Linux 4.16-rc1
[cris-mirror.git] / kernel / sched / cputime.c
blobbac6ac9a4ec7068e11e5b35fdea9a3f6a43fd490
1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
7 #include <linux/sched/cputime.h>
8 #include "sched.h"
10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
13 * There are no locks covering percpu hardirq/softirq time.
14 * They are only modified in vtime_account, on corresponding CPU
15 * with interrupts disabled. So, writes are safe.
16 * They are read and saved off onto struct rq in update_rq_clock().
17 * This may result in other CPU reading this CPU's irq time and can
18 * race with irq/vtime_account on this CPU. We would either get old
19 * or new value with a side effect of accounting a slice of irq time to wrong
20 * task when irq is in progress while we read rq->clock. That is a worthy
21 * compromise in place of having locks on each irq in account_system_time.
23 DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
25 static int sched_clock_irqtime;
27 void enable_sched_clock_irqtime(void)
29 sched_clock_irqtime = 1;
32 void disable_sched_clock_irqtime(void)
34 sched_clock_irqtime = 0;
37 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
38 enum cpu_usage_stat idx)
40 u64 *cpustat = kcpustat_this_cpu->cpustat;
42 u64_stats_update_begin(&irqtime->sync);
43 cpustat[idx] += delta;
44 irqtime->total += delta;
45 irqtime->tick_delta += delta;
46 u64_stats_update_end(&irqtime->sync);
50 * Called before incrementing preempt_count on {soft,}irq_enter
51 * and before decrementing preempt_count on {soft,}irq_exit.
53 void irqtime_account_irq(struct task_struct *curr)
55 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
56 s64 delta;
57 int cpu;
59 if (!sched_clock_irqtime)
60 return;
62 cpu = smp_processor_id();
63 delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
64 irqtime->irq_start_time += delta;
67 * We do not account for softirq time from ksoftirqd here.
68 * We want to continue accounting softirq time to ksoftirqd thread
69 * in that case, so as not to confuse scheduler with a special task
70 * that do not consume any time, but still wants to run.
72 if (hardirq_count())
73 irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
74 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
75 irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
77 EXPORT_SYMBOL_GPL(irqtime_account_irq);
79 static u64 irqtime_tick_accounted(u64 maxtime)
81 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
82 u64 delta;
84 delta = min(irqtime->tick_delta, maxtime);
85 irqtime->tick_delta -= delta;
87 return delta;
90 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
92 #define sched_clock_irqtime (0)
94 static u64 irqtime_tick_accounted(u64 dummy)
96 return 0;
99 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
101 static inline void task_group_account_field(struct task_struct *p, int index,
102 u64 tmp)
105 * Since all updates are sure to touch the root cgroup, we
106 * get ourselves ahead and touch it first. If the root cgroup
107 * is the only cgroup, then nothing else should be necessary.
110 __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
112 cgroup_account_cputime_field(p, index, tmp);
116 * Account user cpu time to a process.
117 * @p: the process that the cpu time gets accounted to
118 * @cputime: the cpu time spent in user space since the last update
120 void account_user_time(struct task_struct *p, u64 cputime)
122 int index;
124 /* Add user time to process. */
125 p->utime += cputime;
126 account_group_user_time(p, cputime);
128 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
130 /* Add user time to cpustat. */
131 task_group_account_field(p, index, cputime);
133 /* Account for user time used */
134 acct_account_cputime(p);
138 * Account guest cpu time to a process.
139 * @p: the process that the cpu time gets accounted to
140 * @cputime: the cpu time spent in virtual machine since the last update
142 void account_guest_time(struct task_struct *p, u64 cputime)
144 u64 *cpustat = kcpustat_this_cpu->cpustat;
146 /* Add guest time to process. */
147 p->utime += cputime;
148 account_group_user_time(p, cputime);
149 p->gtime += cputime;
151 /* Add guest time to cpustat. */
152 if (task_nice(p) > 0) {
153 cpustat[CPUTIME_NICE] += cputime;
154 cpustat[CPUTIME_GUEST_NICE] += cputime;
155 } else {
156 cpustat[CPUTIME_USER] += cputime;
157 cpustat[CPUTIME_GUEST] += cputime;
162 * Account system cpu time to a process and desired cpustat field
163 * @p: the process that the cpu time gets accounted to
164 * @cputime: the cpu time spent in kernel space since the last update
165 * @index: pointer to cpustat field that has to be updated
167 void account_system_index_time(struct task_struct *p,
168 u64 cputime, enum cpu_usage_stat index)
170 /* Add system time to process. */
171 p->stime += cputime;
172 account_group_system_time(p, cputime);
174 /* Add system time to cpustat. */
175 task_group_account_field(p, index, cputime);
177 /* Account for system time used */
178 acct_account_cputime(p);
182 * Account system cpu time to a process.
183 * @p: the process that the cpu time gets accounted to
184 * @hardirq_offset: the offset to subtract from hardirq_count()
185 * @cputime: the cpu time spent in kernel space since the last update
187 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
189 int index;
191 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
192 account_guest_time(p, cputime);
193 return;
196 if (hardirq_count() - hardirq_offset)
197 index = CPUTIME_IRQ;
198 else if (in_serving_softirq())
199 index = CPUTIME_SOFTIRQ;
200 else
201 index = CPUTIME_SYSTEM;
203 account_system_index_time(p, cputime, index);
207 * Account for involuntary wait time.
208 * @cputime: the cpu time spent in involuntary wait
210 void account_steal_time(u64 cputime)
212 u64 *cpustat = kcpustat_this_cpu->cpustat;
214 cpustat[CPUTIME_STEAL] += cputime;
218 * Account for idle time.
219 * @cputime: the cpu time spent in idle wait
221 void account_idle_time(u64 cputime)
223 u64 *cpustat = kcpustat_this_cpu->cpustat;
224 struct rq *rq = this_rq();
226 if (atomic_read(&rq->nr_iowait) > 0)
227 cpustat[CPUTIME_IOWAIT] += cputime;
228 else
229 cpustat[CPUTIME_IDLE] += cputime;
233 * When a guest is interrupted for a longer amount of time, missed clock
234 * ticks are not redelivered later. Due to that, this function may on
235 * occasion account more time than the calling functions think elapsed.
237 static __always_inline u64 steal_account_process_time(u64 maxtime)
239 #ifdef CONFIG_PARAVIRT
240 if (static_key_false(&paravirt_steal_enabled)) {
241 u64 steal;
243 steal = paravirt_steal_clock(smp_processor_id());
244 steal -= this_rq()->prev_steal_time;
245 steal = min(steal, maxtime);
246 account_steal_time(steal);
247 this_rq()->prev_steal_time += steal;
249 return steal;
251 #endif
252 return 0;
256 * Account how much elapsed time was spent in steal, irq, or softirq time.
258 static inline u64 account_other_time(u64 max)
260 u64 accounted;
262 lockdep_assert_irqs_disabled();
264 accounted = steal_account_process_time(max);
266 if (accounted < max)
267 accounted += irqtime_tick_accounted(max - accounted);
269 return accounted;
272 #ifdef CONFIG_64BIT
273 static inline u64 read_sum_exec_runtime(struct task_struct *t)
275 return t->se.sum_exec_runtime;
277 #else
278 static u64 read_sum_exec_runtime(struct task_struct *t)
280 u64 ns;
281 struct rq_flags rf;
282 struct rq *rq;
284 rq = task_rq_lock(t, &rf);
285 ns = t->se.sum_exec_runtime;
286 task_rq_unlock(rq, t, &rf);
288 return ns;
290 #endif
293 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
294 * tasks (sum on group iteration) belonging to @tsk's group.
296 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
298 struct signal_struct *sig = tsk->signal;
299 u64 utime, stime;
300 struct task_struct *t;
301 unsigned int seq, nextseq;
302 unsigned long flags;
305 * Update current task runtime to account pending time since last
306 * scheduler action or thread_group_cputime() call. This thread group
307 * might have other running tasks on different CPUs, but updating
308 * their runtime can affect syscall performance, so we skip account
309 * those pending times and rely only on values updated on tick or
310 * other scheduler action.
312 if (same_thread_group(current, tsk))
313 (void) task_sched_runtime(current);
315 rcu_read_lock();
316 /* Attempt a lockless read on the first round. */
317 nextseq = 0;
318 do {
319 seq = nextseq;
320 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
321 times->utime = sig->utime;
322 times->stime = sig->stime;
323 times->sum_exec_runtime = sig->sum_sched_runtime;
325 for_each_thread(tsk, t) {
326 task_cputime(t, &utime, &stime);
327 times->utime += utime;
328 times->stime += stime;
329 times->sum_exec_runtime += read_sum_exec_runtime(t);
331 /* If lockless access failed, take the lock. */
332 nextseq = 1;
333 } while (need_seqretry(&sig->stats_lock, seq));
334 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
335 rcu_read_unlock();
338 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
340 * Account a tick to a process and cpustat
341 * @p: the process that the cpu time gets accounted to
342 * @user_tick: is the tick from userspace
343 * @rq: the pointer to rq
345 * Tick demultiplexing follows the order
346 * - pending hardirq update
347 * - pending softirq update
348 * - user_time
349 * - idle_time
350 * - system time
351 * - check for guest_time
352 * - else account as system_time
354 * Check for hardirq is done both for system and user time as there is
355 * no timer going off while we are on hardirq and hence we may never get an
356 * opportunity to update it solely in system time.
357 * p->stime and friends are only updated on system time and not on irq
358 * softirq as those do not count in task exec_runtime any more.
360 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
361 struct rq *rq, int ticks)
363 u64 other, cputime = TICK_NSEC * ticks;
366 * When returning from idle, many ticks can get accounted at
367 * once, including some ticks of steal, irq, and softirq time.
368 * Subtract those ticks from the amount of time accounted to
369 * idle, or potentially user or system time. Due to rounding,
370 * other time can exceed ticks occasionally.
372 other = account_other_time(ULONG_MAX);
373 if (other >= cputime)
374 return;
376 cputime -= other;
378 if (this_cpu_ksoftirqd() == p) {
380 * ksoftirqd time do not get accounted in cpu_softirq_time.
381 * So, we have to handle it separately here.
382 * Also, p->stime needs to be updated for ksoftirqd.
384 account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
385 } else if (user_tick) {
386 account_user_time(p, cputime);
387 } else if (p == rq->idle) {
388 account_idle_time(cputime);
389 } else if (p->flags & PF_VCPU) { /* System time or guest time */
390 account_guest_time(p, cputime);
391 } else {
392 account_system_index_time(p, cputime, CPUTIME_SYSTEM);
396 static void irqtime_account_idle_ticks(int ticks)
398 struct rq *rq = this_rq();
400 irqtime_account_process_tick(current, 0, rq, ticks);
402 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
403 static inline void irqtime_account_idle_ticks(int ticks) {}
404 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
405 struct rq *rq, int nr_ticks) {}
406 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
409 * Use precise platform statistics if available:
411 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
413 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
414 void vtime_common_task_switch(struct task_struct *prev)
416 if (is_idle_task(prev))
417 vtime_account_idle(prev);
418 else
419 vtime_account_system(prev);
421 vtime_flush(prev);
422 arch_vtime_task_switch(prev);
424 #endif
426 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
429 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
431 * Archs that account the whole time spent in the idle task
432 * (outside irq) as idle time can rely on this and just implement
433 * vtime_account_system() and vtime_account_idle(). Archs that
434 * have other meaning of the idle time (s390 only includes the
435 * time spent by the CPU when it's in low power mode) must override
436 * vtime_account().
438 #ifndef __ARCH_HAS_VTIME_ACCOUNT
439 void vtime_account_irq_enter(struct task_struct *tsk)
441 if (!in_interrupt() && is_idle_task(tsk))
442 vtime_account_idle(tsk);
443 else
444 vtime_account_system(tsk);
446 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
447 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
449 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
450 u64 *ut, u64 *st)
452 *ut = curr->utime;
453 *st = curr->stime;
456 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
458 *ut = p->utime;
459 *st = p->stime;
461 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
463 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
465 struct task_cputime cputime;
467 thread_group_cputime(p, &cputime);
469 *ut = cputime.utime;
470 *st = cputime.stime;
472 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
474 * Account a single tick of cpu time.
475 * @p: the process that the cpu time gets accounted to
476 * @user_tick: indicates if the tick is a user or a system tick
478 void account_process_tick(struct task_struct *p, int user_tick)
480 u64 cputime, steal;
481 struct rq *rq = this_rq();
483 if (vtime_accounting_cpu_enabled())
484 return;
486 if (sched_clock_irqtime) {
487 irqtime_account_process_tick(p, user_tick, rq, 1);
488 return;
491 cputime = TICK_NSEC;
492 steal = steal_account_process_time(ULONG_MAX);
494 if (steal >= cputime)
495 return;
497 cputime -= steal;
499 if (user_tick)
500 account_user_time(p, cputime);
501 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
502 account_system_time(p, HARDIRQ_OFFSET, cputime);
503 else
504 account_idle_time(cputime);
508 * Account multiple ticks of idle time.
509 * @ticks: number of stolen ticks
511 void account_idle_ticks(unsigned long ticks)
513 u64 cputime, steal;
515 if (sched_clock_irqtime) {
516 irqtime_account_idle_ticks(ticks);
517 return;
520 cputime = ticks * TICK_NSEC;
521 steal = steal_account_process_time(ULONG_MAX);
523 if (steal >= cputime)
524 return;
526 cputime -= steal;
527 account_idle_time(cputime);
531 * Perform (stime * rtime) / total, but avoid multiplication overflow by
532 * loosing precision when the numbers are big.
534 static u64 scale_stime(u64 stime, u64 rtime, u64 total)
536 u64 scaled;
538 for (;;) {
539 /* Make sure "rtime" is the bigger of stime/rtime */
540 if (stime > rtime)
541 swap(rtime, stime);
543 /* Make sure 'total' fits in 32 bits */
544 if (total >> 32)
545 goto drop_precision;
547 /* Does rtime (and thus stime) fit in 32 bits? */
548 if (!(rtime >> 32))
549 break;
551 /* Can we just balance rtime/stime rather than dropping bits? */
552 if (stime >> 31)
553 goto drop_precision;
555 /* We can grow stime and shrink rtime and try to make them both fit */
556 stime <<= 1;
557 rtime >>= 1;
558 continue;
560 drop_precision:
561 /* We drop from rtime, it has more bits than stime */
562 rtime >>= 1;
563 total >>= 1;
567 * Make sure gcc understands that this is a 32x32->64 multiply,
568 * followed by a 64/32->64 divide.
570 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
571 return scaled;
575 * Adjust tick based cputime random precision against scheduler runtime
576 * accounting.
578 * Tick based cputime accounting depend on random scheduling timeslices of a
579 * task to be interrupted or not by the timer. Depending on these
580 * circumstances, the number of these interrupts may be over or
581 * under-optimistic, matching the real user and system cputime with a variable
582 * precision.
584 * Fix this by scaling these tick based values against the total runtime
585 * accounted by the CFS scheduler.
587 * This code provides the following guarantees:
589 * stime + utime == rtime
590 * stime_i+1 >= stime_i, utime_i+1 >= utime_i
592 * Assuming that rtime_i+1 >= rtime_i.
594 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
595 u64 *ut, u64 *st)
597 u64 rtime, stime, utime;
598 unsigned long flags;
600 /* Serialize concurrent callers such that we can honour our guarantees */
601 raw_spin_lock_irqsave(&prev->lock, flags);
602 rtime = curr->sum_exec_runtime;
605 * This is possible under two circumstances:
606 * - rtime isn't monotonic after all (a bug);
607 * - we got reordered by the lock.
609 * In both cases this acts as a filter such that the rest of the code
610 * can assume it is monotonic regardless of anything else.
612 if (prev->stime + prev->utime >= rtime)
613 goto out;
615 stime = curr->stime;
616 utime = curr->utime;
619 * If either stime or utime are 0, assume all runtime is userspace.
620 * Once a task gets some ticks, the monotonicy code at 'update:'
621 * will ensure things converge to the observed ratio.
623 if (stime == 0) {
624 utime = rtime;
625 goto update;
628 if (utime == 0) {
629 stime = rtime;
630 goto update;
633 stime = scale_stime(stime, rtime, stime + utime);
635 update:
637 * Make sure stime doesn't go backwards; this preserves monotonicity
638 * for utime because rtime is monotonic.
640 * utime_i+1 = rtime_i+1 - stime_i
641 * = rtime_i+1 - (rtime_i - utime_i)
642 * = (rtime_i+1 - rtime_i) + utime_i
643 * >= utime_i
645 if (stime < prev->stime)
646 stime = prev->stime;
647 utime = rtime - stime;
650 * Make sure utime doesn't go backwards; this still preserves
651 * monotonicity for stime, analogous argument to above.
653 if (utime < prev->utime) {
654 utime = prev->utime;
655 stime = rtime - utime;
658 prev->stime = stime;
659 prev->utime = utime;
660 out:
661 *ut = prev->utime;
662 *st = prev->stime;
663 raw_spin_unlock_irqrestore(&prev->lock, flags);
666 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
668 struct task_cputime cputime = {
669 .sum_exec_runtime = p->se.sum_exec_runtime,
672 task_cputime(p, &cputime.utime, &cputime.stime);
673 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
675 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
677 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
679 struct task_cputime cputime;
681 thread_group_cputime(p, &cputime);
682 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
684 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
686 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
687 static u64 vtime_delta(struct vtime *vtime)
689 unsigned long long clock;
691 clock = sched_clock();
692 if (clock < vtime->starttime)
693 return 0;
695 return clock - vtime->starttime;
698 static u64 get_vtime_delta(struct vtime *vtime)
700 u64 delta = vtime_delta(vtime);
701 u64 other;
704 * Unlike tick based timing, vtime based timing never has lost
705 * ticks, and no need for steal time accounting to make up for
706 * lost ticks. Vtime accounts a rounded version of actual
707 * elapsed time. Limit account_other_time to prevent rounding
708 * errors from causing elapsed vtime to go negative.
710 other = account_other_time(delta);
711 WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
712 vtime->starttime += delta;
714 return delta - other;
717 static void __vtime_account_system(struct task_struct *tsk,
718 struct vtime *vtime)
720 vtime->stime += get_vtime_delta(vtime);
721 if (vtime->stime >= TICK_NSEC) {
722 account_system_time(tsk, irq_count(), vtime->stime);
723 vtime->stime = 0;
727 static void vtime_account_guest(struct task_struct *tsk,
728 struct vtime *vtime)
730 vtime->gtime += get_vtime_delta(vtime);
731 if (vtime->gtime >= TICK_NSEC) {
732 account_guest_time(tsk, vtime->gtime);
733 vtime->gtime = 0;
737 void vtime_account_system(struct task_struct *tsk)
739 struct vtime *vtime = &tsk->vtime;
741 if (!vtime_delta(vtime))
742 return;
744 write_seqcount_begin(&vtime->seqcount);
745 /* We might have scheduled out from guest path */
746 if (current->flags & PF_VCPU)
747 vtime_account_guest(tsk, vtime);
748 else
749 __vtime_account_system(tsk, vtime);
750 write_seqcount_end(&vtime->seqcount);
753 void vtime_user_enter(struct task_struct *tsk)
755 struct vtime *vtime = &tsk->vtime;
757 write_seqcount_begin(&vtime->seqcount);
758 __vtime_account_system(tsk, vtime);
759 vtime->state = VTIME_USER;
760 write_seqcount_end(&vtime->seqcount);
763 void vtime_user_exit(struct task_struct *tsk)
765 struct vtime *vtime = &tsk->vtime;
767 write_seqcount_begin(&vtime->seqcount);
768 vtime->utime += get_vtime_delta(vtime);
769 if (vtime->utime >= TICK_NSEC) {
770 account_user_time(tsk, vtime->utime);
771 vtime->utime = 0;
773 vtime->state = VTIME_SYS;
774 write_seqcount_end(&vtime->seqcount);
777 void vtime_guest_enter(struct task_struct *tsk)
779 struct vtime *vtime = &tsk->vtime;
781 * The flags must be updated under the lock with
782 * the vtime_starttime flush and update.
783 * That enforces a right ordering and update sequence
784 * synchronization against the reader (task_gtime())
785 * that can thus safely catch up with a tickless delta.
787 write_seqcount_begin(&vtime->seqcount);
788 __vtime_account_system(tsk, vtime);
789 current->flags |= PF_VCPU;
790 write_seqcount_end(&vtime->seqcount);
792 EXPORT_SYMBOL_GPL(vtime_guest_enter);
794 void vtime_guest_exit(struct task_struct *tsk)
796 struct vtime *vtime = &tsk->vtime;
798 write_seqcount_begin(&vtime->seqcount);
799 vtime_account_guest(tsk, vtime);
800 current->flags &= ~PF_VCPU;
801 write_seqcount_end(&vtime->seqcount);
803 EXPORT_SYMBOL_GPL(vtime_guest_exit);
805 void vtime_account_idle(struct task_struct *tsk)
807 account_idle_time(get_vtime_delta(&tsk->vtime));
810 void arch_vtime_task_switch(struct task_struct *prev)
812 struct vtime *vtime = &prev->vtime;
814 write_seqcount_begin(&vtime->seqcount);
815 vtime->state = VTIME_INACTIVE;
816 write_seqcount_end(&vtime->seqcount);
818 vtime = &current->vtime;
820 write_seqcount_begin(&vtime->seqcount);
821 vtime->state = VTIME_SYS;
822 vtime->starttime = sched_clock();
823 write_seqcount_end(&vtime->seqcount);
826 void vtime_init_idle(struct task_struct *t, int cpu)
828 struct vtime *vtime = &t->vtime;
829 unsigned long flags;
831 local_irq_save(flags);
832 write_seqcount_begin(&vtime->seqcount);
833 vtime->state = VTIME_SYS;
834 vtime->starttime = sched_clock();
835 write_seqcount_end(&vtime->seqcount);
836 local_irq_restore(flags);
839 u64 task_gtime(struct task_struct *t)
841 struct vtime *vtime = &t->vtime;
842 unsigned int seq;
843 u64 gtime;
845 if (!vtime_accounting_enabled())
846 return t->gtime;
848 do {
849 seq = read_seqcount_begin(&vtime->seqcount);
851 gtime = t->gtime;
852 if (vtime->state == VTIME_SYS && t->flags & PF_VCPU)
853 gtime += vtime->gtime + vtime_delta(vtime);
855 } while (read_seqcount_retry(&vtime->seqcount, seq));
857 return gtime;
861 * Fetch cputime raw values from fields of task_struct and
862 * add up the pending nohz execution time since the last
863 * cputime snapshot.
865 void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
867 struct vtime *vtime = &t->vtime;
868 unsigned int seq;
869 u64 delta;
871 if (!vtime_accounting_enabled()) {
872 *utime = t->utime;
873 *stime = t->stime;
874 return;
877 do {
878 seq = read_seqcount_begin(&vtime->seqcount);
880 *utime = t->utime;
881 *stime = t->stime;
883 /* Task is sleeping, nothing to add */
884 if (vtime->state == VTIME_INACTIVE || is_idle_task(t))
885 continue;
887 delta = vtime_delta(vtime);
890 * Task runs either in user or kernel space, add pending nohz time to
891 * the right place.
893 if (vtime->state == VTIME_USER || t->flags & PF_VCPU)
894 *utime += vtime->utime + delta;
895 else if (vtime->state == VTIME_SYS)
896 *stime += vtime->stime + delta;
897 } while (read_seqcount_retry(&vtime->seqcount, seq));
899 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */