Linux 4.16-rc1
[cris-mirror.git] / tools / power / cpupower / utils / idle_monitor / mperf_monitor.c
blobd7c2a6d13dea1a1d4734fb51842eb12b86ef0317
1 /*
2 * (C) 2010,2011 Thomas Renninger <trenn@suse.de>, Novell Inc.
4 * Licensed under the terms of the GNU GPL License version 2.
5 */
7 #if defined(__i386__) || defined(__x86_64__)
9 #include <stdio.h>
10 #include <stdint.h>
11 #include <stdlib.h>
12 #include <string.h>
13 #include <limits.h>
15 #include <cpufreq.h>
17 #include "helpers/helpers.h"
18 #include "idle_monitor/cpupower-monitor.h"
20 #define MSR_APERF 0xE8
21 #define MSR_MPERF 0xE7
23 #define MSR_TSC 0x10
25 #define MSR_AMD_HWCR 0xc0010015
27 enum mperf_id { C0 = 0, Cx, AVG_FREQ, MPERF_CSTATE_COUNT };
29 static int mperf_get_count_percent(unsigned int self_id, double *percent,
30 unsigned int cpu);
31 static int mperf_get_count_freq(unsigned int id, unsigned long long *count,
32 unsigned int cpu);
33 static struct timespec time_start, time_end;
35 static cstate_t mperf_cstates[MPERF_CSTATE_COUNT] = {
37 .name = "C0",
38 .desc = N_("Processor Core not idle"),
39 .id = C0,
40 .range = RANGE_THREAD,
41 .get_count_percent = mperf_get_count_percent,
44 .name = "Cx",
45 .desc = N_("Processor Core in an idle state"),
46 .id = Cx,
47 .range = RANGE_THREAD,
48 .get_count_percent = mperf_get_count_percent,
52 .name = "Freq",
53 .desc = N_("Average Frequency (including boost) in MHz"),
54 .id = AVG_FREQ,
55 .range = RANGE_THREAD,
56 .get_count = mperf_get_count_freq,
60 enum MAX_FREQ_MODE { MAX_FREQ_SYSFS, MAX_FREQ_TSC_REF };
61 static int max_freq_mode;
63 * The max frequency mperf is ticking at (in C0), either retrieved via:
64 * 1) calculated after measurements if we know TSC ticks at mperf/P0 frequency
65 * 2) cpufreq /sys/devices/.../cpu0/cpufreq/cpuinfo_max_freq at init time
66 * 1. Is preferred as it also works without cpufreq subsystem (e.g. on Xen)
68 static unsigned long max_frequency;
70 static unsigned long long tsc_at_measure_start;
71 static unsigned long long tsc_at_measure_end;
72 static unsigned long long *mperf_previous_count;
73 static unsigned long long *aperf_previous_count;
74 static unsigned long long *mperf_current_count;
75 static unsigned long long *aperf_current_count;
77 /* valid flag for all CPUs. If a MSR read failed it will be zero */
78 static int *is_valid;
80 static int mperf_get_tsc(unsigned long long *tsc)
82 int ret;
84 ret = read_msr(base_cpu, MSR_TSC, tsc);
85 if (ret)
86 dprint("Reading TSC MSR failed, returning %llu\n", *tsc);
87 return ret;
90 static int mperf_init_stats(unsigned int cpu)
92 unsigned long long val;
93 int ret;
95 ret = read_msr(cpu, MSR_APERF, &val);
96 aperf_previous_count[cpu] = val;
97 ret |= read_msr(cpu, MSR_MPERF, &val);
98 mperf_previous_count[cpu] = val;
99 is_valid[cpu] = !ret;
101 return 0;
104 static int mperf_measure_stats(unsigned int cpu)
106 unsigned long long val;
107 int ret;
109 ret = read_msr(cpu, MSR_APERF, &val);
110 aperf_current_count[cpu] = val;
111 ret |= read_msr(cpu, MSR_MPERF, &val);
112 mperf_current_count[cpu] = val;
113 is_valid[cpu] = !ret;
115 return 0;
118 static int mperf_get_count_percent(unsigned int id, double *percent,
119 unsigned int cpu)
121 unsigned long long aperf_diff, mperf_diff, tsc_diff;
122 unsigned long long timediff;
124 if (!is_valid[cpu])
125 return -1;
127 if (id != C0 && id != Cx)
128 return -1;
130 mperf_diff = mperf_current_count[cpu] - mperf_previous_count[cpu];
131 aperf_diff = aperf_current_count[cpu] - aperf_previous_count[cpu];
133 if (max_freq_mode == MAX_FREQ_TSC_REF) {
134 tsc_diff = tsc_at_measure_end - tsc_at_measure_start;
135 *percent = 100.0 * mperf_diff / tsc_diff;
136 dprint("%s: TSC Ref - mperf_diff: %llu, tsc_diff: %llu\n",
137 mperf_cstates[id].name, mperf_diff, tsc_diff);
138 } else if (max_freq_mode == MAX_FREQ_SYSFS) {
139 timediff = max_frequency * timespec_diff_us(time_start, time_end);
140 *percent = 100.0 * mperf_diff / timediff;
141 dprint("%s: MAXFREQ - mperf_diff: %llu, time_diff: %llu\n",
142 mperf_cstates[id].name, mperf_diff, timediff);
143 } else
144 return -1;
146 if (id == Cx)
147 *percent = 100.0 - *percent;
149 dprint("%s: previous: %llu - current: %llu - (%u)\n",
150 mperf_cstates[id].name, mperf_diff, aperf_diff, cpu);
151 dprint("%s: %f\n", mperf_cstates[id].name, *percent);
152 return 0;
155 static int mperf_get_count_freq(unsigned int id, unsigned long long *count,
156 unsigned int cpu)
158 unsigned long long aperf_diff, mperf_diff, time_diff, tsc_diff;
160 if (id != AVG_FREQ)
161 return 1;
163 if (!is_valid[cpu])
164 return -1;
166 mperf_diff = mperf_current_count[cpu] - mperf_previous_count[cpu];
167 aperf_diff = aperf_current_count[cpu] - aperf_previous_count[cpu];
169 if (max_freq_mode == MAX_FREQ_TSC_REF) {
170 /* Calculate max_freq from TSC count */
171 tsc_diff = tsc_at_measure_end - tsc_at_measure_start;
172 time_diff = timespec_diff_us(time_start, time_end);
173 max_frequency = tsc_diff / time_diff;
176 *count = max_frequency * ((double)aperf_diff / mperf_diff);
177 dprint("%s: Average freq based on %s maximum frequency:\n",
178 mperf_cstates[id].name,
179 (max_freq_mode == MAX_FREQ_TSC_REF) ? "TSC calculated" : "sysfs read");
180 dprint("max_frequency: %lu\n", max_frequency);
181 dprint("aperf_diff: %llu\n", aperf_diff);
182 dprint("mperf_diff: %llu\n", mperf_diff);
183 dprint("avg freq: %llu\n", *count);
184 return 0;
187 static int mperf_start(void)
189 int cpu;
190 unsigned long long dbg;
192 clock_gettime(CLOCK_REALTIME, &time_start);
193 mperf_get_tsc(&tsc_at_measure_start);
195 for (cpu = 0; cpu < cpu_count; cpu++)
196 mperf_init_stats(cpu);
198 mperf_get_tsc(&dbg);
199 dprint("TSC diff: %llu\n", dbg - tsc_at_measure_start);
200 return 0;
203 static int mperf_stop(void)
205 unsigned long long dbg;
206 int cpu;
208 for (cpu = 0; cpu < cpu_count; cpu++)
209 mperf_measure_stats(cpu);
211 mperf_get_tsc(&tsc_at_measure_end);
212 clock_gettime(CLOCK_REALTIME, &time_end);
214 mperf_get_tsc(&dbg);
215 dprint("TSC diff: %llu\n", dbg - tsc_at_measure_end);
217 return 0;
221 * Mperf register is defined to tick at P0 (maximum) frequency
223 * Instead of reading out P0 which can be tricky to read out from HW,
224 * we use TSC counter if it reliably ticks at P0/mperf frequency.
226 * Still try to fall back to:
227 * /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq
228 * on older Intel HW without invariant TSC feature.
229 * Or on AMD machines where TSC does not tick at P0 (do not exist yet, but
230 * it's still double checked (MSR_AMD_HWCR)).
232 * On these machines the user would still get useful mperf
233 * stats when acpi-cpufreq driver is loaded.
235 static int init_maxfreq_mode(void)
237 int ret;
238 unsigned long long hwcr;
239 unsigned long min;
241 if (!(cpupower_cpu_info.caps & CPUPOWER_CAP_INV_TSC))
242 goto use_sysfs;
244 if (cpupower_cpu_info.vendor == X86_VENDOR_AMD) {
245 /* MSR_AMD_HWCR tells us whether TSC runs at P0/mperf
246 * freq.
247 * A test whether hwcr is accessable/available would be:
248 * (cpupower_cpu_info.family > 0x10 ||
249 * cpupower_cpu_info.family == 0x10 &&
250 * cpupower_cpu_info.model >= 0x2))
251 * This should be the case for all aperf/mperf
252 * capable AMD machines and is therefore safe to test here.
253 * Compare with Linus kernel git commit: acf01734b1747b1ec4
255 ret = read_msr(0, MSR_AMD_HWCR, &hwcr);
257 * If the MSR read failed, assume a Xen system that did
258 * not explicitly provide access to it and assume TSC works
260 if (ret != 0) {
261 dprint("TSC read 0x%x failed - assume TSC working\n",
262 MSR_AMD_HWCR);
263 return 0;
264 } else if (1 & (hwcr >> 24)) {
265 max_freq_mode = MAX_FREQ_TSC_REF;
266 return 0;
267 } else { /* Use sysfs max frequency if available */ }
268 } else if (cpupower_cpu_info.vendor == X86_VENDOR_INTEL) {
270 * On Intel we assume mperf (in C0) is ticking at same
271 * rate than TSC
273 max_freq_mode = MAX_FREQ_TSC_REF;
274 return 0;
276 use_sysfs:
277 if (cpufreq_get_hardware_limits(0, &min, &max_frequency)) {
278 dprint("Cannot retrieve max freq from cpufreq kernel "
279 "subsystem\n");
280 return -1;
282 max_freq_mode = MAX_FREQ_SYSFS;
283 max_frequency /= 1000; /* Default automatically to MHz value */
284 return 0;
288 * This monitor provides:
290 * 1) Average frequency a CPU resided in
291 * This always works if the CPU has aperf/mperf capabilities
293 * 2) C0 and Cx (any sleep state) time a CPU resided in
294 * Works if mperf timer stops ticking in sleep states which
295 * seem to be the case on all current HW.
296 * Both is directly retrieved from HW registers and is independent
297 * from kernel statistics.
299 struct cpuidle_monitor mperf_monitor;
300 struct cpuidle_monitor *mperf_register(void)
302 if (!(cpupower_cpu_info.caps & CPUPOWER_CAP_APERF))
303 return NULL;
305 if (init_maxfreq_mode())
306 return NULL;
308 /* Free this at program termination */
309 is_valid = calloc(cpu_count, sizeof(int));
310 mperf_previous_count = calloc(cpu_count, sizeof(unsigned long long));
311 aperf_previous_count = calloc(cpu_count, sizeof(unsigned long long));
312 mperf_current_count = calloc(cpu_count, sizeof(unsigned long long));
313 aperf_current_count = calloc(cpu_count, sizeof(unsigned long long));
315 mperf_monitor.name_len = strlen(mperf_monitor.name);
316 return &mperf_monitor;
319 void mperf_unregister(void)
321 free(mperf_previous_count);
322 free(aperf_previous_count);
323 free(mperf_current_count);
324 free(aperf_current_count);
325 free(is_valid);
328 struct cpuidle_monitor mperf_monitor = {
329 .name = "Mperf",
330 .hw_states_num = MPERF_CSTATE_COUNT,
331 .hw_states = mperf_cstates,
332 .start = mperf_start,
333 .stop = mperf_stop,
334 .do_register = mperf_register,
335 .unregister = mperf_unregister,
336 .needs_root = 1,
337 .overflow_s = 922000000 /* 922337203 seconds TSC overflow
338 at 20GHz */
340 #endif /* #if defined(__i386__) || defined(__x86_64__) */