Linux 4.16-rc1
[cris-mirror.git] / net / ipv6 / ip6_fib.c
blob92b8d8c75eed60acb06779e5912489dbfa200556
1 /*
2 * Linux INET6 implementation
3 * Forwarding Information Database
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
13 * Changes:
14 * Yuji SEKIYA @USAGI: Support default route on router node;
15 * remove ip6_null_entry from the top of
16 * routing table.
17 * Ville Nuorvala: Fixed routing subtrees.
20 #define pr_fmt(fmt) "IPv6: " fmt
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
36 #include <net/fib_notifier.h>
38 #include <net/ip6_fib.h>
39 #include <net/ip6_route.h>
41 static struct kmem_cache *fib6_node_kmem __read_mostly;
43 struct fib6_cleaner {
44 struct fib6_walker w;
45 struct net *net;
46 int (*func)(struct rt6_info *, void *arg);
47 int sernum;
48 void *arg;
51 #ifdef CONFIG_IPV6_SUBTREES
52 #define FWS_INIT FWS_S
53 #else
54 #define FWS_INIT FWS_L
55 #endif
57 static struct rt6_info *fib6_find_prefix(struct net *net,
58 struct fib6_table *table,
59 struct fib6_node *fn);
60 static struct fib6_node *fib6_repair_tree(struct net *net,
61 struct fib6_table *table,
62 struct fib6_node *fn);
63 static int fib6_walk(struct net *net, struct fib6_walker *w);
64 static int fib6_walk_continue(struct fib6_walker *w);
67 * A routing update causes an increase of the serial number on the
68 * affected subtree. This allows for cached routes to be asynchronously
69 * tested when modifications are made to the destination cache as a
70 * result of redirects, path MTU changes, etc.
73 static void fib6_gc_timer_cb(struct timer_list *t);
75 #define FOR_WALKERS(net, w) \
76 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
78 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
80 write_lock_bh(&net->ipv6.fib6_walker_lock);
81 list_add(&w->lh, &net->ipv6.fib6_walkers);
82 write_unlock_bh(&net->ipv6.fib6_walker_lock);
85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
87 write_lock_bh(&net->ipv6.fib6_walker_lock);
88 list_del(&w->lh);
89 write_unlock_bh(&net->ipv6.fib6_walker_lock);
92 static int fib6_new_sernum(struct net *net)
94 int new, old;
96 do {
97 old = atomic_read(&net->ipv6.fib6_sernum);
98 new = old < INT_MAX ? old + 1 : 1;
99 } while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
100 old, new) != old);
101 return new;
104 enum {
105 FIB6_NO_SERNUM_CHANGE = 0,
108 void fib6_update_sernum(struct rt6_info *rt)
110 struct net *net = dev_net(rt->dst.dev);
111 struct fib6_node *fn;
113 fn = rcu_dereference_protected(rt->rt6i_node,
114 lockdep_is_held(&rt->rt6i_table->tb6_lock));
115 if (fn)
116 fn->fn_sernum = fib6_new_sernum(net);
120 * Auxiliary address test functions for the radix tree.
122 * These assume a 32bit processor (although it will work on
123 * 64bit processors)
127 * test bit
129 #if defined(__LITTLE_ENDIAN)
130 # define BITOP_BE32_SWIZZLE (0x1F & ~7)
131 #else
132 # define BITOP_BE32_SWIZZLE 0
133 #endif
135 static __be32 addr_bit_set(const void *token, int fn_bit)
137 const __be32 *addr = token;
139 * Here,
140 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
141 * is optimized version of
142 * htonl(1 << ((~fn_bit)&0x1F))
143 * See include/asm-generic/bitops/le.h.
145 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
146 addr[fn_bit >> 5];
149 static struct fib6_node *node_alloc(struct net *net)
151 struct fib6_node *fn;
153 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
154 if (fn)
155 net->ipv6.rt6_stats->fib_nodes++;
157 return fn;
160 static void node_free_immediate(struct net *net, struct fib6_node *fn)
162 kmem_cache_free(fib6_node_kmem, fn);
163 net->ipv6.rt6_stats->fib_nodes--;
166 static void node_free_rcu(struct rcu_head *head)
168 struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
170 kmem_cache_free(fib6_node_kmem, fn);
173 static void node_free(struct net *net, struct fib6_node *fn)
175 call_rcu(&fn->rcu, node_free_rcu);
176 net->ipv6.rt6_stats->fib_nodes--;
179 void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
181 int cpu;
183 if (!non_pcpu_rt->rt6i_pcpu)
184 return;
186 for_each_possible_cpu(cpu) {
187 struct rt6_info **ppcpu_rt;
188 struct rt6_info *pcpu_rt;
190 ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
191 pcpu_rt = *ppcpu_rt;
192 if (pcpu_rt) {
193 dst_dev_put(&pcpu_rt->dst);
194 dst_release(&pcpu_rt->dst);
195 *ppcpu_rt = NULL;
199 EXPORT_SYMBOL_GPL(rt6_free_pcpu);
201 static void fib6_free_table(struct fib6_table *table)
203 inetpeer_invalidate_tree(&table->tb6_peers);
204 kfree(table);
207 static void fib6_link_table(struct net *net, struct fib6_table *tb)
209 unsigned int h;
212 * Initialize table lock at a single place to give lockdep a key,
213 * tables aren't visible prior to being linked to the list.
215 spin_lock_init(&tb->tb6_lock);
216 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
219 * No protection necessary, this is the only list mutatation
220 * operation, tables never disappear once they exist.
222 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
225 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
227 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
229 struct fib6_table *table;
231 table = kzalloc(sizeof(*table), GFP_ATOMIC);
232 if (table) {
233 table->tb6_id = id;
234 rcu_assign_pointer(table->tb6_root.leaf,
235 net->ipv6.ip6_null_entry);
236 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
237 inet_peer_base_init(&table->tb6_peers);
240 return table;
243 struct fib6_table *fib6_new_table(struct net *net, u32 id)
245 struct fib6_table *tb;
247 if (id == 0)
248 id = RT6_TABLE_MAIN;
249 tb = fib6_get_table(net, id);
250 if (tb)
251 return tb;
253 tb = fib6_alloc_table(net, id);
254 if (tb)
255 fib6_link_table(net, tb);
257 return tb;
259 EXPORT_SYMBOL_GPL(fib6_new_table);
261 struct fib6_table *fib6_get_table(struct net *net, u32 id)
263 struct fib6_table *tb;
264 struct hlist_head *head;
265 unsigned int h;
267 if (id == 0)
268 id = RT6_TABLE_MAIN;
269 h = id & (FIB6_TABLE_HASHSZ - 1);
270 rcu_read_lock();
271 head = &net->ipv6.fib_table_hash[h];
272 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
273 if (tb->tb6_id == id) {
274 rcu_read_unlock();
275 return tb;
278 rcu_read_unlock();
280 return NULL;
282 EXPORT_SYMBOL_GPL(fib6_get_table);
284 static void __net_init fib6_tables_init(struct net *net)
286 fib6_link_table(net, net->ipv6.fib6_main_tbl);
287 fib6_link_table(net, net->ipv6.fib6_local_tbl);
289 #else
291 struct fib6_table *fib6_new_table(struct net *net, u32 id)
293 return fib6_get_table(net, id);
296 struct fib6_table *fib6_get_table(struct net *net, u32 id)
298 return net->ipv6.fib6_main_tbl;
301 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
302 int flags, pol_lookup_t lookup)
304 struct rt6_info *rt;
306 rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
307 if (rt->dst.error == -EAGAIN) {
308 ip6_rt_put(rt);
309 rt = net->ipv6.ip6_null_entry;
310 dst_hold(&rt->dst);
313 return &rt->dst;
316 static void __net_init fib6_tables_init(struct net *net)
318 fib6_link_table(net, net->ipv6.fib6_main_tbl);
321 #endif
323 unsigned int fib6_tables_seq_read(struct net *net)
325 unsigned int h, fib_seq = 0;
327 rcu_read_lock();
328 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
329 struct hlist_head *head = &net->ipv6.fib_table_hash[h];
330 struct fib6_table *tb;
332 hlist_for_each_entry_rcu(tb, head, tb6_hlist)
333 fib_seq += tb->fib_seq;
335 rcu_read_unlock();
337 return fib_seq;
340 static int call_fib6_entry_notifier(struct notifier_block *nb, struct net *net,
341 enum fib_event_type event_type,
342 struct rt6_info *rt)
344 struct fib6_entry_notifier_info info = {
345 .rt = rt,
348 return call_fib6_notifier(nb, net, event_type, &info.info);
351 static int call_fib6_entry_notifiers(struct net *net,
352 enum fib_event_type event_type,
353 struct rt6_info *rt,
354 struct netlink_ext_ack *extack)
356 struct fib6_entry_notifier_info info = {
357 .info.extack = extack,
358 .rt = rt,
361 rt->rt6i_table->fib_seq++;
362 return call_fib6_notifiers(net, event_type, &info.info);
365 struct fib6_dump_arg {
366 struct net *net;
367 struct notifier_block *nb;
370 static void fib6_rt_dump(struct rt6_info *rt, struct fib6_dump_arg *arg)
372 if (rt == arg->net->ipv6.ip6_null_entry)
373 return;
374 call_fib6_entry_notifier(arg->nb, arg->net, FIB_EVENT_ENTRY_ADD, rt);
377 static int fib6_node_dump(struct fib6_walker *w)
379 struct rt6_info *rt;
381 for_each_fib6_walker_rt(w)
382 fib6_rt_dump(rt, w->args);
383 w->leaf = NULL;
384 return 0;
387 static void fib6_table_dump(struct net *net, struct fib6_table *tb,
388 struct fib6_walker *w)
390 w->root = &tb->tb6_root;
391 spin_lock_bh(&tb->tb6_lock);
392 fib6_walk(net, w);
393 spin_unlock_bh(&tb->tb6_lock);
396 /* Called with rcu_read_lock() */
397 int fib6_tables_dump(struct net *net, struct notifier_block *nb)
399 struct fib6_dump_arg arg;
400 struct fib6_walker *w;
401 unsigned int h;
403 w = kzalloc(sizeof(*w), GFP_ATOMIC);
404 if (!w)
405 return -ENOMEM;
407 w->func = fib6_node_dump;
408 arg.net = net;
409 arg.nb = nb;
410 w->args = &arg;
412 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
413 struct hlist_head *head = &net->ipv6.fib_table_hash[h];
414 struct fib6_table *tb;
416 hlist_for_each_entry_rcu(tb, head, tb6_hlist)
417 fib6_table_dump(net, tb, w);
420 kfree(w);
422 return 0;
425 static int fib6_dump_node(struct fib6_walker *w)
427 int res;
428 struct rt6_info *rt;
430 for_each_fib6_walker_rt(w) {
431 res = rt6_dump_route(rt, w->args);
432 if (res < 0) {
433 /* Frame is full, suspend walking */
434 w->leaf = rt;
435 return 1;
438 /* Multipath routes are dumped in one route with the
439 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
440 * last sibling of this route (no need to dump the
441 * sibling routes again)
443 if (rt->rt6i_nsiblings)
444 rt = list_last_entry(&rt->rt6i_siblings,
445 struct rt6_info,
446 rt6i_siblings);
448 w->leaf = NULL;
449 return 0;
452 static void fib6_dump_end(struct netlink_callback *cb)
454 struct net *net = sock_net(cb->skb->sk);
455 struct fib6_walker *w = (void *)cb->args[2];
457 if (w) {
458 if (cb->args[4]) {
459 cb->args[4] = 0;
460 fib6_walker_unlink(net, w);
462 cb->args[2] = 0;
463 kfree(w);
465 cb->done = (void *)cb->args[3];
466 cb->args[1] = 3;
469 static int fib6_dump_done(struct netlink_callback *cb)
471 fib6_dump_end(cb);
472 return cb->done ? cb->done(cb) : 0;
475 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
476 struct netlink_callback *cb)
478 struct net *net = sock_net(skb->sk);
479 struct fib6_walker *w;
480 int res;
482 w = (void *)cb->args[2];
483 w->root = &table->tb6_root;
485 if (cb->args[4] == 0) {
486 w->count = 0;
487 w->skip = 0;
489 spin_lock_bh(&table->tb6_lock);
490 res = fib6_walk(net, w);
491 spin_unlock_bh(&table->tb6_lock);
492 if (res > 0) {
493 cb->args[4] = 1;
494 cb->args[5] = w->root->fn_sernum;
496 } else {
497 if (cb->args[5] != w->root->fn_sernum) {
498 /* Begin at the root if the tree changed */
499 cb->args[5] = w->root->fn_sernum;
500 w->state = FWS_INIT;
501 w->node = w->root;
502 w->skip = w->count;
503 } else
504 w->skip = 0;
506 spin_lock_bh(&table->tb6_lock);
507 res = fib6_walk_continue(w);
508 spin_unlock_bh(&table->tb6_lock);
509 if (res <= 0) {
510 fib6_walker_unlink(net, w);
511 cb->args[4] = 0;
515 return res;
518 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
520 struct net *net = sock_net(skb->sk);
521 unsigned int h, s_h;
522 unsigned int e = 0, s_e;
523 struct rt6_rtnl_dump_arg arg;
524 struct fib6_walker *w;
525 struct fib6_table *tb;
526 struct hlist_head *head;
527 int res = 0;
529 s_h = cb->args[0];
530 s_e = cb->args[1];
532 w = (void *)cb->args[2];
533 if (!w) {
534 /* New dump:
536 * 1. hook callback destructor.
538 cb->args[3] = (long)cb->done;
539 cb->done = fib6_dump_done;
542 * 2. allocate and initialize walker.
544 w = kzalloc(sizeof(*w), GFP_ATOMIC);
545 if (!w)
546 return -ENOMEM;
547 w->func = fib6_dump_node;
548 cb->args[2] = (long)w;
551 arg.skb = skb;
552 arg.cb = cb;
553 arg.net = net;
554 w->args = &arg;
556 rcu_read_lock();
557 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
558 e = 0;
559 head = &net->ipv6.fib_table_hash[h];
560 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
561 if (e < s_e)
562 goto next;
563 res = fib6_dump_table(tb, skb, cb);
564 if (res != 0)
565 goto out;
566 next:
567 e++;
570 out:
571 rcu_read_unlock();
572 cb->args[1] = e;
573 cb->args[0] = h;
575 res = res < 0 ? res : skb->len;
576 if (res <= 0)
577 fib6_dump_end(cb);
578 return res;
582 * Routing Table
584 * return the appropriate node for a routing tree "add" operation
585 * by either creating and inserting or by returning an existing
586 * node.
589 static struct fib6_node *fib6_add_1(struct net *net,
590 struct fib6_table *table,
591 struct fib6_node *root,
592 struct in6_addr *addr, int plen,
593 int offset, int allow_create,
594 int replace_required,
595 struct netlink_ext_ack *extack)
597 struct fib6_node *fn, *in, *ln;
598 struct fib6_node *pn = NULL;
599 struct rt6key *key;
600 int bit;
601 __be32 dir = 0;
603 RT6_TRACE("fib6_add_1\n");
605 /* insert node in tree */
607 fn = root;
609 do {
610 struct rt6_info *leaf = rcu_dereference_protected(fn->leaf,
611 lockdep_is_held(&table->tb6_lock));
612 key = (struct rt6key *)((u8 *)leaf + offset);
615 * Prefix match
617 if (plen < fn->fn_bit ||
618 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
619 if (!allow_create) {
620 if (replace_required) {
621 NL_SET_ERR_MSG(extack,
622 "Can not replace route - no match found");
623 pr_warn("Can't replace route, no match found\n");
624 return ERR_PTR(-ENOENT);
626 pr_warn("NLM_F_CREATE should be set when creating new route\n");
628 goto insert_above;
632 * Exact match ?
635 if (plen == fn->fn_bit) {
636 /* clean up an intermediate node */
637 if (!(fn->fn_flags & RTN_RTINFO)) {
638 RCU_INIT_POINTER(fn->leaf, NULL);
639 rt6_release(leaf);
640 /* remove null_entry in the root node */
641 } else if (fn->fn_flags & RTN_TL_ROOT &&
642 rcu_access_pointer(fn->leaf) ==
643 net->ipv6.ip6_null_entry) {
644 RCU_INIT_POINTER(fn->leaf, NULL);
647 return fn;
651 * We have more bits to go
654 /* Try to walk down on tree. */
655 dir = addr_bit_set(addr, fn->fn_bit);
656 pn = fn;
657 fn = dir ?
658 rcu_dereference_protected(fn->right,
659 lockdep_is_held(&table->tb6_lock)) :
660 rcu_dereference_protected(fn->left,
661 lockdep_is_held(&table->tb6_lock));
662 } while (fn);
664 if (!allow_create) {
665 /* We should not create new node because
666 * NLM_F_REPLACE was specified without NLM_F_CREATE
667 * I assume it is safe to require NLM_F_CREATE when
668 * REPLACE flag is used! Later we may want to remove the
669 * check for replace_required, because according
670 * to netlink specification, NLM_F_CREATE
671 * MUST be specified if new route is created.
672 * That would keep IPv6 consistent with IPv4
674 if (replace_required) {
675 NL_SET_ERR_MSG(extack,
676 "Can not replace route - no match found");
677 pr_warn("Can't replace route, no match found\n");
678 return ERR_PTR(-ENOENT);
680 pr_warn("NLM_F_CREATE should be set when creating new route\n");
683 * We walked to the bottom of tree.
684 * Create new leaf node without children.
687 ln = node_alloc(net);
689 if (!ln)
690 return ERR_PTR(-ENOMEM);
691 ln->fn_bit = plen;
692 RCU_INIT_POINTER(ln->parent, pn);
694 if (dir)
695 rcu_assign_pointer(pn->right, ln);
696 else
697 rcu_assign_pointer(pn->left, ln);
699 return ln;
702 insert_above:
704 * split since we don't have a common prefix anymore or
705 * we have a less significant route.
706 * we've to insert an intermediate node on the list
707 * this new node will point to the one we need to create
708 * and the current
711 pn = rcu_dereference_protected(fn->parent,
712 lockdep_is_held(&table->tb6_lock));
714 /* find 1st bit in difference between the 2 addrs.
716 See comment in __ipv6_addr_diff: bit may be an invalid value,
717 but if it is >= plen, the value is ignored in any case.
720 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
723 * (intermediate)[in]
724 * / \
725 * (new leaf node)[ln] (old node)[fn]
727 if (plen > bit) {
728 in = node_alloc(net);
729 ln = node_alloc(net);
731 if (!in || !ln) {
732 if (in)
733 node_free_immediate(net, in);
734 if (ln)
735 node_free_immediate(net, ln);
736 return ERR_PTR(-ENOMEM);
740 * new intermediate node.
741 * RTN_RTINFO will
742 * be off since that an address that chooses one of
743 * the branches would not match less specific routes
744 * in the other branch
747 in->fn_bit = bit;
749 RCU_INIT_POINTER(in->parent, pn);
750 in->leaf = fn->leaf;
751 atomic_inc(&rcu_dereference_protected(in->leaf,
752 lockdep_is_held(&table->tb6_lock))->rt6i_ref);
754 /* update parent pointer */
755 if (dir)
756 rcu_assign_pointer(pn->right, in);
757 else
758 rcu_assign_pointer(pn->left, in);
760 ln->fn_bit = plen;
762 RCU_INIT_POINTER(ln->parent, in);
763 rcu_assign_pointer(fn->parent, in);
765 if (addr_bit_set(addr, bit)) {
766 rcu_assign_pointer(in->right, ln);
767 rcu_assign_pointer(in->left, fn);
768 } else {
769 rcu_assign_pointer(in->left, ln);
770 rcu_assign_pointer(in->right, fn);
772 } else { /* plen <= bit */
775 * (new leaf node)[ln]
776 * / \
777 * (old node)[fn] NULL
780 ln = node_alloc(net);
782 if (!ln)
783 return ERR_PTR(-ENOMEM);
785 ln->fn_bit = plen;
787 RCU_INIT_POINTER(ln->parent, pn);
789 if (addr_bit_set(&key->addr, plen))
790 RCU_INIT_POINTER(ln->right, fn);
791 else
792 RCU_INIT_POINTER(ln->left, fn);
794 rcu_assign_pointer(fn->parent, ln);
796 if (dir)
797 rcu_assign_pointer(pn->right, ln);
798 else
799 rcu_assign_pointer(pn->left, ln);
801 return ln;
804 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
806 int i;
808 for (i = 0; i < RTAX_MAX; i++) {
809 if (test_bit(i, mxc->mx_valid))
810 mp[i] = mxc->mx[i];
814 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
816 if (!mxc->mx)
817 return 0;
819 if (dst->flags & DST_HOST) {
820 u32 *mp = dst_metrics_write_ptr(dst);
822 if (unlikely(!mp))
823 return -ENOMEM;
825 fib6_copy_metrics(mp, mxc);
826 } else {
827 dst_init_metrics(dst, mxc->mx, false);
829 /* We've stolen mx now. */
830 mxc->mx = NULL;
833 return 0;
836 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
837 struct net *net)
839 struct fib6_table *table = rt->rt6i_table;
841 if (atomic_read(&rt->rt6i_ref) != 1) {
842 /* This route is used as dummy address holder in some split
843 * nodes. It is not leaked, but it still holds other resources,
844 * which must be released in time. So, scan ascendant nodes
845 * and replace dummy references to this route with references
846 * to still alive ones.
848 while (fn) {
849 struct rt6_info *leaf = rcu_dereference_protected(fn->leaf,
850 lockdep_is_held(&table->tb6_lock));
851 struct rt6_info *new_leaf;
852 if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
853 new_leaf = fib6_find_prefix(net, table, fn);
854 atomic_inc(&new_leaf->rt6i_ref);
855 rcu_assign_pointer(fn->leaf, new_leaf);
856 rt6_release(rt);
858 fn = rcu_dereference_protected(fn->parent,
859 lockdep_is_held(&table->tb6_lock));
865 * Insert routing information in a node.
868 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
869 struct nl_info *info, struct mx6_config *mxc,
870 struct netlink_ext_ack *extack)
872 struct rt6_info *leaf = rcu_dereference_protected(fn->leaf,
873 lockdep_is_held(&rt->rt6i_table->tb6_lock));
874 struct rt6_info *iter = NULL;
875 struct rt6_info __rcu **ins;
876 struct rt6_info __rcu **fallback_ins = NULL;
877 int replace = (info->nlh &&
878 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
879 int add = (!info->nlh ||
880 (info->nlh->nlmsg_flags & NLM_F_CREATE));
881 int found = 0;
882 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
883 u16 nlflags = NLM_F_EXCL;
884 int err;
886 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
887 nlflags |= NLM_F_APPEND;
889 ins = &fn->leaf;
891 for (iter = leaf; iter;
892 iter = rcu_dereference_protected(iter->rt6_next,
893 lockdep_is_held(&rt->rt6i_table->tb6_lock))) {
895 * Search for duplicates
898 if (iter->rt6i_metric == rt->rt6i_metric) {
900 * Same priority level
902 if (info->nlh &&
903 (info->nlh->nlmsg_flags & NLM_F_EXCL))
904 return -EEXIST;
906 nlflags &= ~NLM_F_EXCL;
907 if (replace) {
908 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
909 found++;
910 break;
912 if (rt_can_ecmp)
913 fallback_ins = fallback_ins ?: ins;
914 goto next_iter;
917 if (rt6_duplicate_nexthop(iter, rt)) {
918 if (rt->rt6i_nsiblings)
919 rt->rt6i_nsiblings = 0;
920 if (!(iter->rt6i_flags & RTF_EXPIRES))
921 return -EEXIST;
922 if (!(rt->rt6i_flags & RTF_EXPIRES))
923 rt6_clean_expires(iter);
924 else
925 rt6_set_expires(iter, rt->dst.expires);
926 iter->rt6i_pmtu = rt->rt6i_pmtu;
927 return -EEXIST;
929 /* If we have the same destination and the same metric,
930 * but not the same gateway, then the route we try to
931 * add is sibling to this route, increment our counter
932 * of siblings, and later we will add our route to the
933 * list.
934 * Only static routes (which don't have flag
935 * RTF_EXPIRES) are used for ECMPv6.
937 * To avoid long list, we only had siblings if the
938 * route have a gateway.
940 if (rt_can_ecmp &&
941 rt6_qualify_for_ecmp(iter))
942 rt->rt6i_nsiblings++;
945 if (iter->rt6i_metric > rt->rt6i_metric)
946 break;
948 next_iter:
949 ins = &iter->rt6_next;
952 if (fallback_ins && !found) {
953 /* No ECMP-able route found, replace first non-ECMP one */
954 ins = fallback_ins;
955 iter = rcu_dereference_protected(*ins,
956 lockdep_is_held(&rt->rt6i_table->tb6_lock));
957 found++;
960 /* Reset round-robin state, if necessary */
961 if (ins == &fn->leaf)
962 fn->rr_ptr = NULL;
964 /* Link this route to others same route. */
965 if (rt->rt6i_nsiblings) {
966 unsigned int rt6i_nsiblings;
967 struct rt6_info *sibling, *temp_sibling;
969 /* Find the first route that have the same metric */
970 sibling = leaf;
971 while (sibling) {
972 if (sibling->rt6i_metric == rt->rt6i_metric &&
973 rt6_qualify_for_ecmp(sibling)) {
974 list_add_tail(&rt->rt6i_siblings,
975 &sibling->rt6i_siblings);
976 break;
978 sibling = rcu_dereference_protected(sibling->rt6_next,
979 lockdep_is_held(&rt->rt6i_table->tb6_lock));
981 /* For each sibling in the list, increment the counter of
982 * siblings. BUG() if counters does not match, list of siblings
983 * is broken!
985 rt6i_nsiblings = 0;
986 list_for_each_entry_safe(sibling, temp_sibling,
987 &rt->rt6i_siblings, rt6i_siblings) {
988 sibling->rt6i_nsiblings++;
989 BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
990 rt6i_nsiblings++;
992 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
993 rt6_multipath_rebalance(temp_sibling);
997 * insert node
999 if (!replace) {
1000 if (!add)
1001 pr_warn("NLM_F_CREATE should be set when creating new route\n");
1003 add:
1004 nlflags |= NLM_F_CREATE;
1005 err = fib6_commit_metrics(&rt->dst, mxc);
1006 if (err)
1007 return err;
1009 rcu_assign_pointer(rt->rt6_next, iter);
1010 atomic_inc(&rt->rt6i_ref);
1011 rcu_assign_pointer(rt->rt6i_node, fn);
1012 rcu_assign_pointer(*ins, rt);
1013 call_fib6_entry_notifiers(info->nl_net, FIB_EVENT_ENTRY_ADD,
1014 rt, extack);
1015 if (!info->skip_notify)
1016 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1017 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1019 if (!(fn->fn_flags & RTN_RTINFO)) {
1020 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1021 fn->fn_flags |= RTN_RTINFO;
1024 } else {
1025 int nsiblings;
1027 if (!found) {
1028 if (add)
1029 goto add;
1030 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1031 return -ENOENT;
1034 err = fib6_commit_metrics(&rt->dst, mxc);
1035 if (err)
1036 return err;
1038 atomic_inc(&rt->rt6i_ref);
1039 rcu_assign_pointer(rt->rt6i_node, fn);
1040 rt->rt6_next = iter->rt6_next;
1041 rcu_assign_pointer(*ins, rt);
1042 call_fib6_entry_notifiers(info->nl_net, FIB_EVENT_ENTRY_REPLACE,
1043 rt, extack);
1044 if (!info->skip_notify)
1045 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1046 if (!(fn->fn_flags & RTN_RTINFO)) {
1047 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1048 fn->fn_flags |= RTN_RTINFO;
1050 nsiblings = iter->rt6i_nsiblings;
1051 iter->rt6i_node = NULL;
1052 fib6_purge_rt(iter, fn, info->nl_net);
1053 if (rcu_access_pointer(fn->rr_ptr) == iter)
1054 fn->rr_ptr = NULL;
1055 rt6_release(iter);
1057 if (nsiblings) {
1058 /* Replacing an ECMP route, remove all siblings */
1059 ins = &rt->rt6_next;
1060 iter = rcu_dereference_protected(*ins,
1061 lockdep_is_held(&rt->rt6i_table->tb6_lock));
1062 while (iter) {
1063 if (iter->rt6i_metric > rt->rt6i_metric)
1064 break;
1065 if (rt6_qualify_for_ecmp(iter)) {
1066 *ins = iter->rt6_next;
1067 iter->rt6i_node = NULL;
1068 fib6_purge_rt(iter, fn, info->nl_net);
1069 if (rcu_access_pointer(fn->rr_ptr) == iter)
1070 fn->rr_ptr = NULL;
1071 rt6_release(iter);
1072 nsiblings--;
1073 info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1074 } else {
1075 ins = &iter->rt6_next;
1077 iter = rcu_dereference_protected(*ins,
1078 lockdep_is_held(&rt->rt6i_table->tb6_lock));
1080 WARN_ON(nsiblings != 0);
1084 return 0;
1087 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
1089 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1090 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
1091 mod_timer(&net->ipv6.ip6_fib_timer,
1092 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1095 void fib6_force_start_gc(struct net *net)
1097 if (!timer_pending(&net->ipv6.ip6_fib_timer))
1098 mod_timer(&net->ipv6.ip6_fib_timer,
1099 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1102 static void __fib6_update_sernum_upto_root(struct rt6_info *rt,
1103 int sernum)
1105 struct fib6_node *fn = rcu_dereference_protected(rt->rt6i_node,
1106 lockdep_is_held(&rt->rt6i_table->tb6_lock));
1108 /* paired with smp_rmb() in rt6_get_cookie_safe() */
1109 smp_wmb();
1110 while (fn) {
1111 fn->fn_sernum = sernum;
1112 fn = rcu_dereference_protected(fn->parent,
1113 lockdep_is_held(&rt->rt6i_table->tb6_lock));
1117 void fib6_update_sernum_upto_root(struct net *net, struct rt6_info *rt)
1119 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1123 * Add routing information to the routing tree.
1124 * <destination addr>/<source addr>
1125 * with source addr info in sub-trees
1126 * Need to own table->tb6_lock
1129 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
1130 struct nl_info *info, struct mx6_config *mxc,
1131 struct netlink_ext_ack *extack)
1133 struct fib6_table *table = rt->rt6i_table;
1134 struct fib6_node *fn, *pn = NULL;
1135 int err = -ENOMEM;
1136 int allow_create = 1;
1137 int replace_required = 0;
1138 int sernum = fib6_new_sernum(info->nl_net);
1140 if (WARN_ON_ONCE(!atomic_read(&rt->dst.__refcnt)))
1141 return -EINVAL;
1142 if (WARN_ON_ONCE(rt->rt6i_flags & RTF_CACHE))
1143 return -EINVAL;
1145 if (info->nlh) {
1146 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1147 allow_create = 0;
1148 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1149 replace_required = 1;
1151 if (!allow_create && !replace_required)
1152 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1154 fn = fib6_add_1(info->nl_net, table, root,
1155 &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
1156 offsetof(struct rt6_info, rt6i_dst), allow_create,
1157 replace_required, extack);
1158 if (IS_ERR(fn)) {
1159 err = PTR_ERR(fn);
1160 fn = NULL;
1161 goto out;
1164 pn = fn;
1166 #ifdef CONFIG_IPV6_SUBTREES
1167 if (rt->rt6i_src.plen) {
1168 struct fib6_node *sn;
1170 if (!rcu_access_pointer(fn->subtree)) {
1171 struct fib6_node *sfn;
1174 * Create subtree.
1176 * fn[main tree]
1178 * sfn[subtree root]
1180 * sn[new leaf node]
1183 /* Create subtree root node */
1184 sfn = node_alloc(info->nl_net);
1185 if (!sfn)
1186 goto failure;
1188 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1189 rcu_assign_pointer(sfn->leaf,
1190 info->nl_net->ipv6.ip6_null_entry);
1191 sfn->fn_flags = RTN_ROOT;
1193 /* Now add the first leaf node to new subtree */
1195 sn = fib6_add_1(info->nl_net, table, sfn,
1196 &rt->rt6i_src.addr, rt->rt6i_src.plen,
1197 offsetof(struct rt6_info, rt6i_src),
1198 allow_create, replace_required, extack);
1200 if (IS_ERR(sn)) {
1201 /* If it is failed, discard just allocated
1202 root, and then (in failure) stale node
1203 in main tree.
1205 node_free_immediate(info->nl_net, sfn);
1206 err = PTR_ERR(sn);
1207 goto failure;
1210 /* Now link new subtree to main tree */
1211 rcu_assign_pointer(sfn->parent, fn);
1212 rcu_assign_pointer(fn->subtree, sfn);
1213 } else {
1214 sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1215 &rt->rt6i_src.addr, rt->rt6i_src.plen,
1216 offsetof(struct rt6_info, rt6i_src),
1217 allow_create, replace_required, extack);
1219 if (IS_ERR(sn)) {
1220 err = PTR_ERR(sn);
1221 goto failure;
1225 if (!rcu_access_pointer(fn->leaf)) {
1226 if (fn->fn_flags & RTN_TL_ROOT) {
1227 /* put back null_entry for root node */
1228 rcu_assign_pointer(fn->leaf,
1229 info->nl_net->ipv6.ip6_null_entry);
1230 } else {
1231 atomic_inc(&rt->rt6i_ref);
1232 rcu_assign_pointer(fn->leaf, rt);
1235 fn = sn;
1237 #endif
1239 err = fib6_add_rt2node(fn, rt, info, mxc, extack);
1240 if (!err) {
1241 __fib6_update_sernum_upto_root(rt, sernum);
1242 fib6_start_gc(info->nl_net, rt);
1245 out:
1246 if (err) {
1247 #ifdef CONFIG_IPV6_SUBTREES
1249 * If fib6_add_1 has cleared the old leaf pointer in the
1250 * super-tree leaf node we have to find a new one for it.
1252 if (pn != fn) {
1253 struct rt6_info *pn_leaf =
1254 rcu_dereference_protected(pn->leaf,
1255 lockdep_is_held(&table->tb6_lock));
1256 if (pn_leaf == rt) {
1257 pn_leaf = NULL;
1258 RCU_INIT_POINTER(pn->leaf, NULL);
1259 atomic_dec(&rt->rt6i_ref);
1261 if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1262 pn_leaf = fib6_find_prefix(info->nl_net, table,
1263 pn);
1264 #if RT6_DEBUG >= 2
1265 if (!pn_leaf) {
1266 WARN_ON(!pn_leaf);
1267 pn_leaf =
1268 info->nl_net->ipv6.ip6_null_entry;
1270 #endif
1271 atomic_inc(&pn_leaf->rt6i_ref);
1272 rcu_assign_pointer(pn->leaf, pn_leaf);
1275 #endif
1276 goto failure;
1278 return err;
1280 failure:
1281 /* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1282 * 1. fn is an intermediate node and we failed to add the new
1283 * route to it in both subtree creation failure and fib6_add_rt2node()
1284 * failure case.
1285 * 2. fn is the root node in the table and we fail to add the first
1286 * default route to it.
1288 if (fn &&
1289 (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1290 (fn->fn_flags & RTN_TL_ROOT &&
1291 !rcu_access_pointer(fn->leaf))))
1292 fib6_repair_tree(info->nl_net, table, fn);
1293 /* Always release dst as dst->__refcnt is guaranteed
1294 * to be taken before entering this function
1296 dst_release_immediate(&rt->dst);
1297 return err;
1301 * Routing tree lookup
1305 struct lookup_args {
1306 int offset; /* key offset on rt6_info */
1307 const struct in6_addr *addr; /* search key */
1310 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1311 struct lookup_args *args)
1313 struct fib6_node *fn;
1314 __be32 dir;
1316 if (unlikely(args->offset == 0))
1317 return NULL;
1320 * Descend on a tree
1323 fn = root;
1325 for (;;) {
1326 struct fib6_node *next;
1328 dir = addr_bit_set(args->addr, fn->fn_bit);
1330 next = dir ? rcu_dereference(fn->right) :
1331 rcu_dereference(fn->left);
1333 if (next) {
1334 fn = next;
1335 continue;
1337 break;
1340 while (fn) {
1341 struct fib6_node *subtree = FIB6_SUBTREE(fn);
1343 if (subtree || fn->fn_flags & RTN_RTINFO) {
1344 struct rt6_info *leaf = rcu_dereference(fn->leaf);
1345 struct rt6key *key;
1347 if (!leaf)
1348 goto backtrack;
1350 key = (struct rt6key *) ((u8 *)leaf + args->offset);
1352 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1353 #ifdef CONFIG_IPV6_SUBTREES
1354 if (subtree) {
1355 struct fib6_node *sfn;
1356 sfn = fib6_lookup_1(subtree, args + 1);
1357 if (!sfn)
1358 goto backtrack;
1359 fn = sfn;
1361 #endif
1362 if (fn->fn_flags & RTN_RTINFO)
1363 return fn;
1366 backtrack:
1367 if (fn->fn_flags & RTN_ROOT)
1368 break;
1370 fn = rcu_dereference(fn->parent);
1373 return NULL;
1376 /* called with rcu_read_lock() held
1378 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1379 const struct in6_addr *saddr)
1381 struct fib6_node *fn;
1382 struct lookup_args args[] = {
1384 .offset = offsetof(struct rt6_info, rt6i_dst),
1385 .addr = daddr,
1387 #ifdef CONFIG_IPV6_SUBTREES
1389 .offset = offsetof(struct rt6_info, rt6i_src),
1390 .addr = saddr,
1392 #endif
1394 .offset = 0, /* sentinel */
1398 fn = fib6_lookup_1(root, daddr ? args : args + 1);
1399 if (!fn || fn->fn_flags & RTN_TL_ROOT)
1400 fn = root;
1402 return fn;
1406 * Get node with specified destination prefix (and source prefix,
1407 * if subtrees are used)
1408 * exact_match == true means we try to find fn with exact match of
1409 * the passed in prefix addr
1410 * exact_match == false means we try to find fn with longest prefix
1411 * match of the passed in prefix addr. This is useful for finding fn
1412 * for cached route as it will be stored in the exception table under
1413 * the node with longest prefix length.
1417 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1418 const struct in6_addr *addr,
1419 int plen, int offset,
1420 bool exact_match)
1422 struct fib6_node *fn, *prev = NULL;
1424 for (fn = root; fn ; ) {
1425 struct rt6_info *leaf = rcu_dereference(fn->leaf);
1426 struct rt6key *key;
1428 /* This node is being deleted */
1429 if (!leaf) {
1430 if (plen <= fn->fn_bit)
1431 goto out;
1432 else
1433 goto next;
1436 key = (struct rt6key *)((u8 *)leaf + offset);
1439 * Prefix match
1441 if (plen < fn->fn_bit ||
1442 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1443 goto out;
1445 if (plen == fn->fn_bit)
1446 return fn;
1448 prev = fn;
1450 next:
1452 * We have more bits to go
1454 if (addr_bit_set(addr, fn->fn_bit))
1455 fn = rcu_dereference(fn->right);
1456 else
1457 fn = rcu_dereference(fn->left);
1459 out:
1460 if (exact_match)
1461 return NULL;
1462 else
1463 return prev;
1466 struct fib6_node *fib6_locate(struct fib6_node *root,
1467 const struct in6_addr *daddr, int dst_len,
1468 const struct in6_addr *saddr, int src_len,
1469 bool exact_match)
1471 struct fib6_node *fn;
1473 fn = fib6_locate_1(root, daddr, dst_len,
1474 offsetof(struct rt6_info, rt6i_dst),
1475 exact_match);
1477 #ifdef CONFIG_IPV6_SUBTREES
1478 if (src_len) {
1479 WARN_ON(saddr == NULL);
1480 if (fn) {
1481 struct fib6_node *subtree = FIB6_SUBTREE(fn);
1483 if (subtree) {
1484 fn = fib6_locate_1(subtree, saddr, src_len,
1485 offsetof(struct rt6_info, rt6i_src),
1486 exact_match);
1490 #endif
1492 if (fn && fn->fn_flags & RTN_RTINFO)
1493 return fn;
1495 return NULL;
1500 * Deletion
1504 static struct rt6_info *fib6_find_prefix(struct net *net,
1505 struct fib6_table *table,
1506 struct fib6_node *fn)
1508 struct fib6_node *child_left, *child_right;
1510 if (fn->fn_flags & RTN_ROOT)
1511 return net->ipv6.ip6_null_entry;
1513 while (fn) {
1514 child_left = rcu_dereference_protected(fn->left,
1515 lockdep_is_held(&table->tb6_lock));
1516 child_right = rcu_dereference_protected(fn->right,
1517 lockdep_is_held(&table->tb6_lock));
1518 if (child_left)
1519 return rcu_dereference_protected(child_left->leaf,
1520 lockdep_is_held(&table->tb6_lock));
1521 if (child_right)
1522 return rcu_dereference_protected(child_right->leaf,
1523 lockdep_is_held(&table->tb6_lock));
1525 fn = FIB6_SUBTREE(fn);
1527 return NULL;
1531 * Called to trim the tree of intermediate nodes when possible. "fn"
1532 * is the node we want to try and remove.
1533 * Need to own table->tb6_lock
1536 static struct fib6_node *fib6_repair_tree(struct net *net,
1537 struct fib6_table *table,
1538 struct fib6_node *fn)
1540 int children;
1541 int nstate;
1542 struct fib6_node *child;
1543 struct fib6_walker *w;
1544 int iter = 0;
1546 /* Set fn->leaf to null_entry for root node. */
1547 if (fn->fn_flags & RTN_TL_ROOT) {
1548 rcu_assign_pointer(fn->leaf, net->ipv6.ip6_null_entry);
1549 return fn;
1552 for (;;) {
1553 struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1554 lockdep_is_held(&table->tb6_lock));
1555 struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1556 lockdep_is_held(&table->tb6_lock));
1557 struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1558 lockdep_is_held(&table->tb6_lock));
1559 struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1560 lockdep_is_held(&table->tb6_lock));
1561 struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1562 lockdep_is_held(&table->tb6_lock));
1563 struct rt6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1564 lockdep_is_held(&table->tb6_lock));
1565 struct rt6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1566 lockdep_is_held(&table->tb6_lock));
1567 struct rt6_info *new_fn_leaf;
1569 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1570 iter++;
1572 WARN_ON(fn->fn_flags & RTN_RTINFO);
1573 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1574 WARN_ON(fn_leaf);
1576 children = 0;
1577 child = NULL;
1578 if (fn_r)
1579 child = fn_r, children |= 1;
1580 if (fn_l)
1581 child = fn_l, children |= 2;
1583 if (children == 3 || FIB6_SUBTREE(fn)
1584 #ifdef CONFIG_IPV6_SUBTREES
1585 /* Subtree root (i.e. fn) may have one child */
1586 || (children && fn->fn_flags & RTN_ROOT)
1587 #endif
1589 new_fn_leaf = fib6_find_prefix(net, table, fn);
1590 #if RT6_DEBUG >= 2
1591 if (!new_fn_leaf) {
1592 WARN_ON(!new_fn_leaf);
1593 new_fn_leaf = net->ipv6.ip6_null_entry;
1595 #endif
1596 atomic_inc(&new_fn_leaf->rt6i_ref);
1597 rcu_assign_pointer(fn->leaf, new_fn_leaf);
1598 return pn;
1601 #ifdef CONFIG_IPV6_SUBTREES
1602 if (FIB6_SUBTREE(pn) == fn) {
1603 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1604 RCU_INIT_POINTER(pn->subtree, NULL);
1605 nstate = FWS_L;
1606 } else {
1607 WARN_ON(fn->fn_flags & RTN_ROOT);
1608 #endif
1609 if (pn_r == fn)
1610 rcu_assign_pointer(pn->right, child);
1611 else if (pn_l == fn)
1612 rcu_assign_pointer(pn->left, child);
1613 #if RT6_DEBUG >= 2
1614 else
1615 WARN_ON(1);
1616 #endif
1617 if (child)
1618 rcu_assign_pointer(child->parent, pn);
1619 nstate = FWS_R;
1620 #ifdef CONFIG_IPV6_SUBTREES
1622 #endif
1624 read_lock(&net->ipv6.fib6_walker_lock);
1625 FOR_WALKERS(net, w) {
1626 if (!child) {
1627 if (w->node == fn) {
1628 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1629 w->node = pn;
1630 w->state = nstate;
1632 } else {
1633 if (w->node == fn) {
1634 w->node = child;
1635 if (children&2) {
1636 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1637 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1638 } else {
1639 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1640 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1645 read_unlock(&net->ipv6.fib6_walker_lock);
1647 node_free(net, fn);
1648 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1649 return pn;
1651 RCU_INIT_POINTER(pn->leaf, NULL);
1652 rt6_release(pn_leaf);
1653 fn = pn;
1657 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1658 struct rt6_info __rcu **rtp, struct nl_info *info)
1660 struct fib6_walker *w;
1661 struct rt6_info *rt = rcu_dereference_protected(*rtp,
1662 lockdep_is_held(&table->tb6_lock));
1663 struct net *net = info->nl_net;
1665 RT6_TRACE("fib6_del_route\n");
1667 WARN_ON_ONCE(rt->rt6i_flags & RTF_CACHE);
1669 /* Unlink it */
1670 *rtp = rt->rt6_next;
1671 rt->rt6i_node = NULL;
1672 net->ipv6.rt6_stats->fib_rt_entries--;
1673 net->ipv6.rt6_stats->fib_discarded_routes++;
1675 /* Flush all cached dst in exception table */
1676 rt6_flush_exceptions(rt);
1678 /* Reset round-robin state, if necessary */
1679 if (rcu_access_pointer(fn->rr_ptr) == rt)
1680 fn->rr_ptr = NULL;
1682 /* Remove this entry from other siblings */
1683 if (rt->rt6i_nsiblings) {
1684 struct rt6_info *sibling, *next_sibling;
1686 list_for_each_entry_safe(sibling, next_sibling,
1687 &rt->rt6i_siblings, rt6i_siblings)
1688 sibling->rt6i_nsiblings--;
1689 rt->rt6i_nsiblings = 0;
1690 list_del_init(&rt->rt6i_siblings);
1691 rt6_multipath_rebalance(next_sibling);
1694 /* Adjust walkers */
1695 read_lock(&net->ipv6.fib6_walker_lock);
1696 FOR_WALKERS(net, w) {
1697 if (w->state == FWS_C && w->leaf == rt) {
1698 RT6_TRACE("walker %p adjusted by delroute\n", w);
1699 w->leaf = rcu_dereference_protected(rt->rt6_next,
1700 lockdep_is_held(&table->tb6_lock));
1701 if (!w->leaf)
1702 w->state = FWS_U;
1705 read_unlock(&net->ipv6.fib6_walker_lock);
1707 /* If it was last route, call fib6_repair_tree() to:
1708 * 1. For root node, put back null_entry as how the table was created.
1709 * 2. For other nodes, expunge its radix tree node.
1711 if (!rcu_access_pointer(fn->leaf)) {
1712 if (!(fn->fn_flags & RTN_TL_ROOT)) {
1713 fn->fn_flags &= ~RTN_RTINFO;
1714 net->ipv6.rt6_stats->fib_route_nodes--;
1716 fn = fib6_repair_tree(net, table, fn);
1719 fib6_purge_rt(rt, fn, net);
1721 call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, rt, NULL);
1722 if (!info->skip_notify)
1723 inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1724 rt6_release(rt);
1727 /* Need to own table->tb6_lock */
1728 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1730 struct fib6_node *fn = rcu_dereference_protected(rt->rt6i_node,
1731 lockdep_is_held(&rt->rt6i_table->tb6_lock));
1732 struct fib6_table *table = rt->rt6i_table;
1733 struct net *net = info->nl_net;
1734 struct rt6_info __rcu **rtp;
1735 struct rt6_info __rcu **rtp_next;
1737 #if RT6_DEBUG >= 2
1738 if (rt->dst.obsolete > 0) {
1739 WARN_ON(fn);
1740 return -ENOENT;
1742 #endif
1743 if (!fn || rt == net->ipv6.ip6_null_entry)
1744 return -ENOENT;
1746 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1748 /* remove cached dst from exception table */
1749 if (rt->rt6i_flags & RTF_CACHE)
1750 return rt6_remove_exception_rt(rt);
1753 * Walk the leaf entries looking for ourself
1756 for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
1757 struct rt6_info *cur = rcu_dereference_protected(*rtp,
1758 lockdep_is_held(&table->tb6_lock));
1759 if (rt == cur) {
1760 fib6_del_route(table, fn, rtp, info);
1761 return 0;
1763 rtp_next = &cur->rt6_next;
1765 return -ENOENT;
1769 * Tree traversal function.
1771 * Certainly, it is not interrupt safe.
1772 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1773 * It means, that we can modify tree during walking
1774 * and use this function for garbage collection, clone pruning,
1775 * cleaning tree when a device goes down etc. etc.
1777 * It guarantees that every node will be traversed,
1778 * and that it will be traversed only once.
1780 * Callback function w->func may return:
1781 * 0 -> continue walking.
1782 * positive value -> walking is suspended (used by tree dumps,
1783 * and probably by gc, if it will be split to several slices)
1784 * negative value -> terminate walking.
1786 * The function itself returns:
1787 * 0 -> walk is complete.
1788 * >0 -> walk is incomplete (i.e. suspended)
1789 * <0 -> walk is terminated by an error.
1791 * This function is called with tb6_lock held.
1794 static int fib6_walk_continue(struct fib6_walker *w)
1796 struct fib6_node *fn, *pn, *left, *right;
1798 /* w->root should always be table->tb6_root */
1799 WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
1801 for (;;) {
1802 fn = w->node;
1803 if (!fn)
1804 return 0;
1806 switch (w->state) {
1807 #ifdef CONFIG_IPV6_SUBTREES
1808 case FWS_S:
1809 if (FIB6_SUBTREE(fn)) {
1810 w->node = FIB6_SUBTREE(fn);
1811 continue;
1813 w->state = FWS_L;
1814 #endif
1815 /* fall through */
1816 case FWS_L:
1817 left = rcu_dereference_protected(fn->left, 1);
1818 if (left) {
1819 w->node = left;
1820 w->state = FWS_INIT;
1821 continue;
1823 w->state = FWS_R;
1824 /* fall through */
1825 case FWS_R:
1826 right = rcu_dereference_protected(fn->right, 1);
1827 if (right) {
1828 w->node = right;
1829 w->state = FWS_INIT;
1830 continue;
1832 w->state = FWS_C;
1833 w->leaf = rcu_dereference_protected(fn->leaf, 1);
1834 /* fall through */
1835 case FWS_C:
1836 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1837 int err;
1839 if (w->skip) {
1840 w->skip--;
1841 goto skip;
1844 err = w->func(w);
1845 if (err)
1846 return err;
1848 w->count++;
1849 continue;
1851 skip:
1852 w->state = FWS_U;
1853 /* fall through */
1854 case FWS_U:
1855 if (fn == w->root)
1856 return 0;
1857 pn = rcu_dereference_protected(fn->parent, 1);
1858 left = rcu_dereference_protected(pn->left, 1);
1859 right = rcu_dereference_protected(pn->right, 1);
1860 w->node = pn;
1861 #ifdef CONFIG_IPV6_SUBTREES
1862 if (FIB6_SUBTREE(pn) == fn) {
1863 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1864 w->state = FWS_L;
1865 continue;
1867 #endif
1868 if (left == fn) {
1869 w->state = FWS_R;
1870 continue;
1872 if (right == fn) {
1873 w->state = FWS_C;
1874 w->leaf = rcu_dereference_protected(w->node->leaf, 1);
1875 continue;
1877 #if RT6_DEBUG >= 2
1878 WARN_ON(1);
1879 #endif
1884 static int fib6_walk(struct net *net, struct fib6_walker *w)
1886 int res;
1888 w->state = FWS_INIT;
1889 w->node = w->root;
1891 fib6_walker_link(net, w);
1892 res = fib6_walk_continue(w);
1893 if (res <= 0)
1894 fib6_walker_unlink(net, w);
1895 return res;
1898 static int fib6_clean_node(struct fib6_walker *w)
1900 int res;
1901 struct rt6_info *rt;
1902 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1903 struct nl_info info = {
1904 .nl_net = c->net,
1907 if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1908 w->node->fn_sernum != c->sernum)
1909 w->node->fn_sernum = c->sernum;
1911 if (!c->func) {
1912 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1913 w->leaf = NULL;
1914 return 0;
1917 for_each_fib6_walker_rt(w) {
1918 res = c->func(rt, c->arg);
1919 if (res == -1) {
1920 w->leaf = rt;
1921 res = fib6_del(rt, &info);
1922 if (res) {
1923 #if RT6_DEBUG >= 2
1924 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1925 __func__, rt,
1926 rcu_access_pointer(rt->rt6i_node),
1927 res);
1928 #endif
1929 continue;
1931 return 0;
1932 } else if (res == -2) {
1933 if (WARN_ON(!rt->rt6i_nsiblings))
1934 continue;
1935 rt = list_last_entry(&rt->rt6i_siblings,
1936 struct rt6_info, rt6i_siblings);
1937 continue;
1939 WARN_ON(res != 0);
1941 w->leaf = rt;
1942 return 0;
1946 * Convenient frontend to tree walker.
1948 * func is called on each route.
1949 * It may return -2 -> skip multipath route.
1950 * -1 -> delete this route.
1951 * 0 -> continue walking
1954 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1955 int (*func)(struct rt6_info *, void *arg),
1956 int sernum, void *arg)
1958 struct fib6_cleaner c;
1960 c.w.root = root;
1961 c.w.func = fib6_clean_node;
1962 c.w.count = 0;
1963 c.w.skip = 0;
1964 c.func = func;
1965 c.sernum = sernum;
1966 c.arg = arg;
1967 c.net = net;
1969 fib6_walk(net, &c.w);
1972 static void __fib6_clean_all(struct net *net,
1973 int (*func)(struct rt6_info *, void *),
1974 int sernum, void *arg)
1976 struct fib6_table *table;
1977 struct hlist_head *head;
1978 unsigned int h;
1980 rcu_read_lock();
1981 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1982 head = &net->ipv6.fib_table_hash[h];
1983 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1984 spin_lock_bh(&table->tb6_lock);
1985 fib6_clean_tree(net, &table->tb6_root,
1986 func, sernum, arg);
1987 spin_unlock_bh(&table->tb6_lock);
1990 rcu_read_unlock();
1993 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1994 void *arg)
1996 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1999 static void fib6_flush_trees(struct net *net)
2001 int new_sernum = fib6_new_sernum(net);
2003 __fib6_clean_all(net, NULL, new_sernum, NULL);
2007 * Garbage collection
2010 static int fib6_age(struct rt6_info *rt, void *arg)
2012 struct fib6_gc_args *gc_args = arg;
2013 unsigned long now = jiffies;
2016 * check addrconf expiration here.
2017 * Routes are expired even if they are in use.
2020 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
2021 if (time_after(now, rt->dst.expires)) {
2022 RT6_TRACE("expiring %p\n", rt);
2023 return -1;
2025 gc_args->more++;
2028 /* Also age clones in the exception table.
2029 * Note, that clones are aged out
2030 * only if they are not in use now.
2032 rt6_age_exceptions(rt, gc_args, now);
2034 return 0;
2037 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2039 struct fib6_gc_args gc_args;
2040 unsigned long now;
2042 if (force) {
2043 spin_lock_bh(&net->ipv6.fib6_gc_lock);
2044 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2045 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2046 return;
2048 gc_args.timeout = expires ? (int)expires :
2049 net->ipv6.sysctl.ip6_rt_gc_interval;
2050 gc_args.more = 0;
2052 fib6_clean_all(net, fib6_age, &gc_args);
2053 now = jiffies;
2054 net->ipv6.ip6_rt_last_gc = now;
2056 if (gc_args.more)
2057 mod_timer(&net->ipv6.ip6_fib_timer,
2058 round_jiffies(now
2059 + net->ipv6.sysctl.ip6_rt_gc_interval));
2060 else
2061 del_timer(&net->ipv6.ip6_fib_timer);
2062 spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2065 static void fib6_gc_timer_cb(struct timer_list *t)
2067 struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2069 fib6_run_gc(0, arg, true);
2072 static int __net_init fib6_net_init(struct net *net)
2074 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2075 int err;
2077 err = fib6_notifier_init(net);
2078 if (err)
2079 return err;
2081 spin_lock_init(&net->ipv6.fib6_gc_lock);
2082 rwlock_init(&net->ipv6.fib6_walker_lock);
2083 INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2084 timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2086 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2087 if (!net->ipv6.rt6_stats)
2088 goto out_timer;
2090 /* Avoid false sharing : Use at least a full cache line */
2091 size = max_t(size_t, size, L1_CACHE_BYTES);
2093 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2094 if (!net->ipv6.fib_table_hash)
2095 goto out_rt6_stats;
2097 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2098 GFP_KERNEL);
2099 if (!net->ipv6.fib6_main_tbl)
2100 goto out_fib_table_hash;
2102 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2103 rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2104 net->ipv6.ip6_null_entry);
2105 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2106 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2107 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2109 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2110 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2111 GFP_KERNEL);
2112 if (!net->ipv6.fib6_local_tbl)
2113 goto out_fib6_main_tbl;
2114 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2115 rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2116 net->ipv6.ip6_null_entry);
2117 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2118 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2119 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2120 #endif
2121 fib6_tables_init(net);
2123 return 0;
2125 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2126 out_fib6_main_tbl:
2127 kfree(net->ipv6.fib6_main_tbl);
2128 #endif
2129 out_fib_table_hash:
2130 kfree(net->ipv6.fib_table_hash);
2131 out_rt6_stats:
2132 kfree(net->ipv6.rt6_stats);
2133 out_timer:
2134 fib6_notifier_exit(net);
2135 return -ENOMEM;
2138 static void fib6_net_exit(struct net *net)
2140 unsigned int i;
2142 del_timer_sync(&net->ipv6.ip6_fib_timer);
2144 for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2145 struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2146 struct hlist_node *tmp;
2147 struct fib6_table *tb;
2149 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2150 hlist_del(&tb->tb6_hlist);
2151 fib6_free_table(tb);
2155 kfree(net->ipv6.fib_table_hash);
2156 kfree(net->ipv6.rt6_stats);
2157 fib6_notifier_exit(net);
2160 static struct pernet_operations fib6_net_ops = {
2161 .init = fib6_net_init,
2162 .exit = fib6_net_exit,
2165 int __init fib6_init(void)
2167 int ret = -ENOMEM;
2169 fib6_node_kmem = kmem_cache_create("fib6_nodes",
2170 sizeof(struct fib6_node),
2171 0, SLAB_HWCACHE_ALIGN,
2172 NULL);
2173 if (!fib6_node_kmem)
2174 goto out;
2176 ret = register_pernet_subsys(&fib6_net_ops);
2177 if (ret)
2178 goto out_kmem_cache_create;
2180 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL,
2181 inet6_dump_fib, 0);
2182 if (ret)
2183 goto out_unregister_subsys;
2185 __fib6_flush_trees = fib6_flush_trees;
2186 out:
2187 return ret;
2189 out_unregister_subsys:
2190 unregister_pernet_subsys(&fib6_net_ops);
2191 out_kmem_cache_create:
2192 kmem_cache_destroy(fib6_node_kmem);
2193 goto out;
2196 void fib6_gc_cleanup(void)
2198 unregister_pernet_subsys(&fib6_net_ops);
2199 kmem_cache_destroy(fib6_node_kmem);
2202 #ifdef CONFIG_PROC_FS
2204 struct ipv6_route_iter {
2205 struct seq_net_private p;
2206 struct fib6_walker w;
2207 loff_t skip;
2208 struct fib6_table *tbl;
2209 int sernum;
2212 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2214 struct rt6_info *rt = v;
2215 struct ipv6_route_iter *iter = seq->private;
2217 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
2219 #ifdef CONFIG_IPV6_SUBTREES
2220 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
2221 #else
2222 seq_puts(seq, "00000000000000000000000000000000 00 ");
2223 #endif
2224 if (rt->rt6i_flags & RTF_GATEWAY)
2225 seq_printf(seq, "%pi6", &rt->rt6i_gateway);
2226 else
2227 seq_puts(seq, "00000000000000000000000000000000");
2229 seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2230 rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
2231 rt->dst.__use, rt->rt6i_flags,
2232 rt->dst.dev ? rt->dst.dev->name : "");
2233 iter->w.leaf = NULL;
2234 return 0;
2237 static int ipv6_route_yield(struct fib6_walker *w)
2239 struct ipv6_route_iter *iter = w->args;
2241 if (!iter->skip)
2242 return 1;
2244 do {
2245 iter->w.leaf = rcu_dereference_protected(
2246 iter->w.leaf->rt6_next,
2247 lockdep_is_held(&iter->tbl->tb6_lock));
2248 iter->skip--;
2249 if (!iter->skip && iter->w.leaf)
2250 return 1;
2251 } while (iter->w.leaf);
2253 return 0;
2256 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2257 struct net *net)
2259 memset(&iter->w, 0, sizeof(iter->w));
2260 iter->w.func = ipv6_route_yield;
2261 iter->w.root = &iter->tbl->tb6_root;
2262 iter->w.state = FWS_INIT;
2263 iter->w.node = iter->w.root;
2264 iter->w.args = iter;
2265 iter->sernum = iter->w.root->fn_sernum;
2266 INIT_LIST_HEAD(&iter->w.lh);
2267 fib6_walker_link(net, &iter->w);
2270 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2271 struct net *net)
2273 unsigned int h;
2274 struct hlist_node *node;
2276 if (tbl) {
2277 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2278 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2279 } else {
2280 h = 0;
2281 node = NULL;
2284 while (!node && h < FIB6_TABLE_HASHSZ) {
2285 node = rcu_dereference_bh(
2286 hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2288 return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2291 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2293 if (iter->sernum != iter->w.root->fn_sernum) {
2294 iter->sernum = iter->w.root->fn_sernum;
2295 iter->w.state = FWS_INIT;
2296 iter->w.node = iter->w.root;
2297 WARN_ON(iter->w.skip);
2298 iter->w.skip = iter->w.count;
2302 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2304 int r;
2305 struct rt6_info *n;
2306 struct net *net = seq_file_net(seq);
2307 struct ipv6_route_iter *iter = seq->private;
2309 if (!v)
2310 goto iter_table;
2312 n = rcu_dereference_bh(((struct rt6_info *)v)->rt6_next);
2313 if (n) {
2314 ++*pos;
2315 return n;
2318 iter_table:
2319 ipv6_route_check_sernum(iter);
2320 spin_lock_bh(&iter->tbl->tb6_lock);
2321 r = fib6_walk_continue(&iter->w);
2322 spin_unlock_bh(&iter->tbl->tb6_lock);
2323 if (r > 0) {
2324 if (v)
2325 ++*pos;
2326 return iter->w.leaf;
2327 } else if (r < 0) {
2328 fib6_walker_unlink(net, &iter->w);
2329 return NULL;
2331 fib6_walker_unlink(net, &iter->w);
2333 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2334 if (!iter->tbl)
2335 return NULL;
2337 ipv6_route_seq_setup_walk(iter, net);
2338 goto iter_table;
2341 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2342 __acquires(RCU_BH)
2344 struct net *net = seq_file_net(seq);
2345 struct ipv6_route_iter *iter = seq->private;
2347 rcu_read_lock_bh();
2348 iter->tbl = ipv6_route_seq_next_table(NULL, net);
2349 iter->skip = *pos;
2351 if (iter->tbl) {
2352 ipv6_route_seq_setup_walk(iter, net);
2353 return ipv6_route_seq_next(seq, NULL, pos);
2354 } else {
2355 return NULL;
2359 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2361 struct fib6_walker *w = &iter->w;
2362 return w->node && !(w->state == FWS_U && w->node == w->root);
2365 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2366 __releases(RCU_BH)
2368 struct net *net = seq_file_net(seq);
2369 struct ipv6_route_iter *iter = seq->private;
2371 if (ipv6_route_iter_active(iter))
2372 fib6_walker_unlink(net, &iter->w);
2374 rcu_read_unlock_bh();
2377 static const struct seq_operations ipv6_route_seq_ops = {
2378 .start = ipv6_route_seq_start,
2379 .next = ipv6_route_seq_next,
2380 .stop = ipv6_route_seq_stop,
2381 .show = ipv6_route_seq_show
2384 int ipv6_route_open(struct inode *inode, struct file *file)
2386 return seq_open_net(inode, file, &ipv6_route_seq_ops,
2387 sizeof(struct ipv6_route_iter));
2390 #endif /* CONFIG_PROC_FS */