Linux 4.16-rc1
[cris-mirror.git] / fs / btrfs / volumes.c
blobb5036bd69e6a6432bf014b5fb8fb9e0c5baf495e
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
51 .tolerated_failures = 1,
52 .devs_increment = 2,
53 .ncopies = 2,
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
60 .tolerated_failures = 1,
61 .devs_increment = 2,
62 .ncopies = 2,
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
69 .tolerated_failures = 0,
70 .devs_increment = 1,
71 .ncopies = 2,
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
78 .tolerated_failures = 0,
79 .devs_increment = 1,
80 .ncopies = 1,
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
87 .tolerated_failures = 0,
88 .devs_increment = 1,
89 .ncopies = 1,
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
96 .tolerated_failures = 1,
97 .devs_increment = 1,
98 .ncopies = 2,
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
105 .tolerated_failures = 2,
106 .devs_increment = 1,
107 .ncopies = 3,
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 struct btrfs_fs_info *fs_info);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
142 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143 enum btrfs_map_op op,
144 u64 logical, u64 *length,
145 struct btrfs_bio **bbio_ret,
146 int mirror_num, int need_raid_map);
149 * Device locking
150 * ==============
152 * There are several mutexes that protect manipulation of devices and low-level
153 * structures like chunks but not block groups, extents or files
155 * uuid_mutex (global lock)
156 * ------------------------
157 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
158 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
159 * device) or requested by the device= mount option
161 * the mutex can be very coarse and can cover long-running operations
163 * protects: updates to fs_devices counters like missing devices, rw devices,
164 * seeding, structure cloning, openning/closing devices at mount/umount time
166 * global::fs_devs - add, remove, updates to the global list
168 * does not protect: manipulation of the fs_devices::devices list!
170 * btrfs_device::name - renames (write side), read is RCU
172 * fs_devices::device_list_mutex (per-fs, with RCU)
173 * ------------------------------------------------
174 * protects updates to fs_devices::devices, ie. adding and deleting
176 * simple list traversal with read-only actions can be done with RCU protection
178 * may be used to exclude some operations from running concurrently without any
179 * modifications to the list (see write_all_supers)
181 * volume_mutex
182 * ------------
183 * coarse lock owned by a mounted filesystem; used to exclude some operations
184 * that cannot run in parallel and affect the higher-level properties of the
185 * filesystem like: device add/deleting/resize/replace, or balance
187 * balance_mutex
188 * -------------
189 * protects balance structures (status, state) and context accessed from
190 * several places (internally, ioctl)
192 * chunk_mutex
193 * -----------
194 * protects chunks, adding or removing during allocation, trim or when a new
195 * device is added/removed
197 * cleaner_mutex
198 * -------------
199 * a big lock that is held by the cleaner thread and prevents running subvolume
200 * cleaning together with relocation or delayed iputs
203 * Lock nesting
204 * ============
206 * uuid_mutex
207 * volume_mutex
208 * device_list_mutex
209 * chunk_mutex
210 * balance_mutex
213 DEFINE_MUTEX(uuid_mutex);
214 static LIST_HEAD(fs_uuids);
215 struct list_head *btrfs_get_fs_uuids(void)
217 return &fs_uuids;
221 * alloc_fs_devices - allocate struct btrfs_fs_devices
222 * @fsid: if not NULL, copy the uuid to fs_devices::fsid
224 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
225 * The returned struct is not linked onto any lists and can be destroyed with
226 * kfree() right away.
228 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
230 struct btrfs_fs_devices *fs_devs;
232 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
233 if (!fs_devs)
234 return ERR_PTR(-ENOMEM);
236 mutex_init(&fs_devs->device_list_mutex);
238 INIT_LIST_HEAD(&fs_devs->devices);
239 INIT_LIST_HEAD(&fs_devs->resized_devices);
240 INIT_LIST_HEAD(&fs_devs->alloc_list);
241 INIT_LIST_HEAD(&fs_devs->list);
242 if (fsid)
243 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
245 return fs_devs;
248 static void free_device(struct btrfs_device *device)
250 rcu_string_free(device->name);
251 bio_put(device->flush_bio);
252 kfree(device);
255 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
257 struct btrfs_device *device;
258 WARN_ON(fs_devices->opened);
259 while (!list_empty(&fs_devices->devices)) {
260 device = list_entry(fs_devices->devices.next,
261 struct btrfs_device, dev_list);
262 list_del(&device->dev_list);
263 free_device(device);
265 kfree(fs_devices);
268 static void btrfs_kobject_uevent(struct block_device *bdev,
269 enum kobject_action action)
271 int ret;
273 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
274 if (ret)
275 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
276 action,
277 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
278 &disk_to_dev(bdev->bd_disk)->kobj);
281 void btrfs_cleanup_fs_uuids(void)
283 struct btrfs_fs_devices *fs_devices;
285 while (!list_empty(&fs_uuids)) {
286 fs_devices = list_entry(fs_uuids.next,
287 struct btrfs_fs_devices, list);
288 list_del(&fs_devices->list);
289 free_fs_devices(fs_devices);
294 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
295 * Returned struct is not linked onto any lists and must be destroyed using
296 * free_device.
298 static struct btrfs_device *__alloc_device(void)
300 struct btrfs_device *dev;
302 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
303 if (!dev)
304 return ERR_PTR(-ENOMEM);
307 * Preallocate a bio that's always going to be used for flushing device
308 * barriers and matches the device lifespan
310 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
311 if (!dev->flush_bio) {
312 kfree(dev);
313 return ERR_PTR(-ENOMEM);
316 INIT_LIST_HEAD(&dev->dev_list);
317 INIT_LIST_HEAD(&dev->dev_alloc_list);
318 INIT_LIST_HEAD(&dev->resized_list);
320 spin_lock_init(&dev->io_lock);
322 atomic_set(&dev->reada_in_flight, 0);
323 atomic_set(&dev->dev_stats_ccnt, 0);
324 btrfs_device_data_ordered_init(dev);
325 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
326 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
328 return dev;
332 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
333 * return NULL.
335 * If devid and uuid are both specified, the match must be exact, otherwise
336 * only devid is used.
338 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
339 u64 devid, const u8 *uuid)
341 struct list_head *head = &fs_devices->devices;
342 struct btrfs_device *dev;
344 list_for_each_entry(dev, head, dev_list) {
345 if (dev->devid == devid &&
346 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
347 return dev;
350 return NULL;
353 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
355 struct btrfs_fs_devices *fs_devices;
357 list_for_each_entry(fs_devices, &fs_uuids, list) {
358 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
359 return fs_devices;
361 return NULL;
364 static int
365 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
366 int flush, struct block_device **bdev,
367 struct buffer_head **bh)
369 int ret;
371 *bdev = blkdev_get_by_path(device_path, flags, holder);
373 if (IS_ERR(*bdev)) {
374 ret = PTR_ERR(*bdev);
375 goto error;
378 if (flush)
379 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
380 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
381 if (ret) {
382 blkdev_put(*bdev, flags);
383 goto error;
385 invalidate_bdev(*bdev);
386 *bh = btrfs_read_dev_super(*bdev);
387 if (IS_ERR(*bh)) {
388 ret = PTR_ERR(*bh);
389 blkdev_put(*bdev, flags);
390 goto error;
393 return 0;
395 error:
396 *bdev = NULL;
397 *bh = NULL;
398 return ret;
401 static void requeue_list(struct btrfs_pending_bios *pending_bios,
402 struct bio *head, struct bio *tail)
405 struct bio *old_head;
407 old_head = pending_bios->head;
408 pending_bios->head = head;
409 if (pending_bios->tail)
410 tail->bi_next = old_head;
411 else
412 pending_bios->tail = tail;
416 * we try to collect pending bios for a device so we don't get a large
417 * number of procs sending bios down to the same device. This greatly
418 * improves the schedulers ability to collect and merge the bios.
420 * But, it also turns into a long list of bios to process and that is sure
421 * to eventually make the worker thread block. The solution here is to
422 * make some progress and then put this work struct back at the end of
423 * the list if the block device is congested. This way, multiple devices
424 * can make progress from a single worker thread.
426 static noinline void run_scheduled_bios(struct btrfs_device *device)
428 struct btrfs_fs_info *fs_info = device->fs_info;
429 struct bio *pending;
430 struct backing_dev_info *bdi;
431 struct btrfs_pending_bios *pending_bios;
432 struct bio *tail;
433 struct bio *cur;
434 int again = 0;
435 unsigned long num_run;
436 unsigned long batch_run = 0;
437 unsigned long last_waited = 0;
438 int force_reg = 0;
439 int sync_pending = 0;
440 struct blk_plug plug;
443 * this function runs all the bios we've collected for
444 * a particular device. We don't want to wander off to
445 * another device without first sending all of these down.
446 * So, setup a plug here and finish it off before we return
448 blk_start_plug(&plug);
450 bdi = device->bdev->bd_bdi;
452 loop:
453 spin_lock(&device->io_lock);
455 loop_lock:
456 num_run = 0;
458 /* take all the bios off the list at once and process them
459 * later on (without the lock held). But, remember the
460 * tail and other pointers so the bios can be properly reinserted
461 * into the list if we hit congestion
463 if (!force_reg && device->pending_sync_bios.head) {
464 pending_bios = &device->pending_sync_bios;
465 force_reg = 1;
466 } else {
467 pending_bios = &device->pending_bios;
468 force_reg = 0;
471 pending = pending_bios->head;
472 tail = pending_bios->tail;
473 WARN_ON(pending && !tail);
476 * if pending was null this time around, no bios need processing
477 * at all and we can stop. Otherwise it'll loop back up again
478 * and do an additional check so no bios are missed.
480 * device->running_pending is used to synchronize with the
481 * schedule_bio code.
483 if (device->pending_sync_bios.head == NULL &&
484 device->pending_bios.head == NULL) {
485 again = 0;
486 device->running_pending = 0;
487 } else {
488 again = 1;
489 device->running_pending = 1;
492 pending_bios->head = NULL;
493 pending_bios->tail = NULL;
495 spin_unlock(&device->io_lock);
497 while (pending) {
499 rmb();
500 /* we want to work on both lists, but do more bios on the
501 * sync list than the regular list
503 if ((num_run > 32 &&
504 pending_bios != &device->pending_sync_bios &&
505 device->pending_sync_bios.head) ||
506 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
507 device->pending_bios.head)) {
508 spin_lock(&device->io_lock);
509 requeue_list(pending_bios, pending, tail);
510 goto loop_lock;
513 cur = pending;
514 pending = pending->bi_next;
515 cur->bi_next = NULL;
517 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
520 * if we're doing the sync list, record that our
521 * plug has some sync requests on it
523 * If we're doing the regular list and there are
524 * sync requests sitting around, unplug before
525 * we add more
527 if (pending_bios == &device->pending_sync_bios) {
528 sync_pending = 1;
529 } else if (sync_pending) {
530 blk_finish_plug(&plug);
531 blk_start_plug(&plug);
532 sync_pending = 0;
535 btrfsic_submit_bio(cur);
536 num_run++;
537 batch_run++;
539 cond_resched();
542 * we made progress, there is more work to do and the bdi
543 * is now congested. Back off and let other work structs
544 * run instead
546 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
547 fs_info->fs_devices->open_devices > 1) {
548 struct io_context *ioc;
550 ioc = current->io_context;
553 * the main goal here is that we don't want to
554 * block if we're going to be able to submit
555 * more requests without blocking.
557 * This code does two great things, it pokes into
558 * the elevator code from a filesystem _and_
559 * it makes assumptions about how batching works.
561 if (ioc && ioc->nr_batch_requests > 0 &&
562 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
563 (last_waited == 0 ||
564 ioc->last_waited == last_waited)) {
566 * we want to go through our batch of
567 * requests and stop. So, we copy out
568 * the ioc->last_waited time and test
569 * against it before looping
571 last_waited = ioc->last_waited;
572 cond_resched();
573 continue;
575 spin_lock(&device->io_lock);
576 requeue_list(pending_bios, pending, tail);
577 device->running_pending = 1;
579 spin_unlock(&device->io_lock);
580 btrfs_queue_work(fs_info->submit_workers,
581 &device->work);
582 goto done;
586 cond_resched();
587 if (again)
588 goto loop;
590 spin_lock(&device->io_lock);
591 if (device->pending_bios.head || device->pending_sync_bios.head)
592 goto loop_lock;
593 spin_unlock(&device->io_lock);
595 done:
596 blk_finish_plug(&plug);
599 static void pending_bios_fn(struct btrfs_work *work)
601 struct btrfs_device *device;
603 device = container_of(work, struct btrfs_device, work);
604 run_scheduled_bios(device);
608 * Search and remove all stale (devices which are not mounted) devices.
609 * When both inputs are NULL, it will search and release all stale devices.
610 * path: Optional. When provided will it release all unmounted devices
611 * matching this path only.
612 * skip_dev: Optional. Will skip this device when searching for the stale
613 * devices.
615 static void btrfs_free_stale_devices(const char *path,
616 struct btrfs_device *skip_dev)
618 struct btrfs_fs_devices *fs_devs, *tmp_fs_devs;
619 struct btrfs_device *dev, *tmp_dev;
621 list_for_each_entry_safe(fs_devs, tmp_fs_devs, &fs_uuids, list) {
623 if (fs_devs->opened)
624 continue;
626 list_for_each_entry_safe(dev, tmp_dev,
627 &fs_devs->devices, dev_list) {
628 int not_found = 0;
630 if (skip_dev && skip_dev == dev)
631 continue;
632 if (path && !dev->name)
633 continue;
635 rcu_read_lock();
636 if (path)
637 not_found = strcmp(rcu_str_deref(dev->name),
638 path);
639 rcu_read_unlock();
640 if (not_found)
641 continue;
643 /* delete the stale device */
644 if (fs_devs->num_devices == 1) {
645 btrfs_sysfs_remove_fsid(fs_devs);
646 list_del(&fs_devs->list);
647 free_fs_devices(fs_devs);
648 } else {
649 fs_devs->num_devices--;
650 list_del(&dev->dev_list);
651 free_device(dev);
657 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
658 struct btrfs_device *device, fmode_t flags,
659 void *holder)
661 struct request_queue *q;
662 struct block_device *bdev;
663 struct buffer_head *bh;
664 struct btrfs_super_block *disk_super;
665 u64 devid;
666 int ret;
668 if (device->bdev)
669 return -EINVAL;
670 if (!device->name)
671 return -EINVAL;
673 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
674 &bdev, &bh);
675 if (ret)
676 return ret;
678 disk_super = (struct btrfs_super_block *)bh->b_data;
679 devid = btrfs_stack_device_id(&disk_super->dev_item);
680 if (devid != device->devid)
681 goto error_brelse;
683 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
684 goto error_brelse;
686 device->generation = btrfs_super_generation(disk_super);
688 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
689 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
690 fs_devices->seeding = 1;
691 } else {
692 if (bdev_read_only(bdev))
693 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
694 else
695 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
698 q = bdev_get_queue(bdev);
699 if (!blk_queue_nonrot(q))
700 fs_devices->rotating = 1;
702 device->bdev = bdev;
703 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
704 device->mode = flags;
706 fs_devices->open_devices++;
707 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
708 device->devid != BTRFS_DEV_REPLACE_DEVID) {
709 fs_devices->rw_devices++;
710 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
712 brelse(bh);
714 return 0;
716 error_brelse:
717 brelse(bh);
718 blkdev_put(bdev, flags);
720 return -EINVAL;
724 * Add new device to list of registered devices
726 * Returns:
727 * device pointer which was just added or updated when successful
728 * error pointer when failed
730 static noinline struct btrfs_device *device_list_add(const char *path,
731 struct btrfs_super_block *disk_super)
733 struct btrfs_device *device;
734 struct btrfs_fs_devices *fs_devices;
735 struct rcu_string *name;
736 u64 found_transid = btrfs_super_generation(disk_super);
737 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
739 fs_devices = find_fsid(disk_super->fsid);
740 if (!fs_devices) {
741 fs_devices = alloc_fs_devices(disk_super->fsid);
742 if (IS_ERR(fs_devices))
743 return ERR_CAST(fs_devices);
745 list_add(&fs_devices->list, &fs_uuids);
747 device = NULL;
748 } else {
749 device = find_device(fs_devices, devid,
750 disk_super->dev_item.uuid);
753 if (!device) {
754 if (fs_devices->opened)
755 return ERR_PTR(-EBUSY);
757 device = btrfs_alloc_device(NULL, &devid,
758 disk_super->dev_item.uuid);
759 if (IS_ERR(device)) {
760 /* we can safely leave the fs_devices entry around */
761 return device;
764 name = rcu_string_strdup(path, GFP_NOFS);
765 if (!name) {
766 free_device(device);
767 return ERR_PTR(-ENOMEM);
769 rcu_assign_pointer(device->name, name);
771 mutex_lock(&fs_devices->device_list_mutex);
772 list_add_rcu(&device->dev_list, &fs_devices->devices);
773 fs_devices->num_devices++;
774 mutex_unlock(&fs_devices->device_list_mutex);
776 device->fs_devices = fs_devices;
777 btrfs_free_stale_devices(path, device);
779 if (disk_super->label[0])
780 pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
781 disk_super->label, devid, found_transid, path);
782 else
783 pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
784 disk_super->fsid, devid, found_transid, path);
786 } else if (!device->name || strcmp(device->name->str, path)) {
788 * When FS is already mounted.
789 * 1. If you are here and if the device->name is NULL that
790 * means this device was missing at time of FS mount.
791 * 2. If you are here and if the device->name is different
792 * from 'path' that means either
793 * a. The same device disappeared and reappeared with
794 * different name. or
795 * b. The missing-disk-which-was-replaced, has
796 * reappeared now.
798 * We must allow 1 and 2a above. But 2b would be a spurious
799 * and unintentional.
801 * Further in case of 1 and 2a above, the disk at 'path'
802 * would have missed some transaction when it was away and
803 * in case of 2a the stale bdev has to be updated as well.
804 * 2b must not be allowed at all time.
808 * For now, we do allow update to btrfs_fs_device through the
809 * btrfs dev scan cli after FS has been mounted. We're still
810 * tracking a problem where systems fail mount by subvolume id
811 * when we reject replacement on a mounted FS.
813 if (!fs_devices->opened && found_transid < device->generation) {
815 * That is if the FS is _not_ mounted and if you
816 * are here, that means there is more than one
817 * disk with same uuid and devid.We keep the one
818 * with larger generation number or the last-in if
819 * generation are equal.
821 return ERR_PTR(-EEXIST);
824 name = rcu_string_strdup(path, GFP_NOFS);
825 if (!name)
826 return ERR_PTR(-ENOMEM);
827 rcu_string_free(device->name);
828 rcu_assign_pointer(device->name, name);
829 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
830 fs_devices->missing_devices--;
831 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
836 * Unmount does not free the btrfs_device struct but would zero
837 * generation along with most of the other members. So just update
838 * it back. We need it to pick the disk with largest generation
839 * (as above).
841 if (!fs_devices->opened)
842 device->generation = found_transid;
844 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
846 return device;
849 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
851 struct btrfs_fs_devices *fs_devices;
852 struct btrfs_device *device;
853 struct btrfs_device *orig_dev;
855 fs_devices = alloc_fs_devices(orig->fsid);
856 if (IS_ERR(fs_devices))
857 return fs_devices;
859 mutex_lock(&orig->device_list_mutex);
860 fs_devices->total_devices = orig->total_devices;
862 /* We have held the volume lock, it is safe to get the devices. */
863 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
864 struct rcu_string *name;
866 device = btrfs_alloc_device(NULL, &orig_dev->devid,
867 orig_dev->uuid);
868 if (IS_ERR(device))
869 goto error;
872 * This is ok to do without rcu read locked because we hold the
873 * uuid mutex so nothing we touch in here is going to disappear.
875 if (orig_dev->name) {
876 name = rcu_string_strdup(orig_dev->name->str,
877 GFP_KERNEL);
878 if (!name) {
879 free_device(device);
880 goto error;
882 rcu_assign_pointer(device->name, name);
885 list_add(&device->dev_list, &fs_devices->devices);
886 device->fs_devices = fs_devices;
887 fs_devices->num_devices++;
889 mutex_unlock(&orig->device_list_mutex);
890 return fs_devices;
891 error:
892 mutex_unlock(&orig->device_list_mutex);
893 free_fs_devices(fs_devices);
894 return ERR_PTR(-ENOMEM);
897 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
899 struct btrfs_device *device, *next;
900 struct btrfs_device *latest_dev = NULL;
902 mutex_lock(&uuid_mutex);
903 again:
904 /* This is the initialized path, it is safe to release the devices. */
905 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
906 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
907 &device->dev_state)) {
908 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
909 &device->dev_state) &&
910 (!latest_dev ||
911 device->generation > latest_dev->generation)) {
912 latest_dev = device;
914 continue;
917 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
919 * In the first step, keep the device which has
920 * the correct fsid and the devid that is used
921 * for the dev_replace procedure.
922 * In the second step, the dev_replace state is
923 * read from the device tree and it is known
924 * whether the procedure is really active or
925 * not, which means whether this device is
926 * used or whether it should be removed.
928 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
929 &device->dev_state)) {
930 continue;
933 if (device->bdev) {
934 blkdev_put(device->bdev, device->mode);
935 device->bdev = NULL;
936 fs_devices->open_devices--;
938 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
939 list_del_init(&device->dev_alloc_list);
940 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
941 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
942 &device->dev_state))
943 fs_devices->rw_devices--;
945 list_del_init(&device->dev_list);
946 fs_devices->num_devices--;
947 free_device(device);
950 if (fs_devices->seed) {
951 fs_devices = fs_devices->seed;
952 goto again;
955 fs_devices->latest_bdev = latest_dev->bdev;
957 mutex_unlock(&uuid_mutex);
960 static void free_device_rcu(struct rcu_head *head)
962 struct btrfs_device *device;
964 device = container_of(head, struct btrfs_device, rcu);
965 free_device(device);
968 static void btrfs_close_bdev(struct btrfs_device *device)
970 if (!device->bdev)
971 return;
973 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
974 sync_blockdev(device->bdev);
975 invalidate_bdev(device->bdev);
978 blkdev_put(device->bdev, device->mode);
981 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
983 struct btrfs_fs_devices *fs_devices = device->fs_devices;
984 struct btrfs_device *new_device;
985 struct rcu_string *name;
987 if (device->bdev)
988 fs_devices->open_devices--;
990 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
991 device->devid != BTRFS_DEV_REPLACE_DEVID) {
992 list_del_init(&device->dev_alloc_list);
993 fs_devices->rw_devices--;
996 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
997 fs_devices->missing_devices--;
999 new_device = btrfs_alloc_device(NULL, &device->devid,
1000 device->uuid);
1001 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1003 /* Safe because we are under uuid_mutex */
1004 if (device->name) {
1005 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1006 BUG_ON(!name); /* -ENOMEM */
1007 rcu_assign_pointer(new_device->name, name);
1010 list_replace_rcu(&device->dev_list, &new_device->dev_list);
1011 new_device->fs_devices = device->fs_devices;
1014 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1016 struct btrfs_device *device, *tmp;
1017 struct list_head pending_put;
1019 INIT_LIST_HEAD(&pending_put);
1021 if (--fs_devices->opened > 0)
1022 return 0;
1024 mutex_lock(&fs_devices->device_list_mutex);
1025 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1026 btrfs_prepare_close_one_device(device);
1027 list_add(&device->dev_list, &pending_put);
1029 mutex_unlock(&fs_devices->device_list_mutex);
1032 * btrfs_show_devname() is using the device_list_mutex,
1033 * sometimes call to blkdev_put() leads vfs calling
1034 * into this func. So do put outside of device_list_mutex,
1035 * as of now.
1037 while (!list_empty(&pending_put)) {
1038 device = list_first_entry(&pending_put,
1039 struct btrfs_device, dev_list);
1040 list_del(&device->dev_list);
1041 btrfs_close_bdev(device);
1042 call_rcu(&device->rcu, free_device_rcu);
1045 WARN_ON(fs_devices->open_devices);
1046 WARN_ON(fs_devices->rw_devices);
1047 fs_devices->opened = 0;
1048 fs_devices->seeding = 0;
1050 return 0;
1053 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1055 struct btrfs_fs_devices *seed_devices = NULL;
1056 int ret;
1058 mutex_lock(&uuid_mutex);
1059 ret = __btrfs_close_devices(fs_devices);
1060 if (!fs_devices->opened) {
1061 seed_devices = fs_devices->seed;
1062 fs_devices->seed = NULL;
1064 mutex_unlock(&uuid_mutex);
1066 while (seed_devices) {
1067 fs_devices = seed_devices;
1068 seed_devices = fs_devices->seed;
1069 __btrfs_close_devices(fs_devices);
1070 free_fs_devices(fs_devices);
1072 return ret;
1075 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1076 fmode_t flags, void *holder)
1078 struct list_head *head = &fs_devices->devices;
1079 struct btrfs_device *device;
1080 struct btrfs_device *latest_dev = NULL;
1081 int ret = 0;
1083 flags |= FMODE_EXCL;
1085 list_for_each_entry(device, head, dev_list) {
1086 /* Just open everything we can; ignore failures here */
1087 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1088 continue;
1090 if (!latest_dev ||
1091 device->generation > latest_dev->generation)
1092 latest_dev = device;
1094 if (fs_devices->open_devices == 0) {
1095 ret = -EINVAL;
1096 goto out;
1098 fs_devices->opened = 1;
1099 fs_devices->latest_bdev = latest_dev->bdev;
1100 fs_devices->total_rw_bytes = 0;
1101 out:
1102 return ret;
1105 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1106 fmode_t flags, void *holder)
1108 int ret;
1110 mutex_lock(&uuid_mutex);
1111 if (fs_devices->opened) {
1112 fs_devices->opened++;
1113 ret = 0;
1114 } else {
1115 ret = __btrfs_open_devices(fs_devices, flags, holder);
1117 mutex_unlock(&uuid_mutex);
1118 return ret;
1121 static void btrfs_release_disk_super(struct page *page)
1123 kunmap(page);
1124 put_page(page);
1127 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1128 struct page **page,
1129 struct btrfs_super_block **disk_super)
1131 void *p;
1132 pgoff_t index;
1134 /* make sure our super fits in the device */
1135 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1136 return 1;
1138 /* make sure our super fits in the page */
1139 if (sizeof(**disk_super) > PAGE_SIZE)
1140 return 1;
1142 /* make sure our super doesn't straddle pages on disk */
1143 index = bytenr >> PAGE_SHIFT;
1144 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1145 return 1;
1147 /* pull in the page with our super */
1148 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1149 index, GFP_KERNEL);
1151 if (IS_ERR_OR_NULL(*page))
1152 return 1;
1154 p = kmap(*page);
1156 /* align our pointer to the offset of the super block */
1157 *disk_super = p + (bytenr & ~PAGE_MASK);
1159 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1160 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1161 btrfs_release_disk_super(*page);
1162 return 1;
1165 if ((*disk_super)->label[0] &&
1166 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1167 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1169 return 0;
1173 * Look for a btrfs signature on a device. This may be called out of the mount path
1174 * and we are not allowed to call set_blocksize during the scan. The superblock
1175 * is read via pagecache
1177 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1178 struct btrfs_fs_devices **fs_devices_ret)
1180 struct btrfs_super_block *disk_super;
1181 struct btrfs_device *device;
1182 struct block_device *bdev;
1183 struct page *page;
1184 int ret = 0;
1185 u64 bytenr;
1188 * we would like to check all the supers, but that would make
1189 * a btrfs mount succeed after a mkfs from a different FS.
1190 * So, we need to add a special mount option to scan for
1191 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1193 bytenr = btrfs_sb_offset(0);
1194 flags |= FMODE_EXCL;
1195 mutex_lock(&uuid_mutex);
1197 bdev = blkdev_get_by_path(path, flags, holder);
1198 if (IS_ERR(bdev)) {
1199 ret = PTR_ERR(bdev);
1200 goto error;
1203 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1204 ret = -EINVAL;
1205 goto error_bdev_put;
1208 device = device_list_add(path, disk_super);
1209 if (IS_ERR(device))
1210 ret = PTR_ERR(device);
1211 else
1212 *fs_devices_ret = device->fs_devices;
1214 btrfs_release_disk_super(page);
1216 error_bdev_put:
1217 blkdev_put(bdev, flags);
1218 error:
1219 mutex_unlock(&uuid_mutex);
1220 return ret;
1223 /* helper to account the used device space in the range */
1224 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1225 u64 end, u64 *length)
1227 struct btrfs_key key;
1228 struct btrfs_root *root = device->fs_info->dev_root;
1229 struct btrfs_dev_extent *dev_extent;
1230 struct btrfs_path *path;
1231 u64 extent_end;
1232 int ret;
1233 int slot;
1234 struct extent_buffer *l;
1236 *length = 0;
1238 if (start >= device->total_bytes ||
1239 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1240 return 0;
1242 path = btrfs_alloc_path();
1243 if (!path)
1244 return -ENOMEM;
1245 path->reada = READA_FORWARD;
1247 key.objectid = device->devid;
1248 key.offset = start;
1249 key.type = BTRFS_DEV_EXTENT_KEY;
1251 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1252 if (ret < 0)
1253 goto out;
1254 if (ret > 0) {
1255 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1256 if (ret < 0)
1257 goto out;
1260 while (1) {
1261 l = path->nodes[0];
1262 slot = path->slots[0];
1263 if (slot >= btrfs_header_nritems(l)) {
1264 ret = btrfs_next_leaf(root, path);
1265 if (ret == 0)
1266 continue;
1267 if (ret < 0)
1268 goto out;
1270 break;
1272 btrfs_item_key_to_cpu(l, &key, slot);
1274 if (key.objectid < device->devid)
1275 goto next;
1277 if (key.objectid > device->devid)
1278 break;
1280 if (key.type != BTRFS_DEV_EXTENT_KEY)
1281 goto next;
1283 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1284 extent_end = key.offset + btrfs_dev_extent_length(l,
1285 dev_extent);
1286 if (key.offset <= start && extent_end > end) {
1287 *length = end - start + 1;
1288 break;
1289 } else if (key.offset <= start && extent_end > start)
1290 *length += extent_end - start;
1291 else if (key.offset > start && extent_end <= end)
1292 *length += extent_end - key.offset;
1293 else if (key.offset > start && key.offset <= end) {
1294 *length += end - key.offset + 1;
1295 break;
1296 } else if (key.offset > end)
1297 break;
1299 next:
1300 path->slots[0]++;
1302 ret = 0;
1303 out:
1304 btrfs_free_path(path);
1305 return ret;
1308 static int contains_pending_extent(struct btrfs_transaction *transaction,
1309 struct btrfs_device *device,
1310 u64 *start, u64 len)
1312 struct btrfs_fs_info *fs_info = device->fs_info;
1313 struct extent_map *em;
1314 struct list_head *search_list = &fs_info->pinned_chunks;
1315 int ret = 0;
1316 u64 physical_start = *start;
1318 if (transaction)
1319 search_list = &transaction->pending_chunks;
1320 again:
1321 list_for_each_entry(em, search_list, list) {
1322 struct map_lookup *map;
1323 int i;
1325 map = em->map_lookup;
1326 for (i = 0; i < map->num_stripes; i++) {
1327 u64 end;
1329 if (map->stripes[i].dev != device)
1330 continue;
1331 if (map->stripes[i].physical >= physical_start + len ||
1332 map->stripes[i].physical + em->orig_block_len <=
1333 physical_start)
1334 continue;
1336 * Make sure that while processing the pinned list we do
1337 * not override our *start with a lower value, because
1338 * we can have pinned chunks that fall within this
1339 * device hole and that have lower physical addresses
1340 * than the pending chunks we processed before. If we
1341 * do not take this special care we can end up getting
1342 * 2 pending chunks that start at the same physical
1343 * device offsets because the end offset of a pinned
1344 * chunk can be equal to the start offset of some
1345 * pending chunk.
1347 end = map->stripes[i].physical + em->orig_block_len;
1348 if (end > *start) {
1349 *start = end;
1350 ret = 1;
1354 if (search_list != &fs_info->pinned_chunks) {
1355 search_list = &fs_info->pinned_chunks;
1356 goto again;
1359 return ret;
1364 * find_free_dev_extent_start - find free space in the specified device
1365 * @device: the device which we search the free space in
1366 * @num_bytes: the size of the free space that we need
1367 * @search_start: the position from which to begin the search
1368 * @start: store the start of the free space.
1369 * @len: the size of the free space. that we find, or the size
1370 * of the max free space if we don't find suitable free space
1372 * this uses a pretty simple search, the expectation is that it is
1373 * called very infrequently and that a given device has a small number
1374 * of extents
1376 * @start is used to store the start of the free space if we find. But if we
1377 * don't find suitable free space, it will be used to store the start position
1378 * of the max free space.
1380 * @len is used to store the size of the free space that we find.
1381 * But if we don't find suitable free space, it is used to store the size of
1382 * the max free space.
1384 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1385 struct btrfs_device *device, u64 num_bytes,
1386 u64 search_start, u64 *start, u64 *len)
1388 struct btrfs_fs_info *fs_info = device->fs_info;
1389 struct btrfs_root *root = fs_info->dev_root;
1390 struct btrfs_key key;
1391 struct btrfs_dev_extent *dev_extent;
1392 struct btrfs_path *path;
1393 u64 hole_size;
1394 u64 max_hole_start;
1395 u64 max_hole_size;
1396 u64 extent_end;
1397 u64 search_end = device->total_bytes;
1398 int ret;
1399 int slot;
1400 struct extent_buffer *l;
1403 * We don't want to overwrite the superblock on the drive nor any area
1404 * used by the boot loader (grub for example), so we make sure to start
1405 * at an offset of at least 1MB.
1407 search_start = max_t(u64, search_start, SZ_1M);
1409 path = btrfs_alloc_path();
1410 if (!path)
1411 return -ENOMEM;
1413 max_hole_start = search_start;
1414 max_hole_size = 0;
1416 again:
1417 if (search_start >= search_end ||
1418 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1419 ret = -ENOSPC;
1420 goto out;
1423 path->reada = READA_FORWARD;
1424 path->search_commit_root = 1;
1425 path->skip_locking = 1;
1427 key.objectid = device->devid;
1428 key.offset = search_start;
1429 key.type = BTRFS_DEV_EXTENT_KEY;
1431 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1432 if (ret < 0)
1433 goto out;
1434 if (ret > 0) {
1435 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1436 if (ret < 0)
1437 goto out;
1440 while (1) {
1441 l = path->nodes[0];
1442 slot = path->slots[0];
1443 if (slot >= btrfs_header_nritems(l)) {
1444 ret = btrfs_next_leaf(root, path);
1445 if (ret == 0)
1446 continue;
1447 if (ret < 0)
1448 goto out;
1450 break;
1452 btrfs_item_key_to_cpu(l, &key, slot);
1454 if (key.objectid < device->devid)
1455 goto next;
1457 if (key.objectid > device->devid)
1458 break;
1460 if (key.type != BTRFS_DEV_EXTENT_KEY)
1461 goto next;
1463 if (key.offset > search_start) {
1464 hole_size = key.offset - search_start;
1467 * Have to check before we set max_hole_start, otherwise
1468 * we could end up sending back this offset anyway.
1470 if (contains_pending_extent(transaction, device,
1471 &search_start,
1472 hole_size)) {
1473 if (key.offset >= search_start) {
1474 hole_size = key.offset - search_start;
1475 } else {
1476 WARN_ON_ONCE(1);
1477 hole_size = 0;
1481 if (hole_size > max_hole_size) {
1482 max_hole_start = search_start;
1483 max_hole_size = hole_size;
1487 * If this free space is greater than which we need,
1488 * it must be the max free space that we have found
1489 * until now, so max_hole_start must point to the start
1490 * of this free space and the length of this free space
1491 * is stored in max_hole_size. Thus, we return
1492 * max_hole_start and max_hole_size and go back to the
1493 * caller.
1495 if (hole_size >= num_bytes) {
1496 ret = 0;
1497 goto out;
1501 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1502 extent_end = key.offset + btrfs_dev_extent_length(l,
1503 dev_extent);
1504 if (extent_end > search_start)
1505 search_start = extent_end;
1506 next:
1507 path->slots[0]++;
1508 cond_resched();
1512 * At this point, search_start should be the end of
1513 * allocated dev extents, and when shrinking the device,
1514 * search_end may be smaller than search_start.
1516 if (search_end > search_start) {
1517 hole_size = search_end - search_start;
1519 if (contains_pending_extent(transaction, device, &search_start,
1520 hole_size)) {
1521 btrfs_release_path(path);
1522 goto again;
1525 if (hole_size > max_hole_size) {
1526 max_hole_start = search_start;
1527 max_hole_size = hole_size;
1531 /* See above. */
1532 if (max_hole_size < num_bytes)
1533 ret = -ENOSPC;
1534 else
1535 ret = 0;
1537 out:
1538 btrfs_free_path(path);
1539 *start = max_hole_start;
1540 if (len)
1541 *len = max_hole_size;
1542 return ret;
1545 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1546 struct btrfs_device *device, u64 num_bytes,
1547 u64 *start, u64 *len)
1549 /* FIXME use last free of some kind */
1550 return find_free_dev_extent_start(trans->transaction, device,
1551 num_bytes, 0, start, len);
1554 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1555 struct btrfs_device *device,
1556 u64 start, u64 *dev_extent_len)
1558 struct btrfs_fs_info *fs_info = device->fs_info;
1559 struct btrfs_root *root = fs_info->dev_root;
1560 int ret;
1561 struct btrfs_path *path;
1562 struct btrfs_key key;
1563 struct btrfs_key found_key;
1564 struct extent_buffer *leaf = NULL;
1565 struct btrfs_dev_extent *extent = NULL;
1567 path = btrfs_alloc_path();
1568 if (!path)
1569 return -ENOMEM;
1571 key.objectid = device->devid;
1572 key.offset = start;
1573 key.type = BTRFS_DEV_EXTENT_KEY;
1574 again:
1575 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1576 if (ret > 0) {
1577 ret = btrfs_previous_item(root, path, key.objectid,
1578 BTRFS_DEV_EXTENT_KEY);
1579 if (ret)
1580 goto out;
1581 leaf = path->nodes[0];
1582 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1583 extent = btrfs_item_ptr(leaf, path->slots[0],
1584 struct btrfs_dev_extent);
1585 BUG_ON(found_key.offset > start || found_key.offset +
1586 btrfs_dev_extent_length(leaf, extent) < start);
1587 key = found_key;
1588 btrfs_release_path(path);
1589 goto again;
1590 } else if (ret == 0) {
1591 leaf = path->nodes[0];
1592 extent = btrfs_item_ptr(leaf, path->slots[0],
1593 struct btrfs_dev_extent);
1594 } else {
1595 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1596 goto out;
1599 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1601 ret = btrfs_del_item(trans, root, path);
1602 if (ret) {
1603 btrfs_handle_fs_error(fs_info, ret,
1604 "Failed to remove dev extent item");
1605 } else {
1606 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1608 out:
1609 btrfs_free_path(path);
1610 return ret;
1613 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1614 struct btrfs_device *device,
1615 u64 chunk_offset, u64 start, u64 num_bytes)
1617 int ret;
1618 struct btrfs_path *path;
1619 struct btrfs_fs_info *fs_info = device->fs_info;
1620 struct btrfs_root *root = fs_info->dev_root;
1621 struct btrfs_dev_extent *extent;
1622 struct extent_buffer *leaf;
1623 struct btrfs_key key;
1625 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1626 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1627 path = btrfs_alloc_path();
1628 if (!path)
1629 return -ENOMEM;
1631 key.objectid = device->devid;
1632 key.offset = start;
1633 key.type = BTRFS_DEV_EXTENT_KEY;
1634 ret = btrfs_insert_empty_item(trans, root, path, &key,
1635 sizeof(*extent));
1636 if (ret)
1637 goto out;
1639 leaf = path->nodes[0];
1640 extent = btrfs_item_ptr(leaf, path->slots[0],
1641 struct btrfs_dev_extent);
1642 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1643 BTRFS_CHUNK_TREE_OBJECTID);
1644 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1645 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1646 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1648 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1649 btrfs_mark_buffer_dirty(leaf);
1650 out:
1651 btrfs_free_path(path);
1652 return ret;
1655 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1657 struct extent_map_tree *em_tree;
1658 struct extent_map *em;
1659 struct rb_node *n;
1660 u64 ret = 0;
1662 em_tree = &fs_info->mapping_tree.map_tree;
1663 read_lock(&em_tree->lock);
1664 n = rb_last(&em_tree->map);
1665 if (n) {
1666 em = rb_entry(n, struct extent_map, rb_node);
1667 ret = em->start + em->len;
1669 read_unlock(&em_tree->lock);
1671 return ret;
1674 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1675 u64 *devid_ret)
1677 int ret;
1678 struct btrfs_key key;
1679 struct btrfs_key found_key;
1680 struct btrfs_path *path;
1682 path = btrfs_alloc_path();
1683 if (!path)
1684 return -ENOMEM;
1686 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1687 key.type = BTRFS_DEV_ITEM_KEY;
1688 key.offset = (u64)-1;
1690 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1691 if (ret < 0)
1692 goto error;
1694 BUG_ON(ret == 0); /* Corruption */
1696 ret = btrfs_previous_item(fs_info->chunk_root, path,
1697 BTRFS_DEV_ITEMS_OBJECTID,
1698 BTRFS_DEV_ITEM_KEY);
1699 if (ret) {
1700 *devid_ret = 1;
1701 } else {
1702 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1703 path->slots[0]);
1704 *devid_ret = found_key.offset + 1;
1706 ret = 0;
1707 error:
1708 btrfs_free_path(path);
1709 return ret;
1713 * the device information is stored in the chunk root
1714 * the btrfs_device struct should be fully filled in
1716 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1717 struct btrfs_fs_info *fs_info,
1718 struct btrfs_device *device)
1720 struct btrfs_root *root = fs_info->chunk_root;
1721 int ret;
1722 struct btrfs_path *path;
1723 struct btrfs_dev_item *dev_item;
1724 struct extent_buffer *leaf;
1725 struct btrfs_key key;
1726 unsigned long ptr;
1728 path = btrfs_alloc_path();
1729 if (!path)
1730 return -ENOMEM;
1732 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1733 key.type = BTRFS_DEV_ITEM_KEY;
1734 key.offset = device->devid;
1736 ret = btrfs_insert_empty_item(trans, root, path, &key,
1737 sizeof(*dev_item));
1738 if (ret)
1739 goto out;
1741 leaf = path->nodes[0];
1742 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1744 btrfs_set_device_id(leaf, dev_item, device->devid);
1745 btrfs_set_device_generation(leaf, dev_item, 0);
1746 btrfs_set_device_type(leaf, dev_item, device->type);
1747 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1748 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1749 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1750 btrfs_set_device_total_bytes(leaf, dev_item,
1751 btrfs_device_get_disk_total_bytes(device));
1752 btrfs_set_device_bytes_used(leaf, dev_item,
1753 btrfs_device_get_bytes_used(device));
1754 btrfs_set_device_group(leaf, dev_item, 0);
1755 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1756 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1757 btrfs_set_device_start_offset(leaf, dev_item, 0);
1759 ptr = btrfs_device_uuid(dev_item);
1760 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1761 ptr = btrfs_device_fsid(dev_item);
1762 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1763 btrfs_mark_buffer_dirty(leaf);
1765 ret = 0;
1766 out:
1767 btrfs_free_path(path);
1768 return ret;
1772 * Function to update ctime/mtime for a given device path.
1773 * Mainly used for ctime/mtime based probe like libblkid.
1775 static void update_dev_time(const char *path_name)
1777 struct file *filp;
1779 filp = filp_open(path_name, O_RDWR, 0);
1780 if (IS_ERR(filp))
1781 return;
1782 file_update_time(filp);
1783 filp_close(filp, NULL);
1786 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1787 struct btrfs_device *device)
1789 struct btrfs_root *root = fs_info->chunk_root;
1790 int ret;
1791 struct btrfs_path *path;
1792 struct btrfs_key key;
1793 struct btrfs_trans_handle *trans;
1795 path = btrfs_alloc_path();
1796 if (!path)
1797 return -ENOMEM;
1799 trans = btrfs_start_transaction(root, 0);
1800 if (IS_ERR(trans)) {
1801 btrfs_free_path(path);
1802 return PTR_ERR(trans);
1804 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1805 key.type = BTRFS_DEV_ITEM_KEY;
1806 key.offset = device->devid;
1808 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1809 if (ret) {
1810 if (ret > 0)
1811 ret = -ENOENT;
1812 btrfs_abort_transaction(trans, ret);
1813 btrfs_end_transaction(trans);
1814 goto out;
1817 ret = btrfs_del_item(trans, root, path);
1818 if (ret) {
1819 btrfs_abort_transaction(trans, ret);
1820 btrfs_end_transaction(trans);
1823 out:
1824 btrfs_free_path(path);
1825 if (!ret)
1826 ret = btrfs_commit_transaction(trans);
1827 return ret;
1831 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1832 * filesystem. It's up to the caller to adjust that number regarding eg. device
1833 * replace.
1835 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1836 u64 num_devices)
1838 u64 all_avail;
1839 unsigned seq;
1840 int i;
1842 do {
1843 seq = read_seqbegin(&fs_info->profiles_lock);
1845 all_avail = fs_info->avail_data_alloc_bits |
1846 fs_info->avail_system_alloc_bits |
1847 fs_info->avail_metadata_alloc_bits;
1848 } while (read_seqretry(&fs_info->profiles_lock, seq));
1850 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1851 if (!(all_avail & btrfs_raid_group[i]))
1852 continue;
1854 if (num_devices < btrfs_raid_array[i].devs_min) {
1855 int ret = btrfs_raid_mindev_error[i];
1857 if (ret)
1858 return ret;
1862 return 0;
1865 static struct btrfs_device * btrfs_find_next_active_device(
1866 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1868 struct btrfs_device *next_device;
1870 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1871 if (next_device != device &&
1872 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1873 && next_device->bdev)
1874 return next_device;
1877 return NULL;
1881 * Helper function to check if the given device is part of s_bdev / latest_bdev
1882 * and replace it with the provided or the next active device, in the context
1883 * where this function called, there should be always be another device (or
1884 * this_dev) which is active.
1886 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1887 struct btrfs_device *device, struct btrfs_device *this_dev)
1889 struct btrfs_device *next_device;
1891 if (this_dev)
1892 next_device = this_dev;
1893 else
1894 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1895 device);
1896 ASSERT(next_device);
1898 if (fs_info->sb->s_bdev &&
1899 (fs_info->sb->s_bdev == device->bdev))
1900 fs_info->sb->s_bdev = next_device->bdev;
1902 if (fs_info->fs_devices->latest_bdev == device->bdev)
1903 fs_info->fs_devices->latest_bdev = next_device->bdev;
1906 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1907 u64 devid)
1909 struct btrfs_device *device;
1910 struct btrfs_fs_devices *cur_devices;
1911 u64 num_devices;
1912 int ret = 0;
1914 mutex_lock(&fs_info->volume_mutex);
1915 mutex_lock(&uuid_mutex);
1917 num_devices = fs_info->fs_devices->num_devices;
1918 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1919 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1920 WARN_ON(num_devices < 1);
1921 num_devices--;
1923 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1925 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1926 if (ret)
1927 goto out;
1929 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1930 &device);
1931 if (ret)
1932 goto out;
1934 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1935 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1936 goto out;
1939 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1940 fs_info->fs_devices->rw_devices == 1) {
1941 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1942 goto out;
1945 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1946 mutex_lock(&fs_info->chunk_mutex);
1947 list_del_init(&device->dev_alloc_list);
1948 device->fs_devices->rw_devices--;
1949 mutex_unlock(&fs_info->chunk_mutex);
1952 mutex_unlock(&uuid_mutex);
1953 ret = btrfs_shrink_device(device, 0);
1954 mutex_lock(&uuid_mutex);
1955 if (ret)
1956 goto error_undo;
1959 * TODO: the superblock still includes this device in its num_devices
1960 * counter although write_all_supers() is not locked out. This
1961 * could give a filesystem state which requires a degraded mount.
1963 ret = btrfs_rm_dev_item(fs_info, device);
1964 if (ret)
1965 goto error_undo;
1967 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
1968 btrfs_scrub_cancel_dev(fs_info, device);
1971 * the device list mutex makes sure that we don't change
1972 * the device list while someone else is writing out all
1973 * the device supers. Whoever is writing all supers, should
1974 * lock the device list mutex before getting the number of
1975 * devices in the super block (super_copy). Conversely,
1976 * whoever updates the number of devices in the super block
1977 * (super_copy) should hold the device list mutex.
1980 cur_devices = device->fs_devices;
1981 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1982 list_del_rcu(&device->dev_list);
1984 device->fs_devices->num_devices--;
1985 device->fs_devices->total_devices--;
1987 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1988 device->fs_devices->missing_devices--;
1990 btrfs_assign_next_active_device(fs_info, device, NULL);
1992 if (device->bdev) {
1993 device->fs_devices->open_devices--;
1994 /* remove sysfs entry */
1995 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
1998 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1999 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2000 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2003 * at this point, the device is zero sized and detached from
2004 * the devices list. All that's left is to zero out the old
2005 * supers and free the device.
2007 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2008 btrfs_scratch_superblocks(device->bdev, device->name->str);
2010 btrfs_close_bdev(device);
2011 call_rcu(&device->rcu, free_device_rcu);
2013 if (cur_devices->open_devices == 0) {
2014 struct btrfs_fs_devices *fs_devices;
2015 fs_devices = fs_info->fs_devices;
2016 while (fs_devices) {
2017 if (fs_devices->seed == cur_devices) {
2018 fs_devices->seed = cur_devices->seed;
2019 break;
2021 fs_devices = fs_devices->seed;
2023 cur_devices->seed = NULL;
2024 __btrfs_close_devices(cur_devices);
2025 free_fs_devices(cur_devices);
2028 out:
2029 mutex_unlock(&uuid_mutex);
2030 mutex_unlock(&fs_info->volume_mutex);
2031 return ret;
2033 error_undo:
2034 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2035 mutex_lock(&fs_info->chunk_mutex);
2036 list_add(&device->dev_alloc_list,
2037 &fs_info->fs_devices->alloc_list);
2038 device->fs_devices->rw_devices++;
2039 mutex_unlock(&fs_info->chunk_mutex);
2041 goto out;
2044 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
2045 struct btrfs_device *srcdev)
2047 struct btrfs_fs_devices *fs_devices;
2049 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
2052 * in case of fs with no seed, srcdev->fs_devices will point
2053 * to fs_devices of fs_info. However when the dev being replaced is
2054 * a seed dev it will point to the seed's local fs_devices. In short
2055 * srcdev will have its correct fs_devices in both the cases.
2057 fs_devices = srcdev->fs_devices;
2059 list_del_rcu(&srcdev->dev_list);
2060 list_del(&srcdev->dev_alloc_list);
2061 fs_devices->num_devices--;
2062 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2063 fs_devices->missing_devices--;
2065 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2066 fs_devices->rw_devices--;
2068 if (srcdev->bdev)
2069 fs_devices->open_devices--;
2072 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2073 struct btrfs_device *srcdev)
2075 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2077 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2078 /* zero out the old super if it is writable */
2079 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2082 btrfs_close_bdev(srcdev);
2083 call_rcu(&srcdev->rcu, free_device_rcu);
2085 /* if this is no devs we rather delete the fs_devices */
2086 if (!fs_devices->num_devices) {
2087 struct btrfs_fs_devices *tmp_fs_devices;
2090 * On a mounted FS, num_devices can't be zero unless it's a
2091 * seed. In case of a seed device being replaced, the replace
2092 * target added to the sprout FS, so there will be no more
2093 * device left under the seed FS.
2095 ASSERT(fs_devices->seeding);
2097 tmp_fs_devices = fs_info->fs_devices;
2098 while (tmp_fs_devices) {
2099 if (tmp_fs_devices->seed == fs_devices) {
2100 tmp_fs_devices->seed = fs_devices->seed;
2101 break;
2103 tmp_fs_devices = tmp_fs_devices->seed;
2105 fs_devices->seed = NULL;
2106 __btrfs_close_devices(fs_devices);
2107 free_fs_devices(fs_devices);
2111 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2112 struct btrfs_device *tgtdev)
2114 mutex_lock(&uuid_mutex);
2115 WARN_ON(!tgtdev);
2116 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2118 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2120 if (tgtdev->bdev)
2121 fs_info->fs_devices->open_devices--;
2123 fs_info->fs_devices->num_devices--;
2125 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2127 list_del_rcu(&tgtdev->dev_list);
2129 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2130 mutex_unlock(&uuid_mutex);
2133 * The update_dev_time() with in btrfs_scratch_superblocks()
2134 * may lead to a call to btrfs_show_devname() which will try
2135 * to hold device_list_mutex. And here this device
2136 * is already out of device list, so we don't have to hold
2137 * the device_list_mutex lock.
2139 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2141 btrfs_close_bdev(tgtdev);
2142 call_rcu(&tgtdev->rcu, free_device_rcu);
2145 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2146 const char *device_path,
2147 struct btrfs_device **device)
2149 int ret = 0;
2150 struct btrfs_super_block *disk_super;
2151 u64 devid;
2152 u8 *dev_uuid;
2153 struct block_device *bdev;
2154 struct buffer_head *bh;
2156 *device = NULL;
2157 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2158 fs_info->bdev_holder, 0, &bdev, &bh);
2159 if (ret)
2160 return ret;
2161 disk_super = (struct btrfs_super_block *)bh->b_data;
2162 devid = btrfs_stack_device_id(&disk_super->dev_item);
2163 dev_uuid = disk_super->dev_item.uuid;
2164 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2165 brelse(bh);
2166 if (!*device)
2167 ret = -ENOENT;
2168 blkdev_put(bdev, FMODE_READ);
2169 return ret;
2172 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2173 const char *device_path,
2174 struct btrfs_device **device)
2176 *device = NULL;
2177 if (strcmp(device_path, "missing") == 0) {
2178 struct list_head *devices;
2179 struct btrfs_device *tmp;
2181 devices = &fs_info->fs_devices->devices;
2183 * It is safe to read the devices since the volume_mutex
2184 * is held by the caller.
2186 list_for_each_entry(tmp, devices, dev_list) {
2187 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2188 &tmp->dev_state) && !tmp->bdev) {
2189 *device = tmp;
2190 break;
2194 if (!*device)
2195 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2197 return 0;
2198 } else {
2199 return btrfs_find_device_by_path(fs_info, device_path, device);
2204 * Lookup a device given by device id, or the path if the id is 0.
2206 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2207 const char *devpath,
2208 struct btrfs_device **device)
2210 int ret;
2212 if (devid) {
2213 ret = 0;
2214 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2215 if (!*device)
2216 ret = -ENOENT;
2217 } else {
2218 if (!devpath || !devpath[0])
2219 return -EINVAL;
2221 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2222 device);
2224 return ret;
2228 * does all the dirty work required for changing file system's UUID.
2230 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2232 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2233 struct btrfs_fs_devices *old_devices;
2234 struct btrfs_fs_devices *seed_devices;
2235 struct btrfs_super_block *disk_super = fs_info->super_copy;
2236 struct btrfs_device *device;
2237 u64 super_flags;
2239 BUG_ON(!mutex_is_locked(&uuid_mutex));
2240 if (!fs_devices->seeding)
2241 return -EINVAL;
2243 seed_devices = alloc_fs_devices(NULL);
2244 if (IS_ERR(seed_devices))
2245 return PTR_ERR(seed_devices);
2247 old_devices = clone_fs_devices(fs_devices);
2248 if (IS_ERR(old_devices)) {
2249 kfree(seed_devices);
2250 return PTR_ERR(old_devices);
2253 list_add(&old_devices->list, &fs_uuids);
2255 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2256 seed_devices->opened = 1;
2257 INIT_LIST_HEAD(&seed_devices->devices);
2258 INIT_LIST_HEAD(&seed_devices->alloc_list);
2259 mutex_init(&seed_devices->device_list_mutex);
2261 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2262 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2263 synchronize_rcu);
2264 list_for_each_entry(device, &seed_devices->devices, dev_list)
2265 device->fs_devices = seed_devices;
2267 mutex_lock(&fs_info->chunk_mutex);
2268 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2269 mutex_unlock(&fs_info->chunk_mutex);
2271 fs_devices->seeding = 0;
2272 fs_devices->num_devices = 0;
2273 fs_devices->open_devices = 0;
2274 fs_devices->missing_devices = 0;
2275 fs_devices->rotating = 0;
2276 fs_devices->seed = seed_devices;
2278 generate_random_uuid(fs_devices->fsid);
2279 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2280 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2281 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2283 super_flags = btrfs_super_flags(disk_super) &
2284 ~BTRFS_SUPER_FLAG_SEEDING;
2285 btrfs_set_super_flags(disk_super, super_flags);
2287 return 0;
2291 * Store the expected generation for seed devices in device items.
2293 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2294 struct btrfs_fs_info *fs_info)
2296 struct btrfs_root *root = fs_info->chunk_root;
2297 struct btrfs_path *path;
2298 struct extent_buffer *leaf;
2299 struct btrfs_dev_item *dev_item;
2300 struct btrfs_device *device;
2301 struct btrfs_key key;
2302 u8 fs_uuid[BTRFS_FSID_SIZE];
2303 u8 dev_uuid[BTRFS_UUID_SIZE];
2304 u64 devid;
2305 int ret;
2307 path = btrfs_alloc_path();
2308 if (!path)
2309 return -ENOMEM;
2311 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2312 key.offset = 0;
2313 key.type = BTRFS_DEV_ITEM_KEY;
2315 while (1) {
2316 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2317 if (ret < 0)
2318 goto error;
2320 leaf = path->nodes[0];
2321 next_slot:
2322 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2323 ret = btrfs_next_leaf(root, path);
2324 if (ret > 0)
2325 break;
2326 if (ret < 0)
2327 goto error;
2328 leaf = path->nodes[0];
2329 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2330 btrfs_release_path(path);
2331 continue;
2334 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2335 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2336 key.type != BTRFS_DEV_ITEM_KEY)
2337 break;
2339 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2340 struct btrfs_dev_item);
2341 devid = btrfs_device_id(leaf, dev_item);
2342 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2343 BTRFS_UUID_SIZE);
2344 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2345 BTRFS_FSID_SIZE);
2346 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2347 BUG_ON(!device); /* Logic error */
2349 if (device->fs_devices->seeding) {
2350 btrfs_set_device_generation(leaf, dev_item,
2351 device->generation);
2352 btrfs_mark_buffer_dirty(leaf);
2355 path->slots[0]++;
2356 goto next_slot;
2358 ret = 0;
2359 error:
2360 btrfs_free_path(path);
2361 return ret;
2364 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2366 struct btrfs_root *root = fs_info->dev_root;
2367 struct request_queue *q;
2368 struct btrfs_trans_handle *trans;
2369 struct btrfs_device *device;
2370 struct block_device *bdev;
2371 struct list_head *devices;
2372 struct super_block *sb = fs_info->sb;
2373 struct rcu_string *name;
2374 u64 tmp;
2375 int seeding_dev = 0;
2376 int ret = 0;
2377 bool unlocked = false;
2379 if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
2380 return -EROFS;
2382 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2383 fs_info->bdev_holder);
2384 if (IS_ERR(bdev))
2385 return PTR_ERR(bdev);
2387 if (fs_info->fs_devices->seeding) {
2388 seeding_dev = 1;
2389 down_write(&sb->s_umount);
2390 mutex_lock(&uuid_mutex);
2393 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2395 devices = &fs_info->fs_devices->devices;
2397 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2398 list_for_each_entry(device, devices, dev_list) {
2399 if (device->bdev == bdev) {
2400 ret = -EEXIST;
2401 mutex_unlock(
2402 &fs_info->fs_devices->device_list_mutex);
2403 goto error;
2406 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2408 device = btrfs_alloc_device(fs_info, NULL, NULL);
2409 if (IS_ERR(device)) {
2410 /* we can safely leave the fs_devices entry around */
2411 ret = PTR_ERR(device);
2412 goto error;
2415 name = rcu_string_strdup(device_path, GFP_KERNEL);
2416 if (!name) {
2417 ret = -ENOMEM;
2418 goto error_free_device;
2420 rcu_assign_pointer(device->name, name);
2422 trans = btrfs_start_transaction(root, 0);
2423 if (IS_ERR(trans)) {
2424 ret = PTR_ERR(trans);
2425 goto error_free_device;
2428 q = bdev_get_queue(bdev);
2429 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2430 device->generation = trans->transid;
2431 device->io_width = fs_info->sectorsize;
2432 device->io_align = fs_info->sectorsize;
2433 device->sector_size = fs_info->sectorsize;
2434 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2435 fs_info->sectorsize);
2436 device->disk_total_bytes = device->total_bytes;
2437 device->commit_total_bytes = device->total_bytes;
2438 device->fs_info = fs_info;
2439 device->bdev = bdev;
2440 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2441 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2442 device->mode = FMODE_EXCL;
2443 device->dev_stats_valid = 1;
2444 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2446 if (seeding_dev) {
2447 sb->s_flags &= ~SB_RDONLY;
2448 ret = btrfs_prepare_sprout(fs_info);
2449 if (ret) {
2450 btrfs_abort_transaction(trans, ret);
2451 goto error_trans;
2455 device->fs_devices = fs_info->fs_devices;
2457 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2458 mutex_lock(&fs_info->chunk_mutex);
2459 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2460 list_add(&device->dev_alloc_list,
2461 &fs_info->fs_devices->alloc_list);
2462 fs_info->fs_devices->num_devices++;
2463 fs_info->fs_devices->open_devices++;
2464 fs_info->fs_devices->rw_devices++;
2465 fs_info->fs_devices->total_devices++;
2466 fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2468 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2470 if (!blk_queue_nonrot(q))
2471 fs_info->fs_devices->rotating = 1;
2473 tmp = btrfs_super_total_bytes(fs_info->super_copy);
2474 btrfs_set_super_total_bytes(fs_info->super_copy,
2475 round_down(tmp + device->total_bytes, fs_info->sectorsize));
2477 tmp = btrfs_super_num_devices(fs_info->super_copy);
2478 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2480 /* add sysfs device entry */
2481 btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2484 * we've got more storage, clear any full flags on the space
2485 * infos
2487 btrfs_clear_space_info_full(fs_info);
2489 mutex_unlock(&fs_info->chunk_mutex);
2490 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2492 if (seeding_dev) {
2493 mutex_lock(&fs_info->chunk_mutex);
2494 ret = init_first_rw_device(trans, fs_info);
2495 mutex_unlock(&fs_info->chunk_mutex);
2496 if (ret) {
2497 btrfs_abort_transaction(trans, ret);
2498 goto error_sysfs;
2502 ret = btrfs_add_dev_item(trans, fs_info, device);
2503 if (ret) {
2504 btrfs_abort_transaction(trans, ret);
2505 goto error_sysfs;
2508 if (seeding_dev) {
2509 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2511 ret = btrfs_finish_sprout(trans, fs_info);
2512 if (ret) {
2513 btrfs_abort_transaction(trans, ret);
2514 goto error_sysfs;
2517 /* Sprouting would change fsid of the mounted root,
2518 * so rename the fsid on the sysfs
2520 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2521 fs_info->fsid);
2522 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2523 btrfs_warn(fs_info,
2524 "sysfs: failed to create fsid for sprout");
2527 ret = btrfs_commit_transaction(trans);
2529 if (seeding_dev) {
2530 mutex_unlock(&uuid_mutex);
2531 up_write(&sb->s_umount);
2532 unlocked = true;
2534 if (ret) /* transaction commit */
2535 return ret;
2537 ret = btrfs_relocate_sys_chunks(fs_info);
2538 if (ret < 0)
2539 btrfs_handle_fs_error(fs_info, ret,
2540 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2541 trans = btrfs_attach_transaction(root);
2542 if (IS_ERR(trans)) {
2543 if (PTR_ERR(trans) == -ENOENT)
2544 return 0;
2545 ret = PTR_ERR(trans);
2546 trans = NULL;
2547 goto error_sysfs;
2549 ret = btrfs_commit_transaction(trans);
2552 /* Update ctime/mtime for libblkid */
2553 update_dev_time(device_path);
2554 return ret;
2556 error_sysfs:
2557 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2558 error_trans:
2559 if (seeding_dev)
2560 sb->s_flags |= SB_RDONLY;
2561 if (trans)
2562 btrfs_end_transaction(trans);
2563 error_free_device:
2564 free_device(device);
2565 error:
2566 blkdev_put(bdev, FMODE_EXCL);
2567 if (seeding_dev && !unlocked) {
2568 mutex_unlock(&uuid_mutex);
2569 up_write(&sb->s_umount);
2571 return ret;
2574 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2575 const char *device_path,
2576 struct btrfs_device *srcdev,
2577 struct btrfs_device **device_out)
2579 struct btrfs_device *device;
2580 struct block_device *bdev;
2581 struct list_head *devices;
2582 struct rcu_string *name;
2583 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2584 int ret = 0;
2586 *device_out = NULL;
2587 if (fs_info->fs_devices->seeding) {
2588 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2589 return -EINVAL;
2592 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2593 fs_info->bdev_holder);
2594 if (IS_ERR(bdev)) {
2595 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2596 return PTR_ERR(bdev);
2599 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2601 devices = &fs_info->fs_devices->devices;
2602 list_for_each_entry(device, devices, dev_list) {
2603 if (device->bdev == bdev) {
2604 btrfs_err(fs_info,
2605 "target device is in the filesystem!");
2606 ret = -EEXIST;
2607 goto error;
2612 if (i_size_read(bdev->bd_inode) <
2613 btrfs_device_get_total_bytes(srcdev)) {
2614 btrfs_err(fs_info,
2615 "target device is smaller than source device!");
2616 ret = -EINVAL;
2617 goto error;
2621 device = btrfs_alloc_device(NULL, &devid, NULL);
2622 if (IS_ERR(device)) {
2623 ret = PTR_ERR(device);
2624 goto error;
2627 name = rcu_string_strdup(device_path, GFP_KERNEL);
2628 if (!name) {
2629 free_device(device);
2630 ret = -ENOMEM;
2631 goto error;
2633 rcu_assign_pointer(device->name, name);
2635 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2636 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2637 device->generation = 0;
2638 device->io_width = fs_info->sectorsize;
2639 device->io_align = fs_info->sectorsize;
2640 device->sector_size = fs_info->sectorsize;
2641 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2642 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2643 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2644 ASSERT(list_empty(&srcdev->resized_list));
2645 device->commit_total_bytes = srcdev->commit_total_bytes;
2646 device->commit_bytes_used = device->bytes_used;
2647 device->fs_info = fs_info;
2648 device->bdev = bdev;
2649 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2650 set_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2651 device->mode = FMODE_EXCL;
2652 device->dev_stats_valid = 1;
2653 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2654 device->fs_devices = fs_info->fs_devices;
2655 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2656 fs_info->fs_devices->num_devices++;
2657 fs_info->fs_devices->open_devices++;
2658 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2660 *device_out = device;
2661 return ret;
2663 error:
2664 blkdev_put(bdev, FMODE_EXCL);
2665 return ret;
2668 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2669 struct btrfs_device *tgtdev)
2671 u32 sectorsize = fs_info->sectorsize;
2673 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2674 tgtdev->io_width = sectorsize;
2675 tgtdev->io_align = sectorsize;
2676 tgtdev->sector_size = sectorsize;
2677 tgtdev->fs_info = fs_info;
2678 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &tgtdev->dev_state);
2681 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2682 struct btrfs_device *device)
2684 int ret;
2685 struct btrfs_path *path;
2686 struct btrfs_root *root = device->fs_info->chunk_root;
2687 struct btrfs_dev_item *dev_item;
2688 struct extent_buffer *leaf;
2689 struct btrfs_key key;
2691 path = btrfs_alloc_path();
2692 if (!path)
2693 return -ENOMEM;
2695 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2696 key.type = BTRFS_DEV_ITEM_KEY;
2697 key.offset = device->devid;
2699 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2700 if (ret < 0)
2701 goto out;
2703 if (ret > 0) {
2704 ret = -ENOENT;
2705 goto out;
2708 leaf = path->nodes[0];
2709 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2711 btrfs_set_device_id(leaf, dev_item, device->devid);
2712 btrfs_set_device_type(leaf, dev_item, device->type);
2713 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2714 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2715 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2716 btrfs_set_device_total_bytes(leaf, dev_item,
2717 btrfs_device_get_disk_total_bytes(device));
2718 btrfs_set_device_bytes_used(leaf, dev_item,
2719 btrfs_device_get_bytes_used(device));
2720 btrfs_mark_buffer_dirty(leaf);
2722 out:
2723 btrfs_free_path(path);
2724 return ret;
2727 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2728 struct btrfs_device *device, u64 new_size)
2730 struct btrfs_fs_info *fs_info = device->fs_info;
2731 struct btrfs_super_block *super_copy = fs_info->super_copy;
2732 struct btrfs_fs_devices *fs_devices;
2733 u64 old_total;
2734 u64 diff;
2736 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2737 return -EACCES;
2739 new_size = round_down(new_size, fs_info->sectorsize);
2741 mutex_lock(&fs_info->chunk_mutex);
2742 old_total = btrfs_super_total_bytes(super_copy);
2743 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2745 if (new_size <= device->total_bytes ||
2746 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2747 mutex_unlock(&fs_info->chunk_mutex);
2748 return -EINVAL;
2751 fs_devices = fs_info->fs_devices;
2753 btrfs_set_super_total_bytes(super_copy,
2754 round_down(old_total + diff, fs_info->sectorsize));
2755 device->fs_devices->total_rw_bytes += diff;
2757 btrfs_device_set_total_bytes(device, new_size);
2758 btrfs_device_set_disk_total_bytes(device, new_size);
2759 btrfs_clear_space_info_full(device->fs_info);
2760 if (list_empty(&device->resized_list))
2761 list_add_tail(&device->resized_list,
2762 &fs_devices->resized_devices);
2763 mutex_unlock(&fs_info->chunk_mutex);
2765 return btrfs_update_device(trans, device);
2768 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2769 struct btrfs_fs_info *fs_info, u64 chunk_offset)
2771 struct btrfs_root *root = fs_info->chunk_root;
2772 int ret;
2773 struct btrfs_path *path;
2774 struct btrfs_key key;
2776 path = btrfs_alloc_path();
2777 if (!path)
2778 return -ENOMEM;
2780 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2781 key.offset = chunk_offset;
2782 key.type = BTRFS_CHUNK_ITEM_KEY;
2784 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2785 if (ret < 0)
2786 goto out;
2787 else if (ret > 0) { /* Logic error or corruption */
2788 btrfs_handle_fs_error(fs_info, -ENOENT,
2789 "Failed lookup while freeing chunk.");
2790 ret = -ENOENT;
2791 goto out;
2794 ret = btrfs_del_item(trans, root, path);
2795 if (ret < 0)
2796 btrfs_handle_fs_error(fs_info, ret,
2797 "Failed to delete chunk item.");
2798 out:
2799 btrfs_free_path(path);
2800 return ret;
2803 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2805 struct btrfs_super_block *super_copy = fs_info->super_copy;
2806 struct btrfs_disk_key *disk_key;
2807 struct btrfs_chunk *chunk;
2808 u8 *ptr;
2809 int ret = 0;
2810 u32 num_stripes;
2811 u32 array_size;
2812 u32 len = 0;
2813 u32 cur;
2814 struct btrfs_key key;
2816 mutex_lock(&fs_info->chunk_mutex);
2817 array_size = btrfs_super_sys_array_size(super_copy);
2819 ptr = super_copy->sys_chunk_array;
2820 cur = 0;
2822 while (cur < array_size) {
2823 disk_key = (struct btrfs_disk_key *)ptr;
2824 btrfs_disk_key_to_cpu(&key, disk_key);
2826 len = sizeof(*disk_key);
2828 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2829 chunk = (struct btrfs_chunk *)(ptr + len);
2830 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2831 len += btrfs_chunk_item_size(num_stripes);
2832 } else {
2833 ret = -EIO;
2834 break;
2836 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2837 key.offset == chunk_offset) {
2838 memmove(ptr, ptr + len, array_size - (cur + len));
2839 array_size -= len;
2840 btrfs_set_super_sys_array_size(super_copy, array_size);
2841 } else {
2842 ptr += len;
2843 cur += len;
2846 mutex_unlock(&fs_info->chunk_mutex);
2847 return ret;
2850 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2851 u64 logical, u64 length)
2853 struct extent_map_tree *em_tree;
2854 struct extent_map *em;
2856 em_tree = &fs_info->mapping_tree.map_tree;
2857 read_lock(&em_tree->lock);
2858 em = lookup_extent_mapping(em_tree, logical, length);
2859 read_unlock(&em_tree->lock);
2861 if (!em) {
2862 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2863 logical, length);
2864 return ERR_PTR(-EINVAL);
2867 if (em->start > logical || em->start + em->len < logical) {
2868 btrfs_crit(fs_info,
2869 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2870 logical, length, em->start, em->start + em->len);
2871 free_extent_map(em);
2872 return ERR_PTR(-EINVAL);
2875 /* callers are responsible for dropping em's ref. */
2876 return em;
2879 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2880 struct btrfs_fs_info *fs_info, u64 chunk_offset)
2882 struct extent_map *em;
2883 struct map_lookup *map;
2884 u64 dev_extent_len = 0;
2885 int i, ret = 0;
2886 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2888 em = get_chunk_map(fs_info, chunk_offset, 1);
2889 if (IS_ERR(em)) {
2891 * This is a logic error, but we don't want to just rely on the
2892 * user having built with ASSERT enabled, so if ASSERT doesn't
2893 * do anything we still error out.
2895 ASSERT(0);
2896 return PTR_ERR(em);
2898 map = em->map_lookup;
2899 mutex_lock(&fs_info->chunk_mutex);
2900 check_system_chunk(trans, fs_info, map->type);
2901 mutex_unlock(&fs_info->chunk_mutex);
2904 * Take the device list mutex to prevent races with the final phase of
2905 * a device replace operation that replaces the device object associated
2906 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2908 mutex_lock(&fs_devices->device_list_mutex);
2909 for (i = 0; i < map->num_stripes; i++) {
2910 struct btrfs_device *device = map->stripes[i].dev;
2911 ret = btrfs_free_dev_extent(trans, device,
2912 map->stripes[i].physical,
2913 &dev_extent_len);
2914 if (ret) {
2915 mutex_unlock(&fs_devices->device_list_mutex);
2916 btrfs_abort_transaction(trans, ret);
2917 goto out;
2920 if (device->bytes_used > 0) {
2921 mutex_lock(&fs_info->chunk_mutex);
2922 btrfs_device_set_bytes_used(device,
2923 device->bytes_used - dev_extent_len);
2924 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2925 btrfs_clear_space_info_full(fs_info);
2926 mutex_unlock(&fs_info->chunk_mutex);
2929 if (map->stripes[i].dev) {
2930 ret = btrfs_update_device(trans, map->stripes[i].dev);
2931 if (ret) {
2932 mutex_unlock(&fs_devices->device_list_mutex);
2933 btrfs_abort_transaction(trans, ret);
2934 goto out;
2938 mutex_unlock(&fs_devices->device_list_mutex);
2940 ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
2941 if (ret) {
2942 btrfs_abort_transaction(trans, ret);
2943 goto out;
2946 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2948 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2949 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2950 if (ret) {
2951 btrfs_abort_transaction(trans, ret);
2952 goto out;
2956 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2957 if (ret) {
2958 btrfs_abort_transaction(trans, ret);
2959 goto out;
2962 out:
2963 /* once for us */
2964 free_extent_map(em);
2965 return ret;
2968 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2970 struct btrfs_root *root = fs_info->chunk_root;
2971 struct btrfs_trans_handle *trans;
2972 int ret;
2975 * Prevent races with automatic removal of unused block groups.
2976 * After we relocate and before we remove the chunk with offset
2977 * chunk_offset, automatic removal of the block group can kick in,
2978 * resulting in a failure when calling btrfs_remove_chunk() below.
2980 * Make sure to acquire this mutex before doing a tree search (dev
2981 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2982 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2983 * we release the path used to search the chunk/dev tree and before
2984 * the current task acquires this mutex and calls us.
2986 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
2988 ret = btrfs_can_relocate(fs_info, chunk_offset);
2989 if (ret)
2990 return -ENOSPC;
2992 /* step one, relocate all the extents inside this chunk */
2993 btrfs_scrub_pause(fs_info);
2994 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2995 btrfs_scrub_continue(fs_info);
2996 if (ret)
2997 return ret;
2999 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3000 chunk_offset);
3001 if (IS_ERR(trans)) {
3002 ret = PTR_ERR(trans);
3003 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3004 return ret;
3008 * step two, delete the device extents and the
3009 * chunk tree entries
3011 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
3012 btrfs_end_transaction(trans);
3013 return ret;
3016 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3018 struct btrfs_root *chunk_root = fs_info->chunk_root;
3019 struct btrfs_path *path;
3020 struct extent_buffer *leaf;
3021 struct btrfs_chunk *chunk;
3022 struct btrfs_key key;
3023 struct btrfs_key found_key;
3024 u64 chunk_type;
3025 bool retried = false;
3026 int failed = 0;
3027 int ret;
3029 path = btrfs_alloc_path();
3030 if (!path)
3031 return -ENOMEM;
3033 again:
3034 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3035 key.offset = (u64)-1;
3036 key.type = BTRFS_CHUNK_ITEM_KEY;
3038 while (1) {
3039 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3040 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3041 if (ret < 0) {
3042 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3043 goto error;
3045 BUG_ON(ret == 0); /* Corruption */
3047 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3048 key.type);
3049 if (ret)
3050 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3051 if (ret < 0)
3052 goto error;
3053 if (ret > 0)
3054 break;
3056 leaf = path->nodes[0];
3057 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3059 chunk = btrfs_item_ptr(leaf, path->slots[0],
3060 struct btrfs_chunk);
3061 chunk_type = btrfs_chunk_type(leaf, chunk);
3062 btrfs_release_path(path);
3064 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3065 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3066 if (ret == -ENOSPC)
3067 failed++;
3068 else
3069 BUG_ON(ret);
3071 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3073 if (found_key.offset == 0)
3074 break;
3075 key.offset = found_key.offset - 1;
3077 ret = 0;
3078 if (failed && !retried) {
3079 failed = 0;
3080 retried = true;
3081 goto again;
3082 } else if (WARN_ON(failed && retried)) {
3083 ret = -ENOSPC;
3085 error:
3086 btrfs_free_path(path);
3087 return ret;
3091 * return 1 : allocate a data chunk successfully,
3092 * return <0: errors during allocating a data chunk,
3093 * return 0 : no need to allocate a data chunk.
3095 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3096 u64 chunk_offset)
3098 struct btrfs_block_group_cache *cache;
3099 u64 bytes_used;
3100 u64 chunk_type;
3102 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3103 ASSERT(cache);
3104 chunk_type = cache->flags;
3105 btrfs_put_block_group(cache);
3107 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3108 spin_lock(&fs_info->data_sinfo->lock);
3109 bytes_used = fs_info->data_sinfo->bytes_used;
3110 spin_unlock(&fs_info->data_sinfo->lock);
3112 if (!bytes_used) {
3113 struct btrfs_trans_handle *trans;
3114 int ret;
3116 trans = btrfs_join_transaction(fs_info->tree_root);
3117 if (IS_ERR(trans))
3118 return PTR_ERR(trans);
3120 ret = btrfs_force_chunk_alloc(trans, fs_info,
3121 BTRFS_BLOCK_GROUP_DATA);
3122 btrfs_end_transaction(trans);
3123 if (ret < 0)
3124 return ret;
3126 return 1;
3129 return 0;
3132 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3133 struct btrfs_balance_control *bctl)
3135 struct btrfs_root *root = fs_info->tree_root;
3136 struct btrfs_trans_handle *trans;
3137 struct btrfs_balance_item *item;
3138 struct btrfs_disk_balance_args disk_bargs;
3139 struct btrfs_path *path;
3140 struct extent_buffer *leaf;
3141 struct btrfs_key key;
3142 int ret, err;
3144 path = btrfs_alloc_path();
3145 if (!path)
3146 return -ENOMEM;
3148 trans = btrfs_start_transaction(root, 0);
3149 if (IS_ERR(trans)) {
3150 btrfs_free_path(path);
3151 return PTR_ERR(trans);
3154 key.objectid = BTRFS_BALANCE_OBJECTID;
3155 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3156 key.offset = 0;
3158 ret = btrfs_insert_empty_item(trans, root, path, &key,
3159 sizeof(*item));
3160 if (ret)
3161 goto out;
3163 leaf = path->nodes[0];
3164 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3166 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3168 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3169 btrfs_set_balance_data(leaf, item, &disk_bargs);
3170 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3171 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3172 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3173 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3175 btrfs_set_balance_flags(leaf, item, bctl->flags);
3177 btrfs_mark_buffer_dirty(leaf);
3178 out:
3179 btrfs_free_path(path);
3180 err = btrfs_commit_transaction(trans);
3181 if (err && !ret)
3182 ret = err;
3183 return ret;
3186 static int del_balance_item(struct btrfs_fs_info *fs_info)
3188 struct btrfs_root *root = fs_info->tree_root;
3189 struct btrfs_trans_handle *trans;
3190 struct btrfs_path *path;
3191 struct btrfs_key key;
3192 int ret, err;
3194 path = btrfs_alloc_path();
3195 if (!path)
3196 return -ENOMEM;
3198 trans = btrfs_start_transaction(root, 0);
3199 if (IS_ERR(trans)) {
3200 btrfs_free_path(path);
3201 return PTR_ERR(trans);
3204 key.objectid = BTRFS_BALANCE_OBJECTID;
3205 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3206 key.offset = 0;
3208 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3209 if (ret < 0)
3210 goto out;
3211 if (ret > 0) {
3212 ret = -ENOENT;
3213 goto out;
3216 ret = btrfs_del_item(trans, root, path);
3217 out:
3218 btrfs_free_path(path);
3219 err = btrfs_commit_transaction(trans);
3220 if (err && !ret)
3221 ret = err;
3222 return ret;
3226 * This is a heuristic used to reduce the number of chunks balanced on
3227 * resume after balance was interrupted.
3229 static void update_balance_args(struct btrfs_balance_control *bctl)
3232 * Turn on soft mode for chunk types that were being converted.
3234 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3235 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3236 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3237 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3238 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3239 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3242 * Turn on usage filter if is not already used. The idea is
3243 * that chunks that we have already balanced should be
3244 * reasonably full. Don't do it for chunks that are being
3245 * converted - that will keep us from relocating unconverted
3246 * (albeit full) chunks.
3248 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3249 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3250 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3251 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3252 bctl->data.usage = 90;
3254 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3255 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3256 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3257 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3258 bctl->sys.usage = 90;
3260 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3261 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3262 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3263 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3264 bctl->meta.usage = 90;
3269 * Should be called with both balance and volume mutexes held to
3270 * serialize other volume operations (add_dev/rm_dev/resize) with
3271 * restriper. Same goes for unset_balance_control.
3273 static void set_balance_control(struct btrfs_balance_control *bctl)
3275 struct btrfs_fs_info *fs_info = bctl->fs_info;
3277 BUG_ON(fs_info->balance_ctl);
3279 spin_lock(&fs_info->balance_lock);
3280 fs_info->balance_ctl = bctl;
3281 spin_unlock(&fs_info->balance_lock);
3284 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3286 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3288 BUG_ON(!fs_info->balance_ctl);
3290 spin_lock(&fs_info->balance_lock);
3291 fs_info->balance_ctl = NULL;
3292 spin_unlock(&fs_info->balance_lock);
3294 kfree(bctl);
3298 * Balance filters. Return 1 if chunk should be filtered out
3299 * (should not be balanced).
3301 static int chunk_profiles_filter(u64 chunk_type,
3302 struct btrfs_balance_args *bargs)
3304 chunk_type = chunk_to_extended(chunk_type) &
3305 BTRFS_EXTENDED_PROFILE_MASK;
3307 if (bargs->profiles & chunk_type)
3308 return 0;
3310 return 1;
3313 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3314 struct btrfs_balance_args *bargs)
3316 struct btrfs_block_group_cache *cache;
3317 u64 chunk_used;
3318 u64 user_thresh_min;
3319 u64 user_thresh_max;
3320 int ret = 1;
3322 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3323 chunk_used = btrfs_block_group_used(&cache->item);
3325 if (bargs->usage_min == 0)
3326 user_thresh_min = 0;
3327 else
3328 user_thresh_min = div_factor_fine(cache->key.offset,
3329 bargs->usage_min);
3331 if (bargs->usage_max == 0)
3332 user_thresh_max = 1;
3333 else if (bargs->usage_max > 100)
3334 user_thresh_max = cache->key.offset;
3335 else
3336 user_thresh_max = div_factor_fine(cache->key.offset,
3337 bargs->usage_max);
3339 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3340 ret = 0;
3342 btrfs_put_block_group(cache);
3343 return ret;
3346 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3347 u64 chunk_offset, struct btrfs_balance_args *bargs)
3349 struct btrfs_block_group_cache *cache;
3350 u64 chunk_used, user_thresh;
3351 int ret = 1;
3353 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3354 chunk_used = btrfs_block_group_used(&cache->item);
3356 if (bargs->usage_min == 0)
3357 user_thresh = 1;
3358 else if (bargs->usage > 100)
3359 user_thresh = cache->key.offset;
3360 else
3361 user_thresh = div_factor_fine(cache->key.offset,
3362 bargs->usage);
3364 if (chunk_used < user_thresh)
3365 ret = 0;
3367 btrfs_put_block_group(cache);
3368 return ret;
3371 static int chunk_devid_filter(struct extent_buffer *leaf,
3372 struct btrfs_chunk *chunk,
3373 struct btrfs_balance_args *bargs)
3375 struct btrfs_stripe *stripe;
3376 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3377 int i;
3379 for (i = 0; i < num_stripes; i++) {
3380 stripe = btrfs_stripe_nr(chunk, i);
3381 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3382 return 0;
3385 return 1;
3388 /* [pstart, pend) */
3389 static int chunk_drange_filter(struct extent_buffer *leaf,
3390 struct btrfs_chunk *chunk,
3391 struct btrfs_balance_args *bargs)
3393 struct btrfs_stripe *stripe;
3394 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3395 u64 stripe_offset;
3396 u64 stripe_length;
3397 int factor;
3398 int i;
3400 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3401 return 0;
3403 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3404 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3405 factor = num_stripes / 2;
3406 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3407 factor = num_stripes - 1;
3408 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3409 factor = num_stripes - 2;
3410 } else {
3411 factor = num_stripes;
3414 for (i = 0; i < num_stripes; i++) {
3415 stripe = btrfs_stripe_nr(chunk, i);
3416 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3417 continue;
3419 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3420 stripe_length = btrfs_chunk_length(leaf, chunk);
3421 stripe_length = div_u64(stripe_length, factor);
3423 if (stripe_offset < bargs->pend &&
3424 stripe_offset + stripe_length > bargs->pstart)
3425 return 0;
3428 return 1;
3431 /* [vstart, vend) */
3432 static int chunk_vrange_filter(struct extent_buffer *leaf,
3433 struct btrfs_chunk *chunk,
3434 u64 chunk_offset,
3435 struct btrfs_balance_args *bargs)
3437 if (chunk_offset < bargs->vend &&
3438 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3439 /* at least part of the chunk is inside this vrange */
3440 return 0;
3442 return 1;
3445 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3446 struct btrfs_chunk *chunk,
3447 struct btrfs_balance_args *bargs)
3449 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3451 if (bargs->stripes_min <= num_stripes
3452 && num_stripes <= bargs->stripes_max)
3453 return 0;
3455 return 1;
3458 static int chunk_soft_convert_filter(u64 chunk_type,
3459 struct btrfs_balance_args *bargs)
3461 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3462 return 0;
3464 chunk_type = chunk_to_extended(chunk_type) &
3465 BTRFS_EXTENDED_PROFILE_MASK;
3467 if (bargs->target == chunk_type)
3468 return 1;
3470 return 0;
3473 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3474 struct extent_buffer *leaf,
3475 struct btrfs_chunk *chunk, u64 chunk_offset)
3477 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3478 struct btrfs_balance_args *bargs = NULL;
3479 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3481 /* type filter */
3482 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3483 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3484 return 0;
3487 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3488 bargs = &bctl->data;
3489 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3490 bargs = &bctl->sys;
3491 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3492 bargs = &bctl->meta;
3494 /* profiles filter */
3495 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3496 chunk_profiles_filter(chunk_type, bargs)) {
3497 return 0;
3500 /* usage filter */
3501 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3502 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3503 return 0;
3504 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3505 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3506 return 0;
3509 /* devid filter */
3510 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3511 chunk_devid_filter(leaf, chunk, bargs)) {
3512 return 0;
3515 /* drange filter, makes sense only with devid filter */
3516 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3517 chunk_drange_filter(leaf, chunk, bargs)) {
3518 return 0;
3521 /* vrange filter */
3522 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3523 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3524 return 0;
3527 /* stripes filter */
3528 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3529 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3530 return 0;
3533 /* soft profile changing mode */
3534 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3535 chunk_soft_convert_filter(chunk_type, bargs)) {
3536 return 0;
3540 * limited by count, must be the last filter
3542 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3543 if (bargs->limit == 0)
3544 return 0;
3545 else
3546 bargs->limit--;
3547 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3549 * Same logic as the 'limit' filter; the minimum cannot be
3550 * determined here because we do not have the global information
3551 * about the count of all chunks that satisfy the filters.
3553 if (bargs->limit_max == 0)
3554 return 0;
3555 else
3556 bargs->limit_max--;
3559 return 1;
3562 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3564 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3565 struct btrfs_root *chunk_root = fs_info->chunk_root;
3566 struct btrfs_root *dev_root = fs_info->dev_root;
3567 struct list_head *devices;
3568 struct btrfs_device *device;
3569 u64 old_size;
3570 u64 size_to_free;
3571 u64 chunk_type;
3572 struct btrfs_chunk *chunk;
3573 struct btrfs_path *path = NULL;
3574 struct btrfs_key key;
3575 struct btrfs_key found_key;
3576 struct btrfs_trans_handle *trans;
3577 struct extent_buffer *leaf;
3578 int slot;
3579 int ret;
3580 int enospc_errors = 0;
3581 bool counting = true;
3582 /* The single value limit and min/max limits use the same bytes in the */
3583 u64 limit_data = bctl->data.limit;
3584 u64 limit_meta = bctl->meta.limit;
3585 u64 limit_sys = bctl->sys.limit;
3586 u32 count_data = 0;
3587 u32 count_meta = 0;
3588 u32 count_sys = 0;
3589 int chunk_reserved = 0;
3591 /* step one make some room on all the devices */
3592 devices = &fs_info->fs_devices->devices;
3593 list_for_each_entry(device, devices, dev_list) {
3594 old_size = btrfs_device_get_total_bytes(device);
3595 size_to_free = div_factor(old_size, 1);
3596 size_to_free = min_t(u64, size_to_free, SZ_1M);
3597 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) ||
3598 btrfs_device_get_total_bytes(device) -
3599 btrfs_device_get_bytes_used(device) > size_to_free ||
3600 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
3601 continue;
3603 ret = btrfs_shrink_device(device, old_size - size_to_free);
3604 if (ret == -ENOSPC)
3605 break;
3606 if (ret) {
3607 /* btrfs_shrink_device never returns ret > 0 */
3608 WARN_ON(ret > 0);
3609 goto error;
3612 trans = btrfs_start_transaction(dev_root, 0);
3613 if (IS_ERR(trans)) {
3614 ret = PTR_ERR(trans);
3615 btrfs_info_in_rcu(fs_info,
3616 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3617 rcu_str_deref(device->name), ret,
3618 old_size, old_size - size_to_free);
3619 goto error;
3622 ret = btrfs_grow_device(trans, device, old_size);
3623 if (ret) {
3624 btrfs_end_transaction(trans);
3625 /* btrfs_grow_device never returns ret > 0 */
3626 WARN_ON(ret > 0);
3627 btrfs_info_in_rcu(fs_info,
3628 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3629 rcu_str_deref(device->name), ret,
3630 old_size, old_size - size_to_free);
3631 goto error;
3634 btrfs_end_transaction(trans);
3637 /* step two, relocate all the chunks */
3638 path = btrfs_alloc_path();
3639 if (!path) {
3640 ret = -ENOMEM;
3641 goto error;
3644 /* zero out stat counters */
3645 spin_lock(&fs_info->balance_lock);
3646 memset(&bctl->stat, 0, sizeof(bctl->stat));
3647 spin_unlock(&fs_info->balance_lock);
3648 again:
3649 if (!counting) {
3651 * The single value limit and min/max limits use the same bytes
3652 * in the
3654 bctl->data.limit = limit_data;
3655 bctl->meta.limit = limit_meta;
3656 bctl->sys.limit = limit_sys;
3658 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3659 key.offset = (u64)-1;
3660 key.type = BTRFS_CHUNK_ITEM_KEY;
3662 while (1) {
3663 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3664 atomic_read(&fs_info->balance_cancel_req)) {
3665 ret = -ECANCELED;
3666 goto error;
3669 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3670 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3671 if (ret < 0) {
3672 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3673 goto error;
3677 * this shouldn't happen, it means the last relocate
3678 * failed
3680 if (ret == 0)
3681 BUG(); /* FIXME break ? */
3683 ret = btrfs_previous_item(chunk_root, path, 0,
3684 BTRFS_CHUNK_ITEM_KEY);
3685 if (ret) {
3686 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3687 ret = 0;
3688 break;
3691 leaf = path->nodes[0];
3692 slot = path->slots[0];
3693 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3695 if (found_key.objectid != key.objectid) {
3696 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3697 break;
3700 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3701 chunk_type = btrfs_chunk_type(leaf, chunk);
3703 if (!counting) {
3704 spin_lock(&fs_info->balance_lock);
3705 bctl->stat.considered++;
3706 spin_unlock(&fs_info->balance_lock);
3709 ret = should_balance_chunk(fs_info, leaf, chunk,
3710 found_key.offset);
3712 btrfs_release_path(path);
3713 if (!ret) {
3714 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3715 goto loop;
3718 if (counting) {
3719 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3720 spin_lock(&fs_info->balance_lock);
3721 bctl->stat.expected++;
3722 spin_unlock(&fs_info->balance_lock);
3724 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3725 count_data++;
3726 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3727 count_sys++;
3728 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3729 count_meta++;
3731 goto loop;
3735 * Apply limit_min filter, no need to check if the LIMITS
3736 * filter is used, limit_min is 0 by default
3738 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3739 count_data < bctl->data.limit_min)
3740 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3741 count_meta < bctl->meta.limit_min)
3742 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3743 count_sys < bctl->sys.limit_min)) {
3744 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3745 goto loop;
3748 if (!chunk_reserved) {
3750 * We may be relocating the only data chunk we have,
3751 * which could potentially end up with losing data's
3752 * raid profile, so lets allocate an empty one in
3753 * advance.
3755 ret = btrfs_may_alloc_data_chunk(fs_info,
3756 found_key.offset);
3757 if (ret < 0) {
3758 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3759 goto error;
3760 } else if (ret == 1) {
3761 chunk_reserved = 1;
3765 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3766 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3767 if (ret && ret != -ENOSPC)
3768 goto error;
3769 if (ret == -ENOSPC) {
3770 enospc_errors++;
3771 } else {
3772 spin_lock(&fs_info->balance_lock);
3773 bctl->stat.completed++;
3774 spin_unlock(&fs_info->balance_lock);
3776 loop:
3777 if (found_key.offset == 0)
3778 break;
3779 key.offset = found_key.offset - 1;
3782 if (counting) {
3783 btrfs_release_path(path);
3784 counting = false;
3785 goto again;
3787 error:
3788 btrfs_free_path(path);
3789 if (enospc_errors) {
3790 btrfs_info(fs_info, "%d enospc errors during balance",
3791 enospc_errors);
3792 if (!ret)
3793 ret = -ENOSPC;
3796 return ret;
3800 * alloc_profile_is_valid - see if a given profile is valid and reduced
3801 * @flags: profile to validate
3802 * @extended: if true @flags is treated as an extended profile
3804 static int alloc_profile_is_valid(u64 flags, int extended)
3806 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3807 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3809 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3811 /* 1) check that all other bits are zeroed */
3812 if (flags & ~mask)
3813 return 0;
3815 /* 2) see if profile is reduced */
3816 if (flags == 0)
3817 return !extended; /* "0" is valid for usual profiles */
3819 /* true if exactly one bit set */
3820 return (flags & (flags - 1)) == 0;
3823 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3825 /* cancel requested || normal exit path */
3826 return atomic_read(&fs_info->balance_cancel_req) ||
3827 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3828 atomic_read(&fs_info->balance_cancel_req) == 0);
3831 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3833 int ret;
3835 unset_balance_control(fs_info);
3836 ret = del_balance_item(fs_info);
3837 if (ret)
3838 btrfs_handle_fs_error(fs_info, ret, NULL);
3840 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3843 /* Non-zero return value signifies invalidity */
3844 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3845 u64 allowed)
3847 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3848 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3849 (bctl_arg->target & ~allowed)));
3853 * Should be called with both balance and volume mutexes held
3855 int btrfs_balance(struct btrfs_balance_control *bctl,
3856 struct btrfs_ioctl_balance_args *bargs)
3858 struct btrfs_fs_info *fs_info = bctl->fs_info;
3859 u64 meta_target, data_target;
3860 u64 allowed;
3861 int mixed = 0;
3862 int ret;
3863 u64 num_devices;
3864 unsigned seq;
3866 if (btrfs_fs_closing(fs_info) ||
3867 atomic_read(&fs_info->balance_pause_req) ||
3868 atomic_read(&fs_info->balance_cancel_req)) {
3869 ret = -EINVAL;
3870 goto out;
3873 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3874 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3875 mixed = 1;
3878 * In case of mixed groups both data and meta should be picked,
3879 * and identical options should be given for both of them.
3881 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3882 if (mixed && (bctl->flags & allowed)) {
3883 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3884 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3885 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3886 btrfs_err(fs_info,
3887 "with mixed groups data and metadata balance options must be the same");
3888 ret = -EINVAL;
3889 goto out;
3893 num_devices = fs_info->fs_devices->num_devices;
3894 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3895 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3896 BUG_ON(num_devices < 1);
3897 num_devices--;
3899 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3900 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3901 if (num_devices > 1)
3902 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3903 if (num_devices > 2)
3904 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3905 if (num_devices > 3)
3906 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3907 BTRFS_BLOCK_GROUP_RAID6);
3908 if (validate_convert_profile(&bctl->data, allowed)) {
3909 btrfs_err(fs_info,
3910 "unable to start balance with target data profile %llu",
3911 bctl->data.target);
3912 ret = -EINVAL;
3913 goto out;
3915 if (validate_convert_profile(&bctl->meta, allowed)) {
3916 btrfs_err(fs_info,
3917 "unable to start balance with target metadata profile %llu",
3918 bctl->meta.target);
3919 ret = -EINVAL;
3920 goto out;
3922 if (validate_convert_profile(&bctl->sys, allowed)) {
3923 btrfs_err(fs_info,
3924 "unable to start balance with target system profile %llu",
3925 bctl->sys.target);
3926 ret = -EINVAL;
3927 goto out;
3930 /* allow to reduce meta or sys integrity only if force set */
3931 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3932 BTRFS_BLOCK_GROUP_RAID10 |
3933 BTRFS_BLOCK_GROUP_RAID5 |
3934 BTRFS_BLOCK_GROUP_RAID6;
3935 do {
3936 seq = read_seqbegin(&fs_info->profiles_lock);
3938 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3939 (fs_info->avail_system_alloc_bits & allowed) &&
3940 !(bctl->sys.target & allowed)) ||
3941 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3942 (fs_info->avail_metadata_alloc_bits & allowed) &&
3943 !(bctl->meta.target & allowed))) {
3944 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3945 btrfs_info(fs_info,
3946 "force reducing metadata integrity");
3947 } else {
3948 btrfs_err(fs_info,
3949 "balance will reduce metadata integrity, use force if you want this");
3950 ret = -EINVAL;
3951 goto out;
3954 } while (read_seqretry(&fs_info->profiles_lock, seq));
3956 /* if we're not converting, the target field is uninitialized */
3957 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3958 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3959 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3960 bctl->data.target : fs_info->avail_data_alloc_bits;
3961 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3962 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3963 btrfs_warn(fs_info,
3964 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3965 meta_target, data_target);
3968 ret = insert_balance_item(fs_info, bctl);
3969 if (ret && ret != -EEXIST)
3970 goto out;
3972 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3973 BUG_ON(ret == -EEXIST);
3974 set_balance_control(bctl);
3975 } else {
3976 BUG_ON(ret != -EEXIST);
3977 spin_lock(&fs_info->balance_lock);
3978 update_balance_args(bctl);
3979 spin_unlock(&fs_info->balance_lock);
3982 atomic_inc(&fs_info->balance_running);
3983 mutex_unlock(&fs_info->balance_mutex);
3985 ret = __btrfs_balance(fs_info);
3987 mutex_lock(&fs_info->balance_mutex);
3988 atomic_dec(&fs_info->balance_running);
3990 if (bargs) {
3991 memset(bargs, 0, sizeof(*bargs));
3992 update_ioctl_balance_args(fs_info, 0, bargs);
3995 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3996 balance_need_close(fs_info)) {
3997 __cancel_balance(fs_info);
4000 wake_up(&fs_info->balance_wait_q);
4002 return ret;
4003 out:
4004 if (bctl->flags & BTRFS_BALANCE_RESUME)
4005 __cancel_balance(fs_info);
4006 else {
4007 kfree(bctl);
4008 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4010 return ret;
4013 static int balance_kthread(void *data)
4015 struct btrfs_fs_info *fs_info = data;
4016 int ret = 0;
4018 mutex_lock(&fs_info->volume_mutex);
4019 mutex_lock(&fs_info->balance_mutex);
4021 if (fs_info->balance_ctl) {
4022 btrfs_info(fs_info, "continuing balance");
4023 ret = btrfs_balance(fs_info->balance_ctl, NULL);
4026 mutex_unlock(&fs_info->balance_mutex);
4027 mutex_unlock(&fs_info->volume_mutex);
4029 return ret;
4032 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4034 struct task_struct *tsk;
4036 spin_lock(&fs_info->balance_lock);
4037 if (!fs_info->balance_ctl) {
4038 spin_unlock(&fs_info->balance_lock);
4039 return 0;
4041 spin_unlock(&fs_info->balance_lock);
4043 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4044 btrfs_info(fs_info, "force skipping balance");
4045 return 0;
4048 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4049 return PTR_ERR_OR_ZERO(tsk);
4052 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4054 struct btrfs_balance_control *bctl;
4055 struct btrfs_balance_item *item;
4056 struct btrfs_disk_balance_args disk_bargs;
4057 struct btrfs_path *path;
4058 struct extent_buffer *leaf;
4059 struct btrfs_key key;
4060 int ret;
4062 path = btrfs_alloc_path();
4063 if (!path)
4064 return -ENOMEM;
4066 key.objectid = BTRFS_BALANCE_OBJECTID;
4067 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4068 key.offset = 0;
4070 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4071 if (ret < 0)
4072 goto out;
4073 if (ret > 0) { /* ret = -ENOENT; */
4074 ret = 0;
4075 goto out;
4078 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4079 if (!bctl) {
4080 ret = -ENOMEM;
4081 goto out;
4084 leaf = path->nodes[0];
4085 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4087 bctl->fs_info = fs_info;
4088 bctl->flags = btrfs_balance_flags(leaf, item);
4089 bctl->flags |= BTRFS_BALANCE_RESUME;
4091 btrfs_balance_data(leaf, item, &disk_bargs);
4092 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4093 btrfs_balance_meta(leaf, item, &disk_bargs);
4094 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4095 btrfs_balance_sys(leaf, item, &disk_bargs);
4096 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4098 WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4100 mutex_lock(&fs_info->volume_mutex);
4101 mutex_lock(&fs_info->balance_mutex);
4103 set_balance_control(bctl);
4105 mutex_unlock(&fs_info->balance_mutex);
4106 mutex_unlock(&fs_info->volume_mutex);
4107 out:
4108 btrfs_free_path(path);
4109 return ret;
4112 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4114 int ret = 0;
4116 mutex_lock(&fs_info->balance_mutex);
4117 if (!fs_info->balance_ctl) {
4118 mutex_unlock(&fs_info->balance_mutex);
4119 return -ENOTCONN;
4122 if (atomic_read(&fs_info->balance_running)) {
4123 atomic_inc(&fs_info->balance_pause_req);
4124 mutex_unlock(&fs_info->balance_mutex);
4126 wait_event(fs_info->balance_wait_q,
4127 atomic_read(&fs_info->balance_running) == 0);
4129 mutex_lock(&fs_info->balance_mutex);
4130 /* we are good with balance_ctl ripped off from under us */
4131 BUG_ON(atomic_read(&fs_info->balance_running));
4132 atomic_dec(&fs_info->balance_pause_req);
4133 } else {
4134 ret = -ENOTCONN;
4137 mutex_unlock(&fs_info->balance_mutex);
4138 return ret;
4141 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4143 if (sb_rdonly(fs_info->sb))
4144 return -EROFS;
4146 mutex_lock(&fs_info->balance_mutex);
4147 if (!fs_info->balance_ctl) {
4148 mutex_unlock(&fs_info->balance_mutex);
4149 return -ENOTCONN;
4152 atomic_inc(&fs_info->balance_cancel_req);
4154 * if we are running just wait and return, balance item is
4155 * deleted in btrfs_balance in this case
4157 if (atomic_read(&fs_info->balance_running)) {
4158 mutex_unlock(&fs_info->balance_mutex);
4159 wait_event(fs_info->balance_wait_q,
4160 atomic_read(&fs_info->balance_running) == 0);
4161 mutex_lock(&fs_info->balance_mutex);
4162 } else {
4163 /* __cancel_balance needs volume_mutex */
4164 mutex_unlock(&fs_info->balance_mutex);
4165 mutex_lock(&fs_info->volume_mutex);
4166 mutex_lock(&fs_info->balance_mutex);
4168 if (fs_info->balance_ctl)
4169 __cancel_balance(fs_info);
4171 mutex_unlock(&fs_info->volume_mutex);
4174 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4175 atomic_dec(&fs_info->balance_cancel_req);
4176 mutex_unlock(&fs_info->balance_mutex);
4177 return 0;
4180 static int btrfs_uuid_scan_kthread(void *data)
4182 struct btrfs_fs_info *fs_info = data;
4183 struct btrfs_root *root = fs_info->tree_root;
4184 struct btrfs_key key;
4185 struct btrfs_path *path = NULL;
4186 int ret = 0;
4187 struct extent_buffer *eb;
4188 int slot;
4189 struct btrfs_root_item root_item;
4190 u32 item_size;
4191 struct btrfs_trans_handle *trans = NULL;
4193 path = btrfs_alloc_path();
4194 if (!path) {
4195 ret = -ENOMEM;
4196 goto out;
4199 key.objectid = 0;
4200 key.type = BTRFS_ROOT_ITEM_KEY;
4201 key.offset = 0;
4203 while (1) {
4204 ret = btrfs_search_forward(root, &key, path, 0);
4205 if (ret) {
4206 if (ret > 0)
4207 ret = 0;
4208 break;
4211 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4212 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4213 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4214 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4215 goto skip;
4217 eb = path->nodes[0];
4218 slot = path->slots[0];
4219 item_size = btrfs_item_size_nr(eb, slot);
4220 if (item_size < sizeof(root_item))
4221 goto skip;
4223 read_extent_buffer(eb, &root_item,
4224 btrfs_item_ptr_offset(eb, slot),
4225 (int)sizeof(root_item));
4226 if (btrfs_root_refs(&root_item) == 0)
4227 goto skip;
4229 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4230 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4231 if (trans)
4232 goto update_tree;
4234 btrfs_release_path(path);
4236 * 1 - subvol uuid item
4237 * 1 - received_subvol uuid item
4239 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4240 if (IS_ERR(trans)) {
4241 ret = PTR_ERR(trans);
4242 break;
4244 continue;
4245 } else {
4246 goto skip;
4248 update_tree:
4249 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4250 ret = btrfs_uuid_tree_add(trans, fs_info,
4251 root_item.uuid,
4252 BTRFS_UUID_KEY_SUBVOL,
4253 key.objectid);
4254 if (ret < 0) {
4255 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4256 ret);
4257 break;
4261 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4262 ret = btrfs_uuid_tree_add(trans, fs_info,
4263 root_item.received_uuid,
4264 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4265 key.objectid);
4266 if (ret < 0) {
4267 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4268 ret);
4269 break;
4273 skip:
4274 if (trans) {
4275 ret = btrfs_end_transaction(trans);
4276 trans = NULL;
4277 if (ret)
4278 break;
4281 btrfs_release_path(path);
4282 if (key.offset < (u64)-1) {
4283 key.offset++;
4284 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4285 key.offset = 0;
4286 key.type = BTRFS_ROOT_ITEM_KEY;
4287 } else if (key.objectid < (u64)-1) {
4288 key.offset = 0;
4289 key.type = BTRFS_ROOT_ITEM_KEY;
4290 key.objectid++;
4291 } else {
4292 break;
4294 cond_resched();
4297 out:
4298 btrfs_free_path(path);
4299 if (trans && !IS_ERR(trans))
4300 btrfs_end_transaction(trans);
4301 if (ret)
4302 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4303 else
4304 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4305 up(&fs_info->uuid_tree_rescan_sem);
4306 return 0;
4310 * Callback for btrfs_uuid_tree_iterate().
4311 * returns:
4312 * 0 check succeeded, the entry is not outdated.
4313 * < 0 if an error occurred.
4314 * > 0 if the check failed, which means the caller shall remove the entry.
4316 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4317 u8 *uuid, u8 type, u64 subid)
4319 struct btrfs_key key;
4320 int ret = 0;
4321 struct btrfs_root *subvol_root;
4323 if (type != BTRFS_UUID_KEY_SUBVOL &&
4324 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4325 goto out;
4327 key.objectid = subid;
4328 key.type = BTRFS_ROOT_ITEM_KEY;
4329 key.offset = (u64)-1;
4330 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4331 if (IS_ERR(subvol_root)) {
4332 ret = PTR_ERR(subvol_root);
4333 if (ret == -ENOENT)
4334 ret = 1;
4335 goto out;
4338 switch (type) {
4339 case BTRFS_UUID_KEY_SUBVOL:
4340 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4341 ret = 1;
4342 break;
4343 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4344 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4345 BTRFS_UUID_SIZE))
4346 ret = 1;
4347 break;
4350 out:
4351 return ret;
4354 static int btrfs_uuid_rescan_kthread(void *data)
4356 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4357 int ret;
4360 * 1st step is to iterate through the existing UUID tree and
4361 * to delete all entries that contain outdated data.
4362 * 2nd step is to add all missing entries to the UUID tree.
4364 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4365 if (ret < 0) {
4366 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4367 up(&fs_info->uuid_tree_rescan_sem);
4368 return ret;
4370 return btrfs_uuid_scan_kthread(data);
4373 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4375 struct btrfs_trans_handle *trans;
4376 struct btrfs_root *tree_root = fs_info->tree_root;
4377 struct btrfs_root *uuid_root;
4378 struct task_struct *task;
4379 int ret;
4382 * 1 - root node
4383 * 1 - root item
4385 trans = btrfs_start_transaction(tree_root, 2);
4386 if (IS_ERR(trans))
4387 return PTR_ERR(trans);
4389 uuid_root = btrfs_create_tree(trans, fs_info,
4390 BTRFS_UUID_TREE_OBJECTID);
4391 if (IS_ERR(uuid_root)) {
4392 ret = PTR_ERR(uuid_root);
4393 btrfs_abort_transaction(trans, ret);
4394 btrfs_end_transaction(trans);
4395 return ret;
4398 fs_info->uuid_root = uuid_root;
4400 ret = btrfs_commit_transaction(trans);
4401 if (ret)
4402 return ret;
4404 down(&fs_info->uuid_tree_rescan_sem);
4405 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4406 if (IS_ERR(task)) {
4407 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4408 btrfs_warn(fs_info, "failed to start uuid_scan task");
4409 up(&fs_info->uuid_tree_rescan_sem);
4410 return PTR_ERR(task);
4413 return 0;
4416 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4418 struct task_struct *task;
4420 down(&fs_info->uuid_tree_rescan_sem);
4421 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4422 if (IS_ERR(task)) {
4423 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4424 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4425 up(&fs_info->uuid_tree_rescan_sem);
4426 return PTR_ERR(task);
4429 return 0;
4433 * shrinking a device means finding all of the device extents past
4434 * the new size, and then following the back refs to the chunks.
4435 * The chunk relocation code actually frees the device extent
4437 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4439 struct btrfs_fs_info *fs_info = device->fs_info;
4440 struct btrfs_root *root = fs_info->dev_root;
4441 struct btrfs_trans_handle *trans;
4442 struct btrfs_dev_extent *dev_extent = NULL;
4443 struct btrfs_path *path;
4444 u64 length;
4445 u64 chunk_offset;
4446 int ret;
4447 int slot;
4448 int failed = 0;
4449 bool retried = false;
4450 bool checked_pending_chunks = false;
4451 struct extent_buffer *l;
4452 struct btrfs_key key;
4453 struct btrfs_super_block *super_copy = fs_info->super_copy;
4454 u64 old_total = btrfs_super_total_bytes(super_copy);
4455 u64 old_size = btrfs_device_get_total_bytes(device);
4456 u64 diff;
4458 new_size = round_down(new_size, fs_info->sectorsize);
4459 diff = round_down(old_size - new_size, fs_info->sectorsize);
4461 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4462 return -EINVAL;
4464 path = btrfs_alloc_path();
4465 if (!path)
4466 return -ENOMEM;
4468 path->reada = READA_FORWARD;
4470 mutex_lock(&fs_info->chunk_mutex);
4472 btrfs_device_set_total_bytes(device, new_size);
4473 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4474 device->fs_devices->total_rw_bytes -= diff;
4475 atomic64_sub(diff, &fs_info->free_chunk_space);
4477 mutex_unlock(&fs_info->chunk_mutex);
4479 again:
4480 key.objectid = device->devid;
4481 key.offset = (u64)-1;
4482 key.type = BTRFS_DEV_EXTENT_KEY;
4484 do {
4485 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4486 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4487 if (ret < 0) {
4488 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4489 goto done;
4492 ret = btrfs_previous_item(root, path, 0, key.type);
4493 if (ret)
4494 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4495 if (ret < 0)
4496 goto done;
4497 if (ret) {
4498 ret = 0;
4499 btrfs_release_path(path);
4500 break;
4503 l = path->nodes[0];
4504 slot = path->slots[0];
4505 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4507 if (key.objectid != device->devid) {
4508 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4509 btrfs_release_path(path);
4510 break;
4513 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4514 length = btrfs_dev_extent_length(l, dev_extent);
4516 if (key.offset + length <= new_size) {
4517 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4518 btrfs_release_path(path);
4519 break;
4522 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4523 btrfs_release_path(path);
4526 * We may be relocating the only data chunk we have,
4527 * which could potentially end up with losing data's
4528 * raid profile, so lets allocate an empty one in
4529 * advance.
4531 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4532 if (ret < 0) {
4533 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4534 goto done;
4537 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4538 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4539 if (ret && ret != -ENOSPC)
4540 goto done;
4541 if (ret == -ENOSPC)
4542 failed++;
4543 } while (key.offset-- > 0);
4545 if (failed && !retried) {
4546 failed = 0;
4547 retried = true;
4548 goto again;
4549 } else if (failed && retried) {
4550 ret = -ENOSPC;
4551 goto done;
4554 /* Shrinking succeeded, else we would be at "done". */
4555 trans = btrfs_start_transaction(root, 0);
4556 if (IS_ERR(trans)) {
4557 ret = PTR_ERR(trans);
4558 goto done;
4561 mutex_lock(&fs_info->chunk_mutex);
4564 * We checked in the above loop all device extents that were already in
4565 * the device tree. However before we have updated the device's
4566 * total_bytes to the new size, we might have had chunk allocations that
4567 * have not complete yet (new block groups attached to transaction
4568 * handles), and therefore their device extents were not yet in the
4569 * device tree and we missed them in the loop above. So if we have any
4570 * pending chunk using a device extent that overlaps the device range
4571 * that we can not use anymore, commit the current transaction and
4572 * repeat the search on the device tree - this way we guarantee we will
4573 * not have chunks using device extents that end beyond 'new_size'.
4575 if (!checked_pending_chunks) {
4576 u64 start = new_size;
4577 u64 len = old_size - new_size;
4579 if (contains_pending_extent(trans->transaction, device,
4580 &start, len)) {
4581 mutex_unlock(&fs_info->chunk_mutex);
4582 checked_pending_chunks = true;
4583 failed = 0;
4584 retried = false;
4585 ret = btrfs_commit_transaction(trans);
4586 if (ret)
4587 goto done;
4588 goto again;
4592 btrfs_device_set_disk_total_bytes(device, new_size);
4593 if (list_empty(&device->resized_list))
4594 list_add_tail(&device->resized_list,
4595 &fs_info->fs_devices->resized_devices);
4597 WARN_ON(diff > old_total);
4598 btrfs_set_super_total_bytes(super_copy,
4599 round_down(old_total - diff, fs_info->sectorsize));
4600 mutex_unlock(&fs_info->chunk_mutex);
4602 /* Now btrfs_update_device() will change the on-disk size. */
4603 ret = btrfs_update_device(trans, device);
4604 btrfs_end_transaction(trans);
4605 done:
4606 btrfs_free_path(path);
4607 if (ret) {
4608 mutex_lock(&fs_info->chunk_mutex);
4609 btrfs_device_set_total_bytes(device, old_size);
4610 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4611 device->fs_devices->total_rw_bytes += diff;
4612 atomic64_add(diff, &fs_info->free_chunk_space);
4613 mutex_unlock(&fs_info->chunk_mutex);
4615 return ret;
4618 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4619 struct btrfs_key *key,
4620 struct btrfs_chunk *chunk, int item_size)
4622 struct btrfs_super_block *super_copy = fs_info->super_copy;
4623 struct btrfs_disk_key disk_key;
4624 u32 array_size;
4625 u8 *ptr;
4627 mutex_lock(&fs_info->chunk_mutex);
4628 array_size = btrfs_super_sys_array_size(super_copy);
4629 if (array_size + item_size + sizeof(disk_key)
4630 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4631 mutex_unlock(&fs_info->chunk_mutex);
4632 return -EFBIG;
4635 ptr = super_copy->sys_chunk_array + array_size;
4636 btrfs_cpu_key_to_disk(&disk_key, key);
4637 memcpy(ptr, &disk_key, sizeof(disk_key));
4638 ptr += sizeof(disk_key);
4639 memcpy(ptr, chunk, item_size);
4640 item_size += sizeof(disk_key);
4641 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4642 mutex_unlock(&fs_info->chunk_mutex);
4644 return 0;
4648 * sort the devices in descending order by max_avail, total_avail
4650 static int btrfs_cmp_device_info(const void *a, const void *b)
4652 const struct btrfs_device_info *di_a = a;
4653 const struct btrfs_device_info *di_b = b;
4655 if (di_a->max_avail > di_b->max_avail)
4656 return -1;
4657 if (di_a->max_avail < di_b->max_avail)
4658 return 1;
4659 if (di_a->total_avail > di_b->total_avail)
4660 return -1;
4661 if (di_a->total_avail < di_b->total_avail)
4662 return 1;
4663 return 0;
4666 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4668 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4669 return;
4671 btrfs_set_fs_incompat(info, RAID56);
4674 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \
4675 - sizeof(struct btrfs_chunk)) \
4676 / sizeof(struct btrfs_stripe) + 1)
4678 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4679 - 2 * sizeof(struct btrfs_disk_key) \
4680 - 2 * sizeof(struct btrfs_chunk)) \
4681 / sizeof(struct btrfs_stripe) + 1)
4683 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4684 u64 start, u64 type)
4686 struct btrfs_fs_info *info = trans->fs_info;
4687 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4688 struct btrfs_device *device;
4689 struct map_lookup *map = NULL;
4690 struct extent_map_tree *em_tree;
4691 struct extent_map *em;
4692 struct btrfs_device_info *devices_info = NULL;
4693 u64 total_avail;
4694 int num_stripes; /* total number of stripes to allocate */
4695 int data_stripes; /* number of stripes that count for
4696 block group size */
4697 int sub_stripes; /* sub_stripes info for map */
4698 int dev_stripes; /* stripes per dev */
4699 int devs_max; /* max devs to use */
4700 int devs_min; /* min devs needed */
4701 int devs_increment; /* ndevs has to be a multiple of this */
4702 int ncopies; /* how many copies to data has */
4703 int ret;
4704 u64 max_stripe_size;
4705 u64 max_chunk_size;
4706 u64 stripe_size;
4707 u64 num_bytes;
4708 int ndevs;
4709 int i;
4710 int j;
4711 int index;
4713 BUG_ON(!alloc_profile_is_valid(type, 0));
4715 if (list_empty(&fs_devices->alloc_list))
4716 return -ENOSPC;
4718 index = __get_raid_index(type);
4720 sub_stripes = btrfs_raid_array[index].sub_stripes;
4721 dev_stripes = btrfs_raid_array[index].dev_stripes;
4722 devs_max = btrfs_raid_array[index].devs_max;
4723 devs_min = btrfs_raid_array[index].devs_min;
4724 devs_increment = btrfs_raid_array[index].devs_increment;
4725 ncopies = btrfs_raid_array[index].ncopies;
4727 if (type & BTRFS_BLOCK_GROUP_DATA) {
4728 max_stripe_size = SZ_1G;
4729 max_chunk_size = 10 * max_stripe_size;
4730 if (!devs_max)
4731 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4732 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4733 /* for larger filesystems, use larger metadata chunks */
4734 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4735 max_stripe_size = SZ_1G;
4736 else
4737 max_stripe_size = SZ_256M;
4738 max_chunk_size = max_stripe_size;
4739 if (!devs_max)
4740 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4741 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4742 max_stripe_size = SZ_32M;
4743 max_chunk_size = 2 * max_stripe_size;
4744 if (!devs_max)
4745 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4746 } else {
4747 btrfs_err(info, "invalid chunk type 0x%llx requested",
4748 type);
4749 BUG_ON(1);
4752 /* we don't want a chunk larger than 10% of writeable space */
4753 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4754 max_chunk_size);
4756 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4757 GFP_NOFS);
4758 if (!devices_info)
4759 return -ENOMEM;
4762 * in the first pass through the devices list, we gather information
4763 * about the available holes on each device.
4765 ndevs = 0;
4766 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4767 u64 max_avail;
4768 u64 dev_offset;
4770 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4771 WARN(1, KERN_ERR
4772 "BTRFS: read-only device in alloc_list\n");
4773 continue;
4776 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4777 &device->dev_state) ||
4778 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4779 continue;
4781 if (device->total_bytes > device->bytes_used)
4782 total_avail = device->total_bytes - device->bytes_used;
4783 else
4784 total_avail = 0;
4786 /* If there is no space on this device, skip it. */
4787 if (total_avail == 0)
4788 continue;
4790 ret = find_free_dev_extent(trans, device,
4791 max_stripe_size * dev_stripes,
4792 &dev_offset, &max_avail);
4793 if (ret && ret != -ENOSPC)
4794 goto error;
4796 if (ret == 0)
4797 max_avail = max_stripe_size * dev_stripes;
4799 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4800 continue;
4802 if (ndevs == fs_devices->rw_devices) {
4803 WARN(1, "%s: found more than %llu devices\n",
4804 __func__, fs_devices->rw_devices);
4805 break;
4807 devices_info[ndevs].dev_offset = dev_offset;
4808 devices_info[ndevs].max_avail = max_avail;
4809 devices_info[ndevs].total_avail = total_avail;
4810 devices_info[ndevs].dev = device;
4811 ++ndevs;
4815 * now sort the devices by hole size / available space
4817 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4818 btrfs_cmp_device_info, NULL);
4820 /* round down to number of usable stripes */
4821 ndevs = round_down(ndevs, devs_increment);
4823 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4824 ret = -ENOSPC;
4825 goto error;
4828 ndevs = min(ndevs, devs_max);
4831 * the primary goal is to maximize the number of stripes, so use as many
4832 * devices as possible, even if the stripes are not maximum sized.
4834 stripe_size = devices_info[ndevs-1].max_avail;
4835 num_stripes = ndevs * dev_stripes;
4838 * this will have to be fixed for RAID1 and RAID10 over
4839 * more drives
4841 data_stripes = num_stripes / ncopies;
4843 if (type & BTRFS_BLOCK_GROUP_RAID5)
4844 data_stripes = num_stripes - 1;
4846 if (type & BTRFS_BLOCK_GROUP_RAID6)
4847 data_stripes = num_stripes - 2;
4850 * Use the number of data stripes to figure out how big this chunk
4851 * is really going to be in terms of logical address space,
4852 * and compare that answer with the max chunk size
4854 if (stripe_size * data_stripes > max_chunk_size) {
4855 u64 mask = (1ULL << 24) - 1;
4857 stripe_size = div_u64(max_chunk_size, data_stripes);
4859 /* bump the answer up to a 16MB boundary */
4860 stripe_size = (stripe_size + mask) & ~mask;
4862 /* but don't go higher than the limits we found
4863 * while searching for free extents
4865 if (stripe_size > devices_info[ndevs-1].max_avail)
4866 stripe_size = devices_info[ndevs-1].max_avail;
4869 stripe_size = div_u64(stripe_size, dev_stripes);
4871 /* align to BTRFS_STRIPE_LEN */
4872 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4874 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4875 if (!map) {
4876 ret = -ENOMEM;
4877 goto error;
4879 map->num_stripes = num_stripes;
4881 for (i = 0; i < ndevs; ++i) {
4882 for (j = 0; j < dev_stripes; ++j) {
4883 int s = i * dev_stripes + j;
4884 map->stripes[s].dev = devices_info[i].dev;
4885 map->stripes[s].physical = devices_info[i].dev_offset +
4886 j * stripe_size;
4889 map->stripe_len = BTRFS_STRIPE_LEN;
4890 map->io_align = BTRFS_STRIPE_LEN;
4891 map->io_width = BTRFS_STRIPE_LEN;
4892 map->type = type;
4893 map->sub_stripes = sub_stripes;
4895 num_bytes = stripe_size * data_stripes;
4897 trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4899 em = alloc_extent_map();
4900 if (!em) {
4901 kfree(map);
4902 ret = -ENOMEM;
4903 goto error;
4905 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4906 em->map_lookup = map;
4907 em->start = start;
4908 em->len = num_bytes;
4909 em->block_start = 0;
4910 em->block_len = em->len;
4911 em->orig_block_len = stripe_size;
4913 em_tree = &info->mapping_tree.map_tree;
4914 write_lock(&em_tree->lock);
4915 ret = add_extent_mapping(em_tree, em, 0);
4916 if (ret) {
4917 write_unlock(&em_tree->lock);
4918 free_extent_map(em);
4919 goto error;
4922 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4923 refcount_inc(&em->refs);
4924 write_unlock(&em_tree->lock);
4926 ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
4927 if (ret)
4928 goto error_del_extent;
4930 for (i = 0; i < map->num_stripes; i++) {
4931 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4932 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4935 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4937 free_extent_map(em);
4938 check_raid56_incompat_flag(info, type);
4940 kfree(devices_info);
4941 return 0;
4943 error_del_extent:
4944 write_lock(&em_tree->lock);
4945 remove_extent_mapping(em_tree, em);
4946 write_unlock(&em_tree->lock);
4948 /* One for our allocation */
4949 free_extent_map(em);
4950 /* One for the tree reference */
4951 free_extent_map(em);
4952 /* One for the pending_chunks list reference */
4953 free_extent_map(em);
4954 error:
4955 kfree(devices_info);
4956 return ret;
4959 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4960 struct btrfs_fs_info *fs_info,
4961 u64 chunk_offset, u64 chunk_size)
4963 struct btrfs_root *extent_root = fs_info->extent_root;
4964 struct btrfs_root *chunk_root = fs_info->chunk_root;
4965 struct btrfs_key key;
4966 struct btrfs_device *device;
4967 struct btrfs_chunk *chunk;
4968 struct btrfs_stripe *stripe;
4969 struct extent_map *em;
4970 struct map_lookup *map;
4971 size_t item_size;
4972 u64 dev_offset;
4973 u64 stripe_size;
4974 int i = 0;
4975 int ret = 0;
4977 em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4978 if (IS_ERR(em))
4979 return PTR_ERR(em);
4981 map = em->map_lookup;
4982 item_size = btrfs_chunk_item_size(map->num_stripes);
4983 stripe_size = em->orig_block_len;
4985 chunk = kzalloc(item_size, GFP_NOFS);
4986 if (!chunk) {
4987 ret = -ENOMEM;
4988 goto out;
4992 * Take the device list mutex to prevent races with the final phase of
4993 * a device replace operation that replaces the device object associated
4994 * with the map's stripes, because the device object's id can change
4995 * at any time during that final phase of the device replace operation
4996 * (dev-replace.c:btrfs_dev_replace_finishing()).
4998 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4999 for (i = 0; i < map->num_stripes; i++) {
5000 device = map->stripes[i].dev;
5001 dev_offset = map->stripes[i].physical;
5003 ret = btrfs_update_device(trans, device);
5004 if (ret)
5005 break;
5006 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5007 dev_offset, stripe_size);
5008 if (ret)
5009 break;
5011 if (ret) {
5012 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5013 goto out;
5016 stripe = &chunk->stripe;
5017 for (i = 0; i < map->num_stripes; i++) {
5018 device = map->stripes[i].dev;
5019 dev_offset = map->stripes[i].physical;
5021 btrfs_set_stack_stripe_devid(stripe, device->devid);
5022 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5023 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5024 stripe++;
5026 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5028 btrfs_set_stack_chunk_length(chunk, chunk_size);
5029 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5030 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5031 btrfs_set_stack_chunk_type(chunk, map->type);
5032 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5033 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5034 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5035 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5036 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5038 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5039 key.type = BTRFS_CHUNK_ITEM_KEY;
5040 key.offset = chunk_offset;
5042 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5043 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5045 * TODO: Cleanup of inserted chunk root in case of
5046 * failure.
5048 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5051 out:
5052 kfree(chunk);
5053 free_extent_map(em);
5054 return ret;
5058 * Chunk allocation falls into two parts. The first part does works
5059 * that make the new allocated chunk useable, but not do any operation
5060 * that modifies the chunk tree. The second part does the works that
5061 * require modifying the chunk tree. This division is important for the
5062 * bootstrap process of adding storage to a seed btrfs.
5064 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5065 struct btrfs_fs_info *fs_info, u64 type)
5067 u64 chunk_offset;
5069 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
5070 chunk_offset = find_next_chunk(fs_info);
5071 return __btrfs_alloc_chunk(trans, chunk_offset, type);
5074 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5075 struct btrfs_fs_info *fs_info)
5077 u64 chunk_offset;
5078 u64 sys_chunk_offset;
5079 u64 alloc_profile;
5080 int ret;
5082 chunk_offset = find_next_chunk(fs_info);
5083 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5084 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5085 if (ret)
5086 return ret;
5088 sys_chunk_offset = find_next_chunk(fs_info);
5089 alloc_profile = btrfs_system_alloc_profile(fs_info);
5090 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5091 return ret;
5094 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5096 int max_errors;
5098 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5099 BTRFS_BLOCK_GROUP_RAID10 |
5100 BTRFS_BLOCK_GROUP_RAID5 |
5101 BTRFS_BLOCK_GROUP_DUP)) {
5102 max_errors = 1;
5103 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5104 max_errors = 2;
5105 } else {
5106 max_errors = 0;
5109 return max_errors;
5112 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5114 struct extent_map *em;
5115 struct map_lookup *map;
5116 int readonly = 0;
5117 int miss_ndevs = 0;
5118 int i;
5120 em = get_chunk_map(fs_info, chunk_offset, 1);
5121 if (IS_ERR(em))
5122 return 1;
5124 map = em->map_lookup;
5125 for (i = 0; i < map->num_stripes; i++) {
5126 if (test_bit(BTRFS_DEV_STATE_MISSING,
5127 &map->stripes[i].dev->dev_state)) {
5128 miss_ndevs++;
5129 continue;
5131 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5132 &map->stripes[i].dev->dev_state)) {
5133 readonly = 1;
5134 goto end;
5139 * If the number of missing devices is larger than max errors,
5140 * we can not write the data into that chunk successfully, so
5141 * set it readonly.
5143 if (miss_ndevs > btrfs_chunk_max_errors(map))
5144 readonly = 1;
5145 end:
5146 free_extent_map(em);
5147 return readonly;
5150 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5152 extent_map_tree_init(&tree->map_tree);
5155 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5157 struct extent_map *em;
5159 while (1) {
5160 write_lock(&tree->map_tree.lock);
5161 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5162 if (em)
5163 remove_extent_mapping(&tree->map_tree, em);
5164 write_unlock(&tree->map_tree.lock);
5165 if (!em)
5166 break;
5167 /* once for us */
5168 free_extent_map(em);
5169 /* once for the tree */
5170 free_extent_map(em);
5174 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5176 struct extent_map *em;
5177 struct map_lookup *map;
5178 int ret;
5180 em = get_chunk_map(fs_info, logical, len);
5181 if (IS_ERR(em))
5183 * We could return errors for these cases, but that could get
5184 * ugly and we'd probably do the same thing which is just not do
5185 * anything else and exit, so return 1 so the callers don't try
5186 * to use other copies.
5188 return 1;
5190 map = em->map_lookup;
5191 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5192 ret = map->num_stripes;
5193 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5194 ret = map->sub_stripes;
5195 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5196 ret = 2;
5197 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5199 * There could be two corrupted data stripes, we need
5200 * to loop retry in order to rebuild the correct data.
5202 * Fail a stripe at a time on every retry except the
5203 * stripe under reconstruction.
5205 ret = map->num_stripes;
5206 else
5207 ret = 1;
5208 free_extent_map(em);
5210 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5211 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5212 fs_info->dev_replace.tgtdev)
5213 ret++;
5214 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5216 return ret;
5219 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5220 u64 logical)
5222 struct extent_map *em;
5223 struct map_lookup *map;
5224 unsigned long len = fs_info->sectorsize;
5226 em = get_chunk_map(fs_info, logical, len);
5228 if (!WARN_ON(IS_ERR(em))) {
5229 map = em->map_lookup;
5230 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5231 len = map->stripe_len * nr_data_stripes(map);
5232 free_extent_map(em);
5234 return len;
5237 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5239 struct extent_map *em;
5240 struct map_lookup *map;
5241 int ret = 0;
5243 em = get_chunk_map(fs_info, logical, len);
5245 if(!WARN_ON(IS_ERR(em))) {
5246 map = em->map_lookup;
5247 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5248 ret = 1;
5249 free_extent_map(em);
5251 return ret;
5254 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5255 struct map_lookup *map, int first, int num,
5256 int optimal, int dev_replace_is_ongoing)
5258 int i;
5259 int tolerance;
5260 struct btrfs_device *srcdev;
5262 if (dev_replace_is_ongoing &&
5263 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5264 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5265 srcdev = fs_info->dev_replace.srcdev;
5266 else
5267 srcdev = NULL;
5270 * try to avoid the drive that is the source drive for a
5271 * dev-replace procedure, only choose it if no other non-missing
5272 * mirror is available
5274 for (tolerance = 0; tolerance < 2; tolerance++) {
5275 if (map->stripes[optimal].dev->bdev &&
5276 (tolerance || map->stripes[optimal].dev != srcdev))
5277 return optimal;
5278 for (i = first; i < first + num; i++) {
5279 if (map->stripes[i].dev->bdev &&
5280 (tolerance || map->stripes[i].dev != srcdev))
5281 return i;
5285 /* we couldn't find one that doesn't fail. Just return something
5286 * and the io error handling code will clean up eventually
5288 return optimal;
5291 static inline int parity_smaller(u64 a, u64 b)
5293 return a > b;
5296 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5297 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5299 struct btrfs_bio_stripe s;
5300 int i;
5301 u64 l;
5302 int again = 1;
5304 while (again) {
5305 again = 0;
5306 for (i = 0; i < num_stripes - 1; i++) {
5307 if (parity_smaller(bbio->raid_map[i],
5308 bbio->raid_map[i+1])) {
5309 s = bbio->stripes[i];
5310 l = bbio->raid_map[i];
5311 bbio->stripes[i] = bbio->stripes[i+1];
5312 bbio->raid_map[i] = bbio->raid_map[i+1];
5313 bbio->stripes[i+1] = s;
5314 bbio->raid_map[i+1] = l;
5316 again = 1;
5322 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5324 struct btrfs_bio *bbio = kzalloc(
5325 /* the size of the btrfs_bio */
5326 sizeof(struct btrfs_bio) +
5327 /* plus the variable array for the stripes */
5328 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5329 /* plus the variable array for the tgt dev */
5330 sizeof(int) * (real_stripes) +
5332 * plus the raid_map, which includes both the tgt dev
5333 * and the stripes
5335 sizeof(u64) * (total_stripes),
5336 GFP_NOFS|__GFP_NOFAIL);
5338 atomic_set(&bbio->error, 0);
5339 refcount_set(&bbio->refs, 1);
5341 return bbio;
5344 void btrfs_get_bbio(struct btrfs_bio *bbio)
5346 WARN_ON(!refcount_read(&bbio->refs));
5347 refcount_inc(&bbio->refs);
5350 void btrfs_put_bbio(struct btrfs_bio *bbio)
5352 if (!bbio)
5353 return;
5354 if (refcount_dec_and_test(&bbio->refs))
5355 kfree(bbio);
5358 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5360 * Please note that, discard won't be sent to target device of device
5361 * replace.
5363 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5364 u64 logical, u64 length,
5365 struct btrfs_bio **bbio_ret)
5367 struct extent_map *em;
5368 struct map_lookup *map;
5369 struct btrfs_bio *bbio;
5370 u64 offset;
5371 u64 stripe_nr;
5372 u64 stripe_nr_end;
5373 u64 stripe_end_offset;
5374 u64 stripe_cnt;
5375 u64 stripe_len;
5376 u64 stripe_offset;
5377 u64 num_stripes;
5378 u32 stripe_index;
5379 u32 factor = 0;
5380 u32 sub_stripes = 0;
5381 u64 stripes_per_dev = 0;
5382 u32 remaining_stripes = 0;
5383 u32 last_stripe = 0;
5384 int ret = 0;
5385 int i;
5387 /* discard always return a bbio */
5388 ASSERT(bbio_ret);
5390 em = get_chunk_map(fs_info, logical, length);
5391 if (IS_ERR(em))
5392 return PTR_ERR(em);
5394 map = em->map_lookup;
5395 /* we don't discard raid56 yet */
5396 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5397 ret = -EOPNOTSUPP;
5398 goto out;
5401 offset = logical - em->start;
5402 length = min_t(u64, em->len - offset, length);
5404 stripe_len = map->stripe_len;
5406 * stripe_nr counts the total number of stripes we have to stride
5407 * to get to this block
5409 stripe_nr = div64_u64(offset, stripe_len);
5411 /* stripe_offset is the offset of this block in its stripe */
5412 stripe_offset = offset - stripe_nr * stripe_len;
5414 stripe_nr_end = round_up(offset + length, map->stripe_len);
5415 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5416 stripe_cnt = stripe_nr_end - stripe_nr;
5417 stripe_end_offset = stripe_nr_end * map->stripe_len -
5418 (offset + length);
5420 * after this, stripe_nr is the number of stripes on this
5421 * device we have to walk to find the data, and stripe_index is
5422 * the number of our device in the stripe array
5424 num_stripes = 1;
5425 stripe_index = 0;
5426 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5427 BTRFS_BLOCK_GROUP_RAID10)) {
5428 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5429 sub_stripes = 1;
5430 else
5431 sub_stripes = map->sub_stripes;
5433 factor = map->num_stripes / sub_stripes;
5434 num_stripes = min_t(u64, map->num_stripes,
5435 sub_stripes * stripe_cnt);
5436 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5437 stripe_index *= sub_stripes;
5438 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5439 &remaining_stripes);
5440 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5441 last_stripe *= sub_stripes;
5442 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5443 BTRFS_BLOCK_GROUP_DUP)) {
5444 num_stripes = map->num_stripes;
5445 } else {
5446 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5447 &stripe_index);
5450 bbio = alloc_btrfs_bio(num_stripes, 0);
5451 if (!bbio) {
5452 ret = -ENOMEM;
5453 goto out;
5456 for (i = 0; i < num_stripes; i++) {
5457 bbio->stripes[i].physical =
5458 map->stripes[stripe_index].physical +
5459 stripe_offset + stripe_nr * map->stripe_len;
5460 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5462 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5463 BTRFS_BLOCK_GROUP_RAID10)) {
5464 bbio->stripes[i].length = stripes_per_dev *
5465 map->stripe_len;
5467 if (i / sub_stripes < remaining_stripes)
5468 bbio->stripes[i].length +=
5469 map->stripe_len;
5472 * Special for the first stripe and
5473 * the last stripe:
5475 * |-------|...|-------|
5476 * |----------|
5477 * off end_off
5479 if (i < sub_stripes)
5480 bbio->stripes[i].length -=
5481 stripe_offset;
5483 if (stripe_index >= last_stripe &&
5484 stripe_index <= (last_stripe +
5485 sub_stripes - 1))
5486 bbio->stripes[i].length -=
5487 stripe_end_offset;
5489 if (i == sub_stripes - 1)
5490 stripe_offset = 0;
5491 } else {
5492 bbio->stripes[i].length = length;
5495 stripe_index++;
5496 if (stripe_index == map->num_stripes) {
5497 stripe_index = 0;
5498 stripe_nr++;
5502 *bbio_ret = bbio;
5503 bbio->map_type = map->type;
5504 bbio->num_stripes = num_stripes;
5505 out:
5506 free_extent_map(em);
5507 return ret;
5511 * In dev-replace case, for repair case (that's the only case where the mirror
5512 * is selected explicitly when calling btrfs_map_block), blocks left of the
5513 * left cursor can also be read from the target drive.
5515 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5516 * array of stripes.
5517 * For READ, it also needs to be supported using the same mirror number.
5519 * If the requested block is not left of the left cursor, EIO is returned. This
5520 * can happen because btrfs_num_copies() returns one more in the dev-replace
5521 * case.
5523 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5524 u64 logical, u64 length,
5525 u64 srcdev_devid, int *mirror_num,
5526 u64 *physical)
5528 struct btrfs_bio *bbio = NULL;
5529 int num_stripes;
5530 int index_srcdev = 0;
5531 int found = 0;
5532 u64 physical_of_found = 0;
5533 int i;
5534 int ret = 0;
5536 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5537 logical, &length, &bbio, 0, 0);
5538 if (ret) {
5539 ASSERT(bbio == NULL);
5540 return ret;
5543 num_stripes = bbio->num_stripes;
5544 if (*mirror_num > num_stripes) {
5546 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5547 * that means that the requested area is not left of the left
5548 * cursor
5550 btrfs_put_bbio(bbio);
5551 return -EIO;
5555 * process the rest of the function using the mirror_num of the source
5556 * drive. Therefore look it up first. At the end, patch the device
5557 * pointer to the one of the target drive.
5559 for (i = 0; i < num_stripes; i++) {
5560 if (bbio->stripes[i].dev->devid != srcdev_devid)
5561 continue;
5564 * In case of DUP, in order to keep it simple, only add the
5565 * mirror with the lowest physical address
5567 if (found &&
5568 physical_of_found <= bbio->stripes[i].physical)
5569 continue;
5571 index_srcdev = i;
5572 found = 1;
5573 physical_of_found = bbio->stripes[i].physical;
5576 btrfs_put_bbio(bbio);
5578 ASSERT(found);
5579 if (!found)
5580 return -EIO;
5582 *mirror_num = index_srcdev + 1;
5583 *physical = physical_of_found;
5584 return ret;
5587 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5588 struct btrfs_bio **bbio_ret,
5589 struct btrfs_dev_replace *dev_replace,
5590 int *num_stripes_ret, int *max_errors_ret)
5592 struct btrfs_bio *bbio = *bbio_ret;
5593 u64 srcdev_devid = dev_replace->srcdev->devid;
5594 int tgtdev_indexes = 0;
5595 int num_stripes = *num_stripes_ret;
5596 int max_errors = *max_errors_ret;
5597 int i;
5599 if (op == BTRFS_MAP_WRITE) {
5600 int index_where_to_add;
5603 * duplicate the write operations while the dev replace
5604 * procedure is running. Since the copying of the old disk to
5605 * the new disk takes place at run time while the filesystem is
5606 * mounted writable, the regular write operations to the old
5607 * disk have to be duplicated to go to the new disk as well.
5609 * Note that device->missing is handled by the caller, and that
5610 * the write to the old disk is already set up in the stripes
5611 * array.
5613 index_where_to_add = num_stripes;
5614 for (i = 0; i < num_stripes; i++) {
5615 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5616 /* write to new disk, too */
5617 struct btrfs_bio_stripe *new =
5618 bbio->stripes + index_where_to_add;
5619 struct btrfs_bio_stripe *old =
5620 bbio->stripes + i;
5622 new->physical = old->physical;
5623 new->length = old->length;
5624 new->dev = dev_replace->tgtdev;
5625 bbio->tgtdev_map[i] = index_where_to_add;
5626 index_where_to_add++;
5627 max_errors++;
5628 tgtdev_indexes++;
5631 num_stripes = index_where_to_add;
5632 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5633 int index_srcdev = 0;
5634 int found = 0;
5635 u64 physical_of_found = 0;
5638 * During the dev-replace procedure, the target drive can also
5639 * be used to read data in case it is needed to repair a corrupt
5640 * block elsewhere. This is possible if the requested area is
5641 * left of the left cursor. In this area, the target drive is a
5642 * full copy of the source drive.
5644 for (i = 0; i < num_stripes; i++) {
5645 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5647 * In case of DUP, in order to keep it simple,
5648 * only add the mirror with the lowest physical
5649 * address
5651 if (found &&
5652 physical_of_found <=
5653 bbio->stripes[i].physical)
5654 continue;
5655 index_srcdev = i;
5656 found = 1;
5657 physical_of_found = bbio->stripes[i].physical;
5660 if (found) {
5661 struct btrfs_bio_stripe *tgtdev_stripe =
5662 bbio->stripes + num_stripes;
5664 tgtdev_stripe->physical = physical_of_found;
5665 tgtdev_stripe->length =
5666 bbio->stripes[index_srcdev].length;
5667 tgtdev_stripe->dev = dev_replace->tgtdev;
5668 bbio->tgtdev_map[index_srcdev] = num_stripes;
5670 tgtdev_indexes++;
5671 num_stripes++;
5675 *num_stripes_ret = num_stripes;
5676 *max_errors_ret = max_errors;
5677 bbio->num_tgtdevs = tgtdev_indexes;
5678 *bbio_ret = bbio;
5681 static bool need_full_stripe(enum btrfs_map_op op)
5683 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5686 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5687 enum btrfs_map_op op,
5688 u64 logical, u64 *length,
5689 struct btrfs_bio **bbio_ret,
5690 int mirror_num, int need_raid_map)
5692 struct extent_map *em;
5693 struct map_lookup *map;
5694 u64 offset;
5695 u64 stripe_offset;
5696 u64 stripe_nr;
5697 u64 stripe_len;
5698 u32 stripe_index;
5699 int i;
5700 int ret = 0;
5701 int num_stripes;
5702 int max_errors = 0;
5703 int tgtdev_indexes = 0;
5704 struct btrfs_bio *bbio = NULL;
5705 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5706 int dev_replace_is_ongoing = 0;
5707 int num_alloc_stripes;
5708 int patch_the_first_stripe_for_dev_replace = 0;
5709 u64 physical_to_patch_in_first_stripe = 0;
5710 u64 raid56_full_stripe_start = (u64)-1;
5712 if (op == BTRFS_MAP_DISCARD)
5713 return __btrfs_map_block_for_discard(fs_info, logical,
5714 *length, bbio_ret);
5716 em = get_chunk_map(fs_info, logical, *length);
5717 if (IS_ERR(em))
5718 return PTR_ERR(em);
5720 map = em->map_lookup;
5721 offset = logical - em->start;
5723 stripe_len = map->stripe_len;
5724 stripe_nr = offset;
5726 * stripe_nr counts the total number of stripes we have to stride
5727 * to get to this block
5729 stripe_nr = div64_u64(stripe_nr, stripe_len);
5731 stripe_offset = stripe_nr * stripe_len;
5732 if (offset < stripe_offset) {
5733 btrfs_crit(fs_info,
5734 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5735 stripe_offset, offset, em->start, logical,
5736 stripe_len);
5737 free_extent_map(em);
5738 return -EINVAL;
5741 /* stripe_offset is the offset of this block in its stripe*/
5742 stripe_offset = offset - stripe_offset;
5744 /* if we're here for raid56, we need to know the stripe aligned start */
5745 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5746 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5747 raid56_full_stripe_start = offset;
5749 /* allow a write of a full stripe, but make sure we don't
5750 * allow straddling of stripes
5752 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5753 full_stripe_len);
5754 raid56_full_stripe_start *= full_stripe_len;
5757 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5758 u64 max_len;
5759 /* For writes to RAID[56], allow a full stripeset across all disks.
5760 For other RAID types and for RAID[56] reads, just allow a single
5761 stripe (on a single disk). */
5762 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5763 (op == BTRFS_MAP_WRITE)) {
5764 max_len = stripe_len * nr_data_stripes(map) -
5765 (offset - raid56_full_stripe_start);
5766 } else {
5767 /* we limit the length of each bio to what fits in a stripe */
5768 max_len = stripe_len - stripe_offset;
5770 *length = min_t(u64, em->len - offset, max_len);
5771 } else {
5772 *length = em->len - offset;
5775 /* This is for when we're called from btrfs_merge_bio_hook() and all
5776 it cares about is the length */
5777 if (!bbio_ret)
5778 goto out;
5780 btrfs_dev_replace_lock(dev_replace, 0);
5781 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5782 if (!dev_replace_is_ongoing)
5783 btrfs_dev_replace_unlock(dev_replace, 0);
5784 else
5785 btrfs_dev_replace_set_lock_blocking(dev_replace);
5787 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5788 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5789 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5790 dev_replace->srcdev->devid,
5791 &mirror_num,
5792 &physical_to_patch_in_first_stripe);
5793 if (ret)
5794 goto out;
5795 else
5796 patch_the_first_stripe_for_dev_replace = 1;
5797 } else if (mirror_num > map->num_stripes) {
5798 mirror_num = 0;
5801 num_stripes = 1;
5802 stripe_index = 0;
5803 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5804 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5805 &stripe_index);
5806 if (!need_full_stripe(op))
5807 mirror_num = 1;
5808 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5809 if (need_full_stripe(op))
5810 num_stripes = map->num_stripes;
5811 else if (mirror_num)
5812 stripe_index = mirror_num - 1;
5813 else {
5814 stripe_index = find_live_mirror(fs_info, map, 0,
5815 map->num_stripes,
5816 current->pid % map->num_stripes,
5817 dev_replace_is_ongoing);
5818 mirror_num = stripe_index + 1;
5821 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5822 if (need_full_stripe(op)) {
5823 num_stripes = map->num_stripes;
5824 } else if (mirror_num) {
5825 stripe_index = mirror_num - 1;
5826 } else {
5827 mirror_num = 1;
5830 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5831 u32 factor = map->num_stripes / map->sub_stripes;
5833 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5834 stripe_index *= map->sub_stripes;
5836 if (need_full_stripe(op))
5837 num_stripes = map->sub_stripes;
5838 else if (mirror_num)
5839 stripe_index += mirror_num - 1;
5840 else {
5841 int old_stripe_index = stripe_index;
5842 stripe_index = find_live_mirror(fs_info, map,
5843 stripe_index,
5844 map->sub_stripes, stripe_index +
5845 current->pid % map->sub_stripes,
5846 dev_replace_is_ongoing);
5847 mirror_num = stripe_index - old_stripe_index + 1;
5850 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5851 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5852 /* push stripe_nr back to the start of the full stripe */
5853 stripe_nr = div64_u64(raid56_full_stripe_start,
5854 stripe_len * nr_data_stripes(map));
5856 /* RAID[56] write or recovery. Return all stripes */
5857 num_stripes = map->num_stripes;
5858 max_errors = nr_parity_stripes(map);
5860 *length = map->stripe_len;
5861 stripe_index = 0;
5862 stripe_offset = 0;
5863 } else {
5865 * Mirror #0 or #1 means the original data block.
5866 * Mirror #2 is RAID5 parity block.
5867 * Mirror #3 is RAID6 Q block.
5869 stripe_nr = div_u64_rem(stripe_nr,
5870 nr_data_stripes(map), &stripe_index);
5871 if (mirror_num > 1)
5872 stripe_index = nr_data_stripes(map) +
5873 mirror_num - 2;
5875 /* We distribute the parity blocks across stripes */
5876 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5877 &stripe_index);
5878 if (!need_full_stripe(op) && mirror_num <= 1)
5879 mirror_num = 1;
5881 } else {
5883 * after this, stripe_nr is the number of stripes on this
5884 * device we have to walk to find the data, and stripe_index is
5885 * the number of our device in the stripe array
5887 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5888 &stripe_index);
5889 mirror_num = stripe_index + 1;
5891 if (stripe_index >= map->num_stripes) {
5892 btrfs_crit(fs_info,
5893 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5894 stripe_index, map->num_stripes);
5895 ret = -EINVAL;
5896 goto out;
5899 num_alloc_stripes = num_stripes;
5900 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5901 if (op == BTRFS_MAP_WRITE)
5902 num_alloc_stripes <<= 1;
5903 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5904 num_alloc_stripes++;
5905 tgtdev_indexes = num_stripes;
5908 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5909 if (!bbio) {
5910 ret = -ENOMEM;
5911 goto out;
5913 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5914 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5916 /* build raid_map */
5917 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5918 (need_full_stripe(op) || mirror_num > 1)) {
5919 u64 tmp;
5920 unsigned rot;
5922 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5923 sizeof(struct btrfs_bio_stripe) *
5924 num_alloc_stripes +
5925 sizeof(int) * tgtdev_indexes);
5927 /* Work out the disk rotation on this stripe-set */
5928 div_u64_rem(stripe_nr, num_stripes, &rot);
5930 /* Fill in the logical address of each stripe */
5931 tmp = stripe_nr * nr_data_stripes(map);
5932 for (i = 0; i < nr_data_stripes(map); i++)
5933 bbio->raid_map[(i+rot) % num_stripes] =
5934 em->start + (tmp + i) * map->stripe_len;
5936 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5937 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5938 bbio->raid_map[(i+rot+1) % num_stripes] =
5939 RAID6_Q_STRIPE;
5943 for (i = 0; i < num_stripes; i++) {
5944 bbio->stripes[i].physical =
5945 map->stripes[stripe_index].physical +
5946 stripe_offset +
5947 stripe_nr * map->stripe_len;
5948 bbio->stripes[i].dev =
5949 map->stripes[stripe_index].dev;
5950 stripe_index++;
5953 if (need_full_stripe(op))
5954 max_errors = btrfs_chunk_max_errors(map);
5956 if (bbio->raid_map)
5957 sort_parity_stripes(bbio, num_stripes);
5959 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5960 need_full_stripe(op)) {
5961 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5962 &max_errors);
5965 *bbio_ret = bbio;
5966 bbio->map_type = map->type;
5967 bbio->num_stripes = num_stripes;
5968 bbio->max_errors = max_errors;
5969 bbio->mirror_num = mirror_num;
5972 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5973 * mirror_num == num_stripes + 1 && dev_replace target drive is
5974 * available as a mirror
5976 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5977 WARN_ON(num_stripes > 1);
5978 bbio->stripes[0].dev = dev_replace->tgtdev;
5979 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5980 bbio->mirror_num = map->num_stripes + 1;
5982 out:
5983 if (dev_replace_is_ongoing) {
5984 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5985 btrfs_dev_replace_unlock(dev_replace, 0);
5987 free_extent_map(em);
5988 return ret;
5991 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5992 u64 logical, u64 *length,
5993 struct btrfs_bio **bbio_ret, int mirror_num)
5995 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5996 mirror_num, 0);
5999 /* For Scrub/replace */
6000 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6001 u64 logical, u64 *length,
6002 struct btrfs_bio **bbio_ret)
6004 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6007 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
6008 u64 chunk_start, u64 physical, u64 devid,
6009 u64 **logical, int *naddrs, int *stripe_len)
6011 struct extent_map *em;
6012 struct map_lookup *map;
6013 u64 *buf;
6014 u64 bytenr;
6015 u64 length;
6016 u64 stripe_nr;
6017 u64 rmap_len;
6018 int i, j, nr = 0;
6020 em = get_chunk_map(fs_info, chunk_start, 1);
6021 if (IS_ERR(em))
6022 return -EIO;
6024 map = em->map_lookup;
6025 length = em->len;
6026 rmap_len = map->stripe_len;
6028 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6029 length = div_u64(length, map->num_stripes / map->sub_stripes);
6030 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6031 length = div_u64(length, map->num_stripes);
6032 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6033 length = div_u64(length, nr_data_stripes(map));
6034 rmap_len = map->stripe_len * nr_data_stripes(map);
6037 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6038 BUG_ON(!buf); /* -ENOMEM */
6040 for (i = 0; i < map->num_stripes; i++) {
6041 if (devid && map->stripes[i].dev->devid != devid)
6042 continue;
6043 if (map->stripes[i].physical > physical ||
6044 map->stripes[i].physical + length <= physical)
6045 continue;
6047 stripe_nr = physical - map->stripes[i].physical;
6048 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6050 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6051 stripe_nr = stripe_nr * map->num_stripes + i;
6052 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6053 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6054 stripe_nr = stripe_nr * map->num_stripes + i;
6055 } /* else if RAID[56], multiply by nr_data_stripes().
6056 * Alternatively, just use rmap_len below instead of
6057 * map->stripe_len */
6059 bytenr = chunk_start + stripe_nr * rmap_len;
6060 WARN_ON(nr >= map->num_stripes);
6061 for (j = 0; j < nr; j++) {
6062 if (buf[j] == bytenr)
6063 break;
6065 if (j == nr) {
6066 WARN_ON(nr >= map->num_stripes);
6067 buf[nr++] = bytenr;
6071 *logical = buf;
6072 *naddrs = nr;
6073 *stripe_len = rmap_len;
6075 free_extent_map(em);
6076 return 0;
6079 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6081 bio->bi_private = bbio->private;
6082 bio->bi_end_io = bbio->end_io;
6083 bio_endio(bio);
6085 btrfs_put_bbio(bbio);
6088 static void btrfs_end_bio(struct bio *bio)
6090 struct btrfs_bio *bbio = bio->bi_private;
6091 int is_orig_bio = 0;
6093 if (bio->bi_status) {
6094 atomic_inc(&bbio->error);
6095 if (bio->bi_status == BLK_STS_IOERR ||
6096 bio->bi_status == BLK_STS_TARGET) {
6097 unsigned int stripe_index =
6098 btrfs_io_bio(bio)->stripe_index;
6099 struct btrfs_device *dev;
6101 BUG_ON(stripe_index >= bbio->num_stripes);
6102 dev = bbio->stripes[stripe_index].dev;
6103 if (dev->bdev) {
6104 if (bio_op(bio) == REQ_OP_WRITE)
6105 btrfs_dev_stat_inc_and_print(dev,
6106 BTRFS_DEV_STAT_WRITE_ERRS);
6107 else
6108 btrfs_dev_stat_inc_and_print(dev,
6109 BTRFS_DEV_STAT_READ_ERRS);
6110 if (bio->bi_opf & REQ_PREFLUSH)
6111 btrfs_dev_stat_inc_and_print(dev,
6112 BTRFS_DEV_STAT_FLUSH_ERRS);
6117 if (bio == bbio->orig_bio)
6118 is_orig_bio = 1;
6120 btrfs_bio_counter_dec(bbio->fs_info);
6122 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6123 if (!is_orig_bio) {
6124 bio_put(bio);
6125 bio = bbio->orig_bio;
6128 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6129 /* only send an error to the higher layers if it is
6130 * beyond the tolerance of the btrfs bio
6132 if (atomic_read(&bbio->error) > bbio->max_errors) {
6133 bio->bi_status = BLK_STS_IOERR;
6134 } else {
6136 * this bio is actually up to date, we didn't
6137 * go over the max number of errors
6139 bio->bi_status = BLK_STS_OK;
6142 btrfs_end_bbio(bbio, bio);
6143 } else if (!is_orig_bio) {
6144 bio_put(bio);
6149 * see run_scheduled_bios for a description of why bios are collected for
6150 * async submit.
6152 * This will add one bio to the pending list for a device and make sure
6153 * the work struct is scheduled.
6155 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6156 struct bio *bio)
6158 struct btrfs_fs_info *fs_info = device->fs_info;
6159 int should_queue = 1;
6160 struct btrfs_pending_bios *pending_bios;
6162 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
6163 !device->bdev) {
6164 bio_io_error(bio);
6165 return;
6168 /* don't bother with additional async steps for reads, right now */
6169 if (bio_op(bio) == REQ_OP_READ) {
6170 btrfsic_submit_bio(bio);
6171 return;
6174 WARN_ON(bio->bi_next);
6175 bio->bi_next = NULL;
6177 spin_lock(&device->io_lock);
6178 if (op_is_sync(bio->bi_opf))
6179 pending_bios = &device->pending_sync_bios;
6180 else
6181 pending_bios = &device->pending_bios;
6183 if (pending_bios->tail)
6184 pending_bios->tail->bi_next = bio;
6186 pending_bios->tail = bio;
6187 if (!pending_bios->head)
6188 pending_bios->head = bio;
6189 if (device->running_pending)
6190 should_queue = 0;
6192 spin_unlock(&device->io_lock);
6194 if (should_queue)
6195 btrfs_queue_work(fs_info->submit_workers, &device->work);
6198 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6199 u64 physical, int dev_nr, int async)
6201 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6202 struct btrfs_fs_info *fs_info = bbio->fs_info;
6204 bio->bi_private = bbio;
6205 btrfs_io_bio(bio)->stripe_index = dev_nr;
6206 bio->bi_end_io = btrfs_end_bio;
6207 bio->bi_iter.bi_sector = physical >> 9;
6208 #ifdef DEBUG
6210 struct rcu_string *name;
6212 rcu_read_lock();
6213 name = rcu_dereference(dev->name);
6214 btrfs_debug(fs_info,
6215 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6216 bio_op(bio), bio->bi_opf,
6217 (u64)bio->bi_iter.bi_sector,
6218 (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6219 bio->bi_iter.bi_size);
6220 rcu_read_unlock();
6222 #endif
6223 bio_set_dev(bio, dev->bdev);
6225 btrfs_bio_counter_inc_noblocked(fs_info);
6227 if (async)
6228 btrfs_schedule_bio(dev, bio);
6229 else
6230 btrfsic_submit_bio(bio);
6233 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6235 atomic_inc(&bbio->error);
6236 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6237 /* Should be the original bio. */
6238 WARN_ON(bio != bbio->orig_bio);
6240 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6241 bio->bi_iter.bi_sector = logical >> 9;
6242 if (atomic_read(&bbio->error) > bbio->max_errors)
6243 bio->bi_status = BLK_STS_IOERR;
6244 else
6245 bio->bi_status = BLK_STS_OK;
6246 btrfs_end_bbio(bbio, bio);
6250 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6251 int mirror_num, int async_submit)
6253 struct btrfs_device *dev;
6254 struct bio *first_bio = bio;
6255 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6256 u64 length = 0;
6257 u64 map_length;
6258 int ret;
6259 int dev_nr;
6260 int total_devs;
6261 struct btrfs_bio *bbio = NULL;
6263 length = bio->bi_iter.bi_size;
6264 map_length = length;
6266 btrfs_bio_counter_inc_blocked(fs_info);
6267 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6268 &map_length, &bbio, mirror_num, 1);
6269 if (ret) {
6270 btrfs_bio_counter_dec(fs_info);
6271 return errno_to_blk_status(ret);
6274 total_devs = bbio->num_stripes;
6275 bbio->orig_bio = first_bio;
6276 bbio->private = first_bio->bi_private;
6277 bbio->end_io = first_bio->bi_end_io;
6278 bbio->fs_info = fs_info;
6279 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6281 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6282 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6283 /* In this case, map_length has been set to the length of
6284 a single stripe; not the whole write */
6285 if (bio_op(bio) == REQ_OP_WRITE) {
6286 ret = raid56_parity_write(fs_info, bio, bbio,
6287 map_length);
6288 } else {
6289 ret = raid56_parity_recover(fs_info, bio, bbio,
6290 map_length, mirror_num, 1);
6293 btrfs_bio_counter_dec(fs_info);
6294 return errno_to_blk_status(ret);
6297 if (map_length < length) {
6298 btrfs_crit(fs_info,
6299 "mapping failed logical %llu bio len %llu len %llu",
6300 logical, length, map_length);
6301 BUG();
6304 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6305 dev = bbio->stripes[dev_nr].dev;
6306 if (!dev || !dev->bdev ||
6307 (bio_op(first_bio) == REQ_OP_WRITE &&
6308 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6309 bbio_error(bbio, first_bio, logical);
6310 continue;
6313 if (dev_nr < total_devs - 1)
6314 bio = btrfs_bio_clone(first_bio);
6315 else
6316 bio = first_bio;
6318 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6319 dev_nr, async_submit);
6321 btrfs_bio_counter_dec(fs_info);
6322 return BLK_STS_OK;
6325 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6326 u8 *uuid, u8 *fsid)
6328 struct btrfs_device *device;
6329 struct btrfs_fs_devices *cur_devices;
6331 cur_devices = fs_info->fs_devices;
6332 while (cur_devices) {
6333 if (!fsid ||
6334 !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6335 device = find_device(cur_devices, devid, uuid);
6336 if (device)
6337 return device;
6339 cur_devices = cur_devices->seed;
6341 return NULL;
6344 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6345 u64 devid, u8 *dev_uuid)
6347 struct btrfs_device *device;
6349 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6350 if (IS_ERR(device))
6351 return device;
6353 list_add(&device->dev_list, &fs_devices->devices);
6354 device->fs_devices = fs_devices;
6355 fs_devices->num_devices++;
6357 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6358 fs_devices->missing_devices++;
6360 return device;
6364 * btrfs_alloc_device - allocate struct btrfs_device
6365 * @fs_info: used only for generating a new devid, can be NULL if
6366 * devid is provided (i.e. @devid != NULL).
6367 * @devid: a pointer to devid for this device. If NULL a new devid
6368 * is generated.
6369 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6370 * is generated.
6372 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6373 * on error. Returned struct is not linked onto any lists and must be
6374 * destroyed with free_device.
6376 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6377 const u64 *devid,
6378 const u8 *uuid)
6380 struct btrfs_device *dev;
6381 u64 tmp;
6383 if (WARN_ON(!devid && !fs_info))
6384 return ERR_PTR(-EINVAL);
6386 dev = __alloc_device();
6387 if (IS_ERR(dev))
6388 return dev;
6390 if (devid)
6391 tmp = *devid;
6392 else {
6393 int ret;
6395 ret = find_next_devid(fs_info, &tmp);
6396 if (ret) {
6397 free_device(dev);
6398 return ERR_PTR(ret);
6401 dev->devid = tmp;
6403 if (uuid)
6404 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6405 else
6406 generate_random_uuid(dev->uuid);
6408 btrfs_init_work(&dev->work, btrfs_submit_helper,
6409 pending_bios_fn, NULL, NULL);
6411 return dev;
6414 /* Return -EIO if any error, otherwise return 0. */
6415 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6416 struct extent_buffer *leaf,
6417 struct btrfs_chunk *chunk, u64 logical)
6419 u64 length;
6420 u64 stripe_len;
6421 u16 num_stripes;
6422 u16 sub_stripes;
6423 u64 type;
6425 length = btrfs_chunk_length(leaf, chunk);
6426 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6427 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6428 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6429 type = btrfs_chunk_type(leaf, chunk);
6431 if (!num_stripes) {
6432 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6433 num_stripes);
6434 return -EIO;
6436 if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6437 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6438 return -EIO;
6440 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6441 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6442 btrfs_chunk_sector_size(leaf, chunk));
6443 return -EIO;
6445 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6446 btrfs_err(fs_info, "invalid chunk length %llu", length);
6447 return -EIO;
6449 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6450 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6451 stripe_len);
6452 return -EIO;
6454 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6455 type) {
6456 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6457 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6458 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6459 btrfs_chunk_type(leaf, chunk));
6460 return -EIO;
6462 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6463 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6464 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6465 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6466 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6467 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6468 num_stripes != 1)) {
6469 btrfs_err(fs_info,
6470 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6471 num_stripes, sub_stripes,
6472 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6473 return -EIO;
6476 return 0;
6479 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6480 u64 devid, u8 *uuid, bool error)
6482 if (error)
6483 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6484 devid, uuid);
6485 else
6486 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6487 devid, uuid);
6490 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6491 struct extent_buffer *leaf,
6492 struct btrfs_chunk *chunk)
6494 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6495 struct map_lookup *map;
6496 struct extent_map *em;
6497 u64 logical;
6498 u64 length;
6499 u64 devid;
6500 u8 uuid[BTRFS_UUID_SIZE];
6501 int num_stripes;
6502 int ret;
6503 int i;
6505 logical = key->offset;
6506 length = btrfs_chunk_length(leaf, chunk);
6507 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6509 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6510 if (ret)
6511 return ret;
6513 read_lock(&map_tree->map_tree.lock);
6514 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6515 read_unlock(&map_tree->map_tree.lock);
6517 /* already mapped? */
6518 if (em && em->start <= logical && em->start + em->len > logical) {
6519 free_extent_map(em);
6520 return 0;
6521 } else if (em) {
6522 free_extent_map(em);
6525 em = alloc_extent_map();
6526 if (!em)
6527 return -ENOMEM;
6528 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6529 if (!map) {
6530 free_extent_map(em);
6531 return -ENOMEM;
6534 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6535 em->map_lookup = map;
6536 em->start = logical;
6537 em->len = length;
6538 em->orig_start = 0;
6539 em->block_start = 0;
6540 em->block_len = em->len;
6542 map->num_stripes = num_stripes;
6543 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6544 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6545 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6546 map->type = btrfs_chunk_type(leaf, chunk);
6547 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6548 for (i = 0; i < num_stripes; i++) {
6549 map->stripes[i].physical =
6550 btrfs_stripe_offset_nr(leaf, chunk, i);
6551 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6552 read_extent_buffer(leaf, uuid, (unsigned long)
6553 btrfs_stripe_dev_uuid_nr(chunk, i),
6554 BTRFS_UUID_SIZE);
6555 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6556 uuid, NULL);
6557 if (!map->stripes[i].dev &&
6558 !btrfs_test_opt(fs_info, DEGRADED)) {
6559 free_extent_map(em);
6560 btrfs_report_missing_device(fs_info, devid, uuid, true);
6561 return -ENOENT;
6563 if (!map->stripes[i].dev) {
6564 map->stripes[i].dev =
6565 add_missing_dev(fs_info->fs_devices, devid,
6566 uuid);
6567 if (IS_ERR(map->stripes[i].dev)) {
6568 free_extent_map(em);
6569 btrfs_err(fs_info,
6570 "failed to init missing dev %llu: %ld",
6571 devid, PTR_ERR(map->stripes[i].dev));
6572 return PTR_ERR(map->stripes[i].dev);
6574 btrfs_report_missing_device(fs_info, devid, uuid, false);
6576 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6577 &(map->stripes[i].dev->dev_state));
6581 write_lock(&map_tree->map_tree.lock);
6582 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6583 write_unlock(&map_tree->map_tree.lock);
6584 BUG_ON(ret); /* Tree corruption */
6585 free_extent_map(em);
6587 return 0;
6590 static void fill_device_from_item(struct extent_buffer *leaf,
6591 struct btrfs_dev_item *dev_item,
6592 struct btrfs_device *device)
6594 unsigned long ptr;
6596 device->devid = btrfs_device_id(leaf, dev_item);
6597 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6598 device->total_bytes = device->disk_total_bytes;
6599 device->commit_total_bytes = device->disk_total_bytes;
6600 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6601 device->commit_bytes_used = device->bytes_used;
6602 device->type = btrfs_device_type(leaf, dev_item);
6603 device->io_align = btrfs_device_io_align(leaf, dev_item);
6604 device->io_width = btrfs_device_io_width(leaf, dev_item);
6605 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6606 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6607 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6609 ptr = btrfs_device_uuid(dev_item);
6610 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6613 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6614 u8 *fsid)
6616 struct btrfs_fs_devices *fs_devices;
6617 int ret;
6619 BUG_ON(!mutex_is_locked(&uuid_mutex));
6620 ASSERT(fsid);
6622 fs_devices = fs_info->fs_devices->seed;
6623 while (fs_devices) {
6624 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6625 return fs_devices;
6627 fs_devices = fs_devices->seed;
6630 fs_devices = find_fsid(fsid);
6631 if (!fs_devices) {
6632 if (!btrfs_test_opt(fs_info, DEGRADED))
6633 return ERR_PTR(-ENOENT);
6635 fs_devices = alloc_fs_devices(fsid);
6636 if (IS_ERR(fs_devices))
6637 return fs_devices;
6639 fs_devices->seeding = 1;
6640 fs_devices->opened = 1;
6641 return fs_devices;
6644 fs_devices = clone_fs_devices(fs_devices);
6645 if (IS_ERR(fs_devices))
6646 return fs_devices;
6648 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6649 fs_info->bdev_holder);
6650 if (ret) {
6651 free_fs_devices(fs_devices);
6652 fs_devices = ERR_PTR(ret);
6653 goto out;
6656 if (!fs_devices->seeding) {
6657 __btrfs_close_devices(fs_devices);
6658 free_fs_devices(fs_devices);
6659 fs_devices = ERR_PTR(-EINVAL);
6660 goto out;
6663 fs_devices->seed = fs_info->fs_devices->seed;
6664 fs_info->fs_devices->seed = fs_devices;
6665 out:
6666 return fs_devices;
6669 static int read_one_dev(struct btrfs_fs_info *fs_info,
6670 struct extent_buffer *leaf,
6671 struct btrfs_dev_item *dev_item)
6673 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6674 struct btrfs_device *device;
6675 u64 devid;
6676 int ret;
6677 u8 fs_uuid[BTRFS_FSID_SIZE];
6678 u8 dev_uuid[BTRFS_UUID_SIZE];
6680 devid = btrfs_device_id(leaf, dev_item);
6681 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6682 BTRFS_UUID_SIZE);
6683 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6684 BTRFS_FSID_SIZE);
6686 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6687 fs_devices = open_seed_devices(fs_info, fs_uuid);
6688 if (IS_ERR(fs_devices))
6689 return PTR_ERR(fs_devices);
6692 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6693 if (!device) {
6694 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6695 btrfs_report_missing_device(fs_info, devid,
6696 dev_uuid, true);
6697 return -ENOENT;
6700 device = add_missing_dev(fs_devices, devid, dev_uuid);
6701 if (IS_ERR(device)) {
6702 btrfs_err(fs_info,
6703 "failed to add missing dev %llu: %ld",
6704 devid, PTR_ERR(device));
6705 return PTR_ERR(device);
6707 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6708 } else {
6709 if (!device->bdev) {
6710 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6711 btrfs_report_missing_device(fs_info,
6712 devid, dev_uuid, true);
6713 return -ENOENT;
6715 btrfs_report_missing_device(fs_info, devid,
6716 dev_uuid, false);
6719 if (!device->bdev &&
6720 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6722 * this happens when a device that was properly setup
6723 * in the device info lists suddenly goes bad.
6724 * device->bdev is NULL, and so we have to set
6725 * device->missing to one here
6727 device->fs_devices->missing_devices++;
6728 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6731 /* Move the device to its own fs_devices */
6732 if (device->fs_devices != fs_devices) {
6733 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6734 &device->dev_state));
6736 list_move(&device->dev_list, &fs_devices->devices);
6737 device->fs_devices->num_devices--;
6738 fs_devices->num_devices++;
6740 device->fs_devices->missing_devices--;
6741 fs_devices->missing_devices++;
6743 device->fs_devices = fs_devices;
6747 if (device->fs_devices != fs_info->fs_devices) {
6748 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6749 if (device->generation !=
6750 btrfs_device_generation(leaf, dev_item))
6751 return -EINVAL;
6754 fill_device_from_item(leaf, dev_item, device);
6755 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6756 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6757 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6758 device->fs_devices->total_rw_bytes += device->total_bytes;
6759 atomic64_add(device->total_bytes - device->bytes_used,
6760 &fs_info->free_chunk_space);
6762 ret = 0;
6763 return ret;
6766 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6768 struct btrfs_root *root = fs_info->tree_root;
6769 struct btrfs_super_block *super_copy = fs_info->super_copy;
6770 struct extent_buffer *sb;
6771 struct btrfs_disk_key *disk_key;
6772 struct btrfs_chunk *chunk;
6773 u8 *array_ptr;
6774 unsigned long sb_array_offset;
6775 int ret = 0;
6776 u32 num_stripes;
6777 u32 array_size;
6778 u32 len = 0;
6779 u32 cur_offset;
6780 u64 type;
6781 struct btrfs_key key;
6783 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6785 * This will create extent buffer of nodesize, superblock size is
6786 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6787 * overallocate but we can keep it as-is, only the first page is used.
6789 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6790 if (IS_ERR(sb))
6791 return PTR_ERR(sb);
6792 set_extent_buffer_uptodate(sb);
6793 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6795 * The sb extent buffer is artificial and just used to read the system array.
6796 * set_extent_buffer_uptodate() call does not properly mark all it's
6797 * pages up-to-date when the page is larger: extent does not cover the
6798 * whole page and consequently check_page_uptodate does not find all
6799 * the page's extents up-to-date (the hole beyond sb),
6800 * write_extent_buffer then triggers a WARN_ON.
6802 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6803 * but sb spans only this function. Add an explicit SetPageUptodate call
6804 * to silence the warning eg. on PowerPC 64.
6806 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6807 SetPageUptodate(sb->pages[0]);
6809 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6810 array_size = btrfs_super_sys_array_size(super_copy);
6812 array_ptr = super_copy->sys_chunk_array;
6813 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6814 cur_offset = 0;
6816 while (cur_offset < array_size) {
6817 disk_key = (struct btrfs_disk_key *)array_ptr;
6818 len = sizeof(*disk_key);
6819 if (cur_offset + len > array_size)
6820 goto out_short_read;
6822 btrfs_disk_key_to_cpu(&key, disk_key);
6824 array_ptr += len;
6825 sb_array_offset += len;
6826 cur_offset += len;
6828 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6829 chunk = (struct btrfs_chunk *)sb_array_offset;
6831 * At least one btrfs_chunk with one stripe must be
6832 * present, exact stripe count check comes afterwards
6834 len = btrfs_chunk_item_size(1);
6835 if (cur_offset + len > array_size)
6836 goto out_short_read;
6838 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6839 if (!num_stripes) {
6840 btrfs_err(fs_info,
6841 "invalid number of stripes %u in sys_array at offset %u",
6842 num_stripes, cur_offset);
6843 ret = -EIO;
6844 break;
6847 type = btrfs_chunk_type(sb, chunk);
6848 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6849 btrfs_err(fs_info,
6850 "invalid chunk type %llu in sys_array at offset %u",
6851 type, cur_offset);
6852 ret = -EIO;
6853 break;
6856 len = btrfs_chunk_item_size(num_stripes);
6857 if (cur_offset + len > array_size)
6858 goto out_short_read;
6860 ret = read_one_chunk(fs_info, &key, sb, chunk);
6861 if (ret)
6862 break;
6863 } else {
6864 btrfs_err(fs_info,
6865 "unexpected item type %u in sys_array at offset %u",
6866 (u32)key.type, cur_offset);
6867 ret = -EIO;
6868 break;
6870 array_ptr += len;
6871 sb_array_offset += len;
6872 cur_offset += len;
6874 clear_extent_buffer_uptodate(sb);
6875 free_extent_buffer_stale(sb);
6876 return ret;
6878 out_short_read:
6879 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6880 len, cur_offset);
6881 clear_extent_buffer_uptodate(sb);
6882 free_extent_buffer_stale(sb);
6883 return -EIO;
6887 * Check if all chunks in the fs are OK for read-write degraded mount
6889 * If the @failing_dev is specified, it's accounted as missing.
6891 * Return true if all chunks meet the minimal RW mount requirements.
6892 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6894 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6895 struct btrfs_device *failing_dev)
6897 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6898 struct extent_map *em;
6899 u64 next_start = 0;
6900 bool ret = true;
6902 read_lock(&map_tree->map_tree.lock);
6903 em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6904 read_unlock(&map_tree->map_tree.lock);
6905 /* No chunk at all? Return false anyway */
6906 if (!em) {
6907 ret = false;
6908 goto out;
6910 while (em) {
6911 struct map_lookup *map;
6912 int missing = 0;
6913 int max_tolerated;
6914 int i;
6916 map = em->map_lookup;
6917 max_tolerated =
6918 btrfs_get_num_tolerated_disk_barrier_failures(
6919 map->type);
6920 for (i = 0; i < map->num_stripes; i++) {
6921 struct btrfs_device *dev = map->stripes[i].dev;
6923 if (!dev || !dev->bdev ||
6924 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6925 dev->last_flush_error)
6926 missing++;
6927 else if (failing_dev && failing_dev == dev)
6928 missing++;
6930 if (missing > max_tolerated) {
6931 if (!failing_dev)
6932 btrfs_warn(fs_info,
6933 "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6934 em->start, missing, max_tolerated);
6935 free_extent_map(em);
6936 ret = false;
6937 goto out;
6939 next_start = extent_map_end(em);
6940 free_extent_map(em);
6942 read_lock(&map_tree->map_tree.lock);
6943 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6944 (u64)(-1) - next_start);
6945 read_unlock(&map_tree->map_tree.lock);
6947 out:
6948 return ret;
6951 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6953 struct btrfs_root *root = fs_info->chunk_root;
6954 struct btrfs_path *path;
6955 struct extent_buffer *leaf;
6956 struct btrfs_key key;
6957 struct btrfs_key found_key;
6958 int ret;
6959 int slot;
6960 u64 total_dev = 0;
6962 path = btrfs_alloc_path();
6963 if (!path)
6964 return -ENOMEM;
6966 mutex_lock(&uuid_mutex);
6967 mutex_lock(&fs_info->chunk_mutex);
6970 * Read all device items, and then all the chunk items. All
6971 * device items are found before any chunk item (their object id
6972 * is smaller than the lowest possible object id for a chunk
6973 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6975 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6976 key.offset = 0;
6977 key.type = 0;
6978 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6979 if (ret < 0)
6980 goto error;
6981 while (1) {
6982 leaf = path->nodes[0];
6983 slot = path->slots[0];
6984 if (slot >= btrfs_header_nritems(leaf)) {
6985 ret = btrfs_next_leaf(root, path);
6986 if (ret == 0)
6987 continue;
6988 if (ret < 0)
6989 goto error;
6990 break;
6992 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6993 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6994 struct btrfs_dev_item *dev_item;
6995 dev_item = btrfs_item_ptr(leaf, slot,
6996 struct btrfs_dev_item);
6997 ret = read_one_dev(fs_info, leaf, dev_item);
6998 if (ret)
6999 goto error;
7000 total_dev++;
7001 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7002 struct btrfs_chunk *chunk;
7003 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7004 ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
7005 if (ret)
7006 goto error;
7008 path->slots[0]++;
7012 * After loading chunk tree, we've got all device information,
7013 * do another round of validation checks.
7015 if (total_dev != fs_info->fs_devices->total_devices) {
7016 btrfs_err(fs_info,
7017 "super_num_devices %llu mismatch with num_devices %llu found here",
7018 btrfs_super_num_devices(fs_info->super_copy),
7019 total_dev);
7020 ret = -EINVAL;
7021 goto error;
7023 if (btrfs_super_total_bytes(fs_info->super_copy) <
7024 fs_info->fs_devices->total_rw_bytes) {
7025 btrfs_err(fs_info,
7026 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7027 btrfs_super_total_bytes(fs_info->super_copy),
7028 fs_info->fs_devices->total_rw_bytes);
7029 ret = -EINVAL;
7030 goto error;
7032 ret = 0;
7033 error:
7034 mutex_unlock(&fs_info->chunk_mutex);
7035 mutex_unlock(&uuid_mutex);
7037 btrfs_free_path(path);
7038 return ret;
7041 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7043 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7044 struct btrfs_device *device;
7046 while (fs_devices) {
7047 mutex_lock(&fs_devices->device_list_mutex);
7048 list_for_each_entry(device, &fs_devices->devices, dev_list)
7049 device->fs_info = fs_info;
7050 mutex_unlock(&fs_devices->device_list_mutex);
7052 fs_devices = fs_devices->seed;
7056 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7058 int i;
7060 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7061 btrfs_dev_stat_reset(dev, i);
7064 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7066 struct btrfs_key key;
7067 struct btrfs_key found_key;
7068 struct btrfs_root *dev_root = fs_info->dev_root;
7069 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7070 struct extent_buffer *eb;
7071 int slot;
7072 int ret = 0;
7073 struct btrfs_device *device;
7074 struct btrfs_path *path = NULL;
7075 int i;
7077 path = btrfs_alloc_path();
7078 if (!path) {
7079 ret = -ENOMEM;
7080 goto out;
7083 mutex_lock(&fs_devices->device_list_mutex);
7084 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7085 int item_size;
7086 struct btrfs_dev_stats_item *ptr;
7088 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7089 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7090 key.offset = device->devid;
7091 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7092 if (ret) {
7093 __btrfs_reset_dev_stats(device);
7094 device->dev_stats_valid = 1;
7095 btrfs_release_path(path);
7096 continue;
7098 slot = path->slots[0];
7099 eb = path->nodes[0];
7100 btrfs_item_key_to_cpu(eb, &found_key, slot);
7101 item_size = btrfs_item_size_nr(eb, slot);
7103 ptr = btrfs_item_ptr(eb, slot,
7104 struct btrfs_dev_stats_item);
7106 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7107 if (item_size >= (1 + i) * sizeof(__le64))
7108 btrfs_dev_stat_set(device, i,
7109 btrfs_dev_stats_value(eb, ptr, i));
7110 else
7111 btrfs_dev_stat_reset(device, i);
7114 device->dev_stats_valid = 1;
7115 btrfs_dev_stat_print_on_load(device);
7116 btrfs_release_path(path);
7118 mutex_unlock(&fs_devices->device_list_mutex);
7120 out:
7121 btrfs_free_path(path);
7122 return ret < 0 ? ret : 0;
7125 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7126 struct btrfs_fs_info *fs_info,
7127 struct btrfs_device *device)
7129 struct btrfs_root *dev_root = fs_info->dev_root;
7130 struct btrfs_path *path;
7131 struct btrfs_key key;
7132 struct extent_buffer *eb;
7133 struct btrfs_dev_stats_item *ptr;
7134 int ret;
7135 int i;
7137 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7138 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7139 key.offset = device->devid;
7141 path = btrfs_alloc_path();
7142 if (!path)
7143 return -ENOMEM;
7144 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7145 if (ret < 0) {
7146 btrfs_warn_in_rcu(fs_info,
7147 "error %d while searching for dev_stats item for device %s",
7148 ret, rcu_str_deref(device->name));
7149 goto out;
7152 if (ret == 0 &&
7153 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7154 /* need to delete old one and insert a new one */
7155 ret = btrfs_del_item(trans, dev_root, path);
7156 if (ret != 0) {
7157 btrfs_warn_in_rcu(fs_info,
7158 "delete too small dev_stats item for device %s failed %d",
7159 rcu_str_deref(device->name), ret);
7160 goto out;
7162 ret = 1;
7165 if (ret == 1) {
7166 /* need to insert a new item */
7167 btrfs_release_path(path);
7168 ret = btrfs_insert_empty_item(trans, dev_root, path,
7169 &key, sizeof(*ptr));
7170 if (ret < 0) {
7171 btrfs_warn_in_rcu(fs_info,
7172 "insert dev_stats item for device %s failed %d",
7173 rcu_str_deref(device->name), ret);
7174 goto out;
7178 eb = path->nodes[0];
7179 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7180 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7181 btrfs_set_dev_stats_value(eb, ptr, i,
7182 btrfs_dev_stat_read(device, i));
7183 btrfs_mark_buffer_dirty(eb);
7185 out:
7186 btrfs_free_path(path);
7187 return ret;
7191 * called from commit_transaction. Writes all changed device stats to disk.
7193 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7194 struct btrfs_fs_info *fs_info)
7196 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7197 struct btrfs_device *device;
7198 int stats_cnt;
7199 int ret = 0;
7201 mutex_lock(&fs_devices->device_list_mutex);
7202 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7203 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7204 if (!device->dev_stats_valid || stats_cnt == 0)
7205 continue;
7209 * There is a LOAD-LOAD control dependency between the value of
7210 * dev_stats_ccnt and updating the on-disk values which requires
7211 * reading the in-memory counters. Such control dependencies
7212 * require explicit read memory barriers.
7214 * This memory barriers pairs with smp_mb__before_atomic in
7215 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7216 * barrier implied by atomic_xchg in
7217 * btrfs_dev_stats_read_and_reset
7219 smp_rmb();
7221 ret = update_dev_stat_item(trans, fs_info, device);
7222 if (!ret)
7223 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7225 mutex_unlock(&fs_devices->device_list_mutex);
7227 return ret;
7230 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7232 btrfs_dev_stat_inc(dev, index);
7233 btrfs_dev_stat_print_on_error(dev);
7236 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7238 if (!dev->dev_stats_valid)
7239 return;
7240 btrfs_err_rl_in_rcu(dev->fs_info,
7241 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7242 rcu_str_deref(dev->name),
7243 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7244 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7245 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7246 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7247 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7252 int i;
7254 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7255 if (btrfs_dev_stat_read(dev, i) != 0)
7256 break;
7257 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7258 return; /* all values == 0, suppress message */
7260 btrfs_info_in_rcu(dev->fs_info,
7261 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7262 rcu_str_deref(dev->name),
7263 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7264 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7265 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7266 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7267 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7270 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7271 struct btrfs_ioctl_get_dev_stats *stats)
7273 struct btrfs_device *dev;
7274 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7275 int i;
7277 mutex_lock(&fs_devices->device_list_mutex);
7278 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7279 mutex_unlock(&fs_devices->device_list_mutex);
7281 if (!dev) {
7282 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7283 return -ENODEV;
7284 } else if (!dev->dev_stats_valid) {
7285 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7286 return -ENODEV;
7287 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7288 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7289 if (stats->nr_items > i)
7290 stats->values[i] =
7291 btrfs_dev_stat_read_and_reset(dev, i);
7292 else
7293 btrfs_dev_stat_reset(dev, i);
7295 } else {
7296 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7297 if (stats->nr_items > i)
7298 stats->values[i] = btrfs_dev_stat_read(dev, i);
7300 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7301 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7302 return 0;
7305 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7307 struct buffer_head *bh;
7308 struct btrfs_super_block *disk_super;
7309 int copy_num;
7311 if (!bdev)
7312 return;
7314 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7315 copy_num++) {
7317 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7318 continue;
7320 disk_super = (struct btrfs_super_block *)bh->b_data;
7322 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7323 set_buffer_dirty(bh);
7324 sync_dirty_buffer(bh);
7325 brelse(bh);
7328 /* Notify udev that device has changed */
7329 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7331 /* Update ctime/mtime for device path for libblkid */
7332 update_dev_time(device_path);
7336 * Update the size of all devices, which is used for writing out the
7337 * super blocks.
7339 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7341 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7342 struct btrfs_device *curr, *next;
7344 if (list_empty(&fs_devices->resized_devices))
7345 return;
7347 mutex_lock(&fs_devices->device_list_mutex);
7348 mutex_lock(&fs_info->chunk_mutex);
7349 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7350 resized_list) {
7351 list_del_init(&curr->resized_list);
7352 curr->commit_total_bytes = curr->disk_total_bytes;
7354 mutex_unlock(&fs_info->chunk_mutex);
7355 mutex_unlock(&fs_devices->device_list_mutex);
7358 /* Must be invoked during the transaction commit */
7359 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
7360 struct btrfs_transaction *transaction)
7362 struct extent_map *em;
7363 struct map_lookup *map;
7364 struct btrfs_device *dev;
7365 int i;
7367 if (list_empty(&transaction->pending_chunks))
7368 return;
7370 /* In order to kick the device replace finish process */
7371 mutex_lock(&fs_info->chunk_mutex);
7372 list_for_each_entry(em, &transaction->pending_chunks, list) {
7373 map = em->map_lookup;
7375 for (i = 0; i < map->num_stripes; i++) {
7376 dev = map->stripes[i].dev;
7377 dev->commit_bytes_used = dev->bytes_used;
7380 mutex_unlock(&fs_info->chunk_mutex);
7383 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7385 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7386 while (fs_devices) {
7387 fs_devices->fs_info = fs_info;
7388 fs_devices = fs_devices->seed;
7392 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7394 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7395 while (fs_devices) {
7396 fs_devices->fs_info = NULL;
7397 fs_devices = fs_devices->seed;