Linux 4.16-rc1
[cris-mirror.git] / fs / ocfs2 / alloc.c
blob9a876bb07cac7f769a80f39ee9987e34f718d45e
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * alloc.c
6 * Extent allocs and frees
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32 #include <linux/blkdev.h>
33 #include <linux/sched/signal.h>
35 #include <cluster/masklog.h>
37 #include "ocfs2.h"
39 #include "alloc.h"
40 #include "aops.h"
41 #include "blockcheck.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "inode.h"
45 #include "journal.h"
46 #include "localalloc.h"
47 #include "suballoc.h"
48 #include "sysfile.h"
49 #include "file.h"
50 #include "super.h"
51 #include "uptodate.h"
52 #include "xattr.h"
53 #include "refcounttree.h"
54 #include "ocfs2_trace.h"
56 #include "buffer_head_io.h"
58 enum ocfs2_contig_type {
59 CONTIG_NONE = 0,
60 CONTIG_LEFT,
61 CONTIG_RIGHT,
62 CONTIG_LEFTRIGHT,
65 static enum ocfs2_contig_type
66 ocfs2_extent_rec_contig(struct super_block *sb,
67 struct ocfs2_extent_rec *ext,
68 struct ocfs2_extent_rec *insert_rec);
70 * Operations for a specific extent tree type.
72 * To implement an on-disk btree (extent tree) type in ocfs2, add
73 * an ocfs2_extent_tree_operations structure and the matching
74 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it
75 * for the allocation portion of the extent tree.
77 struct ocfs2_extent_tree_operations {
79 * last_eb_blk is the block number of the right most leaf extent
80 * block. Most on-disk structures containing an extent tree store
81 * this value for fast access. The ->eo_set_last_eb_blk() and
82 * ->eo_get_last_eb_blk() operations access this value. They are
83 * both required.
85 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
86 u64 blkno);
87 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
90 * The on-disk structure usually keeps track of how many total
91 * clusters are stored in this extent tree. This function updates
92 * that value. new_clusters is the delta, and must be
93 * added to the total. Required.
95 void (*eo_update_clusters)(struct ocfs2_extent_tree *et,
96 u32 new_clusters);
99 * If this extent tree is supported by an extent map, insert
100 * a record into the map.
102 void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et,
103 struct ocfs2_extent_rec *rec);
106 * If this extent tree is supported by an extent map, truncate the
107 * map to clusters,
109 void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et,
110 u32 clusters);
113 * If ->eo_insert_check() exists, it is called before rec is
114 * inserted into the extent tree. It is optional.
116 int (*eo_insert_check)(struct ocfs2_extent_tree *et,
117 struct ocfs2_extent_rec *rec);
118 int (*eo_sanity_check)(struct ocfs2_extent_tree *et);
121 * --------------------------------------------------------------
122 * The remaining are internal to ocfs2_extent_tree and don't have
123 * accessor functions
127 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
128 * It is required.
130 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
133 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
134 * it exists. If it does not, et->et_max_leaf_clusters is set
135 * to 0 (unlimited). Optional.
137 void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et);
140 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec
141 * are contiguous or not. Optional. Don't need to set it if use
142 * ocfs2_extent_rec as the tree leaf.
144 enum ocfs2_contig_type
145 (*eo_extent_contig)(struct ocfs2_extent_tree *et,
146 struct ocfs2_extent_rec *ext,
147 struct ocfs2_extent_rec *insert_rec);
152 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
153 * in the methods.
155 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
156 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
157 u64 blkno);
158 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
159 u32 clusters);
160 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
161 struct ocfs2_extent_rec *rec);
162 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
163 u32 clusters);
164 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
165 struct ocfs2_extent_rec *rec);
166 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
167 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
169 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle,
170 struct ocfs2_extent_tree *et,
171 struct buffer_head **new_eb_bh,
172 int blk_wanted, int *blk_given);
173 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et);
175 static const struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
176 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk,
177 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk,
178 .eo_update_clusters = ocfs2_dinode_update_clusters,
179 .eo_extent_map_insert = ocfs2_dinode_extent_map_insert,
180 .eo_extent_map_truncate = ocfs2_dinode_extent_map_truncate,
181 .eo_insert_check = ocfs2_dinode_insert_check,
182 .eo_sanity_check = ocfs2_dinode_sanity_check,
183 .eo_fill_root_el = ocfs2_dinode_fill_root_el,
186 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
187 u64 blkno)
189 struct ocfs2_dinode *di = et->et_object;
191 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
192 di->i_last_eb_blk = cpu_to_le64(blkno);
195 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
197 struct ocfs2_dinode *di = et->et_object;
199 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
200 return le64_to_cpu(di->i_last_eb_blk);
203 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
204 u32 clusters)
206 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
207 struct ocfs2_dinode *di = et->et_object;
209 le32_add_cpu(&di->i_clusters, clusters);
210 spin_lock(&oi->ip_lock);
211 oi->ip_clusters = le32_to_cpu(di->i_clusters);
212 spin_unlock(&oi->ip_lock);
215 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
216 struct ocfs2_extent_rec *rec)
218 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
220 ocfs2_extent_map_insert_rec(inode, rec);
223 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
224 u32 clusters)
226 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
228 ocfs2_extent_map_trunc(inode, clusters);
231 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
232 struct ocfs2_extent_rec *rec)
234 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
235 struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
237 BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL);
238 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
239 (oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
240 "Device %s, asking for sparse allocation: inode %llu, "
241 "cpos %u, clusters %u\n",
242 osb->dev_str,
243 (unsigned long long)oi->ip_blkno,
244 rec->e_cpos, oi->ip_clusters);
246 return 0;
249 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
251 struct ocfs2_dinode *di = et->et_object;
253 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
254 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
256 return 0;
259 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
261 struct ocfs2_dinode *di = et->et_object;
263 et->et_root_el = &di->id2.i_list;
267 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
269 struct ocfs2_xattr_value_buf *vb = et->et_object;
271 et->et_root_el = &vb->vb_xv->xr_list;
274 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
275 u64 blkno)
277 struct ocfs2_xattr_value_buf *vb = et->et_object;
279 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
282 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
284 struct ocfs2_xattr_value_buf *vb = et->et_object;
286 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
289 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
290 u32 clusters)
292 struct ocfs2_xattr_value_buf *vb = et->et_object;
294 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
297 static const struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
298 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk,
299 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk,
300 .eo_update_clusters = ocfs2_xattr_value_update_clusters,
301 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el,
304 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
306 struct ocfs2_xattr_block *xb = et->et_object;
308 et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
311 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
313 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
314 et->et_max_leaf_clusters =
315 ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
318 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
319 u64 blkno)
321 struct ocfs2_xattr_block *xb = et->et_object;
322 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
324 xt->xt_last_eb_blk = cpu_to_le64(blkno);
327 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
329 struct ocfs2_xattr_block *xb = et->et_object;
330 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
332 return le64_to_cpu(xt->xt_last_eb_blk);
335 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
336 u32 clusters)
338 struct ocfs2_xattr_block *xb = et->et_object;
340 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
343 static const struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
344 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk,
345 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk,
346 .eo_update_clusters = ocfs2_xattr_tree_update_clusters,
347 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el,
348 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
351 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
352 u64 blkno)
354 struct ocfs2_dx_root_block *dx_root = et->et_object;
356 dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
359 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
361 struct ocfs2_dx_root_block *dx_root = et->et_object;
363 return le64_to_cpu(dx_root->dr_last_eb_blk);
366 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
367 u32 clusters)
369 struct ocfs2_dx_root_block *dx_root = et->et_object;
371 le32_add_cpu(&dx_root->dr_clusters, clusters);
374 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
376 struct ocfs2_dx_root_block *dx_root = et->et_object;
378 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
380 return 0;
383 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
385 struct ocfs2_dx_root_block *dx_root = et->et_object;
387 et->et_root_el = &dx_root->dr_list;
390 static const struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
391 .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk,
392 .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk,
393 .eo_update_clusters = ocfs2_dx_root_update_clusters,
394 .eo_sanity_check = ocfs2_dx_root_sanity_check,
395 .eo_fill_root_el = ocfs2_dx_root_fill_root_el,
398 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et)
400 struct ocfs2_refcount_block *rb = et->et_object;
402 et->et_root_el = &rb->rf_list;
405 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
406 u64 blkno)
408 struct ocfs2_refcount_block *rb = et->et_object;
410 rb->rf_last_eb_blk = cpu_to_le64(blkno);
413 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
415 struct ocfs2_refcount_block *rb = et->et_object;
417 return le64_to_cpu(rb->rf_last_eb_blk);
420 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et,
421 u32 clusters)
423 struct ocfs2_refcount_block *rb = et->et_object;
425 le32_add_cpu(&rb->rf_clusters, clusters);
428 static enum ocfs2_contig_type
429 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et,
430 struct ocfs2_extent_rec *ext,
431 struct ocfs2_extent_rec *insert_rec)
433 return CONTIG_NONE;
436 static const struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = {
437 .eo_set_last_eb_blk = ocfs2_refcount_tree_set_last_eb_blk,
438 .eo_get_last_eb_blk = ocfs2_refcount_tree_get_last_eb_blk,
439 .eo_update_clusters = ocfs2_refcount_tree_update_clusters,
440 .eo_fill_root_el = ocfs2_refcount_tree_fill_root_el,
441 .eo_extent_contig = ocfs2_refcount_tree_extent_contig,
444 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
445 struct ocfs2_caching_info *ci,
446 struct buffer_head *bh,
447 ocfs2_journal_access_func access,
448 void *obj,
449 const struct ocfs2_extent_tree_operations *ops)
451 et->et_ops = ops;
452 et->et_root_bh = bh;
453 et->et_ci = ci;
454 et->et_root_journal_access = access;
455 if (!obj)
456 obj = (void *)bh->b_data;
457 et->et_object = obj;
458 et->et_dealloc = NULL;
460 et->et_ops->eo_fill_root_el(et);
461 if (!et->et_ops->eo_fill_max_leaf_clusters)
462 et->et_max_leaf_clusters = 0;
463 else
464 et->et_ops->eo_fill_max_leaf_clusters(et);
467 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
468 struct ocfs2_caching_info *ci,
469 struct buffer_head *bh)
471 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di,
472 NULL, &ocfs2_dinode_et_ops);
475 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
476 struct ocfs2_caching_info *ci,
477 struct buffer_head *bh)
479 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb,
480 NULL, &ocfs2_xattr_tree_et_ops);
483 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
484 struct ocfs2_caching_info *ci,
485 struct ocfs2_xattr_value_buf *vb)
487 __ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb,
488 &ocfs2_xattr_value_et_ops);
491 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
492 struct ocfs2_caching_info *ci,
493 struct buffer_head *bh)
495 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr,
496 NULL, &ocfs2_dx_root_et_ops);
499 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et,
500 struct ocfs2_caching_info *ci,
501 struct buffer_head *bh)
503 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb,
504 NULL, &ocfs2_refcount_tree_et_ops);
507 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
508 u64 new_last_eb_blk)
510 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
513 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
515 return et->et_ops->eo_get_last_eb_blk(et);
518 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
519 u32 clusters)
521 et->et_ops->eo_update_clusters(et, clusters);
524 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et,
525 struct ocfs2_extent_rec *rec)
527 if (et->et_ops->eo_extent_map_insert)
528 et->et_ops->eo_extent_map_insert(et, rec);
531 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et,
532 u32 clusters)
534 if (et->et_ops->eo_extent_map_truncate)
535 et->et_ops->eo_extent_map_truncate(et, clusters);
538 static inline int ocfs2_et_root_journal_access(handle_t *handle,
539 struct ocfs2_extent_tree *et,
540 int type)
542 return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
543 type);
546 static inline enum ocfs2_contig_type
547 ocfs2_et_extent_contig(struct ocfs2_extent_tree *et,
548 struct ocfs2_extent_rec *rec,
549 struct ocfs2_extent_rec *insert_rec)
551 if (et->et_ops->eo_extent_contig)
552 return et->et_ops->eo_extent_contig(et, rec, insert_rec);
554 return ocfs2_extent_rec_contig(
555 ocfs2_metadata_cache_get_super(et->et_ci),
556 rec, insert_rec);
559 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
560 struct ocfs2_extent_rec *rec)
562 int ret = 0;
564 if (et->et_ops->eo_insert_check)
565 ret = et->et_ops->eo_insert_check(et, rec);
566 return ret;
569 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
571 int ret = 0;
573 if (et->et_ops->eo_sanity_check)
574 ret = et->et_ops->eo_sanity_check(et);
575 return ret;
578 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
579 struct ocfs2_extent_block *eb);
580 static void ocfs2_adjust_rightmost_records(handle_t *handle,
581 struct ocfs2_extent_tree *et,
582 struct ocfs2_path *path,
583 struct ocfs2_extent_rec *insert_rec);
585 * Reset the actual path elements so that we can re-use the structure
586 * to build another path. Generally, this involves freeing the buffer
587 * heads.
589 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
591 int i, start = 0, depth = 0;
592 struct ocfs2_path_item *node;
594 if (keep_root)
595 start = 1;
597 for(i = start; i < path_num_items(path); i++) {
598 node = &path->p_node[i];
600 brelse(node->bh);
601 node->bh = NULL;
602 node->el = NULL;
606 * Tree depth may change during truncate, or insert. If we're
607 * keeping the root extent list, then make sure that our path
608 * structure reflects the proper depth.
610 if (keep_root)
611 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
612 else
613 path_root_access(path) = NULL;
615 path->p_tree_depth = depth;
618 void ocfs2_free_path(struct ocfs2_path *path)
620 if (path) {
621 ocfs2_reinit_path(path, 0);
622 kfree(path);
627 * All the elements of src into dest. After this call, src could be freed
628 * without affecting dest.
630 * Both paths should have the same root. Any non-root elements of dest
631 * will be freed.
633 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
635 int i;
637 BUG_ON(path_root_bh(dest) != path_root_bh(src));
638 BUG_ON(path_root_el(dest) != path_root_el(src));
639 BUG_ON(path_root_access(dest) != path_root_access(src));
641 ocfs2_reinit_path(dest, 1);
643 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
644 dest->p_node[i].bh = src->p_node[i].bh;
645 dest->p_node[i].el = src->p_node[i].el;
647 if (dest->p_node[i].bh)
648 get_bh(dest->p_node[i].bh);
653 * Make the *dest path the same as src and re-initialize src path to
654 * have a root only.
656 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
658 int i;
660 BUG_ON(path_root_bh(dest) != path_root_bh(src));
661 BUG_ON(path_root_access(dest) != path_root_access(src));
663 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
664 brelse(dest->p_node[i].bh);
666 dest->p_node[i].bh = src->p_node[i].bh;
667 dest->p_node[i].el = src->p_node[i].el;
669 src->p_node[i].bh = NULL;
670 src->p_node[i].el = NULL;
675 * Insert an extent block at given index.
677 * This will not take an additional reference on eb_bh.
679 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
680 struct buffer_head *eb_bh)
682 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
685 * Right now, no root bh is an extent block, so this helps
686 * catch code errors with dinode trees. The assertion can be
687 * safely removed if we ever need to insert extent block
688 * structures at the root.
690 BUG_ON(index == 0);
692 path->p_node[index].bh = eb_bh;
693 path->p_node[index].el = &eb->h_list;
696 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
697 struct ocfs2_extent_list *root_el,
698 ocfs2_journal_access_func access)
700 struct ocfs2_path *path;
702 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
704 path = kzalloc(sizeof(*path), GFP_NOFS);
705 if (path) {
706 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
707 get_bh(root_bh);
708 path_root_bh(path) = root_bh;
709 path_root_el(path) = root_el;
710 path_root_access(path) = access;
713 return path;
716 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
718 return ocfs2_new_path(path_root_bh(path), path_root_el(path),
719 path_root_access(path));
722 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
724 return ocfs2_new_path(et->et_root_bh, et->et_root_el,
725 et->et_root_journal_access);
729 * Journal the buffer at depth idx. All idx>0 are extent_blocks,
730 * otherwise it's the root_access function.
732 * I don't like the way this function's name looks next to
733 * ocfs2_journal_access_path(), but I don't have a better one.
735 int ocfs2_path_bh_journal_access(handle_t *handle,
736 struct ocfs2_caching_info *ci,
737 struct ocfs2_path *path,
738 int idx)
740 ocfs2_journal_access_func access = path_root_access(path);
742 if (!access)
743 access = ocfs2_journal_access;
745 if (idx)
746 access = ocfs2_journal_access_eb;
748 return access(handle, ci, path->p_node[idx].bh,
749 OCFS2_JOURNAL_ACCESS_WRITE);
753 * Convenience function to journal all components in a path.
755 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
756 handle_t *handle,
757 struct ocfs2_path *path)
759 int i, ret = 0;
761 if (!path)
762 goto out;
764 for(i = 0; i < path_num_items(path); i++) {
765 ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
766 if (ret < 0) {
767 mlog_errno(ret);
768 goto out;
772 out:
773 return ret;
777 * Return the index of the extent record which contains cluster #v_cluster.
778 * -1 is returned if it was not found.
780 * Should work fine on interior and exterior nodes.
782 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
784 int ret = -1;
785 int i;
786 struct ocfs2_extent_rec *rec;
787 u32 rec_end, rec_start, clusters;
789 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
790 rec = &el->l_recs[i];
792 rec_start = le32_to_cpu(rec->e_cpos);
793 clusters = ocfs2_rec_clusters(el, rec);
795 rec_end = rec_start + clusters;
797 if (v_cluster >= rec_start && v_cluster < rec_end) {
798 ret = i;
799 break;
803 return ret;
807 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
808 * ocfs2_extent_rec_contig only work properly against leaf nodes!
810 static int ocfs2_block_extent_contig(struct super_block *sb,
811 struct ocfs2_extent_rec *ext,
812 u64 blkno)
814 u64 blk_end = le64_to_cpu(ext->e_blkno);
816 blk_end += ocfs2_clusters_to_blocks(sb,
817 le16_to_cpu(ext->e_leaf_clusters));
819 return blkno == blk_end;
822 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
823 struct ocfs2_extent_rec *right)
825 u32 left_range;
827 left_range = le32_to_cpu(left->e_cpos) +
828 le16_to_cpu(left->e_leaf_clusters);
830 return (left_range == le32_to_cpu(right->e_cpos));
833 static enum ocfs2_contig_type
834 ocfs2_extent_rec_contig(struct super_block *sb,
835 struct ocfs2_extent_rec *ext,
836 struct ocfs2_extent_rec *insert_rec)
838 u64 blkno = le64_to_cpu(insert_rec->e_blkno);
841 * Refuse to coalesce extent records with different flag
842 * fields - we don't want to mix unwritten extents with user
843 * data.
845 if (ext->e_flags != insert_rec->e_flags)
846 return CONTIG_NONE;
848 if (ocfs2_extents_adjacent(ext, insert_rec) &&
849 ocfs2_block_extent_contig(sb, ext, blkno))
850 return CONTIG_RIGHT;
852 blkno = le64_to_cpu(ext->e_blkno);
853 if (ocfs2_extents_adjacent(insert_rec, ext) &&
854 ocfs2_block_extent_contig(sb, insert_rec, blkno))
855 return CONTIG_LEFT;
857 return CONTIG_NONE;
861 * NOTE: We can have pretty much any combination of contiguousness and
862 * appending.
864 * The usefulness of APPEND_TAIL is more in that it lets us know that
865 * we'll have to update the path to that leaf.
867 enum ocfs2_append_type {
868 APPEND_NONE = 0,
869 APPEND_TAIL,
872 enum ocfs2_split_type {
873 SPLIT_NONE = 0,
874 SPLIT_LEFT,
875 SPLIT_RIGHT,
878 struct ocfs2_insert_type {
879 enum ocfs2_split_type ins_split;
880 enum ocfs2_append_type ins_appending;
881 enum ocfs2_contig_type ins_contig;
882 int ins_contig_index;
883 int ins_tree_depth;
886 struct ocfs2_merge_ctxt {
887 enum ocfs2_contig_type c_contig_type;
888 int c_has_empty_extent;
889 int c_split_covers_rec;
892 static int ocfs2_validate_extent_block(struct super_block *sb,
893 struct buffer_head *bh)
895 int rc;
896 struct ocfs2_extent_block *eb =
897 (struct ocfs2_extent_block *)bh->b_data;
899 trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr);
901 BUG_ON(!buffer_uptodate(bh));
904 * If the ecc fails, we return the error but otherwise
905 * leave the filesystem running. We know any error is
906 * local to this block.
908 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
909 if (rc) {
910 mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
911 (unsigned long long)bh->b_blocknr);
912 return rc;
916 * Errors after here are fatal.
919 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
920 rc = ocfs2_error(sb,
921 "Extent block #%llu has bad signature %.*s\n",
922 (unsigned long long)bh->b_blocknr, 7,
923 eb->h_signature);
924 goto bail;
927 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
928 rc = ocfs2_error(sb,
929 "Extent block #%llu has an invalid h_blkno of %llu\n",
930 (unsigned long long)bh->b_blocknr,
931 (unsigned long long)le64_to_cpu(eb->h_blkno));
932 goto bail;
935 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
936 rc = ocfs2_error(sb,
937 "Extent block #%llu has an invalid h_fs_generation of #%u\n",
938 (unsigned long long)bh->b_blocknr,
939 le32_to_cpu(eb->h_fs_generation));
940 goto bail;
942 bail:
943 return rc;
946 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
947 struct buffer_head **bh)
949 int rc;
950 struct buffer_head *tmp = *bh;
952 rc = ocfs2_read_block(ci, eb_blkno, &tmp,
953 ocfs2_validate_extent_block);
955 /* If ocfs2_read_block() got us a new bh, pass it up. */
956 if (!rc && !*bh)
957 *bh = tmp;
959 return rc;
964 * How many free extents have we got before we need more meta data?
966 int ocfs2_num_free_extents(struct ocfs2_extent_tree *et)
968 int retval;
969 struct ocfs2_extent_list *el = NULL;
970 struct ocfs2_extent_block *eb;
971 struct buffer_head *eb_bh = NULL;
972 u64 last_eb_blk = 0;
974 el = et->et_root_el;
975 last_eb_blk = ocfs2_et_get_last_eb_blk(et);
977 if (last_eb_blk) {
978 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
979 &eb_bh);
980 if (retval < 0) {
981 mlog_errno(retval);
982 goto bail;
984 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
985 el = &eb->h_list;
988 BUG_ON(el->l_tree_depth != 0);
990 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
991 bail:
992 brelse(eb_bh);
994 trace_ocfs2_num_free_extents(retval);
995 return retval;
998 /* expects array to already be allocated
1000 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
1001 * l_count for you
1003 static int ocfs2_create_new_meta_bhs(handle_t *handle,
1004 struct ocfs2_extent_tree *et,
1005 int wanted,
1006 struct ocfs2_alloc_context *meta_ac,
1007 struct buffer_head *bhs[])
1009 int count, status, i;
1010 u16 suballoc_bit_start;
1011 u32 num_got;
1012 u64 suballoc_loc, first_blkno;
1013 struct ocfs2_super *osb =
1014 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
1015 struct ocfs2_extent_block *eb;
1017 count = 0;
1018 while (count < wanted) {
1019 status = ocfs2_claim_metadata(handle,
1020 meta_ac,
1021 wanted - count,
1022 &suballoc_loc,
1023 &suballoc_bit_start,
1024 &num_got,
1025 &first_blkno);
1026 if (status < 0) {
1027 mlog_errno(status);
1028 goto bail;
1031 for(i = count; i < (num_got + count); i++) {
1032 bhs[i] = sb_getblk(osb->sb, first_blkno);
1033 if (bhs[i] == NULL) {
1034 status = -ENOMEM;
1035 mlog_errno(status);
1036 goto bail;
1038 ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
1040 status = ocfs2_journal_access_eb(handle, et->et_ci,
1041 bhs[i],
1042 OCFS2_JOURNAL_ACCESS_CREATE);
1043 if (status < 0) {
1044 mlog_errno(status);
1045 goto bail;
1048 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
1049 eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
1050 /* Ok, setup the minimal stuff here. */
1051 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
1052 eb->h_blkno = cpu_to_le64(first_blkno);
1053 eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
1054 eb->h_suballoc_slot =
1055 cpu_to_le16(meta_ac->ac_alloc_slot);
1056 eb->h_suballoc_loc = cpu_to_le64(suballoc_loc);
1057 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
1058 eb->h_list.l_count =
1059 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
1061 suballoc_bit_start++;
1062 first_blkno++;
1064 /* We'll also be dirtied by the caller, so
1065 * this isn't absolutely necessary. */
1066 ocfs2_journal_dirty(handle, bhs[i]);
1069 count += num_got;
1072 status = 0;
1073 bail:
1074 if (status < 0) {
1075 for(i = 0; i < wanted; i++) {
1076 brelse(bhs[i]);
1077 bhs[i] = NULL;
1079 mlog_errno(status);
1081 return status;
1085 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1087 * Returns the sum of the rightmost extent rec logical offset and
1088 * cluster count.
1090 * ocfs2_add_branch() uses this to determine what logical cluster
1091 * value should be populated into the leftmost new branch records.
1093 * ocfs2_shift_tree_depth() uses this to determine the # clusters
1094 * value for the new topmost tree record.
1096 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el)
1098 int i;
1100 i = le16_to_cpu(el->l_next_free_rec) - 1;
1102 return le32_to_cpu(el->l_recs[i].e_cpos) +
1103 ocfs2_rec_clusters(el, &el->l_recs[i]);
1107 * Change range of the branches in the right most path according to the leaf
1108 * extent block's rightmost record.
1110 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1111 struct ocfs2_extent_tree *et)
1113 int status;
1114 struct ocfs2_path *path = NULL;
1115 struct ocfs2_extent_list *el;
1116 struct ocfs2_extent_rec *rec;
1118 path = ocfs2_new_path_from_et(et);
1119 if (!path) {
1120 status = -ENOMEM;
1121 return status;
1124 status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1125 if (status < 0) {
1126 mlog_errno(status);
1127 goto out;
1130 status = ocfs2_extend_trans(handle, path_num_items(path));
1131 if (status < 0) {
1132 mlog_errno(status);
1133 goto out;
1136 status = ocfs2_journal_access_path(et->et_ci, handle, path);
1137 if (status < 0) {
1138 mlog_errno(status);
1139 goto out;
1142 el = path_leaf_el(path);
1143 rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1];
1145 ocfs2_adjust_rightmost_records(handle, et, path, rec);
1147 out:
1148 ocfs2_free_path(path);
1149 return status;
1153 * Add an entire tree branch to our inode. eb_bh is the extent block
1154 * to start at, if we don't want to start the branch at the root
1155 * structure.
1157 * last_eb_bh is required as we have to update it's next_leaf pointer
1158 * for the new last extent block.
1160 * the new branch will be 'empty' in the sense that every block will
1161 * contain a single record with cluster count == 0.
1163 static int ocfs2_add_branch(handle_t *handle,
1164 struct ocfs2_extent_tree *et,
1165 struct buffer_head *eb_bh,
1166 struct buffer_head **last_eb_bh,
1167 struct ocfs2_alloc_context *meta_ac)
1169 int status, new_blocks, i, block_given = 0;
1170 u64 next_blkno, new_last_eb_blk;
1171 struct buffer_head *bh;
1172 struct buffer_head **new_eb_bhs = NULL;
1173 struct ocfs2_extent_block *eb;
1174 struct ocfs2_extent_list *eb_el;
1175 struct ocfs2_extent_list *el;
1176 u32 new_cpos, root_end;
1178 BUG_ON(!last_eb_bh || !*last_eb_bh);
1180 if (eb_bh) {
1181 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1182 el = &eb->h_list;
1183 } else
1184 el = et->et_root_el;
1186 /* we never add a branch to a leaf. */
1187 BUG_ON(!el->l_tree_depth);
1189 new_blocks = le16_to_cpu(el->l_tree_depth);
1191 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1192 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1193 root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1196 * If there is a gap before the root end and the real end
1197 * of the righmost leaf block, we need to remove the gap
1198 * between new_cpos and root_end first so that the tree
1199 * is consistent after we add a new branch(it will start
1200 * from new_cpos).
1202 if (root_end > new_cpos) {
1203 trace_ocfs2_adjust_rightmost_branch(
1204 (unsigned long long)
1205 ocfs2_metadata_cache_owner(et->et_ci),
1206 root_end, new_cpos);
1208 status = ocfs2_adjust_rightmost_branch(handle, et);
1209 if (status) {
1210 mlog_errno(status);
1211 goto bail;
1215 /* allocate the number of new eb blocks we need */
1216 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1217 GFP_KERNEL);
1218 if (!new_eb_bhs) {
1219 status = -ENOMEM;
1220 mlog_errno(status);
1221 goto bail;
1224 /* Firstyly, try to reuse dealloc since we have already estimated how
1225 * many extent blocks we may use.
1227 if (!ocfs2_is_dealloc_empty(et)) {
1228 status = ocfs2_reuse_blk_from_dealloc(handle, et,
1229 new_eb_bhs, new_blocks,
1230 &block_given);
1231 if (status < 0) {
1232 mlog_errno(status);
1233 goto bail;
1237 BUG_ON(block_given > new_blocks);
1239 if (block_given < new_blocks) {
1240 BUG_ON(!meta_ac);
1241 status = ocfs2_create_new_meta_bhs(handle, et,
1242 new_blocks - block_given,
1243 meta_ac,
1244 &new_eb_bhs[block_given]);
1245 if (status < 0) {
1246 mlog_errno(status);
1247 goto bail;
1251 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1252 * linked with the rest of the tree.
1253 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1255 * when we leave the loop, new_last_eb_blk will point to the
1256 * newest leaf, and next_blkno will point to the topmost extent
1257 * block. */
1258 next_blkno = new_last_eb_blk = 0;
1259 for(i = 0; i < new_blocks; i++) {
1260 bh = new_eb_bhs[i];
1261 eb = (struct ocfs2_extent_block *) bh->b_data;
1262 /* ocfs2_create_new_meta_bhs() should create it right! */
1263 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1264 eb_el = &eb->h_list;
1266 status = ocfs2_journal_access_eb(handle, et->et_ci, bh,
1267 OCFS2_JOURNAL_ACCESS_CREATE);
1268 if (status < 0) {
1269 mlog_errno(status);
1270 goto bail;
1273 eb->h_next_leaf_blk = 0;
1274 eb_el->l_tree_depth = cpu_to_le16(i);
1275 eb_el->l_next_free_rec = cpu_to_le16(1);
1277 * This actually counts as an empty extent as
1278 * c_clusters == 0
1280 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1281 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1283 * eb_el isn't always an interior node, but even leaf
1284 * nodes want a zero'd flags and reserved field so
1285 * this gets the whole 32 bits regardless of use.
1287 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1288 if (!eb_el->l_tree_depth)
1289 new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1291 ocfs2_journal_dirty(handle, bh);
1292 next_blkno = le64_to_cpu(eb->h_blkno);
1295 /* This is a bit hairy. We want to update up to three blocks
1296 * here without leaving any of them in an inconsistent state
1297 * in case of error. We don't have to worry about
1298 * journal_dirty erroring as it won't unless we've aborted the
1299 * handle (in which case we would never be here) so reserving
1300 * the write with journal_access is all we need to do. */
1301 status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh,
1302 OCFS2_JOURNAL_ACCESS_WRITE);
1303 if (status < 0) {
1304 mlog_errno(status);
1305 goto bail;
1307 status = ocfs2_et_root_journal_access(handle, et,
1308 OCFS2_JOURNAL_ACCESS_WRITE);
1309 if (status < 0) {
1310 mlog_errno(status);
1311 goto bail;
1313 if (eb_bh) {
1314 status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh,
1315 OCFS2_JOURNAL_ACCESS_WRITE);
1316 if (status < 0) {
1317 mlog_errno(status);
1318 goto bail;
1322 /* Link the new branch into the rest of the tree (el will
1323 * either be on the root_bh, or the extent block passed in. */
1324 i = le16_to_cpu(el->l_next_free_rec);
1325 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1326 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1327 el->l_recs[i].e_int_clusters = 0;
1328 le16_add_cpu(&el->l_next_free_rec, 1);
1330 /* fe needs a new last extent block pointer, as does the
1331 * next_leaf on the previously last-extent-block. */
1332 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1334 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1335 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1337 ocfs2_journal_dirty(handle, *last_eb_bh);
1338 ocfs2_journal_dirty(handle, et->et_root_bh);
1339 if (eb_bh)
1340 ocfs2_journal_dirty(handle, eb_bh);
1343 * Some callers want to track the rightmost leaf so pass it
1344 * back here.
1346 brelse(*last_eb_bh);
1347 get_bh(new_eb_bhs[0]);
1348 *last_eb_bh = new_eb_bhs[0];
1350 status = 0;
1351 bail:
1352 if (new_eb_bhs) {
1353 for (i = 0; i < new_blocks; i++)
1354 brelse(new_eb_bhs[i]);
1355 kfree(new_eb_bhs);
1358 return status;
1362 * adds another level to the allocation tree.
1363 * returns back the new extent block so you can add a branch to it
1364 * after this call.
1366 static int ocfs2_shift_tree_depth(handle_t *handle,
1367 struct ocfs2_extent_tree *et,
1368 struct ocfs2_alloc_context *meta_ac,
1369 struct buffer_head **ret_new_eb_bh)
1371 int status, i, block_given = 0;
1372 u32 new_clusters;
1373 struct buffer_head *new_eb_bh = NULL;
1374 struct ocfs2_extent_block *eb;
1375 struct ocfs2_extent_list *root_el;
1376 struct ocfs2_extent_list *eb_el;
1378 if (!ocfs2_is_dealloc_empty(et)) {
1379 status = ocfs2_reuse_blk_from_dealloc(handle, et,
1380 &new_eb_bh, 1,
1381 &block_given);
1382 } else if (meta_ac) {
1383 status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1384 &new_eb_bh);
1386 } else {
1387 BUG();
1390 if (status < 0) {
1391 mlog_errno(status);
1392 goto bail;
1395 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1396 /* ocfs2_create_new_meta_bhs() should create it right! */
1397 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1399 eb_el = &eb->h_list;
1400 root_el = et->et_root_el;
1402 status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh,
1403 OCFS2_JOURNAL_ACCESS_CREATE);
1404 if (status < 0) {
1405 mlog_errno(status);
1406 goto bail;
1409 /* copy the root extent list data into the new extent block */
1410 eb_el->l_tree_depth = root_el->l_tree_depth;
1411 eb_el->l_next_free_rec = root_el->l_next_free_rec;
1412 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1413 eb_el->l_recs[i] = root_el->l_recs[i];
1415 ocfs2_journal_dirty(handle, new_eb_bh);
1417 status = ocfs2_et_root_journal_access(handle, et,
1418 OCFS2_JOURNAL_ACCESS_WRITE);
1419 if (status < 0) {
1420 mlog_errno(status);
1421 goto bail;
1424 new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1426 /* update root_bh now */
1427 le16_add_cpu(&root_el->l_tree_depth, 1);
1428 root_el->l_recs[0].e_cpos = 0;
1429 root_el->l_recs[0].e_blkno = eb->h_blkno;
1430 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1431 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1432 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1433 root_el->l_next_free_rec = cpu_to_le16(1);
1435 /* If this is our 1st tree depth shift, then last_eb_blk
1436 * becomes the allocated extent block */
1437 if (root_el->l_tree_depth == cpu_to_le16(1))
1438 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1440 ocfs2_journal_dirty(handle, et->et_root_bh);
1442 *ret_new_eb_bh = new_eb_bh;
1443 new_eb_bh = NULL;
1444 status = 0;
1445 bail:
1446 brelse(new_eb_bh);
1448 return status;
1452 * Should only be called when there is no space left in any of the
1453 * leaf nodes. What we want to do is find the lowest tree depth
1454 * non-leaf extent block with room for new records. There are three
1455 * valid results of this search:
1457 * 1) a lowest extent block is found, then we pass it back in
1458 * *lowest_eb_bh and return '0'
1460 * 2) the search fails to find anything, but the root_el has room. We
1461 * pass NULL back in *lowest_eb_bh, but still return '0'
1463 * 3) the search fails to find anything AND the root_el is full, in
1464 * which case we return > 0
1466 * return status < 0 indicates an error.
1468 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et,
1469 struct buffer_head **target_bh)
1471 int status = 0, i;
1472 u64 blkno;
1473 struct ocfs2_extent_block *eb;
1474 struct ocfs2_extent_list *el;
1475 struct buffer_head *bh = NULL;
1476 struct buffer_head *lowest_bh = NULL;
1478 *target_bh = NULL;
1480 el = et->et_root_el;
1482 while(le16_to_cpu(el->l_tree_depth) > 1) {
1483 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1484 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1485 "Owner %llu has empty extent list (next_free_rec == 0)\n",
1486 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1487 status = -EIO;
1488 goto bail;
1490 i = le16_to_cpu(el->l_next_free_rec) - 1;
1491 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1492 if (!blkno) {
1493 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1494 "Owner %llu has extent list where extent # %d has no physical block start\n",
1495 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1496 status = -EIO;
1497 goto bail;
1500 brelse(bh);
1501 bh = NULL;
1503 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1504 if (status < 0) {
1505 mlog_errno(status);
1506 goto bail;
1509 eb = (struct ocfs2_extent_block *) bh->b_data;
1510 el = &eb->h_list;
1512 if (le16_to_cpu(el->l_next_free_rec) <
1513 le16_to_cpu(el->l_count)) {
1514 brelse(lowest_bh);
1515 lowest_bh = bh;
1516 get_bh(lowest_bh);
1520 /* If we didn't find one and the fe doesn't have any room,
1521 * then return '1' */
1522 el = et->et_root_el;
1523 if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1524 status = 1;
1526 *target_bh = lowest_bh;
1527 bail:
1528 brelse(bh);
1530 return status;
1534 * Grow a b-tree so that it has more records.
1536 * We might shift the tree depth in which case existing paths should
1537 * be considered invalid.
1539 * Tree depth after the grow is returned via *final_depth.
1541 * *last_eb_bh will be updated by ocfs2_add_branch().
1543 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et,
1544 int *final_depth, struct buffer_head **last_eb_bh,
1545 struct ocfs2_alloc_context *meta_ac)
1547 int ret, shift;
1548 struct ocfs2_extent_list *el = et->et_root_el;
1549 int depth = le16_to_cpu(el->l_tree_depth);
1550 struct buffer_head *bh = NULL;
1552 BUG_ON(meta_ac == NULL && ocfs2_is_dealloc_empty(et));
1554 shift = ocfs2_find_branch_target(et, &bh);
1555 if (shift < 0) {
1556 ret = shift;
1557 mlog_errno(ret);
1558 goto out;
1561 /* We traveled all the way to the bottom of the allocation tree
1562 * and didn't find room for any more extents - we need to add
1563 * another tree level */
1564 if (shift) {
1565 BUG_ON(bh);
1566 trace_ocfs2_grow_tree(
1567 (unsigned long long)
1568 ocfs2_metadata_cache_owner(et->et_ci),
1569 depth);
1571 /* ocfs2_shift_tree_depth will return us a buffer with
1572 * the new extent block (so we can pass that to
1573 * ocfs2_add_branch). */
1574 ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh);
1575 if (ret < 0) {
1576 mlog_errno(ret);
1577 goto out;
1579 depth++;
1580 if (depth == 1) {
1582 * Special case: we have room now if we shifted from
1583 * tree_depth 0, so no more work needs to be done.
1585 * We won't be calling add_branch, so pass
1586 * back *last_eb_bh as the new leaf. At depth
1587 * zero, it should always be null so there's
1588 * no reason to brelse.
1590 BUG_ON(*last_eb_bh);
1591 get_bh(bh);
1592 *last_eb_bh = bh;
1593 goto out;
1597 /* call ocfs2_add_branch to add the final part of the tree with
1598 * the new data. */
1599 ret = ocfs2_add_branch(handle, et, bh, last_eb_bh,
1600 meta_ac);
1601 if (ret < 0) {
1602 mlog_errno(ret);
1603 goto out;
1606 out:
1607 if (final_depth)
1608 *final_depth = depth;
1609 brelse(bh);
1610 return ret;
1614 * This function will discard the rightmost extent record.
1616 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1618 int next_free = le16_to_cpu(el->l_next_free_rec);
1619 int count = le16_to_cpu(el->l_count);
1620 unsigned int num_bytes;
1622 BUG_ON(!next_free);
1623 /* This will cause us to go off the end of our extent list. */
1624 BUG_ON(next_free >= count);
1626 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1628 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1631 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1632 struct ocfs2_extent_rec *insert_rec)
1634 int i, insert_index, next_free, has_empty, num_bytes;
1635 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1636 struct ocfs2_extent_rec *rec;
1638 next_free = le16_to_cpu(el->l_next_free_rec);
1639 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1641 BUG_ON(!next_free);
1643 /* The tree code before us didn't allow enough room in the leaf. */
1644 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1647 * The easiest way to approach this is to just remove the
1648 * empty extent and temporarily decrement next_free.
1650 if (has_empty) {
1652 * If next_free was 1 (only an empty extent), this
1653 * loop won't execute, which is fine. We still want
1654 * the decrement above to happen.
1656 for(i = 0; i < (next_free - 1); i++)
1657 el->l_recs[i] = el->l_recs[i+1];
1659 next_free--;
1663 * Figure out what the new record index should be.
1665 for(i = 0; i < next_free; i++) {
1666 rec = &el->l_recs[i];
1668 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1669 break;
1671 insert_index = i;
1673 trace_ocfs2_rotate_leaf(insert_cpos, insert_index,
1674 has_empty, next_free,
1675 le16_to_cpu(el->l_count));
1677 BUG_ON(insert_index < 0);
1678 BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1679 BUG_ON(insert_index > next_free);
1682 * No need to memmove if we're just adding to the tail.
1684 if (insert_index != next_free) {
1685 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1687 num_bytes = next_free - insert_index;
1688 num_bytes *= sizeof(struct ocfs2_extent_rec);
1689 memmove(&el->l_recs[insert_index + 1],
1690 &el->l_recs[insert_index],
1691 num_bytes);
1695 * Either we had an empty extent, and need to re-increment or
1696 * there was no empty extent on a non full rightmost leaf node,
1697 * in which case we still need to increment.
1699 next_free++;
1700 el->l_next_free_rec = cpu_to_le16(next_free);
1702 * Make sure none of the math above just messed up our tree.
1704 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1706 el->l_recs[insert_index] = *insert_rec;
1710 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1712 int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1714 BUG_ON(num_recs == 0);
1716 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1717 num_recs--;
1718 size = num_recs * sizeof(struct ocfs2_extent_rec);
1719 memmove(&el->l_recs[0], &el->l_recs[1], size);
1720 memset(&el->l_recs[num_recs], 0,
1721 sizeof(struct ocfs2_extent_rec));
1722 el->l_next_free_rec = cpu_to_le16(num_recs);
1727 * Create an empty extent record .
1729 * l_next_free_rec may be updated.
1731 * If an empty extent already exists do nothing.
1733 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1735 int next_free = le16_to_cpu(el->l_next_free_rec);
1737 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1739 if (next_free == 0)
1740 goto set_and_inc;
1742 if (ocfs2_is_empty_extent(&el->l_recs[0]))
1743 return;
1745 mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1746 "Asked to create an empty extent in a full list:\n"
1747 "count = %u, tree depth = %u",
1748 le16_to_cpu(el->l_count),
1749 le16_to_cpu(el->l_tree_depth));
1751 ocfs2_shift_records_right(el);
1753 set_and_inc:
1754 le16_add_cpu(&el->l_next_free_rec, 1);
1755 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1759 * For a rotation which involves two leaf nodes, the "root node" is
1760 * the lowest level tree node which contains a path to both leafs. This
1761 * resulting set of information can be used to form a complete "subtree"
1763 * This function is passed two full paths from the dinode down to a
1764 * pair of adjacent leaves. It's task is to figure out which path
1765 * index contains the subtree root - this can be the root index itself
1766 * in a worst-case rotation.
1768 * The array index of the subtree root is passed back.
1770 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
1771 struct ocfs2_path *left,
1772 struct ocfs2_path *right)
1774 int i = 0;
1777 * Check that the caller passed in two paths from the same tree.
1779 BUG_ON(path_root_bh(left) != path_root_bh(right));
1781 do {
1782 i++;
1785 * The caller didn't pass two adjacent paths.
1787 mlog_bug_on_msg(i > left->p_tree_depth,
1788 "Owner %llu, left depth %u, right depth %u\n"
1789 "left leaf blk %llu, right leaf blk %llu\n",
1790 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1791 left->p_tree_depth, right->p_tree_depth,
1792 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1793 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1794 } while (left->p_node[i].bh->b_blocknr ==
1795 right->p_node[i].bh->b_blocknr);
1797 return i - 1;
1800 typedef void (path_insert_t)(void *, struct buffer_head *);
1803 * Traverse a btree path in search of cpos, starting at root_el.
1805 * This code can be called with a cpos larger than the tree, in which
1806 * case it will return the rightmost path.
1808 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1809 struct ocfs2_extent_list *root_el, u32 cpos,
1810 path_insert_t *func, void *data)
1812 int i, ret = 0;
1813 u32 range;
1814 u64 blkno;
1815 struct buffer_head *bh = NULL;
1816 struct ocfs2_extent_block *eb;
1817 struct ocfs2_extent_list *el;
1818 struct ocfs2_extent_rec *rec;
1820 el = root_el;
1821 while (el->l_tree_depth) {
1822 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1823 ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1824 "Owner %llu has empty extent list at depth %u\n",
1825 (unsigned long long)ocfs2_metadata_cache_owner(ci),
1826 le16_to_cpu(el->l_tree_depth));
1827 ret = -EROFS;
1828 goto out;
1832 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1833 rec = &el->l_recs[i];
1836 * In the case that cpos is off the allocation
1837 * tree, this should just wind up returning the
1838 * rightmost record.
1840 range = le32_to_cpu(rec->e_cpos) +
1841 ocfs2_rec_clusters(el, rec);
1842 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1843 break;
1846 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1847 if (blkno == 0) {
1848 ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1849 "Owner %llu has bad blkno in extent list at depth %u (index %d)\n",
1850 (unsigned long long)ocfs2_metadata_cache_owner(ci),
1851 le16_to_cpu(el->l_tree_depth), i);
1852 ret = -EROFS;
1853 goto out;
1856 brelse(bh);
1857 bh = NULL;
1858 ret = ocfs2_read_extent_block(ci, blkno, &bh);
1859 if (ret) {
1860 mlog_errno(ret);
1861 goto out;
1864 eb = (struct ocfs2_extent_block *) bh->b_data;
1865 el = &eb->h_list;
1867 if (le16_to_cpu(el->l_next_free_rec) >
1868 le16_to_cpu(el->l_count)) {
1869 ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1870 "Owner %llu has bad count in extent list at block %llu (next free=%u, count=%u)\n",
1871 (unsigned long long)ocfs2_metadata_cache_owner(ci),
1872 (unsigned long long)bh->b_blocknr,
1873 le16_to_cpu(el->l_next_free_rec),
1874 le16_to_cpu(el->l_count));
1875 ret = -EROFS;
1876 goto out;
1879 if (func)
1880 func(data, bh);
1883 out:
1885 * Catch any trailing bh that the loop didn't handle.
1887 brelse(bh);
1889 return ret;
1893 * Given an initialized path (that is, it has a valid root extent
1894 * list), this function will traverse the btree in search of the path
1895 * which would contain cpos.
1897 * The path traveled is recorded in the path structure.
1899 * Note that this will not do any comparisons on leaf node extent
1900 * records, so it will work fine in the case that we just added a tree
1901 * branch.
1903 struct find_path_data {
1904 int index;
1905 struct ocfs2_path *path;
1907 static void find_path_ins(void *data, struct buffer_head *bh)
1909 struct find_path_data *fp = data;
1911 get_bh(bh);
1912 ocfs2_path_insert_eb(fp->path, fp->index, bh);
1913 fp->index++;
1915 int ocfs2_find_path(struct ocfs2_caching_info *ci,
1916 struct ocfs2_path *path, u32 cpos)
1918 struct find_path_data data;
1920 data.index = 1;
1921 data.path = path;
1922 return __ocfs2_find_path(ci, path_root_el(path), cpos,
1923 find_path_ins, &data);
1926 static void find_leaf_ins(void *data, struct buffer_head *bh)
1928 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1929 struct ocfs2_extent_list *el = &eb->h_list;
1930 struct buffer_head **ret = data;
1932 /* We want to retain only the leaf block. */
1933 if (le16_to_cpu(el->l_tree_depth) == 0) {
1934 get_bh(bh);
1935 *ret = bh;
1939 * Find the leaf block in the tree which would contain cpos. No
1940 * checking of the actual leaf is done.
1942 * Some paths want to call this instead of allocating a path structure
1943 * and calling ocfs2_find_path().
1945 * This function doesn't handle non btree extent lists.
1947 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1948 struct ocfs2_extent_list *root_el, u32 cpos,
1949 struct buffer_head **leaf_bh)
1951 int ret;
1952 struct buffer_head *bh = NULL;
1954 ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1955 if (ret) {
1956 mlog_errno(ret);
1957 goto out;
1960 *leaf_bh = bh;
1961 out:
1962 return ret;
1966 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1968 * Basically, we've moved stuff around at the bottom of the tree and
1969 * we need to fix up the extent records above the changes to reflect
1970 * the new changes.
1972 * left_rec: the record on the left.
1973 * right_rec: the record to the right of left_rec
1974 * right_child_el: is the child list pointed to by right_rec
1976 * By definition, this only works on interior nodes.
1978 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1979 struct ocfs2_extent_rec *right_rec,
1980 struct ocfs2_extent_list *right_child_el)
1982 u32 left_clusters, right_end;
1985 * Interior nodes never have holes. Their cpos is the cpos of
1986 * the leftmost record in their child list. Their cluster
1987 * count covers the full theoretical range of their child list
1988 * - the range between their cpos and the cpos of the record
1989 * immediately to their right.
1991 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1992 if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1993 BUG_ON(right_child_el->l_tree_depth);
1994 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1995 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1997 left_clusters -= le32_to_cpu(left_rec->e_cpos);
1998 left_rec->e_int_clusters = cpu_to_le32(left_clusters);
2001 * Calculate the rightmost cluster count boundary before
2002 * moving cpos - we will need to adjust clusters after
2003 * updating e_cpos to keep the same highest cluster count.
2005 right_end = le32_to_cpu(right_rec->e_cpos);
2006 right_end += le32_to_cpu(right_rec->e_int_clusters);
2008 right_rec->e_cpos = left_rec->e_cpos;
2009 le32_add_cpu(&right_rec->e_cpos, left_clusters);
2011 right_end -= le32_to_cpu(right_rec->e_cpos);
2012 right_rec->e_int_clusters = cpu_to_le32(right_end);
2016 * Adjust the adjacent root node records involved in a
2017 * rotation. left_el_blkno is passed in as a key so that we can easily
2018 * find it's index in the root list.
2020 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
2021 struct ocfs2_extent_list *left_el,
2022 struct ocfs2_extent_list *right_el,
2023 u64 left_el_blkno)
2025 int i;
2027 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
2028 le16_to_cpu(left_el->l_tree_depth));
2030 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
2031 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
2032 break;
2036 * The path walking code should have never returned a root and
2037 * two paths which are not adjacent.
2039 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
2041 ocfs2_adjust_adjacent_records(&root_el->l_recs[i],
2042 &root_el->l_recs[i + 1], right_el);
2046 * We've changed a leaf block (in right_path) and need to reflect that
2047 * change back up the subtree.
2049 * This happens in multiple places:
2050 * - When we've moved an extent record from the left path leaf to the right
2051 * path leaf to make room for an empty extent in the left path leaf.
2052 * - When our insert into the right path leaf is at the leftmost edge
2053 * and requires an update of the path immediately to it's left. This
2054 * can occur at the end of some types of rotation and appending inserts.
2055 * - When we've adjusted the last extent record in the left path leaf and the
2056 * 1st extent record in the right path leaf during cross extent block merge.
2058 static void ocfs2_complete_edge_insert(handle_t *handle,
2059 struct ocfs2_path *left_path,
2060 struct ocfs2_path *right_path,
2061 int subtree_index)
2063 int i, idx;
2064 struct ocfs2_extent_list *el, *left_el, *right_el;
2065 struct ocfs2_extent_rec *left_rec, *right_rec;
2066 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2069 * Update the counts and position values within all the
2070 * interior nodes to reflect the leaf rotation we just did.
2072 * The root node is handled below the loop.
2074 * We begin the loop with right_el and left_el pointing to the
2075 * leaf lists and work our way up.
2077 * NOTE: within this loop, left_el and right_el always refer
2078 * to the *child* lists.
2080 left_el = path_leaf_el(left_path);
2081 right_el = path_leaf_el(right_path);
2082 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2083 trace_ocfs2_complete_edge_insert(i);
2086 * One nice property of knowing that all of these
2087 * nodes are below the root is that we only deal with
2088 * the leftmost right node record and the rightmost
2089 * left node record.
2091 el = left_path->p_node[i].el;
2092 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2093 left_rec = &el->l_recs[idx];
2095 el = right_path->p_node[i].el;
2096 right_rec = &el->l_recs[0];
2098 ocfs2_adjust_adjacent_records(left_rec, right_rec, right_el);
2100 ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2101 ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2104 * Setup our list pointers now so that the current
2105 * parents become children in the next iteration.
2107 left_el = left_path->p_node[i].el;
2108 right_el = right_path->p_node[i].el;
2112 * At the root node, adjust the two adjacent records which
2113 * begin our path to the leaves.
2116 el = left_path->p_node[subtree_index].el;
2117 left_el = left_path->p_node[subtree_index + 1].el;
2118 right_el = right_path->p_node[subtree_index + 1].el;
2120 ocfs2_adjust_root_records(el, left_el, right_el,
2121 left_path->p_node[subtree_index + 1].bh->b_blocknr);
2123 root_bh = left_path->p_node[subtree_index].bh;
2125 ocfs2_journal_dirty(handle, root_bh);
2128 static int ocfs2_rotate_subtree_right(handle_t *handle,
2129 struct ocfs2_extent_tree *et,
2130 struct ocfs2_path *left_path,
2131 struct ocfs2_path *right_path,
2132 int subtree_index)
2134 int ret, i;
2135 struct buffer_head *right_leaf_bh;
2136 struct buffer_head *left_leaf_bh = NULL;
2137 struct buffer_head *root_bh;
2138 struct ocfs2_extent_list *right_el, *left_el;
2139 struct ocfs2_extent_rec move_rec;
2141 left_leaf_bh = path_leaf_bh(left_path);
2142 left_el = path_leaf_el(left_path);
2144 if (left_el->l_next_free_rec != left_el->l_count) {
2145 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
2146 "Inode %llu has non-full interior leaf node %llu (next free = %u)\n",
2147 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2148 (unsigned long long)left_leaf_bh->b_blocknr,
2149 le16_to_cpu(left_el->l_next_free_rec));
2150 return -EROFS;
2154 * This extent block may already have an empty record, so we
2155 * return early if so.
2157 if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2158 return 0;
2160 root_bh = left_path->p_node[subtree_index].bh;
2161 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2163 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2164 subtree_index);
2165 if (ret) {
2166 mlog_errno(ret);
2167 goto out;
2170 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2171 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2172 right_path, i);
2173 if (ret) {
2174 mlog_errno(ret);
2175 goto out;
2178 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2179 left_path, i);
2180 if (ret) {
2181 mlog_errno(ret);
2182 goto out;
2186 right_leaf_bh = path_leaf_bh(right_path);
2187 right_el = path_leaf_el(right_path);
2189 /* This is a code error, not a disk corruption. */
2190 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2191 "because rightmost leaf block %llu is empty\n",
2192 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2193 (unsigned long long)right_leaf_bh->b_blocknr);
2195 ocfs2_create_empty_extent(right_el);
2197 ocfs2_journal_dirty(handle, right_leaf_bh);
2199 /* Do the copy now. */
2200 i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2201 move_rec = left_el->l_recs[i];
2202 right_el->l_recs[0] = move_rec;
2205 * Clear out the record we just copied and shift everything
2206 * over, leaving an empty extent in the left leaf.
2208 * We temporarily subtract from next_free_rec so that the
2209 * shift will lose the tail record (which is now defunct).
2211 le16_add_cpu(&left_el->l_next_free_rec, -1);
2212 ocfs2_shift_records_right(left_el);
2213 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2214 le16_add_cpu(&left_el->l_next_free_rec, 1);
2216 ocfs2_journal_dirty(handle, left_leaf_bh);
2218 ocfs2_complete_edge_insert(handle, left_path, right_path,
2219 subtree_index);
2221 out:
2222 return ret;
2226 * Given a full path, determine what cpos value would return us a path
2227 * containing the leaf immediately to the left of the current one.
2229 * Will return zero if the path passed in is already the leftmost path.
2231 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2232 struct ocfs2_path *path, u32 *cpos)
2234 int i, j, ret = 0;
2235 u64 blkno;
2236 struct ocfs2_extent_list *el;
2238 BUG_ON(path->p_tree_depth == 0);
2240 *cpos = 0;
2242 blkno = path_leaf_bh(path)->b_blocknr;
2244 /* Start at the tree node just above the leaf and work our way up. */
2245 i = path->p_tree_depth - 1;
2246 while (i >= 0) {
2247 el = path->p_node[i].el;
2250 * Find the extent record just before the one in our
2251 * path.
2253 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2254 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2255 if (j == 0) {
2256 if (i == 0) {
2258 * We've determined that the
2259 * path specified is already
2260 * the leftmost one - return a
2261 * cpos of zero.
2263 goto out;
2266 * The leftmost record points to our
2267 * leaf - we need to travel up the
2268 * tree one level.
2270 goto next_node;
2273 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2274 *cpos = *cpos + ocfs2_rec_clusters(el,
2275 &el->l_recs[j - 1]);
2276 *cpos = *cpos - 1;
2277 goto out;
2282 * If we got here, we never found a valid node where
2283 * the tree indicated one should be.
2285 ocfs2_error(sb, "Invalid extent tree at extent block %llu\n",
2286 (unsigned long long)blkno);
2287 ret = -EROFS;
2288 goto out;
2290 next_node:
2291 blkno = path->p_node[i].bh->b_blocknr;
2292 i--;
2295 out:
2296 return ret;
2300 * Extend the transaction by enough credits to complete the rotation,
2301 * and still leave at least the original number of credits allocated
2302 * to this transaction.
2304 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2305 int op_credits,
2306 struct ocfs2_path *path)
2308 int ret = 0;
2309 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2311 if (handle->h_buffer_credits < credits)
2312 ret = ocfs2_extend_trans(handle,
2313 credits - handle->h_buffer_credits);
2315 return ret;
2319 * Trap the case where we're inserting into the theoretical range past
2320 * the _actual_ left leaf range. Otherwise, we'll rotate a record
2321 * whose cpos is less than ours into the right leaf.
2323 * It's only necessary to look at the rightmost record of the left
2324 * leaf because the logic that calls us should ensure that the
2325 * theoretical ranges in the path components above the leaves are
2326 * correct.
2328 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2329 u32 insert_cpos)
2331 struct ocfs2_extent_list *left_el;
2332 struct ocfs2_extent_rec *rec;
2333 int next_free;
2335 left_el = path_leaf_el(left_path);
2336 next_free = le16_to_cpu(left_el->l_next_free_rec);
2337 rec = &left_el->l_recs[next_free - 1];
2339 if (insert_cpos > le32_to_cpu(rec->e_cpos))
2340 return 1;
2341 return 0;
2344 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2346 int next_free = le16_to_cpu(el->l_next_free_rec);
2347 unsigned int range;
2348 struct ocfs2_extent_rec *rec;
2350 if (next_free == 0)
2351 return 0;
2353 rec = &el->l_recs[0];
2354 if (ocfs2_is_empty_extent(rec)) {
2355 /* Empty list. */
2356 if (next_free == 1)
2357 return 0;
2358 rec = &el->l_recs[1];
2361 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2362 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2363 return 1;
2364 return 0;
2368 * Rotate all the records in a btree right one record, starting at insert_cpos.
2370 * The path to the rightmost leaf should be passed in.
2372 * The array is assumed to be large enough to hold an entire path (tree depth).
2374 * Upon successful return from this function:
2376 * - The 'right_path' array will contain a path to the leaf block
2377 * whose range contains e_cpos.
2378 * - That leaf block will have a single empty extent in list index 0.
2379 * - In the case that the rotation requires a post-insert update,
2380 * *ret_left_path will contain a valid path which can be passed to
2381 * ocfs2_insert_path().
2383 static int ocfs2_rotate_tree_right(handle_t *handle,
2384 struct ocfs2_extent_tree *et,
2385 enum ocfs2_split_type split,
2386 u32 insert_cpos,
2387 struct ocfs2_path *right_path,
2388 struct ocfs2_path **ret_left_path)
2390 int ret, start, orig_credits = handle->h_buffer_credits;
2391 u32 cpos;
2392 struct ocfs2_path *left_path = NULL;
2393 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2395 *ret_left_path = NULL;
2397 left_path = ocfs2_new_path_from_path(right_path);
2398 if (!left_path) {
2399 ret = -ENOMEM;
2400 mlog_errno(ret);
2401 goto out;
2404 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2405 if (ret) {
2406 mlog_errno(ret);
2407 goto out;
2410 trace_ocfs2_rotate_tree_right(
2411 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2412 insert_cpos, cpos);
2415 * What we want to do here is:
2417 * 1) Start with the rightmost path.
2419 * 2) Determine a path to the leaf block directly to the left
2420 * of that leaf.
2422 * 3) Determine the 'subtree root' - the lowest level tree node
2423 * which contains a path to both leaves.
2425 * 4) Rotate the subtree.
2427 * 5) Find the next subtree by considering the left path to be
2428 * the new right path.
2430 * The check at the top of this while loop also accepts
2431 * insert_cpos == cpos because cpos is only a _theoretical_
2432 * value to get us the left path - insert_cpos might very well
2433 * be filling that hole.
2435 * Stop at a cpos of '0' because we either started at the
2436 * leftmost branch (i.e., a tree with one branch and a
2437 * rotation inside of it), or we've gone as far as we can in
2438 * rotating subtrees.
2440 while (cpos && insert_cpos <= cpos) {
2441 trace_ocfs2_rotate_tree_right(
2442 (unsigned long long)
2443 ocfs2_metadata_cache_owner(et->et_ci),
2444 insert_cpos, cpos);
2446 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2447 if (ret) {
2448 mlog_errno(ret);
2449 goto out;
2452 mlog_bug_on_msg(path_leaf_bh(left_path) ==
2453 path_leaf_bh(right_path),
2454 "Owner %llu: error during insert of %u "
2455 "(left path cpos %u) results in two identical "
2456 "paths ending at %llu\n",
2457 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2458 insert_cpos, cpos,
2459 (unsigned long long)
2460 path_leaf_bh(left_path)->b_blocknr);
2462 if (split == SPLIT_NONE &&
2463 ocfs2_rotate_requires_path_adjustment(left_path,
2464 insert_cpos)) {
2467 * We've rotated the tree as much as we
2468 * should. The rest is up to
2469 * ocfs2_insert_path() to complete, after the
2470 * record insertion. We indicate this
2471 * situation by returning the left path.
2473 * The reason we don't adjust the records here
2474 * before the record insert is that an error
2475 * later might break the rule where a parent
2476 * record e_cpos will reflect the actual
2477 * e_cpos of the 1st nonempty record of the
2478 * child list.
2480 *ret_left_path = left_path;
2481 goto out_ret_path;
2484 start = ocfs2_find_subtree_root(et, left_path, right_path);
2486 trace_ocfs2_rotate_subtree(start,
2487 (unsigned long long)
2488 right_path->p_node[start].bh->b_blocknr,
2489 right_path->p_tree_depth);
2491 ret = ocfs2_extend_rotate_transaction(handle, start,
2492 orig_credits, right_path);
2493 if (ret) {
2494 mlog_errno(ret);
2495 goto out;
2498 ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2499 right_path, start);
2500 if (ret) {
2501 mlog_errno(ret);
2502 goto out;
2505 if (split != SPLIT_NONE &&
2506 ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2507 insert_cpos)) {
2509 * A rotate moves the rightmost left leaf
2510 * record over to the leftmost right leaf
2511 * slot. If we're doing an extent split
2512 * instead of a real insert, then we have to
2513 * check that the extent to be split wasn't
2514 * just moved over. If it was, then we can
2515 * exit here, passing left_path back -
2516 * ocfs2_split_extent() is smart enough to
2517 * search both leaves.
2519 *ret_left_path = left_path;
2520 goto out_ret_path;
2524 * There is no need to re-read the next right path
2525 * as we know that it'll be our current left
2526 * path. Optimize by copying values instead.
2528 ocfs2_mv_path(right_path, left_path);
2530 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2531 if (ret) {
2532 mlog_errno(ret);
2533 goto out;
2537 out:
2538 ocfs2_free_path(left_path);
2540 out_ret_path:
2541 return ret;
2544 static int ocfs2_update_edge_lengths(handle_t *handle,
2545 struct ocfs2_extent_tree *et,
2546 struct ocfs2_path *path)
2548 int i, idx, ret;
2549 struct ocfs2_extent_rec *rec;
2550 struct ocfs2_extent_list *el;
2551 struct ocfs2_extent_block *eb;
2552 u32 range;
2554 ret = ocfs2_journal_access_path(et->et_ci, handle, path);
2555 if (ret) {
2556 mlog_errno(ret);
2557 goto out;
2560 /* Path should always be rightmost. */
2561 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2562 BUG_ON(eb->h_next_leaf_blk != 0ULL);
2564 el = &eb->h_list;
2565 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2566 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2567 rec = &el->l_recs[idx];
2568 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2570 for (i = 0; i < path->p_tree_depth; i++) {
2571 el = path->p_node[i].el;
2572 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2573 rec = &el->l_recs[idx];
2575 rec->e_int_clusters = cpu_to_le32(range);
2576 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2578 ocfs2_journal_dirty(handle, path->p_node[i].bh);
2580 out:
2581 return ret;
2584 static void ocfs2_unlink_path(handle_t *handle,
2585 struct ocfs2_extent_tree *et,
2586 struct ocfs2_cached_dealloc_ctxt *dealloc,
2587 struct ocfs2_path *path, int unlink_start)
2589 int ret, i;
2590 struct ocfs2_extent_block *eb;
2591 struct ocfs2_extent_list *el;
2592 struct buffer_head *bh;
2594 for(i = unlink_start; i < path_num_items(path); i++) {
2595 bh = path->p_node[i].bh;
2597 eb = (struct ocfs2_extent_block *)bh->b_data;
2599 * Not all nodes might have had their final count
2600 * decremented by the caller - handle this here.
2602 el = &eb->h_list;
2603 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2604 mlog(ML_ERROR,
2605 "Inode %llu, attempted to remove extent block "
2606 "%llu with %u records\n",
2607 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2608 (unsigned long long)le64_to_cpu(eb->h_blkno),
2609 le16_to_cpu(el->l_next_free_rec));
2611 ocfs2_journal_dirty(handle, bh);
2612 ocfs2_remove_from_cache(et->et_ci, bh);
2613 continue;
2616 el->l_next_free_rec = 0;
2617 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2619 ocfs2_journal_dirty(handle, bh);
2621 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2622 if (ret)
2623 mlog_errno(ret);
2625 ocfs2_remove_from_cache(et->et_ci, bh);
2629 static void ocfs2_unlink_subtree(handle_t *handle,
2630 struct ocfs2_extent_tree *et,
2631 struct ocfs2_path *left_path,
2632 struct ocfs2_path *right_path,
2633 int subtree_index,
2634 struct ocfs2_cached_dealloc_ctxt *dealloc)
2636 int i;
2637 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2638 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2639 struct ocfs2_extent_block *eb;
2641 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2643 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2644 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2645 break;
2647 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2649 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2650 le16_add_cpu(&root_el->l_next_free_rec, -1);
2652 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2653 eb->h_next_leaf_blk = 0;
2655 ocfs2_journal_dirty(handle, root_bh);
2656 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2658 ocfs2_unlink_path(handle, et, dealloc, right_path,
2659 subtree_index + 1);
2662 static int ocfs2_rotate_subtree_left(handle_t *handle,
2663 struct ocfs2_extent_tree *et,
2664 struct ocfs2_path *left_path,
2665 struct ocfs2_path *right_path,
2666 int subtree_index,
2667 struct ocfs2_cached_dealloc_ctxt *dealloc,
2668 int *deleted)
2670 int ret, i, del_right_subtree = 0, right_has_empty = 0;
2671 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2672 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2673 struct ocfs2_extent_block *eb;
2675 *deleted = 0;
2677 right_leaf_el = path_leaf_el(right_path);
2678 left_leaf_el = path_leaf_el(left_path);
2679 root_bh = left_path->p_node[subtree_index].bh;
2680 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2682 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2683 return 0;
2685 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2686 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2688 * It's legal for us to proceed if the right leaf is
2689 * the rightmost one and it has an empty extent. There
2690 * are two cases to handle - whether the leaf will be
2691 * empty after removal or not. If the leaf isn't empty
2692 * then just remove the empty extent up front. The
2693 * next block will handle empty leaves by flagging
2694 * them for unlink.
2696 * Non rightmost leaves will throw -EAGAIN and the
2697 * caller can manually move the subtree and retry.
2700 if (eb->h_next_leaf_blk != 0ULL)
2701 return -EAGAIN;
2703 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2704 ret = ocfs2_journal_access_eb(handle, et->et_ci,
2705 path_leaf_bh(right_path),
2706 OCFS2_JOURNAL_ACCESS_WRITE);
2707 if (ret) {
2708 mlog_errno(ret);
2709 goto out;
2712 ocfs2_remove_empty_extent(right_leaf_el);
2713 } else
2714 right_has_empty = 1;
2717 if (eb->h_next_leaf_blk == 0ULL &&
2718 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2720 * We have to update i_last_eb_blk during the meta
2721 * data delete.
2723 ret = ocfs2_et_root_journal_access(handle, et,
2724 OCFS2_JOURNAL_ACCESS_WRITE);
2725 if (ret) {
2726 mlog_errno(ret);
2727 goto out;
2730 del_right_subtree = 1;
2734 * Getting here with an empty extent in the right path implies
2735 * that it's the rightmost path and will be deleted.
2737 BUG_ON(right_has_empty && !del_right_subtree);
2739 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2740 subtree_index);
2741 if (ret) {
2742 mlog_errno(ret);
2743 goto out;
2746 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2747 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2748 right_path, i);
2749 if (ret) {
2750 mlog_errno(ret);
2751 goto out;
2754 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2755 left_path, i);
2756 if (ret) {
2757 mlog_errno(ret);
2758 goto out;
2762 if (!right_has_empty) {
2764 * Only do this if we're moving a real
2765 * record. Otherwise, the action is delayed until
2766 * after removal of the right path in which case we
2767 * can do a simple shift to remove the empty extent.
2769 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2770 memset(&right_leaf_el->l_recs[0], 0,
2771 sizeof(struct ocfs2_extent_rec));
2773 if (eb->h_next_leaf_blk == 0ULL) {
2775 * Move recs over to get rid of empty extent, decrease
2776 * next_free. This is allowed to remove the last
2777 * extent in our leaf (setting l_next_free_rec to
2778 * zero) - the delete code below won't care.
2780 ocfs2_remove_empty_extent(right_leaf_el);
2783 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2784 ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2786 if (del_right_subtree) {
2787 ocfs2_unlink_subtree(handle, et, left_path, right_path,
2788 subtree_index, dealloc);
2789 ret = ocfs2_update_edge_lengths(handle, et, left_path);
2790 if (ret) {
2791 mlog_errno(ret);
2792 goto out;
2795 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2796 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2799 * Removal of the extent in the left leaf was skipped
2800 * above so we could delete the right path
2801 * 1st.
2803 if (right_has_empty)
2804 ocfs2_remove_empty_extent(left_leaf_el);
2806 ocfs2_journal_dirty(handle, et_root_bh);
2808 *deleted = 1;
2809 } else
2810 ocfs2_complete_edge_insert(handle, left_path, right_path,
2811 subtree_index);
2813 out:
2814 return ret;
2818 * Given a full path, determine what cpos value would return us a path
2819 * containing the leaf immediately to the right of the current one.
2821 * Will return zero if the path passed in is already the rightmost path.
2823 * This looks similar, but is subtly different to
2824 * ocfs2_find_cpos_for_left_leaf().
2826 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2827 struct ocfs2_path *path, u32 *cpos)
2829 int i, j, ret = 0;
2830 u64 blkno;
2831 struct ocfs2_extent_list *el;
2833 *cpos = 0;
2835 if (path->p_tree_depth == 0)
2836 return 0;
2838 blkno = path_leaf_bh(path)->b_blocknr;
2840 /* Start at the tree node just above the leaf and work our way up. */
2841 i = path->p_tree_depth - 1;
2842 while (i >= 0) {
2843 int next_free;
2845 el = path->p_node[i].el;
2848 * Find the extent record just after the one in our
2849 * path.
2851 next_free = le16_to_cpu(el->l_next_free_rec);
2852 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2853 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2854 if (j == (next_free - 1)) {
2855 if (i == 0) {
2857 * We've determined that the
2858 * path specified is already
2859 * the rightmost one - return a
2860 * cpos of zero.
2862 goto out;
2865 * The rightmost record points to our
2866 * leaf - we need to travel up the
2867 * tree one level.
2869 goto next_node;
2872 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2873 goto out;
2878 * If we got here, we never found a valid node where
2879 * the tree indicated one should be.
2881 ocfs2_error(sb, "Invalid extent tree at extent block %llu\n",
2882 (unsigned long long)blkno);
2883 ret = -EROFS;
2884 goto out;
2886 next_node:
2887 blkno = path->p_node[i].bh->b_blocknr;
2888 i--;
2891 out:
2892 return ret;
2895 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle,
2896 struct ocfs2_extent_tree *et,
2897 struct ocfs2_path *path)
2899 int ret;
2900 struct buffer_head *bh = path_leaf_bh(path);
2901 struct ocfs2_extent_list *el = path_leaf_el(path);
2903 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2904 return 0;
2906 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
2907 path_num_items(path) - 1);
2908 if (ret) {
2909 mlog_errno(ret);
2910 goto out;
2913 ocfs2_remove_empty_extent(el);
2914 ocfs2_journal_dirty(handle, bh);
2916 out:
2917 return ret;
2920 static int __ocfs2_rotate_tree_left(handle_t *handle,
2921 struct ocfs2_extent_tree *et,
2922 int orig_credits,
2923 struct ocfs2_path *path,
2924 struct ocfs2_cached_dealloc_ctxt *dealloc,
2925 struct ocfs2_path **empty_extent_path)
2927 int ret, subtree_root, deleted;
2928 u32 right_cpos;
2929 struct ocfs2_path *left_path = NULL;
2930 struct ocfs2_path *right_path = NULL;
2931 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2933 if (!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])))
2934 return 0;
2936 *empty_extent_path = NULL;
2938 ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
2939 if (ret) {
2940 mlog_errno(ret);
2941 goto out;
2944 left_path = ocfs2_new_path_from_path(path);
2945 if (!left_path) {
2946 ret = -ENOMEM;
2947 mlog_errno(ret);
2948 goto out;
2951 ocfs2_cp_path(left_path, path);
2953 right_path = ocfs2_new_path_from_path(path);
2954 if (!right_path) {
2955 ret = -ENOMEM;
2956 mlog_errno(ret);
2957 goto out;
2960 while (right_cpos) {
2961 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
2962 if (ret) {
2963 mlog_errno(ret);
2964 goto out;
2967 subtree_root = ocfs2_find_subtree_root(et, left_path,
2968 right_path);
2970 trace_ocfs2_rotate_subtree(subtree_root,
2971 (unsigned long long)
2972 right_path->p_node[subtree_root].bh->b_blocknr,
2973 right_path->p_tree_depth);
2975 ret = ocfs2_extend_rotate_transaction(handle, 0,
2976 orig_credits, left_path);
2977 if (ret) {
2978 mlog_errno(ret);
2979 goto out;
2983 * Caller might still want to make changes to the
2984 * tree root, so re-add it to the journal here.
2986 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2987 left_path, 0);
2988 if (ret) {
2989 mlog_errno(ret);
2990 goto out;
2993 ret = ocfs2_rotate_subtree_left(handle, et, left_path,
2994 right_path, subtree_root,
2995 dealloc, &deleted);
2996 if (ret == -EAGAIN) {
2998 * The rotation has to temporarily stop due to
2999 * the right subtree having an empty
3000 * extent. Pass it back to the caller for a
3001 * fixup.
3003 *empty_extent_path = right_path;
3004 right_path = NULL;
3005 goto out;
3007 if (ret) {
3008 mlog_errno(ret);
3009 goto out;
3013 * The subtree rotate might have removed records on
3014 * the rightmost edge. If so, then rotation is
3015 * complete.
3017 if (deleted)
3018 break;
3020 ocfs2_mv_path(left_path, right_path);
3022 ret = ocfs2_find_cpos_for_right_leaf(sb, left_path,
3023 &right_cpos);
3024 if (ret) {
3025 mlog_errno(ret);
3026 goto out;
3030 out:
3031 ocfs2_free_path(right_path);
3032 ocfs2_free_path(left_path);
3034 return ret;
3037 static int ocfs2_remove_rightmost_path(handle_t *handle,
3038 struct ocfs2_extent_tree *et,
3039 struct ocfs2_path *path,
3040 struct ocfs2_cached_dealloc_ctxt *dealloc)
3042 int ret, subtree_index;
3043 u32 cpos;
3044 struct ocfs2_path *left_path = NULL;
3045 struct ocfs2_extent_block *eb;
3046 struct ocfs2_extent_list *el;
3048 ret = ocfs2_et_sanity_check(et);
3049 if (ret)
3050 goto out;
3052 ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3053 if (ret) {
3054 mlog_errno(ret);
3055 goto out;
3058 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3059 path, &cpos);
3060 if (ret) {
3061 mlog_errno(ret);
3062 goto out;
3065 if (cpos) {
3067 * We have a path to the left of this one - it needs
3068 * an update too.
3070 left_path = ocfs2_new_path_from_path(path);
3071 if (!left_path) {
3072 ret = -ENOMEM;
3073 mlog_errno(ret);
3074 goto out;
3077 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3078 if (ret) {
3079 mlog_errno(ret);
3080 goto out;
3083 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3084 if (ret) {
3085 mlog_errno(ret);
3086 goto out;
3089 subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3091 ocfs2_unlink_subtree(handle, et, left_path, path,
3092 subtree_index, dealloc);
3093 ret = ocfs2_update_edge_lengths(handle, et, left_path);
3094 if (ret) {
3095 mlog_errno(ret);
3096 goto out;
3099 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3100 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3101 } else {
3103 * 'path' is also the leftmost path which
3104 * means it must be the only one. This gets
3105 * handled differently because we want to
3106 * revert the root back to having extents
3107 * in-line.
3109 ocfs2_unlink_path(handle, et, dealloc, path, 1);
3111 el = et->et_root_el;
3112 el->l_tree_depth = 0;
3113 el->l_next_free_rec = 0;
3114 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3116 ocfs2_et_set_last_eb_blk(et, 0);
3119 ocfs2_journal_dirty(handle, path_root_bh(path));
3121 out:
3122 ocfs2_free_path(left_path);
3123 return ret;
3126 static int ocfs2_remove_rightmost_empty_extent(struct ocfs2_super *osb,
3127 struct ocfs2_extent_tree *et,
3128 struct ocfs2_path *path,
3129 struct ocfs2_cached_dealloc_ctxt *dealloc)
3131 handle_t *handle;
3132 int ret;
3133 int credits = path->p_tree_depth * 2 + 1;
3135 handle = ocfs2_start_trans(osb, credits);
3136 if (IS_ERR(handle)) {
3137 ret = PTR_ERR(handle);
3138 mlog_errno(ret);
3139 return ret;
3142 ret = ocfs2_remove_rightmost_path(handle, et, path, dealloc);
3143 if (ret)
3144 mlog_errno(ret);
3146 ocfs2_commit_trans(osb, handle);
3147 return ret;
3151 * Left rotation of btree records.
3153 * In many ways, this is (unsurprisingly) the opposite of right
3154 * rotation. We start at some non-rightmost path containing an empty
3155 * extent in the leaf block. The code works its way to the rightmost
3156 * path by rotating records to the left in every subtree.
3158 * This is used by any code which reduces the number of extent records
3159 * in a leaf. After removal, an empty record should be placed in the
3160 * leftmost list position.
3162 * This won't handle a length update of the rightmost path records if
3163 * the rightmost tree leaf record is removed so the caller is
3164 * responsible for detecting and correcting that.
3166 static int ocfs2_rotate_tree_left(handle_t *handle,
3167 struct ocfs2_extent_tree *et,
3168 struct ocfs2_path *path,
3169 struct ocfs2_cached_dealloc_ctxt *dealloc)
3171 int ret, orig_credits = handle->h_buffer_credits;
3172 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3173 struct ocfs2_extent_block *eb;
3174 struct ocfs2_extent_list *el;
3176 el = path_leaf_el(path);
3177 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3178 return 0;
3180 if (path->p_tree_depth == 0) {
3181 rightmost_no_delete:
3183 * Inline extents. This is trivially handled, so do
3184 * it up front.
3186 ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path);
3187 if (ret)
3188 mlog_errno(ret);
3189 goto out;
3193 * Handle rightmost branch now. There's several cases:
3194 * 1) simple rotation leaving records in there. That's trivial.
3195 * 2) rotation requiring a branch delete - there's no more
3196 * records left. Two cases of this:
3197 * a) There are branches to the left.
3198 * b) This is also the leftmost (the only) branch.
3200 * 1) is handled via ocfs2_rotate_rightmost_leaf_left()
3201 * 2a) we need the left branch so that we can update it with the unlink
3202 * 2b) we need to bring the root back to inline extents.
3205 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3206 el = &eb->h_list;
3207 if (eb->h_next_leaf_blk == 0) {
3209 * This gets a bit tricky if we're going to delete the
3210 * rightmost path. Get the other cases out of the way
3211 * 1st.
3213 if (le16_to_cpu(el->l_next_free_rec) > 1)
3214 goto rightmost_no_delete;
3216 if (le16_to_cpu(el->l_next_free_rec) == 0) {
3217 ret = -EIO;
3218 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3219 "Owner %llu has empty extent block at %llu\n",
3220 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
3221 (unsigned long long)le64_to_cpu(eb->h_blkno));
3222 goto out;
3226 * XXX: The caller can not trust "path" any more after
3227 * this as it will have been deleted. What do we do?
3229 * In theory the rotate-for-merge code will never get
3230 * here because it'll always ask for a rotate in a
3231 * nonempty list.
3234 ret = ocfs2_remove_rightmost_path(handle, et, path,
3235 dealloc);
3236 if (ret)
3237 mlog_errno(ret);
3238 goto out;
3242 * Now we can loop, remembering the path we get from -EAGAIN
3243 * and restarting from there.
3245 try_rotate:
3246 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path,
3247 dealloc, &restart_path);
3248 if (ret && ret != -EAGAIN) {
3249 mlog_errno(ret);
3250 goto out;
3253 while (ret == -EAGAIN) {
3254 tmp_path = restart_path;
3255 restart_path = NULL;
3257 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits,
3258 tmp_path, dealloc,
3259 &restart_path);
3260 if (ret && ret != -EAGAIN) {
3261 mlog_errno(ret);
3262 goto out;
3265 ocfs2_free_path(tmp_path);
3266 tmp_path = NULL;
3268 if (ret == 0)
3269 goto try_rotate;
3272 out:
3273 ocfs2_free_path(tmp_path);
3274 ocfs2_free_path(restart_path);
3275 return ret;
3278 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3279 int index)
3281 struct ocfs2_extent_rec *rec = &el->l_recs[index];
3282 unsigned int size;
3284 if (rec->e_leaf_clusters == 0) {
3286 * We consumed all of the merged-from record. An empty
3287 * extent cannot exist anywhere but the 1st array
3288 * position, so move things over if the merged-from
3289 * record doesn't occupy that position.
3291 * This creates a new empty extent so the caller
3292 * should be smart enough to have removed any existing
3293 * ones.
3295 if (index > 0) {
3296 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3297 size = index * sizeof(struct ocfs2_extent_rec);
3298 memmove(&el->l_recs[1], &el->l_recs[0], size);
3302 * Always memset - the caller doesn't check whether it
3303 * created an empty extent, so there could be junk in
3304 * the other fields.
3306 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3310 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et,
3311 struct ocfs2_path *left_path,
3312 struct ocfs2_path **ret_right_path)
3314 int ret;
3315 u32 right_cpos;
3316 struct ocfs2_path *right_path = NULL;
3317 struct ocfs2_extent_list *left_el;
3319 *ret_right_path = NULL;
3321 /* This function shouldn't be called for non-trees. */
3322 BUG_ON(left_path->p_tree_depth == 0);
3324 left_el = path_leaf_el(left_path);
3325 BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3327 ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3328 left_path, &right_cpos);
3329 if (ret) {
3330 mlog_errno(ret);
3331 goto out;
3334 /* This function shouldn't be called for the rightmost leaf. */
3335 BUG_ON(right_cpos == 0);
3337 right_path = ocfs2_new_path_from_path(left_path);
3338 if (!right_path) {
3339 ret = -ENOMEM;
3340 mlog_errno(ret);
3341 goto out;
3344 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3345 if (ret) {
3346 mlog_errno(ret);
3347 goto out;
3350 *ret_right_path = right_path;
3351 out:
3352 if (ret)
3353 ocfs2_free_path(right_path);
3354 return ret;
3358 * Remove split_rec clusters from the record at index and merge them
3359 * onto the beginning of the record "next" to it.
3360 * For index < l_count - 1, the next means the extent rec at index + 1.
3361 * For index == l_count - 1, the "next" means the 1st extent rec of the
3362 * next extent block.
3364 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path,
3365 handle_t *handle,
3366 struct ocfs2_extent_tree *et,
3367 struct ocfs2_extent_rec *split_rec,
3368 int index)
3370 int ret, next_free, i;
3371 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3372 struct ocfs2_extent_rec *left_rec;
3373 struct ocfs2_extent_rec *right_rec;
3374 struct ocfs2_extent_list *right_el;
3375 struct ocfs2_path *right_path = NULL;
3376 int subtree_index = 0;
3377 struct ocfs2_extent_list *el = path_leaf_el(left_path);
3378 struct buffer_head *bh = path_leaf_bh(left_path);
3379 struct buffer_head *root_bh = NULL;
3381 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3382 left_rec = &el->l_recs[index];
3384 if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3385 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3386 /* we meet with a cross extent block merge. */
3387 ret = ocfs2_get_right_path(et, left_path, &right_path);
3388 if (ret) {
3389 mlog_errno(ret);
3390 return ret;
3393 right_el = path_leaf_el(right_path);
3394 next_free = le16_to_cpu(right_el->l_next_free_rec);
3395 BUG_ON(next_free <= 0);
3396 right_rec = &right_el->l_recs[0];
3397 if (ocfs2_is_empty_extent(right_rec)) {
3398 BUG_ON(next_free <= 1);
3399 right_rec = &right_el->l_recs[1];
3402 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3403 le16_to_cpu(left_rec->e_leaf_clusters) !=
3404 le32_to_cpu(right_rec->e_cpos));
3406 subtree_index = ocfs2_find_subtree_root(et, left_path,
3407 right_path);
3409 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3410 handle->h_buffer_credits,
3411 right_path);
3412 if (ret) {
3413 mlog_errno(ret);
3414 goto out;
3417 root_bh = left_path->p_node[subtree_index].bh;
3418 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3420 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3421 subtree_index);
3422 if (ret) {
3423 mlog_errno(ret);
3424 goto out;
3427 for (i = subtree_index + 1;
3428 i < path_num_items(right_path); i++) {
3429 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3430 right_path, i);
3431 if (ret) {
3432 mlog_errno(ret);
3433 goto out;
3436 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3437 left_path, i);
3438 if (ret) {
3439 mlog_errno(ret);
3440 goto out;
3444 } else {
3445 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3446 right_rec = &el->l_recs[index + 1];
3449 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3450 path_num_items(left_path) - 1);
3451 if (ret) {
3452 mlog_errno(ret);
3453 goto out;
3456 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3458 le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3459 le64_add_cpu(&right_rec->e_blkno,
3460 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3461 split_clusters));
3462 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3464 ocfs2_cleanup_merge(el, index);
3466 ocfs2_journal_dirty(handle, bh);
3467 if (right_path) {
3468 ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3469 ocfs2_complete_edge_insert(handle, left_path, right_path,
3470 subtree_index);
3472 out:
3473 ocfs2_free_path(right_path);
3474 return ret;
3477 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et,
3478 struct ocfs2_path *right_path,
3479 struct ocfs2_path **ret_left_path)
3481 int ret;
3482 u32 left_cpos;
3483 struct ocfs2_path *left_path = NULL;
3485 *ret_left_path = NULL;
3487 /* This function shouldn't be called for non-trees. */
3488 BUG_ON(right_path->p_tree_depth == 0);
3490 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3491 right_path, &left_cpos);
3492 if (ret) {
3493 mlog_errno(ret);
3494 goto out;
3497 /* This function shouldn't be called for the leftmost leaf. */
3498 BUG_ON(left_cpos == 0);
3500 left_path = ocfs2_new_path_from_path(right_path);
3501 if (!left_path) {
3502 ret = -ENOMEM;
3503 mlog_errno(ret);
3504 goto out;
3507 ret = ocfs2_find_path(et->et_ci, left_path, left_cpos);
3508 if (ret) {
3509 mlog_errno(ret);
3510 goto out;
3513 *ret_left_path = left_path;
3514 out:
3515 if (ret)
3516 ocfs2_free_path(left_path);
3517 return ret;
3521 * Remove split_rec clusters from the record at index and merge them
3522 * onto the tail of the record "before" it.
3523 * For index > 0, the "before" means the extent rec at index - 1.
3525 * For index == 0, the "before" means the last record of the previous
3526 * extent block. And there is also a situation that we may need to
3527 * remove the rightmost leaf extent block in the right_path and change
3528 * the right path to indicate the new rightmost path.
3530 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path,
3531 handle_t *handle,
3532 struct ocfs2_extent_tree *et,
3533 struct ocfs2_extent_rec *split_rec,
3534 struct ocfs2_cached_dealloc_ctxt *dealloc,
3535 int index)
3537 int ret, i, subtree_index = 0, has_empty_extent = 0;
3538 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3539 struct ocfs2_extent_rec *left_rec;
3540 struct ocfs2_extent_rec *right_rec;
3541 struct ocfs2_extent_list *el = path_leaf_el(right_path);
3542 struct buffer_head *bh = path_leaf_bh(right_path);
3543 struct buffer_head *root_bh = NULL;
3544 struct ocfs2_path *left_path = NULL;
3545 struct ocfs2_extent_list *left_el;
3547 BUG_ON(index < 0);
3549 right_rec = &el->l_recs[index];
3550 if (index == 0) {
3551 /* we meet with a cross extent block merge. */
3552 ret = ocfs2_get_left_path(et, right_path, &left_path);
3553 if (ret) {
3554 mlog_errno(ret);
3555 return ret;
3558 left_el = path_leaf_el(left_path);
3559 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3560 le16_to_cpu(left_el->l_count));
3562 left_rec = &left_el->l_recs[
3563 le16_to_cpu(left_el->l_next_free_rec) - 1];
3564 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3565 le16_to_cpu(left_rec->e_leaf_clusters) !=
3566 le32_to_cpu(split_rec->e_cpos));
3568 subtree_index = ocfs2_find_subtree_root(et, left_path,
3569 right_path);
3571 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3572 handle->h_buffer_credits,
3573 left_path);
3574 if (ret) {
3575 mlog_errno(ret);
3576 goto out;
3579 root_bh = left_path->p_node[subtree_index].bh;
3580 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3582 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3583 subtree_index);
3584 if (ret) {
3585 mlog_errno(ret);
3586 goto out;
3589 for (i = subtree_index + 1;
3590 i < path_num_items(right_path); i++) {
3591 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3592 right_path, i);
3593 if (ret) {
3594 mlog_errno(ret);
3595 goto out;
3598 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3599 left_path, i);
3600 if (ret) {
3601 mlog_errno(ret);
3602 goto out;
3605 } else {
3606 left_rec = &el->l_recs[index - 1];
3607 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3608 has_empty_extent = 1;
3611 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3612 path_num_items(right_path) - 1);
3613 if (ret) {
3614 mlog_errno(ret);
3615 goto out;
3618 if (has_empty_extent && index == 1) {
3620 * The easy case - we can just plop the record right in.
3622 *left_rec = *split_rec;
3623 } else
3624 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3626 le32_add_cpu(&right_rec->e_cpos, split_clusters);
3627 le64_add_cpu(&right_rec->e_blkno,
3628 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3629 split_clusters));
3630 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3632 ocfs2_cleanup_merge(el, index);
3634 ocfs2_journal_dirty(handle, bh);
3635 if (left_path) {
3636 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3639 * In the situation that the right_rec is empty and the extent
3640 * block is empty also, ocfs2_complete_edge_insert can't handle
3641 * it and we need to delete the right extent block.
3643 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3644 le16_to_cpu(el->l_next_free_rec) == 1) {
3645 /* extend credit for ocfs2_remove_rightmost_path */
3646 ret = ocfs2_extend_rotate_transaction(handle, 0,
3647 handle->h_buffer_credits,
3648 right_path);
3649 if (ret) {
3650 mlog_errno(ret);
3651 goto out;
3654 ret = ocfs2_remove_rightmost_path(handle, et,
3655 right_path,
3656 dealloc);
3657 if (ret) {
3658 mlog_errno(ret);
3659 goto out;
3662 /* Now the rightmost extent block has been deleted.
3663 * So we use the new rightmost path.
3665 ocfs2_mv_path(right_path, left_path);
3666 left_path = NULL;
3667 } else
3668 ocfs2_complete_edge_insert(handle, left_path,
3669 right_path, subtree_index);
3671 out:
3672 ocfs2_free_path(left_path);
3673 return ret;
3676 static int ocfs2_try_to_merge_extent(handle_t *handle,
3677 struct ocfs2_extent_tree *et,
3678 struct ocfs2_path *path,
3679 int split_index,
3680 struct ocfs2_extent_rec *split_rec,
3681 struct ocfs2_cached_dealloc_ctxt *dealloc,
3682 struct ocfs2_merge_ctxt *ctxt)
3684 int ret = 0;
3685 struct ocfs2_extent_list *el = path_leaf_el(path);
3686 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3688 BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3690 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3691 /* extend credit for ocfs2_remove_rightmost_path */
3692 ret = ocfs2_extend_rotate_transaction(handle, 0,
3693 handle->h_buffer_credits,
3694 path);
3695 if (ret) {
3696 mlog_errno(ret);
3697 goto out;
3700 * The merge code will need to create an empty
3701 * extent to take the place of the newly
3702 * emptied slot. Remove any pre-existing empty
3703 * extents - having more than one in a leaf is
3704 * illegal.
3706 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3707 if (ret) {
3708 mlog_errno(ret);
3709 goto out;
3711 split_index--;
3712 rec = &el->l_recs[split_index];
3715 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3717 * Left-right contig implies this.
3719 BUG_ON(!ctxt->c_split_covers_rec);
3722 * Since the leftright insert always covers the entire
3723 * extent, this call will delete the insert record
3724 * entirely, resulting in an empty extent record added to
3725 * the extent block.
3727 * Since the adding of an empty extent shifts
3728 * everything back to the right, there's no need to
3729 * update split_index here.
3731 * When the split_index is zero, we need to merge it to the
3732 * prevoius extent block. It is more efficient and easier
3733 * if we do merge_right first and merge_left later.
3735 ret = ocfs2_merge_rec_right(path, handle, et, split_rec,
3736 split_index);
3737 if (ret) {
3738 mlog_errno(ret);
3739 goto out;
3743 * We can only get this from logic error above.
3745 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3747 /* extend credit for ocfs2_remove_rightmost_path */
3748 ret = ocfs2_extend_rotate_transaction(handle, 0,
3749 handle->h_buffer_credits,
3750 path);
3751 if (ret) {
3752 mlog_errno(ret);
3753 goto out;
3756 /* The merge left us with an empty extent, remove it. */
3757 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3758 if (ret) {
3759 mlog_errno(ret);
3760 goto out;
3763 rec = &el->l_recs[split_index];
3766 * Note that we don't pass split_rec here on purpose -
3767 * we've merged it into the rec already.
3769 ret = ocfs2_merge_rec_left(path, handle, et, rec,
3770 dealloc, split_index);
3772 if (ret) {
3773 mlog_errno(ret);
3774 goto out;
3777 /* extend credit for ocfs2_remove_rightmost_path */
3778 ret = ocfs2_extend_rotate_transaction(handle, 0,
3779 handle->h_buffer_credits,
3780 path);
3781 if (ret) {
3782 mlog_errno(ret);
3783 goto out;
3786 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3788 * Error from this last rotate is not critical, so
3789 * print but don't bubble it up.
3791 if (ret)
3792 mlog_errno(ret);
3793 ret = 0;
3794 } else {
3796 * Merge a record to the left or right.
3798 * 'contig_type' is relative to the existing record,
3799 * so for example, if we're "right contig", it's to
3800 * the record on the left (hence the left merge).
3802 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3803 ret = ocfs2_merge_rec_left(path, handle, et,
3804 split_rec, dealloc,
3805 split_index);
3806 if (ret) {
3807 mlog_errno(ret);
3808 goto out;
3810 } else {
3811 ret = ocfs2_merge_rec_right(path, handle,
3812 et, split_rec,
3813 split_index);
3814 if (ret) {
3815 mlog_errno(ret);
3816 goto out;
3820 if (ctxt->c_split_covers_rec) {
3821 /* extend credit for ocfs2_remove_rightmost_path */
3822 ret = ocfs2_extend_rotate_transaction(handle, 0,
3823 handle->h_buffer_credits,
3824 path);
3825 if (ret) {
3826 mlog_errno(ret);
3827 ret = 0;
3828 goto out;
3832 * The merge may have left an empty extent in
3833 * our leaf. Try to rotate it away.
3835 ret = ocfs2_rotate_tree_left(handle, et, path,
3836 dealloc);
3837 if (ret)
3838 mlog_errno(ret);
3839 ret = 0;
3843 out:
3844 return ret;
3847 static void ocfs2_subtract_from_rec(struct super_block *sb,
3848 enum ocfs2_split_type split,
3849 struct ocfs2_extent_rec *rec,
3850 struct ocfs2_extent_rec *split_rec)
3852 u64 len_blocks;
3854 len_blocks = ocfs2_clusters_to_blocks(sb,
3855 le16_to_cpu(split_rec->e_leaf_clusters));
3857 if (split == SPLIT_LEFT) {
3859 * Region is on the left edge of the existing
3860 * record.
3862 le32_add_cpu(&rec->e_cpos,
3863 le16_to_cpu(split_rec->e_leaf_clusters));
3864 le64_add_cpu(&rec->e_blkno, len_blocks);
3865 le16_add_cpu(&rec->e_leaf_clusters,
3866 -le16_to_cpu(split_rec->e_leaf_clusters));
3867 } else {
3869 * Region is on the right edge of the existing
3870 * record.
3872 le16_add_cpu(&rec->e_leaf_clusters,
3873 -le16_to_cpu(split_rec->e_leaf_clusters));
3878 * Do the final bits of extent record insertion at the target leaf
3879 * list. If this leaf is part of an allocation tree, it is assumed
3880 * that the tree above has been prepared.
3882 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et,
3883 struct ocfs2_extent_rec *insert_rec,
3884 struct ocfs2_extent_list *el,
3885 struct ocfs2_insert_type *insert)
3887 int i = insert->ins_contig_index;
3888 unsigned int range;
3889 struct ocfs2_extent_rec *rec;
3891 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3893 if (insert->ins_split != SPLIT_NONE) {
3894 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3895 BUG_ON(i == -1);
3896 rec = &el->l_recs[i];
3897 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
3898 insert->ins_split, rec,
3899 insert_rec);
3900 goto rotate;
3904 * Contiguous insert - either left or right.
3906 if (insert->ins_contig != CONTIG_NONE) {
3907 rec = &el->l_recs[i];
3908 if (insert->ins_contig == CONTIG_LEFT) {
3909 rec->e_blkno = insert_rec->e_blkno;
3910 rec->e_cpos = insert_rec->e_cpos;
3912 le16_add_cpu(&rec->e_leaf_clusters,
3913 le16_to_cpu(insert_rec->e_leaf_clusters));
3914 return;
3918 * Handle insert into an empty leaf.
3920 if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3921 ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3922 ocfs2_is_empty_extent(&el->l_recs[0]))) {
3923 el->l_recs[0] = *insert_rec;
3924 el->l_next_free_rec = cpu_to_le16(1);
3925 return;
3929 * Appending insert.
3931 if (insert->ins_appending == APPEND_TAIL) {
3932 i = le16_to_cpu(el->l_next_free_rec) - 1;
3933 rec = &el->l_recs[i];
3934 range = le32_to_cpu(rec->e_cpos)
3935 + le16_to_cpu(rec->e_leaf_clusters);
3936 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3938 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3939 le16_to_cpu(el->l_count),
3940 "owner %llu, depth %u, count %u, next free %u, "
3941 "rec.cpos %u, rec.clusters %u, "
3942 "insert.cpos %u, insert.clusters %u\n",
3943 ocfs2_metadata_cache_owner(et->et_ci),
3944 le16_to_cpu(el->l_tree_depth),
3945 le16_to_cpu(el->l_count),
3946 le16_to_cpu(el->l_next_free_rec),
3947 le32_to_cpu(el->l_recs[i].e_cpos),
3948 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3949 le32_to_cpu(insert_rec->e_cpos),
3950 le16_to_cpu(insert_rec->e_leaf_clusters));
3951 i++;
3952 el->l_recs[i] = *insert_rec;
3953 le16_add_cpu(&el->l_next_free_rec, 1);
3954 return;
3957 rotate:
3959 * Ok, we have to rotate.
3961 * At this point, it is safe to assume that inserting into an
3962 * empty leaf and appending to a leaf have both been handled
3963 * above.
3965 * This leaf needs to have space, either by the empty 1st
3966 * extent record, or by virtue of an l_next_rec < l_count.
3968 ocfs2_rotate_leaf(el, insert_rec);
3971 static void ocfs2_adjust_rightmost_records(handle_t *handle,
3972 struct ocfs2_extent_tree *et,
3973 struct ocfs2_path *path,
3974 struct ocfs2_extent_rec *insert_rec)
3976 int i, next_free;
3977 struct buffer_head *bh;
3978 struct ocfs2_extent_list *el;
3979 struct ocfs2_extent_rec *rec;
3982 * Update everything except the leaf block.
3984 for (i = 0; i < path->p_tree_depth; i++) {
3985 bh = path->p_node[i].bh;
3986 el = path->p_node[i].el;
3988 next_free = le16_to_cpu(el->l_next_free_rec);
3989 if (next_free == 0) {
3990 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3991 "Owner %llu has a bad extent list\n",
3992 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
3993 return;
3996 rec = &el->l_recs[next_free - 1];
3998 rec->e_int_clusters = insert_rec->e_cpos;
3999 le32_add_cpu(&rec->e_int_clusters,
4000 le16_to_cpu(insert_rec->e_leaf_clusters));
4001 le32_add_cpu(&rec->e_int_clusters,
4002 -le32_to_cpu(rec->e_cpos));
4004 ocfs2_journal_dirty(handle, bh);
4008 static int ocfs2_append_rec_to_path(handle_t *handle,
4009 struct ocfs2_extent_tree *et,
4010 struct ocfs2_extent_rec *insert_rec,
4011 struct ocfs2_path *right_path,
4012 struct ocfs2_path **ret_left_path)
4014 int ret, next_free;
4015 struct ocfs2_extent_list *el;
4016 struct ocfs2_path *left_path = NULL;
4018 *ret_left_path = NULL;
4021 * This shouldn't happen for non-trees. The extent rec cluster
4022 * count manipulation below only works for interior nodes.
4024 BUG_ON(right_path->p_tree_depth == 0);
4027 * If our appending insert is at the leftmost edge of a leaf,
4028 * then we might need to update the rightmost records of the
4029 * neighboring path.
4031 el = path_leaf_el(right_path);
4032 next_free = le16_to_cpu(el->l_next_free_rec);
4033 if (next_free == 0 ||
4034 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
4035 u32 left_cpos;
4037 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
4038 right_path, &left_cpos);
4039 if (ret) {
4040 mlog_errno(ret);
4041 goto out;
4044 trace_ocfs2_append_rec_to_path(
4045 (unsigned long long)
4046 ocfs2_metadata_cache_owner(et->et_ci),
4047 le32_to_cpu(insert_rec->e_cpos),
4048 left_cpos);
4051 * No need to worry if the append is already in the
4052 * leftmost leaf.
4054 if (left_cpos) {
4055 left_path = ocfs2_new_path_from_path(right_path);
4056 if (!left_path) {
4057 ret = -ENOMEM;
4058 mlog_errno(ret);
4059 goto out;
4062 ret = ocfs2_find_path(et->et_ci, left_path,
4063 left_cpos);
4064 if (ret) {
4065 mlog_errno(ret);
4066 goto out;
4070 * ocfs2_insert_path() will pass the left_path to the
4071 * journal for us.
4076 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4077 if (ret) {
4078 mlog_errno(ret);
4079 goto out;
4082 ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec);
4084 *ret_left_path = left_path;
4085 ret = 0;
4086 out:
4087 if (ret != 0)
4088 ocfs2_free_path(left_path);
4090 return ret;
4093 static void ocfs2_split_record(struct ocfs2_extent_tree *et,
4094 struct ocfs2_path *left_path,
4095 struct ocfs2_path *right_path,
4096 struct ocfs2_extent_rec *split_rec,
4097 enum ocfs2_split_type split)
4099 int index;
4100 u32 cpos = le32_to_cpu(split_rec->e_cpos);
4101 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4102 struct ocfs2_extent_rec *rec, *tmprec;
4104 right_el = path_leaf_el(right_path);
4105 if (left_path)
4106 left_el = path_leaf_el(left_path);
4108 el = right_el;
4109 insert_el = right_el;
4110 index = ocfs2_search_extent_list(el, cpos);
4111 if (index != -1) {
4112 if (index == 0 && left_path) {
4113 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4116 * This typically means that the record
4117 * started in the left path but moved to the
4118 * right as a result of rotation. We either
4119 * move the existing record to the left, or we
4120 * do the later insert there.
4122 * In this case, the left path should always
4123 * exist as the rotate code will have passed
4124 * it back for a post-insert update.
4127 if (split == SPLIT_LEFT) {
4129 * It's a left split. Since we know
4130 * that the rotate code gave us an
4131 * empty extent in the left path, we
4132 * can just do the insert there.
4134 insert_el = left_el;
4135 } else {
4137 * Right split - we have to move the
4138 * existing record over to the left
4139 * leaf. The insert will be into the
4140 * newly created empty extent in the
4141 * right leaf.
4143 tmprec = &right_el->l_recs[index];
4144 ocfs2_rotate_leaf(left_el, tmprec);
4145 el = left_el;
4147 memset(tmprec, 0, sizeof(*tmprec));
4148 index = ocfs2_search_extent_list(left_el, cpos);
4149 BUG_ON(index == -1);
4152 } else {
4153 BUG_ON(!left_path);
4154 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4156 * Left path is easy - we can just allow the insert to
4157 * happen.
4159 el = left_el;
4160 insert_el = left_el;
4161 index = ocfs2_search_extent_list(el, cpos);
4162 BUG_ON(index == -1);
4165 rec = &el->l_recs[index];
4166 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4167 split, rec, split_rec);
4168 ocfs2_rotate_leaf(insert_el, split_rec);
4172 * This function only does inserts on an allocation b-tree. For tree
4173 * depth = 0, ocfs2_insert_at_leaf() is called directly.
4175 * right_path is the path we want to do the actual insert
4176 * in. left_path should only be passed in if we need to update that
4177 * portion of the tree after an edge insert.
4179 static int ocfs2_insert_path(handle_t *handle,
4180 struct ocfs2_extent_tree *et,
4181 struct ocfs2_path *left_path,
4182 struct ocfs2_path *right_path,
4183 struct ocfs2_extent_rec *insert_rec,
4184 struct ocfs2_insert_type *insert)
4186 int ret, subtree_index;
4187 struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4189 if (left_path) {
4191 * There's a chance that left_path got passed back to
4192 * us without being accounted for in the
4193 * journal. Extend our transaction here to be sure we
4194 * can change those blocks.
4196 ret = ocfs2_extend_trans(handle, left_path->p_tree_depth);
4197 if (ret < 0) {
4198 mlog_errno(ret);
4199 goto out;
4202 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4203 if (ret < 0) {
4204 mlog_errno(ret);
4205 goto out;
4210 * Pass both paths to the journal. The majority of inserts
4211 * will be touching all components anyway.
4213 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4214 if (ret < 0) {
4215 mlog_errno(ret);
4216 goto out;
4219 if (insert->ins_split != SPLIT_NONE) {
4221 * We could call ocfs2_insert_at_leaf() for some types
4222 * of splits, but it's easier to just let one separate
4223 * function sort it all out.
4225 ocfs2_split_record(et, left_path, right_path,
4226 insert_rec, insert->ins_split);
4229 * Split might have modified either leaf and we don't
4230 * have a guarantee that the later edge insert will
4231 * dirty this for us.
4233 if (left_path)
4234 ocfs2_journal_dirty(handle,
4235 path_leaf_bh(left_path));
4236 } else
4237 ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path),
4238 insert);
4240 ocfs2_journal_dirty(handle, leaf_bh);
4242 if (left_path) {
4244 * The rotate code has indicated that we need to fix
4245 * up portions of the tree after the insert.
4247 * XXX: Should we extend the transaction here?
4249 subtree_index = ocfs2_find_subtree_root(et, left_path,
4250 right_path);
4251 ocfs2_complete_edge_insert(handle, left_path, right_path,
4252 subtree_index);
4255 ret = 0;
4256 out:
4257 return ret;
4260 static int ocfs2_do_insert_extent(handle_t *handle,
4261 struct ocfs2_extent_tree *et,
4262 struct ocfs2_extent_rec *insert_rec,
4263 struct ocfs2_insert_type *type)
4265 int ret, rotate = 0;
4266 u32 cpos;
4267 struct ocfs2_path *right_path = NULL;
4268 struct ocfs2_path *left_path = NULL;
4269 struct ocfs2_extent_list *el;
4271 el = et->et_root_el;
4273 ret = ocfs2_et_root_journal_access(handle, et,
4274 OCFS2_JOURNAL_ACCESS_WRITE);
4275 if (ret) {
4276 mlog_errno(ret);
4277 goto out;
4280 if (le16_to_cpu(el->l_tree_depth) == 0) {
4281 ocfs2_insert_at_leaf(et, insert_rec, el, type);
4282 goto out_update_clusters;
4285 right_path = ocfs2_new_path_from_et(et);
4286 if (!right_path) {
4287 ret = -ENOMEM;
4288 mlog_errno(ret);
4289 goto out;
4293 * Determine the path to start with. Rotations need the
4294 * rightmost path, everything else can go directly to the
4295 * target leaf.
4297 cpos = le32_to_cpu(insert_rec->e_cpos);
4298 if (type->ins_appending == APPEND_NONE &&
4299 type->ins_contig == CONTIG_NONE) {
4300 rotate = 1;
4301 cpos = UINT_MAX;
4304 ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4305 if (ret) {
4306 mlog_errno(ret);
4307 goto out;
4311 * Rotations and appends need special treatment - they modify
4312 * parts of the tree's above them.
4314 * Both might pass back a path immediate to the left of the
4315 * one being inserted to. This will be cause
4316 * ocfs2_insert_path() to modify the rightmost records of
4317 * left_path to account for an edge insert.
4319 * XXX: When modifying this code, keep in mind that an insert
4320 * can wind up skipping both of these two special cases...
4322 if (rotate) {
4323 ret = ocfs2_rotate_tree_right(handle, et, type->ins_split,
4324 le32_to_cpu(insert_rec->e_cpos),
4325 right_path, &left_path);
4326 if (ret) {
4327 mlog_errno(ret);
4328 goto out;
4332 * ocfs2_rotate_tree_right() might have extended the
4333 * transaction without re-journaling our tree root.
4335 ret = ocfs2_et_root_journal_access(handle, et,
4336 OCFS2_JOURNAL_ACCESS_WRITE);
4337 if (ret) {
4338 mlog_errno(ret);
4339 goto out;
4341 } else if (type->ins_appending == APPEND_TAIL
4342 && type->ins_contig != CONTIG_LEFT) {
4343 ret = ocfs2_append_rec_to_path(handle, et, insert_rec,
4344 right_path, &left_path);
4345 if (ret) {
4346 mlog_errno(ret);
4347 goto out;
4351 ret = ocfs2_insert_path(handle, et, left_path, right_path,
4352 insert_rec, type);
4353 if (ret) {
4354 mlog_errno(ret);
4355 goto out;
4358 out_update_clusters:
4359 if (type->ins_split == SPLIT_NONE)
4360 ocfs2_et_update_clusters(et,
4361 le16_to_cpu(insert_rec->e_leaf_clusters));
4363 ocfs2_journal_dirty(handle, et->et_root_bh);
4365 out:
4366 ocfs2_free_path(left_path);
4367 ocfs2_free_path(right_path);
4369 return ret;
4372 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et,
4373 struct ocfs2_path *path,
4374 struct ocfs2_extent_list *el, int index,
4375 struct ocfs2_extent_rec *split_rec,
4376 struct ocfs2_merge_ctxt *ctxt)
4378 int status = 0;
4379 enum ocfs2_contig_type ret = CONTIG_NONE;
4380 u32 left_cpos, right_cpos;
4381 struct ocfs2_extent_rec *rec = NULL;
4382 struct ocfs2_extent_list *new_el;
4383 struct ocfs2_path *left_path = NULL, *right_path = NULL;
4384 struct buffer_head *bh;
4385 struct ocfs2_extent_block *eb;
4386 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
4388 if (index > 0) {
4389 rec = &el->l_recs[index - 1];
4390 } else if (path->p_tree_depth > 0) {
4391 status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
4392 if (status)
4393 goto exit;
4395 if (left_cpos != 0) {
4396 left_path = ocfs2_new_path_from_path(path);
4397 if (!left_path) {
4398 status = -ENOMEM;
4399 mlog_errno(status);
4400 goto exit;
4403 status = ocfs2_find_path(et->et_ci, left_path,
4404 left_cpos);
4405 if (status)
4406 goto free_left_path;
4408 new_el = path_leaf_el(left_path);
4410 if (le16_to_cpu(new_el->l_next_free_rec) !=
4411 le16_to_cpu(new_el->l_count)) {
4412 bh = path_leaf_bh(left_path);
4413 eb = (struct ocfs2_extent_block *)bh->b_data;
4414 ocfs2_error(sb,
4415 "Extent block #%llu has an invalid l_next_free_rec of %d. It should have matched the l_count of %d\n",
4416 (unsigned long long)le64_to_cpu(eb->h_blkno),
4417 le16_to_cpu(new_el->l_next_free_rec),
4418 le16_to_cpu(new_el->l_count));
4419 status = -EINVAL;
4420 goto free_left_path;
4422 rec = &new_el->l_recs[
4423 le16_to_cpu(new_el->l_next_free_rec) - 1];
4428 * We're careful to check for an empty extent record here -
4429 * the merge code will know what to do if it sees one.
4431 if (rec) {
4432 if (index == 1 && ocfs2_is_empty_extent(rec)) {
4433 if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4434 ret = CONTIG_RIGHT;
4435 } else {
4436 ret = ocfs2_et_extent_contig(et, rec, split_rec);
4440 rec = NULL;
4441 if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4442 rec = &el->l_recs[index + 1];
4443 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4444 path->p_tree_depth > 0) {
4445 status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
4446 if (status)
4447 goto free_left_path;
4449 if (right_cpos == 0)
4450 goto free_left_path;
4452 right_path = ocfs2_new_path_from_path(path);
4453 if (!right_path) {
4454 status = -ENOMEM;
4455 mlog_errno(status);
4456 goto free_left_path;
4459 status = ocfs2_find_path(et->et_ci, right_path, right_cpos);
4460 if (status)
4461 goto free_right_path;
4463 new_el = path_leaf_el(right_path);
4464 rec = &new_el->l_recs[0];
4465 if (ocfs2_is_empty_extent(rec)) {
4466 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4467 bh = path_leaf_bh(right_path);
4468 eb = (struct ocfs2_extent_block *)bh->b_data;
4469 ocfs2_error(sb,
4470 "Extent block #%llu has an invalid l_next_free_rec of %d\n",
4471 (unsigned long long)le64_to_cpu(eb->h_blkno),
4472 le16_to_cpu(new_el->l_next_free_rec));
4473 status = -EINVAL;
4474 goto free_right_path;
4476 rec = &new_el->l_recs[1];
4480 if (rec) {
4481 enum ocfs2_contig_type contig_type;
4483 contig_type = ocfs2_et_extent_contig(et, rec, split_rec);
4485 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4486 ret = CONTIG_LEFTRIGHT;
4487 else if (ret == CONTIG_NONE)
4488 ret = contig_type;
4491 free_right_path:
4492 ocfs2_free_path(right_path);
4493 free_left_path:
4494 ocfs2_free_path(left_path);
4495 exit:
4496 if (status == 0)
4497 ctxt->c_contig_type = ret;
4499 return status;
4502 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et,
4503 struct ocfs2_insert_type *insert,
4504 struct ocfs2_extent_list *el,
4505 struct ocfs2_extent_rec *insert_rec)
4507 int i;
4508 enum ocfs2_contig_type contig_type = CONTIG_NONE;
4510 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4512 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4513 contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i],
4514 insert_rec);
4515 if (contig_type != CONTIG_NONE) {
4516 insert->ins_contig_index = i;
4517 break;
4520 insert->ins_contig = contig_type;
4522 if (insert->ins_contig != CONTIG_NONE) {
4523 struct ocfs2_extent_rec *rec =
4524 &el->l_recs[insert->ins_contig_index];
4525 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4526 le16_to_cpu(insert_rec->e_leaf_clusters);
4529 * Caller might want us to limit the size of extents, don't
4530 * calculate contiguousness if we might exceed that limit.
4532 if (et->et_max_leaf_clusters &&
4533 (len > et->et_max_leaf_clusters))
4534 insert->ins_contig = CONTIG_NONE;
4539 * This should only be called against the righmost leaf extent list.
4541 * ocfs2_figure_appending_type() will figure out whether we'll have to
4542 * insert at the tail of the rightmost leaf.
4544 * This should also work against the root extent list for tree's with 0
4545 * depth. If we consider the root extent list to be the rightmost leaf node
4546 * then the logic here makes sense.
4548 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4549 struct ocfs2_extent_list *el,
4550 struct ocfs2_extent_rec *insert_rec)
4552 int i;
4553 u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4554 struct ocfs2_extent_rec *rec;
4556 insert->ins_appending = APPEND_NONE;
4558 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4560 if (!el->l_next_free_rec)
4561 goto set_tail_append;
4563 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4564 /* Were all records empty? */
4565 if (le16_to_cpu(el->l_next_free_rec) == 1)
4566 goto set_tail_append;
4569 i = le16_to_cpu(el->l_next_free_rec) - 1;
4570 rec = &el->l_recs[i];
4572 if (cpos >=
4573 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4574 goto set_tail_append;
4576 return;
4578 set_tail_append:
4579 insert->ins_appending = APPEND_TAIL;
4583 * Helper function called at the beginning of an insert.
4585 * This computes a few things that are commonly used in the process of
4586 * inserting into the btree:
4587 * - Whether the new extent is contiguous with an existing one.
4588 * - The current tree depth.
4589 * - Whether the insert is an appending one.
4590 * - The total # of free records in the tree.
4592 * All of the information is stored on the ocfs2_insert_type
4593 * structure.
4595 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et,
4596 struct buffer_head **last_eb_bh,
4597 struct ocfs2_extent_rec *insert_rec,
4598 int *free_records,
4599 struct ocfs2_insert_type *insert)
4601 int ret;
4602 struct ocfs2_extent_block *eb;
4603 struct ocfs2_extent_list *el;
4604 struct ocfs2_path *path = NULL;
4605 struct buffer_head *bh = NULL;
4607 insert->ins_split = SPLIT_NONE;
4609 el = et->et_root_el;
4610 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4612 if (el->l_tree_depth) {
4614 * If we have tree depth, we read in the
4615 * rightmost extent block ahead of time as
4616 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4617 * may want it later.
4619 ret = ocfs2_read_extent_block(et->et_ci,
4620 ocfs2_et_get_last_eb_blk(et),
4621 &bh);
4622 if (ret) {
4623 mlog_errno(ret);
4624 goto out;
4626 eb = (struct ocfs2_extent_block *) bh->b_data;
4627 el = &eb->h_list;
4631 * Unless we have a contiguous insert, we'll need to know if
4632 * there is room left in our allocation tree for another
4633 * extent record.
4635 * XXX: This test is simplistic, we can search for empty
4636 * extent records too.
4638 *free_records = le16_to_cpu(el->l_count) -
4639 le16_to_cpu(el->l_next_free_rec);
4641 if (!insert->ins_tree_depth) {
4642 ocfs2_figure_contig_type(et, insert, el, insert_rec);
4643 ocfs2_figure_appending_type(insert, el, insert_rec);
4644 return 0;
4647 path = ocfs2_new_path_from_et(et);
4648 if (!path) {
4649 ret = -ENOMEM;
4650 mlog_errno(ret);
4651 goto out;
4655 * In the case that we're inserting past what the tree
4656 * currently accounts for, ocfs2_find_path() will return for
4657 * us the rightmost tree path. This is accounted for below in
4658 * the appending code.
4660 ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4661 if (ret) {
4662 mlog_errno(ret);
4663 goto out;
4666 el = path_leaf_el(path);
4669 * Now that we have the path, there's two things we want to determine:
4670 * 1) Contiguousness (also set contig_index if this is so)
4672 * 2) Are we doing an append? We can trivially break this up
4673 * into two types of appends: simple record append, or a
4674 * rotate inside the tail leaf.
4676 ocfs2_figure_contig_type(et, insert, el, insert_rec);
4679 * The insert code isn't quite ready to deal with all cases of
4680 * left contiguousness. Specifically, if it's an insert into
4681 * the 1st record in a leaf, it will require the adjustment of
4682 * cluster count on the last record of the path directly to it's
4683 * left. For now, just catch that case and fool the layers
4684 * above us. This works just fine for tree_depth == 0, which
4685 * is why we allow that above.
4687 if (insert->ins_contig == CONTIG_LEFT &&
4688 insert->ins_contig_index == 0)
4689 insert->ins_contig = CONTIG_NONE;
4692 * Ok, so we can simply compare against last_eb to figure out
4693 * whether the path doesn't exist. This will only happen in
4694 * the case that we're doing a tail append, so maybe we can
4695 * take advantage of that information somehow.
4697 if (ocfs2_et_get_last_eb_blk(et) ==
4698 path_leaf_bh(path)->b_blocknr) {
4700 * Ok, ocfs2_find_path() returned us the rightmost
4701 * tree path. This might be an appending insert. There are
4702 * two cases:
4703 * 1) We're doing a true append at the tail:
4704 * -This might even be off the end of the leaf
4705 * 2) We're "appending" by rotating in the tail
4707 ocfs2_figure_appending_type(insert, el, insert_rec);
4710 out:
4711 ocfs2_free_path(path);
4713 if (ret == 0)
4714 *last_eb_bh = bh;
4715 else
4716 brelse(bh);
4717 return ret;
4721 * Insert an extent into a btree.
4723 * The caller needs to update the owning btree's cluster count.
4725 int ocfs2_insert_extent(handle_t *handle,
4726 struct ocfs2_extent_tree *et,
4727 u32 cpos,
4728 u64 start_blk,
4729 u32 new_clusters,
4730 u8 flags,
4731 struct ocfs2_alloc_context *meta_ac)
4733 int status;
4734 int uninitialized_var(free_records);
4735 struct buffer_head *last_eb_bh = NULL;
4736 struct ocfs2_insert_type insert = {0, };
4737 struct ocfs2_extent_rec rec;
4739 trace_ocfs2_insert_extent_start(
4740 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4741 cpos, new_clusters);
4743 memset(&rec, 0, sizeof(rec));
4744 rec.e_cpos = cpu_to_le32(cpos);
4745 rec.e_blkno = cpu_to_le64(start_blk);
4746 rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4747 rec.e_flags = flags;
4748 status = ocfs2_et_insert_check(et, &rec);
4749 if (status) {
4750 mlog_errno(status);
4751 goto bail;
4754 status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec,
4755 &free_records, &insert);
4756 if (status < 0) {
4757 mlog_errno(status);
4758 goto bail;
4761 trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig,
4762 insert.ins_contig_index, free_records,
4763 insert.ins_tree_depth);
4765 if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4766 status = ocfs2_grow_tree(handle, et,
4767 &insert.ins_tree_depth, &last_eb_bh,
4768 meta_ac);
4769 if (status) {
4770 mlog_errno(status);
4771 goto bail;
4775 /* Finally, we can add clusters. This might rotate the tree for us. */
4776 status = ocfs2_do_insert_extent(handle, et, &rec, &insert);
4777 if (status < 0)
4778 mlog_errno(status);
4779 else
4780 ocfs2_et_extent_map_insert(et, &rec);
4782 bail:
4783 brelse(last_eb_bh);
4785 return status;
4789 * Allcate and add clusters into the extent b-tree.
4790 * The new clusters(clusters_to_add) will be inserted at logical_offset.
4791 * The extent b-tree's root is specified by et, and
4792 * it is not limited to the file storage. Any extent tree can use this
4793 * function if it implements the proper ocfs2_extent_tree.
4795 int ocfs2_add_clusters_in_btree(handle_t *handle,
4796 struct ocfs2_extent_tree *et,
4797 u32 *logical_offset,
4798 u32 clusters_to_add,
4799 int mark_unwritten,
4800 struct ocfs2_alloc_context *data_ac,
4801 struct ocfs2_alloc_context *meta_ac,
4802 enum ocfs2_alloc_restarted *reason_ret)
4804 int status = 0, err = 0;
4805 int need_free = 0;
4806 int free_extents;
4807 enum ocfs2_alloc_restarted reason = RESTART_NONE;
4808 u32 bit_off, num_bits;
4809 u64 block;
4810 u8 flags = 0;
4811 struct ocfs2_super *osb =
4812 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
4814 BUG_ON(!clusters_to_add);
4816 if (mark_unwritten)
4817 flags = OCFS2_EXT_UNWRITTEN;
4819 free_extents = ocfs2_num_free_extents(et);
4820 if (free_extents < 0) {
4821 status = free_extents;
4822 mlog_errno(status);
4823 goto leave;
4826 /* there are two cases which could cause us to EAGAIN in the
4827 * we-need-more-metadata case:
4828 * 1) we haven't reserved *any*
4829 * 2) we are so fragmented, we've needed to add metadata too
4830 * many times. */
4831 if (!free_extents && !meta_ac) {
4832 err = -1;
4833 status = -EAGAIN;
4834 reason = RESTART_META;
4835 goto leave;
4836 } else if ((!free_extents)
4837 && (ocfs2_alloc_context_bits_left(meta_ac)
4838 < ocfs2_extend_meta_needed(et->et_root_el))) {
4839 err = -2;
4840 status = -EAGAIN;
4841 reason = RESTART_META;
4842 goto leave;
4845 status = __ocfs2_claim_clusters(handle, data_ac, 1,
4846 clusters_to_add, &bit_off, &num_bits);
4847 if (status < 0) {
4848 if (status != -ENOSPC)
4849 mlog_errno(status);
4850 goto leave;
4853 BUG_ON(num_bits > clusters_to_add);
4855 /* reserve our write early -- insert_extent may update the tree root */
4856 status = ocfs2_et_root_journal_access(handle, et,
4857 OCFS2_JOURNAL_ACCESS_WRITE);
4858 if (status < 0) {
4859 mlog_errno(status);
4860 need_free = 1;
4861 goto bail;
4864 block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4865 trace_ocfs2_add_clusters_in_btree(
4866 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4867 bit_off, num_bits);
4868 status = ocfs2_insert_extent(handle, et, *logical_offset, block,
4869 num_bits, flags, meta_ac);
4870 if (status < 0) {
4871 mlog_errno(status);
4872 need_free = 1;
4873 goto bail;
4876 ocfs2_journal_dirty(handle, et->et_root_bh);
4878 clusters_to_add -= num_bits;
4879 *logical_offset += num_bits;
4881 if (clusters_to_add) {
4882 err = clusters_to_add;
4883 status = -EAGAIN;
4884 reason = RESTART_TRANS;
4887 bail:
4888 if (need_free) {
4889 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
4890 ocfs2_free_local_alloc_bits(osb, handle, data_ac,
4891 bit_off, num_bits);
4892 else
4893 ocfs2_free_clusters(handle,
4894 data_ac->ac_inode,
4895 data_ac->ac_bh,
4896 ocfs2_clusters_to_blocks(osb->sb, bit_off),
4897 num_bits);
4900 leave:
4901 if (reason_ret)
4902 *reason_ret = reason;
4903 trace_ocfs2_add_clusters_in_btree_ret(status, reason, err);
4904 return status;
4907 static void ocfs2_make_right_split_rec(struct super_block *sb,
4908 struct ocfs2_extent_rec *split_rec,
4909 u32 cpos,
4910 struct ocfs2_extent_rec *rec)
4912 u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4913 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4915 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4917 split_rec->e_cpos = cpu_to_le32(cpos);
4918 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4920 split_rec->e_blkno = rec->e_blkno;
4921 le64_add_cpu(&split_rec->e_blkno,
4922 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4924 split_rec->e_flags = rec->e_flags;
4927 static int ocfs2_split_and_insert(handle_t *handle,
4928 struct ocfs2_extent_tree *et,
4929 struct ocfs2_path *path,
4930 struct buffer_head **last_eb_bh,
4931 int split_index,
4932 struct ocfs2_extent_rec *orig_split_rec,
4933 struct ocfs2_alloc_context *meta_ac)
4935 int ret = 0, depth;
4936 unsigned int insert_range, rec_range, do_leftright = 0;
4937 struct ocfs2_extent_rec tmprec;
4938 struct ocfs2_extent_list *rightmost_el;
4939 struct ocfs2_extent_rec rec;
4940 struct ocfs2_extent_rec split_rec = *orig_split_rec;
4941 struct ocfs2_insert_type insert;
4942 struct ocfs2_extent_block *eb;
4944 leftright:
4946 * Store a copy of the record on the stack - it might move
4947 * around as the tree is manipulated below.
4949 rec = path_leaf_el(path)->l_recs[split_index];
4951 rightmost_el = et->et_root_el;
4953 depth = le16_to_cpu(rightmost_el->l_tree_depth);
4954 if (depth) {
4955 BUG_ON(!(*last_eb_bh));
4956 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4957 rightmost_el = &eb->h_list;
4960 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4961 le16_to_cpu(rightmost_el->l_count)) {
4962 ret = ocfs2_grow_tree(handle, et,
4963 &depth, last_eb_bh, meta_ac);
4964 if (ret) {
4965 mlog_errno(ret);
4966 goto out;
4970 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4971 insert.ins_appending = APPEND_NONE;
4972 insert.ins_contig = CONTIG_NONE;
4973 insert.ins_tree_depth = depth;
4975 insert_range = le32_to_cpu(split_rec.e_cpos) +
4976 le16_to_cpu(split_rec.e_leaf_clusters);
4977 rec_range = le32_to_cpu(rec.e_cpos) +
4978 le16_to_cpu(rec.e_leaf_clusters);
4980 if (split_rec.e_cpos == rec.e_cpos) {
4981 insert.ins_split = SPLIT_LEFT;
4982 } else if (insert_range == rec_range) {
4983 insert.ins_split = SPLIT_RIGHT;
4984 } else {
4986 * Left/right split. We fake this as a right split
4987 * first and then make a second pass as a left split.
4989 insert.ins_split = SPLIT_RIGHT;
4991 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4992 &tmprec, insert_range, &rec);
4994 split_rec = tmprec;
4996 BUG_ON(do_leftright);
4997 do_leftright = 1;
5000 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
5001 if (ret) {
5002 mlog_errno(ret);
5003 goto out;
5006 if (do_leftright == 1) {
5007 u32 cpos;
5008 struct ocfs2_extent_list *el;
5010 do_leftright++;
5011 split_rec = *orig_split_rec;
5013 ocfs2_reinit_path(path, 1);
5015 cpos = le32_to_cpu(split_rec.e_cpos);
5016 ret = ocfs2_find_path(et->et_ci, path, cpos);
5017 if (ret) {
5018 mlog_errno(ret);
5019 goto out;
5022 el = path_leaf_el(path);
5023 split_index = ocfs2_search_extent_list(el, cpos);
5024 if (split_index == -1) {
5025 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5026 "Owner %llu has an extent at cpos %u which can no longer be found\n",
5027 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5028 cpos);
5029 ret = -EROFS;
5030 goto out;
5032 goto leftright;
5034 out:
5036 return ret;
5039 static int ocfs2_replace_extent_rec(handle_t *handle,
5040 struct ocfs2_extent_tree *et,
5041 struct ocfs2_path *path,
5042 struct ocfs2_extent_list *el,
5043 int split_index,
5044 struct ocfs2_extent_rec *split_rec)
5046 int ret;
5048 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
5049 path_num_items(path) - 1);
5050 if (ret) {
5051 mlog_errno(ret);
5052 goto out;
5055 el->l_recs[split_index] = *split_rec;
5057 ocfs2_journal_dirty(handle, path_leaf_bh(path));
5058 out:
5059 return ret;
5063 * Split part or all of the extent record at split_index in the leaf
5064 * pointed to by path. Merge with the contiguous extent record if needed.
5066 * Care is taken to handle contiguousness so as to not grow the tree.
5068 * meta_ac is not strictly necessary - we only truly need it if growth
5069 * of the tree is required. All other cases will degrade into a less
5070 * optimal tree layout.
5072 * last_eb_bh should be the rightmost leaf block for any extent
5073 * btree. Since a split may grow the tree or a merge might shrink it,
5074 * the caller cannot trust the contents of that buffer after this call.
5076 * This code is optimized for readability - several passes might be
5077 * made over certain portions of the tree. All of those blocks will
5078 * have been brought into cache (and pinned via the journal), so the
5079 * extra overhead is not expressed in terms of disk reads.
5081 int ocfs2_split_extent(handle_t *handle,
5082 struct ocfs2_extent_tree *et,
5083 struct ocfs2_path *path,
5084 int split_index,
5085 struct ocfs2_extent_rec *split_rec,
5086 struct ocfs2_alloc_context *meta_ac,
5087 struct ocfs2_cached_dealloc_ctxt *dealloc)
5089 int ret = 0;
5090 struct ocfs2_extent_list *el = path_leaf_el(path);
5091 struct buffer_head *last_eb_bh = NULL;
5092 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5093 struct ocfs2_merge_ctxt ctxt;
5095 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5096 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5097 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5098 ret = -EIO;
5099 mlog_errno(ret);
5100 goto out;
5103 ret = ocfs2_figure_merge_contig_type(et, path, el,
5104 split_index,
5105 split_rec,
5106 &ctxt);
5107 if (ret) {
5108 mlog_errno(ret);
5109 goto out;
5113 * The core merge / split code wants to know how much room is
5114 * left in this allocation tree, so we pass the
5115 * rightmost extent list.
5117 if (path->p_tree_depth) {
5118 struct ocfs2_extent_block *eb;
5120 ret = ocfs2_read_extent_block(et->et_ci,
5121 ocfs2_et_get_last_eb_blk(et),
5122 &last_eb_bh);
5123 if (ret) {
5124 mlog_errno(ret);
5125 goto out;
5128 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5131 if (rec->e_cpos == split_rec->e_cpos &&
5132 rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5133 ctxt.c_split_covers_rec = 1;
5134 else
5135 ctxt.c_split_covers_rec = 0;
5137 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5139 trace_ocfs2_split_extent(split_index, ctxt.c_contig_type,
5140 ctxt.c_has_empty_extent,
5141 ctxt.c_split_covers_rec);
5143 if (ctxt.c_contig_type == CONTIG_NONE) {
5144 if (ctxt.c_split_covers_rec)
5145 ret = ocfs2_replace_extent_rec(handle, et, path, el,
5146 split_index, split_rec);
5147 else
5148 ret = ocfs2_split_and_insert(handle, et, path,
5149 &last_eb_bh, split_index,
5150 split_rec, meta_ac);
5151 if (ret)
5152 mlog_errno(ret);
5153 } else {
5154 ret = ocfs2_try_to_merge_extent(handle, et, path,
5155 split_index, split_rec,
5156 dealloc, &ctxt);
5157 if (ret)
5158 mlog_errno(ret);
5161 out:
5162 brelse(last_eb_bh);
5163 return ret;
5167 * Change the flags of the already-existing extent at cpos for len clusters.
5169 * new_flags: the flags we want to set.
5170 * clear_flags: the flags we want to clear.
5171 * phys: the new physical offset we want this new extent starts from.
5173 * If the existing extent is larger than the request, initiate a
5174 * split. An attempt will be made at merging with adjacent extents.
5176 * The caller is responsible for passing down meta_ac if we'll need it.
5178 int ocfs2_change_extent_flag(handle_t *handle,
5179 struct ocfs2_extent_tree *et,
5180 u32 cpos, u32 len, u32 phys,
5181 struct ocfs2_alloc_context *meta_ac,
5182 struct ocfs2_cached_dealloc_ctxt *dealloc,
5183 int new_flags, int clear_flags)
5185 int ret, index;
5186 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5187 u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys);
5188 struct ocfs2_extent_rec split_rec;
5189 struct ocfs2_path *left_path = NULL;
5190 struct ocfs2_extent_list *el;
5191 struct ocfs2_extent_rec *rec;
5193 left_path = ocfs2_new_path_from_et(et);
5194 if (!left_path) {
5195 ret = -ENOMEM;
5196 mlog_errno(ret);
5197 goto out;
5200 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5201 if (ret) {
5202 mlog_errno(ret);
5203 goto out;
5205 el = path_leaf_el(left_path);
5207 index = ocfs2_search_extent_list(el, cpos);
5208 if (index == -1) {
5209 ocfs2_error(sb,
5210 "Owner %llu has an extent at cpos %u which can no longer be found\n",
5211 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5212 cpos);
5213 ret = -EROFS;
5214 goto out;
5217 ret = -EIO;
5218 rec = &el->l_recs[index];
5219 if (new_flags && (rec->e_flags & new_flags)) {
5220 mlog(ML_ERROR, "Owner %llu tried to set %d flags on an "
5221 "extent that already had them\n",
5222 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5223 new_flags);
5224 goto out;
5227 if (clear_flags && !(rec->e_flags & clear_flags)) {
5228 mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an "
5229 "extent that didn't have them\n",
5230 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5231 clear_flags);
5232 goto out;
5235 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5236 split_rec.e_cpos = cpu_to_le32(cpos);
5237 split_rec.e_leaf_clusters = cpu_to_le16(len);
5238 split_rec.e_blkno = cpu_to_le64(start_blkno);
5239 split_rec.e_flags = rec->e_flags;
5240 if (new_flags)
5241 split_rec.e_flags |= new_flags;
5242 if (clear_flags)
5243 split_rec.e_flags &= ~clear_flags;
5245 ret = ocfs2_split_extent(handle, et, left_path,
5246 index, &split_rec, meta_ac,
5247 dealloc);
5248 if (ret)
5249 mlog_errno(ret);
5251 out:
5252 ocfs2_free_path(left_path);
5253 return ret;
5258 * Mark the already-existing extent at cpos as written for len clusters.
5259 * This removes the unwritten extent flag.
5261 * If the existing extent is larger than the request, initiate a
5262 * split. An attempt will be made at merging with adjacent extents.
5264 * The caller is responsible for passing down meta_ac if we'll need it.
5266 int ocfs2_mark_extent_written(struct inode *inode,
5267 struct ocfs2_extent_tree *et,
5268 handle_t *handle, u32 cpos, u32 len, u32 phys,
5269 struct ocfs2_alloc_context *meta_ac,
5270 struct ocfs2_cached_dealloc_ctxt *dealloc)
5272 int ret;
5274 trace_ocfs2_mark_extent_written(
5275 (unsigned long long)OCFS2_I(inode)->ip_blkno,
5276 cpos, len, phys);
5278 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5279 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents that are being written to, but the feature bit is not set in the super block\n",
5280 (unsigned long long)OCFS2_I(inode)->ip_blkno);
5281 ret = -EROFS;
5282 goto out;
5286 * XXX: This should be fixed up so that we just re-insert the
5287 * next extent records.
5289 ocfs2_et_extent_map_truncate(et, 0);
5291 ret = ocfs2_change_extent_flag(handle, et, cpos,
5292 len, phys, meta_ac, dealloc,
5293 0, OCFS2_EXT_UNWRITTEN);
5294 if (ret)
5295 mlog_errno(ret);
5297 out:
5298 return ret;
5301 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et,
5302 struct ocfs2_path *path,
5303 int index, u32 new_range,
5304 struct ocfs2_alloc_context *meta_ac)
5306 int ret, depth, credits;
5307 struct buffer_head *last_eb_bh = NULL;
5308 struct ocfs2_extent_block *eb;
5309 struct ocfs2_extent_list *rightmost_el, *el;
5310 struct ocfs2_extent_rec split_rec;
5311 struct ocfs2_extent_rec *rec;
5312 struct ocfs2_insert_type insert;
5315 * Setup the record to split before we grow the tree.
5317 el = path_leaf_el(path);
5318 rec = &el->l_recs[index];
5319 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
5320 &split_rec, new_range, rec);
5322 depth = path->p_tree_depth;
5323 if (depth > 0) {
5324 ret = ocfs2_read_extent_block(et->et_ci,
5325 ocfs2_et_get_last_eb_blk(et),
5326 &last_eb_bh);
5327 if (ret < 0) {
5328 mlog_errno(ret);
5329 goto out;
5332 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5333 rightmost_el = &eb->h_list;
5334 } else
5335 rightmost_el = path_leaf_el(path);
5337 credits = path->p_tree_depth +
5338 ocfs2_extend_meta_needed(et->et_root_el);
5339 ret = ocfs2_extend_trans(handle, credits);
5340 if (ret) {
5341 mlog_errno(ret);
5342 goto out;
5345 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5346 le16_to_cpu(rightmost_el->l_count)) {
5347 ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh,
5348 meta_ac);
5349 if (ret) {
5350 mlog_errno(ret);
5351 goto out;
5355 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5356 insert.ins_appending = APPEND_NONE;
5357 insert.ins_contig = CONTIG_NONE;
5358 insert.ins_split = SPLIT_RIGHT;
5359 insert.ins_tree_depth = depth;
5361 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
5362 if (ret)
5363 mlog_errno(ret);
5365 out:
5366 brelse(last_eb_bh);
5367 return ret;
5370 static int ocfs2_truncate_rec(handle_t *handle,
5371 struct ocfs2_extent_tree *et,
5372 struct ocfs2_path *path, int index,
5373 struct ocfs2_cached_dealloc_ctxt *dealloc,
5374 u32 cpos, u32 len)
5376 int ret;
5377 u32 left_cpos, rec_range, trunc_range;
5378 int is_rightmost_tree_rec = 0;
5379 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5380 struct ocfs2_path *left_path = NULL;
5381 struct ocfs2_extent_list *el = path_leaf_el(path);
5382 struct ocfs2_extent_rec *rec;
5383 struct ocfs2_extent_block *eb;
5385 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5386 /* extend credit for ocfs2_remove_rightmost_path */
5387 ret = ocfs2_extend_rotate_transaction(handle, 0,
5388 handle->h_buffer_credits,
5389 path);
5390 if (ret) {
5391 mlog_errno(ret);
5392 goto out;
5395 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5396 if (ret) {
5397 mlog_errno(ret);
5398 goto out;
5401 index--;
5404 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5405 path->p_tree_depth) {
5407 * Check whether this is the rightmost tree record. If
5408 * we remove all of this record or part of its right
5409 * edge then an update of the record lengths above it
5410 * will be required.
5412 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5413 if (eb->h_next_leaf_blk == 0)
5414 is_rightmost_tree_rec = 1;
5417 rec = &el->l_recs[index];
5418 if (index == 0 && path->p_tree_depth &&
5419 le32_to_cpu(rec->e_cpos) == cpos) {
5421 * Changing the leftmost offset (via partial or whole
5422 * record truncate) of an interior (or rightmost) path
5423 * means we have to update the subtree that is formed
5424 * by this leaf and the one to it's left.
5426 * There are two cases we can skip:
5427 * 1) Path is the leftmost one in our btree.
5428 * 2) The leaf is rightmost and will be empty after
5429 * we remove the extent record - the rotate code
5430 * knows how to update the newly formed edge.
5433 ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
5434 if (ret) {
5435 mlog_errno(ret);
5436 goto out;
5439 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5440 left_path = ocfs2_new_path_from_path(path);
5441 if (!left_path) {
5442 ret = -ENOMEM;
5443 mlog_errno(ret);
5444 goto out;
5447 ret = ocfs2_find_path(et->et_ci, left_path,
5448 left_cpos);
5449 if (ret) {
5450 mlog_errno(ret);
5451 goto out;
5456 ret = ocfs2_extend_rotate_transaction(handle, 0,
5457 handle->h_buffer_credits,
5458 path);
5459 if (ret) {
5460 mlog_errno(ret);
5461 goto out;
5464 ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5465 if (ret) {
5466 mlog_errno(ret);
5467 goto out;
5470 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5471 if (ret) {
5472 mlog_errno(ret);
5473 goto out;
5476 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5477 trunc_range = cpos + len;
5479 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5480 int next_free;
5482 memset(rec, 0, sizeof(*rec));
5483 ocfs2_cleanup_merge(el, index);
5485 next_free = le16_to_cpu(el->l_next_free_rec);
5486 if (is_rightmost_tree_rec && next_free > 1) {
5488 * We skip the edge update if this path will
5489 * be deleted by the rotate code.
5491 rec = &el->l_recs[next_free - 1];
5492 ocfs2_adjust_rightmost_records(handle, et, path,
5493 rec);
5495 } else if (le32_to_cpu(rec->e_cpos) == cpos) {
5496 /* Remove leftmost portion of the record. */
5497 le32_add_cpu(&rec->e_cpos, len);
5498 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5499 le16_add_cpu(&rec->e_leaf_clusters, -len);
5500 } else if (rec_range == trunc_range) {
5501 /* Remove rightmost portion of the record */
5502 le16_add_cpu(&rec->e_leaf_clusters, -len);
5503 if (is_rightmost_tree_rec)
5504 ocfs2_adjust_rightmost_records(handle, et, path, rec);
5505 } else {
5506 /* Caller should have trapped this. */
5507 mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) "
5508 "(%u, %u)\n",
5509 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5510 le32_to_cpu(rec->e_cpos),
5511 le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5512 BUG();
5515 if (left_path) {
5516 int subtree_index;
5518 subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5519 ocfs2_complete_edge_insert(handle, left_path, path,
5520 subtree_index);
5523 ocfs2_journal_dirty(handle, path_leaf_bh(path));
5525 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5526 if (ret) {
5527 mlog_errno(ret);
5528 goto out;
5531 out:
5532 ocfs2_free_path(left_path);
5533 return ret;
5536 int ocfs2_remove_extent(handle_t *handle,
5537 struct ocfs2_extent_tree *et,
5538 u32 cpos, u32 len,
5539 struct ocfs2_alloc_context *meta_ac,
5540 struct ocfs2_cached_dealloc_ctxt *dealloc)
5542 int ret, index;
5543 u32 rec_range, trunc_range;
5544 struct ocfs2_extent_rec *rec;
5545 struct ocfs2_extent_list *el;
5546 struct ocfs2_path *path = NULL;
5549 * XXX: Why are we truncating to 0 instead of wherever this
5550 * affects us?
5552 ocfs2_et_extent_map_truncate(et, 0);
5554 path = ocfs2_new_path_from_et(et);
5555 if (!path) {
5556 ret = -ENOMEM;
5557 mlog_errno(ret);
5558 goto out;
5561 ret = ocfs2_find_path(et->et_ci, path, cpos);
5562 if (ret) {
5563 mlog_errno(ret);
5564 goto out;
5567 el = path_leaf_el(path);
5568 index = ocfs2_search_extent_list(el, cpos);
5569 if (index == -1) {
5570 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5571 "Owner %llu has an extent at cpos %u which can no longer be found\n",
5572 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5573 cpos);
5574 ret = -EROFS;
5575 goto out;
5579 * We have 3 cases of extent removal:
5580 * 1) Range covers the entire extent rec
5581 * 2) Range begins or ends on one edge of the extent rec
5582 * 3) Range is in the middle of the extent rec (no shared edges)
5584 * For case 1 we remove the extent rec and left rotate to
5585 * fill the hole.
5587 * For case 2 we just shrink the existing extent rec, with a
5588 * tree update if the shrinking edge is also the edge of an
5589 * extent block.
5591 * For case 3 we do a right split to turn the extent rec into
5592 * something case 2 can handle.
5594 rec = &el->l_recs[index];
5595 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5596 trunc_range = cpos + len;
5598 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5600 trace_ocfs2_remove_extent(
5601 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5602 cpos, len, index, le32_to_cpu(rec->e_cpos),
5603 ocfs2_rec_clusters(el, rec));
5605 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5606 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5607 cpos, len);
5608 if (ret) {
5609 mlog_errno(ret);
5610 goto out;
5612 } else {
5613 ret = ocfs2_split_tree(handle, et, path, index,
5614 trunc_range, meta_ac);
5615 if (ret) {
5616 mlog_errno(ret);
5617 goto out;
5621 * The split could have manipulated the tree enough to
5622 * move the record location, so we have to look for it again.
5624 ocfs2_reinit_path(path, 1);
5626 ret = ocfs2_find_path(et->et_ci, path, cpos);
5627 if (ret) {
5628 mlog_errno(ret);
5629 goto out;
5632 el = path_leaf_el(path);
5633 index = ocfs2_search_extent_list(el, cpos);
5634 if (index == -1) {
5635 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5636 "Owner %llu: split at cpos %u lost record\n",
5637 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5638 cpos);
5639 ret = -EROFS;
5640 goto out;
5644 * Double check our values here. If anything is fishy,
5645 * it's easier to catch it at the top level.
5647 rec = &el->l_recs[index];
5648 rec_range = le32_to_cpu(rec->e_cpos) +
5649 ocfs2_rec_clusters(el, rec);
5650 if (rec_range != trunc_range) {
5651 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5652 "Owner %llu: error after split at cpos %u trunc len %u, existing record is (%u,%u)\n",
5653 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5654 cpos, len, le32_to_cpu(rec->e_cpos),
5655 ocfs2_rec_clusters(el, rec));
5656 ret = -EROFS;
5657 goto out;
5660 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5661 cpos, len);
5662 if (ret) {
5663 mlog_errno(ret);
5664 goto out;
5668 out:
5669 ocfs2_free_path(path);
5670 return ret;
5674 * ocfs2_reserve_blocks_for_rec_trunc() would look basically the
5675 * same as ocfs2_lock_alloctors(), except for it accepts a blocks
5676 * number to reserve some extra blocks, and it only handles meta
5677 * data allocations.
5679 * Currently, only ocfs2_remove_btree_range() uses it for truncating
5680 * and punching holes.
5682 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode,
5683 struct ocfs2_extent_tree *et,
5684 u32 extents_to_split,
5685 struct ocfs2_alloc_context **ac,
5686 int extra_blocks)
5688 int ret = 0, num_free_extents;
5689 unsigned int max_recs_needed = 2 * extents_to_split;
5690 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5692 *ac = NULL;
5694 num_free_extents = ocfs2_num_free_extents(et);
5695 if (num_free_extents < 0) {
5696 ret = num_free_extents;
5697 mlog_errno(ret);
5698 goto out;
5701 if (!num_free_extents ||
5702 (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed))
5703 extra_blocks += ocfs2_extend_meta_needed(et->et_root_el);
5705 if (extra_blocks) {
5706 ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac);
5707 if (ret < 0) {
5708 if (ret != -ENOSPC)
5709 mlog_errno(ret);
5710 goto out;
5714 out:
5715 if (ret) {
5716 if (*ac) {
5717 ocfs2_free_alloc_context(*ac);
5718 *ac = NULL;
5722 return ret;
5725 int ocfs2_remove_btree_range(struct inode *inode,
5726 struct ocfs2_extent_tree *et,
5727 u32 cpos, u32 phys_cpos, u32 len, int flags,
5728 struct ocfs2_cached_dealloc_ctxt *dealloc,
5729 u64 refcount_loc, bool refcount_tree_locked)
5731 int ret, credits = 0, extra_blocks = 0;
5732 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5733 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5734 struct inode *tl_inode = osb->osb_tl_inode;
5735 handle_t *handle;
5736 struct ocfs2_alloc_context *meta_ac = NULL;
5737 struct ocfs2_refcount_tree *ref_tree = NULL;
5739 if ((flags & OCFS2_EXT_REFCOUNTED) && len) {
5740 BUG_ON(!ocfs2_is_refcount_inode(inode));
5742 if (!refcount_tree_locked) {
5743 ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
5744 &ref_tree, NULL);
5745 if (ret) {
5746 mlog_errno(ret);
5747 goto bail;
5751 ret = ocfs2_prepare_refcount_change_for_del(inode,
5752 refcount_loc,
5753 phys_blkno,
5754 len,
5755 &credits,
5756 &extra_blocks);
5757 if (ret < 0) {
5758 mlog_errno(ret);
5759 goto bail;
5763 ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac,
5764 extra_blocks);
5765 if (ret) {
5766 mlog_errno(ret);
5767 goto bail;
5770 inode_lock(tl_inode);
5772 if (ocfs2_truncate_log_needs_flush(osb)) {
5773 ret = __ocfs2_flush_truncate_log(osb);
5774 if (ret < 0) {
5775 mlog_errno(ret);
5776 goto out;
5780 handle = ocfs2_start_trans(osb,
5781 ocfs2_remove_extent_credits(osb->sb) + credits);
5782 if (IS_ERR(handle)) {
5783 ret = PTR_ERR(handle);
5784 mlog_errno(ret);
5785 goto out;
5788 ret = ocfs2_et_root_journal_access(handle, et,
5789 OCFS2_JOURNAL_ACCESS_WRITE);
5790 if (ret) {
5791 mlog_errno(ret);
5792 goto out_commit;
5795 dquot_free_space_nodirty(inode,
5796 ocfs2_clusters_to_bytes(inode->i_sb, len));
5798 ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc);
5799 if (ret) {
5800 mlog_errno(ret);
5801 goto out_commit;
5804 ocfs2_et_update_clusters(et, -len);
5805 ocfs2_update_inode_fsync_trans(handle, inode, 1);
5807 ocfs2_journal_dirty(handle, et->et_root_bh);
5809 if (phys_blkno) {
5810 if (flags & OCFS2_EXT_REFCOUNTED)
5811 ret = ocfs2_decrease_refcount(inode, handle,
5812 ocfs2_blocks_to_clusters(osb->sb,
5813 phys_blkno),
5814 len, meta_ac,
5815 dealloc, 1);
5816 else
5817 ret = ocfs2_truncate_log_append(osb, handle,
5818 phys_blkno, len);
5819 if (ret)
5820 mlog_errno(ret);
5824 out_commit:
5825 ocfs2_commit_trans(osb, handle);
5826 out:
5827 inode_unlock(tl_inode);
5828 bail:
5829 if (meta_ac)
5830 ocfs2_free_alloc_context(meta_ac);
5832 if (ref_tree)
5833 ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
5835 return ret;
5838 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5840 struct buffer_head *tl_bh = osb->osb_tl_bh;
5841 struct ocfs2_dinode *di;
5842 struct ocfs2_truncate_log *tl;
5844 di = (struct ocfs2_dinode *) tl_bh->b_data;
5845 tl = &di->id2.i_dealloc;
5847 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5848 "slot %d, invalid truncate log parameters: used = "
5849 "%u, count = %u\n", osb->slot_num,
5850 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5851 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5854 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5855 unsigned int new_start)
5857 unsigned int tail_index;
5858 unsigned int current_tail;
5860 /* No records, nothing to coalesce */
5861 if (!le16_to_cpu(tl->tl_used))
5862 return 0;
5864 tail_index = le16_to_cpu(tl->tl_used) - 1;
5865 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5866 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5868 return current_tail == new_start;
5871 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5872 handle_t *handle,
5873 u64 start_blk,
5874 unsigned int num_clusters)
5876 int status, index;
5877 unsigned int start_cluster, tl_count;
5878 struct inode *tl_inode = osb->osb_tl_inode;
5879 struct buffer_head *tl_bh = osb->osb_tl_bh;
5880 struct ocfs2_dinode *di;
5881 struct ocfs2_truncate_log *tl;
5883 BUG_ON(inode_trylock(tl_inode));
5885 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5887 di = (struct ocfs2_dinode *) tl_bh->b_data;
5889 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5890 * by the underlying call to ocfs2_read_inode_block(), so any
5891 * corruption is a code bug */
5892 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5894 tl = &di->id2.i_dealloc;
5895 tl_count = le16_to_cpu(tl->tl_count);
5896 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5897 tl_count == 0,
5898 "Truncate record count on #%llu invalid "
5899 "wanted %u, actual %u\n",
5900 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5901 ocfs2_truncate_recs_per_inode(osb->sb),
5902 le16_to_cpu(tl->tl_count));
5904 /* Caller should have known to flush before calling us. */
5905 index = le16_to_cpu(tl->tl_used);
5906 if (index >= tl_count) {
5907 status = -ENOSPC;
5908 mlog_errno(status);
5909 goto bail;
5912 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5913 OCFS2_JOURNAL_ACCESS_WRITE);
5914 if (status < 0) {
5915 mlog_errno(status);
5916 goto bail;
5919 trace_ocfs2_truncate_log_append(
5920 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index,
5921 start_cluster, num_clusters);
5922 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5924 * Move index back to the record we are coalescing with.
5925 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5927 index--;
5929 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5930 trace_ocfs2_truncate_log_append(
5931 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5932 index, le32_to_cpu(tl->tl_recs[index].t_start),
5933 num_clusters);
5934 } else {
5935 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5936 tl->tl_used = cpu_to_le16(index + 1);
5938 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5940 ocfs2_journal_dirty(handle, tl_bh);
5942 osb->truncated_clusters += num_clusters;
5943 bail:
5944 return status;
5947 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5948 struct inode *data_alloc_inode,
5949 struct buffer_head *data_alloc_bh)
5951 int status = 0;
5952 int i;
5953 unsigned int num_clusters;
5954 u64 start_blk;
5955 struct ocfs2_truncate_rec rec;
5956 struct ocfs2_dinode *di;
5957 struct ocfs2_truncate_log *tl;
5958 struct inode *tl_inode = osb->osb_tl_inode;
5959 struct buffer_head *tl_bh = osb->osb_tl_bh;
5960 handle_t *handle;
5962 di = (struct ocfs2_dinode *) tl_bh->b_data;
5963 tl = &di->id2.i_dealloc;
5964 i = le16_to_cpu(tl->tl_used) - 1;
5965 while (i >= 0) {
5966 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5967 if (IS_ERR(handle)) {
5968 status = PTR_ERR(handle);
5969 mlog_errno(status);
5970 goto bail;
5973 /* Caller has given us at least enough credits to
5974 * update the truncate log dinode */
5975 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5976 OCFS2_JOURNAL_ACCESS_WRITE);
5977 if (status < 0) {
5978 mlog_errno(status);
5979 goto bail;
5982 tl->tl_used = cpu_to_le16(i);
5984 ocfs2_journal_dirty(handle, tl_bh);
5986 rec = tl->tl_recs[i];
5987 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5988 le32_to_cpu(rec.t_start));
5989 num_clusters = le32_to_cpu(rec.t_clusters);
5991 /* if start_blk is not set, we ignore the record as
5992 * invalid. */
5993 if (start_blk) {
5994 trace_ocfs2_replay_truncate_records(
5995 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5996 i, le32_to_cpu(rec.t_start), num_clusters);
5998 status = ocfs2_free_clusters(handle, data_alloc_inode,
5999 data_alloc_bh, start_blk,
6000 num_clusters);
6001 if (status < 0) {
6002 mlog_errno(status);
6003 goto bail;
6007 ocfs2_commit_trans(osb, handle);
6008 i--;
6011 osb->truncated_clusters = 0;
6013 bail:
6014 return status;
6017 /* Expects you to already be holding tl_inode->i_mutex */
6018 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
6020 int status;
6021 unsigned int num_to_flush;
6022 struct inode *tl_inode = osb->osb_tl_inode;
6023 struct inode *data_alloc_inode = NULL;
6024 struct buffer_head *tl_bh = osb->osb_tl_bh;
6025 struct buffer_head *data_alloc_bh = NULL;
6026 struct ocfs2_dinode *di;
6027 struct ocfs2_truncate_log *tl;
6029 BUG_ON(inode_trylock(tl_inode));
6031 di = (struct ocfs2_dinode *) tl_bh->b_data;
6033 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
6034 * by the underlying call to ocfs2_read_inode_block(), so any
6035 * corruption is a code bug */
6036 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6038 tl = &di->id2.i_dealloc;
6039 num_to_flush = le16_to_cpu(tl->tl_used);
6040 trace_ocfs2_flush_truncate_log(
6041 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
6042 num_to_flush);
6043 if (!num_to_flush) {
6044 status = 0;
6045 goto out;
6048 data_alloc_inode = ocfs2_get_system_file_inode(osb,
6049 GLOBAL_BITMAP_SYSTEM_INODE,
6050 OCFS2_INVALID_SLOT);
6051 if (!data_alloc_inode) {
6052 status = -EINVAL;
6053 mlog(ML_ERROR, "Could not get bitmap inode!\n");
6054 goto out;
6057 inode_lock(data_alloc_inode);
6059 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
6060 if (status < 0) {
6061 mlog_errno(status);
6062 goto out_mutex;
6065 status = ocfs2_replay_truncate_records(osb, data_alloc_inode,
6066 data_alloc_bh);
6067 if (status < 0)
6068 mlog_errno(status);
6070 brelse(data_alloc_bh);
6071 ocfs2_inode_unlock(data_alloc_inode, 1);
6073 out_mutex:
6074 inode_unlock(data_alloc_inode);
6075 iput(data_alloc_inode);
6077 out:
6078 return status;
6081 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
6083 int status;
6084 struct inode *tl_inode = osb->osb_tl_inode;
6086 inode_lock(tl_inode);
6087 status = __ocfs2_flush_truncate_log(osb);
6088 inode_unlock(tl_inode);
6090 return status;
6093 static void ocfs2_truncate_log_worker(struct work_struct *work)
6095 int status;
6096 struct ocfs2_super *osb =
6097 container_of(work, struct ocfs2_super,
6098 osb_truncate_log_wq.work);
6100 status = ocfs2_flush_truncate_log(osb);
6101 if (status < 0)
6102 mlog_errno(status);
6103 else
6104 ocfs2_init_steal_slots(osb);
6107 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
6108 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
6109 int cancel)
6111 if (osb->osb_tl_inode &&
6112 atomic_read(&osb->osb_tl_disable) == 0) {
6113 /* We want to push off log flushes while truncates are
6114 * still running. */
6115 if (cancel)
6116 cancel_delayed_work(&osb->osb_truncate_log_wq);
6118 queue_delayed_work(osb->ocfs2_wq, &osb->osb_truncate_log_wq,
6119 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
6124 * Try to flush truncate logs if we can free enough clusters from it.
6125 * As for return value, "< 0" means error, "0" no space and "1" means
6126 * we have freed enough spaces and let the caller try to allocate again.
6128 int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
6129 unsigned int needed)
6131 tid_t target;
6132 int ret = 0;
6133 unsigned int truncated_clusters;
6135 inode_lock(osb->osb_tl_inode);
6136 truncated_clusters = osb->truncated_clusters;
6137 inode_unlock(osb->osb_tl_inode);
6140 * Check whether we can succeed in allocating if we free
6141 * the truncate log.
6143 if (truncated_clusters < needed)
6144 goto out;
6146 ret = ocfs2_flush_truncate_log(osb);
6147 if (ret) {
6148 mlog_errno(ret);
6149 goto out;
6152 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
6153 jbd2_log_wait_commit(osb->journal->j_journal, target);
6154 ret = 1;
6156 out:
6157 return ret;
6160 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
6161 int slot_num,
6162 struct inode **tl_inode,
6163 struct buffer_head **tl_bh)
6165 int status;
6166 struct inode *inode = NULL;
6167 struct buffer_head *bh = NULL;
6169 inode = ocfs2_get_system_file_inode(osb,
6170 TRUNCATE_LOG_SYSTEM_INODE,
6171 slot_num);
6172 if (!inode) {
6173 status = -EINVAL;
6174 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
6175 goto bail;
6178 status = ocfs2_read_inode_block(inode, &bh);
6179 if (status < 0) {
6180 iput(inode);
6181 mlog_errno(status);
6182 goto bail;
6185 *tl_inode = inode;
6186 *tl_bh = bh;
6187 bail:
6188 return status;
6191 /* called during the 1st stage of node recovery. we stamp a clean
6192 * truncate log and pass back a copy for processing later. if the
6193 * truncate log does not require processing, a *tl_copy is set to
6194 * NULL. */
6195 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
6196 int slot_num,
6197 struct ocfs2_dinode **tl_copy)
6199 int status;
6200 struct inode *tl_inode = NULL;
6201 struct buffer_head *tl_bh = NULL;
6202 struct ocfs2_dinode *di;
6203 struct ocfs2_truncate_log *tl;
6205 *tl_copy = NULL;
6207 trace_ocfs2_begin_truncate_log_recovery(slot_num);
6209 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
6210 if (status < 0) {
6211 mlog_errno(status);
6212 goto bail;
6215 di = (struct ocfs2_dinode *) tl_bh->b_data;
6217 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's
6218 * validated by the underlying call to ocfs2_read_inode_block(),
6219 * so any corruption is a code bug */
6220 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6222 tl = &di->id2.i_dealloc;
6223 if (le16_to_cpu(tl->tl_used)) {
6224 trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used));
6226 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
6227 if (!(*tl_copy)) {
6228 status = -ENOMEM;
6229 mlog_errno(status);
6230 goto bail;
6233 /* Assuming the write-out below goes well, this copy
6234 * will be passed back to recovery for processing. */
6235 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
6237 /* All we need to do to clear the truncate log is set
6238 * tl_used. */
6239 tl->tl_used = 0;
6241 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6242 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6243 if (status < 0) {
6244 mlog_errno(status);
6245 goto bail;
6249 bail:
6250 iput(tl_inode);
6251 brelse(tl_bh);
6253 if (status < 0) {
6254 kfree(*tl_copy);
6255 *tl_copy = NULL;
6256 mlog_errno(status);
6259 return status;
6262 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6263 struct ocfs2_dinode *tl_copy)
6265 int status = 0;
6266 int i;
6267 unsigned int clusters, num_recs, start_cluster;
6268 u64 start_blk;
6269 handle_t *handle;
6270 struct inode *tl_inode = osb->osb_tl_inode;
6271 struct ocfs2_truncate_log *tl;
6273 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6274 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6275 return -EINVAL;
6278 tl = &tl_copy->id2.i_dealloc;
6279 num_recs = le16_to_cpu(tl->tl_used);
6280 trace_ocfs2_complete_truncate_log_recovery(
6281 (unsigned long long)le64_to_cpu(tl_copy->i_blkno),
6282 num_recs);
6284 inode_lock(tl_inode);
6285 for(i = 0; i < num_recs; i++) {
6286 if (ocfs2_truncate_log_needs_flush(osb)) {
6287 status = __ocfs2_flush_truncate_log(osb);
6288 if (status < 0) {
6289 mlog_errno(status);
6290 goto bail_up;
6294 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6295 if (IS_ERR(handle)) {
6296 status = PTR_ERR(handle);
6297 mlog_errno(status);
6298 goto bail_up;
6301 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6302 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6303 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6305 status = ocfs2_truncate_log_append(osb, handle,
6306 start_blk, clusters);
6307 ocfs2_commit_trans(osb, handle);
6308 if (status < 0) {
6309 mlog_errno(status);
6310 goto bail_up;
6314 bail_up:
6315 inode_unlock(tl_inode);
6317 return status;
6320 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6322 int status;
6323 struct inode *tl_inode = osb->osb_tl_inode;
6325 atomic_set(&osb->osb_tl_disable, 1);
6327 if (tl_inode) {
6328 cancel_delayed_work(&osb->osb_truncate_log_wq);
6329 flush_workqueue(osb->ocfs2_wq);
6331 status = ocfs2_flush_truncate_log(osb);
6332 if (status < 0)
6333 mlog_errno(status);
6335 brelse(osb->osb_tl_bh);
6336 iput(osb->osb_tl_inode);
6340 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6342 int status;
6343 struct inode *tl_inode = NULL;
6344 struct buffer_head *tl_bh = NULL;
6346 status = ocfs2_get_truncate_log_info(osb,
6347 osb->slot_num,
6348 &tl_inode,
6349 &tl_bh);
6350 if (status < 0)
6351 mlog_errno(status);
6353 /* ocfs2_truncate_log_shutdown keys on the existence of
6354 * osb->osb_tl_inode so we don't set any of the osb variables
6355 * until we're sure all is well. */
6356 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6357 ocfs2_truncate_log_worker);
6358 atomic_set(&osb->osb_tl_disable, 0);
6359 osb->osb_tl_bh = tl_bh;
6360 osb->osb_tl_inode = tl_inode;
6362 return status;
6366 * Delayed de-allocation of suballocator blocks.
6368 * Some sets of block de-allocations might involve multiple suballocator inodes.
6370 * The locking for this can get extremely complicated, especially when
6371 * the suballocator inodes to delete from aren't known until deep
6372 * within an unrelated codepath.
6374 * ocfs2_extent_block structures are a good example of this - an inode
6375 * btree could have been grown by any number of nodes each allocating
6376 * out of their own suballoc inode.
6378 * These structures allow the delay of block de-allocation until a
6379 * later time, when locking of multiple cluster inodes won't cause
6380 * deadlock.
6384 * Describe a single bit freed from a suballocator. For the block
6385 * suballocators, it represents one block. For the global cluster
6386 * allocator, it represents some clusters and free_bit indicates
6387 * clusters number.
6389 struct ocfs2_cached_block_free {
6390 struct ocfs2_cached_block_free *free_next;
6391 u64 free_bg;
6392 u64 free_blk;
6393 unsigned int free_bit;
6396 struct ocfs2_per_slot_free_list {
6397 struct ocfs2_per_slot_free_list *f_next_suballocator;
6398 int f_inode_type;
6399 int f_slot;
6400 struct ocfs2_cached_block_free *f_first;
6403 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6404 int sysfile_type,
6405 int slot,
6406 struct ocfs2_cached_block_free *head)
6408 int ret;
6409 u64 bg_blkno;
6410 handle_t *handle;
6411 struct inode *inode;
6412 struct buffer_head *di_bh = NULL;
6413 struct ocfs2_cached_block_free *tmp;
6415 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6416 if (!inode) {
6417 ret = -EINVAL;
6418 mlog_errno(ret);
6419 goto out;
6422 inode_lock(inode);
6424 ret = ocfs2_inode_lock(inode, &di_bh, 1);
6425 if (ret) {
6426 mlog_errno(ret);
6427 goto out_mutex;
6430 while (head) {
6431 if (head->free_bg)
6432 bg_blkno = head->free_bg;
6433 else
6434 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6435 head->free_bit);
6436 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6437 if (IS_ERR(handle)) {
6438 ret = PTR_ERR(handle);
6439 mlog_errno(ret);
6440 goto out_unlock;
6443 trace_ocfs2_free_cached_blocks(
6444 (unsigned long long)head->free_blk, head->free_bit);
6446 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6447 head->free_bit, bg_blkno, 1);
6448 if (ret)
6449 mlog_errno(ret);
6451 ocfs2_commit_trans(osb, handle);
6453 tmp = head;
6454 head = head->free_next;
6455 kfree(tmp);
6458 out_unlock:
6459 ocfs2_inode_unlock(inode, 1);
6460 brelse(di_bh);
6461 out_mutex:
6462 inode_unlock(inode);
6463 iput(inode);
6464 out:
6465 while(head) {
6466 /* Premature exit may have left some dangling items. */
6467 tmp = head;
6468 head = head->free_next;
6469 kfree(tmp);
6472 return ret;
6475 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6476 u64 blkno, unsigned int bit)
6478 int ret = 0;
6479 struct ocfs2_cached_block_free *item;
6481 item = kzalloc(sizeof(*item), GFP_NOFS);
6482 if (item == NULL) {
6483 ret = -ENOMEM;
6484 mlog_errno(ret);
6485 return ret;
6488 trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit);
6490 item->free_blk = blkno;
6491 item->free_bit = bit;
6492 item->free_next = ctxt->c_global_allocator;
6494 ctxt->c_global_allocator = item;
6495 return ret;
6498 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6499 struct ocfs2_cached_block_free *head)
6501 struct ocfs2_cached_block_free *tmp;
6502 struct inode *tl_inode = osb->osb_tl_inode;
6503 handle_t *handle;
6504 int ret = 0;
6506 inode_lock(tl_inode);
6508 while (head) {
6509 if (ocfs2_truncate_log_needs_flush(osb)) {
6510 ret = __ocfs2_flush_truncate_log(osb);
6511 if (ret < 0) {
6512 mlog_errno(ret);
6513 break;
6517 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6518 if (IS_ERR(handle)) {
6519 ret = PTR_ERR(handle);
6520 mlog_errno(ret);
6521 break;
6524 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6525 head->free_bit);
6527 ocfs2_commit_trans(osb, handle);
6528 tmp = head;
6529 head = head->free_next;
6530 kfree(tmp);
6532 if (ret < 0) {
6533 mlog_errno(ret);
6534 break;
6538 inode_unlock(tl_inode);
6540 while (head) {
6541 /* Premature exit may have left some dangling items. */
6542 tmp = head;
6543 head = head->free_next;
6544 kfree(tmp);
6547 return ret;
6550 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6551 struct ocfs2_cached_dealloc_ctxt *ctxt)
6553 int ret = 0, ret2;
6554 struct ocfs2_per_slot_free_list *fl;
6556 if (!ctxt)
6557 return 0;
6559 while (ctxt->c_first_suballocator) {
6560 fl = ctxt->c_first_suballocator;
6562 if (fl->f_first) {
6563 trace_ocfs2_run_deallocs(fl->f_inode_type,
6564 fl->f_slot);
6565 ret2 = ocfs2_free_cached_blocks(osb,
6566 fl->f_inode_type,
6567 fl->f_slot,
6568 fl->f_first);
6569 if (ret2)
6570 mlog_errno(ret2);
6571 if (!ret)
6572 ret = ret2;
6575 ctxt->c_first_suballocator = fl->f_next_suballocator;
6576 kfree(fl);
6579 if (ctxt->c_global_allocator) {
6580 ret2 = ocfs2_free_cached_clusters(osb,
6581 ctxt->c_global_allocator);
6582 if (ret2)
6583 mlog_errno(ret2);
6584 if (!ret)
6585 ret = ret2;
6587 ctxt->c_global_allocator = NULL;
6590 return ret;
6593 static struct ocfs2_per_slot_free_list *
6594 ocfs2_find_per_slot_free_list(int type,
6595 int slot,
6596 struct ocfs2_cached_dealloc_ctxt *ctxt)
6598 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6600 while (fl) {
6601 if (fl->f_inode_type == type && fl->f_slot == slot)
6602 return fl;
6604 fl = fl->f_next_suballocator;
6607 fl = kmalloc(sizeof(*fl), GFP_NOFS);
6608 if (fl) {
6609 fl->f_inode_type = type;
6610 fl->f_slot = slot;
6611 fl->f_first = NULL;
6612 fl->f_next_suballocator = ctxt->c_first_suballocator;
6614 ctxt->c_first_suballocator = fl;
6616 return fl;
6619 static struct ocfs2_per_slot_free_list *
6620 ocfs2_find_preferred_free_list(int type,
6621 int preferred_slot,
6622 int *real_slot,
6623 struct ocfs2_cached_dealloc_ctxt *ctxt)
6625 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6627 while (fl) {
6628 if (fl->f_inode_type == type && fl->f_slot == preferred_slot) {
6629 *real_slot = fl->f_slot;
6630 return fl;
6633 fl = fl->f_next_suballocator;
6636 /* If we can't find any free list matching preferred slot, just use
6637 * the first one.
6639 fl = ctxt->c_first_suballocator;
6640 *real_slot = fl->f_slot;
6642 return fl;
6645 /* Return Value 1 indicates empty */
6646 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et)
6648 struct ocfs2_per_slot_free_list *fl = NULL;
6650 if (!et->et_dealloc)
6651 return 1;
6653 fl = et->et_dealloc->c_first_suballocator;
6654 if (!fl)
6655 return 1;
6657 if (!fl->f_first)
6658 return 1;
6660 return 0;
6663 /* If extent was deleted from tree due to extent rotation and merging, and
6664 * no metadata is reserved ahead of time. Try to reuse some extents
6665 * just deleted. This is only used to reuse extent blocks.
6666 * It is supposed to find enough extent blocks in dealloc if our estimation
6667 * on metadata is accurate.
6669 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle,
6670 struct ocfs2_extent_tree *et,
6671 struct buffer_head **new_eb_bh,
6672 int blk_wanted, int *blk_given)
6674 int i, status = 0, real_slot;
6675 struct ocfs2_cached_dealloc_ctxt *dealloc;
6676 struct ocfs2_per_slot_free_list *fl;
6677 struct ocfs2_cached_block_free *bf;
6678 struct ocfs2_extent_block *eb;
6679 struct ocfs2_super *osb =
6680 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
6682 *blk_given = 0;
6684 /* If extent tree doesn't have a dealloc, this is not faulty. Just
6685 * tell upper caller dealloc can't provide any block and it should
6686 * ask for alloc to claim more space.
6688 dealloc = et->et_dealloc;
6689 if (!dealloc)
6690 goto bail;
6692 for (i = 0; i < blk_wanted; i++) {
6693 /* Prefer to use local slot */
6694 fl = ocfs2_find_preferred_free_list(EXTENT_ALLOC_SYSTEM_INODE,
6695 osb->slot_num, &real_slot,
6696 dealloc);
6697 /* If no more block can be reused, we should claim more
6698 * from alloc. Just return here normally.
6700 if (!fl) {
6701 status = 0;
6702 break;
6705 bf = fl->f_first;
6706 fl->f_first = bf->free_next;
6708 new_eb_bh[i] = sb_getblk(osb->sb, bf->free_blk);
6709 if (new_eb_bh[i] == NULL) {
6710 status = -ENOMEM;
6711 mlog_errno(status);
6712 goto bail;
6715 mlog(0, "Reusing block(%llu) from "
6716 "dealloc(local slot:%d, real slot:%d)\n",
6717 bf->free_blk, osb->slot_num, real_slot);
6719 ocfs2_set_new_buffer_uptodate(et->et_ci, new_eb_bh[i]);
6721 status = ocfs2_journal_access_eb(handle, et->et_ci,
6722 new_eb_bh[i],
6723 OCFS2_JOURNAL_ACCESS_CREATE);
6724 if (status < 0) {
6725 mlog_errno(status);
6726 goto bail;
6729 memset(new_eb_bh[i]->b_data, 0, osb->sb->s_blocksize);
6730 eb = (struct ocfs2_extent_block *) new_eb_bh[i]->b_data;
6732 /* We can't guarantee that buffer head is still cached, so
6733 * polutlate the extent block again.
6735 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
6736 eb->h_blkno = cpu_to_le64(bf->free_blk);
6737 eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
6738 eb->h_suballoc_slot = cpu_to_le16(real_slot);
6739 eb->h_suballoc_loc = cpu_to_le64(bf->free_bg);
6740 eb->h_suballoc_bit = cpu_to_le16(bf->free_bit);
6741 eb->h_list.l_count =
6742 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
6744 /* We'll also be dirtied by the caller, so
6745 * this isn't absolutely necessary.
6747 ocfs2_journal_dirty(handle, new_eb_bh[i]);
6749 if (!fl->f_first) {
6750 dealloc->c_first_suballocator = fl->f_next_suballocator;
6751 kfree(fl);
6753 kfree(bf);
6756 *blk_given = i;
6758 bail:
6759 if (unlikely(status < 0)) {
6760 for (i = 0; i < blk_wanted; i++)
6761 brelse(new_eb_bh[i]);
6764 return status;
6767 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6768 int type, int slot, u64 suballoc,
6769 u64 blkno, unsigned int bit)
6771 int ret;
6772 struct ocfs2_per_slot_free_list *fl;
6773 struct ocfs2_cached_block_free *item;
6775 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6776 if (fl == NULL) {
6777 ret = -ENOMEM;
6778 mlog_errno(ret);
6779 goto out;
6782 item = kzalloc(sizeof(*item), GFP_NOFS);
6783 if (item == NULL) {
6784 ret = -ENOMEM;
6785 mlog_errno(ret);
6786 goto out;
6789 trace_ocfs2_cache_block_dealloc(type, slot,
6790 (unsigned long long)suballoc,
6791 (unsigned long long)blkno, bit);
6793 item->free_bg = suballoc;
6794 item->free_blk = blkno;
6795 item->free_bit = bit;
6796 item->free_next = fl->f_first;
6798 fl->f_first = item;
6800 ret = 0;
6801 out:
6802 return ret;
6805 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6806 struct ocfs2_extent_block *eb)
6808 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6809 le16_to_cpu(eb->h_suballoc_slot),
6810 le64_to_cpu(eb->h_suballoc_loc),
6811 le64_to_cpu(eb->h_blkno),
6812 le16_to_cpu(eb->h_suballoc_bit));
6815 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6817 set_buffer_uptodate(bh);
6818 mark_buffer_dirty(bh);
6819 return 0;
6822 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6823 unsigned int from, unsigned int to,
6824 struct page *page, int zero, u64 *phys)
6826 int ret, partial = 0;
6828 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6829 if (ret)
6830 mlog_errno(ret);
6832 if (zero)
6833 zero_user_segment(page, from, to);
6836 * Need to set the buffers we zero'd into uptodate
6837 * here if they aren't - ocfs2_map_page_blocks()
6838 * might've skipped some
6840 ret = walk_page_buffers(handle, page_buffers(page),
6841 from, to, &partial,
6842 ocfs2_zero_func);
6843 if (ret < 0)
6844 mlog_errno(ret);
6845 else if (ocfs2_should_order_data(inode)) {
6846 ret = ocfs2_jbd2_file_inode(handle, inode);
6847 if (ret < 0)
6848 mlog_errno(ret);
6851 if (!partial)
6852 SetPageUptodate(page);
6854 flush_dcache_page(page);
6857 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6858 loff_t end, struct page **pages,
6859 int numpages, u64 phys, handle_t *handle)
6861 int i;
6862 struct page *page;
6863 unsigned int from, to = PAGE_SIZE;
6864 struct super_block *sb = inode->i_sb;
6866 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6868 if (numpages == 0)
6869 goto out;
6871 to = PAGE_SIZE;
6872 for(i = 0; i < numpages; i++) {
6873 page = pages[i];
6875 from = start & (PAGE_SIZE - 1);
6876 if ((end >> PAGE_SHIFT) == page->index)
6877 to = end & (PAGE_SIZE - 1);
6879 BUG_ON(from > PAGE_SIZE);
6880 BUG_ON(to > PAGE_SIZE);
6882 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6883 &phys);
6885 start = (page->index + 1) << PAGE_SHIFT;
6887 out:
6888 if (pages)
6889 ocfs2_unlock_and_free_pages(pages, numpages);
6892 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end,
6893 struct page **pages, int *num)
6895 int numpages, ret = 0;
6896 struct address_space *mapping = inode->i_mapping;
6897 unsigned long index;
6898 loff_t last_page_bytes;
6900 BUG_ON(start > end);
6902 numpages = 0;
6903 last_page_bytes = PAGE_ALIGN(end);
6904 index = start >> PAGE_SHIFT;
6905 do {
6906 pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS);
6907 if (!pages[numpages]) {
6908 ret = -ENOMEM;
6909 mlog_errno(ret);
6910 goto out;
6913 numpages++;
6914 index++;
6915 } while (index < (last_page_bytes >> PAGE_SHIFT));
6917 out:
6918 if (ret != 0) {
6919 if (pages)
6920 ocfs2_unlock_and_free_pages(pages, numpages);
6921 numpages = 0;
6924 *num = numpages;
6926 return ret;
6929 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6930 struct page **pages, int *num)
6932 struct super_block *sb = inode->i_sb;
6934 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6935 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6937 return ocfs2_grab_pages(inode, start, end, pages, num);
6941 * Zero the area past i_size but still within an allocated
6942 * cluster. This avoids exposing nonzero data on subsequent file
6943 * extends.
6945 * We need to call this before i_size is updated on the inode because
6946 * otherwise block_write_full_page() will skip writeout of pages past
6947 * i_size. The new_i_size parameter is passed for this reason.
6949 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6950 u64 range_start, u64 range_end)
6952 int ret = 0, numpages;
6953 struct page **pages = NULL;
6954 u64 phys;
6955 unsigned int ext_flags;
6956 struct super_block *sb = inode->i_sb;
6959 * File systems which don't support sparse files zero on every
6960 * extend.
6962 if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6963 return 0;
6965 pages = kcalloc(ocfs2_pages_per_cluster(sb),
6966 sizeof(struct page *), GFP_NOFS);
6967 if (pages == NULL) {
6968 ret = -ENOMEM;
6969 mlog_errno(ret);
6970 goto out;
6973 if (range_start == range_end)
6974 goto out;
6976 ret = ocfs2_extent_map_get_blocks(inode,
6977 range_start >> sb->s_blocksize_bits,
6978 &phys, NULL, &ext_flags);
6979 if (ret) {
6980 mlog_errno(ret);
6981 goto out;
6985 * Tail is a hole, or is marked unwritten. In either case, we
6986 * can count on read and write to return/push zero's.
6988 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6989 goto out;
6991 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6992 &numpages);
6993 if (ret) {
6994 mlog_errno(ret);
6995 goto out;
6998 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6999 numpages, phys, handle);
7002 * Initiate writeout of the pages we zero'd here. We don't
7003 * wait on them - the truncate_inode_pages() call later will
7004 * do that for us.
7006 ret = filemap_fdatawrite_range(inode->i_mapping, range_start,
7007 range_end - 1);
7008 if (ret)
7009 mlog_errno(ret);
7011 out:
7012 kfree(pages);
7014 return ret;
7017 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
7018 struct ocfs2_dinode *di)
7020 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
7021 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
7023 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
7024 memset(&di->id2, 0, blocksize -
7025 offsetof(struct ocfs2_dinode, id2) -
7026 xattrsize);
7027 else
7028 memset(&di->id2, 0, blocksize -
7029 offsetof(struct ocfs2_dinode, id2));
7032 void ocfs2_dinode_new_extent_list(struct inode *inode,
7033 struct ocfs2_dinode *di)
7035 ocfs2_zero_dinode_id2_with_xattr(inode, di);
7036 di->id2.i_list.l_tree_depth = 0;
7037 di->id2.i_list.l_next_free_rec = 0;
7038 di->id2.i_list.l_count = cpu_to_le16(
7039 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
7042 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
7044 struct ocfs2_inode_info *oi = OCFS2_I(inode);
7045 struct ocfs2_inline_data *idata = &di->id2.i_data;
7047 spin_lock(&oi->ip_lock);
7048 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
7049 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7050 spin_unlock(&oi->ip_lock);
7053 * We clear the entire i_data structure here so that all
7054 * fields can be properly initialized.
7056 ocfs2_zero_dinode_id2_with_xattr(inode, di);
7058 idata->id_count = cpu_to_le16(
7059 ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
7062 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
7063 struct buffer_head *di_bh)
7065 int ret, i, has_data, num_pages = 0;
7066 int need_free = 0;
7067 u32 bit_off, num;
7068 handle_t *handle;
7069 u64 uninitialized_var(block);
7070 struct ocfs2_inode_info *oi = OCFS2_I(inode);
7071 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7072 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7073 struct ocfs2_alloc_context *data_ac = NULL;
7074 struct page **pages = NULL;
7075 loff_t end = osb->s_clustersize;
7076 struct ocfs2_extent_tree et;
7077 int did_quota = 0;
7079 has_data = i_size_read(inode) ? 1 : 0;
7081 if (has_data) {
7082 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
7083 sizeof(struct page *), GFP_NOFS);
7084 if (pages == NULL) {
7085 ret = -ENOMEM;
7086 mlog_errno(ret);
7087 return ret;
7090 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
7091 if (ret) {
7092 mlog_errno(ret);
7093 goto free_pages;
7097 handle = ocfs2_start_trans(osb,
7098 ocfs2_inline_to_extents_credits(osb->sb));
7099 if (IS_ERR(handle)) {
7100 ret = PTR_ERR(handle);
7101 mlog_errno(ret);
7102 goto out;
7105 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7106 OCFS2_JOURNAL_ACCESS_WRITE);
7107 if (ret) {
7108 mlog_errno(ret);
7109 goto out_commit;
7112 if (has_data) {
7113 unsigned int page_end;
7114 u64 phys;
7116 ret = dquot_alloc_space_nodirty(inode,
7117 ocfs2_clusters_to_bytes(osb->sb, 1));
7118 if (ret)
7119 goto out_commit;
7120 did_quota = 1;
7122 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
7124 ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off,
7125 &num);
7126 if (ret) {
7127 mlog_errno(ret);
7128 goto out_commit;
7132 * Save two copies, one for insert, and one that can
7133 * be changed by ocfs2_map_and_dirty_page() below.
7135 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
7138 * Non sparse file systems zero on extend, so no need
7139 * to do that now.
7141 if (!ocfs2_sparse_alloc(osb) &&
7142 PAGE_SIZE < osb->s_clustersize)
7143 end = PAGE_SIZE;
7145 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
7146 if (ret) {
7147 mlog_errno(ret);
7148 need_free = 1;
7149 goto out_commit;
7153 * This should populate the 1st page for us and mark
7154 * it up to date.
7156 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
7157 if (ret) {
7158 mlog_errno(ret);
7159 need_free = 1;
7160 goto out_unlock;
7163 page_end = PAGE_SIZE;
7164 if (PAGE_SIZE > osb->s_clustersize)
7165 page_end = osb->s_clustersize;
7167 for (i = 0; i < num_pages; i++)
7168 ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
7169 pages[i], i > 0, &phys);
7172 spin_lock(&oi->ip_lock);
7173 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7174 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7175 spin_unlock(&oi->ip_lock);
7177 ocfs2_update_inode_fsync_trans(handle, inode, 1);
7178 ocfs2_dinode_new_extent_list(inode, di);
7180 ocfs2_journal_dirty(handle, di_bh);
7182 if (has_data) {
7184 * An error at this point should be extremely rare. If
7185 * this proves to be false, we could always re-build
7186 * the in-inode data from our pages.
7188 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7189 ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL);
7190 if (ret) {
7191 mlog_errno(ret);
7192 need_free = 1;
7193 goto out_unlock;
7196 inode->i_blocks = ocfs2_inode_sector_count(inode);
7199 out_unlock:
7200 if (pages)
7201 ocfs2_unlock_and_free_pages(pages, num_pages);
7203 out_commit:
7204 if (ret < 0 && did_quota)
7205 dquot_free_space_nodirty(inode,
7206 ocfs2_clusters_to_bytes(osb->sb, 1));
7208 if (need_free) {
7209 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
7210 ocfs2_free_local_alloc_bits(osb, handle, data_ac,
7211 bit_off, num);
7212 else
7213 ocfs2_free_clusters(handle,
7214 data_ac->ac_inode,
7215 data_ac->ac_bh,
7216 ocfs2_clusters_to_blocks(osb->sb, bit_off),
7217 num);
7220 ocfs2_commit_trans(osb, handle);
7222 out:
7223 if (data_ac)
7224 ocfs2_free_alloc_context(data_ac);
7225 free_pages:
7226 kfree(pages);
7227 return ret;
7231 * It is expected, that by the time you call this function,
7232 * inode->i_size and fe->i_size have been adjusted.
7234 * WARNING: This will kfree the truncate context
7236 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7237 struct inode *inode,
7238 struct buffer_head *di_bh)
7240 int status = 0, i, flags = 0;
7241 u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff;
7242 u64 blkno = 0;
7243 struct ocfs2_extent_list *el;
7244 struct ocfs2_extent_rec *rec;
7245 struct ocfs2_path *path = NULL;
7246 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7247 struct ocfs2_extent_list *root_el = &(di->id2.i_list);
7248 u64 refcount_loc = le64_to_cpu(di->i_refcount_loc);
7249 struct ocfs2_extent_tree et;
7250 struct ocfs2_cached_dealloc_ctxt dealloc;
7251 struct ocfs2_refcount_tree *ref_tree = NULL;
7253 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7254 ocfs2_init_dealloc_ctxt(&dealloc);
7256 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7257 i_size_read(inode));
7259 path = ocfs2_new_path(di_bh, &di->id2.i_list,
7260 ocfs2_journal_access_di);
7261 if (!path) {
7262 status = -ENOMEM;
7263 mlog_errno(status);
7264 goto bail;
7267 ocfs2_extent_map_trunc(inode, new_highest_cpos);
7269 start:
7271 * Check that we still have allocation to delete.
7273 if (OCFS2_I(inode)->ip_clusters == 0) {
7274 status = 0;
7275 goto bail;
7279 * Truncate always works against the rightmost tree branch.
7281 status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7282 if (status) {
7283 mlog_errno(status);
7284 goto bail;
7287 trace_ocfs2_commit_truncate(
7288 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7289 new_highest_cpos,
7290 OCFS2_I(inode)->ip_clusters,
7291 path->p_tree_depth);
7294 * By now, el will point to the extent list on the bottom most
7295 * portion of this tree. Only the tail record is considered in
7296 * each pass.
7298 * We handle the following cases, in order:
7299 * - empty extent: delete the remaining branch
7300 * - remove the entire record
7301 * - remove a partial record
7302 * - no record needs to be removed (truncate has completed)
7304 el = path_leaf_el(path);
7305 if (le16_to_cpu(el->l_next_free_rec) == 0) {
7306 ocfs2_error(inode->i_sb,
7307 "Inode %llu has empty extent block at %llu\n",
7308 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7309 (unsigned long long)path_leaf_bh(path)->b_blocknr);
7310 status = -EROFS;
7311 goto bail;
7314 i = le16_to_cpu(el->l_next_free_rec) - 1;
7315 rec = &el->l_recs[i];
7316 flags = rec->e_flags;
7317 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
7319 if (i == 0 && ocfs2_is_empty_extent(rec)) {
7321 * Lower levels depend on this never happening, but it's best
7322 * to check it up here before changing the tree.
7324 if (root_el->l_tree_depth && rec->e_int_clusters == 0) {
7325 mlog(ML_ERROR, "Inode %lu has an empty "
7326 "extent record, depth %u\n", inode->i_ino,
7327 le16_to_cpu(root_el->l_tree_depth));
7328 status = ocfs2_remove_rightmost_empty_extent(osb,
7329 &et, path, &dealloc);
7330 if (status) {
7331 mlog_errno(status);
7332 goto bail;
7335 ocfs2_reinit_path(path, 1);
7336 goto start;
7337 } else {
7338 trunc_cpos = le32_to_cpu(rec->e_cpos);
7339 trunc_len = 0;
7340 blkno = 0;
7342 } else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) {
7344 * Truncate entire record.
7346 trunc_cpos = le32_to_cpu(rec->e_cpos);
7347 trunc_len = ocfs2_rec_clusters(el, rec);
7348 blkno = le64_to_cpu(rec->e_blkno);
7349 } else if (range > new_highest_cpos) {
7351 * Partial truncate. it also should be
7352 * the last truncate we're doing.
7354 trunc_cpos = new_highest_cpos;
7355 trunc_len = range - new_highest_cpos;
7356 coff = new_highest_cpos - le32_to_cpu(rec->e_cpos);
7357 blkno = le64_to_cpu(rec->e_blkno) +
7358 ocfs2_clusters_to_blocks(inode->i_sb, coff);
7359 } else {
7361 * Truncate completed, leave happily.
7363 status = 0;
7364 goto bail;
7367 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
7369 if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) {
7370 status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
7371 &ref_tree, NULL);
7372 if (status) {
7373 mlog_errno(status);
7374 goto bail;
7378 status = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
7379 phys_cpos, trunc_len, flags, &dealloc,
7380 refcount_loc, true);
7381 if (status < 0) {
7382 mlog_errno(status);
7383 goto bail;
7386 ocfs2_reinit_path(path, 1);
7389 * The check above will catch the case where we've truncated
7390 * away all allocation.
7392 goto start;
7394 bail:
7395 if (ref_tree)
7396 ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
7398 ocfs2_schedule_truncate_log_flush(osb, 1);
7400 ocfs2_run_deallocs(osb, &dealloc);
7402 ocfs2_free_path(path);
7404 return status;
7408 * 'start' is inclusive, 'end' is not.
7410 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7411 unsigned int start, unsigned int end, int trunc)
7413 int ret;
7414 unsigned int numbytes;
7415 handle_t *handle;
7416 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7417 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7418 struct ocfs2_inline_data *idata = &di->id2.i_data;
7420 if (end > i_size_read(inode))
7421 end = i_size_read(inode);
7423 BUG_ON(start > end);
7425 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7426 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7427 !ocfs2_supports_inline_data(osb)) {
7428 ocfs2_error(inode->i_sb,
7429 "Inline data flags for inode %llu don't agree! Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7430 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7431 le16_to_cpu(di->i_dyn_features),
7432 OCFS2_I(inode)->ip_dyn_features,
7433 osb->s_feature_incompat);
7434 ret = -EROFS;
7435 goto out;
7438 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7439 if (IS_ERR(handle)) {
7440 ret = PTR_ERR(handle);
7441 mlog_errno(ret);
7442 goto out;
7445 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7446 OCFS2_JOURNAL_ACCESS_WRITE);
7447 if (ret) {
7448 mlog_errno(ret);
7449 goto out_commit;
7452 numbytes = end - start;
7453 memset(idata->id_data + start, 0, numbytes);
7456 * No need to worry about the data page here - it's been
7457 * truncated already and inline data doesn't need it for
7458 * pushing zero's to disk, so we'll let readpage pick it up
7459 * later.
7461 if (trunc) {
7462 i_size_write(inode, start);
7463 di->i_size = cpu_to_le64(start);
7466 inode->i_blocks = ocfs2_inode_sector_count(inode);
7467 inode->i_ctime = inode->i_mtime = current_time(inode);
7469 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7470 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7472 ocfs2_update_inode_fsync_trans(handle, inode, 1);
7473 ocfs2_journal_dirty(handle, di_bh);
7475 out_commit:
7476 ocfs2_commit_trans(osb, handle);
7478 out:
7479 return ret;
7482 static int ocfs2_trim_extent(struct super_block *sb,
7483 struct ocfs2_group_desc *gd,
7484 u64 group, u32 start, u32 count)
7486 u64 discard, bcount;
7487 struct ocfs2_super *osb = OCFS2_SB(sb);
7489 bcount = ocfs2_clusters_to_blocks(sb, count);
7490 discard = ocfs2_clusters_to_blocks(sb, start);
7493 * For the first cluster group, the gd->bg_blkno is not at the start
7494 * of the group, but at an offset from the start. If we add it while
7495 * calculating discard for first group, we will wrongly start fstrim a
7496 * few blocks after the desried start block and the range can cross
7497 * over into the next cluster group. So, add it only if this is not
7498 * the first cluster group.
7500 if (group != osb->first_cluster_group_blkno)
7501 discard += le64_to_cpu(gd->bg_blkno);
7503 trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount);
7505 return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0);
7508 static int ocfs2_trim_group(struct super_block *sb,
7509 struct ocfs2_group_desc *gd, u64 group,
7510 u32 start, u32 max, u32 minbits)
7512 int ret = 0, count = 0, next;
7513 void *bitmap = gd->bg_bitmap;
7515 if (le16_to_cpu(gd->bg_free_bits_count) < minbits)
7516 return 0;
7518 trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno),
7519 start, max, minbits);
7521 while (start < max) {
7522 start = ocfs2_find_next_zero_bit(bitmap, max, start);
7523 if (start >= max)
7524 break;
7525 next = ocfs2_find_next_bit(bitmap, max, start);
7527 if ((next - start) >= minbits) {
7528 ret = ocfs2_trim_extent(sb, gd, group,
7529 start, next - start);
7530 if (ret < 0) {
7531 mlog_errno(ret);
7532 break;
7534 count += next - start;
7536 start = next + 1;
7538 if (fatal_signal_pending(current)) {
7539 count = -ERESTARTSYS;
7540 break;
7543 if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits)
7544 break;
7547 if (ret < 0)
7548 count = ret;
7550 return count;
7553 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range)
7555 struct ocfs2_super *osb = OCFS2_SB(sb);
7556 u64 start, len, trimmed, first_group, last_group, group;
7557 int ret, cnt;
7558 u32 first_bit, last_bit, minlen;
7559 struct buffer_head *main_bm_bh = NULL;
7560 struct inode *main_bm_inode = NULL;
7561 struct buffer_head *gd_bh = NULL;
7562 struct ocfs2_dinode *main_bm;
7563 struct ocfs2_group_desc *gd = NULL;
7564 struct ocfs2_trim_fs_info info, *pinfo = NULL;
7566 start = range->start >> osb->s_clustersize_bits;
7567 len = range->len >> osb->s_clustersize_bits;
7568 minlen = range->minlen >> osb->s_clustersize_bits;
7570 if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize)
7571 return -EINVAL;
7573 main_bm_inode = ocfs2_get_system_file_inode(osb,
7574 GLOBAL_BITMAP_SYSTEM_INODE,
7575 OCFS2_INVALID_SLOT);
7576 if (!main_bm_inode) {
7577 ret = -EIO;
7578 mlog_errno(ret);
7579 goto out;
7582 inode_lock(main_bm_inode);
7584 ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0);
7585 if (ret < 0) {
7586 mlog_errno(ret);
7587 goto out_mutex;
7589 main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data;
7591 if (start >= le32_to_cpu(main_bm->i_clusters)) {
7592 ret = -EINVAL;
7593 goto out_unlock;
7596 len = range->len >> osb->s_clustersize_bits;
7597 if (start + len > le32_to_cpu(main_bm->i_clusters))
7598 len = le32_to_cpu(main_bm->i_clusters) - start;
7600 trace_ocfs2_trim_fs(start, len, minlen);
7602 ocfs2_trim_fs_lock_res_init(osb);
7603 ret = ocfs2_trim_fs_lock(osb, NULL, 1);
7604 if (ret < 0) {
7605 if (ret != -EAGAIN) {
7606 mlog_errno(ret);
7607 ocfs2_trim_fs_lock_res_uninit(osb);
7608 goto out_unlock;
7611 mlog(ML_NOTICE, "Wait for trim on device (%s) to "
7612 "finish, which is running from another node.\n",
7613 osb->dev_str);
7614 ret = ocfs2_trim_fs_lock(osb, &info, 0);
7615 if (ret < 0) {
7616 mlog_errno(ret);
7617 ocfs2_trim_fs_lock_res_uninit(osb);
7618 goto out_unlock;
7621 if (info.tf_valid && info.tf_success &&
7622 info.tf_start == start && info.tf_len == len &&
7623 info.tf_minlen == minlen) {
7624 /* Avoid sending duplicated trim to a shared device */
7625 mlog(ML_NOTICE, "The same trim on device (%s) was "
7626 "just done from node (%u), return.\n",
7627 osb->dev_str, info.tf_nodenum);
7628 range->len = info.tf_trimlen;
7629 goto out_trimunlock;
7633 info.tf_nodenum = osb->node_num;
7634 info.tf_start = start;
7635 info.tf_len = len;
7636 info.tf_minlen = minlen;
7638 /* Determine first and last group to examine based on start and len */
7639 first_group = ocfs2_which_cluster_group(main_bm_inode, start);
7640 if (first_group == osb->first_cluster_group_blkno)
7641 first_bit = start;
7642 else
7643 first_bit = start - ocfs2_blocks_to_clusters(sb, first_group);
7644 last_group = ocfs2_which_cluster_group(main_bm_inode, start + len - 1);
7645 last_bit = osb->bitmap_cpg;
7647 trimmed = 0;
7648 for (group = first_group; group <= last_group;) {
7649 if (first_bit + len >= osb->bitmap_cpg)
7650 last_bit = osb->bitmap_cpg;
7651 else
7652 last_bit = first_bit + len;
7654 ret = ocfs2_read_group_descriptor(main_bm_inode,
7655 main_bm, group,
7656 &gd_bh);
7657 if (ret < 0) {
7658 mlog_errno(ret);
7659 break;
7662 gd = (struct ocfs2_group_desc *)gd_bh->b_data;
7663 cnt = ocfs2_trim_group(sb, gd, group,
7664 first_bit, last_bit, minlen);
7665 brelse(gd_bh);
7666 gd_bh = NULL;
7667 if (cnt < 0) {
7668 ret = cnt;
7669 mlog_errno(ret);
7670 break;
7673 trimmed += cnt;
7674 len -= osb->bitmap_cpg - first_bit;
7675 first_bit = 0;
7676 if (group == osb->first_cluster_group_blkno)
7677 group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7678 else
7679 group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7681 range->len = trimmed * sb->s_blocksize;
7683 info.tf_trimlen = range->len;
7684 info.tf_success = (ret ? 0 : 1);
7685 pinfo = &info;
7686 out_trimunlock:
7687 ocfs2_trim_fs_unlock(osb, pinfo);
7688 ocfs2_trim_fs_lock_res_uninit(osb);
7689 out_unlock:
7690 ocfs2_inode_unlock(main_bm_inode, 0);
7691 brelse(main_bm_bh);
7692 out_mutex:
7693 inode_unlock(main_bm_inode);
7694 iput(main_bm_inode);
7695 out:
7696 return ret;