbio(bbio
, bio
);
6250 blk_status_t
btrfs_map_bio(struct btrfs_fs_info
*fs_info
, struct bio
*bio
,
6251 int mirror_num
, int async_submit
)
6253 struct btrfs_device
*dev
;
6254 struct bio
*first_bio
= bio
;
6255 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
6261 struct btrfs_bio
*bbio
= NULL
;
6263 length
= bio
->bi_iter
.bi_size
;
6264 map_length
= length
;
6266 btrfs_bio_counter_inc_blocked(fs_info
);
6267 ret
= __btrfs_map_block(fs_info
, btrfs_op(bio
), logical
,
6268 &map_length
, &bbio
, mirror_num
, 1);
6270 btrfs_bio_counter_dec(fs_info
);
6271 return errno_to_blk_status(ret
);
6274 total_devs
= bbio
->num_stripes
;
6275 bbio
->orig_bio
= first_bio
;
6276 bbio
->private = first_bio
->bi_private
;
6277 bbio
->end_io
= first_bio
->bi_end_io
;
6278 bbio
->fs_info
= fs_info
;
6279 atomic_set(&bbio
->stripes_pending
, bbio
->num_stripes
);
6281 if ((bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
6282 ((bio_op(bio
) == REQ_OP_WRITE
) || (mirror_num
> 1))) {
6283 /* In this case, map_length has been set to the length of
6284 a single stripe; not the whole write */
6285 if (bio_op(bio
) == REQ_OP_WRITE
) {
6286 ret
= raid56_parity_write(fs_info
, bio
, bbio
,
6289 ret
= raid56_parity_recover(fs_info
, bio
, bbio
,
6290 map_length
, mirror_num
, 1);
6293 btrfs_bio_counter_dec(fs_info
);
6294 return errno_to_blk_status(ret
);
6297 if (map_length
< length
) {
6299 "mapping failed logical %llu bio len %llu len %llu",
6300 logical
, length
, map_length
);
6304 for (dev_nr
= 0; dev_nr
< total_devs
; dev_nr
++) {
6305 dev
= bbio
->stripes
[dev_nr
].dev
;
6306 if (!dev
|| !dev
->bdev
||
6307 (bio_op(first_bio
) == REQ_OP_WRITE
&&
6308 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))) {
6309 bbio_error(bbio
, first_bio
, logical
);
6313 if (dev_nr
< total_devs
- 1)
6314 bio
= btrfs_bio_clone(first_bio
);
6318 submit_stripe_bio(bbio
, bio
, bbio
->stripes
[dev_nr
].physical
,
6319 dev_nr
, async_submit
);
6321 btrfs_bio_counter_dec(fs_info
);
6325 struct btrfs_device
*btrfs_find_device(struct btrfs_fs_info
*fs_info
, u64 devid
,
6328 struct btrfs_device
*device
;
6329 struct btrfs_fs_devices
*cur_devices
;
6331 cur_devices
= fs_info
->fs_devices
;
6332 while (cur_devices
) {
6334 !memcmp(cur_devices
->fsid
, fsid
, BTRFS_FSID_SIZE
)) {
6335 device
= find_device(cur_devices
, devid
, uuid
);
6339 cur_devices
= cur_devices
->seed
;
6344 static struct btrfs_device
*add_missing_dev(struct btrfs_fs_devices
*fs_devices
,
6345 u64 devid
, u8
*dev_uuid
)
6347 struct btrfs_device
*device
;
6349 device
= btrfs_alloc_device(NULL
, &devid
, dev_uuid
);
6353 list_add(&device
->dev_list
, &fs_devices
->devices
);
6354 device
->fs_devices
= fs_devices
;
6355 fs_devices
->num_devices
++;
6357 set_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
);
6358 fs_devices
->missing_devices
++;
6364 * btrfs_alloc_device - allocate struct btrfs_device
6365 * @fs_info: used only for generating a new devid, can be NULL if
6366 * devid is provided (i.e. @devid != NULL).
6367 * @devid: a pointer to devid for this device. If NULL a new devid
6369 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6372 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6373 * on error. Returned struct is not linked onto any lists and must be
6374 * destroyed with free_device.
6376 struct btrfs_device
*btrfs_alloc_device(struct btrfs_fs_info
*fs_info
,
6380 struct btrfs_device
*dev
;
6383 if (WARN_ON(!devid
&& !fs_info
))
6384 return ERR_PTR(-EINVAL
);
6386 dev
= __alloc_device();
6395 ret
= find_next_devid(fs_info
, &tmp
);
6398 return ERR_PTR(ret
);
6404 memcpy(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
);
6406 generate_random_uuid(dev
->uuid
);
6408 btrfs_init_work(&dev
->work
, btrfs_submit_helper
,
6409 pending_bios_fn
, NULL
, NULL
);
6414 /* Return -EIO if any error, otherwise return 0. */
6415 static int btrfs_check_chunk_valid(struct btrfs_fs_info
*fs_info
,
6416 struct extent_buffer
*leaf
,
6417 struct btrfs_chunk
*chunk
, u64 logical
)
6425 length
= btrfs_chunk_length(leaf
, chunk
);
6426 stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6427 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6428 sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6429 type
= btrfs_chunk_type(leaf
, chunk
);
6432 btrfs_err(fs_info
, "invalid chunk num_stripes: %u",
6436 if (!IS_ALIGNED(logical
, fs_info
->sectorsize
)) {
6437 btrfs_err(fs_info
, "invalid chunk logical %llu", logical
);
6440 if (btrfs_chunk_sector_size(leaf
, chunk
) != fs_info
->sectorsize
) {
6441 btrfs_err(fs_info
, "invalid chunk sectorsize %u",
6442 btrfs_chunk_sector_size(leaf
, chunk
));
6445 if (!length
|| !IS_ALIGNED(length
, fs_info
->sectorsize
)) {
6446 btrfs_err(fs_info
, "invalid chunk length %llu", length
);
6449 if (!is_power_of_2(stripe_len
) || stripe_len
!= BTRFS_STRIPE_LEN
) {
6450 btrfs_err(fs_info
, "invalid chunk stripe length: %llu",
6454 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK
| BTRFS_BLOCK_GROUP_PROFILE_MASK
) &
6456 btrfs_err(fs_info
, "unrecognized chunk type: %llu",
6457 ~(BTRFS_BLOCK_GROUP_TYPE_MASK
|
6458 BTRFS_BLOCK_GROUP_PROFILE_MASK
) &
6459 btrfs_chunk_type(leaf
, chunk
));
6462 if ((type
& BTRFS_BLOCK_GROUP_RAID10
&& sub_stripes
!= 2) ||
6463 (type
& BTRFS_BLOCK_GROUP_RAID1
&& num_stripes
< 1) ||
6464 (type
& BTRFS_BLOCK_GROUP_RAID5
&& num_stripes
< 2) ||
6465 (type
& BTRFS_BLOCK_GROUP_RAID6
&& num_stripes
< 3) ||
6466 (type
& BTRFS_BLOCK_GROUP_DUP
&& num_stripes
> 2) ||
6467 ((type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) == 0 &&
6468 num_stripes
!= 1)) {
6470 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6471 num_stripes
, sub_stripes
,
6472 type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
);
6479 static void btrfs_report_missing_device(struct btrfs_fs_info
*fs_info
,
6480 u64 devid
, u8
*uuid
, bool error
)
6483 btrfs_err_rl(fs_info
, "devid %llu uuid %pU is missing",
6486 btrfs_warn_rl(fs_info
, "devid %llu uuid %pU is missing",
6490 static int read_one_chunk(struct btrfs_fs_info
*fs_info
, struct btrfs_key
*key
,
6491 struct extent_buffer
*leaf
,
6492 struct btrfs_chunk
*chunk
)
6494 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
6495 struct map_lookup
*map
;
6496 struct extent_map
*em
;
6500 u8 uuid
[BTRFS_UUID_SIZE
];
6505 logical
= key
->offset
;
6506 length
= btrfs_chunk_length(leaf
, chunk
);
6507 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6509 ret
= btrfs_check_chunk_valid(fs_info
, leaf
, chunk
, logical
);
6513 read_lock(&map_tree
->map_tree
.lock
);
6514 em
= lookup_extent_mapping(&map_tree
->map_tree
, logical
, 1);
6515 read_unlock(&map_tree
->map_tree
.lock
);
6517 /* already mapped? */
6518 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
6519 free_extent_map(em
);
6522 free_extent_map(em
);
6525 em
= alloc_extent_map();
6528 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
6530 free_extent_map(em
);
6534 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
6535 em
->map_lookup
= map
;
6536 em
->start
= logical
;
6539 em
->block_start
= 0;
6540 em
->block_len
= em
->len
;
6542 map
->num_stripes
= num_stripes
;
6543 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
6544 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
6545 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6546 map
->type
= btrfs_chunk_type(leaf
, chunk
);
6547 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6548 for (i
= 0; i
< num_stripes
; i
++) {
6549 map
->stripes
[i
].physical
=
6550 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
6551 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
6552 read_extent_buffer(leaf
, uuid
, (unsigned long)
6553 btrfs_stripe_dev_uuid_nr(chunk
, i
),
6555 map
->stripes
[i
].dev
= btrfs_find_device(fs_info
, devid
,
6557 if (!map
->stripes
[i
].dev
&&
6558 !btrfs_test_opt(fs_info
, DEGRADED
)) {
6559 free_extent_map(em
);
6560 btrfs_report_missing_device(fs_info
, devid
, uuid
, true);
6563 if (!map
->stripes
[i
].dev
) {
6564 map
->stripes
[i
].dev
=
6565 add_missing_dev(fs_info
->fs_devices
, devid
,
6567 if (IS_ERR(map
->stripes
[i
].dev
)) {
6568 free_extent_map(em
);
6570 "failed to init missing dev %llu: %ld",
6571 devid
, PTR_ERR(map
->stripes
[i
].dev
));
6572 return PTR_ERR(map
->stripes
[i
].dev
);
6574 btrfs_report_missing_device(fs_info
, devid
, uuid
, false);
6576 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
6577 &(map
->stripes
[i
].dev
->dev_state
));
6581 write_lock(&map_tree
->map_tree
.lock
);
6582 ret
= add_extent_mapping(&map_tree
->map_tree
, em
, 0);
6583 write_unlock(&map_tree
->map_tree
.lock
);
6584 BUG_ON(ret
); /* Tree corruption */
6585 free_extent_map(em
);
6590 static void fill_device_from_item(struct extent_buffer
*leaf
,
6591 struct btrfs_dev_item
*dev_item
,
6592 struct btrfs_device
*device
)
6596 device
->devid
= btrfs_device_id(leaf
, dev_item
);
6597 device
->disk_total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
6598 device
->total_bytes
= device
->disk_total_bytes
;
6599 device
->commit_total_bytes
= device
->disk_total_bytes
;
6600 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
6601 device
->commit_bytes_used
= device
->bytes_used
;
6602 device
->type
= btrfs_device_type(leaf
, dev_item
);
6603 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
6604 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
6605 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
6606 WARN_ON(device
->devid
== BTRFS_DEV_REPLACE_DEVID
);
6607 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
);
6609 ptr
= btrfs_device_uuid(dev_item
);
6610 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
6613 static struct btrfs_fs_devices
*open_seed_devices(struct btrfs_fs_info
*fs_info
,
6616 struct btrfs_fs_devices
*fs_devices
;
6619 BUG_ON(!mutex_is_locked(&uuid_mutex
));
6622 fs_devices
= fs_info
->fs_devices
->seed
;
6623 while (fs_devices
) {
6624 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_FSID_SIZE
))
6627 fs_devices
= fs_devices
->seed
;
6630 fs_devices
= find_fsid(fsid
);
6632 if (!btrfs_test_opt(fs_info
, DEGRADED
))
6633 return ERR_PTR(-ENOENT
);
6635 fs_devices
= alloc_fs_devices(fsid
);
6636 if (IS_ERR(fs_devices
))
6639 fs_devices
->seeding
= 1;
6640 fs_devices
->opened
= 1;
6644 fs_devices
= clone_fs_devices(fs_devices
);
6645 if (IS_ERR(fs_devices
))
6648 ret
= __btrfs_open_devices(fs_devices
, FMODE_READ
,
6649 fs_info
->bdev_holder
);
6651 free_fs_devices(fs_devices
);
6652 fs_devices
= ERR_PTR(ret
);
6656 if (!fs_devices
->seeding
) {
6657 __btrfs_close_devices(fs_devices
);
6658 free_fs_devices(fs_devices
);
6659 fs_devices
= ERR_PTR(-EINVAL
);
6663 fs_devices
->seed
= fs_info
->fs_devices
->seed
;
6664 fs_info
->fs_devices
->seed
= fs_devices
;
6669 static int read_one_dev(struct btrfs_fs_info
*fs_info
,
6670 struct extent_buffer
*leaf
,
6671 struct btrfs_dev_item
*dev_item
)
6673 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6674 struct btrfs_device
*device
;
6677 u8 fs_uuid
[BTRFS_FSID_SIZE
];
6678 u8 dev_uuid
[BTRFS_UUID_SIZE
];
6680 devid
= btrfs_device_id(leaf
, dev_item
);
6681 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
6683 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
6686 if (memcmp(fs_uuid
, fs_info
->fsid
, BTRFS_FSID_SIZE
)) {
6687 fs_devices
= open_seed_devices(fs_info
, fs_uuid
);
6688 if (IS_ERR(fs_devices
))
6689 return PTR_ERR(fs_devices
);
6692 device
= btrfs_find_device(fs_info
, devid
, dev_uuid
, fs_uuid
);
6694 if (!btrfs_test_opt(fs_info
, DEGRADED
)) {
6695 btrfs_report_missing_device(fs_info
, devid
,
6700 device
= add_missing_dev(fs_devices
, devid
, dev_uuid
);
6701 if (IS_ERR(device
)) {
6703 "failed to add missing dev %llu: %ld",
6704 devid
, PTR_ERR(device
));
6705 return PTR_ERR(device
);
6707 btrfs_report_missing_device(fs_info
, devid
, dev_uuid
, false);
6709 if (!device
->bdev
) {
6710 if (!btrfs_test_opt(fs_info
, DEGRADED
)) {
6711 btrfs_report_missing_device(fs_info
,
6712 devid
, dev_uuid
, true);
6715 btrfs_report_missing_device(fs_info
, devid
,
6719 if (!device
->bdev
&&
6720 !test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
)) {
6722 * this happens when a device that was properly setup
6723 * in the device info lists suddenly goes bad.
6724 * device->bdev is NULL, and so we have to set
6725 * device->missing to one here
6727 device
->fs_devices
->missing_devices
++;
6728 set_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
);
6731 /* Move the device to its own fs_devices */
6732 if (device
->fs_devices
!= fs_devices
) {
6733 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING
,
6734 &device
->dev_state
));
6736 list_move(&device
->dev_list
, &fs_devices
->devices
);
6737 device
->fs_devices
->num_devices
--;
6738 fs_devices
->num_devices
++;
6740 device
->fs_devices
->missing_devices
--;
6741 fs_devices
->missing_devices
++;
6743 device
->fs_devices
= fs_devices
;
6747 if (device
->fs_devices
!= fs_info
->fs_devices
) {
6748 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
));
6749 if (device
->generation
!=
6750 btrfs_device_generation(leaf
, dev_item
))
6754 fill_device_from_item(leaf
, dev_item
, device
);
6755 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
6756 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
6757 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
6758 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
6759 atomic64_add(device
->total_bytes
- device
->bytes_used
,
6760 &fs_info
->free_chunk_space
);
6766 int btrfs_read_sys_array(struct btrfs_fs_info
*fs_info
)
6768 struct btrfs_root
*root
= fs_info
->tree_root
;
6769 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
6770 struct extent_buffer
*sb
;
6771 struct btrfs_disk_key
*disk_key
;
6772 struct btrfs_chunk
*chunk
;
6774 unsigned long sb_array_offset
;
6781 struct btrfs_key key
;
6783 ASSERT(BTRFS_SUPER_INFO_SIZE
<= fs_info
->nodesize
);
6785 * This will create extent buffer of nodesize, superblock size is
6786 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6787 * overallocate but we can keep it as-is, only the first page is used.
6789 sb
= btrfs_find_create_tree_block(fs_info
, BTRFS_SUPER_INFO_OFFSET
);
6792 set_extent_buffer_uptodate(sb
);
6793 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, sb
, 0);
6795 * The sb extent buffer is artificial and just used to read the system array.
6796 * set_extent_buffer_uptodate() call does not properly mark all it's
6797 * pages up-to-date when the page is larger: extent does not cover the
6798 * whole page and consequently check_page_uptodate does not find all
6799 * the page's extents up-to-date (the hole beyond sb),
6800 * write_extent_buffer then triggers a WARN_ON.
6802 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6803 * but sb spans only this function. Add an explicit SetPageUptodate call
6804 * to silence the warning eg. on PowerPC 64.
6806 if (PAGE_SIZE
> BTRFS_SUPER_INFO_SIZE
)
6807 SetPageUptodate(sb
->pages
[0]);
6809 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
6810 array_size
= btrfs_super_sys_array_size(super_copy
);
6812 array_ptr
= super_copy
->sys_chunk_array
;
6813 sb_array_offset
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
6816 while (cur_offset
< array_size
) {
6817 disk_key
= (struct btrfs_disk_key
*)array_ptr
;
6818 len
= sizeof(*disk_key
);
6819 if (cur_offset
+ len
> array_size
)
6820 goto out_short_read
;
6822 btrfs_disk_key_to_cpu(&key
, disk_key
);
6825 sb_array_offset
+= len
;
6828 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6829 chunk
= (struct btrfs_chunk
*)sb_array_offset
;
6831 * At least one btrfs_chunk with one stripe must be
6832 * present, exact stripe count check comes afterwards
6834 len
= btrfs_chunk_item_size(1);
6835 if (cur_offset
+ len
> array_size
)
6836 goto out_short_read
;
6838 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
6841 "invalid number of stripes %u in sys_array at offset %u",
6842 num_stripes
, cur_offset
);
6847 type
= btrfs_chunk_type(sb
, chunk
);
6848 if ((type
& BTRFS_BLOCK_GROUP_SYSTEM
) == 0) {
6850 "invalid chunk type %llu in sys_array at offset %u",
6856 len
= btrfs_chunk_item_size(num_stripes
);
6857 if (cur_offset
+ len
> array_size
)
6858 goto out_short_read
;
6860 ret
= read_one_chunk(fs_info
, &key
, sb
, chunk
);
6865 "unexpected item type %u in sys_array at offset %u",
6866 (u32
)key
.type
, cur_offset
);
6871 sb_array_offset
+= len
;
6874 clear_extent_buffer_uptodate(sb
);
6875 free_extent_buffer_stale(sb
);
6879 btrfs_err(fs_info
, "sys_array too short to read %u bytes at offset %u",
6881 clear_extent_buffer_uptodate(sb
);
6882 free_extent_buffer_stale(sb
);
6887 * Check if all chunks in the fs are OK for read-write degraded mount
6889 * If the @failing_dev is specified, it's accounted as missing.
6891 * Return true if all chunks meet the minimal RW mount requirements.
6892 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6894 bool btrfs_check_rw_degradable(struct btrfs_fs_info
*fs_info
,
6895 struct btrfs_device
*failing_dev
)
6897 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
6898 struct extent_map
*em
;
6902 read_lock(&map_tree
->map_tree
.lock
);
6903 em
= lookup_extent_mapping(&map_tree
->map_tree
, 0, (u64
)-1);
6904 read_unlock(&map_tree
->map_tree
.lock
);
6905 /* No chunk at all? Return false anyway */
6911 struct map_lookup
*map
;
6916 map
= em
->map_lookup
;
6918 btrfs_get_num_tolerated_disk_barrier_failures(
6920 for (i
= 0; i
< map
->num_stripes
; i
++) {
6921 struct btrfs_device
*dev
= map
->stripes
[i
].dev
;
6923 if (!dev
|| !dev
->bdev
||
6924 test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
) ||
6925 dev
->last_flush_error
)
6927 else if (failing_dev
&& failing_dev
== dev
)
6930 if (missing
> max_tolerated
) {
6933 "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6934 em
->start
, missing
, max_tolerated
);
6935 free_extent_map(em
);
6939 next_start
= extent_map_end(em
);
6940 free_extent_map(em
);
6942 read_lock(&map_tree
->map_tree
.lock
);
6943 em
= lookup_extent_mapping(&map_tree
->map_tree
, next_start
,
6944 (u64
)(-1) - next_start
);
6945 read_unlock(&map_tree
->map_tree
.lock
);
6951 int btrfs_read_chunk_tree(struct btrfs_fs_info
*fs_info
)
6953 struct btrfs_root
*root
= fs_info
->chunk_root
;
6954 struct btrfs_path
*path
;
6955 struct extent_buffer
*leaf
;
6956 struct btrfs_key key
;
6957 struct btrfs_key found_key
;
6962 path
= btrfs_alloc_path();
6966 mutex_lock(&uuid_mutex
);
6967 mutex_lock(&fs_info
->chunk_mutex
);
6970 * Read all device items, and then all the chunk items. All
6971 * device items are found before any chunk item (their object id
6972 * is smaller than the lowest possible object id for a chunk
6973 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6975 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
6978 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6982 leaf
= path
->nodes
[0];
6983 slot
= path
->slots
[0];
6984 if (slot
>= btrfs_header_nritems(leaf
)) {
6985 ret
= btrfs_next_leaf(root
, path
);
6992 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
6993 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
6994 struct btrfs_dev_item
*dev_item
;
6995 dev_item
= btrfs_item_ptr(leaf
, slot
,
6996 struct btrfs_dev_item
);
6997 ret
= read_one_dev(fs_info
, leaf
, dev_item
);
7001 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
7002 struct btrfs_chunk
*chunk
;
7003 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
7004 ret
= read_one_chunk(fs_info
, &found_key
, leaf
, chunk
);
7012 * After loading chunk tree, we've got all device information,
7013 * do another round of validation checks.
7015 if (total_dev
!= fs_info
->fs_devices
->total_devices
) {
7017 "super_num_devices %llu mismatch with num_devices %llu found here",
7018 btrfs_super_num_devices(fs_info
->super_copy
),
7023 if (btrfs_super_total_bytes(fs_info
->super_copy
) <
7024 fs_info
->fs_devices
->total_rw_bytes
) {
7026 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7027 btrfs_super_total_bytes(fs_info
->super_copy
),
7028 fs_info
->fs_devices
->total_rw_bytes
);
7034 mutex_unlock(&fs_info
->chunk_mutex
);
7035 mutex_unlock(&uuid_mutex
);
7037 btrfs_free_path(path
);
7041 void btrfs_init_devices_late(struct btrfs_fs_info
*fs_info
)
7043 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7044 struct btrfs_device
*device
;
7046 while (fs_devices
) {
7047 mutex_lock(&fs_devices
->device_list_mutex
);
7048 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
)
7049 device
->fs_info
= fs_info
;
7050 mutex_unlock(&fs_devices
->device_list_mutex
);
7052 fs_devices
= fs_devices
->seed
;
7056 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
)
7060 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7061 btrfs_dev_stat_reset(dev
, i
);
7064 int btrfs_init_dev_stats(struct btrfs_fs_info
*fs_info
)
7066 struct btrfs_key key
;
7067 struct btrfs_key found_key
;
7068 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
7069 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7070 struct extent_buffer
*eb
;
7073 struct btrfs_device
*device
;
7074 struct btrfs_path
*path
= NULL
;
7077 path
= btrfs_alloc_path();
7083 mutex_lock(&fs_devices
->device_list_mutex
);
7084 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
7086 struct btrfs_dev_stats_item
*ptr
;
7088 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
7089 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
7090 key
.offset
= device
->devid
;
7091 ret
= btrfs_search_slot(NULL
, dev_root
, &key
, path
, 0, 0);
7093 __btrfs_reset_dev_stats(device
);
7094 device
->dev_stats_valid
= 1;
7095 btrfs_release_path(path
);
7098 slot
= path
->slots
[0];
7099 eb
= path
->nodes
[0];
7100 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
7101 item_size
= btrfs_item_size_nr(eb
, slot
);
7103 ptr
= btrfs_item_ptr(eb
, slot
,
7104 struct btrfs_dev_stats_item
);
7106 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
7107 if (item_size
>= (1 + i
) * sizeof(__le64
))
7108 btrfs_dev_stat_set(device
, i
,
7109 btrfs_dev_stats_value(eb
, ptr
, i
));
7111 btrfs_dev_stat_reset(device
, i
);
7114 device
->dev_stats_valid
= 1;
7115 btrfs_dev_stat_print_on_load(device
);
7116 btrfs_release_path(path
);
7118 mutex_unlock(&fs_devices
->device_list_mutex
);
7121 btrfs_free_path(path
);
7122 return ret
< 0 ? ret
: 0;
7125 static int update_dev_stat_item(struct btrfs_trans_handle
*trans
,
7126 struct btrfs_fs_info
*fs_info
,
7127 struct btrfs_device
*device
)
7129 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
7130 struct btrfs_path
*path
;
7131 struct btrfs_key key
;
7132 struct extent_buffer
*eb
;
7133 struct btrfs_dev_stats_item
*ptr
;
7137 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
7138 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
7139 key
.offset
= device
->devid
;
7141 path
= btrfs_alloc_path();
7144 ret
= btrfs_search_slot(trans
, dev_root
, &key
, path
, -1, 1);
7146 btrfs_warn_in_rcu(fs_info
,
7147 "error %d while searching for dev_stats item for device %s",
7148 ret
, rcu_str_deref(device
->name
));
7153 btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]) < sizeof(*ptr
)) {
7154 /* need to delete old one and insert a new one */
7155 ret
= btrfs_del_item(trans
, dev_root
, path
);
7157 btrfs_warn_in_rcu(fs_info
,
7158 "delete too small dev_stats item for device %s failed %d",
7159 rcu_str_deref(device
->name
), ret
);
7166 /* need to insert a new item */
7167 btrfs_release_path(path
);
7168 ret
= btrfs_insert_empty_item(trans
, dev_root
, path
,
7169 &key
, sizeof(*ptr
));
7171 btrfs_warn_in_rcu(fs_info
,
7172 "insert dev_stats item for device %s failed %d",
7173 rcu_str_deref(device
->name
), ret
);
7178 eb
= path
->nodes
[0];
7179 ptr
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_dev_stats_item
);
7180 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7181 btrfs_set_dev_stats_value(eb
, ptr
, i
,
7182 btrfs_dev_stat_read(device
, i
));
7183 btrfs_mark_buffer_dirty(eb
);
7186 btrfs_free_path(path
);
7191 * called from commit_transaction. Writes all changed device stats to disk.
7193 int btrfs_run_dev_stats(struct btrfs_trans_handle
*trans
,
7194 struct btrfs_fs_info
*fs_info
)
7196 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7197 struct btrfs_device
*device
;
7201 mutex_lock(&fs_devices
->device_list_mutex
);
7202 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
7203 stats_cnt
= atomic_read(&device
->dev_stats_ccnt
);
7204 if (!device
->dev_stats_valid
|| stats_cnt
== 0)
7209 * There is a LOAD-LOAD control dependency between the value of
7210 * dev_stats_ccnt and updating the on-disk values which requires
7211 * reading the in-memory counters. Such control dependencies
7212 * require explicit read memory barriers.
7214 * This memory barriers pairs with smp_mb__before_atomic in
7215 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7216 * barrier implied by atomic_xchg in
7217 * btrfs_dev_stats_read_and_reset
7221 ret
= update_dev_stat_item(trans
, fs_info
, device
);
7223 atomic_sub(stats_cnt
, &device
->dev_stats_ccnt
);
7225 mutex_unlock(&fs_devices
->device_list_mutex
);
7230 void btrfs_dev_stat_inc_and_print(struct btrfs_device
*dev
, int index
)
7232 btrfs_dev_stat_inc(dev
, index
);
7233 btrfs_dev_stat_print_on_error(dev
);
7236 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
)
7238 if (!dev
->dev_stats_valid
)
7240 btrfs_err_rl_in_rcu(dev
->fs_info
,
7241 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7242 rcu_str_deref(dev
->name
),
7243 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7244 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7245 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7246 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7247 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7250 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*dev
)
7254 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7255 if (btrfs_dev_stat_read(dev
, i
) != 0)
7257 if (i
== BTRFS_DEV_STAT_VALUES_MAX
)
7258 return; /* all values == 0, suppress message */
7260 btrfs_info_in_rcu(dev
->fs_info
,
7261 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7262 rcu_str_deref(dev
->name
),
7263 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7264 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7265 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7266 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7267 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7270 int btrfs_get_dev_stats(struct btrfs_fs_info
*fs_info
,
7271 struct btrfs_ioctl_get_dev_stats
*stats
)
7273 struct btrfs_device
*dev
;
7274 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7277 mutex_lock(&fs_devices
->device_list_mutex
);
7278 dev
= btrfs_find_device(fs_info
, stats
->devid
, NULL
, NULL
);
7279 mutex_unlock(&fs_devices
->device_list_mutex
);
7282 btrfs_warn(fs_info
, "get dev_stats failed, device not found");
7284 } else if (!dev
->dev_stats_valid
) {
7285 btrfs_warn(fs_info
, "get dev_stats failed, not yet valid");
7287 } else if (stats
->flags
& BTRFS_DEV_STATS_RESET
) {
7288 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
7289 if (stats
->nr_items
> i
)
7291 btrfs_dev_stat_read_and_reset(dev
, i
);
7293 btrfs_dev_stat_reset(dev
, i
);
7296 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7297 if (stats
->nr_items
> i
)
7298 stats
->values
[i
] = btrfs_dev_stat_read(dev
, i
);
7300 if (stats
->nr_items
> BTRFS_DEV_STAT_VALUES_MAX
)
7301 stats
->nr_items
= BTRFS_DEV_STAT_VALUES_MAX
;
7305 void btrfs_scratch_superblocks(struct block_device
*bdev
, const char *device_path
)
7307 struct buffer_head
*bh
;
7308 struct btrfs_super_block
*disk_super
;
7314 for (copy_num
= 0; copy_num
< BTRFS_SUPER_MIRROR_MAX
;
7317 if (btrfs_read_dev_one_super(bdev
, copy_num
, &bh
))
7320 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
7322 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
7323 set_buffer_dirty(bh
);
7324 sync_dirty_buffer(bh
);
7328 /* Notify udev that device has changed */
7329 btrfs_kobject_uevent(bdev
, KOBJ_CHANGE
);
7331 /* Update ctime/mtime for device path for libblkid */
7332 update_dev_time(device_path
);
7336 * Update the size of all devices, which is used for writing out the
7339 void btrfs_update_commit_device_size(struct btrfs_fs_info
*fs_info
)
7341 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7342 struct btrfs_device
*curr
, *next
;
7344 if (list_empty(&fs_devices
->resized_devices
))
7347 mutex_lock(&fs_devices
->device_list_mutex
);
7348 mutex_lock(&fs_info
->chunk_mutex
);
7349 list_for_each_entry_safe(curr
, next
, &fs_devices
->resized_devices
,
7351 list_del_init(&curr
->resized_list
);
7352 curr
->commit_total_bytes
= curr
->disk_total_bytes
;
7354 mutex_unlock(&fs_info
->chunk_mutex
);
7355 mutex_unlock(&fs_devices
->device_list_mutex
);
7358 /* Must be invoked during the transaction commit */
7359 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info
*fs_info
,
7360 struct btrfs_transaction
*transaction
)
7362 struct extent_map
*em
;
7363 struct map_lookup
*map
;
7364 struct btrfs_device
*dev
;
7367 if (list_empty(&transaction
->pending_chunks
))
7370 /* In order to kick the device replace finish process */
7371 mutex_lock(&fs_info
->chunk_mutex
);
7372 list_for_each_entry(em
, &transaction
->pending_chunks
, list
) {
7373 map
= em
->map_lookup
;
7375 for (i
= 0; i
< map
->num_stripes
; i
++) {
7376 dev
= map
->stripes
[i
].dev
;
7377 dev
->commit_bytes_used
= dev
->bytes_used
;
7380 mutex_unlock(&fs_info
->chunk_mutex
);
7383 void btrfs_set_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7385 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7386 while (fs_devices
) {
7387 fs_devices
->fs_info
= fs_info
;
7388 fs_devices
= fs_devices
->seed
;
7392 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7394 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7395 while (fs_devices
) {
7396 fs_devices
->fs_info
= NULL
;
7397 fs_devices
= fs_devices
->seed
;