Linux 4.16-rc1
[cris-mirror.git] / net / ipv4 / ip_output.c
blobe8e675be60ec0044007c660bae1bb4d12c9a484e
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
12 * Richard Underwood
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 * See ip_input.c for original log
20 * Fixes:
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
24 * no route is found.
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
41 * datagrams.
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <linux/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <net/lwtunnel.h>
77 #include <linux/bpf-cgroup.h>
78 #include <linux/igmp.h>
79 #include <linux/netfilter_ipv4.h>
80 #include <linux/netfilter_bridge.h>
81 #include <linux/netlink.h>
82 #include <linux/tcp.h>
84 static int
85 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
86 unsigned int mtu,
87 int (*output)(struct net *, struct sock *, struct sk_buff *));
89 /* Generate a checksum for an outgoing IP datagram. */
90 void ip_send_check(struct iphdr *iph)
92 iph->check = 0;
93 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
95 EXPORT_SYMBOL(ip_send_check);
97 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
99 struct iphdr *iph = ip_hdr(skb);
101 iph->tot_len = htons(skb->len);
102 ip_send_check(iph);
104 /* if egress device is enslaved to an L3 master device pass the
105 * skb to its handler for processing
107 skb = l3mdev_ip_out(sk, skb);
108 if (unlikely(!skb))
109 return 0;
111 skb->protocol = htons(ETH_P_IP);
113 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
114 net, sk, skb, NULL, skb_dst(skb)->dev,
115 dst_output);
118 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
120 int err;
122 err = __ip_local_out(net, sk, skb);
123 if (likely(err == 1))
124 err = dst_output(net, sk, skb);
126 return err;
128 EXPORT_SYMBOL_GPL(ip_local_out);
130 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
132 int ttl = inet->uc_ttl;
134 if (ttl < 0)
135 ttl = ip4_dst_hoplimit(dst);
136 return ttl;
140 * Add an ip header to a skbuff and send it out.
143 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
144 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
146 struct inet_sock *inet = inet_sk(sk);
147 struct rtable *rt = skb_rtable(skb);
148 struct net *net = sock_net(sk);
149 struct iphdr *iph;
151 /* Build the IP header. */
152 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
153 skb_reset_network_header(skb);
154 iph = ip_hdr(skb);
155 iph->version = 4;
156 iph->ihl = 5;
157 iph->tos = inet->tos;
158 iph->ttl = ip_select_ttl(inet, &rt->dst);
159 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
160 iph->saddr = saddr;
161 iph->protocol = sk->sk_protocol;
162 if (ip_dont_fragment(sk, &rt->dst)) {
163 iph->frag_off = htons(IP_DF);
164 iph->id = 0;
165 } else {
166 iph->frag_off = 0;
167 __ip_select_ident(net, iph, 1);
170 if (opt && opt->opt.optlen) {
171 iph->ihl += opt->opt.optlen>>2;
172 ip_options_build(skb, &opt->opt, daddr, rt, 0);
175 skb->priority = sk->sk_priority;
176 if (!skb->mark)
177 skb->mark = sk->sk_mark;
179 /* Send it out. */
180 return ip_local_out(net, skb->sk, skb);
182 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
184 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
186 struct dst_entry *dst = skb_dst(skb);
187 struct rtable *rt = (struct rtable *)dst;
188 struct net_device *dev = dst->dev;
189 unsigned int hh_len = LL_RESERVED_SPACE(dev);
190 struct neighbour *neigh;
191 u32 nexthop;
193 if (rt->rt_type == RTN_MULTICAST) {
194 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
195 } else if (rt->rt_type == RTN_BROADCAST)
196 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
198 /* Be paranoid, rather than too clever. */
199 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
200 struct sk_buff *skb2;
202 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
203 if (!skb2) {
204 kfree_skb(skb);
205 return -ENOMEM;
207 if (skb->sk)
208 skb_set_owner_w(skb2, skb->sk);
209 consume_skb(skb);
210 skb = skb2;
213 if (lwtunnel_xmit_redirect(dst->lwtstate)) {
214 int res = lwtunnel_xmit(skb);
216 if (res < 0 || res == LWTUNNEL_XMIT_DONE)
217 return res;
220 rcu_read_lock_bh();
221 nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
222 neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
223 if (unlikely(!neigh))
224 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
225 if (!IS_ERR(neigh)) {
226 int res;
228 sock_confirm_neigh(skb, neigh);
229 res = neigh_output(neigh, skb);
231 rcu_read_unlock_bh();
232 return res;
234 rcu_read_unlock_bh();
236 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
237 __func__);
238 kfree_skb(skb);
239 return -EINVAL;
242 static int ip_finish_output_gso(struct net *net, struct sock *sk,
243 struct sk_buff *skb, unsigned int mtu)
245 netdev_features_t features;
246 struct sk_buff *segs;
247 int ret = 0;
249 /* common case: seglen is <= mtu
251 if (skb_gso_validate_mtu(skb, mtu))
252 return ip_finish_output2(net, sk, skb);
254 /* Slowpath - GSO segment length exceeds the egress MTU.
256 * This can happen in several cases:
257 * - Forwarding of a TCP GRO skb, when DF flag is not set.
258 * - Forwarding of an skb that arrived on a virtualization interface
259 * (virtio-net/vhost/tap) with TSO/GSO size set by other network
260 * stack.
261 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
262 * interface with a smaller MTU.
263 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is
264 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an
265 * insufficent MTU.
267 features = netif_skb_features(skb);
268 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
269 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
270 if (IS_ERR_OR_NULL(segs)) {
271 kfree_skb(skb);
272 return -ENOMEM;
275 consume_skb(skb);
277 do {
278 struct sk_buff *nskb = segs->next;
279 int err;
281 segs->next = NULL;
282 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
284 if (err && ret == 0)
285 ret = err;
286 segs = nskb;
287 } while (segs);
289 return ret;
292 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
294 unsigned int mtu;
295 int ret;
297 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
298 if (ret) {
299 kfree_skb(skb);
300 return ret;
303 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
304 /* Policy lookup after SNAT yielded a new policy */
305 if (skb_dst(skb)->xfrm) {
306 IPCB(skb)->flags |= IPSKB_REROUTED;
307 return dst_output(net, sk, skb);
309 #endif
310 mtu = ip_skb_dst_mtu(sk, skb);
311 if (skb_is_gso(skb))
312 return ip_finish_output_gso(net, sk, skb, mtu);
314 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
315 return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
317 return ip_finish_output2(net, sk, skb);
320 static int ip_mc_finish_output(struct net *net, struct sock *sk,
321 struct sk_buff *skb)
323 int ret;
325 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
326 if (ret) {
327 kfree_skb(skb);
328 return ret;
331 return dev_loopback_xmit(net, sk, skb);
334 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
336 struct rtable *rt = skb_rtable(skb);
337 struct net_device *dev = rt->dst.dev;
340 * If the indicated interface is up and running, send the packet.
342 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
344 skb->dev = dev;
345 skb->protocol = htons(ETH_P_IP);
348 * Multicasts are looped back for other local users
351 if (rt->rt_flags&RTCF_MULTICAST) {
352 if (sk_mc_loop(sk)
353 #ifdef CONFIG_IP_MROUTE
354 /* Small optimization: do not loopback not local frames,
355 which returned after forwarding; they will be dropped
356 by ip_mr_input in any case.
357 Note, that local frames are looped back to be delivered
358 to local recipients.
360 This check is duplicated in ip_mr_input at the moment.
363 ((rt->rt_flags & RTCF_LOCAL) ||
364 !(IPCB(skb)->flags & IPSKB_FORWARDED))
365 #endif
367 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
368 if (newskb)
369 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
370 net, sk, newskb, NULL, newskb->dev,
371 ip_mc_finish_output);
374 /* Multicasts with ttl 0 must not go beyond the host */
376 if (ip_hdr(skb)->ttl == 0) {
377 kfree_skb(skb);
378 return 0;
382 if (rt->rt_flags&RTCF_BROADCAST) {
383 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
384 if (newskb)
385 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
386 net, sk, newskb, NULL, newskb->dev,
387 ip_mc_finish_output);
390 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
391 net, sk, skb, NULL, skb->dev,
392 ip_finish_output,
393 !(IPCB(skb)->flags & IPSKB_REROUTED));
396 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
398 struct net_device *dev = skb_dst(skb)->dev;
400 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
402 skb->dev = dev;
403 skb->protocol = htons(ETH_P_IP);
405 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
406 net, sk, skb, NULL, dev,
407 ip_finish_output,
408 !(IPCB(skb)->flags & IPSKB_REROUTED));
412 * copy saddr and daddr, possibly using 64bit load/stores
413 * Equivalent to :
414 * iph->saddr = fl4->saddr;
415 * iph->daddr = fl4->daddr;
417 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
419 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
420 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
421 memcpy(&iph->saddr, &fl4->saddr,
422 sizeof(fl4->saddr) + sizeof(fl4->daddr));
425 /* Note: skb->sk can be different from sk, in case of tunnels */
426 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
428 struct inet_sock *inet = inet_sk(sk);
429 struct net *net = sock_net(sk);
430 struct ip_options_rcu *inet_opt;
431 struct flowi4 *fl4;
432 struct rtable *rt;
433 struct iphdr *iph;
434 int res;
436 /* Skip all of this if the packet is already routed,
437 * f.e. by something like SCTP.
439 rcu_read_lock();
440 inet_opt = rcu_dereference(inet->inet_opt);
441 fl4 = &fl->u.ip4;
442 rt = skb_rtable(skb);
443 if (rt)
444 goto packet_routed;
446 /* Make sure we can route this packet. */
447 rt = (struct rtable *)__sk_dst_check(sk, 0);
448 if (!rt) {
449 __be32 daddr;
451 /* Use correct destination address if we have options. */
452 daddr = inet->inet_daddr;
453 if (inet_opt && inet_opt->opt.srr)
454 daddr = inet_opt->opt.faddr;
456 /* If this fails, retransmit mechanism of transport layer will
457 * keep trying until route appears or the connection times
458 * itself out.
460 rt = ip_route_output_ports(net, fl4, sk,
461 daddr, inet->inet_saddr,
462 inet->inet_dport,
463 inet->inet_sport,
464 sk->sk_protocol,
465 RT_CONN_FLAGS(sk),
466 sk->sk_bound_dev_if);
467 if (IS_ERR(rt))
468 goto no_route;
469 sk_setup_caps(sk, &rt->dst);
471 skb_dst_set_noref(skb, &rt->dst);
473 packet_routed:
474 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
475 goto no_route;
477 /* OK, we know where to send it, allocate and build IP header. */
478 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
479 skb_reset_network_header(skb);
480 iph = ip_hdr(skb);
481 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
482 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
483 iph->frag_off = htons(IP_DF);
484 else
485 iph->frag_off = 0;
486 iph->ttl = ip_select_ttl(inet, &rt->dst);
487 iph->protocol = sk->sk_protocol;
488 ip_copy_addrs(iph, fl4);
490 /* Transport layer set skb->h.foo itself. */
492 if (inet_opt && inet_opt->opt.optlen) {
493 iph->ihl += inet_opt->opt.optlen >> 2;
494 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
497 ip_select_ident_segs(net, skb, sk,
498 skb_shinfo(skb)->gso_segs ?: 1);
500 /* TODO : should we use skb->sk here instead of sk ? */
501 skb->priority = sk->sk_priority;
502 skb->mark = sk->sk_mark;
504 res = ip_local_out(net, sk, skb);
505 rcu_read_unlock();
506 return res;
508 no_route:
509 rcu_read_unlock();
510 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
511 kfree_skb(skb);
512 return -EHOSTUNREACH;
514 EXPORT_SYMBOL(ip_queue_xmit);
516 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
518 to->pkt_type = from->pkt_type;
519 to->priority = from->priority;
520 to->protocol = from->protocol;
521 skb_dst_drop(to);
522 skb_dst_copy(to, from);
523 to->dev = from->dev;
524 to->mark = from->mark;
526 /* Copy the flags to each fragment. */
527 IPCB(to)->flags = IPCB(from)->flags;
529 #ifdef CONFIG_NET_SCHED
530 to->tc_index = from->tc_index;
531 #endif
532 nf_copy(to, from);
533 #if IS_ENABLED(CONFIG_IP_VS)
534 to->ipvs_property = from->ipvs_property;
535 #endif
536 skb_copy_secmark(to, from);
539 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
540 unsigned int mtu,
541 int (*output)(struct net *, struct sock *, struct sk_buff *))
543 struct iphdr *iph = ip_hdr(skb);
545 if ((iph->frag_off & htons(IP_DF)) == 0)
546 return ip_do_fragment(net, sk, skb, output);
548 if (unlikely(!skb->ignore_df ||
549 (IPCB(skb)->frag_max_size &&
550 IPCB(skb)->frag_max_size > mtu))) {
551 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
552 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
553 htonl(mtu));
554 kfree_skb(skb);
555 return -EMSGSIZE;
558 return ip_do_fragment(net, sk, skb, output);
562 * This IP datagram is too large to be sent in one piece. Break it up into
563 * smaller pieces (each of size equal to IP header plus
564 * a block of the data of the original IP data part) that will yet fit in a
565 * single device frame, and queue such a frame for sending.
568 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
569 int (*output)(struct net *, struct sock *, struct sk_buff *))
571 struct iphdr *iph;
572 int ptr;
573 struct sk_buff *skb2;
574 unsigned int mtu, hlen, left, len, ll_rs;
575 int offset;
576 __be16 not_last_frag;
577 struct rtable *rt = skb_rtable(skb);
578 int err = 0;
580 /* for offloaded checksums cleanup checksum before fragmentation */
581 if (skb->ip_summed == CHECKSUM_PARTIAL &&
582 (err = skb_checksum_help(skb)))
583 goto fail;
586 * Point into the IP datagram header.
589 iph = ip_hdr(skb);
591 mtu = ip_skb_dst_mtu(sk, skb);
592 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
593 mtu = IPCB(skb)->frag_max_size;
596 * Setup starting values.
599 hlen = iph->ihl * 4;
600 mtu = mtu - hlen; /* Size of data space */
601 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
602 ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
604 /* When frag_list is given, use it. First, check its validity:
605 * some transformers could create wrong frag_list or break existing
606 * one, it is not prohibited. In this case fall back to copying.
608 * LATER: this step can be merged to real generation of fragments,
609 * we can switch to copy when see the first bad fragment.
611 if (skb_has_frag_list(skb)) {
612 struct sk_buff *frag, *frag2;
613 unsigned int first_len = skb_pagelen(skb);
615 if (first_len - hlen > mtu ||
616 ((first_len - hlen) & 7) ||
617 ip_is_fragment(iph) ||
618 skb_cloned(skb) ||
619 skb_headroom(skb) < ll_rs)
620 goto slow_path;
622 skb_walk_frags(skb, frag) {
623 /* Correct geometry. */
624 if (frag->len > mtu ||
625 ((frag->len & 7) && frag->next) ||
626 skb_headroom(frag) < hlen + ll_rs)
627 goto slow_path_clean;
629 /* Partially cloned skb? */
630 if (skb_shared(frag))
631 goto slow_path_clean;
633 BUG_ON(frag->sk);
634 if (skb->sk) {
635 frag->sk = skb->sk;
636 frag->destructor = sock_wfree;
638 skb->truesize -= frag->truesize;
641 /* Everything is OK. Generate! */
643 err = 0;
644 offset = 0;
645 frag = skb_shinfo(skb)->frag_list;
646 skb_frag_list_init(skb);
647 skb->data_len = first_len - skb_headlen(skb);
648 skb->len = first_len;
649 iph->tot_len = htons(first_len);
650 iph->frag_off = htons(IP_MF);
651 ip_send_check(iph);
653 for (;;) {
654 /* Prepare header of the next frame,
655 * before previous one went down. */
656 if (frag) {
657 frag->ip_summed = CHECKSUM_NONE;
658 skb_reset_transport_header(frag);
659 __skb_push(frag, hlen);
660 skb_reset_network_header(frag);
661 memcpy(skb_network_header(frag), iph, hlen);
662 iph = ip_hdr(frag);
663 iph->tot_len = htons(frag->len);
664 ip_copy_metadata(frag, skb);
665 if (offset == 0)
666 ip_options_fragment(frag);
667 offset += skb->len - hlen;
668 iph->frag_off = htons(offset>>3);
669 if (frag->next)
670 iph->frag_off |= htons(IP_MF);
671 /* Ready, complete checksum */
672 ip_send_check(iph);
675 err = output(net, sk, skb);
677 if (!err)
678 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
679 if (err || !frag)
680 break;
682 skb = frag;
683 frag = skb->next;
684 skb->next = NULL;
687 if (err == 0) {
688 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
689 return 0;
692 while (frag) {
693 skb = frag->next;
694 kfree_skb(frag);
695 frag = skb;
697 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
698 return err;
700 slow_path_clean:
701 skb_walk_frags(skb, frag2) {
702 if (frag2 == frag)
703 break;
704 frag2->sk = NULL;
705 frag2->destructor = NULL;
706 skb->truesize += frag2->truesize;
710 slow_path:
711 iph = ip_hdr(skb);
713 left = skb->len - hlen; /* Space per frame */
714 ptr = hlen; /* Where to start from */
717 * Fragment the datagram.
720 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
721 not_last_frag = iph->frag_off & htons(IP_MF);
724 * Keep copying data until we run out.
727 while (left > 0) {
728 len = left;
729 /* IF: it doesn't fit, use 'mtu' - the data space left */
730 if (len > mtu)
731 len = mtu;
732 /* IF: we are not sending up to and including the packet end
733 then align the next start on an eight byte boundary */
734 if (len < left) {
735 len &= ~7;
738 /* Allocate buffer */
739 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
740 if (!skb2) {
741 err = -ENOMEM;
742 goto fail;
746 * Set up data on packet
749 ip_copy_metadata(skb2, skb);
750 skb_reserve(skb2, ll_rs);
751 skb_put(skb2, len + hlen);
752 skb_reset_network_header(skb2);
753 skb2->transport_header = skb2->network_header + hlen;
756 * Charge the memory for the fragment to any owner
757 * it might possess
760 if (skb->sk)
761 skb_set_owner_w(skb2, skb->sk);
764 * Copy the packet header into the new buffer.
767 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
770 * Copy a block of the IP datagram.
772 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
773 BUG();
774 left -= len;
777 * Fill in the new header fields.
779 iph = ip_hdr(skb2);
780 iph->frag_off = htons((offset >> 3));
782 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
783 iph->frag_off |= htons(IP_DF);
785 /* ANK: dirty, but effective trick. Upgrade options only if
786 * the segment to be fragmented was THE FIRST (otherwise,
787 * options are already fixed) and make it ONCE
788 * on the initial skb, so that all the following fragments
789 * will inherit fixed options.
791 if (offset == 0)
792 ip_options_fragment(skb);
795 * Added AC : If we are fragmenting a fragment that's not the
796 * last fragment then keep MF on each bit
798 if (left > 0 || not_last_frag)
799 iph->frag_off |= htons(IP_MF);
800 ptr += len;
801 offset += len;
804 * Put this fragment into the sending queue.
806 iph->tot_len = htons(len + hlen);
808 ip_send_check(iph);
810 err = output(net, sk, skb2);
811 if (err)
812 goto fail;
814 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
816 consume_skb(skb);
817 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
818 return err;
820 fail:
821 kfree_skb(skb);
822 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
823 return err;
825 EXPORT_SYMBOL(ip_do_fragment);
828 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
830 struct msghdr *msg = from;
832 if (skb->ip_summed == CHECKSUM_PARTIAL) {
833 if (!copy_from_iter_full(to, len, &msg->msg_iter))
834 return -EFAULT;
835 } else {
836 __wsum csum = 0;
837 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
838 return -EFAULT;
839 skb->csum = csum_block_add(skb->csum, csum, odd);
841 return 0;
843 EXPORT_SYMBOL(ip_generic_getfrag);
845 static inline __wsum
846 csum_page(struct page *page, int offset, int copy)
848 char *kaddr;
849 __wsum csum;
850 kaddr = kmap(page);
851 csum = csum_partial(kaddr + offset, copy, 0);
852 kunmap(page);
853 return csum;
856 static int __ip_append_data(struct sock *sk,
857 struct flowi4 *fl4,
858 struct sk_buff_head *queue,
859 struct inet_cork *cork,
860 struct page_frag *pfrag,
861 int getfrag(void *from, char *to, int offset,
862 int len, int odd, struct sk_buff *skb),
863 void *from, int length, int transhdrlen,
864 unsigned int flags)
866 struct inet_sock *inet = inet_sk(sk);
867 struct sk_buff *skb;
869 struct ip_options *opt = cork->opt;
870 int hh_len;
871 int exthdrlen;
872 int mtu;
873 int copy;
874 int err;
875 int offset = 0;
876 unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
877 int csummode = CHECKSUM_NONE;
878 struct rtable *rt = (struct rtable *)cork->dst;
879 u32 tskey = 0;
881 skb = skb_peek_tail(queue);
883 exthdrlen = !skb ? rt->dst.header_len : 0;
884 mtu = cork->fragsize;
885 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
886 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
887 tskey = sk->sk_tskey++;
889 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
891 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
892 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
893 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
895 if (cork->length + length > maxnonfragsize - fragheaderlen) {
896 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
897 mtu - (opt ? opt->optlen : 0));
898 return -EMSGSIZE;
902 * transhdrlen > 0 means that this is the first fragment and we wish
903 * it won't be fragmented in the future.
905 if (transhdrlen &&
906 length + fragheaderlen <= mtu &&
907 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
908 !(flags & MSG_MORE) &&
909 !exthdrlen)
910 csummode = CHECKSUM_PARTIAL;
912 cork->length += length;
914 /* So, what's going on in the loop below?
916 * We use calculated fragment length to generate chained skb,
917 * each of segments is IP fragment ready for sending to network after
918 * adding appropriate IP header.
921 if (!skb)
922 goto alloc_new_skb;
924 while (length > 0) {
925 /* Check if the remaining data fits into current packet. */
926 copy = mtu - skb->len;
927 if (copy < length)
928 copy = maxfraglen - skb->len;
929 if (copy <= 0) {
930 char *data;
931 unsigned int datalen;
932 unsigned int fraglen;
933 unsigned int fraggap;
934 unsigned int alloclen;
935 struct sk_buff *skb_prev;
936 alloc_new_skb:
937 skb_prev = skb;
938 if (skb_prev)
939 fraggap = skb_prev->len - maxfraglen;
940 else
941 fraggap = 0;
944 * If remaining data exceeds the mtu,
945 * we know we need more fragment(s).
947 datalen = length + fraggap;
948 if (datalen > mtu - fragheaderlen)
949 datalen = maxfraglen - fragheaderlen;
950 fraglen = datalen + fragheaderlen;
952 if ((flags & MSG_MORE) &&
953 !(rt->dst.dev->features&NETIF_F_SG))
954 alloclen = mtu;
955 else
956 alloclen = fraglen;
958 alloclen += exthdrlen;
960 /* The last fragment gets additional space at tail.
961 * Note, with MSG_MORE we overallocate on fragments,
962 * because we have no idea what fragment will be
963 * the last.
965 if (datalen == length + fraggap)
966 alloclen += rt->dst.trailer_len;
968 if (transhdrlen) {
969 skb = sock_alloc_send_skb(sk,
970 alloclen + hh_len + 15,
971 (flags & MSG_DONTWAIT), &err);
972 } else {
973 skb = NULL;
974 if (refcount_read(&sk->sk_wmem_alloc) <=
975 2 * sk->sk_sndbuf)
976 skb = sock_wmalloc(sk,
977 alloclen + hh_len + 15, 1,
978 sk->sk_allocation);
979 if (unlikely(!skb))
980 err = -ENOBUFS;
982 if (!skb)
983 goto error;
986 * Fill in the control structures
988 skb->ip_summed = csummode;
989 skb->csum = 0;
990 skb_reserve(skb, hh_len);
992 /* only the initial fragment is time stamped */
993 skb_shinfo(skb)->tx_flags = cork->tx_flags;
994 cork->tx_flags = 0;
995 skb_shinfo(skb)->tskey = tskey;
996 tskey = 0;
999 * Find where to start putting bytes.
1001 data = skb_put(skb, fraglen + exthdrlen);
1002 skb_set_network_header(skb, exthdrlen);
1003 skb->transport_header = (skb->network_header +
1004 fragheaderlen);
1005 data += fragheaderlen + exthdrlen;
1007 if (fraggap) {
1008 skb->csum = skb_copy_and_csum_bits(
1009 skb_prev, maxfraglen,
1010 data + transhdrlen, fraggap, 0);
1011 skb_prev->csum = csum_sub(skb_prev->csum,
1012 skb->csum);
1013 data += fraggap;
1014 pskb_trim_unique(skb_prev, maxfraglen);
1017 copy = datalen - transhdrlen - fraggap;
1018 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1019 err = -EFAULT;
1020 kfree_skb(skb);
1021 goto error;
1024 offset += copy;
1025 length -= datalen - fraggap;
1026 transhdrlen = 0;
1027 exthdrlen = 0;
1028 csummode = CHECKSUM_NONE;
1030 if ((flags & MSG_CONFIRM) && !skb_prev)
1031 skb_set_dst_pending_confirm(skb, 1);
1034 * Put the packet on the pending queue.
1036 __skb_queue_tail(queue, skb);
1037 continue;
1040 if (copy > length)
1041 copy = length;
1043 if (!(rt->dst.dev->features&NETIF_F_SG)) {
1044 unsigned int off;
1046 off = skb->len;
1047 if (getfrag(from, skb_put(skb, copy),
1048 offset, copy, off, skb) < 0) {
1049 __skb_trim(skb, off);
1050 err = -EFAULT;
1051 goto error;
1053 } else {
1054 int i = skb_shinfo(skb)->nr_frags;
1056 err = -ENOMEM;
1057 if (!sk_page_frag_refill(sk, pfrag))
1058 goto error;
1060 if (!skb_can_coalesce(skb, i, pfrag->page,
1061 pfrag->offset)) {
1062 err = -EMSGSIZE;
1063 if (i == MAX_SKB_FRAGS)
1064 goto error;
1066 __skb_fill_page_desc(skb, i, pfrag->page,
1067 pfrag->offset, 0);
1068 skb_shinfo(skb)->nr_frags = ++i;
1069 get_page(pfrag->page);
1071 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1072 if (getfrag(from,
1073 page_address(pfrag->page) + pfrag->offset,
1074 offset, copy, skb->len, skb) < 0)
1075 goto error_efault;
1077 pfrag->offset += copy;
1078 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1079 skb->len += copy;
1080 skb->data_len += copy;
1081 skb->truesize += copy;
1082 refcount_add(copy, &sk->sk_wmem_alloc);
1084 offset += copy;
1085 length -= copy;
1088 return 0;
1090 error_efault:
1091 err = -EFAULT;
1092 error:
1093 cork->length -= length;
1094 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1095 return err;
1098 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1099 struct ipcm_cookie *ipc, struct rtable **rtp)
1101 struct ip_options_rcu *opt;
1102 struct rtable *rt;
1105 * setup for corking.
1107 opt = ipc->opt;
1108 if (opt) {
1109 if (!cork->opt) {
1110 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1111 sk->sk_allocation);
1112 if (unlikely(!cork->opt))
1113 return -ENOBUFS;
1115 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1116 cork->flags |= IPCORK_OPT;
1117 cork->addr = ipc->addr;
1119 rt = *rtp;
1120 if (unlikely(!rt))
1121 return -EFAULT;
1123 * We steal reference to this route, caller should not release it
1125 *rtp = NULL;
1126 cork->fragsize = ip_sk_use_pmtu(sk) ?
1127 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1128 cork->dst = &rt->dst;
1129 cork->length = 0;
1130 cork->ttl = ipc->ttl;
1131 cork->tos = ipc->tos;
1132 cork->priority = ipc->priority;
1133 cork->tx_flags = ipc->tx_flags;
1135 return 0;
1139 * ip_append_data() and ip_append_page() can make one large IP datagram
1140 * from many pieces of data. Each pieces will be holded on the socket
1141 * until ip_push_pending_frames() is called. Each piece can be a page
1142 * or non-page data.
1144 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1145 * this interface potentially.
1147 * LATER: length must be adjusted by pad at tail, when it is required.
1149 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1150 int getfrag(void *from, char *to, int offset, int len,
1151 int odd, struct sk_buff *skb),
1152 void *from, int length, int transhdrlen,
1153 struct ipcm_cookie *ipc, struct rtable **rtp,
1154 unsigned int flags)
1156 struct inet_sock *inet = inet_sk(sk);
1157 int err;
1159 if (flags&MSG_PROBE)
1160 return 0;
1162 if (skb_queue_empty(&sk->sk_write_queue)) {
1163 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1164 if (err)
1165 return err;
1166 } else {
1167 transhdrlen = 0;
1170 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1171 sk_page_frag(sk), getfrag,
1172 from, length, transhdrlen, flags);
1175 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1176 int offset, size_t size, int flags)
1178 struct inet_sock *inet = inet_sk(sk);
1179 struct sk_buff *skb;
1180 struct rtable *rt;
1181 struct ip_options *opt = NULL;
1182 struct inet_cork *cork;
1183 int hh_len;
1184 int mtu;
1185 int len;
1186 int err;
1187 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1189 if (inet->hdrincl)
1190 return -EPERM;
1192 if (flags&MSG_PROBE)
1193 return 0;
1195 if (skb_queue_empty(&sk->sk_write_queue))
1196 return -EINVAL;
1198 cork = &inet->cork.base;
1199 rt = (struct rtable *)cork->dst;
1200 if (cork->flags & IPCORK_OPT)
1201 opt = cork->opt;
1203 if (!(rt->dst.dev->features&NETIF_F_SG))
1204 return -EOPNOTSUPP;
1206 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1207 mtu = cork->fragsize;
1209 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1210 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1211 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1213 if (cork->length + size > maxnonfragsize - fragheaderlen) {
1214 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1215 mtu - (opt ? opt->optlen : 0));
1216 return -EMSGSIZE;
1219 skb = skb_peek_tail(&sk->sk_write_queue);
1220 if (!skb)
1221 return -EINVAL;
1223 cork->length += size;
1225 while (size > 0) {
1226 /* Check if the remaining data fits into current packet. */
1227 len = mtu - skb->len;
1228 if (len < size)
1229 len = maxfraglen - skb->len;
1231 if (len <= 0) {
1232 struct sk_buff *skb_prev;
1233 int alloclen;
1235 skb_prev = skb;
1236 fraggap = skb_prev->len - maxfraglen;
1238 alloclen = fragheaderlen + hh_len + fraggap + 15;
1239 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1240 if (unlikely(!skb)) {
1241 err = -ENOBUFS;
1242 goto error;
1246 * Fill in the control structures
1248 skb->ip_summed = CHECKSUM_NONE;
1249 skb->csum = 0;
1250 skb_reserve(skb, hh_len);
1253 * Find where to start putting bytes.
1255 skb_put(skb, fragheaderlen + fraggap);
1256 skb_reset_network_header(skb);
1257 skb->transport_header = (skb->network_header +
1258 fragheaderlen);
1259 if (fraggap) {
1260 skb->csum = skb_copy_and_csum_bits(skb_prev,
1261 maxfraglen,
1262 skb_transport_header(skb),
1263 fraggap, 0);
1264 skb_prev->csum = csum_sub(skb_prev->csum,
1265 skb->csum);
1266 pskb_trim_unique(skb_prev, maxfraglen);
1270 * Put the packet on the pending queue.
1272 __skb_queue_tail(&sk->sk_write_queue, skb);
1273 continue;
1276 if (len > size)
1277 len = size;
1279 if (skb_append_pagefrags(skb, page, offset, len)) {
1280 err = -EMSGSIZE;
1281 goto error;
1284 if (skb->ip_summed == CHECKSUM_NONE) {
1285 __wsum csum;
1286 csum = csum_page(page, offset, len);
1287 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1290 skb->len += len;
1291 skb->data_len += len;
1292 skb->truesize += len;
1293 refcount_add(len, &sk->sk_wmem_alloc);
1294 offset += len;
1295 size -= len;
1297 return 0;
1299 error:
1300 cork->length -= size;
1301 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1302 return err;
1305 static void ip_cork_release(struct inet_cork *cork)
1307 cork->flags &= ~IPCORK_OPT;
1308 kfree(cork->opt);
1309 cork->opt = NULL;
1310 dst_release(cork->dst);
1311 cork->dst = NULL;
1315 * Combined all pending IP fragments on the socket as one IP datagram
1316 * and push them out.
1318 struct sk_buff *__ip_make_skb(struct sock *sk,
1319 struct flowi4 *fl4,
1320 struct sk_buff_head *queue,
1321 struct inet_cork *cork)
1323 struct sk_buff *skb, *tmp_skb;
1324 struct sk_buff **tail_skb;
1325 struct inet_sock *inet = inet_sk(sk);
1326 struct net *net = sock_net(sk);
1327 struct ip_options *opt = NULL;
1328 struct rtable *rt = (struct rtable *)cork->dst;
1329 struct iphdr *iph;
1330 __be16 df = 0;
1331 __u8 ttl;
1333 skb = __skb_dequeue(queue);
1334 if (!skb)
1335 goto out;
1336 tail_skb = &(skb_shinfo(skb)->frag_list);
1338 /* move skb->data to ip header from ext header */
1339 if (skb->data < skb_network_header(skb))
1340 __skb_pull(skb, skb_network_offset(skb));
1341 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1342 __skb_pull(tmp_skb, skb_network_header_len(skb));
1343 *tail_skb = tmp_skb;
1344 tail_skb = &(tmp_skb->next);
1345 skb->len += tmp_skb->len;
1346 skb->data_len += tmp_skb->len;
1347 skb->truesize += tmp_skb->truesize;
1348 tmp_skb->destructor = NULL;
1349 tmp_skb->sk = NULL;
1352 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1353 * to fragment the frame generated here. No matter, what transforms
1354 * how transforms change size of the packet, it will come out.
1356 skb->ignore_df = ip_sk_ignore_df(sk);
1358 /* DF bit is set when we want to see DF on outgoing frames.
1359 * If ignore_df is set too, we still allow to fragment this frame
1360 * locally. */
1361 if (inet->pmtudisc == IP_PMTUDISC_DO ||
1362 inet->pmtudisc == IP_PMTUDISC_PROBE ||
1363 (skb->len <= dst_mtu(&rt->dst) &&
1364 ip_dont_fragment(sk, &rt->dst)))
1365 df = htons(IP_DF);
1367 if (cork->flags & IPCORK_OPT)
1368 opt = cork->opt;
1370 if (cork->ttl != 0)
1371 ttl = cork->ttl;
1372 else if (rt->rt_type == RTN_MULTICAST)
1373 ttl = inet->mc_ttl;
1374 else
1375 ttl = ip_select_ttl(inet, &rt->dst);
1377 iph = ip_hdr(skb);
1378 iph->version = 4;
1379 iph->ihl = 5;
1380 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1381 iph->frag_off = df;
1382 iph->ttl = ttl;
1383 iph->protocol = sk->sk_protocol;
1384 ip_copy_addrs(iph, fl4);
1385 ip_select_ident(net, skb, sk);
1387 if (opt) {
1388 iph->ihl += opt->optlen>>2;
1389 ip_options_build(skb, opt, cork->addr, rt, 0);
1392 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1393 skb->mark = sk->sk_mark;
1395 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1396 * on dst refcount
1398 cork->dst = NULL;
1399 skb_dst_set(skb, &rt->dst);
1401 if (iph->protocol == IPPROTO_ICMP)
1402 icmp_out_count(net, ((struct icmphdr *)
1403 skb_transport_header(skb))->type);
1405 ip_cork_release(cork);
1406 out:
1407 return skb;
1410 int ip_send_skb(struct net *net, struct sk_buff *skb)
1412 int err;
1414 err = ip_local_out(net, skb->sk, skb);
1415 if (err) {
1416 if (err > 0)
1417 err = net_xmit_errno(err);
1418 if (err)
1419 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1422 return err;
1425 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1427 struct sk_buff *skb;
1429 skb = ip_finish_skb(sk, fl4);
1430 if (!skb)
1431 return 0;
1433 /* Netfilter gets whole the not fragmented skb. */
1434 return ip_send_skb(sock_net(sk), skb);
1438 * Throw away all pending data on the socket.
1440 static void __ip_flush_pending_frames(struct sock *sk,
1441 struct sk_buff_head *queue,
1442 struct inet_cork *cork)
1444 struct sk_buff *skb;
1446 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1447 kfree_skb(skb);
1449 ip_cork_release(cork);
1452 void ip_flush_pending_frames(struct sock *sk)
1454 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1457 struct sk_buff *ip_make_skb(struct sock *sk,
1458 struct flowi4 *fl4,
1459 int getfrag(void *from, char *to, int offset,
1460 int len, int odd, struct sk_buff *skb),
1461 void *from, int length, int transhdrlen,
1462 struct ipcm_cookie *ipc, struct rtable **rtp,
1463 unsigned int flags)
1465 struct inet_cork cork;
1466 struct sk_buff_head queue;
1467 int err;
1469 if (flags & MSG_PROBE)
1470 return NULL;
1472 __skb_queue_head_init(&queue);
1474 cork.flags = 0;
1475 cork.addr = 0;
1476 cork.opt = NULL;
1477 err = ip_setup_cork(sk, &cork, ipc, rtp);
1478 if (err)
1479 return ERR_PTR(err);
1481 err = __ip_append_data(sk, fl4, &queue, &cork,
1482 &current->task_frag, getfrag,
1483 from, length, transhdrlen, flags);
1484 if (err) {
1485 __ip_flush_pending_frames(sk, &queue, &cork);
1486 return ERR_PTR(err);
1489 return __ip_make_skb(sk, fl4, &queue, &cork);
1493 * Fetch data from kernel space and fill in checksum if needed.
1495 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1496 int len, int odd, struct sk_buff *skb)
1498 __wsum csum;
1500 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1501 skb->csum = csum_block_add(skb->csum, csum, odd);
1502 return 0;
1506 * Generic function to send a packet as reply to another packet.
1507 * Used to send some TCP resets/acks so far.
1509 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1510 const struct ip_options *sopt,
1511 __be32 daddr, __be32 saddr,
1512 const struct ip_reply_arg *arg,
1513 unsigned int len)
1515 struct ip_options_data replyopts;
1516 struct ipcm_cookie ipc;
1517 struct flowi4 fl4;
1518 struct rtable *rt = skb_rtable(skb);
1519 struct net *net = sock_net(sk);
1520 struct sk_buff *nskb;
1521 int err;
1522 int oif;
1524 if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1525 return;
1527 ipc.addr = daddr;
1528 ipc.opt = NULL;
1529 ipc.tx_flags = 0;
1530 ipc.ttl = 0;
1531 ipc.tos = -1;
1533 if (replyopts.opt.opt.optlen) {
1534 ipc.opt = &replyopts.opt;
1536 if (replyopts.opt.opt.srr)
1537 daddr = replyopts.opt.opt.faddr;
1540 oif = arg->bound_dev_if;
1541 if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1542 oif = skb->skb_iif;
1544 flowi4_init_output(&fl4, oif,
1545 IP4_REPLY_MARK(net, skb->mark),
1546 RT_TOS(arg->tos),
1547 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1548 ip_reply_arg_flowi_flags(arg),
1549 daddr, saddr,
1550 tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1551 arg->uid);
1552 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1553 rt = ip_route_output_key(net, &fl4);
1554 if (IS_ERR(rt))
1555 return;
1557 inet_sk(sk)->tos = arg->tos;
1559 sk->sk_priority = skb->priority;
1560 sk->sk_protocol = ip_hdr(skb)->protocol;
1561 sk->sk_bound_dev_if = arg->bound_dev_if;
1562 sk->sk_sndbuf = sysctl_wmem_default;
1563 sk->sk_mark = fl4.flowi4_mark;
1564 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1565 len, 0, &ipc, &rt, MSG_DONTWAIT);
1566 if (unlikely(err)) {
1567 ip_flush_pending_frames(sk);
1568 goto out;
1571 nskb = skb_peek(&sk->sk_write_queue);
1572 if (nskb) {
1573 if (arg->csumoffset >= 0)
1574 *((__sum16 *)skb_transport_header(nskb) +
1575 arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1576 arg->csum));
1577 nskb->ip_summed = CHECKSUM_NONE;
1578 ip_push_pending_frames(sk, &fl4);
1580 out:
1581 ip_rt_put(rt);
1584 void __init ip_init(void)
1586 ip_rt_init();
1587 inet_initpeers();
1589 #if defined(CONFIG_IP_MULTICAST)
1590 igmp_mc_init();
1591 #endif