unify {de,}mangle_poll(), get rid of kernel-side POLL...
[cris-mirror.git] / arch / mips / sgi-ip27 / ip27-irq.c
blob0dde6164a06fc571587cf616a53499e04ede3334
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * ip27-irq.c: Highlevel interrupt handling for IP27 architecture.
5 * Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org)
6 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
7 * Copyright (C) 1999 - 2001 Kanoj Sarcar
8 */
10 #undef DEBUG
12 #include <linux/init.h>
13 #include <linux/irq.h>
14 #include <linux/errno.h>
15 #include <linux/signal.h>
16 #include <linux/sched.h>
17 #include <linux/types.h>
18 #include <linux/interrupt.h>
19 #include <linux/ioport.h>
20 #include <linux/timex.h>
21 #include <linux/smp.h>
22 #include <linux/random.h>
23 #include <linux/kernel.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/delay.h>
26 #include <linux/bitops.h>
28 #include <asm/bootinfo.h>
29 #include <asm/io.h>
30 #include <asm/mipsregs.h>
32 #include <asm/processor.h>
33 #include <asm/sn/addrs.h>
34 #include <asm/sn/agent.h>
35 #include <asm/sn/arch.h>
36 #include <asm/sn/hub.h>
37 #include <asm/sn/intr.h>
40 * Linux has a controller-independent x86 interrupt architecture.
41 * every controller has a 'controller-template', that is used
42 * by the main code to do the right thing. Each driver-visible
43 * interrupt source is transparently wired to the appropriate
44 * controller. Thus drivers need not be aware of the
45 * interrupt-controller.
47 * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
48 * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
49 * (IO-APICs assumed to be messaging to Pentium local-APICs)
51 * the code is designed to be easily extended with new/different
52 * interrupt controllers, without having to do assembly magic.
55 extern asmlinkage void ip27_irq(void);
58 * Find first bit set
60 static int ms1bit(unsigned long x)
62 int b = 0, s;
64 s = 16; if (x >> 16 == 0) s = 0; b += s; x >>= s;
65 s = 8; if (x >> 8 == 0) s = 0; b += s; x >>= s;
66 s = 4; if (x >> 4 == 0) s = 0; b += s; x >>= s;
67 s = 2; if (x >> 2 == 0) s = 0; b += s; x >>= s;
68 s = 1; if (x >> 1 == 0) s = 0; b += s;
70 return b;
74 * This code is unnecessarily complex, because we do
75 * intr enabling. Basically, once we grab the set of intrs we need
76 * to service, we must mask _all_ these interrupts; firstly, to make
77 * sure the same intr does not intr again, causing recursion that
78 * can lead to stack overflow. Secondly, we can not just mask the
79 * one intr we are do_IRQing, because the non-masked intrs in the
80 * first set might intr again, causing multiple servicings of the
81 * same intr. This effect is mostly seen for intercpu intrs.
82 * Kanoj 05.13.00
85 static void ip27_do_irq_mask0(void)
87 int irq, swlevel;
88 hubreg_t pend0, mask0;
89 cpuid_t cpu = smp_processor_id();
90 int pi_int_mask0 =
91 (cputoslice(cpu) == 0) ? PI_INT_MASK0_A : PI_INT_MASK0_B;
93 /* copied from Irix intpend0() */
94 pend0 = LOCAL_HUB_L(PI_INT_PEND0);
95 mask0 = LOCAL_HUB_L(pi_int_mask0);
97 pend0 &= mask0; /* Pick intrs we should look at */
98 if (!pend0)
99 return;
101 swlevel = ms1bit(pend0);
102 #ifdef CONFIG_SMP
103 if (pend0 & (1UL << CPU_RESCHED_A_IRQ)) {
104 LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ);
105 scheduler_ipi();
106 } else if (pend0 & (1UL << CPU_RESCHED_B_IRQ)) {
107 LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ);
108 scheduler_ipi();
109 } else if (pend0 & (1UL << CPU_CALL_A_IRQ)) {
110 LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ);
111 irq_enter();
112 generic_smp_call_function_interrupt();
113 irq_exit();
114 } else if (pend0 & (1UL << CPU_CALL_B_IRQ)) {
115 LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ);
116 irq_enter();
117 generic_smp_call_function_interrupt();
118 irq_exit();
119 } else
120 #endif
122 /* "map" swlevel to irq */
123 struct slice_data *si = cpu_data[cpu].data;
125 irq = si->level_to_irq[swlevel];
126 do_IRQ(irq);
129 LOCAL_HUB_L(PI_INT_PEND0);
132 static void ip27_do_irq_mask1(void)
134 int irq, swlevel;
135 hubreg_t pend1, mask1;
136 cpuid_t cpu = smp_processor_id();
137 int pi_int_mask1 = (cputoslice(cpu) == 0) ? PI_INT_MASK1_A : PI_INT_MASK1_B;
138 struct slice_data *si = cpu_data[cpu].data;
140 /* copied from Irix intpend0() */
141 pend1 = LOCAL_HUB_L(PI_INT_PEND1);
142 mask1 = LOCAL_HUB_L(pi_int_mask1);
144 pend1 &= mask1; /* Pick intrs we should look at */
145 if (!pend1)
146 return;
148 swlevel = ms1bit(pend1);
149 /* "map" swlevel to irq */
150 irq = si->level_to_irq[swlevel];
151 LOCAL_HUB_CLR_INTR(swlevel);
152 do_IRQ(irq);
154 LOCAL_HUB_L(PI_INT_PEND1);
157 static void ip27_prof_timer(void)
159 panic("CPU %d got a profiling interrupt", smp_processor_id());
162 static void ip27_hub_error(void)
164 panic("CPU %d got a hub error interrupt", smp_processor_id());
167 asmlinkage void plat_irq_dispatch(void)
169 unsigned long pending = read_c0_cause() & read_c0_status();
170 extern unsigned int rt_timer_irq;
172 if (pending & CAUSEF_IP4)
173 do_IRQ(rt_timer_irq);
174 else if (pending & CAUSEF_IP2) /* PI_INT_PEND_0 or CC_PEND_{A|B} */
175 ip27_do_irq_mask0();
176 else if (pending & CAUSEF_IP3) /* PI_INT_PEND_1 */
177 ip27_do_irq_mask1();
178 else if (pending & CAUSEF_IP5)
179 ip27_prof_timer();
180 else if (pending & CAUSEF_IP6)
181 ip27_hub_error();
184 void __init arch_init_irq(void)
188 void install_ipi(void)
190 int slice = LOCAL_HUB_L(PI_CPU_NUM);
191 int cpu = smp_processor_id();
192 struct slice_data *si = cpu_data[cpu].data;
193 struct hub_data *hub = hub_data(cpu_to_node(cpu));
194 int resched, call;
196 resched = CPU_RESCHED_A_IRQ + slice;
197 __set_bit(resched, hub->irq_alloc_mask);
198 __set_bit(resched, si->irq_enable_mask);
199 LOCAL_HUB_CLR_INTR(resched);
201 call = CPU_CALL_A_IRQ + slice;
202 __set_bit(call, hub->irq_alloc_mask);
203 __set_bit(call, si->irq_enable_mask);
204 LOCAL_HUB_CLR_INTR(call);
206 if (slice == 0) {
207 LOCAL_HUB_S(PI_INT_MASK0_A, si->irq_enable_mask[0]);
208 LOCAL_HUB_S(PI_INT_MASK1_A, si->irq_enable_mask[1]);
209 } else {
210 LOCAL_HUB_S(PI_INT_MASK0_B, si->irq_enable_mask[0]);
211 LOCAL_HUB_S(PI_INT_MASK1_B, si->irq_enable_mask[1]);