Linux 4.16-rc1
[cris-mirror.git] / net / sunrpc / svc_xprt.c
blobf9307bd6644b704ad4e038dcd850ea13c062146f
1 /*
2 * linux/net/sunrpc/svc_xprt.c
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/addr.h>
14 #include <linux/sunrpc/stats.h>
15 #include <linux/sunrpc/svc_xprt.h>
16 #include <linux/sunrpc/svcsock.h>
17 #include <linux/sunrpc/xprt.h>
18 #include <linux/module.h>
19 #include <linux/netdevice.h>
20 #include <trace/events/sunrpc.h>
22 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
24 static unsigned int svc_rpc_per_connection_limit __read_mostly;
25 module_param(svc_rpc_per_connection_limit, uint, 0644);
28 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
29 static int svc_deferred_recv(struct svc_rqst *rqstp);
30 static struct cache_deferred_req *svc_defer(struct cache_req *req);
31 static void svc_age_temp_xprts(struct timer_list *t);
32 static void svc_delete_xprt(struct svc_xprt *xprt);
34 /* apparently the "standard" is that clients close
35 * idle connections after 5 minutes, servers after
36 * 6 minutes
37 * http://www.connectathon.org/talks96/nfstcp.pdf
39 static int svc_conn_age_period = 6*60;
41 /* List of registered transport classes */
42 static DEFINE_SPINLOCK(svc_xprt_class_lock);
43 static LIST_HEAD(svc_xprt_class_list);
45 /* SMP locking strategy:
47 * svc_pool->sp_lock protects most of the fields of that pool.
48 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
49 * when both need to be taken (rare), svc_serv->sv_lock is first.
50 * The "service mutex" protects svc_serv->sv_nrthread.
51 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
52 * and the ->sk_info_authunix cache.
54 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
55 * enqueued multiply. During normal transport processing this bit
56 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
57 * Providers should not manipulate this bit directly.
59 * Some flags can be set to certain values at any time
60 * providing that certain rules are followed:
62 * XPT_CONN, XPT_DATA:
63 * - Can be set or cleared at any time.
64 * - After a set, svc_xprt_enqueue must be called to enqueue
65 * the transport for processing.
66 * - After a clear, the transport must be read/accepted.
67 * If this succeeds, it must be set again.
68 * XPT_CLOSE:
69 * - Can set at any time. It is never cleared.
70 * XPT_DEAD:
71 * - Can only be set while XPT_BUSY is held which ensures
72 * that no other thread will be using the transport or will
73 * try to set XPT_DEAD.
75 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
77 struct svc_xprt_class *cl;
78 int res = -EEXIST;
80 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
82 INIT_LIST_HEAD(&xcl->xcl_list);
83 spin_lock(&svc_xprt_class_lock);
84 /* Make sure there isn't already a class with the same name */
85 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
86 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
87 goto out;
89 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
90 res = 0;
91 out:
92 spin_unlock(&svc_xprt_class_lock);
93 return res;
95 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
97 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
99 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
100 spin_lock(&svc_xprt_class_lock);
101 list_del_init(&xcl->xcl_list);
102 spin_unlock(&svc_xprt_class_lock);
104 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
107 * Format the transport list for printing
109 int svc_print_xprts(char *buf, int maxlen)
111 struct svc_xprt_class *xcl;
112 char tmpstr[80];
113 int len = 0;
114 buf[0] = '\0';
116 spin_lock(&svc_xprt_class_lock);
117 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
118 int slen;
120 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
121 slen = strlen(tmpstr);
122 if (len + slen > maxlen)
123 break;
124 len += slen;
125 strcat(buf, tmpstr);
127 spin_unlock(&svc_xprt_class_lock);
129 return len;
132 static void svc_xprt_free(struct kref *kref)
134 struct svc_xprt *xprt =
135 container_of(kref, struct svc_xprt, xpt_ref);
136 struct module *owner = xprt->xpt_class->xcl_owner;
137 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
138 svcauth_unix_info_release(xprt);
139 put_net(xprt->xpt_net);
140 /* See comment on corresponding get in xs_setup_bc_tcp(): */
141 if (xprt->xpt_bc_xprt)
142 xprt_put(xprt->xpt_bc_xprt);
143 if (xprt->xpt_bc_xps)
144 xprt_switch_put(xprt->xpt_bc_xps);
145 xprt->xpt_ops->xpo_free(xprt);
146 module_put(owner);
149 void svc_xprt_put(struct svc_xprt *xprt)
151 kref_put(&xprt->xpt_ref, svc_xprt_free);
153 EXPORT_SYMBOL_GPL(svc_xprt_put);
156 * Called by transport drivers to initialize the transport independent
157 * portion of the transport instance.
159 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
160 struct svc_xprt *xprt, struct svc_serv *serv)
162 memset(xprt, 0, sizeof(*xprt));
163 xprt->xpt_class = xcl;
164 xprt->xpt_ops = xcl->xcl_ops;
165 kref_init(&xprt->xpt_ref);
166 xprt->xpt_server = serv;
167 INIT_LIST_HEAD(&xprt->xpt_list);
168 INIT_LIST_HEAD(&xprt->xpt_ready);
169 INIT_LIST_HEAD(&xprt->xpt_deferred);
170 INIT_LIST_HEAD(&xprt->xpt_users);
171 mutex_init(&xprt->xpt_mutex);
172 spin_lock_init(&xprt->xpt_lock);
173 set_bit(XPT_BUSY, &xprt->xpt_flags);
174 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
175 xprt->xpt_net = get_net(net);
177 EXPORT_SYMBOL_GPL(svc_xprt_init);
179 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
180 struct svc_serv *serv,
181 struct net *net,
182 const int family,
183 const unsigned short port,
184 int flags)
186 struct sockaddr_in sin = {
187 .sin_family = AF_INET,
188 .sin_addr.s_addr = htonl(INADDR_ANY),
189 .sin_port = htons(port),
191 #if IS_ENABLED(CONFIG_IPV6)
192 struct sockaddr_in6 sin6 = {
193 .sin6_family = AF_INET6,
194 .sin6_addr = IN6ADDR_ANY_INIT,
195 .sin6_port = htons(port),
197 #endif
198 struct sockaddr *sap;
199 size_t len;
201 switch (family) {
202 case PF_INET:
203 sap = (struct sockaddr *)&sin;
204 len = sizeof(sin);
205 break;
206 #if IS_ENABLED(CONFIG_IPV6)
207 case PF_INET6:
208 sap = (struct sockaddr *)&sin6;
209 len = sizeof(sin6);
210 break;
211 #endif
212 default:
213 return ERR_PTR(-EAFNOSUPPORT);
216 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
220 * svc_xprt_received conditionally queues the transport for processing
221 * by another thread. The caller must hold the XPT_BUSY bit and must
222 * not thereafter touch transport data.
224 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
225 * insufficient) data.
227 static void svc_xprt_received(struct svc_xprt *xprt)
229 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
230 WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
231 return;
234 /* As soon as we clear busy, the xprt could be closed and
235 * 'put', so we need a reference to call svc_enqueue_xprt with:
237 svc_xprt_get(xprt);
238 smp_mb__before_atomic();
239 clear_bit(XPT_BUSY, &xprt->xpt_flags);
240 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
241 svc_xprt_put(xprt);
244 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
246 clear_bit(XPT_TEMP, &new->xpt_flags);
247 spin_lock_bh(&serv->sv_lock);
248 list_add(&new->xpt_list, &serv->sv_permsocks);
249 spin_unlock_bh(&serv->sv_lock);
250 svc_xprt_received(new);
253 static int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
254 struct net *net, const int family,
255 const unsigned short port, int flags)
257 struct svc_xprt_class *xcl;
259 spin_lock(&svc_xprt_class_lock);
260 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
261 struct svc_xprt *newxprt;
262 unsigned short newport;
264 if (strcmp(xprt_name, xcl->xcl_name))
265 continue;
267 if (!try_module_get(xcl->xcl_owner))
268 goto err;
270 spin_unlock(&svc_xprt_class_lock);
271 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
272 if (IS_ERR(newxprt)) {
273 module_put(xcl->xcl_owner);
274 return PTR_ERR(newxprt);
276 svc_add_new_perm_xprt(serv, newxprt);
277 newport = svc_xprt_local_port(newxprt);
278 return newport;
280 err:
281 spin_unlock(&svc_xprt_class_lock);
282 /* This errno is exposed to user space. Provide a reasonable
283 * perror msg for a bad transport. */
284 return -EPROTONOSUPPORT;
287 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
288 struct net *net, const int family,
289 const unsigned short port, int flags)
291 int err;
293 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
294 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
295 if (err == -EPROTONOSUPPORT) {
296 request_module("svc%s", xprt_name);
297 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
299 if (err)
300 dprintk("svc: transport %s not found, err %d\n",
301 xprt_name, err);
302 return err;
304 EXPORT_SYMBOL_GPL(svc_create_xprt);
307 * Copy the local and remote xprt addresses to the rqstp structure
309 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
311 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
312 rqstp->rq_addrlen = xprt->xpt_remotelen;
315 * Destination address in request is needed for binding the
316 * source address in RPC replies/callbacks later.
318 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
319 rqstp->rq_daddrlen = xprt->xpt_locallen;
321 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
324 * svc_print_addr - Format rq_addr field for printing
325 * @rqstp: svc_rqst struct containing address to print
326 * @buf: target buffer for formatted address
327 * @len: length of target buffer
330 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
332 return __svc_print_addr(svc_addr(rqstp), buf, len);
334 EXPORT_SYMBOL_GPL(svc_print_addr);
336 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
338 unsigned int limit = svc_rpc_per_connection_limit;
339 int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
341 return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
344 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
346 if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
347 if (!svc_xprt_slots_in_range(xprt))
348 return false;
349 atomic_inc(&xprt->xpt_nr_rqsts);
350 set_bit(RQ_DATA, &rqstp->rq_flags);
352 return true;
355 static void svc_xprt_release_slot(struct svc_rqst *rqstp)
357 struct svc_xprt *xprt = rqstp->rq_xprt;
358 if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
359 atomic_dec(&xprt->xpt_nr_rqsts);
360 svc_xprt_enqueue(xprt);
364 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
366 if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
367 return true;
368 if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED))) {
369 if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
370 svc_xprt_slots_in_range(xprt))
371 return true;
372 trace_svc_xprt_no_write_space(xprt);
373 return false;
375 return false;
378 void svc_xprt_do_enqueue(struct svc_xprt *xprt)
380 struct svc_pool *pool;
381 struct svc_rqst *rqstp = NULL;
382 int cpu;
384 if (!svc_xprt_has_something_to_do(xprt))
385 goto out;
387 /* Mark transport as busy. It will remain in this state until
388 * the provider calls svc_xprt_received. We update XPT_BUSY
389 * atomically because it also guards against trying to enqueue
390 * the transport twice.
392 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
393 /* Don't enqueue transport while already enqueued */
394 dprintk("svc: transport %p busy, not enqueued\n", xprt);
395 goto out;
398 cpu = get_cpu();
399 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
401 atomic_long_inc(&pool->sp_stats.packets);
403 dprintk("svc: transport %p put into queue\n", xprt);
404 spin_lock_bh(&pool->sp_lock);
405 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
406 pool->sp_stats.sockets_queued++;
407 spin_unlock_bh(&pool->sp_lock);
409 /* find a thread for this xprt */
410 rcu_read_lock();
411 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
412 if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
413 continue;
414 atomic_long_inc(&pool->sp_stats.threads_woken);
415 wake_up_process(rqstp->rq_task);
416 goto out_unlock;
418 set_bit(SP_CONGESTED, &pool->sp_flags);
419 rqstp = NULL;
420 out_unlock:
421 rcu_read_unlock();
422 put_cpu();
423 out:
424 trace_svc_xprt_do_enqueue(xprt, rqstp);
426 EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
429 * Queue up a transport with data pending. If there are idle nfsd
430 * processes, wake 'em up.
433 void svc_xprt_enqueue(struct svc_xprt *xprt)
435 if (test_bit(XPT_BUSY, &xprt->xpt_flags))
436 return;
437 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
439 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
442 * Dequeue the first transport, if there is one.
444 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
446 struct svc_xprt *xprt = NULL;
448 if (list_empty(&pool->sp_sockets))
449 goto out;
451 spin_lock_bh(&pool->sp_lock);
452 if (likely(!list_empty(&pool->sp_sockets))) {
453 xprt = list_first_entry(&pool->sp_sockets,
454 struct svc_xprt, xpt_ready);
455 list_del_init(&xprt->xpt_ready);
456 svc_xprt_get(xprt);
458 dprintk("svc: transport %p dequeued, inuse=%d\n",
459 xprt, kref_read(&xprt->xpt_ref));
461 spin_unlock_bh(&pool->sp_lock);
462 out:
463 trace_svc_xprt_dequeue(xprt);
464 return xprt;
468 * svc_reserve - change the space reserved for the reply to a request.
469 * @rqstp: The request in question
470 * @space: new max space to reserve
472 * Each request reserves some space on the output queue of the transport
473 * to make sure the reply fits. This function reduces that reserved
474 * space to be the amount of space used already, plus @space.
477 void svc_reserve(struct svc_rqst *rqstp, int space)
479 space += rqstp->rq_res.head[0].iov_len;
481 if (space < rqstp->rq_reserved) {
482 struct svc_xprt *xprt = rqstp->rq_xprt;
483 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
484 rqstp->rq_reserved = space;
486 svc_xprt_enqueue(xprt);
489 EXPORT_SYMBOL_GPL(svc_reserve);
491 static void svc_xprt_release(struct svc_rqst *rqstp)
493 struct svc_xprt *xprt = rqstp->rq_xprt;
495 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
497 kfree(rqstp->rq_deferred);
498 rqstp->rq_deferred = NULL;
500 svc_free_res_pages(rqstp);
501 rqstp->rq_res.page_len = 0;
502 rqstp->rq_res.page_base = 0;
504 /* Reset response buffer and release
505 * the reservation.
506 * But first, check that enough space was reserved
507 * for the reply, otherwise we have a bug!
509 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
510 printk(KERN_ERR "RPC request reserved %d but used %d\n",
511 rqstp->rq_reserved,
512 rqstp->rq_res.len);
514 rqstp->rq_res.head[0].iov_len = 0;
515 svc_reserve(rqstp, 0);
516 svc_xprt_release_slot(rqstp);
517 rqstp->rq_xprt = NULL;
518 svc_xprt_put(xprt);
522 * Some svc_serv's will have occasional work to do, even when a xprt is not
523 * waiting to be serviced. This function is there to "kick" a task in one of
524 * those services so that it can wake up and do that work. Note that we only
525 * bother with pool 0 as we don't need to wake up more than one thread for
526 * this purpose.
528 void svc_wake_up(struct svc_serv *serv)
530 struct svc_rqst *rqstp;
531 struct svc_pool *pool;
533 pool = &serv->sv_pools[0];
535 rcu_read_lock();
536 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
537 /* skip any that aren't queued */
538 if (test_bit(RQ_BUSY, &rqstp->rq_flags))
539 continue;
540 rcu_read_unlock();
541 dprintk("svc: daemon %p woken up.\n", rqstp);
542 wake_up_process(rqstp->rq_task);
543 trace_svc_wake_up(rqstp->rq_task->pid);
544 return;
546 rcu_read_unlock();
548 /* No free entries available */
549 set_bit(SP_TASK_PENDING, &pool->sp_flags);
550 smp_wmb();
551 trace_svc_wake_up(0);
553 EXPORT_SYMBOL_GPL(svc_wake_up);
555 int svc_port_is_privileged(struct sockaddr *sin)
557 switch (sin->sa_family) {
558 case AF_INET:
559 return ntohs(((struct sockaddr_in *)sin)->sin_port)
560 < PROT_SOCK;
561 case AF_INET6:
562 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
563 < PROT_SOCK;
564 default:
565 return 0;
570 * Make sure that we don't have too many active connections. If we have,
571 * something must be dropped. It's not clear what will happen if we allow
572 * "too many" connections, but when dealing with network-facing software,
573 * we have to code defensively. Here we do that by imposing hard limits.
575 * There's no point in trying to do random drop here for DoS
576 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
577 * attacker can easily beat that.
579 * The only somewhat efficient mechanism would be if drop old
580 * connections from the same IP first. But right now we don't even
581 * record the client IP in svc_sock.
583 * single-threaded services that expect a lot of clients will probably
584 * need to set sv_maxconn to override the default value which is based
585 * on the number of threads
587 static void svc_check_conn_limits(struct svc_serv *serv)
589 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
590 (serv->sv_nrthreads+3) * 20;
592 if (serv->sv_tmpcnt > limit) {
593 struct svc_xprt *xprt = NULL;
594 spin_lock_bh(&serv->sv_lock);
595 if (!list_empty(&serv->sv_tempsocks)) {
596 /* Try to help the admin */
597 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
598 serv->sv_name, serv->sv_maxconn ?
599 "max number of connections" :
600 "number of threads");
602 * Always select the oldest connection. It's not fair,
603 * but so is life
605 xprt = list_entry(serv->sv_tempsocks.prev,
606 struct svc_xprt,
607 xpt_list);
608 set_bit(XPT_CLOSE, &xprt->xpt_flags);
609 svc_xprt_get(xprt);
611 spin_unlock_bh(&serv->sv_lock);
613 if (xprt) {
614 svc_xprt_enqueue(xprt);
615 svc_xprt_put(xprt);
620 static int svc_alloc_arg(struct svc_rqst *rqstp)
622 struct svc_serv *serv = rqstp->rq_server;
623 struct xdr_buf *arg;
624 int pages;
625 int i;
627 /* now allocate needed pages. If we get a failure, sleep briefly */
628 pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
629 if (pages > RPCSVC_MAXPAGES) {
630 pr_warn_once("svc: warning: pages=%u > RPCSVC_MAXPAGES=%lu\n",
631 pages, RPCSVC_MAXPAGES);
632 /* use as many pages as possible */
633 pages = RPCSVC_MAXPAGES;
635 for (i = 0; i < pages ; i++)
636 while (rqstp->rq_pages[i] == NULL) {
637 struct page *p = alloc_page(GFP_KERNEL);
638 if (!p) {
639 set_current_state(TASK_INTERRUPTIBLE);
640 if (signalled() || kthread_should_stop()) {
641 set_current_state(TASK_RUNNING);
642 return -EINTR;
644 schedule_timeout(msecs_to_jiffies(500));
646 rqstp->rq_pages[i] = p;
648 rqstp->rq_page_end = &rqstp->rq_pages[i];
649 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
651 /* Make arg->head point to first page and arg->pages point to rest */
652 arg = &rqstp->rq_arg;
653 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
654 arg->head[0].iov_len = PAGE_SIZE;
655 arg->pages = rqstp->rq_pages + 1;
656 arg->page_base = 0;
657 /* save at least one page for response */
658 arg->page_len = (pages-2)*PAGE_SIZE;
659 arg->len = (pages-1)*PAGE_SIZE;
660 arg->tail[0].iov_len = 0;
661 return 0;
664 static bool
665 rqst_should_sleep(struct svc_rqst *rqstp)
667 struct svc_pool *pool = rqstp->rq_pool;
669 /* did someone call svc_wake_up? */
670 if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
671 return false;
673 /* was a socket queued? */
674 if (!list_empty(&pool->sp_sockets))
675 return false;
677 /* are we shutting down? */
678 if (signalled() || kthread_should_stop())
679 return false;
681 /* are we freezing? */
682 if (freezing(current))
683 return false;
685 return true;
688 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
690 struct svc_pool *pool = rqstp->rq_pool;
691 long time_left = 0;
693 /* rq_xprt should be clear on entry */
694 WARN_ON_ONCE(rqstp->rq_xprt);
696 rqstp->rq_xprt = svc_xprt_dequeue(pool);
697 if (rqstp->rq_xprt)
698 goto out_found;
701 * We have to be able to interrupt this wait
702 * to bring down the daemons ...
704 set_current_state(TASK_INTERRUPTIBLE);
705 smp_mb__before_atomic();
706 clear_bit(SP_CONGESTED, &pool->sp_flags);
707 clear_bit(RQ_BUSY, &rqstp->rq_flags);
708 smp_mb__after_atomic();
710 if (likely(rqst_should_sleep(rqstp)))
711 time_left = schedule_timeout(timeout);
712 else
713 __set_current_state(TASK_RUNNING);
715 try_to_freeze();
717 set_bit(RQ_BUSY, &rqstp->rq_flags);
718 smp_mb__after_atomic();
719 rqstp->rq_xprt = svc_xprt_dequeue(pool);
720 if (rqstp->rq_xprt)
721 goto out_found;
723 if (!time_left)
724 atomic_long_inc(&pool->sp_stats.threads_timedout);
726 if (signalled() || kthread_should_stop())
727 return ERR_PTR(-EINTR);
728 return ERR_PTR(-EAGAIN);
729 out_found:
730 /* Normally we will wait up to 5 seconds for any required
731 * cache information to be provided.
733 if (!test_bit(SP_CONGESTED, &pool->sp_flags))
734 rqstp->rq_chandle.thread_wait = 5*HZ;
735 else
736 rqstp->rq_chandle.thread_wait = 1*HZ;
737 return rqstp->rq_xprt;
740 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
742 spin_lock_bh(&serv->sv_lock);
743 set_bit(XPT_TEMP, &newxpt->xpt_flags);
744 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
745 serv->sv_tmpcnt++;
746 if (serv->sv_temptimer.function == NULL) {
747 /* setup timer to age temp transports */
748 serv->sv_temptimer.function = svc_age_temp_xprts;
749 mod_timer(&serv->sv_temptimer,
750 jiffies + svc_conn_age_period * HZ);
752 spin_unlock_bh(&serv->sv_lock);
753 svc_xprt_received(newxpt);
756 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
758 struct svc_serv *serv = rqstp->rq_server;
759 int len = 0;
761 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
762 dprintk("svc_recv: found XPT_CLOSE\n");
763 if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
764 xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
765 svc_delete_xprt(xprt);
766 /* Leave XPT_BUSY set on the dead xprt: */
767 goto out;
769 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
770 struct svc_xprt *newxpt;
772 * We know this module_get will succeed because the
773 * listener holds a reference too
775 __module_get(xprt->xpt_class->xcl_owner);
776 svc_check_conn_limits(xprt->xpt_server);
777 newxpt = xprt->xpt_ops->xpo_accept(xprt);
778 if (newxpt)
779 svc_add_new_temp_xprt(serv, newxpt);
780 else
781 module_put(xprt->xpt_class->xcl_owner);
782 } else if (svc_xprt_reserve_slot(rqstp, xprt)) {
783 /* XPT_DATA|XPT_DEFERRED case: */
784 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
785 rqstp, rqstp->rq_pool->sp_id, xprt,
786 kref_read(&xprt->xpt_ref));
787 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
788 if (rqstp->rq_deferred)
789 len = svc_deferred_recv(rqstp);
790 else
791 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
792 dprintk("svc: got len=%d\n", len);
793 rqstp->rq_reserved = serv->sv_max_mesg;
794 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
796 /* clear XPT_BUSY: */
797 svc_xprt_received(xprt);
798 out:
799 trace_svc_handle_xprt(xprt, len);
800 return len;
804 * Receive the next request on any transport. This code is carefully
805 * organised not to touch any cachelines in the shared svc_serv
806 * structure, only cachelines in the local svc_pool.
808 int svc_recv(struct svc_rqst *rqstp, long timeout)
810 struct svc_xprt *xprt = NULL;
811 struct svc_serv *serv = rqstp->rq_server;
812 int len, err;
814 dprintk("svc: server %p waiting for data (to = %ld)\n",
815 rqstp, timeout);
817 if (rqstp->rq_xprt)
818 printk(KERN_ERR
819 "svc_recv: service %p, transport not NULL!\n",
820 rqstp);
822 err = svc_alloc_arg(rqstp);
823 if (err)
824 goto out;
826 try_to_freeze();
827 cond_resched();
828 err = -EINTR;
829 if (signalled() || kthread_should_stop())
830 goto out;
832 xprt = svc_get_next_xprt(rqstp, timeout);
833 if (IS_ERR(xprt)) {
834 err = PTR_ERR(xprt);
835 goto out;
838 len = svc_handle_xprt(rqstp, xprt);
840 /* No data, incomplete (TCP) read, or accept() */
841 err = -EAGAIN;
842 if (len <= 0)
843 goto out_release;
845 clear_bit(XPT_OLD, &xprt->xpt_flags);
847 if (xprt->xpt_ops->xpo_secure_port(rqstp))
848 set_bit(RQ_SECURE, &rqstp->rq_flags);
849 else
850 clear_bit(RQ_SECURE, &rqstp->rq_flags);
851 rqstp->rq_chandle.defer = svc_defer;
852 rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
854 if (serv->sv_stats)
855 serv->sv_stats->netcnt++;
856 trace_svc_recv(rqstp, len);
857 return len;
858 out_release:
859 rqstp->rq_res.len = 0;
860 svc_xprt_release(rqstp);
861 out:
862 trace_svc_recv(rqstp, err);
863 return err;
865 EXPORT_SYMBOL_GPL(svc_recv);
868 * Drop request
870 void svc_drop(struct svc_rqst *rqstp)
872 trace_svc_drop(rqstp);
873 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
874 svc_xprt_release(rqstp);
876 EXPORT_SYMBOL_GPL(svc_drop);
879 * Return reply to client.
881 int svc_send(struct svc_rqst *rqstp)
883 struct svc_xprt *xprt;
884 int len = -EFAULT;
885 struct xdr_buf *xb;
887 xprt = rqstp->rq_xprt;
888 if (!xprt)
889 goto out;
891 /* release the receive skb before sending the reply */
892 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
894 /* calculate over-all length */
895 xb = &rqstp->rq_res;
896 xb->len = xb->head[0].iov_len +
897 xb->page_len +
898 xb->tail[0].iov_len;
900 /* Grab mutex to serialize outgoing data. */
901 mutex_lock(&xprt->xpt_mutex);
902 if (test_bit(XPT_DEAD, &xprt->xpt_flags)
903 || test_bit(XPT_CLOSE, &xprt->xpt_flags))
904 len = -ENOTCONN;
905 else
906 len = xprt->xpt_ops->xpo_sendto(rqstp);
907 mutex_unlock(&xprt->xpt_mutex);
908 rpc_wake_up(&xprt->xpt_bc_pending);
909 svc_xprt_release(rqstp);
911 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
912 len = 0;
913 out:
914 trace_svc_send(rqstp, len);
915 return len;
919 * Timer function to close old temporary transports, using
920 * a mark-and-sweep algorithm.
922 static void svc_age_temp_xprts(struct timer_list *t)
924 struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
925 struct svc_xprt *xprt;
926 struct list_head *le, *next;
928 dprintk("svc_age_temp_xprts\n");
930 if (!spin_trylock_bh(&serv->sv_lock)) {
931 /* busy, try again 1 sec later */
932 dprintk("svc_age_temp_xprts: busy\n");
933 mod_timer(&serv->sv_temptimer, jiffies + HZ);
934 return;
937 list_for_each_safe(le, next, &serv->sv_tempsocks) {
938 xprt = list_entry(le, struct svc_xprt, xpt_list);
940 /* First time through, just mark it OLD. Second time
941 * through, close it. */
942 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
943 continue;
944 if (kref_read(&xprt->xpt_ref) > 1 ||
945 test_bit(XPT_BUSY, &xprt->xpt_flags))
946 continue;
947 list_del_init(le);
948 set_bit(XPT_CLOSE, &xprt->xpt_flags);
949 dprintk("queuing xprt %p for closing\n", xprt);
951 /* a thread will dequeue and close it soon */
952 svc_xprt_enqueue(xprt);
954 spin_unlock_bh(&serv->sv_lock);
956 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
959 /* Close temporary transports whose xpt_local matches server_addr immediately
960 * instead of waiting for them to be picked up by the timer.
962 * This is meant to be called from a notifier_block that runs when an ip
963 * address is deleted.
965 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
967 struct svc_xprt *xprt;
968 struct list_head *le, *next;
969 LIST_HEAD(to_be_closed);
971 spin_lock_bh(&serv->sv_lock);
972 list_for_each_safe(le, next, &serv->sv_tempsocks) {
973 xprt = list_entry(le, struct svc_xprt, xpt_list);
974 if (rpc_cmp_addr(server_addr, (struct sockaddr *)
975 &xprt->xpt_local)) {
976 dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
977 list_move(le, &to_be_closed);
980 spin_unlock_bh(&serv->sv_lock);
982 while (!list_empty(&to_be_closed)) {
983 le = to_be_closed.next;
984 list_del_init(le);
985 xprt = list_entry(le, struct svc_xprt, xpt_list);
986 set_bit(XPT_CLOSE, &xprt->xpt_flags);
987 set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
988 dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
989 xprt);
990 svc_xprt_enqueue(xprt);
993 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
995 static void call_xpt_users(struct svc_xprt *xprt)
997 struct svc_xpt_user *u;
999 spin_lock(&xprt->xpt_lock);
1000 while (!list_empty(&xprt->xpt_users)) {
1001 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1002 list_del(&u->list);
1003 u->callback(u);
1005 spin_unlock(&xprt->xpt_lock);
1009 * Remove a dead transport
1011 static void svc_delete_xprt(struct svc_xprt *xprt)
1013 struct svc_serv *serv = xprt->xpt_server;
1014 struct svc_deferred_req *dr;
1016 /* Only do this once */
1017 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1018 BUG();
1020 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1021 xprt->xpt_ops->xpo_detach(xprt);
1023 spin_lock_bh(&serv->sv_lock);
1024 list_del_init(&xprt->xpt_list);
1025 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1026 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1027 serv->sv_tmpcnt--;
1028 spin_unlock_bh(&serv->sv_lock);
1030 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1031 kfree(dr);
1033 call_xpt_users(xprt);
1034 svc_xprt_put(xprt);
1037 void svc_close_xprt(struct svc_xprt *xprt)
1039 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1040 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1041 /* someone else will have to effect the close */
1042 return;
1044 * We expect svc_close_xprt() to work even when no threads are
1045 * running (e.g., while configuring the server before starting
1046 * any threads), so if the transport isn't busy, we delete
1047 * it ourself:
1049 svc_delete_xprt(xprt);
1051 EXPORT_SYMBOL_GPL(svc_close_xprt);
1053 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1055 struct svc_xprt *xprt;
1056 int ret = 0;
1058 spin_lock(&serv->sv_lock);
1059 list_for_each_entry(xprt, xprt_list, xpt_list) {
1060 if (xprt->xpt_net != net)
1061 continue;
1062 ret++;
1063 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1064 svc_xprt_enqueue(xprt);
1066 spin_unlock(&serv->sv_lock);
1067 return ret;
1070 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1072 struct svc_pool *pool;
1073 struct svc_xprt *xprt;
1074 struct svc_xprt *tmp;
1075 int i;
1077 for (i = 0; i < serv->sv_nrpools; i++) {
1078 pool = &serv->sv_pools[i];
1080 spin_lock_bh(&pool->sp_lock);
1081 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1082 if (xprt->xpt_net != net)
1083 continue;
1084 list_del_init(&xprt->xpt_ready);
1085 spin_unlock_bh(&pool->sp_lock);
1086 return xprt;
1088 spin_unlock_bh(&pool->sp_lock);
1090 return NULL;
1093 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1095 struct svc_xprt *xprt;
1097 while ((xprt = svc_dequeue_net(serv, net))) {
1098 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1099 svc_delete_xprt(xprt);
1104 * Server threads may still be running (especially in the case where the
1105 * service is still running in other network namespaces).
1107 * So we shut down sockets the same way we would on a running server, by
1108 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1109 * the close. In the case there are no such other threads,
1110 * threads running, svc_clean_up_xprts() does a simple version of a
1111 * server's main event loop, and in the case where there are other
1112 * threads, we may need to wait a little while and then check again to
1113 * see if they're done.
1115 void svc_close_net(struct svc_serv *serv, struct net *net)
1117 int delay = 0;
1119 while (svc_close_list(serv, &serv->sv_permsocks, net) +
1120 svc_close_list(serv, &serv->sv_tempsocks, net)) {
1122 svc_clean_up_xprts(serv, net);
1123 msleep(delay++);
1128 * Handle defer and revisit of requests
1131 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1133 struct svc_deferred_req *dr =
1134 container_of(dreq, struct svc_deferred_req, handle);
1135 struct svc_xprt *xprt = dr->xprt;
1137 spin_lock(&xprt->xpt_lock);
1138 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1139 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1140 spin_unlock(&xprt->xpt_lock);
1141 dprintk("revisit canceled\n");
1142 svc_xprt_put(xprt);
1143 trace_svc_drop_deferred(dr);
1144 kfree(dr);
1145 return;
1147 dprintk("revisit queued\n");
1148 dr->xprt = NULL;
1149 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1150 spin_unlock(&xprt->xpt_lock);
1151 svc_xprt_enqueue(xprt);
1152 svc_xprt_put(xprt);
1156 * Save the request off for later processing. The request buffer looks
1157 * like this:
1159 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1161 * This code can only handle requests that consist of an xprt-header
1162 * and rpc-header.
1164 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1166 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1167 struct svc_deferred_req *dr;
1169 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1170 return NULL; /* if more than a page, give up FIXME */
1171 if (rqstp->rq_deferred) {
1172 dr = rqstp->rq_deferred;
1173 rqstp->rq_deferred = NULL;
1174 } else {
1175 size_t skip;
1176 size_t size;
1177 /* FIXME maybe discard if size too large */
1178 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1179 dr = kmalloc(size, GFP_KERNEL);
1180 if (dr == NULL)
1181 return NULL;
1183 dr->handle.owner = rqstp->rq_server;
1184 dr->prot = rqstp->rq_prot;
1185 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1186 dr->addrlen = rqstp->rq_addrlen;
1187 dr->daddr = rqstp->rq_daddr;
1188 dr->argslen = rqstp->rq_arg.len >> 2;
1189 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1191 /* back up head to the start of the buffer and copy */
1192 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1193 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1194 dr->argslen << 2);
1196 svc_xprt_get(rqstp->rq_xprt);
1197 dr->xprt = rqstp->rq_xprt;
1198 set_bit(RQ_DROPME, &rqstp->rq_flags);
1200 dr->handle.revisit = svc_revisit;
1201 trace_svc_defer(rqstp);
1202 return &dr->handle;
1206 * recv data from a deferred request into an active one
1208 static int svc_deferred_recv(struct svc_rqst *rqstp)
1210 struct svc_deferred_req *dr = rqstp->rq_deferred;
1212 /* setup iov_base past transport header */
1213 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1214 /* The iov_len does not include the transport header bytes */
1215 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1216 rqstp->rq_arg.page_len = 0;
1217 /* The rq_arg.len includes the transport header bytes */
1218 rqstp->rq_arg.len = dr->argslen<<2;
1219 rqstp->rq_prot = dr->prot;
1220 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1221 rqstp->rq_addrlen = dr->addrlen;
1222 /* Save off transport header len in case we get deferred again */
1223 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1224 rqstp->rq_daddr = dr->daddr;
1225 rqstp->rq_respages = rqstp->rq_pages;
1226 return (dr->argslen<<2) - dr->xprt_hlen;
1230 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1232 struct svc_deferred_req *dr = NULL;
1234 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1235 return NULL;
1236 spin_lock(&xprt->xpt_lock);
1237 if (!list_empty(&xprt->xpt_deferred)) {
1238 dr = list_entry(xprt->xpt_deferred.next,
1239 struct svc_deferred_req,
1240 handle.recent);
1241 list_del_init(&dr->handle.recent);
1242 trace_svc_revisit_deferred(dr);
1243 } else
1244 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1245 spin_unlock(&xprt->xpt_lock);
1246 return dr;
1250 * svc_find_xprt - find an RPC transport instance
1251 * @serv: pointer to svc_serv to search
1252 * @xcl_name: C string containing transport's class name
1253 * @net: owner net pointer
1254 * @af: Address family of transport's local address
1255 * @port: transport's IP port number
1257 * Return the transport instance pointer for the endpoint accepting
1258 * connections/peer traffic from the specified transport class,
1259 * address family and port.
1261 * Specifying 0 for the address family or port is effectively a
1262 * wild-card, and will result in matching the first transport in the
1263 * service's list that has a matching class name.
1265 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1266 struct net *net, const sa_family_t af,
1267 const unsigned short port)
1269 struct svc_xprt *xprt;
1270 struct svc_xprt *found = NULL;
1272 /* Sanity check the args */
1273 if (serv == NULL || xcl_name == NULL)
1274 return found;
1276 spin_lock_bh(&serv->sv_lock);
1277 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1278 if (xprt->xpt_net != net)
1279 continue;
1280 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1281 continue;
1282 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1283 continue;
1284 if (port != 0 && port != svc_xprt_local_port(xprt))
1285 continue;
1286 found = xprt;
1287 svc_xprt_get(xprt);
1288 break;
1290 spin_unlock_bh(&serv->sv_lock);
1291 return found;
1293 EXPORT_SYMBOL_GPL(svc_find_xprt);
1295 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1296 char *pos, int remaining)
1298 int len;
1300 len = snprintf(pos, remaining, "%s %u\n",
1301 xprt->xpt_class->xcl_name,
1302 svc_xprt_local_port(xprt));
1303 if (len >= remaining)
1304 return -ENAMETOOLONG;
1305 return len;
1309 * svc_xprt_names - format a buffer with a list of transport names
1310 * @serv: pointer to an RPC service
1311 * @buf: pointer to a buffer to be filled in
1312 * @buflen: length of buffer to be filled in
1314 * Fills in @buf with a string containing a list of transport names,
1315 * each name terminated with '\n'.
1317 * Returns positive length of the filled-in string on success; otherwise
1318 * a negative errno value is returned if an error occurs.
1320 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1322 struct svc_xprt *xprt;
1323 int len, totlen;
1324 char *pos;
1326 /* Sanity check args */
1327 if (!serv)
1328 return 0;
1330 spin_lock_bh(&serv->sv_lock);
1332 pos = buf;
1333 totlen = 0;
1334 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1335 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1336 if (len < 0) {
1337 *buf = '\0';
1338 totlen = len;
1340 if (len <= 0)
1341 break;
1343 pos += len;
1344 totlen += len;
1347 spin_unlock_bh(&serv->sv_lock);
1348 return totlen;
1350 EXPORT_SYMBOL_GPL(svc_xprt_names);
1353 /*----------------------------------------------------------------------------*/
1355 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1357 unsigned int pidx = (unsigned int)*pos;
1358 struct svc_serv *serv = m->private;
1360 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1362 if (!pidx)
1363 return SEQ_START_TOKEN;
1364 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1367 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1369 struct svc_pool *pool = p;
1370 struct svc_serv *serv = m->private;
1372 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1374 if (p == SEQ_START_TOKEN) {
1375 pool = &serv->sv_pools[0];
1376 } else {
1377 unsigned int pidx = (pool - &serv->sv_pools[0]);
1378 if (pidx < serv->sv_nrpools-1)
1379 pool = &serv->sv_pools[pidx+1];
1380 else
1381 pool = NULL;
1383 ++*pos;
1384 return pool;
1387 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1391 static int svc_pool_stats_show(struct seq_file *m, void *p)
1393 struct svc_pool *pool = p;
1395 if (p == SEQ_START_TOKEN) {
1396 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1397 return 0;
1400 seq_printf(m, "%u %lu %lu %lu %lu\n",
1401 pool->sp_id,
1402 (unsigned long)atomic_long_read(&pool->sp_stats.packets),
1403 pool->sp_stats.sockets_queued,
1404 (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1405 (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1407 return 0;
1410 static const struct seq_operations svc_pool_stats_seq_ops = {
1411 .start = svc_pool_stats_start,
1412 .next = svc_pool_stats_next,
1413 .stop = svc_pool_stats_stop,
1414 .show = svc_pool_stats_show,
1417 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1419 int err;
1421 err = seq_open(file, &svc_pool_stats_seq_ops);
1422 if (!err)
1423 ((struct seq_file *) file->private_data)->private = serv;
1424 return err;
1426 EXPORT_SYMBOL(svc_pool_stats_open);
1428 /*----------------------------------------------------------------------------*/