unify {de,}mangle_poll(), get rid of kernel-side POLL...
[cris-mirror.git] / arch / powerpc / kvm / book3s_xive.c
blobf0f5cd4d2fe7cf796336cd56cc3d8c9011be8cab
1 /*
2 * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License, version 2, as
6 * published by the Free Software Foundation.
7 */
9 #define pr_fmt(fmt) "xive-kvm: " fmt
11 #include <linux/kernel.h>
12 #include <linux/kvm_host.h>
13 #include <linux/err.h>
14 #include <linux/gfp.h>
15 #include <linux/spinlock.h>
16 #include <linux/delay.h>
17 #include <linux/percpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/uaccess.h>
20 #include <asm/kvm_book3s.h>
21 #include <asm/kvm_ppc.h>
22 #include <asm/hvcall.h>
23 #include <asm/xics.h>
24 #include <asm/xive.h>
25 #include <asm/xive-regs.h>
26 #include <asm/debug.h>
27 #include <asm/debugfs.h>
28 #include <asm/time.h>
29 #include <asm/opal.h>
31 #include <linux/debugfs.h>
32 #include <linux/seq_file.h>
34 #include "book3s_xive.h"
38 * Virtual mode variants of the hcalls for use on radix/radix
39 * with AIL. They require the VCPU's VP to be "pushed"
41 * We still instanciate them here because we use some of the
42 * generated utility functions as well in this file.
44 #define XIVE_RUNTIME_CHECKS
45 #define X_PFX xive_vm_
46 #define X_STATIC static
47 #define X_STAT_PFX stat_vm_
48 #define __x_tima xive_tima
49 #define __x_eoi_page(xd) ((void __iomem *)((xd)->eoi_mmio))
50 #define __x_trig_page(xd) ((void __iomem *)((xd)->trig_mmio))
51 #define __x_writeb __raw_writeb
52 #define __x_readw __raw_readw
53 #define __x_readq __raw_readq
54 #define __x_writeq __raw_writeq
56 #include "book3s_xive_template.c"
59 * We leave a gap of a couple of interrupts in the queue to
60 * account for the IPI and additional safety guard.
62 #define XIVE_Q_GAP 2
65 * This is a simple trigger for a generic XIVE IRQ. This must
66 * only be called for interrupts that support a trigger page
68 static bool xive_irq_trigger(struct xive_irq_data *xd)
70 /* This should be only for MSIs */
71 if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
72 return false;
74 /* Those interrupts should always have a trigger page */
75 if (WARN_ON(!xd->trig_mmio))
76 return false;
78 out_be64(xd->trig_mmio, 0);
80 return true;
83 static irqreturn_t xive_esc_irq(int irq, void *data)
85 struct kvm_vcpu *vcpu = data;
87 vcpu->arch.irq_pending = 1;
88 smp_mb();
89 if (vcpu->arch.ceded)
90 kvmppc_fast_vcpu_kick(vcpu);
92 /* Since we have the no-EOI flag, the interrupt is effectively
93 * disabled now. Clearing xive_esc_on means we won't bother
94 * doing so on the next entry.
96 * This also allows the entry code to know that if a PQ combination
97 * of 10 is observed while xive_esc_on is true, it means the queue
98 * contains an unprocessed escalation interrupt. We don't make use of
99 * that knowledge today but might (see comment in book3s_hv_rmhandler.S)
101 vcpu->arch.xive_esc_on = false;
103 return IRQ_HANDLED;
106 static int xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio)
108 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
109 struct xive_q *q = &xc->queues[prio];
110 char *name = NULL;
111 int rc;
113 /* Already there ? */
114 if (xc->esc_virq[prio])
115 return 0;
117 /* Hook up the escalation interrupt */
118 xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq);
119 if (!xc->esc_virq[prio]) {
120 pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n",
121 prio, xc->server_num);
122 return -EIO;
125 if (xc->xive->single_escalation)
126 name = kasprintf(GFP_KERNEL, "kvm-%d-%d",
127 vcpu->kvm->arch.lpid, xc->server_num);
128 else
129 name = kasprintf(GFP_KERNEL, "kvm-%d-%d-%d",
130 vcpu->kvm->arch.lpid, xc->server_num, prio);
131 if (!name) {
132 pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n",
133 prio, xc->server_num);
134 rc = -ENOMEM;
135 goto error;
138 pr_devel("Escalation %s irq %d (prio %d)\n", name, xc->esc_virq[prio], prio);
140 rc = request_irq(xc->esc_virq[prio], xive_esc_irq,
141 IRQF_NO_THREAD, name, vcpu);
142 if (rc) {
143 pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n",
144 prio, xc->server_num);
145 goto error;
147 xc->esc_virq_names[prio] = name;
149 /* In single escalation mode, we grab the ESB MMIO of the
150 * interrupt and mask it. Also populate the VCPU v/raddr
151 * of the ESB page for use by asm entry/exit code. Finally
152 * set the XIVE_IRQ_NO_EOI flag which will prevent the
153 * core code from performing an EOI on the escalation
154 * interrupt, thus leaving it effectively masked after
155 * it fires once.
157 if (xc->xive->single_escalation) {
158 struct irq_data *d = irq_get_irq_data(xc->esc_virq[prio]);
159 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
161 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
162 vcpu->arch.xive_esc_raddr = xd->eoi_page;
163 vcpu->arch.xive_esc_vaddr = (__force u64)xd->eoi_mmio;
164 xd->flags |= XIVE_IRQ_NO_EOI;
167 return 0;
168 error:
169 irq_dispose_mapping(xc->esc_virq[prio]);
170 xc->esc_virq[prio] = 0;
171 kfree(name);
172 return rc;
175 static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio)
177 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
178 struct kvmppc_xive *xive = xc->xive;
179 struct xive_q *q = &xc->queues[prio];
180 void *qpage;
181 int rc;
183 if (WARN_ON(q->qpage))
184 return 0;
186 /* Allocate the queue and retrieve infos on current node for now */
187 qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order);
188 if (!qpage) {
189 pr_err("Failed to allocate queue %d for VCPU %d\n",
190 prio, xc->server_num);
191 return -ENOMEM;;
193 memset(qpage, 0, 1 << xive->q_order);
196 * Reconfigure the queue. This will set q->qpage only once the
197 * queue is fully configured. This is a requirement for prio 0
198 * as we will stop doing EOIs for every IPI as soon as we observe
199 * qpage being non-NULL, and instead will only EOI when we receive
200 * corresponding queue 0 entries
202 rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage,
203 xive->q_order, true);
204 if (rc)
205 pr_err("Failed to configure queue %d for VCPU %d\n",
206 prio, xc->server_num);
207 return rc;
210 /* Called with kvm_lock held */
211 static int xive_check_provisioning(struct kvm *kvm, u8 prio)
213 struct kvmppc_xive *xive = kvm->arch.xive;
214 struct kvm_vcpu *vcpu;
215 int i, rc;
217 lockdep_assert_held(&kvm->lock);
219 /* Already provisioned ? */
220 if (xive->qmap & (1 << prio))
221 return 0;
223 pr_devel("Provisioning prio... %d\n", prio);
225 /* Provision each VCPU and enable escalations if needed */
226 kvm_for_each_vcpu(i, vcpu, kvm) {
227 if (!vcpu->arch.xive_vcpu)
228 continue;
229 rc = xive_provision_queue(vcpu, prio);
230 if (rc == 0 && !xive->single_escalation)
231 xive_attach_escalation(vcpu, prio);
232 if (rc)
233 return rc;
236 /* Order previous stores and mark it as provisioned */
237 mb();
238 xive->qmap |= (1 << prio);
239 return 0;
242 static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio)
244 struct kvm_vcpu *vcpu;
245 struct kvmppc_xive_vcpu *xc;
246 struct xive_q *q;
248 /* Locate target server */
249 vcpu = kvmppc_xive_find_server(kvm, server);
250 if (!vcpu) {
251 pr_warn("%s: Can't find server %d\n", __func__, server);
252 return;
254 xc = vcpu->arch.xive_vcpu;
255 if (WARN_ON(!xc))
256 return;
258 q = &xc->queues[prio];
259 atomic_inc(&q->pending_count);
262 static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio)
264 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
265 struct xive_q *q;
266 u32 max;
268 if (WARN_ON(!xc))
269 return -ENXIO;
270 if (!xc->valid)
271 return -ENXIO;
273 q = &xc->queues[prio];
274 if (WARN_ON(!q->qpage))
275 return -ENXIO;
277 /* Calculate max number of interrupts in that queue. */
278 max = (q->msk + 1) - XIVE_Q_GAP;
279 return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY;
282 static int xive_select_target(struct kvm *kvm, u32 *server, u8 prio)
284 struct kvm_vcpu *vcpu;
285 int i, rc;
287 /* Locate target server */
288 vcpu = kvmppc_xive_find_server(kvm, *server);
289 if (!vcpu) {
290 pr_devel("Can't find server %d\n", *server);
291 return -EINVAL;
294 pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio);
296 /* Try pick it */
297 rc = xive_try_pick_queue(vcpu, prio);
298 if (rc == 0)
299 return rc;
301 pr_devel(" .. failed, looking up candidate...\n");
303 /* Failed, pick another VCPU */
304 kvm_for_each_vcpu(i, vcpu, kvm) {
305 if (!vcpu->arch.xive_vcpu)
306 continue;
307 rc = xive_try_pick_queue(vcpu, prio);
308 if (rc == 0) {
309 *server = vcpu->arch.xive_vcpu->server_num;
310 pr_devel(" found on 0x%x/%d\n", *server, prio);
311 return rc;
314 pr_devel(" no available target !\n");
316 /* No available target ! */
317 return -EBUSY;
320 static u8 xive_lock_and_mask(struct kvmppc_xive *xive,
321 struct kvmppc_xive_src_block *sb,
322 struct kvmppc_xive_irq_state *state)
324 struct xive_irq_data *xd;
325 u32 hw_num;
326 u8 old_prio;
327 u64 val;
330 * Take the lock, set masked, try again if racing
331 * with H_EOI
333 for (;;) {
334 arch_spin_lock(&sb->lock);
335 old_prio = state->guest_priority;
336 state->guest_priority = MASKED;
337 mb();
338 if (!state->in_eoi)
339 break;
340 state->guest_priority = old_prio;
341 arch_spin_unlock(&sb->lock);
344 /* No change ? Bail */
345 if (old_prio == MASKED)
346 return old_prio;
348 /* Get the right irq */
349 kvmppc_xive_select_irq(state, &hw_num, &xd);
352 * If the interrupt is marked as needing masking via
353 * firmware, we do it here. Firmware masking however
354 * is "lossy", it won't return the old p and q bits
355 * and won't set the interrupt to a state where it will
356 * record queued ones. If this is an issue we should do
357 * lazy masking instead.
359 * For now, we work around this in unmask by forcing
360 * an interrupt whenever we unmask a non-LSI via FW
361 * (if ever).
363 if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) {
364 xive_native_configure_irq(hw_num,
365 xive->vp_base + state->act_server,
366 MASKED, state->number);
367 /* set old_p so we can track if an H_EOI was done */
368 state->old_p = true;
369 state->old_q = false;
370 } else {
371 /* Set PQ to 10, return old P and old Q and remember them */
372 val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10);
373 state->old_p = !!(val & 2);
374 state->old_q = !!(val & 1);
377 * Synchronize hardware to sensure the queues are updated
378 * when masking
380 xive_native_sync_source(hw_num);
383 return old_prio;
386 static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb,
387 struct kvmppc_xive_irq_state *state)
390 * Take the lock try again if racing with H_EOI
392 for (;;) {
393 arch_spin_lock(&sb->lock);
394 if (!state->in_eoi)
395 break;
396 arch_spin_unlock(&sb->lock);
400 static void xive_finish_unmask(struct kvmppc_xive *xive,
401 struct kvmppc_xive_src_block *sb,
402 struct kvmppc_xive_irq_state *state,
403 u8 prio)
405 struct xive_irq_data *xd;
406 u32 hw_num;
408 /* If we aren't changing a thing, move on */
409 if (state->guest_priority != MASKED)
410 goto bail;
412 /* Get the right irq */
413 kvmppc_xive_select_irq(state, &hw_num, &xd);
416 * See command in xive_lock_and_mask() concerning masking
417 * via firmware.
419 if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) {
420 xive_native_configure_irq(hw_num,
421 xive->vp_base + state->act_server,
422 state->act_priority, state->number);
423 /* If an EOI is needed, do it here */
424 if (!state->old_p)
425 xive_vm_source_eoi(hw_num, xd);
426 /* If this is not an LSI, force a trigger */
427 if (!(xd->flags & OPAL_XIVE_IRQ_LSI))
428 xive_irq_trigger(xd);
429 goto bail;
432 /* Old Q set, set PQ to 11 */
433 if (state->old_q)
434 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11);
437 * If not old P, then perform an "effective" EOI,
438 * on the source. This will handle the cases where
439 * FW EOI is needed.
441 if (!state->old_p)
442 xive_vm_source_eoi(hw_num, xd);
444 /* Synchronize ordering and mark unmasked */
445 mb();
446 bail:
447 state->guest_priority = prio;
451 * Target an interrupt to a given server/prio, this will fallback
452 * to another server if necessary and perform the HW targetting
453 * updates as needed
455 * NOTE: Must be called with the state lock held
457 static int xive_target_interrupt(struct kvm *kvm,
458 struct kvmppc_xive_irq_state *state,
459 u32 server, u8 prio)
461 struct kvmppc_xive *xive = kvm->arch.xive;
462 u32 hw_num;
463 int rc;
466 * This will return a tentative server and actual
467 * priority. The count for that new target will have
468 * already been incremented.
470 rc = xive_select_target(kvm, &server, prio);
473 * We failed to find a target ? Not much we can do
474 * at least until we support the GIQ.
476 if (rc)
477 return rc;
480 * Increment the old queue pending count if there
481 * was one so that the old queue count gets adjusted later
482 * when observed to be empty.
484 if (state->act_priority != MASKED)
485 xive_inc_q_pending(kvm,
486 state->act_server,
487 state->act_priority);
489 * Update state and HW
491 state->act_priority = prio;
492 state->act_server = server;
494 /* Get the right irq */
495 kvmppc_xive_select_irq(state, &hw_num, NULL);
497 return xive_native_configure_irq(hw_num,
498 xive->vp_base + server,
499 prio, state->number);
503 * Targetting rules: In order to avoid losing track of
504 * pending interrupts accross mask and unmask, which would
505 * allow queue overflows, we implement the following rules:
507 * - Unless it was never enabled (or we run out of capacity)
508 * an interrupt is always targetted at a valid server/queue
509 * pair even when "masked" by the guest. This pair tends to
510 * be the last one used but it can be changed under some
511 * circumstances. That allows us to separate targetting
512 * from masking, we only handle accounting during (re)targetting,
513 * this also allows us to let an interrupt drain into its target
514 * queue after masking, avoiding complex schemes to remove
515 * interrupts out of remote processor queues.
517 * - When masking, we set PQ to 10 and save the previous value
518 * of P and Q.
520 * - When unmasking, if saved Q was set, we set PQ to 11
521 * otherwise we leave PQ to the HW state which will be either
522 * 10 if nothing happened or 11 if the interrupt fired while
523 * masked. Effectively we are OR'ing the previous Q into the
524 * HW Q.
526 * Then if saved P is clear, we do an effective EOI (Q->P->Trigger)
527 * which will unmask the interrupt and shoot a new one if Q was
528 * set.
530 * Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11,
531 * effectively meaning an H_EOI from the guest is still expected
532 * for that interrupt).
534 * - If H_EOI occurs while masked, we clear the saved P.
536 * - When changing target, we account on the new target and
537 * increment a separate "pending" counter on the old one.
538 * This pending counter will be used to decrement the old
539 * target's count when its queue has been observed empty.
542 int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server,
543 u32 priority)
545 struct kvmppc_xive *xive = kvm->arch.xive;
546 struct kvmppc_xive_src_block *sb;
547 struct kvmppc_xive_irq_state *state;
548 u8 new_act_prio;
549 int rc = 0;
550 u16 idx;
552 if (!xive)
553 return -ENODEV;
555 pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n",
556 irq, server, priority);
558 /* First, check provisioning of queues */
559 if (priority != MASKED)
560 rc = xive_check_provisioning(xive->kvm,
561 xive_prio_from_guest(priority));
562 if (rc) {
563 pr_devel(" provisioning failure %d !\n", rc);
564 return rc;
567 sb = kvmppc_xive_find_source(xive, irq, &idx);
568 if (!sb)
569 return -EINVAL;
570 state = &sb->irq_state[idx];
573 * We first handle masking/unmasking since the locking
574 * might need to be retried due to EOIs, we'll handle
575 * targetting changes later. These functions will return
576 * with the SB lock held.
578 * xive_lock_and_mask() will also set state->guest_priority
579 * but won't otherwise change other fields of the state.
581 * xive_lock_for_unmask will not actually unmask, this will
582 * be done later by xive_finish_unmask() once the targetting
583 * has been done, so we don't try to unmask an interrupt
584 * that hasn't yet been targetted.
586 if (priority == MASKED)
587 xive_lock_and_mask(xive, sb, state);
588 else
589 xive_lock_for_unmask(sb, state);
593 * Then we handle targetting.
595 * First calculate a new "actual priority"
597 new_act_prio = state->act_priority;
598 if (priority != MASKED)
599 new_act_prio = xive_prio_from_guest(priority);
601 pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n",
602 new_act_prio, state->act_server, state->act_priority);
605 * Then check if we actually need to change anything,
607 * The condition for re-targetting the interrupt is that
608 * we have a valid new priority (new_act_prio is not 0xff)
609 * and either the server or the priority changed.
611 * Note: If act_priority was ff and the new priority is
612 * also ff, we don't do anything and leave the interrupt
613 * untargetted. An attempt of doing an int_on on an
614 * untargetted interrupt will fail. If that is a problem
615 * we could initialize interrupts with valid default
618 if (new_act_prio != MASKED &&
619 (state->act_server != server ||
620 state->act_priority != new_act_prio))
621 rc = xive_target_interrupt(kvm, state, server, new_act_prio);
624 * Perform the final unmasking of the interrupt source
625 * if necessary
627 if (priority != MASKED)
628 xive_finish_unmask(xive, sb, state, priority);
631 * Finally Update saved_priority to match. Only int_on/off
632 * set this field to a different value.
634 state->saved_priority = priority;
636 arch_spin_unlock(&sb->lock);
637 return rc;
640 int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server,
641 u32 *priority)
643 struct kvmppc_xive *xive = kvm->arch.xive;
644 struct kvmppc_xive_src_block *sb;
645 struct kvmppc_xive_irq_state *state;
646 u16 idx;
648 if (!xive)
649 return -ENODEV;
651 sb = kvmppc_xive_find_source(xive, irq, &idx);
652 if (!sb)
653 return -EINVAL;
654 state = &sb->irq_state[idx];
655 arch_spin_lock(&sb->lock);
656 *server = state->act_server;
657 *priority = state->guest_priority;
658 arch_spin_unlock(&sb->lock);
660 return 0;
663 int kvmppc_xive_int_on(struct kvm *kvm, u32 irq)
665 struct kvmppc_xive *xive = kvm->arch.xive;
666 struct kvmppc_xive_src_block *sb;
667 struct kvmppc_xive_irq_state *state;
668 u16 idx;
670 if (!xive)
671 return -ENODEV;
673 sb = kvmppc_xive_find_source(xive, irq, &idx);
674 if (!sb)
675 return -EINVAL;
676 state = &sb->irq_state[idx];
678 pr_devel("int_on(irq=0x%x)\n", irq);
681 * Check if interrupt was not targetted
683 if (state->act_priority == MASKED) {
684 pr_devel("int_on on untargetted interrupt\n");
685 return -EINVAL;
688 /* If saved_priority is 0xff, do nothing */
689 if (state->saved_priority == MASKED)
690 return 0;
693 * Lock and unmask it.
695 xive_lock_for_unmask(sb, state);
696 xive_finish_unmask(xive, sb, state, state->saved_priority);
697 arch_spin_unlock(&sb->lock);
699 return 0;
702 int kvmppc_xive_int_off(struct kvm *kvm, u32 irq)
704 struct kvmppc_xive *xive = kvm->arch.xive;
705 struct kvmppc_xive_src_block *sb;
706 struct kvmppc_xive_irq_state *state;
707 u16 idx;
709 if (!xive)
710 return -ENODEV;
712 sb = kvmppc_xive_find_source(xive, irq, &idx);
713 if (!sb)
714 return -EINVAL;
715 state = &sb->irq_state[idx];
717 pr_devel("int_off(irq=0x%x)\n", irq);
720 * Lock and mask
722 state->saved_priority = xive_lock_and_mask(xive, sb, state);
723 arch_spin_unlock(&sb->lock);
725 return 0;
728 static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq)
730 struct kvmppc_xive_src_block *sb;
731 struct kvmppc_xive_irq_state *state;
732 u16 idx;
734 sb = kvmppc_xive_find_source(xive, irq, &idx);
735 if (!sb)
736 return false;
737 state = &sb->irq_state[idx];
738 if (!state->valid)
739 return false;
742 * Trigger the IPI. This assumes we never restore a pass-through
743 * interrupt which should be safe enough
745 xive_irq_trigger(&state->ipi_data);
747 return true;
750 u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu)
752 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
754 if (!xc)
755 return 0;
757 /* Return the per-cpu state for state saving/migration */
758 return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT |
759 (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT |
760 (u64)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT;
763 int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval)
765 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
766 struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
767 u8 cppr, mfrr;
768 u32 xisr;
770 if (!xc || !xive)
771 return -ENOENT;
773 /* Grab individual state fields. We don't use pending_pri */
774 cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT;
775 xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) &
776 KVM_REG_PPC_ICP_XISR_MASK;
777 mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT;
779 pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n",
780 xc->server_num, cppr, mfrr, xisr);
783 * We can't update the state of a "pushed" VCPU, but that
784 * shouldn't happen.
786 if (WARN_ON(vcpu->arch.xive_pushed))
787 return -EIO;
789 /* Update VCPU HW saved state */
790 vcpu->arch.xive_saved_state.cppr = cppr;
791 xc->hw_cppr = xc->cppr = cppr;
794 * Update MFRR state. If it's not 0xff, we mark the VCPU as
795 * having a pending MFRR change, which will re-evaluate the
796 * target. The VCPU will thus potentially get a spurious
797 * interrupt but that's not a big deal.
799 xc->mfrr = mfrr;
800 if (mfrr < cppr)
801 xive_irq_trigger(&xc->vp_ipi_data);
804 * Now saved XIRR is "interesting". It means there's something in
805 * the legacy "1 element" queue... for an IPI we simply ignore it,
806 * as the MFRR restore will handle that. For anything else we need
807 * to force a resend of the source.
808 * However the source may not have been setup yet. If that's the
809 * case, we keep that info and increment a counter in the xive to
810 * tell subsequent xive_set_source() to go look.
812 if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) {
813 xc->delayed_irq = xisr;
814 xive->delayed_irqs++;
815 pr_devel(" xisr restore delayed\n");
818 return 0;
821 int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq,
822 struct irq_desc *host_desc)
824 struct kvmppc_xive *xive = kvm->arch.xive;
825 struct kvmppc_xive_src_block *sb;
826 struct kvmppc_xive_irq_state *state;
827 struct irq_data *host_data = irq_desc_get_irq_data(host_desc);
828 unsigned int host_irq = irq_desc_get_irq(host_desc);
829 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data);
830 u16 idx;
831 u8 prio;
832 int rc;
834 if (!xive)
835 return -ENODEV;
837 pr_devel("set_mapped girq 0x%lx host HW irq 0x%x...\n",guest_irq, hw_irq);
839 sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
840 if (!sb)
841 return -EINVAL;
842 state = &sb->irq_state[idx];
845 * Mark the passed-through interrupt as going to a VCPU,
846 * this will prevent further EOIs and similar operations
847 * from the XIVE code. It will also mask the interrupt
848 * to either PQ=10 or 11 state, the latter if the interrupt
849 * is pending. This will allow us to unmask or retrigger it
850 * after routing it to the guest with a simple EOI.
852 * The "state" argument is a "token", all it needs is to be
853 * non-NULL to switch to passed-through or NULL for the
854 * other way around. We may not yet have an actual VCPU
855 * target here and we don't really care.
857 rc = irq_set_vcpu_affinity(host_irq, state);
858 if (rc) {
859 pr_err("Failed to set VCPU affinity for irq %d\n", host_irq);
860 return rc;
864 * Mask and read state of IPI. We need to know if its P bit
865 * is set as that means it's potentially already using a
866 * queue entry in the target
868 prio = xive_lock_and_mask(xive, sb, state);
869 pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio,
870 state->old_p, state->old_q);
872 /* Turn the IPI hard off */
873 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
875 /* Grab info about irq */
876 state->pt_number = hw_irq;
877 state->pt_data = irq_data_get_irq_handler_data(host_data);
880 * Configure the IRQ to match the existing configuration of
881 * the IPI if it was already targetted. Otherwise this will
882 * mask the interrupt in a lossy way (act_priority is 0xff)
883 * which is fine for a never started interrupt.
885 xive_native_configure_irq(hw_irq,
886 xive->vp_base + state->act_server,
887 state->act_priority, state->number);
890 * We do an EOI to enable the interrupt (and retrigger if needed)
891 * if the guest has the interrupt unmasked and the P bit was *not*
892 * set in the IPI. If it was set, we know a slot may still be in
893 * use in the target queue thus we have to wait for a guest
894 * originated EOI
896 if (prio != MASKED && !state->old_p)
897 xive_vm_source_eoi(hw_irq, state->pt_data);
899 /* Clear old_p/old_q as they are no longer relevant */
900 state->old_p = state->old_q = false;
902 /* Restore guest prio (unlocks EOI) */
903 mb();
904 state->guest_priority = prio;
905 arch_spin_unlock(&sb->lock);
907 return 0;
909 EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped);
911 int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq,
912 struct irq_desc *host_desc)
914 struct kvmppc_xive *xive = kvm->arch.xive;
915 struct kvmppc_xive_src_block *sb;
916 struct kvmppc_xive_irq_state *state;
917 unsigned int host_irq = irq_desc_get_irq(host_desc);
918 u16 idx;
919 u8 prio;
920 int rc;
922 if (!xive)
923 return -ENODEV;
925 pr_devel("clr_mapped girq 0x%lx...\n", guest_irq);
927 sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
928 if (!sb)
929 return -EINVAL;
930 state = &sb->irq_state[idx];
933 * Mask and read state of IRQ. We need to know if its P bit
934 * is set as that means it's potentially already using a
935 * queue entry in the target
937 prio = xive_lock_and_mask(xive, sb, state);
938 pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio,
939 state->old_p, state->old_q);
942 * If old_p is set, the interrupt is pending, we switch it to
943 * PQ=11. This will force a resend in the host so the interrupt
944 * isn't lost to whatver host driver may pick it up
946 if (state->old_p)
947 xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11);
949 /* Release the passed-through interrupt to the host */
950 rc = irq_set_vcpu_affinity(host_irq, NULL);
951 if (rc) {
952 pr_err("Failed to clr VCPU affinity for irq %d\n", host_irq);
953 return rc;
956 /* Forget about the IRQ */
957 state->pt_number = 0;
958 state->pt_data = NULL;
960 /* Reconfigure the IPI */
961 xive_native_configure_irq(state->ipi_number,
962 xive->vp_base + state->act_server,
963 state->act_priority, state->number);
966 * If old_p is set (we have a queue entry potentially
967 * occupied) or the interrupt is masked, we set the IPI
968 * to PQ=10 state. Otherwise we just re-enable it (PQ=00).
970 if (prio == MASKED || state->old_p)
971 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10);
972 else
973 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00);
975 /* Restore guest prio (unlocks EOI) */
976 mb();
977 state->guest_priority = prio;
978 arch_spin_unlock(&sb->lock);
980 return 0;
982 EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped);
984 static void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu)
986 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
987 struct kvm *kvm = vcpu->kvm;
988 struct kvmppc_xive *xive = kvm->arch.xive;
989 int i, j;
991 for (i = 0; i <= xive->max_sbid; i++) {
992 struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
994 if (!sb)
995 continue;
996 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) {
997 struct kvmppc_xive_irq_state *state = &sb->irq_state[j];
999 if (!state->valid)
1000 continue;
1001 if (state->act_priority == MASKED)
1002 continue;
1003 if (state->act_server != xc->server_num)
1004 continue;
1006 /* Clean it up */
1007 arch_spin_lock(&sb->lock);
1008 state->act_priority = MASKED;
1009 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
1010 xive_native_configure_irq(state->ipi_number, 0, MASKED, 0);
1011 if (state->pt_number) {
1012 xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01);
1013 xive_native_configure_irq(state->pt_number, 0, MASKED, 0);
1015 arch_spin_unlock(&sb->lock);
1020 void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu)
1022 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1023 struct kvmppc_xive *xive = xc->xive;
1024 int i;
1026 pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num);
1028 /* Ensure no interrupt is still routed to that VP */
1029 xc->valid = false;
1030 kvmppc_xive_disable_vcpu_interrupts(vcpu);
1032 /* Mask the VP IPI */
1033 xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01);
1035 /* Disable the VP */
1036 xive_native_disable_vp(xc->vp_id);
1038 /* Free the queues & associated interrupts */
1039 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1040 struct xive_q *q = &xc->queues[i];
1042 /* Free the escalation irq */
1043 if (xc->esc_virq[i]) {
1044 free_irq(xc->esc_virq[i], vcpu);
1045 irq_dispose_mapping(xc->esc_virq[i]);
1046 kfree(xc->esc_virq_names[i]);
1048 /* Free the queue */
1049 xive_native_disable_queue(xc->vp_id, q, i);
1050 if (q->qpage) {
1051 free_pages((unsigned long)q->qpage,
1052 xive->q_page_order);
1053 q->qpage = NULL;
1057 /* Free the IPI */
1058 if (xc->vp_ipi) {
1059 xive_cleanup_irq_data(&xc->vp_ipi_data);
1060 xive_native_free_irq(xc->vp_ipi);
1062 /* Free the VP */
1063 kfree(xc);
1066 int kvmppc_xive_connect_vcpu(struct kvm_device *dev,
1067 struct kvm_vcpu *vcpu, u32 cpu)
1069 struct kvmppc_xive *xive = dev->private;
1070 struct kvmppc_xive_vcpu *xc;
1071 int i, r = -EBUSY;
1073 pr_devel("connect_vcpu(cpu=%d)\n", cpu);
1075 if (dev->ops != &kvm_xive_ops) {
1076 pr_devel("Wrong ops !\n");
1077 return -EPERM;
1079 if (xive->kvm != vcpu->kvm)
1080 return -EPERM;
1081 if (vcpu->arch.irq_type)
1082 return -EBUSY;
1083 if (kvmppc_xive_find_server(vcpu->kvm, cpu)) {
1084 pr_devel("Duplicate !\n");
1085 return -EEXIST;
1087 if (cpu >= KVM_MAX_VCPUS) {
1088 pr_devel("Out of bounds !\n");
1089 return -EINVAL;
1091 xc = kzalloc(sizeof(*xc), GFP_KERNEL);
1092 if (!xc)
1093 return -ENOMEM;
1095 /* We need to synchronize with queue provisioning */
1096 mutex_lock(&vcpu->kvm->lock);
1097 vcpu->arch.xive_vcpu = xc;
1098 xc->xive = xive;
1099 xc->vcpu = vcpu;
1100 xc->server_num = cpu;
1101 xc->vp_id = xive->vp_base + cpu;
1102 xc->mfrr = 0xff;
1103 xc->valid = true;
1105 r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id);
1106 if (r)
1107 goto bail;
1109 /* Configure VCPU fields for use by assembly push/pull */
1110 vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000);
1111 vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO);
1113 /* Allocate IPI */
1114 xc->vp_ipi = xive_native_alloc_irq();
1115 if (!xc->vp_ipi) {
1116 pr_err("Failed to allocate xive irq for VCPU IPI\n");
1117 r = -EIO;
1118 goto bail;
1120 pr_devel(" IPI=0x%x\n", xc->vp_ipi);
1122 r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data);
1123 if (r)
1124 goto bail;
1127 * Enable the VP first as the single escalation mode will
1128 * affect escalation interrupts numbering
1130 r = xive_native_enable_vp(xc->vp_id, xive->single_escalation);
1131 if (r) {
1132 pr_err("Failed to enable VP in OPAL, err %d\n", r);
1133 goto bail;
1137 * Initialize queues. Initially we set them all for no queueing
1138 * and we enable escalation for queue 0 only which we'll use for
1139 * our mfrr change notifications. If the VCPU is hot-plugged, we
1140 * do handle provisioning however based on the existing "map"
1141 * of enabled queues.
1143 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1144 struct xive_q *q = &xc->queues[i];
1146 /* Single escalation, no queue 7 */
1147 if (i == 7 && xive->single_escalation)
1148 break;
1150 /* Is queue already enabled ? Provision it */
1151 if (xive->qmap & (1 << i)) {
1152 r = xive_provision_queue(vcpu, i);
1153 if (r == 0 && !xive->single_escalation)
1154 xive_attach_escalation(vcpu, i);
1155 if (r)
1156 goto bail;
1157 } else {
1158 r = xive_native_configure_queue(xc->vp_id,
1159 q, i, NULL, 0, true);
1160 if (r) {
1161 pr_err("Failed to configure queue %d for VCPU %d\n",
1162 i, cpu);
1163 goto bail;
1168 /* If not done above, attach priority 0 escalation */
1169 r = xive_attach_escalation(vcpu, 0);
1170 if (r)
1171 goto bail;
1173 /* Route the IPI */
1174 r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI);
1175 if (!r)
1176 xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00);
1178 bail:
1179 mutex_unlock(&vcpu->kvm->lock);
1180 if (r) {
1181 kvmppc_xive_cleanup_vcpu(vcpu);
1182 return r;
1185 vcpu->arch.irq_type = KVMPPC_IRQ_XICS;
1186 return 0;
1190 * Scanning of queues before/after migration save
1192 static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq)
1194 struct kvmppc_xive_src_block *sb;
1195 struct kvmppc_xive_irq_state *state;
1196 u16 idx;
1198 sb = kvmppc_xive_find_source(xive, irq, &idx);
1199 if (!sb)
1200 return;
1202 state = &sb->irq_state[idx];
1204 /* Some sanity checking */
1205 if (!state->valid) {
1206 pr_err("invalid irq 0x%x in cpu queue!\n", irq);
1207 return;
1211 * If the interrupt is in a queue it should have P set.
1212 * We warn so that gets reported. A backtrace isn't useful
1213 * so no need to use a WARN_ON.
1215 if (!state->saved_p)
1216 pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq);
1218 /* Set flag */
1219 state->in_queue = true;
1222 static void xive_pre_save_mask_irq(struct kvmppc_xive *xive,
1223 struct kvmppc_xive_src_block *sb,
1224 u32 irq)
1226 struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1228 if (!state->valid)
1229 return;
1231 /* Mask and save state, this will also sync HW queues */
1232 state->saved_scan_prio = xive_lock_and_mask(xive, sb, state);
1234 /* Transfer P and Q */
1235 state->saved_p = state->old_p;
1236 state->saved_q = state->old_q;
1238 /* Unlock */
1239 arch_spin_unlock(&sb->lock);
1242 static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive,
1243 struct kvmppc_xive_src_block *sb,
1244 u32 irq)
1246 struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1248 if (!state->valid)
1249 return;
1252 * Lock / exclude EOI (not technically necessary if the
1253 * guest isn't running concurrently. If this becomes a
1254 * performance issue we can probably remove the lock.
1256 xive_lock_for_unmask(sb, state);
1258 /* Restore mask/prio if it wasn't masked */
1259 if (state->saved_scan_prio != MASKED)
1260 xive_finish_unmask(xive, sb, state, state->saved_scan_prio);
1262 /* Unlock */
1263 arch_spin_unlock(&sb->lock);
1266 static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q)
1268 u32 idx = q->idx;
1269 u32 toggle = q->toggle;
1270 u32 irq;
1272 do {
1273 irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle);
1274 if (irq > XICS_IPI)
1275 xive_pre_save_set_queued(xive, irq);
1276 } while(irq);
1279 static void xive_pre_save_scan(struct kvmppc_xive *xive)
1281 struct kvm_vcpu *vcpu = NULL;
1282 int i, j;
1285 * See comment in xive_get_source() about how this
1286 * work. Collect a stable state for all interrupts
1288 for (i = 0; i <= xive->max_sbid; i++) {
1289 struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1290 if (!sb)
1291 continue;
1292 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1293 xive_pre_save_mask_irq(xive, sb, j);
1296 /* Then scan the queues and update the "in_queue" flag */
1297 kvm_for_each_vcpu(i, vcpu, xive->kvm) {
1298 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1299 if (!xc)
1300 continue;
1301 for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) {
1302 if (xc->queues[j].qpage)
1303 xive_pre_save_queue(xive, &xc->queues[j]);
1307 /* Finally restore interrupt states */
1308 for (i = 0; i <= xive->max_sbid; i++) {
1309 struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1310 if (!sb)
1311 continue;
1312 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1313 xive_pre_save_unmask_irq(xive, sb, j);
1317 static void xive_post_save_scan(struct kvmppc_xive *xive)
1319 u32 i, j;
1321 /* Clear all the in_queue flags */
1322 for (i = 0; i <= xive->max_sbid; i++) {
1323 struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1324 if (!sb)
1325 continue;
1326 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1327 sb->irq_state[j].in_queue = false;
1330 /* Next get_source() will do a new scan */
1331 xive->saved_src_count = 0;
1335 * This returns the source configuration and state to user space.
1337 static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr)
1339 struct kvmppc_xive_src_block *sb;
1340 struct kvmppc_xive_irq_state *state;
1341 u64 __user *ubufp = (u64 __user *) addr;
1342 u64 val, prio;
1343 u16 idx;
1345 sb = kvmppc_xive_find_source(xive, irq, &idx);
1346 if (!sb)
1347 return -ENOENT;
1349 state = &sb->irq_state[idx];
1351 if (!state->valid)
1352 return -ENOENT;
1354 pr_devel("get_source(%ld)...\n", irq);
1357 * So to properly save the state into something that looks like a
1358 * XICS migration stream we cannot treat interrupts individually.
1360 * We need, instead, mask them all (& save their previous PQ state)
1361 * to get a stable state in the HW, then sync them to ensure that
1362 * any interrupt that had already fired hits its queue, and finally
1363 * scan all the queues to collect which interrupts are still present
1364 * in the queues, so we can set the "pending" flag on them and
1365 * they can be resent on restore.
1367 * So we do it all when the "first" interrupt gets saved, all the
1368 * state is collected at that point, the rest of xive_get_source()
1369 * will merely collect and convert that state to the expected
1370 * userspace bit mask.
1372 if (xive->saved_src_count == 0)
1373 xive_pre_save_scan(xive);
1374 xive->saved_src_count++;
1376 /* Convert saved state into something compatible with xics */
1377 val = state->act_server;
1378 prio = state->saved_scan_prio;
1380 if (prio == MASKED) {
1381 val |= KVM_XICS_MASKED;
1382 prio = state->saved_priority;
1384 val |= prio << KVM_XICS_PRIORITY_SHIFT;
1385 if (state->lsi) {
1386 val |= KVM_XICS_LEVEL_SENSITIVE;
1387 if (state->saved_p)
1388 val |= KVM_XICS_PENDING;
1389 } else {
1390 if (state->saved_p)
1391 val |= KVM_XICS_PRESENTED;
1393 if (state->saved_q)
1394 val |= KVM_XICS_QUEUED;
1397 * We mark it pending (which will attempt a re-delivery)
1398 * if we are in a queue *or* we were masked and had
1399 * Q set which is equivalent to the XICS "masked pending"
1400 * state
1402 if (state->in_queue || (prio == MASKED && state->saved_q))
1403 val |= KVM_XICS_PENDING;
1407 * If that was the last interrupt saved, reset the
1408 * in_queue flags
1410 if (xive->saved_src_count == xive->src_count)
1411 xive_post_save_scan(xive);
1413 /* Copy the result to userspace */
1414 if (put_user(val, ubufp))
1415 return -EFAULT;
1417 return 0;
1420 static struct kvmppc_xive_src_block *xive_create_src_block(struct kvmppc_xive *xive,
1421 int irq)
1423 struct kvm *kvm = xive->kvm;
1424 struct kvmppc_xive_src_block *sb;
1425 int i, bid;
1427 bid = irq >> KVMPPC_XICS_ICS_SHIFT;
1429 mutex_lock(&kvm->lock);
1431 /* block already exists - somebody else got here first */
1432 if (xive->src_blocks[bid])
1433 goto out;
1435 /* Create the ICS */
1436 sb = kzalloc(sizeof(*sb), GFP_KERNEL);
1437 if (!sb)
1438 goto out;
1440 sb->id = bid;
1442 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1443 sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i;
1444 sb->irq_state[i].guest_priority = MASKED;
1445 sb->irq_state[i].saved_priority = MASKED;
1446 sb->irq_state[i].act_priority = MASKED;
1448 smp_wmb();
1449 xive->src_blocks[bid] = sb;
1451 if (bid > xive->max_sbid)
1452 xive->max_sbid = bid;
1454 out:
1455 mutex_unlock(&kvm->lock);
1456 return xive->src_blocks[bid];
1459 static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq)
1461 struct kvm *kvm = xive->kvm;
1462 struct kvm_vcpu *vcpu = NULL;
1463 int i;
1465 kvm_for_each_vcpu(i, vcpu, kvm) {
1466 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1468 if (!xc)
1469 continue;
1471 if (xc->delayed_irq == irq) {
1472 xc->delayed_irq = 0;
1473 xive->delayed_irqs--;
1474 return true;
1477 return false;
1480 static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr)
1482 struct kvmppc_xive_src_block *sb;
1483 struct kvmppc_xive_irq_state *state;
1484 u64 __user *ubufp = (u64 __user *) addr;
1485 u16 idx;
1486 u64 val;
1487 u8 act_prio, guest_prio;
1488 u32 server;
1489 int rc = 0;
1491 if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS)
1492 return -ENOENT;
1494 pr_devel("set_source(irq=0x%lx)\n", irq);
1496 /* Find the source */
1497 sb = kvmppc_xive_find_source(xive, irq, &idx);
1498 if (!sb) {
1499 pr_devel("No source, creating source block...\n");
1500 sb = xive_create_src_block(xive, irq);
1501 if (!sb) {
1502 pr_devel("Failed to create block...\n");
1503 return -ENOMEM;
1506 state = &sb->irq_state[idx];
1508 /* Read user passed data */
1509 if (get_user(val, ubufp)) {
1510 pr_devel("fault getting user info !\n");
1511 return -EFAULT;
1514 server = val & KVM_XICS_DESTINATION_MASK;
1515 guest_prio = val >> KVM_XICS_PRIORITY_SHIFT;
1517 pr_devel(" val=0x016%llx (server=0x%x, guest_prio=%d)\n",
1518 val, server, guest_prio);
1521 * If the source doesn't already have an IPI, allocate
1522 * one and get the corresponding data
1524 if (!state->ipi_number) {
1525 state->ipi_number = xive_native_alloc_irq();
1526 if (state->ipi_number == 0) {
1527 pr_devel("Failed to allocate IPI !\n");
1528 return -ENOMEM;
1530 xive_native_populate_irq_data(state->ipi_number, &state->ipi_data);
1531 pr_devel(" src_ipi=0x%x\n", state->ipi_number);
1535 * We use lock_and_mask() to set us in the right masked
1536 * state. We will override that state from the saved state
1537 * further down, but this will handle the cases of interrupts
1538 * that need FW masking. We set the initial guest_priority to
1539 * 0 before calling it to ensure it actually performs the masking.
1541 state->guest_priority = 0;
1542 xive_lock_and_mask(xive, sb, state);
1545 * Now, we select a target if we have one. If we don't we
1546 * leave the interrupt untargetted. It means that an interrupt
1547 * can become "untargetted" accross migration if it was masked
1548 * by set_xive() but there is little we can do about it.
1551 /* First convert prio and mark interrupt as untargetted */
1552 act_prio = xive_prio_from_guest(guest_prio);
1553 state->act_priority = MASKED;
1556 * We need to drop the lock due to the mutex below. Hopefully
1557 * nothing is touching that interrupt yet since it hasn't been
1558 * advertized to a running guest yet
1560 arch_spin_unlock(&sb->lock);
1562 /* If we have a priority target the interrupt */
1563 if (act_prio != MASKED) {
1564 /* First, check provisioning of queues */
1565 mutex_lock(&xive->kvm->lock);
1566 rc = xive_check_provisioning(xive->kvm, act_prio);
1567 mutex_unlock(&xive->kvm->lock);
1569 /* Target interrupt */
1570 if (rc == 0)
1571 rc = xive_target_interrupt(xive->kvm, state,
1572 server, act_prio);
1574 * If provisioning or targetting failed, leave it
1575 * alone and masked. It will remain disabled until
1576 * the guest re-targets it.
1581 * Find out if this was a delayed irq stashed in an ICP,
1582 * in which case, treat it as pending
1584 if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) {
1585 val |= KVM_XICS_PENDING;
1586 pr_devel(" Found delayed ! forcing PENDING !\n");
1589 /* Cleanup the SW state */
1590 state->old_p = false;
1591 state->old_q = false;
1592 state->lsi = false;
1593 state->asserted = false;
1595 /* Restore LSI state */
1596 if (val & KVM_XICS_LEVEL_SENSITIVE) {
1597 state->lsi = true;
1598 if (val & KVM_XICS_PENDING)
1599 state->asserted = true;
1600 pr_devel(" LSI ! Asserted=%d\n", state->asserted);
1604 * Restore P and Q. If the interrupt was pending, we
1605 * force Q and !P, which will trigger a resend.
1607 * That means that a guest that had both an interrupt
1608 * pending (queued) and Q set will restore with only
1609 * one instance of that interrupt instead of 2, but that
1610 * is perfectly fine as coalescing interrupts that haven't
1611 * been presented yet is always allowed.
1613 if (val & KVM_XICS_PRESENTED && !(val & KVM_XICS_PENDING))
1614 state->old_p = true;
1615 if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING)
1616 state->old_q = true;
1618 pr_devel(" P=%d, Q=%d\n", state->old_p, state->old_q);
1621 * If the interrupt was unmasked, update guest priority and
1622 * perform the appropriate state transition and do a
1623 * re-trigger if necessary.
1625 if (val & KVM_XICS_MASKED) {
1626 pr_devel(" masked, saving prio\n");
1627 state->guest_priority = MASKED;
1628 state->saved_priority = guest_prio;
1629 } else {
1630 pr_devel(" unmasked, restoring to prio %d\n", guest_prio);
1631 xive_finish_unmask(xive, sb, state, guest_prio);
1632 state->saved_priority = guest_prio;
1635 /* Increment the number of valid sources and mark this one valid */
1636 if (!state->valid)
1637 xive->src_count++;
1638 state->valid = true;
1640 return 0;
1643 int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1644 bool line_status)
1646 struct kvmppc_xive *xive = kvm->arch.xive;
1647 struct kvmppc_xive_src_block *sb;
1648 struct kvmppc_xive_irq_state *state;
1649 u16 idx;
1651 if (!xive)
1652 return -ENODEV;
1654 sb = kvmppc_xive_find_source(xive, irq, &idx);
1655 if (!sb)
1656 return -EINVAL;
1658 /* Perform locklessly .... (we need to do some RCUisms here...) */
1659 state = &sb->irq_state[idx];
1660 if (!state->valid)
1661 return -EINVAL;
1663 /* We don't allow a trigger on a passed-through interrupt */
1664 if (state->pt_number)
1665 return -EINVAL;
1667 if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL)
1668 state->asserted = 1;
1669 else if (level == 0 || level == KVM_INTERRUPT_UNSET) {
1670 state->asserted = 0;
1671 return 0;
1674 /* Trigger the IPI */
1675 xive_irq_trigger(&state->ipi_data);
1677 return 0;
1680 static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1682 struct kvmppc_xive *xive = dev->private;
1684 /* We honor the existing XICS ioctl */
1685 switch (attr->group) {
1686 case KVM_DEV_XICS_GRP_SOURCES:
1687 return xive_set_source(xive, attr->attr, attr->addr);
1689 return -ENXIO;
1692 static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1694 struct kvmppc_xive *xive = dev->private;
1696 /* We honor the existing XICS ioctl */
1697 switch (attr->group) {
1698 case KVM_DEV_XICS_GRP_SOURCES:
1699 return xive_get_source(xive, attr->attr, attr->addr);
1701 return -ENXIO;
1704 static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1706 /* We honor the same limits as XICS, at least for now */
1707 switch (attr->group) {
1708 case KVM_DEV_XICS_GRP_SOURCES:
1709 if (attr->attr >= KVMPPC_XICS_FIRST_IRQ &&
1710 attr->attr < KVMPPC_XICS_NR_IRQS)
1711 return 0;
1712 break;
1714 return -ENXIO;
1717 static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd)
1719 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
1720 xive_native_configure_irq(hw_num, 0, MASKED, 0);
1721 xive_cleanup_irq_data(xd);
1724 static void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb)
1726 int i;
1728 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1729 struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
1731 if (!state->valid)
1732 continue;
1734 kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data);
1735 xive_native_free_irq(state->ipi_number);
1737 /* Pass-through, cleanup too */
1738 if (state->pt_number)
1739 kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data);
1741 state->valid = false;
1745 static void kvmppc_xive_free(struct kvm_device *dev)
1747 struct kvmppc_xive *xive = dev->private;
1748 struct kvm *kvm = xive->kvm;
1749 int i;
1751 debugfs_remove(xive->dentry);
1753 if (kvm)
1754 kvm->arch.xive = NULL;
1756 /* Mask and free interrupts */
1757 for (i = 0; i <= xive->max_sbid; i++) {
1758 if (xive->src_blocks[i])
1759 kvmppc_xive_free_sources(xive->src_blocks[i]);
1760 kfree(xive->src_blocks[i]);
1761 xive->src_blocks[i] = NULL;
1764 if (xive->vp_base != XIVE_INVALID_VP)
1765 xive_native_free_vp_block(xive->vp_base);
1768 kfree(xive);
1769 kfree(dev);
1772 static int kvmppc_xive_create(struct kvm_device *dev, u32 type)
1774 struct kvmppc_xive *xive;
1775 struct kvm *kvm = dev->kvm;
1776 int ret = 0;
1778 pr_devel("Creating xive for partition\n");
1780 xive = kzalloc(sizeof(*xive), GFP_KERNEL);
1781 if (!xive)
1782 return -ENOMEM;
1784 dev->private = xive;
1785 xive->dev = dev;
1786 xive->kvm = kvm;
1788 /* Already there ? */
1789 if (kvm->arch.xive)
1790 ret = -EEXIST;
1791 else
1792 kvm->arch.xive = xive;
1794 /* We use the default queue size set by the host */
1795 xive->q_order = xive_native_default_eq_shift();
1796 if (xive->q_order < PAGE_SHIFT)
1797 xive->q_page_order = 0;
1798 else
1799 xive->q_page_order = xive->q_order - PAGE_SHIFT;
1801 /* Allocate a bunch of VPs */
1802 xive->vp_base = xive_native_alloc_vp_block(KVM_MAX_VCPUS);
1803 pr_devel("VP_Base=%x\n", xive->vp_base);
1805 if (xive->vp_base == XIVE_INVALID_VP)
1806 ret = -ENOMEM;
1808 xive->single_escalation = xive_native_has_single_escalation();
1810 if (ret) {
1811 kfree(xive);
1812 return ret;
1815 return 0;
1819 static int xive_debug_show(struct seq_file *m, void *private)
1821 struct kvmppc_xive *xive = m->private;
1822 struct kvm *kvm = xive->kvm;
1823 struct kvm_vcpu *vcpu;
1824 u64 t_rm_h_xirr = 0;
1825 u64 t_rm_h_ipoll = 0;
1826 u64 t_rm_h_cppr = 0;
1827 u64 t_rm_h_eoi = 0;
1828 u64 t_rm_h_ipi = 0;
1829 u64 t_vm_h_xirr = 0;
1830 u64 t_vm_h_ipoll = 0;
1831 u64 t_vm_h_cppr = 0;
1832 u64 t_vm_h_eoi = 0;
1833 u64 t_vm_h_ipi = 0;
1834 unsigned int i;
1836 if (!kvm)
1837 return 0;
1839 seq_printf(m, "=========\nVCPU state\n=========\n");
1841 kvm_for_each_vcpu(i, vcpu, kvm) {
1842 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1843 unsigned int i;
1845 if (!xc)
1846 continue;
1848 seq_printf(m, "cpu server %#x CPPR:%#x HWCPPR:%#x"
1849 " MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n",
1850 xc->server_num, xc->cppr, xc->hw_cppr,
1851 xc->mfrr, xc->pending,
1852 xc->stat_rm_h_xirr, xc->stat_vm_h_xirr);
1853 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1854 struct xive_q *q = &xc->queues[i];
1855 u32 i0, i1, idx;
1857 if (!q->qpage && !xc->esc_virq[i])
1858 continue;
1860 seq_printf(m, " [q%d]: ", i);
1862 if (q->qpage) {
1863 idx = q->idx;
1864 i0 = be32_to_cpup(q->qpage + idx);
1865 idx = (idx + 1) & q->msk;
1866 i1 = be32_to_cpup(q->qpage + idx);
1867 seq_printf(m, "T=%d %08x %08x... \n", q->toggle, i0, i1);
1869 if (xc->esc_virq[i]) {
1870 struct irq_data *d = irq_get_irq_data(xc->esc_virq[i]);
1871 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
1872 u64 pq = xive_vm_esb_load(xd, XIVE_ESB_GET);
1873 seq_printf(m, "E:%c%c I(%d:%llx:%llx)",
1874 (pq & XIVE_ESB_VAL_P) ? 'P' : 'p',
1875 (pq & XIVE_ESB_VAL_Q) ? 'Q' : 'q',
1876 xc->esc_virq[i], pq, xd->eoi_page);
1877 seq_printf(m, "\n");
1881 t_rm_h_xirr += xc->stat_rm_h_xirr;
1882 t_rm_h_ipoll += xc->stat_rm_h_ipoll;
1883 t_rm_h_cppr += xc->stat_rm_h_cppr;
1884 t_rm_h_eoi += xc->stat_rm_h_eoi;
1885 t_rm_h_ipi += xc->stat_rm_h_ipi;
1886 t_vm_h_xirr += xc->stat_vm_h_xirr;
1887 t_vm_h_ipoll += xc->stat_vm_h_ipoll;
1888 t_vm_h_cppr += xc->stat_vm_h_cppr;
1889 t_vm_h_eoi += xc->stat_vm_h_eoi;
1890 t_vm_h_ipi += xc->stat_vm_h_ipi;
1893 seq_printf(m, "Hcalls totals\n");
1894 seq_printf(m, " H_XIRR R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr);
1895 seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll);
1896 seq_printf(m, " H_CPPR R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr);
1897 seq_printf(m, " H_EOI R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi);
1898 seq_printf(m, " H_IPI R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi);
1900 return 0;
1903 static int xive_debug_open(struct inode *inode, struct file *file)
1905 return single_open(file, xive_debug_show, inode->i_private);
1908 static const struct file_operations xive_debug_fops = {
1909 .open = xive_debug_open,
1910 .read = seq_read,
1911 .llseek = seq_lseek,
1912 .release = single_release,
1915 static void xive_debugfs_init(struct kvmppc_xive *xive)
1917 char *name;
1919 name = kasprintf(GFP_KERNEL, "kvm-xive-%p", xive);
1920 if (!name) {
1921 pr_err("%s: no memory for name\n", __func__);
1922 return;
1925 xive->dentry = debugfs_create_file(name, S_IRUGO, powerpc_debugfs_root,
1926 xive, &xive_debug_fops);
1928 pr_debug("%s: created %s\n", __func__, name);
1929 kfree(name);
1932 static void kvmppc_xive_init(struct kvm_device *dev)
1934 struct kvmppc_xive *xive = (struct kvmppc_xive *)dev->private;
1936 /* Register some debug interfaces */
1937 xive_debugfs_init(xive);
1940 struct kvm_device_ops kvm_xive_ops = {
1941 .name = "kvm-xive",
1942 .create = kvmppc_xive_create,
1943 .init = kvmppc_xive_init,
1944 .destroy = kvmppc_xive_free,
1945 .set_attr = xive_set_attr,
1946 .get_attr = xive_get_attr,
1947 .has_attr = xive_has_attr,
1950 void kvmppc_xive_init_module(void)
1952 __xive_vm_h_xirr = xive_vm_h_xirr;
1953 __xive_vm_h_ipoll = xive_vm_h_ipoll;
1954 __xive_vm_h_ipi = xive_vm_h_ipi;
1955 __xive_vm_h_cppr = xive_vm_h_cppr;
1956 __xive_vm_h_eoi = xive_vm_h_eoi;
1959 void kvmppc_xive_exit_module(void)
1961 __xive_vm_h_xirr = NULL;
1962 __xive_vm_h_ipoll = NULL;
1963 __xive_vm_h_ipi = NULL;
1964 __xive_vm_h_cppr = NULL;
1965 __xive_vm_h_eoi = NULL;