2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
24 * It can be very tempting to add handling for obscure cases here.
25 * In general any code for handling new cases should only be added iff:
26 * - You know how to test it.
27 * - You have a test that can be added to mce-test
28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29 * - The case actually shows up as a frequent (top 10) page state in
30 * tools/vm/page-types when running a real workload.
32 * There are several operations here with exponential complexity because
33 * of unsuitable VM data structures. For example the operation to map back
34 * from RMAP chains to processes has to walk the complete process list and
35 * has non linear complexity with the number. But since memory corruptions
36 * are rare we hope to get away with this. This avoids impacting the core
39 #include <linux/kernel.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/suspend.h>
53 #include <linux/slab.h>
54 #include <linux/swapops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
61 #include "ras/ras_event.h"
63 int sysctl_memory_failure_early_kill __read_mostly
= 0;
65 int sysctl_memory_failure_recovery __read_mostly
= 1;
67 atomic_long_t num_poisoned_pages __read_mostly
= ATOMIC_LONG_INIT(0);
69 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
71 u32 hwpoison_filter_enable
= 0;
72 u32 hwpoison_filter_dev_major
= ~0U;
73 u32 hwpoison_filter_dev_minor
= ~0U;
74 u64 hwpoison_filter_flags_mask
;
75 u64 hwpoison_filter_flags_value
;
76 EXPORT_SYMBOL_GPL(hwpoison_filter_enable
);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major
);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor
);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask
);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value
);
82 static int hwpoison_filter_dev(struct page
*p
)
84 struct address_space
*mapping
;
87 if (hwpoison_filter_dev_major
== ~0U &&
88 hwpoison_filter_dev_minor
== ~0U)
92 * page_mapping() does not accept slab pages.
97 mapping
= page_mapping(p
);
98 if (mapping
== NULL
|| mapping
->host
== NULL
)
101 dev
= mapping
->host
->i_sb
->s_dev
;
102 if (hwpoison_filter_dev_major
!= ~0U &&
103 hwpoison_filter_dev_major
!= MAJOR(dev
))
105 if (hwpoison_filter_dev_minor
!= ~0U &&
106 hwpoison_filter_dev_minor
!= MINOR(dev
))
112 static int hwpoison_filter_flags(struct page
*p
)
114 if (!hwpoison_filter_flags_mask
)
117 if ((stable_page_flags(p
) & hwpoison_filter_flags_mask
) ==
118 hwpoison_filter_flags_value
)
125 * This allows stress tests to limit test scope to a collection of tasks
126 * by putting them under some memcg. This prevents killing unrelated/important
127 * processes such as /sbin/init. Note that the target task may share clean
128 * pages with init (eg. libc text), which is harmless. If the target task
129 * share _dirty_ pages with another task B, the test scheme must make sure B
130 * is also included in the memcg. At last, due to race conditions this filter
131 * can only guarantee that the page either belongs to the memcg tasks, or is
135 u64 hwpoison_filter_memcg
;
136 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg
);
137 static int hwpoison_filter_task(struct page
*p
)
139 if (!hwpoison_filter_memcg
)
142 if (page_cgroup_ino(p
) != hwpoison_filter_memcg
)
148 static int hwpoison_filter_task(struct page
*p
) { return 0; }
151 int hwpoison_filter(struct page
*p
)
153 if (!hwpoison_filter_enable
)
156 if (hwpoison_filter_dev(p
))
159 if (hwpoison_filter_flags(p
))
162 if (hwpoison_filter_task(p
))
168 int hwpoison_filter(struct page
*p
)
174 EXPORT_SYMBOL_GPL(hwpoison_filter
);
177 * Send all the processes who have the page mapped a signal.
178 * ``action optional'' if they are not immediately affected by the error
179 * ``action required'' if error happened in current execution context
181 static int kill_proc(struct task_struct
*t
, unsigned long addr
,
182 unsigned long pfn
, struct page
*page
, int flags
)
187 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
188 pfn
, t
->comm
, t
->pid
);
189 addr_lsb
= compound_order(compound_head(page
)) + PAGE_SHIFT
;
191 if ((flags
& MF_ACTION_REQUIRED
) && t
->mm
== current
->mm
) {
192 ret
= force_sig_mceerr(BUS_MCEERR_AR
, (void __user
*)addr
,
196 * Don't use force here, it's convenient if the signal
197 * can be temporarily blocked.
198 * This could cause a loop when the user sets SIGBUS
199 * to SIG_IGN, but hopefully no one will do that?
201 ret
= send_sig_mceerr(BUS_MCEERR_AO
, (void __user
*)addr
,
202 addr_lsb
, t
); /* synchronous? */
205 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
206 t
->comm
, t
->pid
, ret
);
211 * When a unknown page type is encountered drain as many buffers as possible
212 * in the hope to turn the page into a LRU or free page, which we can handle.
214 void shake_page(struct page
*p
, int access
)
223 drain_all_pages(page_zone(p
));
224 if (PageLRU(p
) || is_free_buddy_page(p
))
229 * Only call shrink_node_slabs here (which would also shrink
230 * other caches) if access is not potentially fatal.
233 drop_slab_node(page_to_nid(p
));
235 EXPORT_SYMBOL_GPL(shake_page
);
238 * Kill all processes that have a poisoned page mapped and then isolate
242 * Find all processes having the page mapped and kill them.
243 * But we keep a page reference around so that the page is not
244 * actually freed yet.
245 * Then stash the page away
247 * There's no convenient way to get back to mapped processes
248 * from the VMAs. So do a brute-force search over all
251 * Remember that machine checks are not common (or rather
252 * if they are common you have other problems), so this shouldn't
253 * be a performance issue.
255 * Also there are some races possible while we get from the
256 * error detection to actually handle it.
261 struct task_struct
*tsk
;
267 * Failure handling: if we can't find or can't kill a process there's
268 * not much we can do. We just print a message and ignore otherwise.
272 * Schedule a process for later kill.
273 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
274 * TBD would GFP_NOIO be enough?
276 static void add_to_kill(struct task_struct
*tsk
, struct page
*p
,
277 struct vm_area_struct
*vma
,
278 struct list_head
*to_kill
,
279 struct to_kill
**tkc
)
287 tk
= kmalloc(sizeof(struct to_kill
), GFP_ATOMIC
);
289 pr_err("Memory failure: Out of memory while machine check handling\n");
293 tk
->addr
= page_address_in_vma(p
, vma
);
297 * In theory we don't have to kill when the page was
298 * munmaped. But it could be also a mremap. Since that's
299 * likely very rare kill anyways just out of paranoia, but use
300 * a SIGKILL because the error is not contained anymore.
302 if (tk
->addr
== -EFAULT
) {
303 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
304 page_to_pfn(p
), tsk
->comm
);
307 get_task_struct(tsk
);
309 list_add_tail(&tk
->nd
, to_kill
);
313 * Kill the processes that have been collected earlier.
315 * Only do anything when DOIT is set, otherwise just free the list
316 * (this is used for clean pages which do not need killing)
317 * Also when FAIL is set do a force kill because something went
320 static void kill_procs(struct list_head
*to_kill
, int forcekill
,
321 bool fail
, struct page
*page
, unsigned long pfn
,
324 struct to_kill
*tk
, *next
;
326 list_for_each_entry_safe (tk
, next
, to_kill
, nd
) {
329 * In case something went wrong with munmapping
330 * make sure the process doesn't catch the
331 * signal and then access the memory. Just kill it.
333 if (fail
|| tk
->addr_valid
== 0) {
334 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
335 pfn
, tk
->tsk
->comm
, tk
->tsk
->pid
);
336 force_sig(SIGKILL
, tk
->tsk
);
340 * In theory the process could have mapped
341 * something else on the address in-between. We could
342 * check for that, but we need to tell the
345 else if (kill_proc(tk
->tsk
, tk
->addr
,
346 pfn
, page
, flags
) < 0)
347 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
348 pfn
, tk
->tsk
->comm
, tk
->tsk
->pid
);
350 put_task_struct(tk
->tsk
);
356 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
357 * on behalf of the thread group. Return task_struct of the (first found)
358 * dedicated thread if found, and return NULL otherwise.
360 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
361 * have to call rcu_read_lock/unlock() in this function.
363 static struct task_struct
*find_early_kill_thread(struct task_struct
*tsk
)
365 struct task_struct
*t
;
367 for_each_thread(tsk
, t
)
368 if ((t
->flags
& PF_MCE_PROCESS
) && (t
->flags
& PF_MCE_EARLY
))
374 * Determine whether a given process is "early kill" process which expects
375 * to be signaled when some page under the process is hwpoisoned.
376 * Return task_struct of the dedicated thread (main thread unless explicitly
377 * specified) if the process is "early kill," and otherwise returns NULL.
379 static struct task_struct
*task_early_kill(struct task_struct
*tsk
,
382 struct task_struct
*t
;
387 t
= find_early_kill_thread(tsk
);
390 if (sysctl_memory_failure_early_kill
)
396 * Collect processes when the error hit an anonymous page.
398 static void collect_procs_anon(struct page
*page
, struct list_head
*to_kill
,
399 struct to_kill
**tkc
, int force_early
)
401 struct vm_area_struct
*vma
;
402 struct task_struct
*tsk
;
406 av
= page_lock_anon_vma_read(page
);
407 if (av
== NULL
) /* Not actually mapped anymore */
410 pgoff
= page_to_pgoff(page
);
411 read_lock(&tasklist_lock
);
412 for_each_process (tsk
) {
413 struct anon_vma_chain
*vmac
;
414 struct task_struct
*t
= task_early_kill(tsk
, force_early
);
418 anon_vma_interval_tree_foreach(vmac
, &av
->rb_root
,
421 if (!page_mapped_in_vma(page
, vma
))
423 if (vma
->vm_mm
== t
->mm
)
424 add_to_kill(t
, page
, vma
, to_kill
, tkc
);
427 read_unlock(&tasklist_lock
);
428 page_unlock_anon_vma_read(av
);
432 * Collect processes when the error hit a file mapped page.
434 static void collect_procs_file(struct page
*page
, struct list_head
*to_kill
,
435 struct to_kill
**tkc
, int force_early
)
437 struct vm_area_struct
*vma
;
438 struct task_struct
*tsk
;
439 struct address_space
*mapping
= page
->mapping
;
441 i_mmap_lock_read(mapping
);
442 read_lock(&tasklist_lock
);
443 for_each_process(tsk
) {
444 pgoff_t pgoff
= page_to_pgoff(page
);
445 struct task_struct
*t
= task_early_kill(tsk
, force_early
);
449 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
,
452 * Send early kill signal to tasks where a vma covers
453 * the page but the corrupted page is not necessarily
454 * mapped it in its pte.
455 * Assume applications who requested early kill want
456 * to be informed of all such data corruptions.
458 if (vma
->vm_mm
== t
->mm
)
459 add_to_kill(t
, page
, vma
, to_kill
, tkc
);
462 read_unlock(&tasklist_lock
);
463 i_mmap_unlock_read(mapping
);
467 * Collect the processes who have the corrupted page mapped to kill.
468 * This is done in two steps for locking reasons.
469 * First preallocate one tokill structure outside the spin locks,
470 * so that we can kill at least one process reasonably reliable.
472 static void collect_procs(struct page
*page
, struct list_head
*tokill
,
480 tk
= kmalloc(sizeof(struct to_kill
), GFP_NOIO
);
484 collect_procs_anon(page
, tokill
, &tk
, force_early
);
486 collect_procs_file(page
, tokill
, &tk
, force_early
);
490 static const char *action_name
[] = {
491 [MF_IGNORED
] = "Ignored",
492 [MF_FAILED
] = "Failed",
493 [MF_DELAYED
] = "Delayed",
494 [MF_RECOVERED
] = "Recovered",
497 static const char * const action_page_types
[] = {
498 [MF_MSG_KERNEL
] = "reserved kernel page",
499 [MF_MSG_KERNEL_HIGH_ORDER
] = "high-order kernel page",
500 [MF_MSG_SLAB
] = "kernel slab page",
501 [MF_MSG_DIFFERENT_COMPOUND
] = "different compound page after locking",
502 [MF_MSG_POISONED_HUGE
] = "huge page already hardware poisoned",
503 [MF_MSG_HUGE
] = "huge page",
504 [MF_MSG_FREE_HUGE
] = "free huge page",
505 [MF_MSG_UNMAP_FAILED
] = "unmapping failed page",
506 [MF_MSG_DIRTY_SWAPCACHE
] = "dirty swapcache page",
507 [MF_MSG_CLEAN_SWAPCACHE
] = "clean swapcache page",
508 [MF_MSG_DIRTY_MLOCKED_LRU
] = "dirty mlocked LRU page",
509 [MF_MSG_CLEAN_MLOCKED_LRU
] = "clean mlocked LRU page",
510 [MF_MSG_DIRTY_UNEVICTABLE_LRU
] = "dirty unevictable LRU page",
511 [MF_MSG_CLEAN_UNEVICTABLE_LRU
] = "clean unevictable LRU page",
512 [MF_MSG_DIRTY_LRU
] = "dirty LRU page",
513 [MF_MSG_CLEAN_LRU
] = "clean LRU page",
514 [MF_MSG_TRUNCATED_LRU
] = "already truncated LRU page",
515 [MF_MSG_BUDDY
] = "free buddy page",
516 [MF_MSG_BUDDY_2ND
] = "free buddy page (2nd try)",
517 [MF_MSG_UNKNOWN
] = "unknown page",
521 * XXX: It is possible that a page is isolated from LRU cache,
522 * and then kept in swap cache or failed to remove from page cache.
523 * The page count will stop it from being freed by unpoison.
524 * Stress tests should be aware of this memory leak problem.
526 static int delete_from_lru_cache(struct page
*p
)
528 if (!isolate_lru_page(p
)) {
530 * Clear sensible page flags, so that the buddy system won't
531 * complain when the page is unpoison-and-freed.
534 ClearPageUnevictable(p
);
537 * Poisoned page might never drop its ref count to 0 so we have
538 * to uncharge it manually from its memcg.
540 mem_cgroup_uncharge(p
);
543 * drop the page count elevated by isolate_lru_page()
551 static int truncate_error_page(struct page
*p
, unsigned long pfn
,
552 struct address_space
*mapping
)
556 if (mapping
->a_ops
->error_remove_page
) {
557 int err
= mapping
->a_ops
->error_remove_page(mapping
, p
);
560 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
562 } else if (page_has_private(p
) &&
563 !try_to_release_page(p
, GFP_NOIO
)) {
564 pr_info("Memory failure: %#lx: failed to release buffers\n",
571 * If the file system doesn't support it just invalidate
572 * This fails on dirty or anything with private pages
574 if (invalidate_inode_page(p
))
577 pr_info("Memory failure: %#lx: Failed to invalidate\n",
585 * Error hit kernel page.
586 * Do nothing, try to be lucky and not touch this instead. For a few cases we
587 * could be more sophisticated.
589 static int me_kernel(struct page
*p
, unsigned long pfn
)
595 * Page in unknown state. Do nothing.
597 static int me_unknown(struct page
*p
, unsigned long pfn
)
599 pr_err("Memory failure: %#lx: Unknown page state\n", pfn
);
604 * Clean (or cleaned) page cache page.
606 static int me_pagecache_clean(struct page
*p
, unsigned long pfn
)
608 struct address_space
*mapping
;
610 delete_from_lru_cache(p
);
613 * For anonymous pages we're done the only reference left
614 * should be the one m_f() holds.
620 * Now truncate the page in the page cache. This is really
621 * more like a "temporary hole punch"
622 * Don't do this for block devices when someone else
623 * has a reference, because it could be file system metadata
624 * and that's not safe to truncate.
626 mapping
= page_mapping(p
);
629 * Page has been teared down in the meanwhile
635 * Truncation is a bit tricky. Enable it per file system for now.
637 * Open: to take i_mutex or not for this? Right now we don't.
639 return truncate_error_page(p
, pfn
, mapping
);
643 * Dirty pagecache page
644 * Issues: when the error hit a hole page the error is not properly
647 static int me_pagecache_dirty(struct page
*p
, unsigned long pfn
)
649 struct address_space
*mapping
= page_mapping(p
);
652 /* TBD: print more information about the file. */
655 * IO error will be reported by write(), fsync(), etc.
656 * who check the mapping.
657 * This way the application knows that something went
658 * wrong with its dirty file data.
660 * There's one open issue:
662 * The EIO will be only reported on the next IO
663 * operation and then cleared through the IO map.
664 * Normally Linux has two mechanisms to pass IO error
665 * first through the AS_EIO flag in the address space
666 * and then through the PageError flag in the page.
667 * Since we drop pages on memory failure handling the
668 * only mechanism open to use is through AS_AIO.
670 * This has the disadvantage that it gets cleared on
671 * the first operation that returns an error, while
672 * the PageError bit is more sticky and only cleared
673 * when the page is reread or dropped. If an
674 * application assumes it will always get error on
675 * fsync, but does other operations on the fd before
676 * and the page is dropped between then the error
677 * will not be properly reported.
679 * This can already happen even without hwpoisoned
680 * pages: first on metadata IO errors (which only
681 * report through AS_EIO) or when the page is dropped
684 * So right now we assume that the application DTRT on
685 * the first EIO, but we're not worse than other parts
688 mapping_set_error(mapping
, -EIO
);
691 return me_pagecache_clean(p
, pfn
);
695 * Clean and dirty swap cache.
697 * Dirty swap cache page is tricky to handle. The page could live both in page
698 * cache and swap cache(ie. page is freshly swapped in). So it could be
699 * referenced concurrently by 2 types of PTEs:
700 * normal PTEs and swap PTEs. We try to handle them consistently by calling
701 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
703 * - clear dirty bit to prevent IO
705 * - but keep in the swap cache, so that when we return to it on
706 * a later page fault, we know the application is accessing
707 * corrupted data and shall be killed (we installed simple
708 * interception code in do_swap_page to catch it).
710 * Clean swap cache pages can be directly isolated. A later page fault will
711 * bring in the known good data from disk.
713 static int me_swapcache_dirty(struct page
*p
, unsigned long pfn
)
716 /* Trigger EIO in shmem: */
717 ClearPageUptodate(p
);
719 if (!delete_from_lru_cache(p
))
725 static int me_swapcache_clean(struct page
*p
, unsigned long pfn
)
727 delete_from_swap_cache(p
);
729 if (!delete_from_lru_cache(p
))
736 * Huge pages. Needs work.
738 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
739 * To narrow down kill region to one page, we need to break up pmd.
741 static int me_huge_page(struct page
*p
, unsigned long pfn
)
744 struct page
*hpage
= compound_head(p
);
745 struct address_space
*mapping
;
747 if (!PageHuge(hpage
))
750 mapping
= page_mapping(hpage
);
752 res
= truncate_error_page(hpage
, pfn
, mapping
);
756 * migration entry prevents later access on error anonymous
757 * hugepage, so we can free and dissolve it into buddy to
758 * save healthy subpages.
762 dissolve_free_huge_page(p
);
771 * Various page states we can handle.
773 * A page state is defined by its current page->flags bits.
774 * The table matches them in order and calls the right handler.
776 * This is quite tricky because we can access page at any time
777 * in its live cycle, so all accesses have to be extremely careful.
779 * This is not complete. More states could be added.
780 * For any missing state don't attempt recovery.
783 #define dirty (1UL << PG_dirty)
784 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
785 #define unevict (1UL << PG_unevictable)
786 #define mlock (1UL << PG_mlocked)
787 #define writeback (1UL << PG_writeback)
788 #define lru (1UL << PG_lru)
789 #define head (1UL << PG_head)
790 #define slab (1UL << PG_slab)
791 #define reserved (1UL << PG_reserved)
793 static struct page_state
{
796 enum mf_action_page_type type
;
797 int (*action
)(struct page
*p
, unsigned long pfn
);
799 { reserved
, reserved
, MF_MSG_KERNEL
, me_kernel
},
801 * free pages are specially detected outside this table:
802 * PG_buddy pages only make a small fraction of all free pages.
806 * Could in theory check if slab page is free or if we can drop
807 * currently unused objects without touching them. But just
808 * treat it as standard kernel for now.
810 { slab
, slab
, MF_MSG_SLAB
, me_kernel
},
812 { head
, head
, MF_MSG_HUGE
, me_huge_page
},
814 { sc
|dirty
, sc
|dirty
, MF_MSG_DIRTY_SWAPCACHE
, me_swapcache_dirty
},
815 { sc
|dirty
, sc
, MF_MSG_CLEAN_SWAPCACHE
, me_swapcache_clean
},
817 { mlock
|dirty
, mlock
|dirty
, MF_MSG_DIRTY_MLOCKED_LRU
, me_pagecache_dirty
},
818 { mlock
|dirty
, mlock
, MF_MSG_CLEAN_MLOCKED_LRU
, me_pagecache_clean
},
820 { unevict
|dirty
, unevict
|dirty
, MF_MSG_DIRTY_UNEVICTABLE_LRU
, me_pagecache_dirty
},
821 { unevict
|dirty
, unevict
, MF_MSG_CLEAN_UNEVICTABLE_LRU
, me_pagecache_clean
},
823 { lru
|dirty
, lru
|dirty
, MF_MSG_DIRTY_LRU
, me_pagecache_dirty
},
824 { lru
|dirty
, lru
, MF_MSG_CLEAN_LRU
, me_pagecache_clean
},
827 * Catchall entry: must be at end.
829 { 0, 0, MF_MSG_UNKNOWN
, me_unknown
},
843 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
844 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
846 static void action_result(unsigned long pfn
, enum mf_action_page_type type
,
847 enum mf_result result
)
849 trace_memory_failure_event(pfn
, type
, result
);
851 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
852 pfn
, action_page_types
[type
], action_name
[result
]);
855 static int page_action(struct page_state
*ps
, struct page
*p
,
861 result
= ps
->action(p
, pfn
);
863 count
= page_count(p
) - 1;
864 if (ps
->action
== me_swapcache_dirty
&& result
== MF_DELAYED
)
867 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
868 pfn
, action_page_types
[ps
->type
], count
);
871 action_result(pfn
, ps
->type
, result
);
873 /* Could do more checks here if page looks ok */
875 * Could adjust zone counters here to correct for the missing page.
878 return (result
== MF_RECOVERED
|| result
== MF_DELAYED
) ? 0 : -EBUSY
;
882 * get_hwpoison_page() - Get refcount for memory error handling:
883 * @page: raw error page (hit by memory error)
885 * Return: return 0 if failed to grab the refcount, otherwise true (some
888 int get_hwpoison_page(struct page
*page
)
890 struct page
*head
= compound_head(page
);
892 if (!PageHuge(head
) && PageTransHuge(head
)) {
894 * Non anonymous thp exists only in allocation/free time. We
895 * can't handle such a case correctly, so let's give it up.
896 * This should be better than triggering BUG_ON when kernel
897 * tries to touch the "partially handled" page.
899 if (!PageAnon(head
)) {
900 pr_err("Memory failure: %#lx: non anonymous thp\n",
906 if (get_page_unless_zero(head
)) {
907 if (head
== compound_head(page
))
910 pr_info("Memory failure: %#lx cannot catch tail\n",
917 EXPORT_SYMBOL_GPL(get_hwpoison_page
);
920 * Do all that is necessary to remove user space mappings. Unmap
921 * the pages and send SIGBUS to the processes if the data was dirty.
923 static bool hwpoison_user_mappings(struct page
*p
, unsigned long pfn
,
924 int flags
, struct page
**hpagep
)
926 enum ttu_flags ttu
= TTU_IGNORE_MLOCK
| TTU_IGNORE_ACCESS
;
927 struct address_space
*mapping
;
930 int kill
= 1, forcekill
;
931 struct page
*hpage
= *hpagep
;
932 bool mlocked
= PageMlocked(hpage
);
935 * Here we are interested only in user-mapped pages, so skip any
936 * other types of pages.
938 if (PageReserved(p
) || PageSlab(p
))
940 if (!(PageLRU(hpage
) || PageHuge(p
)))
944 * This check implies we don't kill processes if their pages
945 * are in the swap cache early. Those are always late kills.
947 if (!page_mapped(hpage
))
951 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn
);
955 if (PageSwapCache(p
)) {
956 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
958 ttu
|= TTU_IGNORE_HWPOISON
;
962 * Propagate the dirty bit from PTEs to struct page first, because we
963 * need this to decide if we should kill or just drop the page.
964 * XXX: the dirty test could be racy: set_page_dirty() may not always
965 * be called inside page lock (it's recommended but not enforced).
967 mapping
= page_mapping(hpage
);
968 if (!(flags
& MF_MUST_KILL
) && !PageDirty(hpage
) && mapping
&&
969 mapping_cap_writeback_dirty(mapping
)) {
970 if (page_mkclean(hpage
)) {
974 ttu
|= TTU_IGNORE_HWPOISON
;
975 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
981 * First collect all the processes that have the page
982 * mapped in dirty form. This has to be done before try_to_unmap,
983 * because ttu takes the rmap data structures down.
985 * Error handling: We ignore errors here because
986 * there's nothing that can be done.
989 collect_procs(hpage
, &tokill
, flags
& MF_ACTION_REQUIRED
);
991 unmap_success
= try_to_unmap(hpage
, ttu
);
993 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
994 pfn
, page_mapcount(hpage
));
997 * try_to_unmap() might put mlocked page in lru cache, so call
998 * shake_page() again to ensure that it's flushed.
1001 shake_page(hpage
, 0);
1004 * Now that the dirty bit has been propagated to the
1005 * struct page and all unmaps done we can decide if
1006 * killing is needed or not. Only kill when the page
1007 * was dirty or the process is not restartable,
1008 * otherwise the tokill list is merely
1009 * freed. When there was a problem unmapping earlier
1010 * use a more force-full uncatchable kill to prevent
1011 * any accesses to the poisoned memory.
1013 forcekill
= PageDirty(hpage
) || (flags
& MF_MUST_KILL
);
1014 kill_procs(&tokill
, forcekill
, !unmap_success
, p
, pfn
, flags
);
1016 return unmap_success
;
1019 static int identify_page_state(unsigned long pfn
, struct page
*p
,
1020 unsigned long page_flags
)
1022 struct page_state
*ps
;
1025 * The first check uses the current page flags which may not have any
1026 * relevant information. The second check with the saved page flags is
1027 * carried out only if the first check can't determine the page status.
1029 for (ps
= error_states
;; ps
++)
1030 if ((p
->flags
& ps
->mask
) == ps
->res
)
1033 page_flags
|= (p
->flags
& (1UL << PG_dirty
));
1036 for (ps
= error_states
;; ps
++)
1037 if ((page_flags
& ps
->mask
) == ps
->res
)
1039 return page_action(ps
, p
, pfn
);
1042 static int memory_failure_hugetlb(unsigned long pfn
, int flags
)
1044 struct page
*p
= pfn_to_page(pfn
);
1045 struct page
*head
= compound_head(p
);
1047 unsigned long page_flags
;
1049 if (TestSetPageHWPoison(head
)) {
1050 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1055 num_poisoned_pages_inc();
1057 if (!(flags
& MF_COUNT_INCREASED
) && !get_hwpoison_page(p
)) {
1059 * Check "filter hit" and "race with other subpage."
1062 if (PageHWPoison(head
)) {
1063 if ((hwpoison_filter(p
) && TestClearPageHWPoison(p
))
1064 || (p
!= head
&& TestSetPageHWPoison(head
))) {
1065 num_poisoned_pages_dec();
1071 dissolve_free_huge_page(p
);
1072 action_result(pfn
, MF_MSG_FREE_HUGE
, MF_DELAYED
);
1077 page_flags
= head
->flags
;
1079 if (!PageHWPoison(head
)) {
1080 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn
);
1081 num_poisoned_pages_dec();
1083 put_hwpoison_page(head
);
1087 if (!hwpoison_user_mappings(p
, pfn
, flags
, &head
)) {
1088 action_result(pfn
, MF_MSG_UNMAP_FAILED
, MF_IGNORED
);
1093 res
= identify_page_state(pfn
, p
, page_flags
);
1100 * memory_failure - Handle memory failure of a page.
1101 * @pfn: Page Number of the corrupted page
1102 * @flags: fine tune action taken
1104 * This function is called by the low level machine check code
1105 * of an architecture when it detects hardware memory corruption
1106 * of a page. It tries its best to recover, which includes
1107 * dropping pages, killing processes etc.
1109 * The function is primarily of use for corruptions that
1110 * happen outside the current execution context (e.g. when
1111 * detected by a background scrubber)
1113 * Must run in process context (e.g. a work queue) with interrupts
1114 * enabled and no spinlocks hold.
1116 int memory_failure(unsigned long pfn
, int flags
)
1120 struct page
*orig_head
;
1122 unsigned long page_flags
;
1124 if (!sysctl_memory_failure_recovery
)
1125 panic("Memory failure on page %lx", pfn
);
1127 if (!pfn_valid(pfn
)) {
1128 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1133 p
= pfn_to_page(pfn
);
1135 return memory_failure_hugetlb(pfn
, flags
);
1136 if (TestSetPageHWPoison(p
)) {
1137 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1142 arch_unmap_kpfn(pfn
);
1144 orig_head
= hpage
= compound_head(p
);
1145 num_poisoned_pages_inc();
1148 * We need/can do nothing about count=0 pages.
1149 * 1) it's a free page, and therefore in safe hand:
1150 * prep_new_page() will be the gate keeper.
1151 * 2) it's part of a non-compound high order page.
1152 * Implies some kernel user: cannot stop them from
1153 * R/W the page; let's pray that the page has been
1154 * used and will be freed some time later.
1155 * In fact it's dangerous to directly bump up page count from 0,
1156 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1158 if (!(flags
& MF_COUNT_INCREASED
) && !get_hwpoison_page(p
)) {
1159 if (is_free_buddy_page(p
)) {
1160 action_result(pfn
, MF_MSG_BUDDY
, MF_DELAYED
);
1163 action_result(pfn
, MF_MSG_KERNEL_HIGH_ORDER
, MF_IGNORED
);
1168 if (PageTransHuge(hpage
)) {
1170 if (!PageAnon(p
) || unlikely(split_huge_page(p
))) {
1173 pr_err("Memory failure: %#lx: non anonymous thp\n",
1176 pr_err("Memory failure: %#lx: thp split failed\n",
1178 if (TestClearPageHWPoison(p
))
1179 num_poisoned_pages_dec();
1180 put_hwpoison_page(p
);
1184 VM_BUG_ON_PAGE(!page_count(p
), p
);
1185 hpage
= compound_head(p
);
1189 * We ignore non-LRU pages for good reasons.
1190 * - PG_locked is only well defined for LRU pages and a few others
1191 * - to avoid races with __SetPageLocked()
1192 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1193 * The check (unnecessarily) ignores LRU pages being isolated and
1194 * walked by the page reclaim code, however that's not a big loss.
1197 /* shake_page could have turned it free. */
1198 if (!PageLRU(p
) && is_free_buddy_page(p
)) {
1199 if (flags
& MF_COUNT_INCREASED
)
1200 action_result(pfn
, MF_MSG_BUDDY
, MF_DELAYED
);
1202 action_result(pfn
, MF_MSG_BUDDY_2ND
, MF_DELAYED
);
1209 * The page could have changed compound pages during the locking.
1210 * If this happens just bail out.
1212 if (PageCompound(p
) && compound_head(p
) != orig_head
) {
1213 action_result(pfn
, MF_MSG_DIFFERENT_COMPOUND
, MF_IGNORED
);
1219 * We use page flags to determine what action should be taken, but
1220 * the flags can be modified by the error containment action. One
1221 * example is an mlocked page, where PG_mlocked is cleared by
1222 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1223 * correctly, we save a copy of the page flags at this time.
1226 page_flags
= hpage
->flags
;
1228 page_flags
= p
->flags
;
1231 * unpoison always clear PG_hwpoison inside page lock
1233 if (!PageHWPoison(p
)) {
1234 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn
);
1235 num_poisoned_pages_dec();
1237 put_hwpoison_page(p
);
1240 if (hwpoison_filter(p
)) {
1241 if (TestClearPageHWPoison(p
))
1242 num_poisoned_pages_dec();
1244 put_hwpoison_page(p
);
1248 if (!PageTransTail(p
) && !PageLRU(p
))
1249 goto identify_page_state
;
1252 * It's very difficult to mess with pages currently under IO
1253 * and in many cases impossible, so we just avoid it here.
1255 wait_on_page_writeback(p
);
1258 * Now take care of user space mappings.
1259 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1261 * When the raw error page is thp tail page, hpage points to the raw
1262 * page after thp split.
1264 if (!hwpoison_user_mappings(p
, pfn
, flags
, &hpage
)) {
1265 action_result(pfn
, MF_MSG_UNMAP_FAILED
, MF_IGNORED
);
1271 * Torn down by someone else?
1273 if (PageLRU(p
) && !PageSwapCache(p
) && p
->mapping
== NULL
) {
1274 action_result(pfn
, MF_MSG_TRUNCATED_LRU
, MF_IGNORED
);
1279 identify_page_state
:
1280 res
= identify_page_state(pfn
, p
, page_flags
);
1285 EXPORT_SYMBOL_GPL(memory_failure
);
1287 #define MEMORY_FAILURE_FIFO_ORDER 4
1288 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1290 struct memory_failure_entry
{
1295 struct memory_failure_cpu
{
1296 DECLARE_KFIFO(fifo
, struct memory_failure_entry
,
1297 MEMORY_FAILURE_FIFO_SIZE
);
1299 struct work_struct work
;
1302 static DEFINE_PER_CPU(struct memory_failure_cpu
, memory_failure_cpu
);
1305 * memory_failure_queue - Schedule handling memory failure of a page.
1306 * @pfn: Page Number of the corrupted page
1307 * @flags: Flags for memory failure handling
1309 * This function is called by the low level hardware error handler
1310 * when it detects hardware memory corruption of a page. It schedules
1311 * the recovering of error page, including dropping pages, killing
1314 * The function is primarily of use for corruptions that
1315 * happen outside the current execution context (e.g. when
1316 * detected by a background scrubber)
1318 * Can run in IRQ context.
1320 void memory_failure_queue(unsigned long pfn
, int flags
)
1322 struct memory_failure_cpu
*mf_cpu
;
1323 unsigned long proc_flags
;
1324 struct memory_failure_entry entry
= {
1329 mf_cpu
= &get_cpu_var(memory_failure_cpu
);
1330 spin_lock_irqsave(&mf_cpu
->lock
, proc_flags
);
1331 if (kfifo_put(&mf_cpu
->fifo
, entry
))
1332 schedule_work_on(smp_processor_id(), &mf_cpu
->work
);
1334 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1336 spin_unlock_irqrestore(&mf_cpu
->lock
, proc_flags
);
1337 put_cpu_var(memory_failure_cpu
);
1339 EXPORT_SYMBOL_GPL(memory_failure_queue
);
1341 static void memory_failure_work_func(struct work_struct
*work
)
1343 struct memory_failure_cpu
*mf_cpu
;
1344 struct memory_failure_entry entry
= { 0, };
1345 unsigned long proc_flags
;
1348 mf_cpu
= this_cpu_ptr(&memory_failure_cpu
);
1350 spin_lock_irqsave(&mf_cpu
->lock
, proc_flags
);
1351 gotten
= kfifo_get(&mf_cpu
->fifo
, &entry
);
1352 spin_unlock_irqrestore(&mf_cpu
->lock
, proc_flags
);
1355 if (entry
.flags
& MF_SOFT_OFFLINE
)
1356 soft_offline_page(pfn_to_page(entry
.pfn
), entry
.flags
);
1358 memory_failure(entry
.pfn
, entry
.flags
);
1362 static int __init
memory_failure_init(void)
1364 struct memory_failure_cpu
*mf_cpu
;
1367 for_each_possible_cpu(cpu
) {
1368 mf_cpu
= &per_cpu(memory_failure_cpu
, cpu
);
1369 spin_lock_init(&mf_cpu
->lock
);
1370 INIT_KFIFO(mf_cpu
->fifo
);
1371 INIT_WORK(&mf_cpu
->work
, memory_failure_work_func
);
1376 core_initcall(memory_failure_init
);
1378 #define unpoison_pr_info(fmt, pfn, rs) \
1380 if (__ratelimit(rs)) \
1381 pr_info(fmt, pfn); \
1385 * unpoison_memory - Unpoison a previously poisoned page
1386 * @pfn: Page number of the to be unpoisoned page
1388 * Software-unpoison a page that has been poisoned by
1389 * memory_failure() earlier.
1391 * This is only done on the software-level, so it only works
1392 * for linux injected failures, not real hardware failures
1394 * Returns 0 for success, otherwise -errno.
1396 int unpoison_memory(unsigned long pfn
)
1401 static DEFINE_RATELIMIT_STATE(unpoison_rs
, DEFAULT_RATELIMIT_INTERVAL
,
1402 DEFAULT_RATELIMIT_BURST
);
1404 if (!pfn_valid(pfn
))
1407 p
= pfn_to_page(pfn
);
1408 page
= compound_head(p
);
1410 if (!PageHWPoison(p
)) {
1411 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1416 if (page_count(page
) > 1) {
1417 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1422 if (page_mapped(page
)) {
1423 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1428 if (page_mapping(page
)) {
1429 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1435 * unpoison_memory() can encounter thp only when the thp is being
1436 * worked by memory_failure() and the page lock is not held yet.
1437 * In such case, we yield to memory_failure() and make unpoison fail.
1439 if (!PageHuge(page
) && PageTransHuge(page
)) {
1440 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1445 if (!get_hwpoison_page(p
)) {
1446 if (TestClearPageHWPoison(p
))
1447 num_poisoned_pages_dec();
1448 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1455 * This test is racy because PG_hwpoison is set outside of page lock.
1456 * That's acceptable because that won't trigger kernel panic. Instead,
1457 * the PG_hwpoison page will be caught and isolated on the entrance to
1458 * the free buddy page pool.
1460 if (TestClearPageHWPoison(page
)) {
1461 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1463 num_poisoned_pages_dec();
1468 put_hwpoison_page(page
);
1469 if (freeit
&& !(pfn
== my_zero_pfn(0) && page_count(p
) == 1))
1470 put_hwpoison_page(page
);
1474 EXPORT_SYMBOL(unpoison_memory
);
1476 static struct page
*new_page(struct page
*p
, unsigned long private, int **x
)
1478 int nid
= page_to_nid(p
);
1480 return new_page_nodemask(p
, nid
, &node_states
[N_MEMORY
]);
1484 * Safely get reference count of an arbitrary page.
1485 * Returns 0 for a free page, -EIO for a zero refcount page
1486 * that is not free, and 1 for any other page type.
1487 * For 1 the page is returned with increased page count, otherwise not.
1489 static int __get_any_page(struct page
*p
, unsigned long pfn
, int flags
)
1493 if (flags
& MF_COUNT_INCREASED
)
1497 * When the target page is a free hugepage, just remove it
1498 * from free hugepage list.
1500 if (!get_hwpoison_page(p
)) {
1502 pr_info("%s: %#lx free huge page\n", __func__
, pfn
);
1504 } else if (is_free_buddy_page(p
)) {
1505 pr_info("%s: %#lx free buddy page\n", __func__
, pfn
);
1508 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1509 __func__
, pfn
, p
->flags
);
1513 /* Not a free page */
1519 static int get_any_page(struct page
*page
, unsigned long pfn
, int flags
)
1521 int ret
= __get_any_page(page
, pfn
, flags
);
1523 if (ret
== 1 && !PageHuge(page
) &&
1524 !PageLRU(page
) && !__PageMovable(page
)) {
1528 put_hwpoison_page(page
);
1529 shake_page(page
, 1);
1534 ret
= __get_any_page(page
, pfn
, 0);
1535 if (ret
== 1 && !PageLRU(page
)) {
1536 /* Drop page reference which is from __get_any_page() */
1537 put_hwpoison_page(page
);
1538 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1539 pfn
, page
->flags
, &page
->flags
);
1546 static int soft_offline_huge_page(struct page
*page
, int flags
)
1549 unsigned long pfn
= page_to_pfn(page
);
1550 struct page
*hpage
= compound_head(page
);
1551 LIST_HEAD(pagelist
);
1554 * This double-check of PageHWPoison is to avoid the race with
1555 * memory_failure(). See also comment in __soft_offline_page().
1558 if (PageHWPoison(hpage
)) {
1560 put_hwpoison_page(hpage
);
1561 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn
);
1566 ret
= isolate_huge_page(hpage
, &pagelist
);
1568 * get_any_page() and isolate_huge_page() takes a refcount each,
1569 * so need to drop one here.
1571 put_hwpoison_page(hpage
);
1573 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn
);
1577 ret
= migrate_pages(&pagelist
, new_page
, NULL
, MPOL_MF_MOVE_ALL
,
1578 MIGRATE_SYNC
, MR_MEMORY_FAILURE
);
1580 pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1581 pfn
, ret
, page
->flags
, &page
->flags
);
1582 if (!list_empty(&pagelist
))
1583 putback_movable_pages(&pagelist
);
1588 dissolve_free_huge_page(page
);
1593 static int __soft_offline_page(struct page
*page
, int flags
)
1596 unsigned long pfn
= page_to_pfn(page
);
1599 * Check PageHWPoison again inside page lock because PageHWPoison
1600 * is set by memory_failure() outside page lock. Note that
1601 * memory_failure() also double-checks PageHWPoison inside page lock,
1602 * so there's no race between soft_offline_page() and memory_failure().
1605 wait_on_page_writeback(page
);
1606 if (PageHWPoison(page
)) {
1608 put_hwpoison_page(page
);
1609 pr_info("soft offline: %#lx page already poisoned\n", pfn
);
1613 * Try to invalidate first. This should work for
1614 * non dirty unmapped page cache pages.
1616 ret
= invalidate_inode_page(page
);
1619 * RED-PEN would be better to keep it isolated here, but we
1620 * would need to fix isolation locking first.
1623 put_hwpoison_page(page
);
1624 pr_info("soft_offline: %#lx: invalidated\n", pfn
);
1625 SetPageHWPoison(page
);
1626 num_poisoned_pages_inc();
1631 * Simple invalidation didn't work.
1632 * Try to migrate to a new page instead. migrate.c
1633 * handles a large number of cases for us.
1636 ret
= isolate_lru_page(page
);
1638 ret
= isolate_movable_page(page
, ISOLATE_UNEVICTABLE
);
1640 * Drop page reference which is came from get_any_page()
1641 * successful isolate_lru_page() already took another one.
1643 put_hwpoison_page(page
);
1645 LIST_HEAD(pagelist
);
1647 * After isolated lru page, the PageLRU will be cleared,
1648 * so use !__PageMovable instead for LRU page's mapping
1649 * cannot have PAGE_MAPPING_MOVABLE.
1651 if (!__PageMovable(page
))
1652 inc_node_page_state(page
, NR_ISOLATED_ANON
+
1653 page_is_file_cache(page
));
1654 list_add(&page
->lru
, &pagelist
);
1655 ret
= migrate_pages(&pagelist
, new_page
, NULL
, MPOL_MF_MOVE_ALL
,
1656 MIGRATE_SYNC
, MR_MEMORY_FAILURE
);
1658 if (!list_empty(&pagelist
))
1659 putback_movable_pages(&pagelist
);
1661 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1662 pfn
, ret
, page
->flags
, &page
->flags
);
1667 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1668 pfn
, ret
, page_count(page
), page
->flags
, &page
->flags
);
1673 static int soft_offline_in_use_page(struct page
*page
, int flags
)
1676 struct page
*hpage
= compound_head(page
);
1678 if (!PageHuge(page
) && PageTransHuge(hpage
)) {
1680 if (!PageAnon(hpage
) || unlikely(split_huge_page(hpage
))) {
1682 if (!PageAnon(hpage
))
1683 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page
));
1685 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page
));
1686 put_hwpoison_page(hpage
);
1690 get_hwpoison_page(page
);
1691 put_hwpoison_page(hpage
);
1695 ret
= soft_offline_huge_page(page
, flags
);
1697 ret
= __soft_offline_page(page
, flags
);
1702 static void soft_offline_free_page(struct page
*page
)
1704 struct page
*head
= compound_head(page
);
1706 if (!TestSetPageHWPoison(head
)) {
1707 num_poisoned_pages_inc();
1709 dissolve_free_huge_page(page
);
1714 * soft_offline_page - Soft offline a page.
1715 * @page: page to offline
1716 * @flags: flags. Same as memory_failure().
1718 * Returns 0 on success, otherwise negated errno.
1720 * Soft offline a page, by migration or invalidation,
1721 * without killing anything. This is for the case when
1722 * a page is not corrupted yet (so it's still valid to access),
1723 * but has had a number of corrected errors and is better taken
1726 * The actual policy on when to do that is maintained by
1729 * This should never impact any application or cause data loss,
1730 * however it might take some time.
1732 * This is not a 100% solution for all memory, but tries to be
1733 * ``good enough'' for the majority of memory.
1735 int soft_offline_page(struct page
*page
, int flags
)
1738 unsigned long pfn
= page_to_pfn(page
);
1740 if (PageHWPoison(page
)) {
1741 pr_info("soft offline: %#lx page already poisoned\n", pfn
);
1742 if (flags
& MF_COUNT_INCREASED
)
1743 put_hwpoison_page(page
);
1748 ret
= get_any_page(page
, pfn
, flags
);
1752 ret
= soft_offline_in_use_page(page
, flags
);
1754 soft_offline_free_page(page
);