unify {de,}mangle_poll(), get rid of kernel-side POLL...
[cris-mirror.git] / fs / btrfs / backref.c
blobe4054e533f6d4d26b783540657d2ea9b78bb97cc
1 /*
2 * Copyright (C) 2011 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/mm.h>
20 #include <linux/rbtree.h>
21 #include <trace/events/btrfs.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "backref.h"
25 #include "ulist.h"
26 #include "transaction.h"
27 #include "delayed-ref.h"
28 #include "locking.h"
30 /* Just an arbitrary number so we can be sure this happened */
31 #define BACKREF_FOUND_SHARED 6
33 struct extent_inode_elem {
34 u64 inum;
35 u64 offset;
36 struct extent_inode_elem *next;
39 static int check_extent_in_eb(const struct btrfs_key *key,
40 const struct extent_buffer *eb,
41 const struct btrfs_file_extent_item *fi,
42 u64 extent_item_pos,
43 struct extent_inode_elem **eie,
44 bool ignore_offset)
46 u64 offset = 0;
47 struct extent_inode_elem *e;
49 if (!ignore_offset &&
50 !btrfs_file_extent_compression(eb, fi) &&
51 !btrfs_file_extent_encryption(eb, fi) &&
52 !btrfs_file_extent_other_encoding(eb, fi)) {
53 u64 data_offset;
54 u64 data_len;
56 data_offset = btrfs_file_extent_offset(eb, fi);
57 data_len = btrfs_file_extent_num_bytes(eb, fi);
59 if (extent_item_pos < data_offset ||
60 extent_item_pos >= data_offset + data_len)
61 return 1;
62 offset = extent_item_pos - data_offset;
65 e = kmalloc(sizeof(*e), GFP_NOFS);
66 if (!e)
67 return -ENOMEM;
69 e->next = *eie;
70 e->inum = key->objectid;
71 e->offset = key->offset + offset;
72 *eie = e;
74 return 0;
77 static void free_inode_elem_list(struct extent_inode_elem *eie)
79 struct extent_inode_elem *eie_next;
81 for (; eie; eie = eie_next) {
82 eie_next = eie->next;
83 kfree(eie);
87 static int find_extent_in_eb(const struct extent_buffer *eb,
88 u64 wanted_disk_byte, u64 extent_item_pos,
89 struct extent_inode_elem **eie,
90 bool ignore_offset)
92 u64 disk_byte;
93 struct btrfs_key key;
94 struct btrfs_file_extent_item *fi;
95 int slot;
96 int nritems;
97 int extent_type;
98 int ret;
101 * from the shared data ref, we only have the leaf but we need
102 * the key. thus, we must look into all items and see that we
103 * find one (some) with a reference to our extent item.
105 nritems = btrfs_header_nritems(eb);
106 for (slot = 0; slot < nritems; ++slot) {
107 btrfs_item_key_to_cpu(eb, &key, slot);
108 if (key.type != BTRFS_EXTENT_DATA_KEY)
109 continue;
110 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
111 extent_type = btrfs_file_extent_type(eb, fi);
112 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
113 continue;
114 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
115 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
116 if (disk_byte != wanted_disk_byte)
117 continue;
119 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
120 if (ret < 0)
121 return ret;
124 return 0;
127 struct preftree {
128 struct rb_root root;
129 unsigned int count;
132 #define PREFTREE_INIT { .root = RB_ROOT, .count = 0 }
134 struct preftrees {
135 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
136 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
137 struct preftree indirect_missing_keys;
141 * Checks for a shared extent during backref search.
143 * The share_count tracks prelim_refs (direct and indirect) having a
144 * ref->count >0:
145 * - incremented when a ref->count transitions to >0
146 * - decremented when a ref->count transitions to <1
148 struct share_check {
149 u64 root_objectid;
150 u64 inum;
151 int share_count;
154 static inline int extent_is_shared(struct share_check *sc)
156 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
159 static struct kmem_cache *btrfs_prelim_ref_cache;
161 int __init btrfs_prelim_ref_init(void)
163 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
164 sizeof(struct prelim_ref),
166 SLAB_MEM_SPREAD,
167 NULL);
168 if (!btrfs_prelim_ref_cache)
169 return -ENOMEM;
170 return 0;
173 void btrfs_prelim_ref_exit(void)
175 kmem_cache_destroy(btrfs_prelim_ref_cache);
178 static void free_pref(struct prelim_ref *ref)
180 kmem_cache_free(btrfs_prelim_ref_cache, ref);
184 * Return 0 when both refs are for the same block (and can be merged).
185 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
186 * indicates a 'higher' block.
188 static int prelim_ref_compare(struct prelim_ref *ref1,
189 struct prelim_ref *ref2)
191 if (ref1->level < ref2->level)
192 return -1;
193 if (ref1->level > ref2->level)
194 return 1;
195 if (ref1->root_id < ref2->root_id)
196 return -1;
197 if (ref1->root_id > ref2->root_id)
198 return 1;
199 if (ref1->key_for_search.type < ref2->key_for_search.type)
200 return -1;
201 if (ref1->key_for_search.type > ref2->key_for_search.type)
202 return 1;
203 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
204 return -1;
205 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
206 return 1;
207 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
208 return -1;
209 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
210 return 1;
211 if (ref1->parent < ref2->parent)
212 return -1;
213 if (ref1->parent > ref2->parent)
214 return 1;
216 return 0;
219 static void update_share_count(struct share_check *sc, int oldcount,
220 int newcount)
222 if ((!sc) || (oldcount == 0 && newcount < 1))
223 return;
225 if (oldcount > 0 && newcount < 1)
226 sc->share_count--;
227 else if (oldcount < 1 && newcount > 0)
228 sc->share_count++;
232 * Add @newref to the @root rbtree, merging identical refs.
234 * Callers should assume that newref has been freed after calling.
236 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
237 struct preftree *preftree,
238 struct prelim_ref *newref,
239 struct share_check *sc)
241 struct rb_root *root;
242 struct rb_node **p;
243 struct rb_node *parent = NULL;
244 struct prelim_ref *ref;
245 int result;
247 root = &preftree->root;
248 p = &root->rb_node;
250 while (*p) {
251 parent = *p;
252 ref = rb_entry(parent, struct prelim_ref, rbnode);
253 result = prelim_ref_compare(ref, newref);
254 if (result < 0) {
255 p = &(*p)->rb_left;
256 } else if (result > 0) {
257 p = &(*p)->rb_right;
258 } else {
259 /* Identical refs, merge them and free @newref */
260 struct extent_inode_elem *eie = ref->inode_list;
262 while (eie && eie->next)
263 eie = eie->next;
265 if (!eie)
266 ref->inode_list = newref->inode_list;
267 else
268 eie->next = newref->inode_list;
269 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
270 preftree->count);
272 * A delayed ref can have newref->count < 0.
273 * The ref->count is updated to follow any
274 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
276 update_share_count(sc, ref->count,
277 ref->count + newref->count);
278 ref->count += newref->count;
279 free_pref(newref);
280 return;
284 update_share_count(sc, 0, newref->count);
285 preftree->count++;
286 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
287 rb_link_node(&newref->rbnode, parent, p);
288 rb_insert_color(&newref->rbnode, root);
292 * Release the entire tree. We don't care about internal consistency so
293 * just free everything and then reset the tree root.
295 static void prelim_release(struct preftree *preftree)
297 struct prelim_ref *ref, *next_ref;
299 rbtree_postorder_for_each_entry_safe(ref, next_ref, &preftree->root,
300 rbnode)
301 free_pref(ref);
303 preftree->root = RB_ROOT;
304 preftree->count = 0;
308 * the rules for all callers of this function are:
309 * - obtaining the parent is the goal
310 * - if you add a key, you must know that it is a correct key
311 * - if you cannot add the parent or a correct key, then we will look into the
312 * block later to set a correct key
314 * delayed refs
315 * ============
316 * backref type | shared | indirect | shared | indirect
317 * information | tree | tree | data | data
318 * --------------------+--------+----------+--------+----------
319 * parent logical | y | - | - | -
320 * key to resolve | - | y | y | y
321 * tree block logical | - | - | - | -
322 * root for resolving | y | y | y | y
324 * - column 1: we've the parent -> done
325 * - column 2, 3, 4: we use the key to find the parent
327 * on disk refs (inline or keyed)
328 * ==============================
329 * backref type | shared | indirect | shared | indirect
330 * information | tree | tree | data | data
331 * --------------------+--------+----------+--------+----------
332 * parent logical | y | - | y | -
333 * key to resolve | - | - | - | y
334 * tree block logical | y | y | y | y
335 * root for resolving | - | y | y | y
337 * - column 1, 3: we've the parent -> done
338 * - column 2: we take the first key from the block to find the parent
339 * (see add_missing_keys)
340 * - column 4: we use the key to find the parent
342 * additional information that's available but not required to find the parent
343 * block might help in merging entries to gain some speed.
345 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
346 struct preftree *preftree, u64 root_id,
347 const struct btrfs_key *key, int level, u64 parent,
348 u64 wanted_disk_byte, int count,
349 struct share_check *sc, gfp_t gfp_mask)
351 struct prelim_ref *ref;
353 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
354 return 0;
356 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
357 if (!ref)
358 return -ENOMEM;
360 ref->root_id = root_id;
361 if (key) {
362 ref->key_for_search = *key;
364 * We can often find data backrefs with an offset that is too
365 * large (>= LLONG_MAX, maximum allowed file offset) due to
366 * underflows when subtracting a file's offset with the data
367 * offset of its corresponding extent data item. This can
368 * happen for example in the clone ioctl.
369 * So if we detect such case we set the search key's offset to
370 * zero to make sure we will find the matching file extent item
371 * at add_all_parents(), otherwise we will miss it because the
372 * offset taken form the backref is much larger then the offset
373 * of the file extent item. This can make us scan a very large
374 * number of file extent items, but at least it will not make
375 * us miss any.
376 * This is an ugly workaround for a behaviour that should have
377 * never existed, but it does and a fix for the clone ioctl
378 * would touch a lot of places, cause backwards incompatibility
379 * and would not fix the problem for extents cloned with older
380 * kernels.
382 if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
383 ref->key_for_search.offset >= LLONG_MAX)
384 ref->key_for_search.offset = 0;
385 } else {
386 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
389 ref->inode_list = NULL;
390 ref->level = level;
391 ref->count = count;
392 ref->parent = parent;
393 ref->wanted_disk_byte = wanted_disk_byte;
394 prelim_ref_insert(fs_info, preftree, ref, sc);
395 return extent_is_shared(sc);
398 /* direct refs use root == 0, key == NULL */
399 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
400 struct preftrees *preftrees, int level, u64 parent,
401 u64 wanted_disk_byte, int count,
402 struct share_check *sc, gfp_t gfp_mask)
404 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
405 parent, wanted_disk_byte, count, sc, gfp_mask);
408 /* indirect refs use parent == 0 */
409 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
410 struct preftrees *preftrees, u64 root_id,
411 const struct btrfs_key *key, int level,
412 u64 wanted_disk_byte, int count,
413 struct share_check *sc, gfp_t gfp_mask)
415 struct preftree *tree = &preftrees->indirect;
417 if (!key)
418 tree = &preftrees->indirect_missing_keys;
419 return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
420 wanted_disk_byte, count, sc, gfp_mask);
423 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
424 struct ulist *parents, struct prelim_ref *ref,
425 int level, u64 time_seq, const u64 *extent_item_pos,
426 u64 total_refs, bool ignore_offset)
428 int ret = 0;
429 int slot;
430 struct extent_buffer *eb;
431 struct btrfs_key key;
432 struct btrfs_key *key_for_search = &ref->key_for_search;
433 struct btrfs_file_extent_item *fi;
434 struct extent_inode_elem *eie = NULL, *old = NULL;
435 u64 disk_byte;
436 u64 wanted_disk_byte = ref->wanted_disk_byte;
437 u64 count = 0;
439 if (level != 0) {
440 eb = path->nodes[level];
441 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
442 if (ret < 0)
443 return ret;
444 return 0;
448 * We normally enter this function with the path already pointing to
449 * the first item to check. But sometimes, we may enter it with
450 * slot==nritems. In that case, go to the next leaf before we continue.
452 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
453 if (time_seq == SEQ_LAST)
454 ret = btrfs_next_leaf(root, path);
455 else
456 ret = btrfs_next_old_leaf(root, path, time_seq);
459 while (!ret && count < total_refs) {
460 eb = path->nodes[0];
461 slot = path->slots[0];
463 btrfs_item_key_to_cpu(eb, &key, slot);
465 if (key.objectid != key_for_search->objectid ||
466 key.type != BTRFS_EXTENT_DATA_KEY)
467 break;
469 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
470 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
472 if (disk_byte == wanted_disk_byte) {
473 eie = NULL;
474 old = NULL;
475 count++;
476 if (extent_item_pos) {
477 ret = check_extent_in_eb(&key, eb, fi,
478 *extent_item_pos,
479 &eie, ignore_offset);
480 if (ret < 0)
481 break;
483 if (ret > 0)
484 goto next;
485 ret = ulist_add_merge_ptr(parents, eb->start,
486 eie, (void **)&old, GFP_NOFS);
487 if (ret < 0)
488 break;
489 if (!ret && extent_item_pos) {
490 while (old->next)
491 old = old->next;
492 old->next = eie;
494 eie = NULL;
496 next:
497 if (time_seq == SEQ_LAST)
498 ret = btrfs_next_item(root, path);
499 else
500 ret = btrfs_next_old_item(root, path, time_seq);
503 if (ret > 0)
504 ret = 0;
505 else if (ret < 0)
506 free_inode_elem_list(eie);
507 return ret;
511 * resolve an indirect backref in the form (root_id, key, level)
512 * to a logical address
514 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
515 struct btrfs_path *path, u64 time_seq,
516 struct prelim_ref *ref, struct ulist *parents,
517 const u64 *extent_item_pos, u64 total_refs,
518 bool ignore_offset)
520 struct btrfs_root *root;
521 struct btrfs_key root_key;
522 struct extent_buffer *eb;
523 int ret = 0;
524 int root_level;
525 int level = ref->level;
526 int index;
528 root_key.objectid = ref->root_id;
529 root_key.type = BTRFS_ROOT_ITEM_KEY;
530 root_key.offset = (u64)-1;
532 index = srcu_read_lock(&fs_info->subvol_srcu);
534 root = btrfs_get_fs_root(fs_info, &root_key, false);
535 if (IS_ERR(root)) {
536 srcu_read_unlock(&fs_info->subvol_srcu, index);
537 ret = PTR_ERR(root);
538 goto out;
541 if (btrfs_is_testing(fs_info)) {
542 srcu_read_unlock(&fs_info->subvol_srcu, index);
543 ret = -ENOENT;
544 goto out;
547 if (path->search_commit_root)
548 root_level = btrfs_header_level(root->commit_root);
549 else if (time_seq == SEQ_LAST)
550 root_level = btrfs_header_level(root->node);
551 else
552 root_level = btrfs_old_root_level(root, time_seq);
554 if (root_level + 1 == level) {
555 srcu_read_unlock(&fs_info->subvol_srcu, index);
556 goto out;
559 path->lowest_level = level;
560 if (time_seq == SEQ_LAST)
561 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
562 0, 0);
563 else
564 ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
565 time_seq);
567 /* root node has been locked, we can release @subvol_srcu safely here */
568 srcu_read_unlock(&fs_info->subvol_srcu, index);
570 btrfs_debug(fs_info,
571 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
572 ref->root_id, level, ref->count, ret,
573 ref->key_for_search.objectid, ref->key_for_search.type,
574 ref->key_for_search.offset);
575 if (ret < 0)
576 goto out;
578 eb = path->nodes[level];
579 while (!eb) {
580 if (WARN_ON(!level)) {
581 ret = 1;
582 goto out;
584 level--;
585 eb = path->nodes[level];
588 ret = add_all_parents(root, path, parents, ref, level, time_seq,
589 extent_item_pos, total_refs, ignore_offset);
590 out:
591 path->lowest_level = 0;
592 btrfs_release_path(path);
593 return ret;
596 static struct extent_inode_elem *
597 unode_aux_to_inode_list(struct ulist_node *node)
599 if (!node)
600 return NULL;
601 return (struct extent_inode_elem *)(uintptr_t)node->aux;
605 * We maintain three seperate rbtrees: one for direct refs, one for
606 * indirect refs which have a key, and one for indirect refs which do not
607 * have a key. Each tree does merge on insertion.
609 * Once all of the references are located, we iterate over the tree of
610 * indirect refs with missing keys. An appropriate key is located and
611 * the ref is moved onto the tree for indirect refs. After all missing
612 * keys are thus located, we iterate over the indirect ref tree, resolve
613 * each reference, and then insert the resolved reference onto the
614 * direct tree (merging there too).
616 * New backrefs (i.e., for parent nodes) are added to the appropriate
617 * rbtree as they are encountered. The new backrefs are subsequently
618 * resolved as above.
620 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
621 struct btrfs_path *path, u64 time_seq,
622 struct preftrees *preftrees,
623 const u64 *extent_item_pos, u64 total_refs,
624 struct share_check *sc, bool ignore_offset)
626 int err;
627 int ret = 0;
628 struct ulist *parents;
629 struct ulist_node *node;
630 struct ulist_iterator uiter;
631 struct rb_node *rnode;
633 parents = ulist_alloc(GFP_NOFS);
634 if (!parents)
635 return -ENOMEM;
638 * We could trade memory usage for performance here by iterating
639 * the tree, allocating new refs for each insertion, and then
640 * freeing the entire indirect tree when we're done. In some test
641 * cases, the tree can grow quite large (~200k objects).
643 while ((rnode = rb_first(&preftrees->indirect.root))) {
644 struct prelim_ref *ref;
646 ref = rb_entry(rnode, struct prelim_ref, rbnode);
647 if (WARN(ref->parent,
648 "BUG: direct ref found in indirect tree")) {
649 ret = -EINVAL;
650 goto out;
653 rb_erase(&ref->rbnode, &preftrees->indirect.root);
654 preftrees->indirect.count--;
656 if (ref->count == 0) {
657 free_pref(ref);
658 continue;
661 if (sc && sc->root_objectid &&
662 ref->root_id != sc->root_objectid) {
663 free_pref(ref);
664 ret = BACKREF_FOUND_SHARED;
665 goto out;
667 err = resolve_indirect_ref(fs_info, path, time_seq, ref,
668 parents, extent_item_pos,
669 total_refs, ignore_offset);
671 * we can only tolerate ENOENT,otherwise,we should catch error
672 * and return directly.
674 if (err == -ENOENT) {
675 prelim_ref_insert(fs_info, &preftrees->direct, ref,
676 NULL);
677 continue;
678 } else if (err) {
679 free_pref(ref);
680 ret = err;
681 goto out;
684 /* we put the first parent into the ref at hand */
685 ULIST_ITER_INIT(&uiter);
686 node = ulist_next(parents, &uiter);
687 ref->parent = node ? node->val : 0;
688 ref->inode_list = unode_aux_to_inode_list(node);
690 /* Add a prelim_ref(s) for any other parent(s). */
691 while ((node = ulist_next(parents, &uiter))) {
692 struct prelim_ref *new_ref;
694 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
695 GFP_NOFS);
696 if (!new_ref) {
697 free_pref(ref);
698 ret = -ENOMEM;
699 goto out;
701 memcpy(new_ref, ref, sizeof(*ref));
702 new_ref->parent = node->val;
703 new_ref->inode_list = unode_aux_to_inode_list(node);
704 prelim_ref_insert(fs_info, &preftrees->direct,
705 new_ref, NULL);
709 * Now it's a direct ref, put it in the the direct tree. We must
710 * do this last because the ref could be merged/freed here.
712 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
714 ulist_reinit(parents);
715 cond_resched();
717 out:
718 ulist_free(parents);
719 return ret;
723 * read tree blocks and add keys where required.
725 static int add_missing_keys(struct btrfs_fs_info *fs_info,
726 struct preftrees *preftrees)
728 struct prelim_ref *ref;
729 struct extent_buffer *eb;
730 struct preftree *tree = &preftrees->indirect_missing_keys;
731 struct rb_node *node;
733 while ((node = rb_first(&tree->root))) {
734 ref = rb_entry(node, struct prelim_ref, rbnode);
735 rb_erase(node, &tree->root);
737 BUG_ON(ref->parent); /* should not be a direct ref */
738 BUG_ON(ref->key_for_search.type);
739 BUG_ON(!ref->wanted_disk_byte);
741 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0);
742 if (IS_ERR(eb)) {
743 free_pref(ref);
744 return PTR_ERR(eb);
745 } else if (!extent_buffer_uptodate(eb)) {
746 free_pref(ref);
747 free_extent_buffer(eb);
748 return -EIO;
750 btrfs_tree_read_lock(eb);
751 if (btrfs_header_level(eb) == 0)
752 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
753 else
754 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
755 btrfs_tree_read_unlock(eb);
756 free_extent_buffer(eb);
757 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
758 cond_resched();
760 return 0;
764 * add all currently queued delayed refs from this head whose seq nr is
765 * smaller or equal that seq to the list
767 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
768 struct btrfs_delayed_ref_head *head, u64 seq,
769 struct preftrees *preftrees, u64 *total_refs,
770 struct share_check *sc)
772 struct btrfs_delayed_ref_node *node;
773 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
774 struct btrfs_key key;
775 struct btrfs_key tmp_op_key;
776 struct btrfs_key *op_key = NULL;
777 struct rb_node *n;
778 int count;
779 int ret = 0;
781 if (extent_op && extent_op->update_key) {
782 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
783 op_key = &tmp_op_key;
786 spin_lock(&head->lock);
787 for (n = rb_first(&head->ref_tree); n; n = rb_next(n)) {
788 node = rb_entry(n, struct btrfs_delayed_ref_node,
789 ref_node);
790 if (node->seq > seq)
791 continue;
793 switch (node->action) {
794 case BTRFS_ADD_DELAYED_EXTENT:
795 case BTRFS_UPDATE_DELAYED_HEAD:
796 WARN_ON(1);
797 continue;
798 case BTRFS_ADD_DELAYED_REF:
799 count = node->ref_mod;
800 break;
801 case BTRFS_DROP_DELAYED_REF:
802 count = node->ref_mod * -1;
803 break;
804 default:
805 BUG_ON(1);
807 *total_refs += count;
808 switch (node->type) {
809 case BTRFS_TREE_BLOCK_REF_KEY: {
810 /* NORMAL INDIRECT METADATA backref */
811 struct btrfs_delayed_tree_ref *ref;
813 ref = btrfs_delayed_node_to_tree_ref(node);
814 ret = add_indirect_ref(fs_info, preftrees, ref->root,
815 &tmp_op_key, ref->level + 1,
816 node->bytenr, count, sc,
817 GFP_ATOMIC);
818 break;
820 case BTRFS_SHARED_BLOCK_REF_KEY: {
821 /* SHARED DIRECT METADATA backref */
822 struct btrfs_delayed_tree_ref *ref;
824 ref = btrfs_delayed_node_to_tree_ref(node);
826 ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
827 ref->parent, node->bytenr, count,
828 sc, GFP_ATOMIC);
829 break;
831 case BTRFS_EXTENT_DATA_REF_KEY: {
832 /* NORMAL INDIRECT DATA backref */
833 struct btrfs_delayed_data_ref *ref;
834 ref = btrfs_delayed_node_to_data_ref(node);
836 key.objectid = ref->objectid;
837 key.type = BTRFS_EXTENT_DATA_KEY;
838 key.offset = ref->offset;
841 * Found a inum that doesn't match our known inum, we
842 * know it's shared.
844 if (sc && sc->inum && ref->objectid != sc->inum) {
845 ret = BACKREF_FOUND_SHARED;
846 goto out;
849 ret = add_indirect_ref(fs_info, preftrees, ref->root,
850 &key, 0, node->bytenr, count, sc,
851 GFP_ATOMIC);
852 break;
854 case BTRFS_SHARED_DATA_REF_KEY: {
855 /* SHARED DIRECT FULL backref */
856 struct btrfs_delayed_data_ref *ref;
858 ref = btrfs_delayed_node_to_data_ref(node);
860 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
861 node->bytenr, count, sc,
862 GFP_ATOMIC);
863 break;
865 default:
866 WARN_ON(1);
869 * We must ignore BACKREF_FOUND_SHARED until all delayed
870 * refs have been checked.
872 if (ret && (ret != BACKREF_FOUND_SHARED))
873 break;
875 if (!ret)
876 ret = extent_is_shared(sc);
877 out:
878 spin_unlock(&head->lock);
879 return ret;
883 * add all inline backrefs for bytenr to the list
885 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
887 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
888 struct btrfs_path *path, u64 bytenr,
889 int *info_level, struct preftrees *preftrees,
890 u64 *total_refs, struct share_check *sc)
892 int ret = 0;
893 int slot;
894 struct extent_buffer *leaf;
895 struct btrfs_key key;
896 struct btrfs_key found_key;
897 unsigned long ptr;
898 unsigned long end;
899 struct btrfs_extent_item *ei;
900 u64 flags;
901 u64 item_size;
904 * enumerate all inline refs
906 leaf = path->nodes[0];
907 slot = path->slots[0];
909 item_size = btrfs_item_size_nr(leaf, slot);
910 BUG_ON(item_size < sizeof(*ei));
912 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
913 flags = btrfs_extent_flags(leaf, ei);
914 *total_refs += btrfs_extent_refs(leaf, ei);
915 btrfs_item_key_to_cpu(leaf, &found_key, slot);
917 ptr = (unsigned long)(ei + 1);
918 end = (unsigned long)ei + item_size;
920 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
921 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
922 struct btrfs_tree_block_info *info;
924 info = (struct btrfs_tree_block_info *)ptr;
925 *info_level = btrfs_tree_block_level(leaf, info);
926 ptr += sizeof(struct btrfs_tree_block_info);
927 BUG_ON(ptr > end);
928 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
929 *info_level = found_key.offset;
930 } else {
931 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
934 while (ptr < end) {
935 struct btrfs_extent_inline_ref *iref;
936 u64 offset;
937 int type;
939 iref = (struct btrfs_extent_inline_ref *)ptr;
940 type = btrfs_get_extent_inline_ref_type(leaf, iref,
941 BTRFS_REF_TYPE_ANY);
942 if (type == BTRFS_REF_TYPE_INVALID)
943 return -EINVAL;
945 offset = btrfs_extent_inline_ref_offset(leaf, iref);
947 switch (type) {
948 case BTRFS_SHARED_BLOCK_REF_KEY:
949 ret = add_direct_ref(fs_info, preftrees,
950 *info_level + 1, offset,
951 bytenr, 1, NULL, GFP_NOFS);
952 break;
953 case BTRFS_SHARED_DATA_REF_KEY: {
954 struct btrfs_shared_data_ref *sdref;
955 int count;
957 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
958 count = btrfs_shared_data_ref_count(leaf, sdref);
960 ret = add_direct_ref(fs_info, preftrees, 0, offset,
961 bytenr, count, sc, GFP_NOFS);
962 break;
964 case BTRFS_TREE_BLOCK_REF_KEY:
965 ret = add_indirect_ref(fs_info, preftrees, offset,
966 NULL, *info_level + 1,
967 bytenr, 1, NULL, GFP_NOFS);
968 break;
969 case BTRFS_EXTENT_DATA_REF_KEY: {
970 struct btrfs_extent_data_ref *dref;
971 int count;
972 u64 root;
974 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
975 count = btrfs_extent_data_ref_count(leaf, dref);
976 key.objectid = btrfs_extent_data_ref_objectid(leaf,
977 dref);
978 key.type = BTRFS_EXTENT_DATA_KEY;
979 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
981 if (sc && sc->inum && key.objectid != sc->inum) {
982 ret = BACKREF_FOUND_SHARED;
983 break;
986 root = btrfs_extent_data_ref_root(leaf, dref);
988 ret = add_indirect_ref(fs_info, preftrees, root,
989 &key, 0, bytenr, count,
990 sc, GFP_NOFS);
991 break;
993 default:
994 WARN_ON(1);
996 if (ret)
997 return ret;
998 ptr += btrfs_extent_inline_ref_size(type);
1001 return 0;
1005 * add all non-inline backrefs for bytenr to the list
1007 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1009 static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1010 struct btrfs_path *path, u64 bytenr,
1011 int info_level, struct preftrees *preftrees,
1012 struct share_check *sc)
1014 struct btrfs_root *extent_root = fs_info->extent_root;
1015 int ret;
1016 int slot;
1017 struct extent_buffer *leaf;
1018 struct btrfs_key key;
1020 while (1) {
1021 ret = btrfs_next_item(extent_root, path);
1022 if (ret < 0)
1023 break;
1024 if (ret) {
1025 ret = 0;
1026 break;
1029 slot = path->slots[0];
1030 leaf = path->nodes[0];
1031 btrfs_item_key_to_cpu(leaf, &key, slot);
1033 if (key.objectid != bytenr)
1034 break;
1035 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1036 continue;
1037 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1038 break;
1040 switch (key.type) {
1041 case BTRFS_SHARED_BLOCK_REF_KEY:
1042 /* SHARED DIRECT METADATA backref */
1043 ret = add_direct_ref(fs_info, preftrees,
1044 info_level + 1, key.offset,
1045 bytenr, 1, NULL, GFP_NOFS);
1046 break;
1047 case BTRFS_SHARED_DATA_REF_KEY: {
1048 /* SHARED DIRECT FULL backref */
1049 struct btrfs_shared_data_ref *sdref;
1050 int count;
1052 sdref = btrfs_item_ptr(leaf, slot,
1053 struct btrfs_shared_data_ref);
1054 count = btrfs_shared_data_ref_count(leaf, sdref);
1055 ret = add_direct_ref(fs_info, preftrees, 0,
1056 key.offset, bytenr, count,
1057 sc, GFP_NOFS);
1058 break;
1060 case BTRFS_TREE_BLOCK_REF_KEY:
1061 /* NORMAL INDIRECT METADATA backref */
1062 ret = add_indirect_ref(fs_info, preftrees, key.offset,
1063 NULL, info_level + 1, bytenr,
1064 1, NULL, GFP_NOFS);
1065 break;
1066 case BTRFS_EXTENT_DATA_REF_KEY: {
1067 /* NORMAL INDIRECT DATA backref */
1068 struct btrfs_extent_data_ref *dref;
1069 int count;
1070 u64 root;
1072 dref = btrfs_item_ptr(leaf, slot,
1073 struct btrfs_extent_data_ref);
1074 count = btrfs_extent_data_ref_count(leaf, dref);
1075 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1076 dref);
1077 key.type = BTRFS_EXTENT_DATA_KEY;
1078 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1080 if (sc && sc->inum && key.objectid != sc->inum) {
1081 ret = BACKREF_FOUND_SHARED;
1082 break;
1085 root = btrfs_extent_data_ref_root(leaf, dref);
1086 ret = add_indirect_ref(fs_info, preftrees, root,
1087 &key, 0, bytenr, count,
1088 sc, GFP_NOFS);
1089 break;
1091 default:
1092 WARN_ON(1);
1094 if (ret)
1095 return ret;
1099 return ret;
1103 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1104 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1105 * indirect refs to their parent bytenr.
1106 * When roots are found, they're added to the roots list
1108 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1109 * much like trans == NULL case, the difference only lies in it will not
1110 * commit root.
1111 * The special case is for qgroup to search roots in commit_transaction().
1113 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1114 * shared extent is detected.
1116 * Otherwise this returns 0 for success and <0 for an error.
1118 * If ignore_offset is set to false, only extent refs whose offsets match
1119 * extent_item_pos are returned. If true, every extent ref is returned
1120 * and extent_item_pos is ignored.
1122 * FIXME some caching might speed things up
1124 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1125 struct btrfs_fs_info *fs_info, u64 bytenr,
1126 u64 time_seq, struct ulist *refs,
1127 struct ulist *roots, const u64 *extent_item_pos,
1128 struct share_check *sc, bool ignore_offset)
1130 struct btrfs_key key;
1131 struct btrfs_path *path;
1132 struct btrfs_delayed_ref_root *delayed_refs = NULL;
1133 struct btrfs_delayed_ref_head *head;
1134 int info_level = 0;
1135 int ret;
1136 struct prelim_ref *ref;
1137 struct rb_node *node;
1138 struct extent_inode_elem *eie = NULL;
1139 /* total of both direct AND indirect refs! */
1140 u64 total_refs = 0;
1141 struct preftrees preftrees = {
1142 .direct = PREFTREE_INIT,
1143 .indirect = PREFTREE_INIT,
1144 .indirect_missing_keys = PREFTREE_INIT
1147 key.objectid = bytenr;
1148 key.offset = (u64)-1;
1149 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1150 key.type = BTRFS_METADATA_ITEM_KEY;
1151 else
1152 key.type = BTRFS_EXTENT_ITEM_KEY;
1154 path = btrfs_alloc_path();
1155 if (!path)
1156 return -ENOMEM;
1157 if (!trans) {
1158 path->search_commit_root = 1;
1159 path->skip_locking = 1;
1162 if (time_seq == SEQ_LAST)
1163 path->skip_locking = 1;
1166 * grab both a lock on the path and a lock on the delayed ref head.
1167 * We need both to get a consistent picture of how the refs look
1168 * at a specified point in time
1170 again:
1171 head = NULL;
1173 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1174 if (ret < 0)
1175 goto out;
1176 BUG_ON(ret == 0);
1178 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1179 if (trans && likely(trans->type != __TRANS_DUMMY) &&
1180 time_seq != SEQ_LAST) {
1181 #else
1182 if (trans && time_seq != SEQ_LAST) {
1183 #endif
1185 * look if there are updates for this ref queued and lock the
1186 * head
1188 delayed_refs = &trans->transaction->delayed_refs;
1189 spin_lock(&delayed_refs->lock);
1190 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1191 if (head) {
1192 if (!mutex_trylock(&head->mutex)) {
1193 refcount_inc(&head->refs);
1194 spin_unlock(&delayed_refs->lock);
1196 btrfs_release_path(path);
1199 * Mutex was contended, block until it's
1200 * released and try again
1202 mutex_lock(&head->mutex);
1203 mutex_unlock(&head->mutex);
1204 btrfs_put_delayed_ref_head(head);
1205 goto again;
1207 spin_unlock(&delayed_refs->lock);
1208 ret = add_delayed_refs(fs_info, head, time_seq,
1209 &preftrees, &total_refs, sc);
1210 mutex_unlock(&head->mutex);
1211 if (ret)
1212 goto out;
1213 } else {
1214 spin_unlock(&delayed_refs->lock);
1218 if (path->slots[0]) {
1219 struct extent_buffer *leaf;
1220 int slot;
1222 path->slots[0]--;
1223 leaf = path->nodes[0];
1224 slot = path->slots[0];
1225 btrfs_item_key_to_cpu(leaf, &key, slot);
1226 if (key.objectid == bytenr &&
1227 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1228 key.type == BTRFS_METADATA_ITEM_KEY)) {
1229 ret = add_inline_refs(fs_info, path, bytenr,
1230 &info_level, &preftrees,
1231 &total_refs, sc);
1232 if (ret)
1233 goto out;
1234 ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1235 &preftrees, sc);
1236 if (ret)
1237 goto out;
1241 btrfs_release_path(path);
1243 ret = add_missing_keys(fs_info, &preftrees);
1244 if (ret)
1245 goto out;
1247 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root));
1249 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1250 extent_item_pos, total_refs, sc, ignore_offset);
1251 if (ret)
1252 goto out;
1254 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root));
1257 * This walks the tree of merged and resolved refs. Tree blocks are
1258 * read in as needed. Unique entries are added to the ulist, and
1259 * the list of found roots is updated.
1261 * We release the entire tree in one go before returning.
1263 node = rb_first(&preftrees.direct.root);
1264 while (node) {
1265 ref = rb_entry(node, struct prelim_ref, rbnode);
1266 node = rb_next(&ref->rbnode);
1267 WARN_ON(ref->count < 0);
1268 if (roots && ref->count && ref->root_id && ref->parent == 0) {
1269 if (sc && sc->root_objectid &&
1270 ref->root_id != sc->root_objectid) {
1271 ret = BACKREF_FOUND_SHARED;
1272 goto out;
1275 /* no parent == root of tree */
1276 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1277 if (ret < 0)
1278 goto out;
1280 if (ref->count && ref->parent) {
1281 if (extent_item_pos && !ref->inode_list &&
1282 ref->level == 0) {
1283 struct extent_buffer *eb;
1285 eb = read_tree_block(fs_info, ref->parent, 0);
1286 if (IS_ERR(eb)) {
1287 ret = PTR_ERR(eb);
1288 goto out;
1289 } else if (!extent_buffer_uptodate(eb)) {
1290 free_extent_buffer(eb);
1291 ret = -EIO;
1292 goto out;
1294 btrfs_tree_read_lock(eb);
1295 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1296 ret = find_extent_in_eb(eb, bytenr,
1297 *extent_item_pos, &eie, ignore_offset);
1298 btrfs_tree_read_unlock_blocking(eb);
1299 free_extent_buffer(eb);
1300 if (ret < 0)
1301 goto out;
1302 ref->inode_list = eie;
1304 ret = ulist_add_merge_ptr(refs, ref->parent,
1305 ref->inode_list,
1306 (void **)&eie, GFP_NOFS);
1307 if (ret < 0)
1308 goto out;
1309 if (!ret && extent_item_pos) {
1311 * we've recorded that parent, so we must extend
1312 * its inode list here
1314 BUG_ON(!eie);
1315 while (eie->next)
1316 eie = eie->next;
1317 eie->next = ref->inode_list;
1319 eie = NULL;
1321 cond_resched();
1324 out:
1325 btrfs_free_path(path);
1327 prelim_release(&preftrees.direct);
1328 prelim_release(&preftrees.indirect);
1329 prelim_release(&preftrees.indirect_missing_keys);
1331 if (ret < 0)
1332 free_inode_elem_list(eie);
1333 return ret;
1336 static void free_leaf_list(struct ulist *blocks)
1338 struct ulist_node *node = NULL;
1339 struct extent_inode_elem *eie;
1340 struct ulist_iterator uiter;
1342 ULIST_ITER_INIT(&uiter);
1343 while ((node = ulist_next(blocks, &uiter))) {
1344 if (!node->aux)
1345 continue;
1346 eie = unode_aux_to_inode_list(node);
1347 free_inode_elem_list(eie);
1348 node->aux = 0;
1351 ulist_free(blocks);
1355 * Finds all leafs with a reference to the specified combination of bytenr and
1356 * offset. key_list_head will point to a list of corresponding keys (caller must
1357 * free each list element). The leafs will be stored in the leafs ulist, which
1358 * must be freed with ulist_free.
1360 * returns 0 on success, <0 on error
1362 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1363 struct btrfs_fs_info *fs_info, u64 bytenr,
1364 u64 time_seq, struct ulist **leafs,
1365 const u64 *extent_item_pos, bool ignore_offset)
1367 int ret;
1369 *leafs = ulist_alloc(GFP_NOFS);
1370 if (!*leafs)
1371 return -ENOMEM;
1373 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1374 *leafs, NULL, extent_item_pos, NULL, ignore_offset);
1375 if (ret < 0 && ret != -ENOENT) {
1376 free_leaf_list(*leafs);
1377 return ret;
1380 return 0;
1384 * walk all backrefs for a given extent to find all roots that reference this
1385 * extent. Walking a backref means finding all extents that reference this
1386 * extent and in turn walk the backrefs of those, too. Naturally this is a
1387 * recursive process, but here it is implemented in an iterative fashion: We
1388 * find all referencing extents for the extent in question and put them on a
1389 * list. In turn, we find all referencing extents for those, further appending
1390 * to the list. The way we iterate the list allows adding more elements after
1391 * the current while iterating. The process stops when we reach the end of the
1392 * list. Found roots are added to the roots list.
1394 * returns 0 on success, < 0 on error.
1396 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1397 struct btrfs_fs_info *fs_info, u64 bytenr,
1398 u64 time_seq, struct ulist **roots,
1399 bool ignore_offset)
1401 struct ulist *tmp;
1402 struct ulist_node *node = NULL;
1403 struct ulist_iterator uiter;
1404 int ret;
1406 tmp = ulist_alloc(GFP_NOFS);
1407 if (!tmp)
1408 return -ENOMEM;
1409 *roots = ulist_alloc(GFP_NOFS);
1410 if (!*roots) {
1411 ulist_free(tmp);
1412 return -ENOMEM;
1415 ULIST_ITER_INIT(&uiter);
1416 while (1) {
1417 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1418 tmp, *roots, NULL, NULL, ignore_offset);
1419 if (ret < 0 && ret != -ENOENT) {
1420 ulist_free(tmp);
1421 ulist_free(*roots);
1422 return ret;
1424 node = ulist_next(tmp, &uiter);
1425 if (!node)
1426 break;
1427 bytenr = node->val;
1428 cond_resched();
1431 ulist_free(tmp);
1432 return 0;
1435 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1436 struct btrfs_fs_info *fs_info, u64 bytenr,
1437 u64 time_seq, struct ulist **roots,
1438 bool ignore_offset)
1440 int ret;
1442 if (!trans)
1443 down_read(&fs_info->commit_root_sem);
1444 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1445 time_seq, roots, ignore_offset);
1446 if (!trans)
1447 up_read(&fs_info->commit_root_sem);
1448 return ret;
1452 * btrfs_check_shared - tell us whether an extent is shared
1454 * btrfs_check_shared uses the backref walking code but will short
1455 * circuit as soon as it finds a root or inode that doesn't match the
1456 * one passed in. This provides a significant performance benefit for
1457 * callers (such as fiemap) which want to know whether the extent is
1458 * shared but do not need a ref count.
1460 * This attempts to allocate a transaction in order to account for
1461 * delayed refs, but continues on even when the alloc fails.
1463 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1465 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr)
1467 struct btrfs_fs_info *fs_info = root->fs_info;
1468 struct btrfs_trans_handle *trans;
1469 struct ulist *tmp = NULL;
1470 struct ulist *roots = NULL;
1471 struct ulist_iterator uiter;
1472 struct ulist_node *node;
1473 struct seq_list elem = SEQ_LIST_INIT(elem);
1474 int ret = 0;
1475 struct share_check shared = {
1476 .root_objectid = root->objectid,
1477 .inum = inum,
1478 .share_count = 0,
1481 tmp = ulist_alloc(GFP_NOFS);
1482 roots = ulist_alloc(GFP_NOFS);
1483 if (!tmp || !roots) {
1484 ulist_free(tmp);
1485 ulist_free(roots);
1486 return -ENOMEM;
1489 trans = btrfs_join_transaction(root);
1490 if (IS_ERR(trans)) {
1491 trans = NULL;
1492 down_read(&fs_info->commit_root_sem);
1493 } else {
1494 btrfs_get_tree_mod_seq(fs_info, &elem);
1497 ULIST_ITER_INIT(&uiter);
1498 while (1) {
1499 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1500 roots, NULL, &shared, false);
1501 if (ret == BACKREF_FOUND_SHARED) {
1502 /* this is the only condition under which we return 1 */
1503 ret = 1;
1504 break;
1506 if (ret < 0 && ret != -ENOENT)
1507 break;
1508 ret = 0;
1509 node = ulist_next(tmp, &uiter);
1510 if (!node)
1511 break;
1512 bytenr = node->val;
1513 cond_resched();
1516 if (trans) {
1517 btrfs_put_tree_mod_seq(fs_info, &elem);
1518 btrfs_end_transaction(trans);
1519 } else {
1520 up_read(&fs_info->commit_root_sem);
1522 ulist_free(tmp);
1523 ulist_free(roots);
1524 return ret;
1527 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1528 u64 start_off, struct btrfs_path *path,
1529 struct btrfs_inode_extref **ret_extref,
1530 u64 *found_off)
1532 int ret, slot;
1533 struct btrfs_key key;
1534 struct btrfs_key found_key;
1535 struct btrfs_inode_extref *extref;
1536 const struct extent_buffer *leaf;
1537 unsigned long ptr;
1539 key.objectid = inode_objectid;
1540 key.type = BTRFS_INODE_EXTREF_KEY;
1541 key.offset = start_off;
1543 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1544 if (ret < 0)
1545 return ret;
1547 while (1) {
1548 leaf = path->nodes[0];
1549 slot = path->slots[0];
1550 if (slot >= btrfs_header_nritems(leaf)) {
1552 * If the item at offset is not found,
1553 * btrfs_search_slot will point us to the slot
1554 * where it should be inserted. In our case
1555 * that will be the slot directly before the
1556 * next INODE_REF_KEY_V2 item. In the case
1557 * that we're pointing to the last slot in a
1558 * leaf, we must move one leaf over.
1560 ret = btrfs_next_leaf(root, path);
1561 if (ret) {
1562 if (ret >= 1)
1563 ret = -ENOENT;
1564 break;
1566 continue;
1569 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1572 * Check that we're still looking at an extended ref key for
1573 * this particular objectid. If we have different
1574 * objectid or type then there are no more to be found
1575 * in the tree and we can exit.
1577 ret = -ENOENT;
1578 if (found_key.objectid != inode_objectid)
1579 break;
1580 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1581 break;
1583 ret = 0;
1584 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1585 extref = (struct btrfs_inode_extref *)ptr;
1586 *ret_extref = extref;
1587 if (found_off)
1588 *found_off = found_key.offset;
1589 break;
1592 return ret;
1596 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1597 * Elements of the path are separated by '/' and the path is guaranteed to be
1598 * 0-terminated. the path is only given within the current file system.
1599 * Therefore, it never starts with a '/'. the caller is responsible to provide
1600 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1601 * the start point of the resulting string is returned. this pointer is within
1602 * dest, normally.
1603 * in case the path buffer would overflow, the pointer is decremented further
1604 * as if output was written to the buffer, though no more output is actually
1605 * generated. that way, the caller can determine how much space would be
1606 * required for the path to fit into the buffer. in that case, the returned
1607 * value will be smaller than dest. callers must check this!
1609 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1610 u32 name_len, unsigned long name_off,
1611 struct extent_buffer *eb_in, u64 parent,
1612 char *dest, u32 size)
1614 int slot;
1615 u64 next_inum;
1616 int ret;
1617 s64 bytes_left = ((s64)size) - 1;
1618 struct extent_buffer *eb = eb_in;
1619 struct btrfs_key found_key;
1620 int leave_spinning = path->leave_spinning;
1621 struct btrfs_inode_ref *iref;
1623 if (bytes_left >= 0)
1624 dest[bytes_left] = '\0';
1626 path->leave_spinning = 1;
1627 while (1) {
1628 bytes_left -= name_len;
1629 if (bytes_left >= 0)
1630 read_extent_buffer(eb, dest + bytes_left,
1631 name_off, name_len);
1632 if (eb != eb_in) {
1633 if (!path->skip_locking)
1634 btrfs_tree_read_unlock_blocking(eb);
1635 free_extent_buffer(eb);
1637 ret = btrfs_find_item(fs_root, path, parent, 0,
1638 BTRFS_INODE_REF_KEY, &found_key);
1639 if (ret > 0)
1640 ret = -ENOENT;
1641 if (ret)
1642 break;
1644 next_inum = found_key.offset;
1646 /* regular exit ahead */
1647 if (parent == next_inum)
1648 break;
1650 slot = path->slots[0];
1651 eb = path->nodes[0];
1652 /* make sure we can use eb after releasing the path */
1653 if (eb != eb_in) {
1654 if (!path->skip_locking)
1655 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1656 path->nodes[0] = NULL;
1657 path->locks[0] = 0;
1659 btrfs_release_path(path);
1660 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1662 name_len = btrfs_inode_ref_name_len(eb, iref);
1663 name_off = (unsigned long)(iref + 1);
1665 parent = next_inum;
1666 --bytes_left;
1667 if (bytes_left >= 0)
1668 dest[bytes_left] = '/';
1671 btrfs_release_path(path);
1672 path->leave_spinning = leave_spinning;
1674 if (ret)
1675 return ERR_PTR(ret);
1677 return dest + bytes_left;
1681 * this makes the path point to (logical EXTENT_ITEM *)
1682 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1683 * tree blocks and <0 on error.
1685 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1686 struct btrfs_path *path, struct btrfs_key *found_key,
1687 u64 *flags_ret)
1689 int ret;
1690 u64 flags;
1691 u64 size = 0;
1692 u32 item_size;
1693 const struct extent_buffer *eb;
1694 struct btrfs_extent_item *ei;
1695 struct btrfs_key key;
1697 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1698 key.type = BTRFS_METADATA_ITEM_KEY;
1699 else
1700 key.type = BTRFS_EXTENT_ITEM_KEY;
1701 key.objectid = logical;
1702 key.offset = (u64)-1;
1704 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1705 if (ret < 0)
1706 return ret;
1708 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1709 if (ret) {
1710 if (ret > 0)
1711 ret = -ENOENT;
1712 return ret;
1714 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1715 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1716 size = fs_info->nodesize;
1717 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1718 size = found_key->offset;
1720 if (found_key->objectid > logical ||
1721 found_key->objectid + size <= logical) {
1722 btrfs_debug(fs_info,
1723 "logical %llu is not within any extent", logical);
1724 return -ENOENT;
1727 eb = path->nodes[0];
1728 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1729 BUG_ON(item_size < sizeof(*ei));
1731 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1732 flags = btrfs_extent_flags(eb, ei);
1734 btrfs_debug(fs_info,
1735 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1736 logical, logical - found_key->objectid, found_key->objectid,
1737 found_key->offset, flags, item_size);
1739 WARN_ON(!flags_ret);
1740 if (flags_ret) {
1741 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1742 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1743 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1744 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1745 else
1746 BUG_ON(1);
1747 return 0;
1750 return -EIO;
1754 * helper function to iterate extent inline refs. ptr must point to a 0 value
1755 * for the first call and may be modified. it is used to track state.
1756 * if more refs exist, 0 is returned and the next call to
1757 * get_extent_inline_ref must pass the modified ptr parameter to get the
1758 * next ref. after the last ref was processed, 1 is returned.
1759 * returns <0 on error
1761 static int get_extent_inline_ref(unsigned long *ptr,
1762 const struct extent_buffer *eb,
1763 const struct btrfs_key *key,
1764 const struct btrfs_extent_item *ei,
1765 u32 item_size,
1766 struct btrfs_extent_inline_ref **out_eiref,
1767 int *out_type)
1769 unsigned long end;
1770 u64 flags;
1771 struct btrfs_tree_block_info *info;
1773 if (!*ptr) {
1774 /* first call */
1775 flags = btrfs_extent_flags(eb, ei);
1776 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1777 if (key->type == BTRFS_METADATA_ITEM_KEY) {
1778 /* a skinny metadata extent */
1779 *out_eiref =
1780 (struct btrfs_extent_inline_ref *)(ei + 1);
1781 } else {
1782 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1783 info = (struct btrfs_tree_block_info *)(ei + 1);
1784 *out_eiref =
1785 (struct btrfs_extent_inline_ref *)(info + 1);
1787 } else {
1788 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1790 *ptr = (unsigned long)*out_eiref;
1791 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1792 return -ENOENT;
1795 end = (unsigned long)ei + item_size;
1796 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1797 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1798 BTRFS_REF_TYPE_ANY);
1799 if (*out_type == BTRFS_REF_TYPE_INVALID)
1800 return -EINVAL;
1802 *ptr += btrfs_extent_inline_ref_size(*out_type);
1803 WARN_ON(*ptr > end);
1804 if (*ptr == end)
1805 return 1; /* last */
1807 return 0;
1811 * reads the tree block backref for an extent. tree level and root are returned
1812 * through out_level and out_root. ptr must point to a 0 value for the first
1813 * call and may be modified (see get_extent_inline_ref comment).
1814 * returns 0 if data was provided, 1 if there was no more data to provide or
1815 * <0 on error.
1817 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1818 struct btrfs_key *key, struct btrfs_extent_item *ei,
1819 u32 item_size, u64 *out_root, u8 *out_level)
1821 int ret;
1822 int type;
1823 struct btrfs_extent_inline_ref *eiref;
1825 if (*ptr == (unsigned long)-1)
1826 return 1;
1828 while (1) {
1829 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1830 &eiref, &type);
1831 if (ret < 0)
1832 return ret;
1834 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1835 type == BTRFS_SHARED_BLOCK_REF_KEY)
1836 break;
1838 if (ret == 1)
1839 return 1;
1842 /* we can treat both ref types equally here */
1843 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1845 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1846 struct btrfs_tree_block_info *info;
1848 info = (struct btrfs_tree_block_info *)(ei + 1);
1849 *out_level = btrfs_tree_block_level(eb, info);
1850 } else {
1851 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1852 *out_level = (u8)key->offset;
1855 if (ret == 1)
1856 *ptr = (unsigned long)-1;
1858 return 0;
1861 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1862 struct extent_inode_elem *inode_list,
1863 u64 root, u64 extent_item_objectid,
1864 iterate_extent_inodes_t *iterate, void *ctx)
1866 struct extent_inode_elem *eie;
1867 int ret = 0;
1869 for (eie = inode_list; eie; eie = eie->next) {
1870 btrfs_debug(fs_info,
1871 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1872 extent_item_objectid, eie->inum,
1873 eie->offset, root);
1874 ret = iterate(eie->inum, eie->offset, root, ctx);
1875 if (ret) {
1876 btrfs_debug(fs_info,
1877 "stopping iteration for %llu due to ret=%d",
1878 extent_item_objectid, ret);
1879 break;
1883 return ret;
1887 * calls iterate() for every inode that references the extent identified by
1888 * the given parameters.
1889 * when the iterator function returns a non-zero value, iteration stops.
1891 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1892 u64 extent_item_objectid, u64 extent_item_pos,
1893 int search_commit_root,
1894 iterate_extent_inodes_t *iterate, void *ctx,
1895 bool ignore_offset)
1897 int ret;
1898 struct btrfs_trans_handle *trans = NULL;
1899 struct ulist *refs = NULL;
1900 struct ulist *roots = NULL;
1901 struct ulist_node *ref_node = NULL;
1902 struct ulist_node *root_node = NULL;
1903 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1904 struct ulist_iterator ref_uiter;
1905 struct ulist_iterator root_uiter;
1907 btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1908 extent_item_objectid);
1910 if (!search_commit_root) {
1911 trans = btrfs_join_transaction(fs_info->extent_root);
1912 if (IS_ERR(trans))
1913 return PTR_ERR(trans);
1914 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1915 } else {
1916 down_read(&fs_info->commit_root_sem);
1919 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1920 tree_mod_seq_elem.seq, &refs,
1921 &extent_item_pos, ignore_offset);
1922 if (ret)
1923 goto out;
1925 ULIST_ITER_INIT(&ref_uiter);
1926 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1927 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1928 tree_mod_seq_elem.seq, &roots,
1929 ignore_offset);
1930 if (ret)
1931 break;
1932 ULIST_ITER_INIT(&root_uiter);
1933 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1934 btrfs_debug(fs_info,
1935 "root %llu references leaf %llu, data list %#llx",
1936 root_node->val, ref_node->val,
1937 ref_node->aux);
1938 ret = iterate_leaf_refs(fs_info,
1939 (struct extent_inode_elem *)
1940 (uintptr_t)ref_node->aux,
1941 root_node->val,
1942 extent_item_objectid,
1943 iterate, ctx);
1945 ulist_free(roots);
1948 free_leaf_list(refs);
1949 out:
1950 if (!search_commit_root) {
1951 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1952 btrfs_end_transaction(trans);
1953 } else {
1954 up_read(&fs_info->commit_root_sem);
1957 return ret;
1960 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1961 struct btrfs_path *path,
1962 iterate_extent_inodes_t *iterate, void *ctx,
1963 bool ignore_offset)
1965 int ret;
1966 u64 extent_item_pos;
1967 u64 flags = 0;
1968 struct btrfs_key found_key;
1969 int search_commit_root = path->search_commit_root;
1971 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1972 btrfs_release_path(path);
1973 if (ret < 0)
1974 return ret;
1975 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1976 return -EINVAL;
1978 extent_item_pos = logical - found_key.objectid;
1979 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1980 extent_item_pos, search_commit_root,
1981 iterate, ctx, ignore_offset);
1983 return ret;
1986 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1987 struct extent_buffer *eb, void *ctx);
1989 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1990 struct btrfs_path *path,
1991 iterate_irefs_t *iterate, void *ctx)
1993 int ret = 0;
1994 int slot;
1995 u32 cur;
1996 u32 len;
1997 u32 name_len;
1998 u64 parent = 0;
1999 int found = 0;
2000 struct extent_buffer *eb;
2001 struct btrfs_item *item;
2002 struct btrfs_inode_ref *iref;
2003 struct btrfs_key found_key;
2005 while (!ret) {
2006 ret = btrfs_find_item(fs_root, path, inum,
2007 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2008 &found_key);
2010 if (ret < 0)
2011 break;
2012 if (ret) {
2013 ret = found ? 0 : -ENOENT;
2014 break;
2016 ++found;
2018 parent = found_key.offset;
2019 slot = path->slots[0];
2020 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2021 if (!eb) {
2022 ret = -ENOMEM;
2023 break;
2025 extent_buffer_get(eb);
2026 btrfs_tree_read_lock(eb);
2027 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2028 btrfs_release_path(path);
2030 item = btrfs_item_nr(slot);
2031 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2033 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2034 name_len = btrfs_inode_ref_name_len(eb, iref);
2035 /* path must be released before calling iterate()! */
2036 btrfs_debug(fs_root->fs_info,
2037 "following ref at offset %u for inode %llu in tree %llu",
2038 cur, found_key.objectid, fs_root->objectid);
2039 ret = iterate(parent, name_len,
2040 (unsigned long)(iref + 1), eb, ctx);
2041 if (ret)
2042 break;
2043 len = sizeof(*iref) + name_len;
2044 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2046 btrfs_tree_read_unlock_blocking(eb);
2047 free_extent_buffer(eb);
2050 btrfs_release_path(path);
2052 return ret;
2055 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2056 struct btrfs_path *path,
2057 iterate_irefs_t *iterate, void *ctx)
2059 int ret;
2060 int slot;
2061 u64 offset = 0;
2062 u64 parent;
2063 int found = 0;
2064 struct extent_buffer *eb;
2065 struct btrfs_inode_extref *extref;
2066 u32 item_size;
2067 u32 cur_offset;
2068 unsigned long ptr;
2070 while (1) {
2071 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2072 &offset);
2073 if (ret < 0)
2074 break;
2075 if (ret) {
2076 ret = found ? 0 : -ENOENT;
2077 break;
2079 ++found;
2081 slot = path->slots[0];
2082 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2083 if (!eb) {
2084 ret = -ENOMEM;
2085 break;
2087 extent_buffer_get(eb);
2089 btrfs_tree_read_lock(eb);
2090 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2091 btrfs_release_path(path);
2093 item_size = btrfs_item_size_nr(eb, slot);
2094 ptr = btrfs_item_ptr_offset(eb, slot);
2095 cur_offset = 0;
2097 while (cur_offset < item_size) {
2098 u32 name_len;
2100 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2101 parent = btrfs_inode_extref_parent(eb, extref);
2102 name_len = btrfs_inode_extref_name_len(eb, extref);
2103 ret = iterate(parent, name_len,
2104 (unsigned long)&extref->name, eb, ctx);
2105 if (ret)
2106 break;
2108 cur_offset += btrfs_inode_extref_name_len(eb, extref);
2109 cur_offset += sizeof(*extref);
2111 btrfs_tree_read_unlock_blocking(eb);
2112 free_extent_buffer(eb);
2114 offset++;
2117 btrfs_release_path(path);
2119 return ret;
2122 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2123 struct btrfs_path *path, iterate_irefs_t *iterate,
2124 void *ctx)
2126 int ret;
2127 int found_refs = 0;
2129 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2130 if (!ret)
2131 ++found_refs;
2132 else if (ret != -ENOENT)
2133 return ret;
2135 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2136 if (ret == -ENOENT && found_refs)
2137 return 0;
2139 return ret;
2143 * returns 0 if the path could be dumped (probably truncated)
2144 * returns <0 in case of an error
2146 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2147 struct extent_buffer *eb, void *ctx)
2149 struct inode_fs_paths *ipath = ctx;
2150 char *fspath;
2151 char *fspath_min;
2152 int i = ipath->fspath->elem_cnt;
2153 const int s_ptr = sizeof(char *);
2154 u32 bytes_left;
2156 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2157 ipath->fspath->bytes_left - s_ptr : 0;
2159 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2160 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2161 name_off, eb, inum, fspath_min, bytes_left);
2162 if (IS_ERR(fspath))
2163 return PTR_ERR(fspath);
2165 if (fspath > fspath_min) {
2166 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2167 ++ipath->fspath->elem_cnt;
2168 ipath->fspath->bytes_left = fspath - fspath_min;
2169 } else {
2170 ++ipath->fspath->elem_missed;
2171 ipath->fspath->bytes_missing += fspath_min - fspath;
2172 ipath->fspath->bytes_left = 0;
2175 return 0;
2179 * this dumps all file system paths to the inode into the ipath struct, provided
2180 * is has been created large enough. each path is zero-terminated and accessed
2181 * from ipath->fspath->val[i].
2182 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2183 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2184 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2185 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2186 * have been needed to return all paths.
2188 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2190 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2191 inode_to_path, ipath);
2194 struct btrfs_data_container *init_data_container(u32 total_bytes)
2196 struct btrfs_data_container *data;
2197 size_t alloc_bytes;
2199 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2200 data = kvmalloc(alloc_bytes, GFP_KERNEL);
2201 if (!data)
2202 return ERR_PTR(-ENOMEM);
2204 if (total_bytes >= sizeof(*data)) {
2205 data->bytes_left = total_bytes - sizeof(*data);
2206 data->bytes_missing = 0;
2207 } else {
2208 data->bytes_missing = sizeof(*data) - total_bytes;
2209 data->bytes_left = 0;
2212 data->elem_cnt = 0;
2213 data->elem_missed = 0;
2215 return data;
2219 * allocates space to return multiple file system paths for an inode.
2220 * total_bytes to allocate are passed, note that space usable for actual path
2221 * information will be total_bytes - sizeof(struct inode_fs_paths).
2222 * the returned pointer must be freed with free_ipath() in the end.
2224 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2225 struct btrfs_path *path)
2227 struct inode_fs_paths *ifp;
2228 struct btrfs_data_container *fspath;
2230 fspath = init_data_container(total_bytes);
2231 if (IS_ERR(fspath))
2232 return (void *)fspath;
2234 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2235 if (!ifp) {
2236 kvfree(fspath);
2237 return ERR_PTR(-ENOMEM);
2240 ifp->btrfs_path = path;
2241 ifp->fspath = fspath;
2242 ifp->fs_root = fs_root;
2244 return ifp;
2247 void free_ipath(struct inode_fs_paths *ipath)
2249 if (!ipath)
2250 return;
2251 kvfree(ipath->fspath);
2252 kfree(ipath);