Linux 4.16-rc1
[cris-mirror.git] / lib / reed_solomon / reed_solomon.c
blob06d04cfa93390e1ac13d0348876ba3045ebf594a
1 /*
2 * lib/reed_solomon/reed_solomon.c
4 * Overview:
5 * Generic Reed Solomon encoder / decoder library
7 * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de)
9 * Reed Solomon code lifted from reed solomon library written by Phil Karn
10 * Copyright 2002 Phil Karn, KA9Q
12 * $Id: rslib.c,v 1.7 2005/11/07 11:14:59 gleixner Exp $
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
18 * Description:
20 * The generic Reed Solomon library provides runtime configurable
21 * encoding / decoding of RS codes.
22 * Each user must call init_rs to get a pointer to a rs_control
23 * structure for the given rs parameters. This structure is either
24 * generated or a already available matching control structure is used.
25 * If a structure is generated then the polynomial arrays for
26 * fast encoding / decoding are built. This can take some time so
27 * make sure not to call this function from a time critical path.
28 * Usually a module / driver should initialize the necessary
29 * rs_control structure on module / driver init and release it
30 * on exit.
31 * The encoding puts the calculated syndrome into a given syndrome
32 * buffer.
33 * The decoding is a two step process. The first step calculates
34 * the syndrome over the received (data + syndrome) and calls the
35 * second stage, which does the decoding / error correction itself.
36 * Many hw encoders provide a syndrome calculation over the received
37 * data + syndrome and can call the second stage directly.
41 #include <linux/errno.h>
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/module.h>
45 #include <linux/rslib.h>
46 #include <linux/slab.h>
47 #include <linux/mutex.h>
49 /* This list holds all currently allocated rs control structures */
50 static LIST_HEAD (rslist);
51 /* Protection for the list */
52 static DEFINE_MUTEX(rslistlock);
54 /**
55 * rs_init - Initialize a Reed-Solomon codec
56 * @symsize: symbol size, bits (1-8)
57 * @gfpoly: Field generator polynomial coefficients
58 * @gffunc: Field generator function
59 * @fcr: first root of RS code generator polynomial, index form
60 * @prim: primitive element to generate polynomial roots
61 * @nroots: RS code generator polynomial degree (number of roots)
63 * Allocate a control structure and the polynom arrays for faster
64 * en/decoding. Fill the arrays according to the given parameters.
66 static struct rs_control *rs_init(int symsize, int gfpoly, int (*gffunc)(int),
67 int fcr, int prim, int nroots)
69 struct rs_control *rs;
70 int i, j, sr, root, iprim;
72 /* Allocate the control structure */
73 rs = kmalloc(sizeof (struct rs_control), GFP_KERNEL);
74 if (rs == NULL)
75 return NULL;
77 INIT_LIST_HEAD(&rs->list);
79 rs->mm = symsize;
80 rs->nn = (1 << symsize) - 1;
81 rs->fcr = fcr;
82 rs->prim = prim;
83 rs->nroots = nroots;
84 rs->gfpoly = gfpoly;
85 rs->gffunc = gffunc;
87 /* Allocate the arrays */
88 rs->alpha_to = kmalloc(sizeof(uint16_t) * (rs->nn + 1), GFP_KERNEL);
89 if (rs->alpha_to == NULL)
90 goto errrs;
92 rs->index_of = kmalloc(sizeof(uint16_t) * (rs->nn + 1), GFP_KERNEL);
93 if (rs->index_of == NULL)
94 goto erralp;
96 rs->genpoly = kmalloc(sizeof(uint16_t) * (rs->nroots + 1), GFP_KERNEL);
97 if(rs->genpoly == NULL)
98 goto erridx;
100 /* Generate Galois field lookup tables */
101 rs->index_of[0] = rs->nn; /* log(zero) = -inf */
102 rs->alpha_to[rs->nn] = 0; /* alpha**-inf = 0 */
103 if (gfpoly) {
104 sr = 1;
105 for (i = 0; i < rs->nn; i++) {
106 rs->index_of[sr] = i;
107 rs->alpha_to[i] = sr;
108 sr <<= 1;
109 if (sr & (1 << symsize))
110 sr ^= gfpoly;
111 sr &= rs->nn;
113 } else {
114 sr = gffunc(0);
115 for (i = 0; i < rs->nn; i++) {
116 rs->index_of[sr] = i;
117 rs->alpha_to[i] = sr;
118 sr = gffunc(sr);
121 /* If it's not primitive, exit */
122 if(sr != rs->alpha_to[0])
123 goto errpol;
125 /* Find prim-th root of 1, used in decoding */
126 for(iprim = 1; (iprim % prim) != 0; iprim += rs->nn);
127 /* prim-th root of 1, index form */
128 rs->iprim = iprim / prim;
130 /* Form RS code generator polynomial from its roots */
131 rs->genpoly[0] = 1;
132 for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) {
133 rs->genpoly[i + 1] = 1;
134 /* Multiply rs->genpoly[] by @**(root + x) */
135 for (j = i; j > 0; j--) {
136 if (rs->genpoly[j] != 0) {
137 rs->genpoly[j] = rs->genpoly[j -1] ^
138 rs->alpha_to[rs_modnn(rs,
139 rs->index_of[rs->genpoly[j]] + root)];
140 } else
141 rs->genpoly[j] = rs->genpoly[j - 1];
143 /* rs->genpoly[0] can never be zero */
144 rs->genpoly[0] =
145 rs->alpha_to[rs_modnn(rs,
146 rs->index_of[rs->genpoly[0]] + root)];
148 /* convert rs->genpoly[] to index form for quicker encoding */
149 for (i = 0; i <= nroots; i++)
150 rs->genpoly[i] = rs->index_of[rs->genpoly[i]];
151 return rs;
153 /* Error exit */
154 errpol:
155 kfree(rs->genpoly);
156 erridx:
157 kfree(rs->index_of);
158 erralp:
159 kfree(rs->alpha_to);
160 errrs:
161 kfree(rs);
162 return NULL;
167 * free_rs - Free the rs control structure, if it is no longer used
168 * @rs: the control structure which is not longer used by the
169 * caller
171 void free_rs(struct rs_control *rs)
173 mutex_lock(&rslistlock);
174 rs->users--;
175 if(!rs->users) {
176 list_del(&rs->list);
177 kfree(rs->alpha_to);
178 kfree(rs->index_of);
179 kfree(rs->genpoly);
180 kfree(rs);
182 mutex_unlock(&rslistlock);
186 * init_rs_internal - Find a matching or allocate a new rs control structure
187 * @symsize: the symbol size (number of bits)
188 * @gfpoly: the extended Galois field generator polynomial coefficients,
189 * with the 0th coefficient in the low order bit. The polynomial
190 * must be primitive;
191 * @gffunc: pointer to function to generate the next field element,
192 * or the multiplicative identity element if given 0. Used
193 * instead of gfpoly if gfpoly is 0
194 * @fcr: the first consecutive root of the rs code generator polynomial
195 * in index form
196 * @prim: primitive element to generate polynomial roots
197 * @nroots: RS code generator polynomial degree (number of roots)
199 static struct rs_control *init_rs_internal(int symsize, int gfpoly,
200 int (*gffunc)(int), int fcr,
201 int prim, int nroots)
203 struct list_head *tmp;
204 struct rs_control *rs;
206 /* Sanity checks */
207 if (symsize < 1)
208 return NULL;
209 if (fcr < 0 || fcr >= (1<<symsize))
210 return NULL;
211 if (prim <= 0 || prim >= (1<<symsize))
212 return NULL;
213 if (nroots < 0 || nroots >= (1<<symsize))
214 return NULL;
216 mutex_lock(&rslistlock);
218 /* Walk through the list and look for a matching entry */
219 list_for_each(tmp, &rslist) {
220 rs = list_entry(tmp, struct rs_control, list);
221 if (symsize != rs->mm)
222 continue;
223 if (gfpoly != rs->gfpoly)
224 continue;
225 if (gffunc != rs->gffunc)
226 continue;
227 if (fcr != rs->fcr)
228 continue;
229 if (prim != rs->prim)
230 continue;
231 if (nroots != rs->nroots)
232 continue;
233 /* We have a matching one already */
234 rs->users++;
235 goto out;
238 /* Create a new one */
239 rs = rs_init(symsize, gfpoly, gffunc, fcr, prim, nroots);
240 if (rs) {
241 rs->users = 1;
242 list_add(&rs->list, &rslist);
244 out:
245 mutex_unlock(&rslistlock);
246 return rs;
250 * init_rs - Find a matching or allocate a new rs control structure
251 * @symsize: the symbol size (number of bits)
252 * @gfpoly: the extended Galois field generator polynomial coefficients,
253 * with the 0th coefficient in the low order bit. The polynomial
254 * must be primitive;
255 * @fcr: the first consecutive root of the rs code generator polynomial
256 * in index form
257 * @prim: primitive element to generate polynomial roots
258 * @nroots: RS code generator polynomial degree (number of roots)
260 struct rs_control *init_rs(int symsize, int gfpoly, int fcr, int prim,
261 int nroots)
263 return init_rs_internal(symsize, gfpoly, NULL, fcr, prim, nroots);
267 * init_rs_non_canonical - Find a matching or allocate a new rs control
268 * structure, for fields with non-canonical
269 * representation
270 * @symsize: the symbol size (number of bits)
271 * @gffunc: pointer to function to generate the next field element,
272 * or the multiplicative identity element if given 0. Used
273 * instead of gfpoly if gfpoly is 0
274 * @fcr: the first consecutive root of the rs code generator polynomial
275 * in index form
276 * @prim: primitive element to generate polynomial roots
277 * @nroots: RS code generator polynomial degree (number of roots)
279 struct rs_control *init_rs_non_canonical(int symsize, int (*gffunc)(int),
280 int fcr, int prim, int nroots)
282 return init_rs_internal(symsize, 0, gffunc, fcr, prim, nroots);
285 #ifdef CONFIG_REED_SOLOMON_ENC8
287 * encode_rs8 - Calculate the parity for data values (8bit data width)
288 * @rs: the rs control structure
289 * @data: data field of a given type
290 * @len: data length
291 * @par: parity data, must be initialized by caller (usually all 0)
292 * @invmsk: invert data mask (will be xored on data)
294 * The parity uses a uint16_t data type to enable
295 * symbol size > 8. The calling code must take care of encoding of the
296 * syndrome result for storage itself.
298 int encode_rs8(struct rs_control *rs, uint8_t *data, int len, uint16_t *par,
299 uint16_t invmsk)
301 #include "encode_rs.c"
303 EXPORT_SYMBOL_GPL(encode_rs8);
304 #endif
306 #ifdef CONFIG_REED_SOLOMON_DEC8
308 * decode_rs8 - Decode codeword (8bit data width)
309 * @rs: the rs control structure
310 * @data: data field of a given type
311 * @par: received parity data field
312 * @len: data length
313 * @s: syndrome data field (if NULL, syndrome is calculated)
314 * @no_eras: number of erasures
315 * @eras_pos: position of erasures, can be NULL
316 * @invmsk: invert data mask (will be xored on data, not on parity!)
317 * @corr: buffer to store correction bitmask on eras_pos
319 * The syndrome and parity uses a uint16_t data type to enable
320 * symbol size > 8. The calling code must take care of decoding of the
321 * syndrome result and the received parity before calling this code.
322 * Returns the number of corrected bits or -EBADMSG for uncorrectable errors.
324 int decode_rs8(struct rs_control *rs, uint8_t *data, uint16_t *par, int len,
325 uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,
326 uint16_t *corr)
328 #include "decode_rs.c"
330 EXPORT_SYMBOL_GPL(decode_rs8);
331 #endif
333 #ifdef CONFIG_REED_SOLOMON_ENC16
335 * encode_rs16 - Calculate the parity for data values (16bit data width)
336 * @rs: the rs control structure
337 * @data: data field of a given type
338 * @len: data length
339 * @par: parity data, must be initialized by caller (usually all 0)
340 * @invmsk: invert data mask (will be xored on data, not on parity!)
342 * Each field in the data array contains up to symbol size bits of valid data.
344 int encode_rs16(struct rs_control *rs, uint16_t *data, int len, uint16_t *par,
345 uint16_t invmsk)
347 #include "encode_rs.c"
349 EXPORT_SYMBOL_GPL(encode_rs16);
350 #endif
352 #ifdef CONFIG_REED_SOLOMON_DEC16
354 * decode_rs16 - Decode codeword (16bit data width)
355 * @rs: the rs control structure
356 * @data: data field of a given type
357 * @par: received parity data field
358 * @len: data length
359 * @s: syndrome data field (if NULL, syndrome is calculated)
360 * @no_eras: number of erasures
361 * @eras_pos: position of erasures, can be NULL
362 * @invmsk: invert data mask (will be xored on data, not on parity!)
363 * @corr: buffer to store correction bitmask on eras_pos
365 * Each field in the data array contains up to symbol size bits of valid data.
366 * Returns the number of corrected bits or -EBADMSG for uncorrectable errors.
368 int decode_rs16(struct rs_control *rs, uint16_t *data, uint16_t *par, int len,
369 uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,
370 uint16_t *corr)
372 #include "decode_rs.c"
374 EXPORT_SYMBOL_GPL(decode_rs16);
375 #endif
377 EXPORT_SYMBOL_GPL(init_rs);
378 EXPORT_SYMBOL_GPL(init_rs_non_canonical);
379 EXPORT_SYMBOL_GPL(free_rs);
381 MODULE_LICENSE("GPL");
382 MODULE_DESCRIPTION("Reed Solomon encoder/decoder");
383 MODULE_AUTHOR("Phil Karn, Thomas Gleixner");