Linux 4.16-rc1
[cris-mirror.git] / tools / perf / util / evsel.c
blobff359c9ece2e76c3d15fb8d2acf36e4c3bf8ade6
1 /*
2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
4 * Parts came from builtin-{top,stat,record}.c, see those files for further
5 * copyright notes.
7 * Released under the GPL v2. (and only v2, not any later version)
8 */
10 #include <byteswap.h>
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <linux/bitops.h>
14 #include <api/fs/fs.h>
15 #include <api/fs/tracing_path.h>
16 #include <traceevent/event-parse.h>
17 #include <linux/hw_breakpoint.h>
18 #include <linux/perf_event.h>
19 #include <linux/compiler.h>
20 #include <linux/err.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include "asm/bug.h"
26 #include "callchain.h"
27 #include "cgroup.h"
28 #include "event.h"
29 #include "evsel.h"
30 #include "evlist.h"
31 #include "util.h"
32 #include "cpumap.h"
33 #include "thread_map.h"
34 #include "target.h"
35 #include "perf_regs.h"
36 #include "debug.h"
37 #include "trace-event.h"
38 #include "stat.h"
39 #include "memswap.h"
40 #include "util/parse-branch-options.h"
42 #include "sane_ctype.h"
44 static struct {
45 bool sample_id_all;
46 bool exclude_guest;
47 bool mmap2;
48 bool cloexec;
49 bool clockid;
50 bool clockid_wrong;
51 bool lbr_flags;
52 bool write_backward;
53 bool group_read;
54 } perf_missing_features;
56 static clockid_t clockid;
58 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
60 return 0;
63 void __weak test_attr__ready(void) { }
65 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
69 static struct {
70 size_t size;
71 int (*init)(struct perf_evsel *evsel);
72 void (*fini)(struct perf_evsel *evsel);
73 } perf_evsel__object = {
74 .size = sizeof(struct perf_evsel),
75 .init = perf_evsel__no_extra_init,
76 .fini = perf_evsel__no_extra_fini,
79 int perf_evsel__object_config(size_t object_size,
80 int (*init)(struct perf_evsel *evsel),
81 void (*fini)(struct perf_evsel *evsel))
84 if (object_size == 0)
85 goto set_methods;
87 if (perf_evsel__object.size > object_size)
88 return -EINVAL;
90 perf_evsel__object.size = object_size;
92 set_methods:
93 if (init != NULL)
94 perf_evsel__object.init = init;
96 if (fini != NULL)
97 perf_evsel__object.fini = fini;
99 return 0;
102 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
104 int __perf_evsel__sample_size(u64 sample_type)
106 u64 mask = sample_type & PERF_SAMPLE_MASK;
107 int size = 0;
108 int i;
110 for (i = 0; i < 64; i++) {
111 if (mask & (1ULL << i))
112 size++;
115 size *= sizeof(u64);
117 return size;
121 * __perf_evsel__calc_id_pos - calculate id_pos.
122 * @sample_type: sample type
124 * This function returns the position of the event id (PERF_SAMPLE_ID or
125 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
126 * sample_event.
128 static int __perf_evsel__calc_id_pos(u64 sample_type)
130 int idx = 0;
132 if (sample_type & PERF_SAMPLE_IDENTIFIER)
133 return 0;
135 if (!(sample_type & PERF_SAMPLE_ID))
136 return -1;
138 if (sample_type & PERF_SAMPLE_IP)
139 idx += 1;
141 if (sample_type & PERF_SAMPLE_TID)
142 idx += 1;
144 if (sample_type & PERF_SAMPLE_TIME)
145 idx += 1;
147 if (sample_type & PERF_SAMPLE_ADDR)
148 idx += 1;
150 return idx;
154 * __perf_evsel__calc_is_pos - calculate is_pos.
155 * @sample_type: sample type
157 * This function returns the position (counting backwards) of the event id
158 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
159 * sample_id_all is used there is an id sample appended to non-sample events.
161 static int __perf_evsel__calc_is_pos(u64 sample_type)
163 int idx = 1;
165 if (sample_type & PERF_SAMPLE_IDENTIFIER)
166 return 1;
168 if (!(sample_type & PERF_SAMPLE_ID))
169 return -1;
171 if (sample_type & PERF_SAMPLE_CPU)
172 idx += 1;
174 if (sample_type & PERF_SAMPLE_STREAM_ID)
175 idx += 1;
177 return idx;
180 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
182 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
183 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
186 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
187 enum perf_event_sample_format bit)
189 if (!(evsel->attr.sample_type & bit)) {
190 evsel->attr.sample_type |= bit;
191 evsel->sample_size += sizeof(u64);
192 perf_evsel__calc_id_pos(evsel);
196 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
197 enum perf_event_sample_format bit)
199 if (evsel->attr.sample_type & bit) {
200 evsel->attr.sample_type &= ~bit;
201 evsel->sample_size -= sizeof(u64);
202 perf_evsel__calc_id_pos(evsel);
206 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
207 bool can_sample_identifier)
209 if (can_sample_identifier) {
210 perf_evsel__reset_sample_bit(evsel, ID);
211 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
212 } else {
213 perf_evsel__set_sample_bit(evsel, ID);
215 evsel->attr.read_format |= PERF_FORMAT_ID;
219 * perf_evsel__is_function_event - Return whether given evsel is a function
220 * trace event
222 * @evsel - evsel selector to be tested
224 * Return %true if event is function trace event
226 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
228 #define FUNCTION_EVENT "ftrace:function"
230 return evsel->name &&
231 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
233 #undef FUNCTION_EVENT
236 void perf_evsel__init(struct perf_evsel *evsel,
237 struct perf_event_attr *attr, int idx)
239 evsel->idx = idx;
240 evsel->tracking = !idx;
241 evsel->attr = *attr;
242 evsel->leader = evsel;
243 evsel->unit = "";
244 evsel->scale = 1.0;
245 evsel->evlist = NULL;
246 evsel->bpf_fd = -1;
247 INIT_LIST_HEAD(&evsel->node);
248 INIT_LIST_HEAD(&evsel->config_terms);
249 perf_evsel__object.init(evsel);
250 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
251 perf_evsel__calc_id_pos(evsel);
252 evsel->cmdline_group_boundary = false;
253 evsel->metric_expr = NULL;
254 evsel->metric_name = NULL;
255 evsel->metric_events = NULL;
256 evsel->collect_stat = false;
259 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
261 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
263 if (evsel != NULL)
264 perf_evsel__init(evsel, attr, idx);
266 if (perf_evsel__is_bpf_output(evsel)) {
267 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
268 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
269 evsel->attr.sample_period = 1;
272 return evsel;
275 static bool perf_event_can_profile_kernel(void)
277 return geteuid() == 0 || perf_event_paranoid() == -1;
280 struct perf_evsel *perf_evsel__new_cycles(bool precise)
282 struct perf_event_attr attr = {
283 .type = PERF_TYPE_HARDWARE,
284 .config = PERF_COUNT_HW_CPU_CYCLES,
285 .exclude_kernel = !perf_event_can_profile_kernel(),
287 struct perf_evsel *evsel;
289 event_attr_init(&attr);
291 if (!precise)
292 goto new_event;
294 * Unnamed union member, not supported as struct member named
295 * initializer in older compilers such as gcc 4.4.7
297 * Just for probing the precise_ip:
299 attr.sample_period = 1;
301 perf_event_attr__set_max_precise_ip(&attr);
303 * Now let the usual logic to set up the perf_event_attr defaults
304 * to kick in when we return and before perf_evsel__open() is called.
306 attr.sample_period = 0;
307 new_event:
308 evsel = perf_evsel__new(&attr);
309 if (evsel == NULL)
310 goto out;
312 /* use asprintf() because free(evsel) assumes name is allocated */
313 if (asprintf(&evsel->name, "cycles%s%s%.*s",
314 (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
315 attr.exclude_kernel ? "u" : "",
316 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
317 goto error_free;
318 out:
319 return evsel;
320 error_free:
321 perf_evsel__delete(evsel);
322 evsel = NULL;
323 goto out;
327 * Returns pointer with encoded error via <linux/err.h> interface.
329 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
331 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
332 int err = -ENOMEM;
334 if (evsel == NULL) {
335 goto out_err;
336 } else {
337 struct perf_event_attr attr = {
338 .type = PERF_TYPE_TRACEPOINT,
339 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
340 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
343 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
344 goto out_free;
346 evsel->tp_format = trace_event__tp_format(sys, name);
347 if (IS_ERR(evsel->tp_format)) {
348 err = PTR_ERR(evsel->tp_format);
349 goto out_free;
352 event_attr_init(&attr);
353 attr.config = evsel->tp_format->id;
354 attr.sample_period = 1;
355 perf_evsel__init(evsel, &attr, idx);
358 return evsel;
360 out_free:
361 zfree(&evsel->name);
362 free(evsel);
363 out_err:
364 return ERR_PTR(err);
367 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
368 "cycles",
369 "instructions",
370 "cache-references",
371 "cache-misses",
372 "branches",
373 "branch-misses",
374 "bus-cycles",
375 "stalled-cycles-frontend",
376 "stalled-cycles-backend",
377 "ref-cycles",
380 static const char *__perf_evsel__hw_name(u64 config)
382 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
383 return perf_evsel__hw_names[config];
385 return "unknown-hardware";
388 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
390 int colon = 0, r = 0;
391 struct perf_event_attr *attr = &evsel->attr;
392 bool exclude_guest_default = false;
394 #define MOD_PRINT(context, mod) do { \
395 if (!attr->exclude_##context) { \
396 if (!colon) colon = ++r; \
397 r += scnprintf(bf + r, size - r, "%c", mod); \
398 } } while(0)
400 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
401 MOD_PRINT(kernel, 'k');
402 MOD_PRINT(user, 'u');
403 MOD_PRINT(hv, 'h');
404 exclude_guest_default = true;
407 if (attr->precise_ip) {
408 if (!colon)
409 colon = ++r;
410 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
411 exclude_guest_default = true;
414 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
415 MOD_PRINT(host, 'H');
416 MOD_PRINT(guest, 'G');
418 #undef MOD_PRINT
419 if (colon)
420 bf[colon - 1] = ':';
421 return r;
424 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
426 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
427 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
430 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
431 "cpu-clock",
432 "task-clock",
433 "page-faults",
434 "context-switches",
435 "cpu-migrations",
436 "minor-faults",
437 "major-faults",
438 "alignment-faults",
439 "emulation-faults",
440 "dummy",
443 static const char *__perf_evsel__sw_name(u64 config)
445 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
446 return perf_evsel__sw_names[config];
447 return "unknown-software";
450 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
452 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
453 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
456 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
458 int r;
460 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
462 if (type & HW_BREAKPOINT_R)
463 r += scnprintf(bf + r, size - r, "r");
465 if (type & HW_BREAKPOINT_W)
466 r += scnprintf(bf + r, size - r, "w");
468 if (type & HW_BREAKPOINT_X)
469 r += scnprintf(bf + r, size - r, "x");
471 return r;
474 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
476 struct perf_event_attr *attr = &evsel->attr;
477 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
478 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
481 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
482 [PERF_EVSEL__MAX_ALIASES] = {
483 { "L1-dcache", "l1-d", "l1d", "L1-data", },
484 { "L1-icache", "l1-i", "l1i", "L1-instruction", },
485 { "LLC", "L2", },
486 { "dTLB", "d-tlb", "Data-TLB", },
487 { "iTLB", "i-tlb", "Instruction-TLB", },
488 { "branch", "branches", "bpu", "btb", "bpc", },
489 { "node", },
492 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
493 [PERF_EVSEL__MAX_ALIASES] = {
494 { "load", "loads", "read", },
495 { "store", "stores", "write", },
496 { "prefetch", "prefetches", "speculative-read", "speculative-load", },
499 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
500 [PERF_EVSEL__MAX_ALIASES] = {
501 { "refs", "Reference", "ops", "access", },
502 { "misses", "miss", },
505 #define C(x) PERF_COUNT_HW_CACHE_##x
506 #define CACHE_READ (1 << C(OP_READ))
507 #define CACHE_WRITE (1 << C(OP_WRITE))
508 #define CACHE_PREFETCH (1 << C(OP_PREFETCH))
509 #define COP(x) (1 << x)
512 * cache operartion stat
513 * L1I : Read and prefetch only
514 * ITLB and BPU : Read-only
516 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
517 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
518 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH),
519 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
520 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
521 [C(ITLB)] = (CACHE_READ),
522 [C(BPU)] = (CACHE_READ),
523 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
526 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
528 if (perf_evsel__hw_cache_stat[type] & COP(op))
529 return true; /* valid */
530 else
531 return false; /* invalid */
534 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
535 char *bf, size_t size)
537 if (result) {
538 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
539 perf_evsel__hw_cache_op[op][0],
540 perf_evsel__hw_cache_result[result][0]);
543 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
544 perf_evsel__hw_cache_op[op][1]);
547 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
549 u8 op, result, type = (config >> 0) & 0xff;
550 const char *err = "unknown-ext-hardware-cache-type";
552 if (type >= PERF_COUNT_HW_CACHE_MAX)
553 goto out_err;
555 op = (config >> 8) & 0xff;
556 err = "unknown-ext-hardware-cache-op";
557 if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
558 goto out_err;
560 result = (config >> 16) & 0xff;
561 err = "unknown-ext-hardware-cache-result";
562 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
563 goto out_err;
565 err = "invalid-cache";
566 if (!perf_evsel__is_cache_op_valid(type, op))
567 goto out_err;
569 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
570 out_err:
571 return scnprintf(bf, size, "%s", err);
574 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
576 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
577 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
580 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
582 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
583 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
586 const char *perf_evsel__name(struct perf_evsel *evsel)
588 char bf[128];
590 if (evsel->name)
591 return evsel->name;
593 switch (evsel->attr.type) {
594 case PERF_TYPE_RAW:
595 perf_evsel__raw_name(evsel, bf, sizeof(bf));
596 break;
598 case PERF_TYPE_HARDWARE:
599 perf_evsel__hw_name(evsel, bf, sizeof(bf));
600 break;
602 case PERF_TYPE_HW_CACHE:
603 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
604 break;
606 case PERF_TYPE_SOFTWARE:
607 perf_evsel__sw_name(evsel, bf, sizeof(bf));
608 break;
610 case PERF_TYPE_TRACEPOINT:
611 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
612 break;
614 case PERF_TYPE_BREAKPOINT:
615 perf_evsel__bp_name(evsel, bf, sizeof(bf));
616 break;
618 default:
619 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
620 evsel->attr.type);
621 break;
624 evsel->name = strdup(bf);
626 return evsel->name ?: "unknown";
629 const char *perf_evsel__group_name(struct perf_evsel *evsel)
631 return evsel->group_name ?: "anon group";
634 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
636 int ret;
637 struct perf_evsel *pos;
638 const char *group_name = perf_evsel__group_name(evsel);
640 ret = scnprintf(buf, size, "%s", group_name);
642 ret += scnprintf(buf + ret, size - ret, " { %s",
643 perf_evsel__name(evsel));
645 for_each_group_member(pos, evsel)
646 ret += scnprintf(buf + ret, size - ret, ", %s",
647 perf_evsel__name(pos));
649 ret += scnprintf(buf + ret, size - ret, " }");
651 return ret;
654 static void __perf_evsel__config_callchain(struct perf_evsel *evsel,
655 struct record_opts *opts,
656 struct callchain_param *param)
658 bool function = perf_evsel__is_function_event(evsel);
659 struct perf_event_attr *attr = &evsel->attr;
661 perf_evsel__set_sample_bit(evsel, CALLCHAIN);
663 attr->sample_max_stack = param->max_stack;
665 if (param->record_mode == CALLCHAIN_LBR) {
666 if (!opts->branch_stack) {
667 if (attr->exclude_user) {
668 pr_warning("LBR callstack option is only available "
669 "to get user callchain information. "
670 "Falling back to framepointers.\n");
671 } else {
672 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
673 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
674 PERF_SAMPLE_BRANCH_CALL_STACK |
675 PERF_SAMPLE_BRANCH_NO_CYCLES |
676 PERF_SAMPLE_BRANCH_NO_FLAGS;
678 } else
679 pr_warning("Cannot use LBR callstack with branch stack. "
680 "Falling back to framepointers.\n");
683 if (param->record_mode == CALLCHAIN_DWARF) {
684 if (!function) {
685 perf_evsel__set_sample_bit(evsel, REGS_USER);
686 perf_evsel__set_sample_bit(evsel, STACK_USER);
687 attr->sample_regs_user |= PERF_REGS_MASK;
688 attr->sample_stack_user = param->dump_size;
689 attr->exclude_callchain_user = 1;
690 } else {
691 pr_info("Cannot use DWARF unwind for function trace event,"
692 " falling back to framepointers.\n");
696 if (function) {
697 pr_info("Disabling user space callchains for function trace event.\n");
698 attr->exclude_callchain_user = 1;
702 void perf_evsel__config_callchain(struct perf_evsel *evsel,
703 struct record_opts *opts,
704 struct callchain_param *param)
706 if (param->enabled)
707 return __perf_evsel__config_callchain(evsel, opts, param);
710 static void
711 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
712 struct callchain_param *param)
714 struct perf_event_attr *attr = &evsel->attr;
716 perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
717 if (param->record_mode == CALLCHAIN_LBR) {
718 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
719 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
720 PERF_SAMPLE_BRANCH_CALL_STACK);
722 if (param->record_mode == CALLCHAIN_DWARF) {
723 perf_evsel__reset_sample_bit(evsel, REGS_USER);
724 perf_evsel__reset_sample_bit(evsel, STACK_USER);
728 static void apply_config_terms(struct perf_evsel *evsel,
729 struct record_opts *opts, bool track)
731 struct perf_evsel_config_term *term;
732 struct list_head *config_terms = &evsel->config_terms;
733 struct perf_event_attr *attr = &evsel->attr;
734 /* callgraph default */
735 struct callchain_param param = {
736 .record_mode = callchain_param.record_mode,
738 u32 dump_size = 0;
739 int max_stack = 0;
740 const char *callgraph_buf = NULL;
742 list_for_each_entry(term, config_terms, list) {
743 switch (term->type) {
744 case PERF_EVSEL__CONFIG_TERM_PERIOD:
745 if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
746 attr->sample_period = term->val.period;
747 attr->freq = 0;
748 perf_evsel__reset_sample_bit(evsel, PERIOD);
750 break;
751 case PERF_EVSEL__CONFIG_TERM_FREQ:
752 if (!(term->weak && opts->user_freq != UINT_MAX)) {
753 attr->sample_freq = term->val.freq;
754 attr->freq = 1;
755 perf_evsel__set_sample_bit(evsel, PERIOD);
757 break;
758 case PERF_EVSEL__CONFIG_TERM_TIME:
759 if (term->val.time)
760 perf_evsel__set_sample_bit(evsel, TIME);
761 else
762 perf_evsel__reset_sample_bit(evsel, TIME);
763 break;
764 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
765 callgraph_buf = term->val.callgraph;
766 break;
767 case PERF_EVSEL__CONFIG_TERM_BRANCH:
768 if (term->val.branch && strcmp(term->val.branch, "no")) {
769 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
770 parse_branch_str(term->val.branch,
771 &attr->branch_sample_type);
772 } else
773 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
774 break;
775 case PERF_EVSEL__CONFIG_TERM_STACK_USER:
776 dump_size = term->val.stack_user;
777 break;
778 case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
779 max_stack = term->val.max_stack;
780 break;
781 case PERF_EVSEL__CONFIG_TERM_INHERIT:
783 * attr->inherit should has already been set by
784 * perf_evsel__config. If user explicitly set
785 * inherit using config terms, override global
786 * opt->no_inherit setting.
788 attr->inherit = term->val.inherit ? 1 : 0;
789 break;
790 case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
791 attr->write_backward = term->val.overwrite ? 1 : 0;
792 break;
793 case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
794 break;
795 default:
796 break;
800 /* User explicitly set per-event callgraph, clear the old setting and reset. */
801 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
802 bool sample_address = false;
804 if (max_stack) {
805 param.max_stack = max_stack;
806 if (callgraph_buf == NULL)
807 callgraph_buf = "fp";
810 /* parse callgraph parameters */
811 if (callgraph_buf != NULL) {
812 if (!strcmp(callgraph_buf, "no")) {
813 param.enabled = false;
814 param.record_mode = CALLCHAIN_NONE;
815 } else {
816 param.enabled = true;
817 if (parse_callchain_record(callgraph_buf, &param)) {
818 pr_err("per-event callgraph setting for %s failed. "
819 "Apply callgraph global setting for it\n",
820 evsel->name);
821 return;
823 if (param.record_mode == CALLCHAIN_DWARF)
824 sample_address = true;
827 if (dump_size > 0) {
828 dump_size = round_up(dump_size, sizeof(u64));
829 param.dump_size = dump_size;
832 /* If global callgraph set, clear it */
833 if (callchain_param.enabled)
834 perf_evsel__reset_callgraph(evsel, &callchain_param);
836 /* set perf-event callgraph */
837 if (param.enabled) {
838 if (sample_address) {
839 perf_evsel__set_sample_bit(evsel, ADDR);
840 perf_evsel__set_sample_bit(evsel, DATA_SRC);
841 evsel->attr.mmap_data = track;
843 perf_evsel__config_callchain(evsel, opts, &param);
849 * The enable_on_exec/disabled value strategy:
851 * 1) For any type of traced program:
852 * - all independent events and group leaders are disabled
853 * - all group members are enabled
855 * Group members are ruled by group leaders. They need to
856 * be enabled, because the group scheduling relies on that.
858 * 2) For traced programs executed by perf:
859 * - all independent events and group leaders have
860 * enable_on_exec set
861 * - we don't specifically enable or disable any event during
862 * the record command
864 * Independent events and group leaders are initially disabled
865 * and get enabled by exec. Group members are ruled by group
866 * leaders as stated in 1).
868 * 3) For traced programs attached by perf (pid/tid):
869 * - we specifically enable or disable all events during
870 * the record command
872 * When attaching events to already running traced we
873 * enable/disable events specifically, as there's no
874 * initial traced exec call.
876 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
877 struct callchain_param *callchain)
879 struct perf_evsel *leader = evsel->leader;
880 struct perf_event_attr *attr = &evsel->attr;
881 int track = evsel->tracking;
882 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
884 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
885 attr->inherit = !opts->no_inherit;
886 attr->write_backward = opts->overwrite ? 1 : 0;
888 perf_evsel__set_sample_bit(evsel, IP);
889 perf_evsel__set_sample_bit(evsel, TID);
891 if (evsel->sample_read) {
892 perf_evsel__set_sample_bit(evsel, READ);
895 * We need ID even in case of single event, because
896 * PERF_SAMPLE_READ process ID specific data.
898 perf_evsel__set_sample_id(evsel, false);
901 * Apply group format only if we belong to group
902 * with more than one members.
904 if (leader->nr_members > 1) {
905 attr->read_format |= PERF_FORMAT_GROUP;
906 attr->inherit = 0;
911 * We default some events to have a default interval. But keep
912 * it a weak assumption overridable by the user.
914 if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
915 opts->user_interval != ULLONG_MAX)) {
916 if (opts->freq) {
917 perf_evsel__set_sample_bit(evsel, PERIOD);
918 attr->freq = 1;
919 attr->sample_freq = opts->freq;
920 } else {
921 attr->sample_period = opts->default_interval;
926 * Disable sampling for all group members other
927 * than leader in case leader 'leads' the sampling.
929 if ((leader != evsel) && leader->sample_read) {
930 attr->sample_freq = 0;
931 attr->sample_period = 0;
934 if (opts->no_samples)
935 attr->sample_freq = 0;
937 if (opts->inherit_stat) {
938 evsel->attr.read_format |=
939 PERF_FORMAT_TOTAL_TIME_ENABLED |
940 PERF_FORMAT_TOTAL_TIME_RUNNING |
941 PERF_FORMAT_ID;
942 attr->inherit_stat = 1;
945 if (opts->sample_address) {
946 perf_evsel__set_sample_bit(evsel, ADDR);
947 attr->mmap_data = track;
951 * We don't allow user space callchains for function trace
952 * event, due to issues with page faults while tracing page
953 * fault handler and its overall trickiness nature.
955 if (perf_evsel__is_function_event(evsel))
956 evsel->attr.exclude_callchain_user = 1;
958 if (callchain && callchain->enabled && !evsel->no_aux_samples)
959 perf_evsel__config_callchain(evsel, opts, callchain);
961 if (opts->sample_intr_regs) {
962 attr->sample_regs_intr = opts->sample_intr_regs;
963 perf_evsel__set_sample_bit(evsel, REGS_INTR);
966 if (opts->sample_user_regs) {
967 attr->sample_regs_user |= opts->sample_user_regs;
968 perf_evsel__set_sample_bit(evsel, REGS_USER);
971 if (target__has_cpu(&opts->target) || opts->sample_cpu)
972 perf_evsel__set_sample_bit(evsel, CPU);
975 * When the user explicitly disabled time don't force it here.
977 if (opts->sample_time &&
978 (!perf_missing_features.sample_id_all &&
979 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
980 opts->sample_time_set)))
981 perf_evsel__set_sample_bit(evsel, TIME);
983 if (opts->raw_samples && !evsel->no_aux_samples) {
984 perf_evsel__set_sample_bit(evsel, TIME);
985 perf_evsel__set_sample_bit(evsel, RAW);
986 perf_evsel__set_sample_bit(evsel, CPU);
989 if (opts->sample_address)
990 perf_evsel__set_sample_bit(evsel, DATA_SRC);
992 if (opts->sample_phys_addr)
993 perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
995 if (opts->no_buffering) {
996 attr->watermark = 0;
997 attr->wakeup_events = 1;
999 if (opts->branch_stack && !evsel->no_aux_samples) {
1000 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
1001 attr->branch_sample_type = opts->branch_stack;
1004 if (opts->sample_weight)
1005 perf_evsel__set_sample_bit(evsel, WEIGHT);
1007 attr->task = track;
1008 attr->mmap = track;
1009 attr->mmap2 = track && !perf_missing_features.mmap2;
1010 attr->comm = track;
1012 if (opts->record_namespaces)
1013 attr->namespaces = track;
1015 if (opts->record_switch_events)
1016 attr->context_switch = track;
1018 if (opts->sample_transaction)
1019 perf_evsel__set_sample_bit(evsel, TRANSACTION);
1021 if (opts->running_time) {
1022 evsel->attr.read_format |=
1023 PERF_FORMAT_TOTAL_TIME_ENABLED |
1024 PERF_FORMAT_TOTAL_TIME_RUNNING;
1028 * XXX see the function comment above
1030 * Disabling only independent events or group leaders,
1031 * keeping group members enabled.
1033 if (perf_evsel__is_group_leader(evsel))
1034 attr->disabled = 1;
1037 * Setting enable_on_exec for independent events and
1038 * group leaders for traced executed by perf.
1040 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1041 !opts->initial_delay)
1042 attr->enable_on_exec = 1;
1044 if (evsel->immediate) {
1045 attr->disabled = 0;
1046 attr->enable_on_exec = 0;
1049 clockid = opts->clockid;
1050 if (opts->use_clockid) {
1051 attr->use_clockid = 1;
1052 attr->clockid = opts->clockid;
1055 if (evsel->precise_max)
1056 perf_event_attr__set_max_precise_ip(attr);
1058 if (opts->all_user) {
1059 attr->exclude_kernel = 1;
1060 attr->exclude_user = 0;
1063 if (opts->all_kernel) {
1064 attr->exclude_kernel = 0;
1065 attr->exclude_user = 1;
1069 * Apply event specific term settings,
1070 * it overloads any global configuration.
1072 apply_config_terms(evsel, opts, track);
1074 evsel->ignore_missing_thread = opts->ignore_missing_thread;
1076 /* The --period option takes the precedence. */
1077 if (opts->period_set) {
1078 if (opts->period)
1079 perf_evsel__set_sample_bit(evsel, PERIOD);
1080 else
1081 perf_evsel__reset_sample_bit(evsel, PERIOD);
1085 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1087 if (evsel->system_wide)
1088 nthreads = 1;
1090 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1092 if (evsel->fd) {
1093 int cpu, thread;
1094 for (cpu = 0; cpu < ncpus; cpu++) {
1095 for (thread = 0; thread < nthreads; thread++) {
1096 FD(evsel, cpu, thread) = -1;
1101 return evsel->fd != NULL ? 0 : -ENOMEM;
1104 static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1105 int ioc, void *arg)
1107 int cpu, thread;
1109 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1110 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1111 int fd = FD(evsel, cpu, thread),
1112 err = ioctl(fd, ioc, arg);
1114 if (err)
1115 return err;
1119 return 0;
1122 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
1124 return perf_evsel__run_ioctl(evsel,
1125 PERF_EVENT_IOC_SET_FILTER,
1126 (void *)filter);
1129 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1131 char *new_filter = strdup(filter);
1133 if (new_filter != NULL) {
1134 free(evsel->filter);
1135 evsel->filter = new_filter;
1136 return 0;
1139 return -1;
1142 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1143 const char *fmt, const char *filter)
1145 char *new_filter;
1147 if (evsel->filter == NULL)
1148 return perf_evsel__set_filter(evsel, filter);
1150 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1151 free(evsel->filter);
1152 evsel->filter = new_filter;
1153 return 0;
1156 return -1;
1159 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1161 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1164 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1166 return perf_evsel__append_filter(evsel, "%s,%s", filter);
1169 int perf_evsel__enable(struct perf_evsel *evsel)
1171 return perf_evsel__run_ioctl(evsel,
1172 PERF_EVENT_IOC_ENABLE,
1176 int perf_evsel__disable(struct perf_evsel *evsel)
1178 return perf_evsel__run_ioctl(evsel,
1179 PERF_EVENT_IOC_DISABLE,
1183 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1185 if (ncpus == 0 || nthreads == 0)
1186 return 0;
1188 if (evsel->system_wide)
1189 nthreads = 1;
1191 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1192 if (evsel->sample_id == NULL)
1193 return -ENOMEM;
1195 evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1196 if (evsel->id == NULL) {
1197 xyarray__delete(evsel->sample_id);
1198 evsel->sample_id = NULL;
1199 return -ENOMEM;
1202 return 0;
1205 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1207 xyarray__delete(evsel->fd);
1208 evsel->fd = NULL;
1211 static void perf_evsel__free_id(struct perf_evsel *evsel)
1213 xyarray__delete(evsel->sample_id);
1214 evsel->sample_id = NULL;
1215 zfree(&evsel->id);
1218 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1220 struct perf_evsel_config_term *term, *h;
1222 list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1223 list_del(&term->list);
1224 free(term);
1228 void perf_evsel__close_fd(struct perf_evsel *evsel)
1230 int cpu, thread;
1232 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1233 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1234 close(FD(evsel, cpu, thread));
1235 FD(evsel, cpu, thread) = -1;
1239 void perf_evsel__exit(struct perf_evsel *evsel)
1241 assert(list_empty(&evsel->node));
1242 assert(evsel->evlist == NULL);
1243 perf_evsel__free_fd(evsel);
1244 perf_evsel__free_id(evsel);
1245 perf_evsel__free_config_terms(evsel);
1246 close_cgroup(evsel->cgrp);
1247 cpu_map__put(evsel->cpus);
1248 cpu_map__put(evsel->own_cpus);
1249 thread_map__put(evsel->threads);
1250 zfree(&evsel->group_name);
1251 zfree(&evsel->name);
1252 perf_evsel__object.fini(evsel);
1255 void perf_evsel__delete(struct perf_evsel *evsel)
1257 perf_evsel__exit(evsel);
1258 free(evsel);
1261 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1262 struct perf_counts_values *count)
1264 struct perf_counts_values tmp;
1266 if (!evsel->prev_raw_counts)
1267 return;
1269 if (cpu == -1) {
1270 tmp = evsel->prev_raw_counts->aggr;
1271 evsel->prev_raw_counts->aggr = *count;
1272 } else {
1273 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1274 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1277 count->val = count->val - tmp.val;
1278 count->ena = count->ena - tmp.ena;
1279 count->run = count->run - tmp.run;
1282 void perf_counts_values__scale(struct perf_counts_values *count,
1283 bool scale, s8 *pscaled)
1285 s8 scaled = 0;
1287 if (scale) {
1288 if (count->run == 0) {
1289 scaled = -1;
1290 count->val = 0;
1291 } else if (count->run < count->ena) {
1292 scaled = 1;
1293 count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1295 } else
1296 count->ena = count->run = 0;
1298 if (pscaled)
1299 *pscaled = scaled;
1302 static int perf_evsel__read_size(struct perf_evsel *evsel)
1304 u64 read_format = evsel->attr.read_format;
1305 int entry = sizeof(u64); /* value */
1306 int size = 0;
1307 int nr = 1;
1309 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1310 size += sizeof(u64);
1312 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1313 size += sizeof(u64);
1315 if (read_format & PERF_FORMAT_ID)
1316 entry += sizeof(u64);
1318 if (read_format & PERF_FORMAT_GROUP) {
1319 nr = evsel->nr_members;
1320 size += sizeof(u64);
1323 size += entry * nr;
1324 return size;
1327 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1328 struct perf_counts_values *count)
1330 size_t size = perf_evsel__read_size(evsel);
1332 memset(count, 0, sizeof(*count));
1334 if (FD(evsel, cpu, thread) < 0)
1335 return -EINVAL;
1337 if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1338 return -errno;
1340 return 0;
1343 static int
1344 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1346 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1348 return perf_evsel__read(evsel, cpu, thread, count);
1351 static void
1352 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1353 u64 val, u64 ena, u64 run)
1355 struct perf_counts_values *count;
1357 count = perf_counts(counter->counts, cpu, thread);
1359 count->val = val;
1360 count->ena = ena;
1361 count->run = run;
1362 count->loaded = true;
1365 static int
1366 perf_evsel__process_group_data(struct perf_evsel *leader,
1367 int cpu, int thread, u64 *data)
1369 u64 read_format = leader->attr.read_format;
1370 struct sample_read_value *v;
1371 u64 nr, ena = 0, run = 0, i;
1373 nr = *data++;
1375 if (nr != (u64) leader->nr_members)
1376 return -EINVAL;
1378 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1379 ena = *data++;
1381 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1382 run = *data++;
1384 v = (struct sample_read_value *) data;
1386 perf_evsel__set_count(leader, cpu, thread,
1387 v[0].value, ena, run);
1389 for (i = 1; i < nr; i++) {
1390 struct perf_evsel *counter;
1392 counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1393 if (!counter)
1394 return -EINVAL;
1396 perf_evsel__set_count(counter, cpu, thread,
1397 v[i].value, ena, run);
1400 return 0;
1403 static int
1404 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1406 struct perf_stat_evsel *ps = leader->stats;
1407 u64 read_format = leader->attr.read_format;
1408 int size = perf_evsel__read_size(leader);
1409 u64 *data = ps->group_data;
1411 if (!(read_format & PERF_FORMAT_ID))
1412 return -EINVAL;
1414 if (!perf_evsel__is_group_leader(leader))
1415 return -EINVAL;
1417 if (!data) {
1418 data = zalloc(size);
1419 if (!data)
1420 return -ENOMEM;
1422 ps->group_data = data;
1425 if (FD(leader, cpu, thread) < 0)
1426 return -EINVAL;
1428 if (readn(FD(leader, cpu, thread), data, size) <= 0)
1429 return -errno;
1431 return perf_evsel__process_group_data(leader, cpu, thread, data);
1434 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1436 u64 read_format = evsel->attr.read_format;
1438 if (read_format & PERF_FORMAT_GROUP)
1439 return perf_evsel__read_group(evsel, cpu, thread);
1440 else
1441 return perf_evsel__read_one(evsel, cpu, thread);
1444 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1445 int cpu, int thread, bool scale)
1447 struct perf_counts_values count;
1448 size_t nv = scale ? 3 : 1;
1450 if (FD(evsel, cpu, thread) < 0)
1451 return -EINVAL;
1453 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1454 return -ENOMEM;
1456 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1457 return -errno;
1459 perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1460 perf_counts_values__scale(&count, scale, NULL);
1461 *perf_counts(evsel->counts, cpu, thread) = count;
1462 return 0;
1465 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1467 struct perf_evsel *leader = evsel->leader;
1468 int fd;
1470 if (perf_evsel__is_group_leader(evsel))
1471 return -1;
1474 * Leader must be already processed/open,
1475 * if not it's a bug.
1477 BUG_ON(!leader->fd);
1479 fd = FD(leader, cpu, thread);
1480 BUG_ON(fd == -1);
1482 return fd;
1485 struct bit_names {
1486 int bit;
1487 const char *name;
1490 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1492 bool first_bit = true;
1493 int i = 0;
1495 do {
1496 if (value & bits[i].bit) {
1497 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1498 first_bit = false;
1500 } while (bits[++i].name != NULL);
1503 static void __p_sample_type(char *buf, size_t size, u64 value)
1505 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1506 struct bit_names bits[] = {
1507 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1508 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1509 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1510 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1511 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1512 bit_name(WEIGHT), bit_name(PHYS_ADDR),
1513 { .name = NULL, }
1515 #undef bit_name
1516 __p_bits(buf, size, value, bits);
1519 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1521 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1522 struct bit_names bits[] = {
1523 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1524 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1525 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1526 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1527 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1528 { .name = NULL, }
1530 #undef bit_name
1531 __p_bits(buf, size, value, bits);
1534 static void __p_read_format(char *buf, size_t size, u64 value)
1536 #define bit_name(n) { PERF_FORMAT_##n, #n }
1537 struct bit_names bits[] = {
1538 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1539 bit_name(ID), bit_name(GROUP),
1540 { .name = NULL, }
1542 #undef bit_name
1543 __p_bits(buf, size, value, bits);
1546 #define BUF_SIZE 1024
1548 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1549 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1550 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1551 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val)
1552 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1553 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val)
1555 #define PRINT_ATTRn(_n, _f, _p) \
1556 do { \
1557 if (attr->_f) { \
1558 _p(attr->_f); \
1559 ret += attr__fprintf(fp, _n, buf, priv);\
1561 } while (0)
1563 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p)
1565 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1566 attr__fprintf_f attr__fprintf, void *priv)
1568 char buf[BUF_SIZE];
1569 int ret = 0;
1571 PRINT_ATTRf(type, p_unsigned);
1572 PRINT_ATTRf(size, p_unsigned);
1573 PRINT_ATTRf(config, p_hex);
1574 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1575 PRINT_ATTRf(sample_type, p_sample_type);
1576 PRINT_ATTRf(read_format, p_read_format);
1578 PRINT_ATTRf(disabled, p_unsigned);
1579 PRINT_ATTRf(inherit, p_unsigned);
1580 PRINT_ATTRf(pinned, p_unsigned);
1581 PRINT_ATTRf(exclusive, p_unsigned);
1582 PRINT_ATTRf(exclude_user, p_unsigned);
1583 PRINT_ATTRf(exclude_kernel, p_unsigned);
1584 PRINT_ATTRf(exclude_hv, p_unsigned);
1585 PRINT_ATTRf(exclude_idle, p_unsigned);
1586 PRINT_ATTRf(mmap, p_unsigned);
1587 PRINT_ATTRf(comm, p_unsigned);
1588 PRINT_ATTRf(freq, p_unsigned);
1589 PRINT_ATTRf(inherit_stat, p_unsigned);
1590 PRINT_ATTRf(enable_on_exec, p_unsigned);
1591 PRINT_ATTRf(task, p_unsigned);
1592 PRINT_ATTRf(watermark, p_unsigned);
1593 PRINT_ATTRf(precise_ip, p_unsigned);
1594 PRINT_ATTRf(mmap_data, p_unsigned);
1595 PRINT_ATTRf(sample_id_all, p_unsigned);
1596 PRINT_ATTRf(exclude_host, p_unsigned);
1597 PRINT_ATTRf(exclude_guest, p_unsigned);
1598 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1599 PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1600 PRINT_ATTRf(mmap2, p_unsigned);
1601 PRINT_ATTRf(comm_exec, p_unsigned);
1602 PRINT_ATTRf(use_clockid, p_unsigned);
1603 PRINT_ATTRf(context_switch, p_unsigned);
1604 PRINT_ATTRf(write_backward, p_unsigned);
1605 PRINT_ATTRf(namespaces, p_unsigned);
1607 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1608 PRINT_ATTRf(bp_type, p_unsigned);
1609 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1610 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1611 PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1612 PRINT_ATTRf(sample_regs_user, p_hex);
1613 PRINT_ATTRf(sample_stack_user, p_unsigned);
1614 PRINT_ATTRf(clockid, p_signed);
1615 PRINT_ATTRf(sample_regs_intr, p_hex);
1616 PRINT_ATTRf(aux_watermark, p_unsigned);
1617 PRINT_ATTRf(sample_max_stack, p_unsigned);
1619 return ret;
1622 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1623 void *priv __maybe_unused)
1625 return fprintf(fp, " %-32s %s\n", name, val);
1628 static void perf_evsel__remove_fd(struct perf_evsel *pos,
1629 int nr_cpus, int nr_threads,
1630 int thread_idx)
1632 for (int cpu = 0; cpu < nr_cpus; cpu++)
1633 for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1634 FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1637 static int update_fds(struct perf_evsel *evsel,
1638 int nr_cpus, int cpu_idx,
1639 int nr_threads, int thread_idx)
1641 struct perf_evsel *pos;
1643 if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1644 return -EINVAL;
1646 evlist__for_each_entry(evsel->evlist, pos) {
1647 nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1649 perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1652 * Since fds for next evsel has not been created,
1653 * there is no need to iterate whole event list.
1655 if (pos == evsel)
1656 break;
1658 return 0;
1661 static bool ignore_missing_thread(struct perf_evsel *evsel,
1662 int nr_cpus, int cpu,
1663 struct thread_map *threads,
1664 int thread, int err)
1666 pid_t ignore_pid = thread_map__pid(threads, thread);
1668 if (!evsel->ignore_missing_thread)
1669 return false;
1671 /* The system wide setup does not work with threads. */
1672 if (evsel->system_wide)
1673 return false;
1675 /* The -ESRCH is perf event syscall errno for pid's not found. */
1676 if (err != -ESRCH)
1677 return false;
1679 /* If there's only one thread, let it fail. */
1680 if (threads->nr == 1)
1681 return false;
1684 * We should remove fd for missing_thread first
1685 * because thread_map__remove() will decrease threads->nr.
1687 if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1688 return false;
1690 if (thread_map__remove(threads, thread))
1691 return false;
1693 pr_warning("WARNING: Ignored open failure for pid %d\n",
1694 ignore_pid);
1695 return true;
1698 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1699 struct thread_map *threads)
1701 int cpu, thread, nthreads;
1702 unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1703 int pid = -1, err;
1704 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1706 if (perf_missing_features.write_backward && evsel->attr.write_backward)
1707 return -EINVAL;
1709 if (cpus == NULL) {
1710 static struct cpu_map *empty_cpu_map;
1712 if (empty_cpu_map == NULL) {
1713 empty_cpu_map = cpu_map__dummy_new();
1714 if (empty_cpu_map == NULL)
1715 return -ENOMEM;
1718 cpus = empty_cpu_map;
1721 if (threads == NULL) {
1722 static struct thread_map *empty_thread_map;
1724 if (empty_thread_map == NULL) {
1725 empty_thread_map = thread_map__new_by_tid(-1);
1726 if (empty_thread_map == NULL)
1727 return -ENOMEM;
1730 threads = empty_thread_map;
1733 if (evsel->system_wide)
1734 nthreads = 1;
1735 else
1736 nthreads = threads->nr;
1738 if (evsel->fd == NULL &&
1739 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1740 return -ENOMEM;
1742 if (evsel->cgrp) {
1743 flags |= PERF_FLAG_PID_CGROUP;
1744 pid = evsel->cgrp->fd;
1747 fallback_missing_features:
1748 if (perf_missing_features.clockid_wrong)
1749 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1750 if (perf_missing_features.clockid) {
1751 evsel->attr.use_clockid = 0;
1752 evsel->attr.clockid = 0;
1754 if (perf_missing_features.cloexec)
1755 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1756 if (perf_missing_features.mmap2)
1757 evsel->attr.mmap2 = 0;
1758 if (perf_missing_features.exclude_guest)
1759 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1760 if (perf_missing_features.lbr_flags)
1761 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1762 PERF_SAMPLE_BRANCH_NO_CYCLES);
1763 if (perf_missing_features.group_read && evsel->attr.inherit)
1764 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1765 retry_sample_id:
1766 if (perf_missing_features.sample_id_all)
1767 evsel->attr.sample_id_all = 0;
1769 if (verbose >= 2) {
1770 fprintf(stderr, "%.60s\n", graph_dotted_line);
1771 fprintf(stderr, "perf_event_attr:\n");
1772 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1773 fprintf(stderr, "%.60s\n", graph_dotted_line);
1776 for (cpu = 0; cpu < cpus->nr; cpu++) {
1778 for (thread = 0; thread < nthreads; thread++) {
1779 int fd, group_fd;
1781 if (!evsel->cgrp && !evsel->system_wide)
1782 pid = thread_map__pid(threads, thread);
1784 group_fd = get_group_fd(evsel, cpu, thread);
1785 retry_open:
1786 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx",
1787 pid, cpus->map[cpu], group_fd, flags);
1789 test_attr__ready();
1791 fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1792 group_fd, flags);
1794 FD(evsel, cpu, thread) = fd;
1796 if (fd < 0) {
1797 err = -errno;
1799 if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1801 * We just removed 1 thread, so take a step
1802 * back on thread index and lower the upper
1803 * nthreads limit.
1805 nthreads--;
1806 thread--;
1808 /* ... and pretend like nothing have happened. */
1809 err = 0;
1810 continue;
1813 pr_debug2("\nsys_perf_event_open failed, error %d\n",
1814 err);
1815 goto try_fallback;
1818 pr_debug2(" = %d\n", fd);
1820 if (evsel->bpf_fd >= 0) {
1821 int evt_fd = fd;
1822 int bpf_fd = evsel->bpf_fd;
1824 err = ioctl(evt_fd,
1825 PERF_EVENT_IOC_SET_BPF,
1826 bpf_fd);
1827 if (err && errno != EEXIST) {
1828 pr_err("failed to attach bpf fd %d: %s\n",
1829 bpf_fd, strerror(errno));
1830 err = -EINVAL;
1831 goto out_close;
1835 set_rlimit = NO_CHANGE;
1838 * If we succeeded but had to kill clockid, fail and
1839 * have perf_evsel__open_strerror() print us a nice
1840 * error.
1842 if (perf_missing_features.clockid ||
1843 perf_missing_features.clockid_wrong) {
1844 err = -EINVAL;
1845 goto out_close;
1850 return 0;
1852 try_fallback:
1854 * perf stat needs between 5 and 22 fds per CPU. When we run out
1855 * of them try to increase the limits.
1857 if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1858 struct rlimit l;
1859 int old_errno = errno;
1861 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1862 if (set_rlimit == NO_CHANGE)
1863 l.rlim_cur = l.rlim_max;
1864 else {
1865 l.rlim_cur = l.rlim_max + 1000;
1866 l.rlim_max = l.rlim_cur;
1868 if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1869 set_rlimit++;
1870 errno = old_errno;
1871 goto retry_open;
1874 errno = old_errno;
1877 if (err != -EINVAL || cpu > 0 || thread > 0)
1878 goto out_close;
1881 * Must probe features in the order they were added to the
1882 * perf_event_attr interface.
1884 if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1885 perf_missing_features.write_backward = true;
1886 pr_debug2("switching off write_backward\n");
1887 goto out_close;
1888 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1889 perf_missing_features.clockid_wrong = true;
1890 pr_debug2("switching off clockid\n");
1891 goto fallback_missing_features;
1892 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1893 perf_missing_features.clockid = true;
1894 pr_debug2("switching off use_clockid\n");
1895 goto fallback_missing_features;
1896 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1897 perf_missing_features.cloexec = true;
1898 pr_debug2("switching off cloexec flag\n");
1899 goto fallback_missing_features;
1900 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1901 perf_missing_features.mmap2 = true;
1902 pr_debug2("switching off mmap2\n");
1903 goto fallback_missing_features;
1904 } else if (!perf_missing_features.exclude_guest &&
1905 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1906 perf_missing_features.exclude_guest = true;
1907 pr_debug2("switching off exclude_guest, exclude_host\n");
1908 goto fallback_missing_features;
1909 } else if (!perf_missing_features.sample_id_all) {
1910 perf_missing_features.sample_id_all = true;
1911 pr_debug2("switching off sample_id_all\n");
1912 goto retry_sample_id;
1913 } else if (!perf_missing_features.lbr_flags &&
1914 (evsel->attr.branch_sample_type &
1915 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1916 PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1917 perf_missing_features.lbr_flags = true;
1918 pr_debug2("switching off branch sample type no (cycles/flags)\n");
1919 goto fallback_missing_features;
1920 } else if (!perf_missing_features.group_read &&
1921 evsel->attr.inherit &&
1922 (evsel->attr.read_format & PERF_FORMAT_GROUP)) {
1923 perf_missing_features.group_read = true;
1924 pr_debug2("switching off group read\n");
1925 goto fallback_missing_features;
1927 out_close:
1928 do {
1929 while (--thread >= 0) {
1930 close(FD(evsel, cpu, thread));
1931 FD(evsel, cpu, thread) = -1;
1933 thread = nthreads;
1934 } while (--cpu >= 0);
1935 return err;
1938 void perf_evsel__close(struct perf_evsel *evsel)
1940 if (evsel->fd == NULL)
1941 return;
1943 perf_evsel__close_fd(evsel);
1944 perf_evsel__free_fd(evsel);
1947 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1948 struct cpu_map *cpus)
1950 return perf_evsel__open(evsel, cpus, NULL);
1953 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1954 struct thread_map *threads)
1956 return perf_evsel__open(evsel, NULL, threads);
1959 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1960 const union perf_event *event,
1961 struct perf_sample *sample)
1963 u64 type = evsel->attr.sample_type;
1964 const u64 *array = event->sample.array;
1965 bool swapped = evsel->needs_swap;
1966 union u64_swap u;
1968 array += ((event->header.size -
1969 sizeof(event->header)) / sizeof(u64)) - 1;
1971 if (type & PERF_SAMPLE_IDENTIFIER) {
1972 sample->id = *array;
1973 array--;
1976 if (type & PERF_SAMPLE_CPU) {
1977 u.val64 = *array;
1978 if (swapped) {
1979 /* undo swap of u64, then swap on individual u32s */
1980 u.val64 = bswap_64(u.val64);
1981 u.val32[0] = bswap_32(u.val32[0]);
1984 sample->cpu = u.val32[0];
1985 array--;
1988 if (type & PERF_SAMPLE_STREAM_ID) {
1989 sample->stream_id = *array;
1990 array--;
1993 if (type & PERF_SAMPLE_ID) {
1994 sample->id = *array;
1995 array--;
1998 if (type & PERF_SAMPLE_TIME) {
1999 sample->time = *array;
2000 array--;
2003 if (type & PERF_SAMPLE_TID) {
2004 u.val64 = *array;
2005 if (swapped) {
2006 /* undo swap of u64, then swap on individual u32s */
2007 u.val64 = bswap_64(u.val64);
2008 u.val32[0] = bswap_32(u.val32[0]);
2009 u.val32[1] = bswap_32(u.val32[1]);
2012 sample->pid = u.val32[0];
2013 sample->tid = u.val32[1];
2014 array--;
2017 return 0;
2020 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2021 u64 size)
2023 return size > max_size || offset + size > endp;
2026 #define OVERFLOW_CHECK(offset, size, max_size) \
2027 do { \
2028 if (overflow(endp, (max_size), (offset), (size))) \
2029 return -EFAULT; \
2030 } while (0)
2032 #define OVERFLOW_CHECK_u64(offset) \
2033 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2035 static int
2036 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2039 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2040 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to
2041 * check the format does not go past the end of the event.
2043 if (sample_size + sizeof(event->header) > event->header.size)
2044 return -EFAULT;
2046 return 0;
2049 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
2050 struct perf_sample *data)
2052 u64 type = evsel->attr.sample_type;
2053 bool swapped = evsel->needs_swap;
2054 const u64 *array;
2055 u16 max_size = event->header.size;
2056 const void *endp = (void *)event + max_size;
2057 u64 sz;
2060 * used for cross-endian analysis. See git commit 65014ab3
2061 * for why this goofiness is needed.
2063 union u64_swap u;
2065 memset(data, 0, sizeof(*data));
2066 data->cpu = data->pid = data->tid = -1;
2067 data->stream_id = data->id = data->time = -1ULL;
2068 data->period = evsel->attr.sample_period;
2069 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2070 data->misc = event->header.misc;
2071 data->id = -1ULL;
2072 data->data_src = PERF_MEM_DATA_SRC_NONE;
2074 if (event->header.type != PERF_RECORD_SAMPLE) {
2075 if (!evsel->attr.sample_id_all)
2076 return 0;
2077 return perf_evsel__parse_id_sample(evsel, event, data);
2080 array = event->sample.array;
2082 if (perf_event__check_size(event, evsel->sample_size))
2083 return -EFAULT;
2085 if (type & PERF_SAMPLE_IDENTIFIER) {
2086 data->id = *array;
2087 array++;
2090 if (type & PERF_SAMPLE_IP) {
2091 data->ip = *array;
2092 array++;
2095 if (type & PERF_SAMPLE_TID) {
2096 u.val64 = *array;
2097 if (swapped) {
2098 /* undo swap of u64, then swap on individual u32s */
2099 u.val64 = bswap_64(u.val64);
2100 u.val32[0] = bswap_32(u.val32[0]);
2101 u.val32[1] = bswap_32(u.val32[1]);
2104 data->pid = u.val32[0];
2105 data->tid = u.val32[1];
2106 array++;
2109 if (type & PERF_SAMPLE_TIME) {
2110 data->time = *array;
2111 array++;
2114 if (type & PERF_SAMPLE_ADDR) {
2115 data->addr = *array;
2116 array++;
2119 if (type & PERF_SAMPLE_ID) {
2120 data->id = *array;
2121 array++;
2124 if (type & PERF_SAMPLE_STREAM_ID) {
2125 data->stream_id = *array;
2126 array++;
2129 if (type & PERF_SAMPLE_CPU) {
2131 u.val64 = *array;
2132 if (swapped) {
2133 /* undo swap of u64, then swap on individual u32s */
2134 u.val64 = bswap_64(u.val64);
2135 u.val32[0] = bswap_32(u.val32[0]);
2138 data->cpu = u.val32[0];
2139 array++;
2142 if (type & PERF_SAMPLE_PERIOD) {
2143 data->period = *array;
2144 array++;
2147 if (type & PERF_SAMPLE_READ) {
2148 u64 read_format = evsel->attr.read_format;
2150 OVERFLOW_CHECK_u64(array);
2151 if (read_format & PERF_FORMAT_GROUP)
2152 data->read.group.nr = *array;
2153 else
2154 data->read.one.value = *array;
2156 array++;
2158 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2159 OVERFLOW_CHECK_u64(array);
2160 data->read.time_enabled = *array;
2161 array++;
2164 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2165 OVERFLOW_CHECK_u64(array);
2166 data->read.time_running = *array;
2167 array++;
2170 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2171 if (read_format & PERF_FORMAT_GROUP) {
2172 const u64 max_group_nr = UINT64_MAX /
2173 sizeof(struct sample_read_value);
2175 if (data->read.group.nr > max_group_nr)
2176 return -EFAULT;
2177 sz = data->read.group.nr *
2178 sizeof(struct sample_read_value);
2179 OVERFLOW_CHECK(array, sz, max_size);
2180 data->read.group.values =
2181 (struct sample_read_value *)array;
2182 array = (void *)array + sz;
2183 } else {
2184 OVERFLOW_CHECK_u64(array);
2185 data->read.one.id = *array;
2186 array++;
2190 if (type & PERF_SAMPLE_CALLCHAIN) {
2191 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2193 OVERFLOW_CHECK_u64(array);
2194 data->callchain = (struct ip_callchain *)array++;
2195 if (data->callchain->nr > max_callchain_nr)
2196 return -EFAULT;
2197 sz = data->callchain->nr * sizeof(u64);
2198 OVERFLOW_CHECK(array, sz, max_size);
2199 array = (void *)array + sz;
2202 if (type & PERF_SAMPLE_RAW) {
2203 OVERFLOW_CHECK_u64(array);
2204 u.val64 = *array;
2207 * Undo swap of u64, then swap on individual u32s,
2208 * get the size of the raw area and undo all of the
2209 * swap. The pevent interface handles endianity by
2210 * itself.
2212 if (swapped) {
2213 u.val64 = bswap_64(u.val64);
2214 u.val32[0] = bswap_32(u.val32[0]);
2215 u.val32[1] = bswap_32(u.val32[1]);
2217 data->raw_size = u.val32[0];
2220 * The raw data is aligned on 64bits including the
2221 * u32 size, so it's safe to use mem_bswap_64.
2223 if (swapped)
2224 mem_bswap_64((void *) array, data->raw_size);
2226 array = (void *)array + sizeof(u32);
2228 OVERFLOW_CHECK(array, data->raw_size, max_size);
2229 data->raw_data = (void *)array;
2230 array = (void *)array + data->raw_size;
2233 if (type & PERF_SAMPLE_BRANCH_STACK) {
2234 const u64 max_branch_nr = UINT64_MAX /
2235 sizeof(struct branch_entry);
2237 OVERFLOW_CHECK_u64(array);
2238 data->branch_stack = (struct branch_stack *)array++;
2240 if (data->branch_stack->nr > max_branch_nr)
2241 return -EFAULT;
2242 sz = data->branch_stack->nr * sizeof(struct branch_entry);
2243 OVERFLOW_CHECK(array, sz, max_size);
2244 array = (void *)array + sz;
2247 if (type & PERF_SAMPLE_REGS_USER) {
2248 OVERFLOW_CHECK_u64(array);
2249 data->user_regs.abi = *array;
2250 array++;
2252 if (data->user_regs.abi) {
2253 u64 mask = evsel->attr.sample_regs_user;
2255 sz = hweight_long(mask) * sizeof(u64);
2256 OVERFLOW_CHECK(array, sz, max_size);
2257 data->user_regs.mask = mask;
2258 data->user_regs.regs = (u64 *)array;
2259 array = (void *)array + sz;
2263 if (type & PERF_SAMPLE_STACK_USER) {
2264 OVERFLOW_CHECK_u64(array);
2265 sz = *array++;
2267 data->user_stack.offset = ((char *)(array - 1)
2268 - (char *) event);
2270 if (!sz) {
2271 data->user_stack.size = 0;
2272 } else {
2273 OVERFLOW_CHECK(array, sz, max_size);
2274 data->user_stack.data = (char *)array;
2275 array = (void *)array + sz;
2276 OVERFLOW_CHECK_u64(array);
2277 data->user_stack.size = *array++;
2278 if (WARN_ONCE(data->user_stack.size > sz,
2279 "user stack dump failure\n"))
2280 return -EFAULT;
2284 if (type & PERF_SAMPLE_WEIGHT) {
2285 OVERFLOW_CHECK_u64(array);
2286 data->weight = *array;
2287 array++;
2290 if (type & PERF_SAMPLE_DATA_SRC) {
2291 OVERFLOW_CHECK_u64(array);
2292 data->data_src = *array;
2293 array++;
2296 if (type & PERF_SAMPLE_TRANSACTION) {
2297 OVERFLOW_CHECK_u64(array);
2298 data->transaction = *array;
2299 array++;
2302 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2303 if (type & PERF_SAMPLE_REGS_INTR) {
2304 OVERFLOW_CHECK_u64(array);
2305 data->intr_regs.abi = *array;
2306 array++;
2308 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2309 u64 mask = evsel->attr.sample_regs_intr;
2311 sz = hweight_long(mask) * sizeof(u64);
2312 OVERFLOW_CHECK(array, sz, max_size);
2313 data->intr_regs.mask = mask;
2314 data->intr_regs.regs = (u64 *)array;
2315 array = (void *)array + sz;
2319 data->phys_addr = 0;
2320 if (type & PERF_SAMPLE_PHYS_ADDR) {
2321 data->phys_addr = *array;
2322 array++;
2325 return 0;
2328 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel,
2329 union perf_event *event,
2330 u64 *timestamp)
2332 u64 type = evsel->attr.sample_type;
2333 const u64 *array;
2335 if (!(type & PERF_SAMPLE_TIME))
2336 return -1;
2338 if (event->header.type != PERF_RECORD_SAMPLE) {
2339 struct perf_sample data = {
2340 .time = -1ULL,
2343 if (!evsel->attr.sample_id_all)
2344 return -1;
2345 if (perf_evsel__parse_id_sample(evsel, event, &data))
2346 return -1;
2348 *timestamp = data.time;
2349 return 0;
2352 array = event->sample.array;
2354 if (perf_event__check_size(event, evsel->sample_size))
2355 return -EFAULT;
2357 if (type & PERF_SAMPLE_IDENTIFIER)
2358 array++;
2360 if (type & PERF_SAMPLE_IP)
2361 array++;
2363 if (type & PERF_SAMPLE_TID)
2364 array++;
2366 if (type & PERF_SAMPLE_TIME)
2367 *timestamp = *array;
2369 return 0;
2372 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2373 u64 read_format)
2375 size_t sz, result = sizeof(struct sample_event);
2377 if (type & PERF_SAMPLE_IDENTIFIER)
2378 result += sizeof(u64);
2380 if (type & PERF_SAMPLE_IP)
2381 result += sizeof(u64);
2383 if (type & PERF_SAMPLE_TID)
2384 result += sizeof(u64);
2386 if (type & PERF_SAMPLE_TIME)
2387 result += sizeof(u64);
2389 if (type & PERF_SAMPLE_ADDR)
2390 result += sizeof(u64);
2392 if (type & PERF_SAMPLE_ID)
2393 result += sizeof(u64);
2395 if (type & PERF_SAMPLE_STREAM_ID)
2396 result += sizeof(u64);
2398 if (type & PERF_SAMPLE_CPU)
2399 result += sizeof(u64);
2401 if (type & PERF_SAMPLE_PERIOD)
2402 result += sizeof(u64);
2404 if (type & PERF_SAMPLE_READ) {
2405 result += sizeof(u64);
2406 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2407 result += sizeof(u64);
2408 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2409 result += sizeof(u64);
2410 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2411 if (read_format & PERF_FORMAT_GROUP) {
2412 sz = sample->read.group.nr *
2413 sizeof(struct sample_read_value);
2414 result += sz;
2415 } else {
2416 result += sizeof(u64);
2420 if (type & PERF_SAMPLE_CALLCHAIN) {
2421 sz = (sample->callchain->nr + 1) * sizeof(u64);
2422 result += sz;
2425 if (type & PERF_SAMPLE_RAW) {
2426 result += sizeof(u32);
2427 result += sample->raw_size;
2430 if (type & PERF_SAMPLE_BRANCH_STACK) {
2431 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2432 sz += sizeof(u64);
2433 result += sz;
2436 if (type & PERF_SAMPLE_REGS_USER) {
2437 if (sample->user_regs.abi) {
2438 result += sizeof(u64);
2439 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2440 result += sz;
2441 } else {
2442 result += sizeof(u64);
2446 if (type & PERF_SAMPLE_STACK_USER) {
2447 sz = sample->user_stack.size;
2448 result += sizeof(u64);
2449 if (sz) {
2450 result += sz;
2451 result += sizeof(u64);
2455 if (type & PERF_SAMPLE_WEIGHT)
2456 result += sizeof(u64);
2458 if (type & PERF_SAMPLE_DATA_SRC)
2459 result += sizeof(u64);
2461 if (type & PERF_SAMPLE_TRANSACTION)
2462 result += sizeof(u64);
2464 if (type & PERF_SAMPLE_REGS_INTR) {
2465 if (sample->intr_regs.abi) {
2466 result += sizeof(u64);
2467 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2468 result += sz;
2469 } else {
2470 result += sizeof(u64);
2474 if (type & PERF_SAMPLE_PHYS_ADDR)
2475 result += sizeof(u64);
2477 return result;
2480 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2481 u64 read_format,
2482 const struct perf_sample *sample)
2484 u64 *array;
2485 size_t sz;
2487 * used for cross-endian analysis. See git commit 65014ab3
2488 * for why this goofiness is needed.
2490 union u64_swap u;
2492 array = event->sample.array;
2494 if (type & PERF_SAMPLE_IDENTIFIER) {
2495 *array = sample->id;
2496 array++;
2499 if (type & PERF_SAMPLE_IP) {
2500 *array = sample->ip;
2501 array++;
2504 if (type & PERF_SAMPLE_TID) {
2505 u.val32[0] = sample->pid;
2506 u.val32[1] = sample->tid;
2507 *array = u.val64;
2508 array++;
2511 if (type & PERF_SAMPLE_TIME) {
2512 *array = sample->time;
2513 array++;
2516 if (type & PERF_SAMPLE_ADDR) {
2517 *array = sample->addr;
2518 array++;
2521 if (type & PERF_SAMPLE_ID) {
2522 *array = sample->id;
2523 array++;
2526 if (type & PERF_SAMPLE_STREAM_ID) {
2527 *array = sample->stream_id;
2528 array++;
2531 if (type & PERF_SAMPLE_CPU) {
2532 u.val32[0] = sample->cpu;
2533 u.val32[1] = 0;
2534 *array = u.val64;
2535 array++;
2538 if (type & PERF_SAMPLE_PERIOD) {
2539 *array = sample->period;
2540 array++;
2543 if (type & PERF_SAMPLE_READ) {
2544 if (read_format & PERF_FORMAT_GROUP)
2545 *array = sample->read.group.nr;
2546 else
2547 *array = sample->read.one.value;
2548 array++;
2550 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2551 *array = sample->read.time_enabled;
2552 array++;
2555 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2556 *array = sample->read.time_running;
2557 array++;
2560 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2561 if (read_format & PERF_FORMAT_GROUP) {
2562 sz = sample->read.group.nr *
2563 sizeof(struct sample_read_value);
2564 memcpy(array, sample->read.group.values, sz);
2565 array = (void *)array + sz;
2566 } else {
2567 *array = sample->read.one.id;
2568 array++;
2572 if (type & PERF_SAMPLE_CALLCHAIN) {
2573 sz = (sample->callchain->nr + 1) * sizeof(u64);
2574 memcpy(array, sample->callchain, sz);
2575 array = (void *)array + sz;
2578 if (type & PERF_SAMPLE_RAW) {
2579 u.val32[0] = sample->raw_size;
2580 *array = u.val64;
2581 array = (void *)array + sizeof(u32);
2583 memcpy(array, sample->raw_data, sample->raw_size);
2584 array = (void *)array + sample->raw_size;
2587 if (type & PERF_SAMPLE_BRANCH_STACK) {
2588 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2589 sz += sizeof(u64);
2590 memcpy(array, sample->branch_stack, sz);
2591 array = (void *)array + sz;
2594 if (type & PERF_SAMPLE_REGS_USER) {
2595 if (sample->user_regs.abi) {
2596 *array++ = sample->user_regs.abi;
2597 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2598 memcpy(array, sample->user_regs.regs, sz);
2599 array = (void *)array + sz;
2600 } else {
2601 *array++ = 0;
2605 if (type & PERF_SAMPLE_STACK_USER) {
2606 sz = sample->user_stack.size;
2607 *array++ = sz;
2608 if (sz) {
2609 memcpy(array, sample->user_stack.data, sz);
2610 array = (void *)array + sz;
2611 *array++ = sz;
2615 if (type & PERF_SAMPLE_WEIGHT) {
2616 *array = sample->weight;
2617 array++;
2620 if (type & PERF_SAMPLE_DATA_SRC) {
2621 *array = sample->data_src;
2622 array++;
2625 if (type & PERF_SAMPLE_TRANSACTION) {
2626 *array = sample->transaction;
2627 array++;
2630 if (type & PERF_SAMPLE_REGS_INTR) {
2631 if (sample->intr_regs.abi) {
2632 *array++ = sample->intr_regs.abi;
2633 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2634 memcpy(array, sample->intr_regs.regs, sz);
2635 array = (void *)array + sz;
2636 } else {
2637 *array++ = 0;
2641 if (type & PERF_SAMPLE_PHYS_ADDR) {
2642 *array = sample->phys_addr;
2643 array++;
2646 return 0;
2649 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2651 return pevent_find_field(evsel->tp_format, name);
2654 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2655 const char *name)
2657 struct format_field *field = perf_evsel__field(evsel, name);
2658 int offset;
2660 if (!field)
2661 return NULL;
2663 offset = field->offset;
2665 if (field->flags & FIELD_IS_DYNAMIC) {
2666 offset = *(int *)(sample->raw_data + field->offset);
2667 offset &= 0xffff;
2670 return sample->raw_data + offset;
2673 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2674 bool needs_swap)
2676 u64 value;
2677 void *ptr = sample->raw_data + field->offset;
2679 switch (field->size) {
2680 case 1:
2681 return *(u8 *)ptr;
2682 case 2:
2683 value = *(u16 *)ptr;
2684 break;
2685 case 4:
2686 value = *(u32 *)ptr;
2687 break;
2688 case 8:
2689 memcpy(&value, ptr, sizeof(u64));
2690 break;
2691 default:
2692 return 0;
2695 if (!needs_swap)
2696 return value;
2698 switch (field->size) {
2699 case 2:
2700 return bswap_16(value);
2701 case 4:
2702 return bswap_32(value);
2703 case 8:
2704 return bswap_64(value);
2705 default:
2706 return 0;
2709 return 0;
2712 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2713 const char *name)
2715 struct format_field *field = perf_evsel__field(evsel, name);
2717 if (!field)
2718 return 0;
2720 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2723 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2724 char *msg, size_t msgsize)
2726 int paranoid;
2728 if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2729 evsel->attr.type == PERF_TYPE_HARDWARE &&
2730 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2732 * If it's cycles then fall back to hrtimer based
2733 * cpu-clock-tick sw counter, which is always available even if
2734 * no PMU support.
2736 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2737 * b0a873e).
2739 scnprintf(msg, msgsize, "%s",
2740 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2742 evsel->attr.type = PERF_TYPE_SOFTWARE;
2743 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2745 zfree(&evsel->name);
2746 return true;
2747 } else if (err == EACCES && !evsel->attr.exclude_kernel &&
2748 (paranoid = perf_event_paranoid()) > 1) {
2749 const char *name = perf_evsel__name(evsel);
2750 char *new_name;
2752 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0)
2753 return false;
2755 if (evsel->name)
2756 free(evsel->name);
2757 evsel->name = new_name;
2758 scnprintf(msg, msgsize,
2759 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2760 evsel->attr.exclude_kernel = 1;
2762 return true;
2765 return false;
2768 static bool find_process(const char *name)
2770 size_t len = strlen(name);
2771 DIR *dir;
2772 struct dirent *d;
2773 int ret = -1;
2775 dir = opendir(procfs__mountpoint());
2776 if (!dir)
2777 return false;
2779 /* Walk through the directory. */
2780 while (ret && (d = readdir(dir)) != NULL) {
2781 char path[PATH_MAX];
2782 char *data;
2783 size_t size;
2785 if ((d->d_type != DT_DIR) ||
2786 !strcmp(".", d->d_name) ||
2787 !strcmp("..", d->d_name))
2788 continue;
2790 scnprintf(path, sizeof(path), "%s/%s/comm",
2791 procfs__mountpoint(), d->d_name);
2793 if (filename__read_str(path, &data, &size))
2794 continue;
2796 ret = strncmp(name, data, len);
2797 free(data);
2800 closedir(dir);
2801 return ret ? false : true;
2804 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2805 int err, char *msg, size_t size)
2807 char sbuf[STRERR_BUFSIZE];
2808 int printed = 0;
2810 switch (err) {
2811 case EPERM:
2812 case EACCES:
2813 if (err == EPERM)
2814 printed = scnprintf(msg, size,
2815 "No permission to enable %s event.\n\n",
2816 perf_evsel__name(evsel));
2818 return scnprintf(msg + printed, size - printed,
2819 "You may not have permission to collect %sstats.\n\n"
2820 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2821 "which controls use of the performance events system by\n"
2822 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2823 "The current value is %d:\n\n"
2824 " -1: Allow use of (almost) all events by all users\n"
2825 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2826 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2827 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2828 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2829 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2830 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2831 " kernel.perf_event_paranoid = -1\n" ,
2832 target->system_wide ? "system-wide " : "",
2833 perf_event_paranoid());
2834 case ENOENT:
2835 return scnprintf(msg, size, "The %s event is not supported.",
2836 perf_evsel__name(evsel));
2837 case EMFILE:
2838 return scnprintf(msg, size, "%s",
2839 "Too many events are opened.\n"
2840 "Probably the maximum number of open file descriptors has been reached.\n"
2841 "Hint: Try again after reducing the number of events.\n"
2842 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2843 case ENOMEM:
2844 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
2845 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2846 return scnprintf(msg, size,
2847 "Not enough memory to setup event with callchain.\n"
2848 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2849 "Hint: Current value: %d", sysctl_perf_event_max_stack);
2850 break;
2851 case ENODEV:
2852 if (target->cpu_list)
2853 return scnprintf(msg, size, "%s",
2854 "No such device - did you specify an out-of-range profile CPU?");
2855 break;
2856 case EOPNOTSUPP:
2857 if (evsel->attr.sample_period != 0)
2858 return scnprintf(msg, size,
2859 "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2860 perf_evsel__name(evsel));
2861 if (evsel->attr.precise_ip)
2862 return scnprintf(msg, size, "%s",
2863 "\'precise\' request may not be supported. Try removing 'p' modifier.");
2864 #if defined(__i386__) || defined(__x86_64__)
2865 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2866 return scnprintf(msg, size, "%s",
2867 "No hardware sampling interrupt available.\n"
2868 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2869 #endif
2870 break;
2871 case EBUSY:
2872 if (find_process("oprofiled"))
2873 return scnprintf(msg, size,
2874 "The PMU counters are busy/taken by another profiler.\n"
2875 "We found oprofile daemon running, please stop it and try again.");
2876 break;
2877 case EINVAL:
2878 if (evsel->attr.write_backward && perf_missing_features.write_backward)
2879 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2880 if (perf_missing_features.clockid)
2881 return scnprintf(msg, size, "clockid feature not supported.");
2882 if (perf_missing_features.clockid_wrong)
2883 return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2884 break;
2885 default:
2886 break;
2889 return scnprintf(msg, size,
2890 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2891 "/bin/dmesg may provide additional information.\n"
2892 "No CONFIG_PERF_EVENTS=y kernel support configured?",
2893 err, str_error_r(err, sbuf, sizeof(sbuf)),
2894 perf_evsel__name(evsel));
2897 struct perf_env *perf_evsel__env(struct perf_evsel *evsel)
2899 if (evsel && evsel->evlist)
2900 return evsel->evlist->env;
2901 return NULL;