Linux 4.16-rc1
[cris-mirror.git] / kernel / rcu / tree_plugin.h
blobfb88a028deecd18fbba5afb110272f586aad762a
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/sched/debug.h>
31 #include <linux/smpboot.h>
32 #include <linux/sched/isolation.h>
33 #include <uapi/linux/sched/types.h>
34 #include "../time/tick-internal.h"
36 #ifdef CONFIG_RCU_BOOST
38 #include "../locking/rtmutex_common.h"
41 * Control variables for per-CPU and per-rcu_node kthreads. These
42 * handle all flavors of RCU.
44 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
45 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
46 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
47 DEFINE_PER_CPU(char, rcu_cpu_has_work);
49 #else /* #ifdef CONFIG_RCU_BOOST */
52 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
53 * all uses are in dead code. Provide a definition to keep the compiler
54 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
55 * This probably needs to be excluded from -rt builds.
57 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
58 #define rt_mutex_futex_unlock(x) WARN_ON_ONCE(1)
60 #endif /* #else #ifdef CONFIG_RCU_BOOST */
62 #ifdef CONFIG_RCU_NOCB_CPU
63 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
64 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
65 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
68 * Check the RCU kernel configuration parameters and print informative
69 * messages about anything out of the ordinary.
71 static void __init rcu_bootup_announce_oddness(void)
73 if (IS_ENABLED(CONFIG_RCU_TRACE))
74 pr_info("\tRCU event tracing is enabled.\n");
75 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
76 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
77 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
78 RCU_FANOUT);
79 if (rcu_fanout_exact)
80 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
81 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
82 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
83 if (IS_ENABLED(CONFIG_PROVE_RCU))
84 pr_info("\tRCU lockdep checking is enabled.\n");
85 if (RCU_NUM_LVLS >= 4)
86 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
87 if (RCU_FANOUT_LEAF != 16)
88 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
89 RCU_FANOUT_LEAF);
90 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
91 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
92 if (nr_cpu_ids != NR_CPUS)
93 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
94 #ifdef CONFIG_RCU_BOOST
95 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", kthread_prio, CONFIG_RCU_BOOST_DELAY);
96 #endif
97 if (blimit != DEFAULT_RCU_BLIMIT)
98 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
99 if (qhimark != DEFAULT_RCU_QHIMARK)
100 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
101 if (qlowmark != DEFAULT_RCU_QLOMARK)
102 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
103 if (jiffies_till_first_fqs != ULONG_MAX)
104 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
105 if (jiffies_till_next_fqs != ULONG_MAX)
106 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
107 if (rcu_kick_kthreads)
108 pr_info("\tKick kthreads if too-long grace period.\n");
109 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
110 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
111 if (gp_preinit_delay)
112 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
113 if (gp_init_delay)
114 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
115 if (gp_cleanup_delay)
116 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
117 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
118 pr_info("\tRCU debug extended QS entry/exit.\n");
119 rcupdate_announce_bootup_oddness();
122 #ifdef CONFIG_PREEMPT_RCU
124 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
125 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
126 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
128 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
129 bool wake);
132 * Tell them what RCU they are running.
134 static void __init rcu_bootup_announce(void)
136 pr_info("Preemptible hierarchical RCU implementation.\n");
137 rcu_bootup_announce_oddness();
140 /* Flags for rcu_preempt_ctxt_queue() decision table. */
141 #define RCU_GP_TASKS 0x8
142 #define RCU_EXP_TASKS 0x4
143 #define RCU_GP_BLKD 0x2
144 #define RCU_EXP_BLKD 0x1
147 * Queues a task preempted within an RCU-preempt read-side critical
148 * section into the appropriate location within the ->blkd_tasks list,
149 * depending on the states of any ongoing normal and expedited grace
150 * periods. The ->gp_tasks pointer indicates which element the normal
151 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
152 * indicates which element the expedited grace period is waiting on (again,
153 * NULL if none). If a grace period is waiting on a given element in the
154 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
155 * adding a task to the tail of the list blocks any grace period that is
156 * already waiting on one of the elements. In contrast, adding a task
157 * to the head of the list won't block any grace period that is already
158 * waiting on one of the elements.
160 * This queuing is imprecise, and can sometimes make an ongoing grace
161 * period wait for a task that is not strictly speaking blocking it.
162 * Given the choice, we needlessly block a normal grace period rather than
163 * blocking an expedited grace period.
165 * Note that an endless sequence of expedited grace periods still cannot
166 * indefinitely postpone a normal grace period. Eventually, all of the
167 * fixed number of preempted tasks blocking the normal grace period that are
168 * not also blocking the expedited grace period will resume and complete
169 * their RCU read-side critical sections. At that point, the ->gp_tasks
170 * pointer will equal the ->exp_tasks pointer, at which point the end of
171 * the corresponding expedited grace period will also be the end of the
172 * normal grace period.
174 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
175 __releases(rnp->lock) /* But leaves rrupts disabled. */
177 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
178 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
179 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
180 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
181 struct task_struct *t = current;
183 lockdep_assert_held(&rnp->lock);
184 WARN_ON_ONCE(rdp->mynode != rnp);
185 WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1);
188 * Decide where to queue the newly blocked task. In theory,
189 * this could be an if-statement. In practice, when I tried
190 * that, it was quite messy.
192 switch (blkd_state) {
193 case 0:
194 case RCU_EXP_TASKS:
195 case RCU_EXP_TASKS + RCU_GP_BLKD:
196 case RCU_GP_TASKS:
197 case RCU_GP_TASKS + RCU_EXP_TASKS:
200 * Blocking neither GP, or first task blocking the normal
201 * GP but not blocking the already-waiting expedited GP.
202 * Queue at the head of the list to avoid unnecessarily
203 * blocking the already-waiting GPs.
205 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
206 break;
208 case RCU_EXP_BLKD:
209 case RCU_GP_BLKD:
210 case RCU_GP_BLKD + RCU_EXP_BLKD:
211 case RCU_GP_TASKS + RCU_EXP_BLKD:
212 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
213 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
216 * First task arriving that blocks either GP, or first task
217 * arriving that blocks the expedited GP (with the normal
218 * GP already waiting), or a task arriving that blocks
219 * both GPs with both GPs already waiting. Queue at the
220 * tail of the list to avoid any GP waiting on any of the
221 * already queued tasks that are not blocking it.
223 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
224 break;
226 case RCU_EXP_TASKS + RCU_EXP_BLKD:
227 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
228 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
231 * Second or subsequent task blocking the expedited GP.
232 * The task either does not block the normal GP, or is the
233 * first task blocking the normal GP. Queue just after
234 * the first task blocking the expedited GP.
236 list_add(&t->rcu_node_entry, rnp->exp_tasks);
237 break;
239 case RCU_GP_TASKS + RCU_GP_BLKD:
240 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
243 * Second or subsequent task blocking the normal GP.
244 * The task does not block the expedited GP. Queue just
245 * after the first task blocking the normal GP.
247 list_add(&t->rcu_node_entry, rnp->gp_tasks);
248 break;
250 default:
252 /* Yet another exercise in excessive paranoia. */
253 WARN_ON_ONCE(1);
254 break;
258 * We have now queued the task. If it was the first one to
259 * block either grace period, update the ->gp_tasks and/or
260 * ->exp_tasks pointers, respectively, to reference the newly
261 * blocked tasks.
263 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
264 rnp->gp_tasks = &t->rcu_node_entry;
265 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
266 rnp->exp_tasks = &t->rcu_node_entry;
267 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
268 !(rnp->qsmask & rdp->grpmask));
269 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
270 !(rnp->expmask & rdp->grpmask));
271 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
274 * Report the quiescent state for the expedited GP. This expedited
275 * GP should not be able to end until we report, so there should be
276 * no need to check for a subsequent expedited GP. (Though we are
277 * still in a quiescent state in any case.)
279 if (blkd_state & RCU_EXP_BLKD &&
280 t->rcu_read_unlock_special.b.exp_need_qs) {
281 t->rcu_read_unlock_special.b.exp_need_qs = false;
282 rcu_report_exp_rdp(rdp->rsp, rdp, true);
283 } else {
284 WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
289 * Record a preemptible-RCU quiescent state for the specified CPU. Note
290 * that this just means that the task currently running on the CPU is
291 * not in a quiescent state. There might be any number of tasks blocked
292 * while in an RCU read-side critical section.
294 * As with the other rcu_*_qs() functions, callers to this function
295 * must disable preemption.
297 static void rcu_preempt_qs(void)
299 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_qs() invoked with preemption enabled!!!\n");
300 if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
301 trace_rcu_grace_period(TPS("rcu_preempt"),
302 __this_cpu_read(rcu_data_p->gpnum),
303 TPS("cpuqs"));
304 __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
305 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
306 current->rcu_read_unlock_special.b.need_qs = false;
311 * We have entered the scheduler, and the current task might soon be
312 * context-switched away from. If this task is in an RCU read-side
313 * critical section, we will no longer be able to rely on the CPU to
314 * record that fact, so we enqueue the task on the blkd_tasks list.
315 * The task will dequeue itself when it exits the outermost enclosing
316 * RCU read-side critical section. Therefore, the current grace period
317 * cannot be permitted to complete until the blkd_tasks list entries
318 * predating the current grace period drain, in other words, until
319 * rnp->gp_tasks becomes NULL.
321 * Caller must disable interrupts.
323 static void rcu_preempt_note_context_switch(bool preempt)
325 struct task_struct *t = current;
326 struct rcu_data *rdp;
327 struct rcu_node *rnp;
329 lockdep_assert_irqs_disabled();
330 WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
331 if (t->rcu_read_lock_nesting > 0 &&
332 !t->rcu_read_unlock_special.b.blocked) {
334 /* Possibly blocking in an RCU read-side critical section. */
335 rdp = this_cpu_ptr(rcu_state_p->rda);
336 rnp = rdp->mynode;
337 raw_spin_lock_rcu_node(rnp);
338 t->rcu_read_unlock_special.b.blocked = true;
339 t->rcu_blocked_node = rnp;
342 * Verify the CPU's sanity, trace the preemption, and
343 * then queue the task as required based on the states
344 * of any ongoing and expedited grace periods.
346 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
347 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
348 trace_rcu_preempt_task(rdp->rsp->name,
349 t->pid,
350 (rnp->qsmask & rdp->grpmask)
351 ? rnp->gpnum
352 : rnp->gpnum + 1);
353 rcu_preempt_ctxt_queue(rnp, rdp);
354 } else if (t->rcu_read_lock_nesting < 0 &&
355 t->rcu_read_unlock_special.s) {
358 * Complete exit from RCU read-side critical section on
359 * behalf of preempted instance of __rcu_read_unlock().
361 rcu_read_unlock_special(t);
365 * Either we were not in an RCU read-side critical section to
366 * begin with, or we have now recorded that critical section
367 * globally. Either way, we can now note a quiescent state
368 * for this CPU. Again, if we were in an RCU read-side critical
369 * section, and if that critical section was blocking the current
370 * grace period, then the fact that the task has been enqueued
371 * means that we continue to block the current grace period.
373 rcu_preempt_qs();
377 * Check for preempted RCU readers blocking the current grace period
378 * for the specified rcu_node structure. If the caller needs a reliable
379 * answer, it must hold the rcu_node's ->lock.
381 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
383 return rnp->gp_tasks != NULL;
387 * Advance a ->blkd_tasks-list pointer to the next entry, instead
388 * returning NULL if at the end of the list.
390 static struct list_head *rcu_next_node_entry(struct task_struct *t,
391 struct rcu_node *rnp)
393 struct list_head *np;
395 np = t->rcu_node_entry.next;
396 if (np == &rnp->blkd_tasks)
397 np = NULL;
398 return np;
402 * Return true if the specified rcu_node structure has tasks that were
403 * preempted within an RCU read-side critical section.
405 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
407 return !list_empty(&rnp->blkd_tasks);
411 * Handle special cases during rcu_read_unlock(), such as needing to
412 * notify RCU core processing or task having blocked during the RCU
413 * read-side critical section.
415 void rcu_read_unlock_special(struct task_struct *t)
417 bool empty_exp;
418 bool empty_norm;
419 bool empty_exp_now;
420 unsigned long flags;
421 struct list_head *np;
422 bool drop_boost_mutex = false;
423 struct rcu_data *rdp;
424 struct rcu_node *rnp;
425 union rcu_special special;
427 /* NMI handlers cannot block and cannot safely manipulate state. */
428 if (in_nmi())
429 return;
431 local_irq_save(flags);
434 * If RCU core is waiting for this CPU to exit its critical section,
435 * report the fact that it has exited. Because irqs are disabled,
436 * t->rcu_read_unlock_special cannot change.
438 special = t->rcu_read_unlock_special;
439 if (special.b.need_qs) {
440 rcu_preempt_qs();
441 t->rcu_read_unlock_special.b.need_qs = false;
442 if (!t->rcu_read_unlock_special.s) {
443 local_irq_restore(flags);
444 return;
449 * Respond to a request for an expedited grace period, but only if
450 * we were not preempted, meaning that we were running on the same
451 * CPU throughout. If we were preempted, the exp_need_qs flag
452 * would have been cleared at the time of the first preemption,
453 * and the quiescent state would be reported when we were dequeued.
455 if (special.b.exp_need_qs) {
456 WARN_ON_ONCE(special.b.blocked);
457 t->rcu_read_unlock_special.b.exp_need_qs = false;
458 rdp = this_cpu_ptr(rcu_state_p->rda);
459 rcu_report_exp_rdp(rcu_state_p, rdp, true);
460 if (!t->rcu_read_unlock_special.s) {
461 local_irq_restore(flags);
462 return;
466 /* Hardware IRQ handlers cannot block, complain if they get here. */
467 if (in_irq() || in_serving_softirq()) {
468 lockdep_rcu_suspicious(__FILE__, __LINE__,
469 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
470 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
471 t->rcu_read_unlock_special.s,
472 t->rcu_read_unlock_special.b.blocked,
473 t->rcu_read_unlock_special.b.exp_need_qs,
474 t->rcu_read_unlock_special.b.need_qs);
475 local_irq_restore(flags);
476 return;
479 /* Clean up if blocked during RCU read-side critical section. */
480 if (special.b.blocked) {
481 t->rcu_read_unlock_special.b.blocked = false;
484 * Remove this task from the list it blocked on. The task
485 * now remains queued on the rcu_node corresponding to the
486 * CPU it first blocked on, so there is no longer any need
487 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
489 rnp = t->rcu_blocked_node;
490 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
491 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
492 WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1);
493 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
494 empty_exp = sync_rcu_preempt_exp_done(rnp);
495 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
496 np = rcu_next_node_entry(t, rnp);
497 list_del_init(&t->rcu_node_entry);
498 t->rcu_blocked_node = NULL;
499 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
500 rnp->gpnum, t->pid);
501 if (&t->rcu_node_entry == rnp->gp_tasks)
502 rnp->gp_tasks = np;
503 if (&t->rcu_node_entry == rnp->exp_tasks)
504 rnp->exp_tasks = np;
505 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
506 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
507 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
508 if (&t->rcu_node_entry == rnp->boost_tasks)
509 rnp->boost_tasks = np;
513 * If this was the last task on the current list, and if
514 * we aren't waiting on any CPUs, report the quiescent state.
515 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
516 * so we must take a snapshot of the expedited state.
518 empty_exp_now = sync_rcu_preempt_exp_done(rnp);
519 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
520 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
521 rnp->gpnum,
522 0, rnp->qsmask,
523 rnp->level,
524 rnp->grplo,
525 rnp->grphi,
526 !!rnp->gp_tasks);
527 rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
528 } else {
529 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
532 /* Unboost if we were boosted. */
533 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
534 rt_mutex_futex_unlock(&rnp->boost_mtx);
537 * If this was the last task on the expedited lists,
538 * then we need to report up the rcu_node hierarchy.
540 if (!empty_exp && empty_exp_now)
541 rcu_report_exp_rnp(rcu_state_p, rnp, true);
542 } else {
543 local_irq_restore(flags);
548 * Dump detailed information for all tasks blocking the current RCU
549 * grace period on the specified rcu_node structure.
551 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
553 unsigned long flags;
554 struct task_struct *t;
556 raw_spin_lock_irqsave_rcu_node(rnp, flags);
557 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
558 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
559 return;
561 t = list_entry(rnp->gp_tasks->prev,
562 struct task_struct, rcu_node_entry);
563 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
564 sched_show_task(t);
565 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
569 * Dump detailed information for all tasks blocking the current RCU
570 * grace period.
572 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
574 struct rcu_node *rnp = rcu_get_root(rsp);
576 rcu_print_detail_task_stall_rnp(rnp);
577 rcu_for_each_leaf_node(rsp, rnp)
578 rcu_print_detail_task_stall_rnp(rnp);
581 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
583 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
584 rnp->level, rnp->grplo, rnp->grphi);
587 static void rcu_print_task_stall_end(void)
589 pr_cont("\n");
593 * Scan the current list of tasks blocked within RCU read-side critical
594 * sections, printing out the tid of each.
596 static int rcu_print_task_stall(struct rcu_node *rnp)
598 struct task_struct *t;
599 int ndetected = 0;
601 if (!rcu_preempt_blocked_readers_cgp(rnp))
602 return 0;
603 rcu_print_task_stall_begin(rnp);
604 t = list_entry(rnp->gp_tasks->prev,
605 struct task_struct, rcu_node_entry);
606 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
607 pr_cont(" P%d", t->pid);
608 ndetected++;
610 rcu_print_task_stall_end();
611 return ndetected;
615 * Scan the current list of tasks blocked within RCU read-side critical
616 * sections, printing out the tid of each that is blocking the current
617 * expedited grace period.
619 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
621 struct task_struct *t;
622 int ndetected = 0;
624 if (!rnp->exp_tasks)
625 return 0;
626 t = list_entry(rnp->exp_tasks->prev,
627 struct task_struct, rcu_node_entry);
628 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
629 pr_cont(" P%d", t->pid);
630 ndetected++;
632 return ndetected;
636 * Check that the list of blocked tasks for the newly completed grace
637 * period is in fact empty. It is a serious bug to complete a grace
638 * period that still has RCU readers blocked! This function must be
639 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
640 * must be held by the caller.
642 * Also, if there are blocked tasks on the list, they automatically
643 * block the newly created grace period, so set up ->gp_tasks accordingly.
645 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
647 struct task_struct *t;
649 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
650 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
651 if (rcu_preempt_has_tasks(rnp)) {
652 rnp->gp_tasks = rnp->blkd_tasks.next;
653 t = container_of(rnp->gp_tasks, struct task_struct,
654 rcu_node_entry);
655 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
656 rnp->gpnum, t->pid);
658 WARN_ON_ONCE(rnp->qsmask);
662 * Check for a quiescent state from the current CPU. When a task blocks,
663 * the task is recorded in the corresponding CPU's rcu_node structure,
664 * which is checked elsewhere.
666 * Caller must disable hard irqs.
668 static void rcu_preempt_check_callbacks(void)
670 struct task_struct *t = current;
672 if (t->rcu_read_lock_nesting == 0) {
673 rcu_preempt_qs();
674 return;
676 if (t->rcu_read_lock_nesting > 0 &&
677 __this_cpu_read(rcu_data_p->core_needs_qs) &&
678 __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
679 t->rcu_read_unlock_special.b.need_qs = true;
682 #ifdef CONFIG_RCU_BOOST
684 static void rcu_preempt_do_callbacks(void)
686 rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
689 #endif /* #ifdef CONFIG_RCU_BOOST */
692 * call_rcu() - Queue an RCU callback for invocation after a grace period.
693 * @head: structure to be used for queueing the RCU updates.
694 * @func: actual callback function to be invoked after the grace period
696 * The callback function will be invoked some time after a full grace
697 * period elapses, in other words after all pre-existing RCU read-side
698 * critical sections have completed. However, the callback function
699 * might well execute concurrently with RCU read-side critical sections
700 * that started after call_rcu() was invoked. RCU read-side critical
701 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
702 * and may be nested.
704 * Note that all CPUs must agree that the grace period extended beyond
705 * all pre-existing RCU read-side critical section. On systems with more
706 * than one CPU, this means that when "func()" is invoked, each CPU is
707 * guaranteed to have executed a full memory barrier since the end of its
708 * last RCU read-side critical section whose beginning preceded the call
709 * to call_rcu(). It also means that each CPU executing an RCU read-side
710 * critical section that continues beyond the start of "func()" must have
711 * executed a memory barrier after the call_rcu() but before the beginning
712 * of that RCU read-side critical section. Note that these guarantees
713 * include CPUs that are offline, idle, or executing in user mode, as
714 * well as CPUs that are executing in the kernel.
716 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
717 * resulting RCU callback function "func()", then both CPU A and CPU B are
718 * guaranteed to execute a full memory barrier during the time interval
719 * between the call to call_rcu() and the invocation of "func()" -- even
720 * if CPU A and CPU B are the same CPU (but again only if the system has
721 * more than one CPU).
723 void call_rcu(struct rcu_head *head, rcu_callback_t func)
725 __call_rcu(head, func, rcu_state_p, -1, 0);
727 EXPORT_SYMBOL_GPL(call_rcu);
730 * synchronize_rcu - wait until a grace period has elapsed.
732 * Control will return to the caller some time after a full grace
733 * period has elapsed, in other words after all currently executing RCU
734 * read-side critical sections have completed. Note, however, that
735 * upon return from synchronize_rcu(), the caller might well be executing
736 * concurrently with new RCU read-side critical sections that began while
737 * synchronize_rcu() was waiting. RCU read-side critical sections are
738 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
740 * See the description of synchronize_sched() for more detailed
741 * information on memory-ordering guarantees. However, please note
742 * that -only- the memory-ordering guarantees apply. For example,
743 * synchronize_rcu() is -not- guaranteed to wait on things like code
744 * protected by preempt_disable(), instead, synchronize_rcu() is -only-
745 * guaranteed to wait on RCU read-side critical sections, that is, sections
746 * of code protected by rcu_read_lock().
748 void synchronize_rcu(void)
750 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
751 lock_is_held(&rcu_lock_map) ||
752 lock_is_held(&rcu_sched_lock_map),
753 "Illegal synchronize_rcu() in RCU read-side critical section");
754 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
755 return;
756 if (rcu_gp_is_expedited())
757 synchronize_rcu_expedited();
758 else
759 wait_rcu_gp(call_rcu);
761 EXPORT_SYMBOL_GPL(synchronize_rcu);
764 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
766 * Note that this primitive does not necessarily wait for an RCU grace period
767 * to complete. For example, if there are no RCU callbacks queued anywhere
768 * in the system, then rcu_barrier() is within its rights to return
769 * immediately, without waiting for anything, much less an RCU grace period.
771 void rcu_barrier(void)
773 _rcu_barrier(rcu_state_p);
775 EXPORT_SYMBOL_GPL(rcu_barrier);
778 * Initialize preemptible RCU's state structures.
780 static void __init __rcu_init_preempt(void)
782 rcu_init_one(rcu_state_p);
786 * Check for a task exiting while in a preemptible-RCU read-side
787 * critical section, clean up if so. No need to issue warnings,
788 * as debug_check_no_locks_held() already does this if lockdep
789 * is enabled.
791 void exit_rcu(void)
793 struct task_struct *t = current;
795 if (likely(list_empty(&current->rcu_node_entry)))
796 return;
797 t->rcu_read_lock_nesting = 1;
798 barrier();
799 t->rcu_read_unlock_special.b.blocked = true;
800 __rcu_read_unlock();
803 #else /* #ifdef CONFIG_PREEMPT_RCU */
805 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
808 * Tell them what RCU they are running.
810 static void __init rcu_bootup_announce(void)
812 pr_info("Hierarchical RCU implementation.\n");
813 rcu_bootup_announce_oddness();
817 * Because preemptible RCU does not exist, we never have to check for
818 * CPUs being in quiescent states.
820 static void rcu_preempt_note_context_switch(bool preempt)
825 * Because preemptible RCU does not exist, there are never any preempted
826 * RCU readers.
828 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
830 return 0;
834 * Because there is no preemptible RCU, there can be no readers blocked.
836 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
838 return false;
842 * Because preemptible RCU does not exist, we never have to check for
843 * tasks blocked within RCU read-side critical sections.
845 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
850 * Because preemptible RCU does not exist, we never have to check for
851 * tasks blocked within RCU read-side critical sections.
853 static int rcu_print_task_stall(struct rcu_node *rnp)
855 return 0;
859 * Because preemptible RCU does not exist, we never have to check for
860 * tasks blocked within RCU read-side critical sections that are
861 * blocking the current expedited grace period.
863 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
865 return 0;
869 * Because there is no preemptible RCU, there can be no readers blocked,
870 * so there is no need to check for blocked tasks. So check only for
871 * bogus qsmask values.
873 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
875 WARN_ON_ONCE(rnp->qsmask);
879 * Because preemptible RCU does not exist, it never has any callbacks
880 * to check.
882 static void rcu_preempt_check_callbacks(void)
887 * Because preemptible RCU does not exist, rcu_barrier() is just
888 * another name for rcu_barrier_sched().
890 void rcu_barrier(void)
892 rcu_barrier_sched();
894 EXPORT_SYMBOL_GPL(rcu_barrier);
897 * Because preemptible RCU does not exist, it need not be initialized.
899 static void __init __rcu_init_preempt(void)
904 * Because preemptible RCU does not exist, tasks cannot possibly exit
905 * while in preemptible RCU read-side critical sections.
907 void exit_rcu(void)
911 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
913 #ifdef CONFIG_RCU_BOOST
915 static void rcu_wake_cond(struct task_struct *t, int status)
918 * If the thread is yielding, only wake it when this
919 * is invoked from idle
921 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
922 wake_up_process(t);
926 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
927 * or ->boost_tasks, advancing the pointer to the next task in the
928 * ->blkd_tasks list.
930 * Note that irqs must be enabled: boosting the task can block.
931 * Returns 1 if there are more tasks needing to be boosted.
933 static int rcu_boost(struct rcu_node *rnp)
935 unsigned long flags;
936 struct task_struct *t;
937 struct list_head *tb;
939 if (READ_ONCE(rnp->exp_tasks) == NULL &&
940 READ_ONCE(rnp->boost_tasks) == NULL)
941 return 0; /* Nothing left to boost. */
943 raw_spin_lock_irqsave_rcu_node(rnp, flags);
946 * Recheck under the lock: all tasks in need of boosting
947 * might exit their RCU read-side critical sections on their own.
949 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
950 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
951 return 0;
955 * Preferentially boost tasks blocking expedited grace periods.
956 * This cannot starve the normal grace periods because a second
957 * expedited grace period must boost all blocked tasks, including
958 * those blocking the pre-existing normal grace period.
960 if (rnp->exp_tasks != NULL) {
961 tb = rnp->exp_tasks;
962 rnp->n_exp_boosts++;
963 } else {
964 tb = rnp->boost_tasks;
965 rnp->n_normal_boosts++;
967 rnp->n_tasks_boosted++;
970 * We boost task t by manufacturing an rt_mutex that appears to
971 * be held by task t. We leave a pointer to that rt_mutex where
972 * task t can find it, and task t will release the mutex when it
973 * exits its outermost RCU read-side critical section. Then
974 * simply acquiring this artificial rt_mutex will boost task
975 * t's priority. (Thanks to tglx for suggesting this approach!)
977 * Note that task t must acquire rnp->lock to remove itself from
978 * the ->blkd_tasks list, which it will do from exit() if from
979 * nowhere else. We therefore are guaranteed that task t will
980 * stay around at least until we drop rnp->lock. Note that
981 * rnp->lock also resolves races between our priority boosting
982 * and task t's exiting its outermost RCU read-side critical
983 * section.
985 t = container_of(tb, struct task_struct, rcu_node_entry);
986 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
987 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
988 /* Lock only for side effect: boosts task t's priority. */
989 rt_mutex_lock(&rnp->boost_mtx);
990 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
992 return READ_ONCE(rnp->exp_tasks) != NULL ||
993 READ_ONCE(rnp->boost_tasks) != NULL;
997 * Priority-boosting kthread, one per leaf rcu_node.
999 static int rcu_boost_kthread(void *arg)
1001 struct rcu_node *rnp = (struct rcu_node *)arg;
1002 int spincnt = 0;
1003 int more2boost;
1005 trace_rcu_utilization(TPS("Start boost kthread@init"));
1006 for (;;) {
1007 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1008 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1009 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1010 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1011 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1012 more2boost = rcu_boost(rnp);
1013 if (more2boost)
1014 spincnt++;
1015 else
1016 spincnt = 0;
1017 if (spincnt > 10) {
1018 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1019 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1020 schedule_timeout_interruptible(2);
1021 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1022 spincnt = 0;
1025 /* NOTREACHED */
1026 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1027 return 0;
1031 * Check to see if it is time to start boosting RCU readers that are
1032 * blocking the current grace period, and, if so, tell the per-rcu_node
1033 * kthread to start boosting them. If there is an expedited grace
1034 * period in progress, it is always time to boost.
1036 * The caller must hold rnp->lock, which this function releases.
1037 * The ->boost_kthread_task is immortal, so we don't need to worry
1038 * about it going away.
1040 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1041 __releases(rnp->lock)
1043 struct task_struct *t;
1045 lockdep_assert_held(&rnp->lock);
1046 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1047 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1048 return;
1050 if (rnp->exp_tasks != NULL ||
1051 (rnp->gp_tasks != NULL &&
1052 rnp->boost_tasks == NULL &&
1053 rnp->qsmask == 0 &&
1054 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1055 if (rnp->exp_tasks == NULL)
1056 rnp->boost_tasks = rnp->gp_tasks;
1057 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1058 t = rnp->boost_kthread_task;
1059 if (t)
1060 rcu_wake_cond(t, rnp->boost_kthread_status);
1061 } else {
1062 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1067 * Wake up the per-CPU kthread to invoke RCU callbacks.
1069 static void invoke_rcu_callbacks_kthread(void)
1071 unsigned long flags;
1073 local_irq_save(flags);
1074 __this_cpu_write(rcu_cpu_has_work, 1);
1075 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1076 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1077 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1078 __this_cpu_read(rcu_cpu_kthread_status));
1080 local_irq_restore(flags);
1084 * Is the current CPU running the RCU-callbacks kthread?
1085 * Caller must have preemption disabled.
1087 static bool rcu_is_callbacks_kthread(void)
1089 return __this_cpu_read(rcu_cpu_kthread_task) == current;
1092 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1095 * Do priority-boost accounting for the start of a new grace period.
1097 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1099 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1103 * Create an RCU-boost kthread for the specified node if one does not
1104 * already exist. We only create this kthread for preemptible RCU.
1105 * Returns zero if all is well, a negated errno otherwise.
1107 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1108 struct rcu_node *rnp)
1110 int rnp_index = rnp - &rsp->node[0];
1111 unsigned long flags;
1112 struct sched_param sp;
1113 struct task_struct *t;
1115 if (rcu_state_p != rsp)
1116 return 0;
1118 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1119 return 0;
1121 rsp->boost = 1;
1122 if (rnp->boost_kthread_task != NULL)
1123 return 0;
1124 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1125 "rcub/%d", rnp_index);
1126 if (IS_ERR(t))
1127 return PTR_ERR(t);
1128 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1129 rnp->boost_kthread_task = t;
1130 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1131 sp.sched_priority = kthread_prio;
1132 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1133 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1134 return 0;
1137 static void rcu_kthread_do_work(void)
1139 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1140 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1141 rcu_preempt_do_callbacks();
1144 static void rcu_cpu_kthread_setup(unsigned int cpu)
1146 struct sched_param sp;
1148 sp.sched_priority = kthread_prio;
1149 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1152 static void rcu_cpu_kthread_park(unsigned int cpu)
1154 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1157 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1159 return __this_cpu_read(rcu_cpu_has_work);
1163 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1164 * RCU softirq used in flavors and configurations of RCU that do not
1165 * support RCU priority boosting.
1167 static void rcu_cpu_kthread(unsigned int cpu)
1169 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1170 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1171 int spincnt;
1173 for (spincnt = 0; spincnt < 10; spincnt++) {
1174 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1175 local_bh_disable();
1176 *statusp = RCU_KTHREAD_RUNNING;
1177 this_cpu_inc(rcu_cpu_kthread_loops);
1178 local_irq_disable();
1179 work = *workp;
1180 *workp = 0;
1181 local_irq_enable();
1182 if (work)
1183 rcu_kthread_do_work();
1184 local_bh_enable();
1185 if (*workp == 0) {
1186 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1187 *statusp = RCU_KTHREAD_WAITING;
1188 return;
1191 *statusp = RCU_KTHREAD_YIELDING;
1192 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1193 schedule_timeout_interruptible(2);
1194 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1195 *statusp = RCU_KTHREAD_WAITING;
1199 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1200 * served by the rcu_node in question. The CPU hotplug lock is still
1201 * held, so the value of rnp->qsmaskinit will be stable.
1203 * We don't include outgoingcpu in the affinity set, use -1 if there is
1204 * no outgoing CPU. If there are no CPUs left in the affinity set,
1205 * this function allows the kthread to execute on any CPU.
1207 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1209 struct task_struct *t = rnp->boost_kthread_task;
1210 unsigned long mask = rcu_rnp_online_cpus(rnp);
1211 cpumask_var_t cm;
1212 int cpu;
1214 if (!t)
1215 return;
1216 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1217 return;
1218 for_each_leaf_node_possible_cpu(rnp, cpu)
1219 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1220 cpu != outgoingcpu)
1221 cpumask_set_cpu(cpu, cm);
1222 if (cpumask_weight(cm) == 0)
1223 cpumask_setall(cm);
1224 set_cpus_allowed_ptr(t, cm);
1225 free_cpumask_var(cm);
1228 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1229 .store = &rcu_cpu_kthread_task,
1230 .thread_should_run = rcu_cpu_kthread_should_run,
1231 .thread_fn = rcu_cpu_kthread,
1232 .thread_comm = "rcuc/%u",
1233 .setup = rcu_cpu_kthread_setup,
1234 .park = rcu_cpu_kthread_park,
1238 * Spawn boost kthreads -- called as soon as the scheduler is running.
1240 static void __init rcu_spawn_boost_kthreads(void)
1242 struct rcu_node *rnp;
1243 int cpu;
1245 for_each_possible_cpu(cpu)
1246 per_cpu(rcu_cpu_has_work, cpu) = 0;
1247 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1248 rcu_for_each_leaf_node(rcu_state_p, rnp)
1249 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1252 static void rcu_prepare_kthreads(int cpu)
1254 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1255 struct rcu_node *rnp = rdp->mynode;
1257 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1258 if (rcu_scheduler_fully_active)
1259 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1262 #else /* #ifdef CONFIG_RCU_BOOST */
1264 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1265 __releases(rnp->lock)
1267 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1270 static void invoke_rcu_callbacks_kthread(void)
1272 WARN_ON_ONCE(1);
1275 static bool rcu_is_callbacks_kthread(void)
1277 return false;
1280 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1284 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1288 static void __init rcu_spawn_boost_kthreads(void)
1292 static void rcu_prepare_kthreads(int cpu)
1296 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1298 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1301 * Check to see if any future RCU-related work will need to be done
1302 * by the current CPU, even if none need be done immediately, returning
1303 * 1 if so. This function is part of the RCU implementation; it is -not-
1304 * an exported member of the RCU API.
1306 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1307 * any flavor of RCU.
1309 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1311 *nextevt = KTIME_MAX;
1312 return rcu_cpu_has_callbacks(NULL);
1316 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1317 * after it.
1319 static void rcu_cleanup_after_idle(void)
1324 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1325 * is nothing.
1327 static void rcu_prepare_for_idle(void)
1332 * Don't bother keeping a running count of the number of RCU callbacks
1333 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1335 static void rcu_idle_count_callbacks_posted(void)
1339 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1342 * This code is invoked when a CPU goes idle, at which point we want
1343 * to have the CPU do everything required for RCU so that it can enter
1344 * the energy-efficient dyntick-idle mode. This is handled by a
1345 * state machine implemented by rcu_prepare_for_idle() below.
1347 * The following three proprocessor symbols control this state machine:
1349 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1350 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1351 * is sized to be roughly one RCU grace period. Those energy-efficiency
1352 * benchmarkers who might otherwise be tempted to set this to a large
1353 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1354 * system. And if you are -that- concerned about energy efficiency,
1355 * just power the system down and be done with it!
1356 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1357 * permitted to sleep in dyntick-idle mode with only lazy RCU
1358 * callbacks pending. Setting this too high can OOM your system.
1360 * The values below work well in practice. If future workloads require
1361 * adjustment, they can be converted into kernel config parameters, though
1362 * making the state machine smarter might be a better option.
1364 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1365 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1367 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1368 module_param(rcu_idle_gp_delay, int, 0644);
1369 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1370 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1373 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1374 * only if it has been awhile since the last time we did so. Afterwards,
1375 * if there are any callbacks ready for immediate invocation, return true.
1377 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1379 bool cbs_ready = false;
1380 struct rcu_data *rdp;
1381 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1382 struct rcu_node *rnp;
1383 struct rcu_state *rsp;
1385 /* Exit early if we advanced recently. */
1386 if (jiffies == rdtp->last_advance_all)
1387 return false;
1388 rdtp->last_advance_all = jiffies;
1390 for_each_rcu_flavor(rsp) {
1391 rdp = this_cpu_ptr(rsp->rda);
1392 rnp = rdp->mynode;
1395 * Don't bother checking unless a grace period has
1396 * completed since we last checked and there are
1397 * callbacks not yet ready to invoke.
1399 if ((rdp->completed != rnp->completed ||
1400 unlikely(READ_ONCE(rdp->gpwrap))) &&
1401 rcu_segcblist_pend_cbs(&rdp->cblist))
1402 note_gp_changes(rsp, rdp);
1404 if (rcu_segcblist_ready_cbs(&rdp->cblist))
1405 cbs_ready = true;
1407 return cbs_ready;
1411 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1412 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1413 * caller to set the timeout based on whether or not there are non-lazy
1414 * callbacks.
1416 * The caller must have disabled interrupts.
1418 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1420 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1421 unsigned long dj;
1423 lockdep_assert_irqs_disabled();
1425 /* Snapshot to detect later posting of non-lazy callback. */
1426 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1428 /* If no callbacks, RCU doesn't need the CPU. */
1429 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1430 *nextevt = KTIME_MAX;
1431 return 0;
1434 /* Attempt to advance callbacks. */
1435 if (rcu_try_advance_all_cbs()) {
1436 /* Some ready to invoke, so initiate later invocation. */
1437 invoke_rcu_core();
1438 return 1;
1440 rdtp->last_accelerate = jiffies;
1442 /* Request timer delay depending on laziness, and round. */
1443 if (!rdtp->all_lazy) {
1444 dj = round_up(rcu_idle_gp_delay + jiffies,
1445 rcu_idle_gp_delay) - jiffies;
1446 } else {
1447 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1449 *nextevt = basemono + dj * TICK_NSEC;
1450 return 0;
1454 * Prepare a CPU for idle from an RCU perspective. The first major task
1455 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1456 * The second major task is to check to see if a non-lazy callback has
1457 * arrived at a CPU that previously had only lazy callbacks. The third
1458 * major task is to accelerate (that is, assign grace-period numbers to)
1459 * any recently arrived callbacks.
1461 * The caller must have disabled interrupts.
1463 static void rcu_prepare_for_idle(void)
1465 bool needwake;
1466 struct rcu_data *rdp;
1467 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1468 struct rcu_node *rnp;
1469 struct rcu_state *rsp;
1470 int tne;
1472 lockdep_assert_irqs_disabled();
1473 if (rcu_is_nocb_cpu(smp_processor_id()))
1474 return;
1476 /* Handle nohz enablement switches conservatively. */
1477 tne = READ_ONCE(tick_nohz_active);
1478 if (tne != rdtp->tick_nohz_enabled_snap) {
1479 if (rcu_cpu_has_callbacks(NULL))
1480 invoke_rcu_core(); /* force nohz to see update. */
1481 rdtp->tick_nohz_enabled_snap = tne;
1482 return;
1484 if (!tne)
1485 return;
1488 * If a non-lazy callback arrived at a CPU having only lazy
1489 * callbacks, invoke RCU core for the side-effect of recalculating
1490 * idle duration on re-entry to idle.
1492 if (rdtp->all_lazy &&
1493 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1494 rdtp->all_lazy = false;
1495 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1496 invoke_rcu_core();
1497 return;
1501 * If we have not yet accelerated this jiffy, accelerate all
1502 * callbacks on this CPU.
1504 if (rdtp->last_accelerate == jiffies)
1505 return;
1506 rdtp->last_accelerate = jiffies;
1507 for_each_rcu_flavor(rsp) {
1508 rdp = this_cpu_ptr(rsp->rda);
1509 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1510 continue;
1511 rnp = rdp->mynode;
1512 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1513 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1514 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1515 if (needwake)
1516 rcu_gp_kthread_wake(rsp);
1521 * Clean up for exit from idle. Attempt to advance callbacks based on
1522 * any grace periods that elapsed while the CPU was idle, and if any
1523 * callbacks are now ready to invoke, initiate invocation.
1525 static void rcu_cleanup_after_idle(void)
1527 lockdep_assert_irqs_disabled();
1528 if (rcu_is_nocb_cpu(smp_processor_id()))
1529 return;
1530 if (rcu_try_advance_all_cbs())
1531 invoke_rcu_core();
1535 * Keep a running count of the number of non-lazy callbacks posted
1536 * on this CPU. This running counter (which is never decremented) allows
1537 * rcu_prepare_for_idle() to detect when something out of the idle loop
1538 * posts a callback, even if an equal number of callbacks are invoked.
1539 * Of course, callbacks should only be posted from within a trace event
1540 * designed to be called from idle or from within RCU_NONIDLE().
1542 static void rcu_idle_count_callbacks_posted(void)
1544 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1548 * Data for flushing lazy RCU callbacks at OOM time.
1550 static atomic_t oom_callback_count;
1551 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1554 * RCU OOM callback -- decrement the outstanding count and deliver the
1555 * wake-up if we are the last one.
1557 static void rcu_oom_callback(struct rcu_head *rhp)
1559 if (atomic_dec_and_test(&oom_callback_count))
1560 wake_up(&oom_callback_wq);
1564 * Post an rcu_oom_notify callback on the current CPU if it has at
1565 * least one lazy callback. This will unnecessarily post callbacks
1566 * to CPUs that already have a non-lazy callback at the end of their
1567 * callback list, but this is an infrequent operation, so accept some
1568 * extra overhead to keep things simple.
1570 static void rcu_oom_notify_cpu(void *unused)
1572 struct rcu_state *rsp;
1573 struct rcu_data *rdp;
1575 for_each_rcu_flavor(rsp) {
1576 rdp = raw_cpu_ptr(rsp->rda);
1577 if (rcu_segcblist_n_lazy_cbs(&rdp->cblist)) {
1578 atomic_inc(&oom_callback_count);
1579 rsp->call(&rdp->oom_head, rcu_oom_callback);
1585 * If low on memory, ensure that each CPU has a non-lazy callback.
1586 * This will wake up CPUs that have only lazy callbacks, in turn
1587 * ensuring that they free up the corresponding memory in a timely manner.
1588 * Because an uncertain amount of memory will be freed in some uncertain
1589 * timeframe, we do not claim to have freed anything.
1591 static int rcu_oom_notify(struct notifier_block *self,
1592 unsigned long notused, void *nfreed)
1594 int cpu;
1596 /* Wait for callbacks from earlier instance to complete. */
1597 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1598 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1601 * Prevent premature wakeup: ensure that all increments happen
1602 * before there is a chance of the counter reaching zero.
1604 atomic_set(&oom_callback_count, 1);
1606 for_each_online_cpu(cpu) {
1607 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1608 cond_resched_rcu_qs();
1611 /* Unconditionally decrement: no need to wake ourselves up. */
1612 atomic_dec(&oom_callback_count);
1614 return NOTIFY_OK;
1617 static struct notifier_block rcu_oom_nb = {
1618 .notifier_call = rcu_oom_notify
1621 static int __init rcu_register_oom_notifier(void)
1623 register_oom_notifier(&rcu_oom_nb);
1624 return 0;
1626 early_initcall(rcu_register_oom_notifier);
1628 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1630 #ifdef CONFIG_RCU_FAST_NO_HZ
1632 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1634 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1635 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1637 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1638 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1639 ulong2long(nlpd),
1640 rdtp->all_lazy ? 'L' : '.',
1641 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1644 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1646 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1648 *cp = '\0';
1651 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1653 /* Initiate the stall-info list. */
1654 static void print_cpu_stall_info_begin(void)
1656 pr_cont("\n");
1660 * Print out diagnostic information for the specified stalled CPU.
1662 * If the specified CPU is aware of the current RCU grace period
1663 * (flavor specified by rsp), then print the number of scheduling
1664 * clock interrupts the CPU has taken during the time that it has
1665 * been aware. Otherwise, print the number of RCU grace periods
1666 * that this CPU is ignorant of, for example, "1" if the CPU was
1667 * aware of the previous grace period.
1669 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1671 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1673 unsigned long delta;
1674 char fast_no_hz[72];
1675 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1676 struct rcu_dynticks *rdtp = rdp->dynticks;
1677 char *ticks_title;
1678 unsigned long ticks_value;
1680 if (rsp->gpnum == rdp->gpnum) {
1681 ticks_title = "ticks this GP";
1682 ticks_value = rdp->ticks_this_gp;
1683 } else {
1684 ticks_title = "GPs behind";
1685 ticks_value = rsp->gpnum - rdp->gpnum;
1687 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1688 delta = rdp->mynode->gpnum - rdp->rcu_iw_gpnum;
1689 pr_err("\t%d-%c%c%c%c: (%lu %s) idle=%03x/%ld/%ld softirq=%u/%u fqs=%ld %s\n",
1690 cpu,
1691 "O."[!!cpu_online(cpu)],
1692 "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1693 "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1694 !IS_ENABLED(CONFIG_IRQ_WORK) ? '?' :
1695 rdp->rcu_iw_pending ? (int)min(delta, 9UL) + '0' :
1696 "!."[!delta],
1697 ticks_value, ticks_title,
1698 rcu_dynticks_snap(rdtp) & 0xfff,
1699 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1700 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1701 READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1702 fast_no_hz);
1705 /* Terminate the stall-info list. */
1706 static void print_cpu_stall_info_end(void)
1708 pr_err("\t");
1711 /* Zero ->ticks_this_gp for all flavors of RCU. */
1712 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1714 rdp->ticks_this_gp = 0;
1715 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1718 /* Increment ->ticks_this_gp for all flavors of RCU. */
1719 static void increment_cpu_stall_ticks(void)
1721 struct rcu_state *rsp;
1723 for_each_rcu_flavor(rsp)
1724 raw_cpu_inc(rsp->rda->ticks_this_gp);
1727 #ifdef CONFIG_RCU_NOCB_CPU
1730 * Offload callback processing from the boot-time-specified set of CPUs
1731 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1732 * kthread created that pulls the callbacks from the corresponding CPU,
1733 * waits for a grace period to elapse, and invokes the callbacks.
1734 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1735 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1736 * has been specified, in which case each kthread actively polls its
1737 * CPU. (Which isn't so great for energy efficiency, but which does
1738 * reduce RCU's overhead on that CPU.)
1740 * This is intended to be used in conjunction with Frederic Weisbecker's
1741 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1742 * running CPU-bound user-mode computations.
1744 * Offloading of callback processing could also in theory be used as
1745 * an energy-efficiency measure because CPUs with no RCU callbacks
1746 * queued are more aggressive about entering dyntick-idle mode.
1750 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1751 static int __init rcu_nocb_setup(char *str)
1753 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1754 cpulist_parse(str, rcu_nocb_mask);
1755 return 1;
1757 __setup("rcu_nocbs=", rcu_nocb_setup);
1759 static int __init parse_rcu_nocb_poll(char *arg)
1761 rcu_nocb_poll = true;
1762 return 0;
1764 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1767 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1768 * grace period.
1770 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1772 swake_up_all(sq);
1776 * Set the root rcu_node structure's ->need_future_gp field
1777 * based on the sum of those of all rcu_node structures. This does
1778 * double-count the root rcu_node structure's requests, but this
1779 * is necessary to handle the possibility of a rcu_nocb_kthread()
1780 * having awakened during the time that the rcu_node structures
1781 * were being updated for the end of the previous grace period.
1783 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1785 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1788 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1790 return &rnp->nocb_gp_wq[rnp->completed & 0x1];
1793 static void rcu_init_one_nocb(struct rcu_node *rnp)
1795 init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1796 init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1799 /* Is the specified CPU a no-CBs CPU? */
1800 bool rcu_is_nocb_cpu(int cpu)
1802 if (cpumask_available(rcu_nocb_mask))
1803 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1804 return false;
1808 * Kick the leader kthread for this NOCB group. Caller holds ->nocb_lock
1809 * and this function releases it.
1811 static void __wake_nocb_leader(struct rcu_data *rdp, bool force,
1812 unsigned long flags)
1813 __releases(rdp->nocb_lock)
1815 struct rcu_data *rdp_leader = rdp->nocb_leader;
1817 lockdep_assert_held(&rdp->nocb_lock);
1818 if (!READ_ONCE(rdp_leader->nocb_kthread)) {
1819 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1820 return;
1822 if (rdp_leader->nocb_leader_sleep || force) {
1823 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1824 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1825 del_timer(&rdp->nocb_timer);
1826 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1827 smp_mb(); /* ->nocb_leader_sleep before swake_up(). */
1828 swake_up(&rdp_leader->nocb_wq);
1829 } else {
1830 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1835 * Kick the leader kthread for this NOCB group, but caller has not
1836 * acquired locks.
1838 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1840 unsigned long flags;
1842 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1843 __wake_nocb_leader(rdp, force, flags);
1847 * Arrange to wake the leader kthread for this NOCB group at some
1848 * future time when it is safe to do so.
1850 static void wake_nocb_leader_defer(struct rcu_data *rdp, int waketype,
1851 const char *reason)
1853 unsigned long flags;
1855 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1856 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1857 mod_timer(&rdp->nocb_timer, jiffies + 1);
1858 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1859 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, reason);
1860 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1864 * Does the specified CPU need an RCU callback for the specified flavor
1865 * of rcu_barrier()?
1867 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1869 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1870 unsigned long ret;
1871 #ifdef CONFIG_PROVE_RCU
1872 struct rcu_head *rhp;
1873 #endif /* #ifdef CONFIG_PROVE_RCU */
1876 * Check count of all no-CBs callbacks awaiting invocation.
1877 * There needs to be a barrier before this function is called,
1878 * but associated with a prior determination that no more
1879 * callbacks would be posted. In the worst case, the first
1880 * barrier in _rcu_barrier() suffices (but the caller cannot
1881 * necessarily rely on this, not a substitute for the caller
1882 * getting the concurrency design right!). There must also be
1883 * a barrier between the following load an posting of a callback
1884 * (if a callback is in fact needed). This is associated with an
1885 * atomic_inc() in the caller.
1887 ret = atomic_long_read(&rdp->nocb_q_count);
1889 #ifdef CONFIG_PROVE_RCU
1890 rhp = READ_ONCE(rdp->nocb_head);
1891 if (!rhp)
1892 rhp = READ_ONCE(rdp->nocb_gp_head);
1893 if (!rhp)
1894 rhp = READ_ONCE(rdp->nocb_follower_head);
1896 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1897 if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1898 rcu_scheduler_fully_active) {
1899 /* RCU callback enqueued before CPU first came online??? */
1900 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1901 cpu, rhp->func);
1902 WARN_ON_ONCE(1);
1904 #endif /* #ifdef CONFIG_PROVE_RCU */
1906 return !!ret;
1910 * Enqueue the specified string of rcu_head structures onto the specified
1911 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
1912 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
1913 * counts are supplied by rhcount and rhcount_lazy.
1915 * If warranted, also wake up the kthread servicing this CPUs queues.
1917 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1918 struct rcu_head *rhp,
1919 struct rcu_head **rhtp,
1920 int rhcount, int rhcount_lazy,
1921 unsigned long flags)
1923 int len;
1924 struct rcu_head **old_rhpp;
1925 struct task_struct *t;
1927 /* Enqueue the callback on the nocb list and update counts. */
1928 atomic_long_add(rhcount, &rdp->nocb_q_count);
1929 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1930 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1931 WRITE_ONCE(*old_rhpp, rhp);
1932 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1933 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1935 /* If we are not being polled and there is a kthread, awaken it ... */
1936 t = READ_ONCE(rdp->nocb_kthread);
1937 if (rcu_nocb_poll || !t) {
1938 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1939 TPS("WakeNotPoll"));
1940 return;
1942 len = atomic_long_read(&rdp->nocb_q_count);
1943 if (old_rhpp == &rdp->nocb_head) {
1944 if (!irqs_disabled_flags(flags)) {
1945 /* ... if queue was empty ... */
1946 wake_nocb_leader(rdp, false);
1947 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1948 TPS("WakeEmpty"));
1949 } else {
1950 wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE,
1951 TPS("WakeEmptyIsDeferred"));
1953 rdp->qlen_last_fqs_check = 0;
1954 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1955 /* ... or if many callbacks queued. */
1956 if (!irqs_disabled_flags(flags)) {
1957 wake_nocb_leader(rdp, true);
1958 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1959 TPS("WakeOvf"));
1960 } else {
1961 wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE,
1962 TPS("WakeOvfIsDeferred"));
1964 rdp->qlen_last_fqs_check = LONG_MAX / 2;
1965 } else {
1966 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1968 return;
1972 * This is a helper for __call_rcu(), which invokes this when the normal
1973 * callback queue is inoperable. If this is not a no-CBs CPU, this
1974 * function returns failure back to __call_rcu(), which can complain
1975 * appropriately.
1977 * Otherwise, this function queues the callback where the corresponding
1978 * "rcuo" kthread can find it.
1980 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1981 bool lazy, unsigned long flags)
1984 if (!rcu_is_nocb_cpu(rdp->cpu))
1985 return false;
1986 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1987 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1988 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1989 (unsigned long)rhp->func,
1990 -atomic_long_read(&rdp->nocb_q_count_lazy),
1991 -atomic_long_read(&rdp->nocb_q_count));
1992 else
1993 trace_rcu_callback(rdp->rsp->name, rhp,
1994 -atomic_long_read(&rdp->nocb_q_count_lazy),
1995 -atomic_long_read(&rdp->nocb_q_count));
1998 * If called from an extended quiescent state with interrupts
1999 * disabled, invoke the RCU core in order to allow the idle-entry
2000 * deferred-wakeup check to function.
2002 if (irqs_disabled_flags(flags) &&
2003 !rcu_is_watching() &&
2004 cpu_online(smp_processor_id()))
2005 invoke_rcu_core();
2007 return true;
2011 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2012 * not a no-CBs CPU.
2014 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2015 struct rcu_data *rdp,
2016 unsigned long flags)
2018 lockdep_assert_irqs_disabled();
2019 if (!rcu_is_nocb_cpu(smp_processor_id()))
2020 return false; /* Not NOCBs CPU, caller must migrate CBs. */
2021 __call_rcu_nocb_enqueue(my_rdp, rcu_segcblist_head(&rdp->cblist),
2022 rcu_segcblist_tail(&rdp->cblist),
2023 rcu_segcblist_n_cbs(&rdp->cblist),
2024 rcu_segcblist_n_lazy_cbs(&rdp->cblist), flags);
2025 rcu_segcblist_init(&rdp->cblist);
2026 rcu_segcblist_disable(&rdp->cblist);
2027 return true;
2031 * If necessary, kick off a new grace period, and either way wait
2032 * for a subsequent grace period to complete.
2034 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2036 unsigned long c;
2037 bool d;
2038 unsigned long flags;
2039 bool needwake;
2040 struct rcu_node *rnp = rdp->mynode;
2042 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2043 needwake = rcu_start_future_gp(rnp, rdp, &c);
2044 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2045 if (needwake)
2046 rcu_gp_kthread_wake(rdp->rsp);
2049 * Wait for the grace period. Do so interruptibly to avoid messing
2050 * up the load average.
2052 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2053 for (;;) {
2054 swait_event_interruptible(
2055 rnp->nocb_gp_wq[c & 0x1],
2056 (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2057 if (likely(d))
2058 break;
2059 WARN_ON(signal_pending(current));
2060 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2062 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2063 smp_mb(); /* Ensure that CB invocation happens after GP end. */
2067 * Leaders come here to wait for additional callbacks to show up.
2068 * This function does not return until callbacks appear.
2070 static void nocb_leader_wait(struct rcu_data *my_rdp)
2072 bool firsttime = true;
2073 unsigned long flags;
2074 bool gotcbs;
2075 struct rcu_data *rdp;
2076 struct rcu_head **tail;
2078 wait_again:
2080 /* Wait for callbacks to appear. */
2081 if (!rcu_nocb_poll) {
2082 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Sleep"));
2083 swait_event_interruptible(my_rdp->nocb_wq,
2084 !READ_ONCE(my_rdp->nocb_leader_sleep));
2085 raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2086 my_rdp->nocb_leader_sleep = true;
2087 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2088 del_timer(&my_rdp->nocb_timer);
2089 raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2090 } else if (firsttime) {
2091 firsttime = false; /* Don't drown trace log with "Poll"! */
2092 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Poll"));
2096 * Each pass through the following loop checks a follower for CBs.
2097 * We are our own first follower. Any CBs found are moved to
2098 * nocb_gp_head, where they await a grace period.
2100 gotcbs = false;
2101 smp_mb(); /* wakeup and _sleep before ->nocb_head reads. */
2102 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2103 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2104 if (!rdp->nocb_gp_head)
2105 continue; /* No CBs here, try next follower. */
2107 /* Move callbacks to wait-for-GP list, which is empty. */
2108 WRITE_ONCE(rdp->nocb_head, NULL);
2109 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2110 gotcbs = true;
2113 /* No callbacks? Sleep a bit if polling, and go retry. */
2114 if (unlikely(!gotcbs)) {
2115 WARN_ON(signal_pending(current));
2116 if (rcu_nocb_poll) {
2117 schedule_timeout_interruptible(1);
2118 } else {
2119 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2120 TPS("WokeEmpty"));
2122 goto wait_again;
2125 /* Wait for one grace period. */
2126 rcu_nocb_wait_gp(my_rdp);
2128 /* Each pass through the following loop wakes a follower, if needed. */
2129 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2130 if (!rcu_nocb_poll &&
2131 READ_ONCE(rdp->nocb_head) &&
2132 READ_ONCE(my_rdp->nocb_leader_sleep)) {
2133 raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2134 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2135 raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2137 if (!rdp->nocb_gp_head)
2138 continue; /* No CBs, so no need to wake follower. */
2140 /* Append callbacks to follower's "done" list. */
2141 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2142 tail = rdp->nocb_follower_tail;
2143 rdp->nocb_follower_tail = rdp->nocb_gp_tail;
2144 *tail = rdp->nocb_gp_head;
2145 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2146 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2147 /* List was empty, so wake up the follower. */
2148 swake_up(&rdp->nocb_wq);
2152 /* If we (the leader) don't have CBs, go wait some more. */
2153 if (!my_rdp->nocb_follower_head)
2154 goto wait_again;
2158 * Followers come here to wait for additional callbacks to show up.
2159 * This function does not return until callbacks appear.
2161 static void nocb_follower_wait(struct rcu_data *rdp)
2163 for (;;) {
2164 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("FollowerSleep"));
2165 swait_event_interruptible(rdp->nocb_wq,
2166 READ_ONCE(rdp->nocb_follower_head));
2167 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2168 /* ^^^ Ensure CB invocation follows _head test. */
2169 return;
2171 WARN_ON(signal_pending(current));
2172 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeEmpty"));
2177 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2178 * callbacks queued by the corresponding no-CBs CPU, however, there is
2179 * an optional leader-follower relationship so that the grace-period
2180 * kthreads don't have to do quite so many wakeups.
2182 static int rcu_nocb_kthread(void *arg)
2184 int c, cl;
2185 unsigned long flags;
2186 struct rcu_head *list;
2187 struct rcu_head *next;
2188 struct rcu_head **tail;
2189 struct rcu_data *rdp = arg;
2191 /* Each pass through this loop invokes one batch of callbacks */
2192 for (;;) {
2193 /* Wait for callbacks. */
2194 if (rdp->nocb_leader == rdp)
2195 nocb_leader_wait(rdp);
2196 else
2197 nocb_follower_wait(rdp);
2199 /* Pull the ready-to-invoke callbacks onto local list. */
2200 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2201 list = rdp->nocb_follower_head;
2202 rdp->nocb_follower_head = NULL;
2203 tail = rdp->nocb_follower_tail;
2204 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2205 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2206 BUG_ON(!list);
2207 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeNonEmpty"));
2209 /* Each pass through the following loop invokes a callback. */
2210 trace_rcu_batch_start(rdp->rsp->name,
2211 atomic_long_read(&rdp->nocb_q_count_lazy),
2212 atomic_long_read(&rdp->nocb_q_count), -1);
2213 c = cl = 0;
2214 while (list) {
2215 next = list->next;
2216 /* Wait for enqueuing to complete, if needed. */
2217 while (next == NULL && &list->next != tail) {
2218 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2219 TPS("WaitQueue"));
2220 schedule_timeout_interruptible(1);
2221 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2222 TPS("WokeQueue"));
2223 next = list->next;
2225 debug_rcu_head_unqueue(list);
2226 local_bh_disable();
2227 if (__rcu_reclaim(rdp->rsp->name, list))
2228 cl++;
2229 c++;
2230 local_bh_enable();
2231 cond_resched_rcu_qs();
2232 list = next;
2234 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2235 smp_mb__before_atomic(); /* _add after CB invocation. */
2236 atomic_long_add(-c, &rdp->nocb_q_count);
2237 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2238 rdp->n_nocbs_invoked += c;
2240 return 0;
2243 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2244 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2246 return READ_ONCE(rdp->nocb_defer_wakeup);
2249 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2250 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2252 unsigned long flags;
2253 int ndw;
2255 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2256 if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2257 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2258 return;
2260 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2261 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2262 __wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2263 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2266 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2267 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2269 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2271 do_nocb_deferred_wakeup_common(rdp);
2275 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2276 * This means we do an inexact common-case check. Note that if
2277 * we miss, ->nocb_timer will eventually clean things up.
2279 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2281 if (rcu_nocb_need_deferred_wakeup(rdp))
2282 do_nocb_deferred_wakeup_common(rdp);
2285 void __init rcu_init_nohz(void)
2287 int cpu;
2288 bool need_rcu_nocb_mask = true;
2289 struct rcu_state *rsp;
2291 #if defined(CONFIG_NO_HZ_FULL)
2292 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2293 need_rcu_nocb_mask = true;
2294 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2296 if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2297 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2298 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2299 return;
2302 if (!cpumask_available(rcu_nocb_mask))
2303 return;
2305 #if defined(CONFIG_NO_HZ_FULL)
2306 if (tick_nohz_full_running)
2307 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2308 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2310 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2311 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2312 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2313 rcu_nocb_mask);
2315 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2316 cpumask_pr_args(rcu_nocb_mask));
2317 if (rcu_nocb_poll)
2318 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2320 for_each_rcu_flavor(rsp) {
2321 for_each_cpu(cpu, rcu_nocb_mask)
2322 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2323 rcu_organize_nocb_kthreads(rsp);
2327 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2328 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2330 rdp->nocb_tail = &rdp->nocb_head;
2331 init_swait_queue_head(&rdp->nocb_wq);
2332 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2333 raw_spin_lock_init(&rdp->nocb_lock);
2334 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2338 * If the specified CPU is a no-CBs CPU that does not already have its
2339 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2340 * brought online out of order, this can require re-organizing the
2341 * leader-follower relationships.
2343 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2345 struct rcu_data *rdp;
2346 struct rcu_data *rdp_last;
2347 struct rcu_data *rdp_old_leader;
2348 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2349 struct task_struct *t;
2352 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2353 * then nothing to do.
2355 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2356 return;
2358 /* If we didn't spawn the leader first, reorganize! */
2359 rdp_old_leader = rdp_spawn->nocb_leader;
2360 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2361 rdp_last = NULL;
2362 rdp = rdp_old_leader;
2363 do {
2364 rdp->nocb_leader = rdp_spawn;
2365 if (rdp_last && rdp != rdp_spawn)
2366 rdp_last->nocb_next_follower = rdp;
2367 if (rdp == rdp_spawn) {
2368 rdp = rdp->nocb_next_follower;
2369 } else {
2370 rdp_last = rdp;
2371 rdp = rdp->nocb_next_follower;
2372 rdp_last->nocb_next_follower = NULL;
2374 } while (rdp);
2375 rdp_spawn->nocb_next_follower = rdp_old_leader;
2378 /* Spawn the kthread for this CPU and RCU flavor. */
2379 t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2380 "rcuo%c/%d", rsp->abbr, cpu);
2381 BUG_ON(IS_ERR(t));
2382 WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2386 * If the specified CPU is a no-CBs CPU that does not already have its
2387 * rcuo kthreads, spawn them.
2389 static void rcu_spawn_all_nocb_kthreads(int cpu)
2391 struct rcu_state *rsp;
2393 if (rcu_scheduler_fully_active)
2394 for_each_rcu_flavor(rsp)
2395 rcu_spawn_one_nocb_kthread(rsp, cpu);
2399 * Once the scheduler is running, spawn rcuo kthreads for all online
2400 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2401 * non-boot CPUs come online -- if this changes, we will need to add
2402 * some mutual exclusion.
2404 static void __init rcu_spawn_nocb_kthreads(void)
2406 int cpu;
2408 for_each_online_cpu(cpu)
2409 rcu_spawn_all_nocb_kthreads(cpu);
2412 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2413 static int rcu_nocb_leader_stride = -1;
2414 module_param(rcu_nocb_leader_stride, int, 0444);
2417 * Initialize leader-follower relationships for all no-CBs CPU.
2419 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2421 int cpu;
2422 int ls = rcu_nocb_leader_stride;
2423 int nl = 0; /* Next leader. */
2424 struct rcu_data *rdp;
2425 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2426 struct rcu_data *rdp_prev = NULL;
2428 if (!cpumask_available(rcu_nocb_mask))
2429 return;
2430 if (ls == -1) {
2431 ls = int_sqrt(nr_cpu_ids);
2432 rcu_nocb_leader_stride = ls;
2436 * Each pass through this loop sets up one rcu_data structure.
2437 * Should the corresponding CPU come online in the future, then
2438 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2440 for_each_cpu(cpu, rcu_nocb_mask) {
2441 rdp = per_cpu_ptr(rsp->rda, cpu);
2442 if (rdp->cpu >= nl) {
2443 /* New leader, set up for followers & next leader. */
2444 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2445 rdp->nocb_leader = rdp;
2446 rdp_leader = rdp;
2447 } else {
2448 /* Another follower, link to previous leader. */
2449 rdp->nocb_leader = rdp_leader;
2450 rdp_prev->nocb_next_follower = rdp;
2452 rdp_prev = rdp;
2456 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2457 static bool init_nocb_callback_list(struct rcu_data *rdp)
2459 if (!rcu_is_nocb_cpu(rdp->cpu))
2460 return false;
2462 /* If there are early-boot callbacks, move them to nocb lists. */
2463 if (!rcu_segcblist_empty(&rdp->cblist)) {
2464 rdp->nocb_head = rcu_segcblist_head(&rdp->cblist);
2465 rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist);
2466 atomic_long_set(&rdp->nocb_q_count,
2467 rcu_segcblist_n_cbs(&rdp->cblist));
2468 atomic_long_set(&rdp->nocb_q_count_lazy,
2469 rcu_segcblist_n_lazy_cbs(&rdp->cblist));
2470 rcu_segcblist_init(&rdp->cblist);
2472 rcu_segcblist_disable(&rdp->cblist);
2473 return true;
2476 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2478 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2480 WARN_ON_ONCE(1); /* Should be dead code. */
2481 return false;
2484 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2488 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2492 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2494 return NULL;
2497 static void rcu_init_one_nocb(struct rcu_node *rnp)
2501 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2502 bool lazy, unsigned long flags)
2504 return false;
2507 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2508 struct rcu_data *rdp,
2509 unsigned long flags)
2511 return false;
2514 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2518 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2520 return false;
2523 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2527 static void rcu_spawn_all_nocb_kthreads(int cpu)
2531 static void __init rcu_spawn_nocb_kthreads(void)
2535 static bool init_nocb_callback_list(struct rcu_data *rdp)
2537 return false;
2540 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2543 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2544 * arbitrarily long period of time with the scheduling-clock tick turned
2545 * off. RCU will be paying attention to this CPU because it is in the
2546 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2547 * machine because the scheduling-clock tick has been disabled. Therefore,
2548 * if an adaptive-ticks CPU is failing to respond to the current grace
2549 * period and has not be idle from an RCU perspective, kick it.
2551 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2553 #ifdef CONFIG_NO_HZ_FULL
2554 if (tick_nohz_full_cpu(cpu))
2555 smp_send_reschedule(cpu);
2556 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2560 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2561 * grace-period kthread will do force_quiescent_state() processing?
2562 * The idea is to avoid waking up RCU core processing on such a
2563 * CPU unless the grace period has extended for too long.
2565 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2566 * CONFIG_RCU_NOCB_CPU CPUs.
2568 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2570 #ifdef CONFIG_NO_HZ_FULL
2571 if (tick_nohz_full_cpu(smp_processor_id()) &&
2572 (!rcu_gp_in_progress(rsp) ||
2573 ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2574 return true;
2575 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2576 return false;
2580 * Bind the grace-period kthread for the sysidle flavor of RCU to the
2581 * timekeeping CPU.
2583 static void rcu_bind_gp_kthread(void)
2585 int __maybe_unused cpu;
2587 if (!tick_nohz_full_enabled())
2588 return;
2589 housekeeping_affine(current, HK_FLAG_RCU);
2592 /* Record the current task on dyntick-idle entry. */
2593 static void rcu_dynticks_task_enter(void)
2595 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2596 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2597 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2600 /* Record no current task on dyntick-idle exit. */
2601 static void rcu_dynticks_task_exit(void)
2603 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2604 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2605 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */