Linux 4.16-rc1
[cris-mirror.git] / mm / util.c
blobc1250501364fbdb319420d2ba3cd1fc8b63d8c37
1 #include <linux/mm.h>
2 #include <linux/slab.h>
3 #include <linux/string.h>
4 #include <linux/compiler.h>
5 #include <linux/export.h>
6 #include <linux/err.h>
7 #include <linux/sched.h>
8 #include <linux/sched/mm.h>
9 #include <linux/sched/task_stack.h>
10 #include <linux/security.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/mman.h>
14 #include <linux/hugetlb.h>
15 #include <linux/vmalloc.h>
16 #include <linux/userfaultfd_k.h>
18 #include <asm/sections.h>
19 #include <linux/uaccess.h>
21 #include "internal.h"
23 static inline int is_kernel_rodata(unsigned long addr)
25 return addr >= (unsigned long)__start_rodata &&
26 addr < (unsigned long)__end_rodata;
29 /**
30 * kfree_const - conditionally free memory
31 * @x: pointer to the memory
33 * Function calls kfree only if @x is not in .rodata section.
35 void kfree_const(const void *x)
37 if (!is_kernel_rodata((unsigned long)x))
38 kfree(x);
40 EXPORT_SYMBOL(kfree_const);
42 /**
43 * kstrdup - allocate space for and copy an existing string
44 * @s: the string to duplicate
45 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
47 char *kstrdup(const char *s, gfp_t gfp)
49 size_t len;
50 char *buf;
52 if (!s)
53 return NULL;
55 len = strlen(s) + 1;
56 buf = kmalloc_track_caller(len, gfp);
57 if (buf)
58 memcpy(buf, s, len);
59 return buf;
61 EXPORT_SYMBOL(kstrdup);
63 /**
64 * kstrdup_const - conditionally duplicate an existing const string
65 * @s: the string to duplicate
66 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
68 * Function returns source string if it is in .rodata section otherwise it
69 * fallbacks to kstrdup.
70 * Strings allocated by kstrdup_const should be freed by kfree_const.
72 const char *kstrdup_const(const char *s, gfp_t gfp)
74 if (is_kernel_rodata((unsigned long)s))
75 return s;
77 return kstrdup(s, gfp);
79 EXPORT_SYMBOL(kstrdup_const);
81 /**
82 * kstrndup - allocate space for and copy an existing string
83 * @s: the string to duplicate
84 * @max: read at most @max chars from @s
85 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
87 * Note: Use kmemdup_nul() instead if the size is known exactly.
89 char *kstrndup(const char *s, size_t max, gfp_t gfp)
91 size_t len;
92 char *buf;
94 if (!s)
95 return NULL;
97 len = strnlen(s, max);
98 buf = kmalloc_track_caller(len+1, gfp);
99 if (buf) {
100 memcpy(buf, s, len);
101 buf[len] = '\0';
103 return buf;
105 EXPORT_SYMBOL(kstrndup);
108 * kmemdup - duplicate region of memory
110 * @src: memory region to duplicate
111 * @len: memory region length
112 * @gfp: GFP mask to use
114 void *kmemdup(const void *src, size_t len, gfp_t gfp)
116 void *p;
118 p = kmalloc_track_caller(len, gfp);
119 if (p)
120 memcpy(p, src, len);
121 return p;
123 EXPORT_SYMBOL(kmemdup);
126 * kmemdup_nul - Create a NUL-terminated string from unterminated data
127 * @s: The data to stringify
128 * @len: The size of the data
129 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
131 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
133 char *buf;
135 if (!s)
136 return NULL;
138 buf = kmalloc_track_caller(len + 1, gfp);
139 if (buf) {
140 memcpy(buf, s, len);
141 buf[len] = '\0';
143 return buf;
145 EXPORT_SYMBOL(kmemdup_nul);
148 * memdup_user - duplicate memory region from user space
150 * @src: source address in user space
151 * @len: number of bytes to copy
153 * Returns an ERR_PTR() on failure. Result is physically
154 * contiguous, to be freed by kfree().
156 void *memdup_user(const void __user *src, size_t len)
158 void *p;
160 p = kmalloc_track_caller(len, GFP_USER);
161 if (!p)
162 return ERR_PTR(-ENOMEM);
164 if (copy_from_user(p, src, len)) {
165 kfree(p);
166 return ERR_PTR(-EFAULT);
169 return p;
171 EXPORT_SYMBOL(memdup_user);
174 * vmemdup_user - duplicate memory region from user space
176 * @src: source address in user space
177 * @len: number of bytes to copy
179 * Returns an ERR_PTR() on failure. Result may be not
180 * physically contiguous. Use kvfree() to free.
182 void *vmemdup_user(const void __user *src, size_t len)
184 void *p;
186 p = kvmalloc(len, GFP_USER);
187 if (!p)
188 return ERR_PTR(-ENOMEM);
190 if (copy_from_user(p, src, len)) {
191 kvfree(p);
192 return ERR_PTR(-EFAULT);
195 return p;
197 EXPORT_SYMBOL(vmemdup_user);
200 * strndup_user - duplicate an existing string from user space
201 * @s: The string to duplicate
202 * @n: Maximum number of bytes to copy, including the trailing NUL.
204 char *strndup_user(const char __user *s, long n)
206 char *p;
207 long length;
209 length = strnlen_user(s, n);
211 if (!length)
212 return ERR_PTR(-EFAULT);
214 if (length > n)
215 return ERR_PTR(-EINVAL);
217 p = memdup_user(s, length);
219 if (IS_ERR(p))
220 return p;
222 p[length - 1] = '\0';
224 return p;
226 EXPORT_SYMBOL(strndup_user);
229 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
231 * @src: source address in user space
232 * @len: number of bytes to copy
234 * Returns an ERR_PTR() on failure.
236 void *memdup_user_nul(const void __user *src, size_t len)
238 char *p;
241 * Always use GFP_KERNEL, since copy_from_user() can sleep and
242 * cause pagefault, which makes it pointless to use GFP_NOFS
243 * or GFP_ATOMIC.
245 p = kmalloc_track_caller(len + 1, GFP_KERNEL);
246 if (!p)
247 return ERR_PTR(-ENOMEM);
249 if (copy_from_user(p, src, len)) {
250 kfree(p);
251 return ERR_PTR(-EFAULT);
253 p[len] = '\0';
255 return p;
257 EXPORT_SYMBOL(memdup_user_nul);
259 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
260 struct vm_area_struct *prev, struct rb_node *rb_parent)
262 struct vm_area_struct *next;
264 vma->vm_prev = prev;
265 if (prev) {
266 next = prev->vm_next;
267 prev->vm_next = vma;
268 } else {
269 mm->mmap = vma;
270 if (rb_parent)
271 next = rb_entry(rb_parent,
272 struct vm_area_struct, vm_rb);
273 else
274 next = NULL;
276 vma->vm_next = next;
277 if (next)
278 next->vm_prev = vma;
281 /* Check if the vma is being used as a stack by this task */
282 int vma_is_stack_for_current(struct vm_area_struct *vma)
284 struct task_struct * __maybe_unused t = current;
286 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
289 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
290 void arch_pick_mmap_layout(struct mm_struct *mm)
292 mm->mmap_base = TASK_UNMAPPED_BASE;
293 mm->get_unmapped_area = arch_get_unmapped_area;
295 #endif
298 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
299 * back to the regular GUP.
300 * If the architecture not support this function, simply return with no
301 * page pinned
303 int __weak __get_user_pages_fast(unsigned long start,
304 int nr_pages, int write, struct page **pages)
306 return 0;
308 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
311 * get_user_pages_fast() - pin user pages in memory
312 * @start: starting user address
313 * @nr_pages: number of pages from start to pin
314 * @write: whether pages will be written to
315 * @pages: array that receives pointers to the pages pinned.
316 * Should be at least nr_pages long.
318 * Returns number of pages pinned. This may be fewer than the number
319 * requested. If nr_pages is 0 or negative, returns 0. If no pages
320 * were pinned, returns -errno.
322 * get_user_pages_fast provides equivalent functionality to get_user_pages,
323 * operating on current and current->mm, with force=0 and vma=NULL. However
324 * unlike get_user_pages, it must be called without mmap_sem held.
326 * get_user_pages_fast may take mmap_sem and page table locks, so no
327 * assumptions can be made about lack of locking. get_user_pages_fast is to be
328 * implemented in a way that is advantageous (vs get_user_pages()) when the
329 * user memory area is already faulted in and present in ptes. However if the
330 * pages have to be faulted in, it may turn out to be slightly slower so
331 * callers need to carefully consider what to use. On many architectures,
332 * get_user_pages_fast simply falls back to get_user_pages.
334 int __weak get_user_pages_fast(unsigned long start,
335 int nr_pages, int write, struct page **pages)
337 return get_user_pages_unlocked(start, nr_pages, pages,
338 write ? FOLL_WRITE : 0);
340 EXPORT_SYMBOL_GPL(get_user_pages_fast);
342 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
343 unsigned long len, unsigned long prot,
344 unsigned long flag, unsigned long pgoff)
346 unsigned long ret;
347 struct mm_struct *mm = current->mm;
348 unsigned long populate;
349 LIST_HEAD(uf);
351 ret = security_mmap_file(file, prot, flag);
352 if (!ret) {
353 if (down_write_killable(&mm->mmap_sem))
354 return -EINTR;
355 ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
356 &populate, &uf);
357 up_write(&mm->mmap_sem);
358 userfaultfd_unmap_complete(mm, &uf);
359 if (populate)
360 mm_populate(ret, populate);
362 return ret;
365 unsigned long vm_mmap(struct file *file, unsigned long addr,
366 unsigned long len, unsigned long prot,
367 unsigned long flag, unsigned long offset)
369 if (unlikely(offset + PAGE_ALIGN(len) < offset))
370 return -EINVAL;
371 if (unlikely(offset_in_page(offset)))
372 return -EINVAL;
374 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
376 EXPORT_SYMBOL(vm_mmap);
379 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
380 * failure, fall back to non-contiguous (vmalloc) allocation.
381 * @size: size of the request.
382 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
383 * @node: numa node to allocate from
385 * Uses kmalloc to get the memory but if the allocation fails then falls back
386 * to the vmalloc allocator. Use kvfree for freeing the memory.
388 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
389 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
390 * preferable to the vmalloc fallback, due to visible performance drawbacks.
392 * Any use of gfp flags outside of GFP_KERNEL should be consulted with mm people.
394 void *kvmalloc_node(size_t size, gfp_t flags, int node)
396 gfp_t kmalloc_flags = flags;
397 void *ret;
400 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
401 * so the given set of flags has to be compatible.
403 WARN_ON_ONCE((flags & GFP_KERNEL) != GFP_KERNEL);
406 * We want to attempt a large physically contiguous block first because
407 * it is less likely to fragment multiple larger blocks and therefore
408 * contribute to a long term fragmentation less than vmalloc fallback.
409 * However make sure that larger requests are not too disruptive - no
410 * OOM killer and no allocation failure warnings as we have a fallback.
412 if (size > PAGE_SIZE) {
413 kmalloc_flags |= __GFP_NOWARN;
415 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
416 kmalloc_flags |= __GFP_NORETRY;
419 ret = kmalloc_node(size, kmalloc_flags, node);
422 * It doesn't really make sense to fallback to vmalloc for sub page
423 * requests
425 if (ret || size <= PAGE_SIZE)
426 return ret;
428 return __vmalloc_node_flags_caller(size, node, flags,
429 __builtin_return_address(0));
431 EXPORT_SYMBOL(kvmalloc_node);
433 void kvfree(const void *addr)
435 if (is_vmalloc_addr(addr))
436 vfree(addr);
437 else
438 kfree(addr);
440 EXPORT_SYMBOL(kvfree);
442 static inline void *__page_rmapping(struct page *page)
444 unsigned long mapping;
446 mapping = (unsigned long)page->mapping;
447 mapping &= ~PAGE_MAPPING_FLAGS;
449 return (void *)mapping;
452 /* Neutral page->mapping pointer to address_space or anon_vma or other */
453 void *page_rmapping(struct page *page)
455 page = compound_head(page);
456 return __page_rmapping(page);
460 * Return true if this page is mapped into pagetables.
461 * For compound page it returns true if any subpage of compound page is mapped.
463 bool page_mapped(struct page *page)
465 int i;
467 if (likely(!PageCompound(page)))
468 return atomic_read(&page->_mapcount) >= 0;
469 page = compound_head(page);
470 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
471 return true;
472 if (PageHuge(page))
473 return false;
474 for (i = 0; i < hpage_nr_pages(page); i++) {
475 if (atomic_read(&page[i]._mapcount) >= 0)
476 return true;
478 return false;
480 EXPORT_SYMBOL(page_mapped);
482 struct anon_vma *page_anon_vma(struct page *page)
484 unsigned long mapping;
486 page = compound_head(page);
487 mapping = (unsigned long)page->mapping;
488 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
489 return NULL;
490 return __page_rmapping(page);
493 struct address_space *page_mapping(struct page *page)
495 struct address_space *mapping;
497 page = compound_head(page);
499 /* This happens if someone calls flush_dcache_page on slab page */
500 if (unlikely(PageSlab(page)))
501 return NULL;
503 if (unlikely(PageSwapCache(page))) {
504 swp_entry_t entry;
506 entry.val = page_private(page);
507 return swap_address_space(entry);
510 mapping = page->mapping;
511 if ((unsigned long)mapping & PAGE_MAPPING_ANON)
512 return NULL;
514 return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
516 EXPORT_SYMBOL(page_mapping);
518 /* Slow path of page_mapcount() for compound pages */
519 int __page_mapcount(struct page *page)
521 int ret;
523 ret = atomic_read(&page->_mapcount) + 1;
525 * For file THP page->_mapcount contains total number of mapping
526 * of the page: no need to look into compound_mapcount.
528 if (!PageAnon(page) && !PageHuge(page))
529 return ret;
530 page = compound_head(page);
531 ret += atomic_read(compound_mapcount_ptr(page)) + 1;
532 if (PageDoubleMap(page))
533 ret--;
534 return ret;
536 EXPORT_SYMBOL_GPL(__page_mapcount);
538 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
539 int sysctl_overcommit_ratio __read_mostly = 50;
540 unsigned long sysctl_overcommit_kbytes __read_mostly;
541 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
542 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
543 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
545 int overcommit_ratio_handler(struct ctl_table *table, int write,
546 void __user *buffer, size_t *lenp,
547 loff_t *ppos)
549 int ret;
551 ret = proc_dointvec(table, write, buffer, lenp, ppos);
552 if (ret == 0 && write)
553 sysctl_overcommit_kbytes = 0;
554 return ret;
557 int overcommit_kbytes_handler(struct ctl_table *table, int write,
558 void __user *buffer, size_t *lenp,
559 loff_t *ppos)
561 int ret;
563 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
564 if (ret == 0 && write)
565 sysctl_overcommit_ratio = 0;
566 return ret;
570 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
572 unsigned long vm_commit_limit(void)
574 unsigned long allowed;
576 if (sysctl_overcommit_kbytes)
577 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
578 else
579 allowed = ((totalram_pages - hugetlb_total_pages())
580 * sysctl_overcommit_ratio / 100);
581 allowed += total_swap_pages;
583 return allowed;
587 * Make sure vm_committed_as in one cacheline and not cacheline shared with
588 * other variables. It can be updated by several CPUs frequently.
590 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
593 * The global memory commitment made in the system can be a metric
594 * that can be used to drive ballooning decisions when Linux is hosted
595 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
596 * balancing memory across competing virtual machines that are hosted.
597 * Several metrics drive this policy engine including the guest reported
598 * memory commitment.
600 unsigned long vm_memory_committed(void)
602 return percpu_counter_read_positive(&vm_committed_as);
604 EXPORT_SYMBOL_GPL(vm_memory_committed);
607 * Check that a process has enough memory to allocate a new virtual
608 * mapping. 0 means there is enough memory for the allocation to
609 * succeed and -ENOMEM implies there is not.
611 * We currently support three overcommit policies, which are set via the
612 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
614 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
615 * Additional code 2002 Jul 20 by Robert Love.
617 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
619 * Note this is a helper function intended to be used by LSMs which
620 * wish to use this logic.
622 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
624 long free, allowed, reserve;
626 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
627 -(s64)vm_committed_as_batch * num_online_cpus(),
628 "memory commitment underflow");
630 vm_acct_memory(pages);
633 * Sometimes we want to use more memory than we have
635 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
636 return 0;
638 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
639 free = global_zone_page_state(NR_FREE_PAGES);
640 free += global_node_page_state(NR_FILE_PAGES);
643 * shmem pages shouldn't be counted as free in this
644 * case, they can't be purged, only swapped out, and
645 * that won't affect the overall amount of available
646 * memory in the system.
648 free -= global_node_page_state(NR_SHMEM);
650 free += get_nr_swap_pages();
653 * Any slabs which are created with the
654 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
655 * which are reclaimable, under pressure. The dentry
656 * cache and most inode caches should fall into this
658 free += global_node_page_state(NR_SLAB_RECLAIMABLE);
661 * Leave reserved pages. The pages are not for anonymous pages.
663 if (free <= totalreserve_pages)
664 goto error;
665 else
666 free -= totalreserve_pages;
669 * Reserve some for root
671 if (!cap_sys_admin)
672 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
674 if (free > pages)
675 return 0;
677 goto error;
680 allowed = vm_commit_limit();
682 * Reserve some for root
684 if (!cap_sys_admin)
685 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
688 * Don't let a single process grow so big a user can't recover
690 if (mm) {
691 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
692 allowed -= min_t(long, mm->total_vm / 32, reserve);
695 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
696 return 0;
697 error:
698 vm_unacct_memory(pages);
700 return -ENOMEM;
704 * get_cmdline() - copy the cmdline value to a buffer.
705 * @task: the task whose cmdline value to copy.
706 * @buffer: the buffer to copy to.
707 * @buflen: the length of the buffer. Larger cmdline values are truncated
708 * to this length.
709 * Returns the size of the cmdline field copied. Note that the copy does
710 * not guarantee an ending NULL byte.
712 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
714 int res = 0;
715 unsigned int len;
716 struct mm_struct *mm = get_task_mm(task);
717 unsigned long arg_start, arg_end, env_start, env_end;
718 if (!mm)
719 goto out;
720 if (!mm->arg_end)
721 goto out_mm; /* Shh! No looking before we're done */
723 down_read(&mm->mmap_sem);
724 arg_start = mm->arg_start;
725 arg_end = mm->arg_end;
726 env_start = mm->env_start;
727 env_end = mm->env_end;
728 up_read(&mm->mmap_sem);
730 len = arg_end - arg_start;
732 if (len > buflen)
733 len = buflen;
735 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
738 * If the nul at the end of args has been overwritten, then
739 * assume application is using setproctitle(3).
741 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
742 len = strnlen(buffer, res);
743 if (len < res) {
744 res = len;
745 } else {
746 len = env_end - env_start;
747 if (len > buflen - res)
748 len = buflen - res;
749 res += access_process_vm(task, env_start,
750 buffer+res, len,
751 FOLL_FORCE);
752 res = strnlen(buffer, res);
755 out_mm:
756 mmput(mm);
757 out:
758 return res;