unify {de,}mangle_poll(), get rid of kernel-side POLL...
[cris-mirror.git] / fs / btrfs / delayed-inode.c
blob0530f6f2e4ba8bff7e93cd11151db804ca70ffac
1 /*
2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include <linux/iversion.h>
22 #include "delayed-inode.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "ctree.h"
27 #define BTRFS_DELAYED_WRITEBACK 512
28 #define BTRFS_DELAYED_BACKGROUND 128
29 #define BTRFS_DELAYED_BATCH 16
31 static struct kmem_cache *delayed_node_cache;
33 int __init btrfs_delayed_inode_init(void)
35 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
36 sizeof(struct btrfs_delayed_node),
38 SLAB_MEM_SPREAD,
39 NULL);
40 if (!delayed_node_cache)
41 return -ENOMEM;
42 return 0;
45 void btrfs_delayed_inode_exit(void)
47 kmem_cache_destroy(delayed_node_cache);
50 static inline void btrfs_init_delayed_node(
51 struct btrfs_delayed_node *delayed_node,
52 struct btrfs_root *root, u64 inode_id)
54 delayed_node->root = root;
55 delayed_node->inode_id = inode_id;
56 refcount_set(&delayed_node->refs, 0);
57 delayed_node->ins_root = RB_ROOT;
58 delayed_node->del_root = RB_ROOT;
59 mutex_init(&delayed_node->mutex);
60 INIT_LIST_HEAD(&delayed_node->n_list);
61 INIT_LIST_HEAD(&delayed_node->p_list);
64 static inline int btrfs_is_continuous_delayed_item(
65 struct btrfs_delayed_item *item1,
66 struct btrfs_delayed_item *item2)
68 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
69 item1->key.objectid == item2->key.objectid &&
70 item1->key.type == item2->key.type &&
71 item1->key.offset + 1 == item2->key.offset)
72 return 1;
73 return 0;
76 static struct btrfs_delayed_node *btrfs_get_delayed_node(
77 struct btrfs_inode *btrfs_inode)
79 struct btrfs_root *root = btrfs_inode->root;
80 u64 ino = btrfs_ino(btrfs_inode);
81 struct btrfs_delayed_node *node;
83 node = READ_ONCE(btrfs_inode->delayed_node);
84 if (node) {
85 refcount_inc(&node->refs);
86 return node;
89 spin_lock(&root->inode_lock);
90 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
92 if (node) {
93 if (btrfs_inode->delayed_node) {
94 refcount_inc(&node->refs); /* can be accessed */
95 BUG_ON(btrfs_inode->delayed_node != node);
96 spin_unlock(&root->inode_lock);
97 return node;
101 * It's possible that we're racing into the middle of removing
102 * this node from the radix tree. In this case, the refcount
103 * was zero and it should never go back to one. Just return
104 * NULL like it was never in the radix at all; our release
105 * function is in the process of removing it.
107 * Some implementations of refcount_inc refuse to bump the
108 * refcount once it has hit zero. If we don't do this dance
109 * here, refcount_inc() may decide to just WARN_ONCE() instead
110 * of actually bumping the refcount.
112 * If this node is properly in the radix, we want to bump the
113 * refcount twice, once for the inode and once for this get
114 * operation.
116 if (refcount_inc_not_zero(&node->refs)) {
117 refcount_inc(&node->refs);
118 btrfs_inode->delayed_node = node;
119 } else {
120 node = NULL;
123 spin_unlock(&root->inode_lock);
124 return node;
126 spin_unlock(&root->inode_lock);
128 return NULL;
131 /* Will return either the node or PTR_ERR(-ENOMEM) */
132 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
133 struct btrfs_inode *btrfs_inode)
135 struct btrfs_delayed_node *node;
136 struct btrfs_root *root = btrfs_inode->root;
137 u64 ino = btrfs_ino(btrfs_inode);
138 int ret;
140 again:
141 node = btrfs_get_delayed_node(btrfs_inode);
142 if (node)
143 return node;
145 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
146 if (!node)
147 return ERR_PTR(-ENOMEM);
148 btrfs_init_delayed_node(node, root, ino);
150 /* cached in the btrfs inode and can be accessed */
151 refcount_set(&node->refs, 2);
153 ret = radix_tree_preload(GFP_NOFS);
154 if (ret) {
155 kmem_cache_free(delayed_node_cache, node);
156 return ERR_PTR(ret);
159 spin_lock(&root->inode_lock);
160 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
161 if (ret == -EEXIST) {
162 spin_unlock(&root->inode_lock);
163 kmem_cache_free(delayed_node_cache, node);
164 radix_tree_preload_end();
165 goto again;
167 btrfs_inode->delayed_node = node;
168 spin_unlock(&root->inode_lock);
169 radix_tree_preload_end();
171 return node;
175 * Call it when holding delayed_node->mutex
177 * If mod = 1, add this node into the prepared list.
179 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
180 struct btrfs_delayed_node *node,
181 int mod)
183 spin_lock(&root->lock);
184 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
185 if (!list_empty(&node->p_list))
186 list_move_tail(&node->p_list, &root->prepare_list);
187 else if (mod)
188 list_add_tail(&node->p_list, &root->prepare_list);
189 } else {
190 list_add_tail(&node->n_list, &root->node_list);
191 list_add_tail(&node->p_list, &root->prepare_list);
192 refcount_inc(&node->refs); /* inserted into list */
193 root->nodes++;
194 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
196 spin_unlock(&root->lock);
199 /* Call it when holding delayed_node->mutex */
200 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
201 struct btrfs_delayed_node *node)
203 spin_lock(&root->lock);
204 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
205 root->nodes--;
206 refcount_dec(&node->refs); /* not in the list */
207 list_del_init(&node->n_list);
208 if (!list_empty(&node->p_list))
209 list_del_init(&node->p_list);
210 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
212 spin_unlock(&root->lock);
215 static struct btrfs_delayed_node *btrfs_first_delayed_node(
216 struct btrfs_delayed_root *delayed_root)
218 struct list_head *p;
219 struct btrfs_delayed_node *node = NULL;
221 spin_lock(&delayed_root->lock);
222 if (list_empty(&delayed_root->node_list))
223 goto out;
225 p = delayed_root->node_list.next;
226 node = list_entry(p, struct btrfs_delayed_node, n_list);
227 refcount_inc(&node->refs);
228 out:
229 spin_unlock(&delayed_root->lock);
231 return node;
234 static struct btrfs_delayed_node *btrfs_next_delayed_node(
235 struct btrfs_delayed_node *node)
237 struct btrfs_delayed_root *delayed_root;
238 struct list_head *p;
239 struct btrfs_delayed_node *next = NULL;
241 delayed_root = node->root->fs_info->delayed_root;
242 spin_lock(&delayed_root->lock);
243 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
244 /* not in the list */
245 if (list_empty(&delayed_root->node_list))
246 goto out;
247 p = delayed_root->node_list.next;
248 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
249 goto out;
250 else
251 p = node->n_list.next;
253 next = list_entry(p, struct btrfs_delayed_node, n_list);
254 refcount_inc(&next->refs);
255 out:
256 spin_unlock(&delayed_root->lock);
258 return next;
261 static void __btrfs_release_delayed_node(
262 struct btrfs_delayed_node *delayed_node,
263 int mod)
265 struct btrfs_delayed_root *delayed_root;
267 if (!delayed_node)
268 return;
270 delayed_root = delayed_node->root->fs_info->delayed_root;
272 mutex_lock(&delayed_node->mutex);
273 if (delayed_node->count)
274 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
275 else
276 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
277 mutex_unlock(&delayed_node->mutex);
279 if (refcount_dec_and_test(&delayed_node->refs)) {
280 struct btrfs_root *root = delayed_node->root;
282 spin_lock(&root->inode_lock);
284 * Once our refcount goes to zero, nobody is allowed to bump it
285 * back up. We can delete it now.
287 ASSERT(refcount_read(&delayed_node->refs) == 0);
288 radix_tree_delete(&root->delayed_nodes_tree,
289 delayed_node->inode_id);
290 spin_unlock(&root->inode_lock);
291 kmem_cache_free(delayed_node_cache, delayed_node);
295 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
297 __btrfs_release_delayed_node(node, 0);
300 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
301 struct btrfs_delayed_root *delayed_root)
303 struct list_head *p;
304 struct btrfs_delayed_node *node = NULL;
306 spin_lock(&delayed_root->lock);
307 if (list_empty(&delayed_root->prepare_list))
308 goto out;
310 p = delayed_root->prepare_list.next;
311 list_del_init(p);
312 node = list_entry(p, struct btrfs_delayed_node, p_list);
313 refcount_inc(&node->refs);
314 out:
315 spin_unlock(&delayed_root->lock);
317 return node;
320 static inline void btrfs_release_prepared_delayed_node(
321 struct btrfs_delayed_node *node)
323 __btrfs_release_delayed_node(node, 1);
326 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
328 struct btrfs_delayed_item *item;
329 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
330 if (item) {
331 item->data_len = data_len;
332 item->ins_or_del = 0;
333 item->bytes_reserved = 0;
334 item->delayed_node = NULL;
335 refcount_set(&item->refs, 1);
337 return item;
341 * __btrfs_lookup_delayed_item - look up the delayed item by key
342 * @delayed_node: pointer to the delayed node
343 * @key: the key to look up
344 * @prev: used to store the prev item if the right item isn't found
345 * @next: used to store the next item if the right item isn't found
347 * Note: if we don't find the right item, we will return the prev item and
348 * the next item.
350 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
351 struct rb_root *root,
352 struct btrfs_key *key,
353 struct btrfs_delayed_item **prev,
354 struct btrfs_delayed_item **next)
356 struct rb_node *node, *prev_node = NULL;
357 struct btrfs_delayed_item *delayed_item = NULL;
358 int ret = 0;
360 node = root->rb_node;
362 while (node) {
363 delayed_item = rb_entry(node, struct btrfs_delayed_item,
364 rb_node);
365 prev_node = node;
366 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
367 if (ret < 0)
368 node = node->rb_right;
369 else if (ret > 0)
370 node = node->rb_left;
371 else
372 return delayed_item;
375 if (prev) {
376 if (!prev_node)
377 *prev = NULL;
378 else if (ret < 0)
379 *prev = delayed_item;
380 else if ((node = rb_prev(prev_node)) != NULL) {
381 *prev = rb_entry(node, struct btrfs_delayed_item,
382 rb_node);
383 } else
384 *prev = NULL;
387 if (next) {
388 if (!prev_node)
389 *next = NULL;
390 else if (ret > 0)
391 *next = delayed_item;
392 else if ((node = rb_next(prev_node)) != NULL) {
393 *next = rb_entry(node, struct btrfs_delayed_item,
394 rb_node);
395 } else
396 *next = NULL;
398 return NULL;
401 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
402 struct btrfs_delayed_node *delayed_node,
403 struct btrfs_key *key)
405 return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
406 NULL, NULL);
409 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
410 struct btrfs_delayed_item *ins,
411 int action)
413 struct rb_node **p, *node;
414 struct rb_node *parent_node = NULL;
415 struct rb_root *root;
416 struct btrfs_delayed_item *item;
417 int cmp;
419 if (action == BTRFS_DELAYED_INSERTION_ITEM)
420 root = &delayed_node->ins_root;
421 else if (action == BTRFS_DELAYED_DELETION_ITEM)
422 root = &delayed_node->del_root;
423 else
424 BUG();
425 p = &root->rb_node;
426 node = &ins->rb_node;
428 while (*p) {
429 parent_node = *p;
430 item = rb_entry(parent_node, struct btrfs_delayed_item,
431 rb_node);
433 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
434 if (cmp < 0)
435 p = &(*p)->rb_right;
436 else if (cmp > 0)
437 p = &(*p)->rb_left;
438 else
439 return -EEXIST;
442 rb_link_node(node, parent_node, p);
443 rb_insert_color(node, root);
444 ins->delayed_node = delayed_node;
445 ins->ins_or_del = action;
447 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
448 action == BTRFS_DELAYED_INSERTION_ITEM &&
449 ins->key.offset >= delayed_node->index_cnt)
450 delayed_node->index_cnt = ins->key.offset + 1;
452 delayed_node->count++;
453 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
454 return 0;
457 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
458 struct btrfs_delayed_item *item)
460 return __btrfs_add_delayed_item(node, item,
461 BTRFS_DELAYED_INSERTION_ITEM);
464 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
465 struct btrfs_delayed_item *item)
467 return __btrfs_add_delayed_item(node, item,
468 BTRFS_DELAYED_DELETION_ITEM);
471 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
473 int seq = atomic_inc_return(&delayed_root->items_seq);
476 * atomic_dec_return implies a barrier for waitqueue_active
478 if ((atomic_dec_return(&delayed_root->items) <
479 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
480 waitqueue_active(&delayed_root->wait))
481 wake_up(&delayed_root->wait);
484 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
486 struct rb_root *root;
487 struct btrfs_delayed_root *delayed_root;
489 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
491 BUG_ON(!delayed_root);
492 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
493 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
495 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
496 root = &delayed_item->delayed_node->ins_root;
497 else
498 root = &delayed_item->delayed_node->del_root;
500 rb_erase(&delayed_item->rb_node, root);
501 delayed_item->delayed_node->count--;
503 finish_one_item(delayed_root);
506 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
508 if (item) {
509 __btrfs_remove_delayed_item(item);
510 if (refcount_dec_and_test(&item->refs))
511 kfree(item);
515 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
516 struct btrfs_delayed_node *delayed_node)
518 struct rb_node *p;
519 struct btrfs_delayed_item *item = NULL;
521 p = rb_first(&delayed_node->ins_root);
522 if (p)
523 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
525 return item;
528 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
529 struct btrfs_delayed_node *delayed_node)
531 struct rb_node *p;
532 struct btrfs_delayed_item *item = NULL;
534 p = rb_first(&delayed_node->del_root);
535 if (p)
536 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
538 return item;
541 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
542 struct btrfs_delayed_item *item)
544 struct rb_node *p;
545 struct btrfs_delayed_item *next = NULL;
547 p = rb_next(&item->rb_node);
548 if (p)
549 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
551 return next;
554 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
555 struct btrfs_fs_info *fs_info,
556 struct btrfs_delayed_item *item)
558 struct btrfs_block_rsv *src_rsv;
559 struct btrfs_block_rsv *dst_rsv;
560 u64 num_bytes;
561 int ret;
563 if (!trans->bytes_reserved)
564 return 0;
566 src_rsv = trans->block_rsv;
567 dst_rsv = &fs_info->delayed_block_rsv;
569 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
570 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
571 if (!ret) {
572 trace_btrfs_space_reservation(fs_info, "delayed_item",
573 item->key.objectid,
574 num_bytes, 1);
575 item->bytes_reserved = num_bytes;
578 return ret;
581 static void btrfs_delayed_item_release_metadata(struct btrfs_fs_info *fs_info,
582 struct btrfs_delayed_item *item)
584 struct btrfs_block_rsv *rsv;
586 if (!item->bytes_reserved)
587 return;
589 rsv = &fs_info->delayed_block_rsv;
590 trace_btrfs_space_reservation(fs_info, "delayed_item",
591 item->key.objectid, item->bytes_reserved,
593 btrfs_block_rsv_release(fs_info, rsv,
594 item->bytes_reserved);
597 static int btrfs_delayed_inode_reserve_metadata(
598 struct btrfs_trans_handle *trans,
599 struct btrfs_root *root,
600 struct btrfs_inode *inode,
601 struct btrfs_delayed_node *node)
603 struct btrfs_fs_info *fs_info = root->fs_info;
604 struct btrfs_block_rsv *src_rsv;
605 struct btrfs_block_rsv *dst_rsv;
606 u64 num_bytes;
607 int ret;
609 src_rsv = trans->block_rsv;
610 dst_rsv = &fs_info->delayed_block_rsv;
612 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
615 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
616 * which doesn't reserve space for speed. This is a problem since we
617 * still need to reserve space for this update, so try to reserve the
618 * space.
620 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
621 * we always reserve enough to update the inode item.
623 if (!src_rsv || (!trans->bytes_reserved &&
624 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
625 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
626 BTRFS_RESERVE_NO_FLUSH);
628 * Since we're under a transaction reserve_metadata_bytes could
629 * try to commit the transaction which will make it return
630 * EAGAIN to make us stop the transaction we have, so return
631 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
633 if (ret == -EAGAIN)
634 ret = -ENOSPC;
635 if (!ret) {
636 node->bytes_reserved = num_bytes;
637 trace_btrfs_space_reservation(fs_info,
638 "delayed_inode",
639 btrfs_ino(inode),
640 num_bytes, 1);
642 return ret;
645 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
646 if (!ret) {
647 trace_btrfs_space_reservation(fs_info, "delayed_inode",
648 btrfs_ino(inode), num_bytes, 1);
649 node->bytes_reserved = num_bytes;
652 return ret;
655 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
656 struct btrfs_delayed_node *node)
658 struct btrfs_block_rsv *rsv;
660 if (!node->bytes_reserved)
661 return;
663 rsv = &fs_info->delayed_block_rsv;
664 trace_btrfs_space_reservation(fs_info, "delayed_inode",
665 node->inode_id, node->bytes_reserved, 0);
666 btrfs_block_rsv_release(fs_info, rsv,
667 node->bytes_reserved);
668 node->bytes_reserved = 0;
672 * This helper will insert some continuous items into the same leaf according
673 * to the free space of the leaf.
675 static int btrfs_batch_insert_items(struct btrfs_root *root,
676 struct btrfs_path *path,
677 struct btrfs_delayed_item *item)
679 struct btrfs_fs_info *fs_info = root->fs_info;
680 struct btrfs_delayed_item *curr, *next;
681 int free_space;
682 int total_data_size = 0, total_size = 0;
683 struct extent_buffer *leaf;
684 char *data_ptr;
685 struct btrfs_key *keys;
686 u32 *data_size;
687 struct list_head head;
688 int slot;
689 int nitems;
690 int i;
691 int ret = 0;
693 BUG_ON(!path->nodes[0]);
695 leaf = path->nodes[0];
696 free_space = btrfs_leaf_free_space(fs_info, leaf);
697 INIT_LIST_HEAD(&head);
699 next = item;
700 nitems = 0;
703 * count the number of the continuous items that we can insert in batch
705 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
706 free_space) {
707 total_data_size += next->data_len;
708 total_size += next->data_len + sizeof(struct btrfs_item);
709 list_add_tail(&next->tree_list, &head);
710 nitems++;
712 curr = next;
713 next = __btrfs_next_delayed_item(curr);
714 if (!next)
715 break;
717 if (!btrfs_is_continuous_delayed_item(curr, next))
718 break;
721 if (!nitems) {
722 ret = 0;
723 goto out;
727 * we need allocate some memory space, but it might cause the task
728 * to sleep, so we set all locked nodes in the path to blocking locks
729 * first.
731 btrfs_set_path_blocking(path);
733 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
734 if (!keys) {
735 ret = -ENOMEM;
736 goto out;
739 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
740 if (!data_size) {
741 ret = -ENOMEM;
742 goto error;
745 /* get keys of all the delayed items */
746 i = 0;
747 list_for_each_entry(next, &head, tree_list) {
748 keys[i] = next->key;
749 data_size[i] = next->data_len;
750 i++;
753 /* reset all the locked nodes in the patch to spinning locks. */
754 btrfs_clear_path_blocking(path, NULL, 0);
756 /* insert the keys of the items */
757 setup_items_for_insert(root, path, keys, data_size,
758 total_data_size, total_size, nitems);
760 /* insert the dir index items */
761 slot = path->slots[0];
762 list_for_each_entry_safe(curr, next, &head, tree_list) {
763 data_ptr = btrfs_item_ptr(leaf, slot, char);
764 write_extent_buffer(leaf, &curr->data,
765 (unsigned long)data_ptr,
766 curr->data_len);
767 slot++;
769 btrfs_delayed_item_release_metadata(fs_info, curr);
771 list_del(&curr->tree_list);
772 btrfs_release_delayed_item(curr);
775 error:
776 kfree(data_size);
777 kfree(keys);
778 out:
779 return ret;
783 * This helper can just do simple insertion that needn't extend item for new
784 * data, such as directory name index insertion, inode insertion.
786 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
787 struct btrfs_root *root,
788 struct btrfs_path *path,
789 struct btrfs_delayed_item *delayed_item)
791 struct btrfs_fs_info *fs_info = root->fs_info;
792 struct extent_buffer *leaf;
793 char *ptr;
794 int ret;
796 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
797 delayed_item->data_len);
798 if (ret < 0 && ret != -EEXIST)
799 return ret;
801 leaf = path->nodes[0];
803 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
805 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
806 delayed_item->data_len);
807 btrfs_mark_buffer_dirty(leaf);
809 btrfs_delayed_item_release_metadata(fs_info, delayed_item);
810 return 0;
814 * we insert an item first, then if there are some continuous items, we try
815 * to insert those items into the same leaf.
817 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
818 struct btrfs_path *path,
819 struct btrfs_root *root,
820 struct btrfs_delayed_node *node)
822 struct btrfs_delayed_item *curr, *prev;
823 int ret = 0;
825 do_again:
826 mutex_lock(&node->mutex);
827 curr = __btrfs_first_delayed_insertion_item(node);
828 if (!curr)
829 goto insert_end;
831 ret = btrfs_insert_delayed_item(trans, root, path, curr);
832 if (ret < 0) {
833 btrfs_release_path(path);
834 goto insert_end;
837 prev = curr;
838 curr = __btrfs_next_delayed_item(prev);
839 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
840 /* insert the continuous items into the same leaf */
841 path->slots[0]++;
842 btrfs_batch_insert_items(root, path, curr);
844 btrfs_release_delayed_item(prev);
845 btrfs_mark_buffer_dirty(path->nodes[0]);
847 btrfs_release_path(path);
848 mutex_unlock(&node->mutex);
849 goto do_again;
851 insert_end:
852 mutex_unlock(&node->mutex);
853 return ret;
856 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
857 struct btrfs_root *root,
858 struct btrfs_path *path,
859 struct btrfs_delayed_item *item)
861 struct btrfs_fs_info *fs_info = root->fs_info;
862 struct btrfs_delayed_item *curr, *next;
863 struct extent_buffer *leaf;
864 struct btrfs_key key;
865 struct list_head head;
866 int nitems, i, last_item;
867 int ret = 0;
869 BUG_ON(!path->nodes[0]);
871 leaf = path->nodes[0];
873 i = path->slots[0];
874 last_item = btrfs_header_nritems(leaf) - 1;
875 if (i > last_item)
876 return -ENOENT; /* FIXME: Is errno suitable? */
878 next = item;
879 INIT_LIST_HEAD(&head);
880 btrfs_item_key_to_cpu(leaf, &key, i);
881 nitems = 0;
883 * count the number of the dir index items that we can delete in batch
885 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
886 list_add_tail(&next->tree_list, &head);
887 nitems++;
889 curr = next;
890 next = __btrfs_next_delayed_item(curr);
891 if (!next)
892 break;
894 if (!btrfs_is_continuous_delayed_item(curr, next))
895 break;
897 i++;
898 if (i > last_item)
899 break;
900 btrfs_item_key_to_cpu(leaf, &key, i);
903 if (!nitems)
904 return 0;
906 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
907 if (ret)
908 goto out;
910 list_for_each_entry_safe(curr, next, &head, tree_list) {
911 btrfs_delayed_item_release_metadata(fs_info, curr);
912 list_del(&curr->tree_list);
913 btrfs_release_delayed_item(curr);
916 out:
917 return ret;
920 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
921 struct btrfs_path *path,
922 struct btrfs_root *root,
923 struct btrfs_delayed_node *node)
925 struct btrfs_delayed_item *curr, *prev;
926 int ret = 0;
928 do_again:
929 mutex_lock(&node->mutex);
930 curr = __btrfs_first_delayed_deletion_item(node);
931 if (!curr)
932 goto delete_fail;
934 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
935 if (ret < 0)
936 goto delete_fail;
937 else if (ret > 0) {
939 * can't find the item which the node points to, so this node
940 * is invalid, just drop it.
942 prev = curr;
943 curr = __btrfs_next_delayed_item(prev);
944 btrfs_release_delayed_item(prev);
945 ret = 0;
946 btrfs_release_path(path);
947 if (curr) {
948 mutex_unlock(&node->mutex);
949 goto do_again;
950 } else
951 goto delete_fail;
954 btrfs_batch_delete_items(trans, root, path, curr);
955 btrfs_release_path(path);
956 mutex_unlock(&node->mutex);
957 goto do_again;
959 delete_fail:
960 btrfs_release_path(path);
961 mutex_unlock(&node->mutex);
962 return ret;
965 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
967 struct btrfs_delayed_root *delayed_root;
969 if (delayed_node &&
970 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
971 BUG_ON(!delayed_node->root);
972 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
973 delayed_node->count--;
975 delayed_root = delayed_node->root->fs_info->delayed_root;
976 finish_one_item(delayed_root);
980 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
982 struct btrfs_delayed_root *delayed_root;
984 ASSERT(delayed_node->root);
985 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
986 delayed_node->count--;
988 delayed_root = delayed_node->root->fs_info->delayed_root;
989 finish_one_item(delayed_root);
992 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
993 struct btrfs_root *root,
994 struct btrfs_path *path,
995 struct btrfs_delayed_node *node)
997 struct btrfs_fs_info *fs_info = root->fs_info;
998 struct btrfs_key key;
999 struct btrfs_inode_item *inode_item;
1000 struct extent_buffer *leaf;
1001 int mod;
1002 int ret;
1004 key.objectid = node->inode_id;
1005 key.type = BTRFS_INODE_ITEM_KEY;
1006 key.offset = 0;
1008 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1009 mod = -1;
1010 else
1011 mod = 1;
1013 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1014 if (ret > 0) {
1015 btrfs_release_path(path);
1016 return -ENOENT;
1017 } else if (ret < 0) {
1018 return ret;
1021 leaf = path->nodes[0];
1022 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1023 struct btrfs_inode_item);
1024 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1025 sizeof(struct btrfs_inode_item));
1026 btrfs_mark_buffer_dirty(leaf);
1028 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1029 goto no_iref;
1031 path->slots[0]++;
1032 if (path->slots[0] >= btrfs_header_nritems(leaf))
1033 goto search;
1034 again:
1035 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1036 if (key.objectid != node->inode_id)
1037 goto out;
1039 if (key.type != BTRFS_INODE_REF_KEY &&
1040 key.type != BTRFS_INODE_EXTREF_KEY)
1041 goto out;
1044 * Delayed iref deletion is for the inode who has only one link,
1045 * so there is only one iref. The case that several irefs are
1046 * in the same item doesn't exist.
1048 btrfs_del_item(trans, root, path);
1049 out:
1050 btrfs_release_delayed_iref(node);
1051 no_iref:
1052 btrfs_release_path(path);
1053 err_out:
1054 btrfs_delayed_inode_release_metadata(fs_info, node);
1055 btrfs_release_delayed_inode(node);
1057 return ret;
1059 search:
1060 btrfs_release_path(path);
1062 key.type = BTRFS_INODE_EXTREF_KEY;
1063 key.offset = -1;
1064 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1065 if (ret < 0)
1066 goto err_out;
1067 ASSERT(ret);
1069 ret = 0;
1070 leaf = path->nodes[0];
1071 path->slots[0]--;
1072 goto again;
1075 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1076 struct btrfs_root *root,
1077 struct btrfs_path *path,
1078 struct btrfs_delayed_node *node)
1080 int ret;
1082 mutex_lock(&node->mutex);
1083 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1084 mutex_unlock(&node->mutex);
1085 return 0;
1088 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1089 mutex_unlock(&node->mutex);
1090 return ret;
1093 static inline int
1094 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1095 struct btrfs_path *path,
1096 struct btrfs_delayed_node *node)
1098 int ret;
1100 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1101 if (ret)
1102 return ret;
1104 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1105 if (ret)
1106 return ret;
1108 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1109 return ret;
1113 * Called when committing the transaction.
1114 * Returns 0 on success.
1115 * Returns < 0 on error and returns with an aborted transaction with any
1116 * outstanding delayed items cleaned up.
1118 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1119 struct btrfs_fs_info *fs_info, int nr)
1121 struct btrfs_delayed_root *delayed_root;
1122 struct btrfs_delayed_node *curr_node, *prev_node;
1123 struct btrfs_path *path;
1124 struct btrfs_block_rsv *block_rsv;
1125 int ret = 0;
1126 bool count = (nr > 0);
1128 if (trans->aborted)
1129 return -EIO;
1131 path = btrfs_alloc_path();
1132 if (!path)
1133 return -ENOMEM;
1134 path->leave_spinning = 1;
1136 block_rsv = trans->block_rsv;
1137 trans->block_rsv = &fs_info->delayed_block_rsv;
1139 delayed_root = fs_info->delayed_root;
1141 curr_node = btrfs_first_delayed_node(delayed_root);
1142 while (curr_node && (!count || (count && nr--))) {
1143 ret = __btrfs_commit_inode_delayed_items(trans, path,
1144 curr_node);
1145 if (ret) {
1146 btrfs_release_delayed_node(curr_node);
1147 curr_node = NULL;
1148 btrfs_abort_transaction(trans, ret);
1149 break;
1152 prev_node = curr_node;
1153 curr_node = btrfs_next_delayed_node(curr_node);
1154 btrfs_release_delayed_node(prev_node);
1157 if (curr_node)
1158 btrfs_release_delayed_node(curr_node);
1159 btrfs_free_path(path);
1160 trans->block_rsv = block_rsv;
1162 return ret;
1165 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1166 struct btrfs_fs_info *fs_info)
1168 return __btrfs_run_delayed_items(trans, fs_info, -1);
1171 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1172 struct btrfs_fs_info *fs_info, int nr)
1174 return __btrfs_run_delayed_items(trans, fs_info, nr);
1177 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1178 struct btrfs_inode *inode)
1180 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1181 struct btrfs_path *path;
1182 struct btrfs_block_rsv *block_rsv;
1183 int ret;
1185 if (!delayed_node)
1186 return 0;
1188 mutex_lock(&delayed_node->mutex);
1189 if (!delayed_node->count) {
1190 mutex_unlock(&delayed_node->mutex);
1191 btrfs_release_delayed_node(delayed_node);
1192 return 0;
1194 mutex_unlock(&delayed_node->mutex);
1196 path = btrfs_alloc_path();
1197 if (!path) {
1198 btrfs_release_delayed_node(delayed_node);
1199 return -ENOMEM;
1201 path->leave_spinning = 1;
1203 block_rsv = trans->block_rsv;
1204 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1206 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1208 btrfs_release_delayed_node(delayed_node);
1209 btrfs_free_path(path);
1210 trans->block_rsv = block_rsv;
1212 return ret;
1215 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1217 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1218 struct btrfs_trans_handle *trans;
1219 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1220 struct btrfs_path *path;
1221 struct btrfs_block_rsv *block_rsv;
1222 int ret;
1224 if (!delayed_node)
1225 return 0;
1227 mutex_lock(&delayed_node->mutex);
1228 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1229 mutex_unlock(&delayed_node->mutex);
1230 btrfs_release_delayed_node(delayed_node);
1231 return 0;
1233 mutex_unlock(&delayed_node->mutex);
1235 trans = btrfs_join_transaction(delayed_node->root);
1236 if (IS_ERR(trans)) {
1237 ret = PTR_ERR(trans);
1238 goto out;
1241 path = btrfs_alloc_path();
1242 if (!path) {
1243 ret = -ENOMEM;
1244 goto trans_out;
1246 path->leave_spinning = 1;
1248 block_rsv = trans->block_rsv;
1249 trans->block_rsv = &fs_info->delayed_block_rsv;
1251 mutex_lock(&delayed_node->mutex);
1252 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1253 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1254 path, delayed_node);
1255 else
1256 ret = 0;
1257 mutex_unlock(&delayed_node->mutex);
1259 btrfs_free_path(path);
1260 trans->block_rsv = block_rsv;
1261 trans_out:
1262 btrfs_end_transaction(trans);
1263 btrfs_btree_balance_dirty(fs_info);
1264 out:
1265 btrfs_release_delayed_node(delayed_node);
1267 return ret;
1270 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1272 struct btrfs_delayed_node *delayed_node;
1274 delayed_node = READ_ONCE(inode->delayed_node);
1275 if (!delayed_node)
1276 return;
1278 inode->delayed_node = NULL;
1279 btrfs_release_delayed_node(delayed_node);
1282 struct btrfs_async_delayed_work {
1283 struct btrfs_delayed_root *delayed_root;
1284 int nr;
1285 struct btrfs_work work;
1288 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1290 struct btrfs_async_delayed_work *async_work;
1291 struct btrfs_delayed_root *delayed_root;
1292 struct btrfs_trans_handle *trans;
1293 struct btrfs_path *path;
1294 struct btrfs_delayed_node *delayed_node = NULL;
1295 struct btrfs_root *root;
1296 struct btrfs_block_rsv *block_rsv;
1297 int total_done = 0;
1299 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1300 delayed_root = async_work->delayed_root;
1302 path = btrfs_alloc_path();
1303 if (!path)
1304 goto out;
1306 do {
1307 if (atomic_read(&delayed_root->items) <
1308 BTRFS_DELAYED_BACKGROUND / 2)
1309 break;
1311 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1312 if (!delayed_node)
1313 break;
1315 path->leave_spinning = 1;
1316 root = delayed_node->root;
1318 trans = btrfs_join_transaction(root);
1319 if (IS_ERR(trans)) {
1320 btrfs_release_path(path);
1321 btrfs_release_prepared_delayed_node(delayed_node);
1322 total_done++;
1323 continue;
1326 block_rsv = trans->block_rsv;
1327 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1329 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1331 trans->block_rsv = block_rsv;
1332 btrfs_end_transaction(trans);
1333 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1335 btrfs_release_path(path);
1336 btrfs_release_prepared_delayed_node(delayed_node);
1337 total_done++;
1339 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1340 || total_done < async_work->nr);
1342 btrfs_free_path(path);
1343 out:
1344 wake_up(&delayed_root->wait);
1345 kfree(async_work);
1349 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1350 struct btrfs_fs_info *fs_info, int nr)
1352 struct btrfs_async_delayed_work *async_work;
1354 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1355 if (!async_work)
1356 return -ENOMEM;
1358 async_work->delayed_root = delayed_root;
1359 btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1360 btrfs_async_run_delayed_root, NULL, NULL);
1361 async_work->nr = nr;
1363 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1364 return 0;
1367 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1369 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1372 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1374 int val = atomic_read(&delayed_root->items_seq);
1376 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1377 return 1;
1379 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1380 return 1;
1382 return 0;
1385 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1387 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1389 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1390 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1391 return;
1393 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1394 int seq;
1395 int ret;
1397 seq = atomic_read(&delayed_root->items_seq);
1399 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1400 if (ret)
1401 return;
1403 wait_event_interruptible(delayed_root->wait,
1404 could_end_wait(delayed_root, seq));
1405 return;
1408 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1411 /* Will return 0 or -ENOMEM */
1412 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1413 struct btrfs_fs_info *fs_info,
1414 const char *name, int name_len,
1415 struct btrfs_inode *dir,
1416 struct btrfs_disk_key *disk_key, u8 type,
1417 u64 index)
1419 struct btrfs_delayed_node *delayed_node;
1420 struct btrfs_delayed_item *delayed_item;
1421 struct btrfs_dir_item *dir_item;
1422 int ret;
1424 delayed_node = btrfs_get_or_create_delayed_node(dir);
1425 if (IS_ERR(delayed_node))
1426 return PTR_ERR(delayed_node);
1428 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1429 if (!delayed_item) {
1430 ret = -ENOMEM;
1431 goto release_node;
1434 delayed_item->key.objectid = btrfs_ino(dir);
1435 delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1436 delayed_item->key.offset = index;
1438 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1439 dir_item->location = *disk_key;
1440 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1441 btrfs_set_stack_dir_data_len(dir_item, 0);
1442 btrfs_set_stack_dir_name_len(dir_item, name_len);
1443 btrfs_set_stack_dir_type(dir_item, type);
1444 memcpy((char *)(dir_item + 1), name, name_len);
1446 ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, delayed_item);
1448 * we have reserved enough space when we start a new transaction,
1449 * so reserving metadata failure is impossible
1451 BUG_ON(ret);
1454 mutex_lock(&delayed_node->mutex);
1455 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1456 if (unlikely(ret)) {
1457 btrfs_err(fs_info,
1458 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1459 name_len, name, delayed_node->root->objectid,
1460 delayed_node->inode_id, ret);
1461 BUG();
1463 mutex_unlock(&delayed_node->mutex);
1465 release_node:
1466 btrfs_release_delayed_node(delayed_node);
1467 return ret;
1470 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1471 struct btrfs_delayed_node *node,
1472 struct btrfs_key *key)
1474 struct btrfs_delayed_item *item;
1476 mutex_lock(&node->mutex);
1477 item = __btrfs_lookup_delayed_insertion_item(node, key);
1478 if (!item) {
1479 mutex_unlock(&node->mutex);
1480 return 1;
1483 btrfs_delayed_item_release_metadata(fs_info, item);
1484 btrfs_release_delayed_item(item);
1485 mutex_unlock(&node->mutex);
1486 return 0;
1489 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1490 struct btrfs_fs_info *fs_info,
1491 struct btrfs_inode *dir, u64 index)
1493 struct btrfs_delayed_node *node;
1494 struct btrfs_delayed_item *item;
1495 struct btrfs_key item_key;
1496 int ret;
1498 node = btrfs_get_or_create_delayed_node(dir);
1499 if (IS_ERR(node))
1500 return PTR_ERR(node);
1502 item_key.objectid = btrfs_ino(dir);
1503 item_key.type = BTRFS_DIR_INDEX_KEY;
1504 item_key.offset = index;
1506 ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
1507 if (!ret)
1508 goto end;
1510 item = btrfs_alloc_delayed_item(0);
1511 if (!item) {
1512 ret = -ENOMEM;
1513 goto end;
1516 item->key = item_key;
1518 ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, item);
1520 * we have reserved enough space when we start a new transaction,
1521 * so reserving metadata failure is impossible.
1523 BUG_ON(ret);
1525 mutex_lock(&node->mutex);
1526 ret = __btrfs_add_delayed_deletion_item(node, item);
1527 if (unlikely(ret)) {
1528 btrfs_err(fs_info,
1529 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1530 index, node->root->objectid, node->inode_id, ret);
1531 BUG();
1533 mutex_unlock(&node->mutex);
1534 end:
1535 btrfs_release_delayed_node(node);
1536 return ret;
1539 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1541 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1543 if (!delayed_node)
1544 return -ENOENT;
1547 * Since we have held i_mutex of this directory, it is impossible that
1548 * a new directory index is added into the delayed node and index_cnt
1549 * is updated now. So we needn't lock the delayed node.
1551 if (!delayed_node->index_cnt) {
1552 btrfs_release_delayed_node(delayed_node);
1553 return -EINVAL;
1556 inode->index_cnt = delayed_node->index_cnt;
1557 btrfs_release_delayed_node(delayed_node);
1558 return 0;
1561 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1562 struct list_head *ins_list,
1563 struct list_head *del_list)
1565 struct btrfs_delayed_node *delayed_node;
1566 struct btrfs_delayed_item *item;
1568 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1569 if (!delayed_node)
1570 return false;
1573 * We can only do one readdir with delayed items at a time because of
1574 * item->readdir_list.
1576 inode_unlock_shared(inode);
1577 inode_lock(inode);
1579 mutex_lock(&delayed_node->mutex);
1580 item = __btrfs_first_delayed_insertion_item(delayed_node);
1581 while (item) {
1582 refcount_inc(&item->refs);
1583 list_add_tail(&item->readdir_list, ins_list);
1584 item = __btrfs_next_delayed_item(item);
1587 item = __btrfs_first_delayed_deletion_item(delayed_node);
1588 while (item) {
1589 refcount_inc(&item->refs);
1590 list_add_tail(&item->readdir_list, del_list);
1591 item = __btrfs_next_delayed_item(item);
1593 mutex_unlock(&delayed_node->mutex);
1595 * This delayed node is still cached in the btrfs inode, so refs
1596 * must be > 1 now, and we needn't check it is going to be freed
1597 * or not.
1599 * Besides that, this function is used to read dir, we do not
1600 * insert/delete delayed items in this period. So we also needn't
1601 * requeue or dequeue this delayed node.
1603 refcount_dec(&delayed_node->refs);
1605 return true;
1608 void btrfs_readdir_put_delayed_items(struct inode *inode,
1609 struct list_head *ins_list,
1610 struct list_head *del_list)
1612 struct btrfs_delayed_item *curr, *next;
1614 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1615 list_del(&curr->readdir_list);
1616 if (refcount_dec_and_test(&curr->refs))
1617 kfree(curr);
1620 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1621 list_del(&curr->readdir_list);
1622 if (refcount_dec_and_test(&curr->refs))
1623 kfree(curr);
1627 * The VFS is going to do up_read(), so we need to downgrade back to a
1628 * read lock.
1630 downgrade_write(&inode->i_rwsem);
1633 int btrfs_should_delete_dir_index(struct list_head *del_list,
1634 u64 index)
1636 struct btrfs_delayed_item *curr;
1637 int ret = 0;
1639 list_for_each_entry(curr, del_list, readdir_list) {
1640 if (curr->key.offset > index)
1641 break;
1642 if (curr->key.offset == index) {
1643 ret = 1;
1644 break;
1647 return ret;
1651 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1654 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1655 struct list_head *ins_list)
1657 struct btrfs_dir_item *di;
1658 struct btrfs_delayed_item *curr, *next;
1659 struct btrfs_key location;
1660 char *name;
1661 int name_len;
1662 int over = 0;
1663 unsigned char d_type;
1665 if (list_empty(ins_list))
1666 return 0;
1669 * Changing the data of the delayed item is impossible. So
1670 * we needn't lock them. And we have held i_mutex of the
1671 * directory, nobody can delete any directory indexes now.
1673 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1674 list_del(&curr->readdir_list);
1676 if (curr->key.offset < ctx->pos) {
1677 if (refcount_dec_and_test(&curr->refs))
1678 kfree(curr);
1679 continue;
1682 ctx->pos = curr->key.offset;
1684 di = (struct btrfs_dir_item *)curr->data;
1685 name = (char *)(di + 1);
1686 name_len = btrfs_stack_dir_name_len(di);
1688 d_type = btrfs_filetype_table[di->type];
1689 btrfs_disk_key_to_cpu(&location, &di->location);
1691 over = !dir_emit(ctx, name, name_len,
1692 location.objectid, d_type);
1694 if (refcount_dec_and_test(&curr->refs))
1695 kfree(curr);
1697 if (over)
1698 return 1;
1699 ctx->pos++;
1701 return 0;
1704 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1705 struct btrfs_inode_item *inode_item,
1706 struct inode *inode)
1708 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1709 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1710 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1711 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1712 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1713 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1714 btrfs_set_stack_inode_generation(inode_item,
1715 BTRFS_I(inode)->generation);
1716 btrfs_set_stack_inode_sequence(inode_item,
1717 inode_peek_iversion(inode));
1718 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1719 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1720 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1721 btrfs_set_stack_inode_block_group(inode_item, 0);
1723 btrfs_set_stack_timespec_sec(&inode_item->atime,
1724 inode->i_atime.tv_sec);
1725 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1726 inode->i_atime.tv_nsec);
1728 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1729 inode->i_mtime.tv_sec);
1730 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1731 inode->i_mtime.tv_nsec);
1733 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1734 inode->i_ctime.tv_sec);
1735 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1736 inode->i_ctime.tv_nsec);
1738 btrfs_set_stack_timespec_sec(&inode_item->otime,
1739 BTRFS_I(inode)->i_otime.tv_sec);
1740 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1741 BTRFS_I(inode)->i_otime.tv_nsec);
1744 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1746 struct btrfs_delayed_node *delayed_node;
1747 struct btrfs_inode_item *inode_item;
1749 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1750 if (!delayed_node)
1751 return -ENOENT;
1753 mutex_lock(&delayed_node->mutex);
1754 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1755 mutex_unlock(&delayed_node->mutex);
1756 btrfs_release_delayed_node(delayed_node);
1757 return -ENOENT;
1760 inode_item = &delayed_node->inode_item;
1762 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1763 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1764 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1765 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1766 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1767 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1768 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1769 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1771 inode_set_iversion_queried(inode,
1772 btrfs_stack_inode_sequence(inode_item));
1773 inode->i_rdev = 0;
1774 *rdev = btrfs_stack_inode_rdev(inode_item);
1775 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1777 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1778 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1780 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1781 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1783 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1784 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1786 BTRFS_I(inode)->i_otime.tv_sec =
1787 btrfs_stack_timespec_sec(&inode_item->otime);
1788 BTRFS_I(inode)->i_otime.tv_nsec =
1789 btrfs_stack_timespec_nsec(&inode_item->otime);
1791 inode->i_generation = BTRFS_I(inode)->generation;
1792 BTRFS_I(inode)->index_cnt = (u64)-1;
1794 mutex_unlock(&delayed_node->mutex);
1795 btrfs_release_delayed_node(delayed_node);
1796 return 0;
1799 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1800 struct btrfs_root *root, struct inode *inode)
1802 struct btrfs_delayed_node *delayed_node;
1803 int ret = 0;
1805 delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1806 if (IS_ERR(delayed_node))
1807 return PTR_ERR(delayed_node);
1809 mutex_lock(&delayed_node->mutex);
1810 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1811 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1812 goto release_node;
1815 ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1816 delayed_node);
1817 if (ret)
1818 goto release_node;
1820 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1821 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1822 delayed_node->count++;
1823 atomic_inc(&root->fs_info->delayed_root->items);
1824 release_node:
1825 mutex_unlock(&delayed_node->mutex);
1826 btrfs_release_delayed_node(delayed_node);
1827 return ret;
1830 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1832 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1833 struct btrfs_delayed_node *delayed_node;
1836 * we don't do delayed inode updates during log recovery because it
1837 * leads to enospc problems. This means we also can't do
1838 * delayed inode refs
1840 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1841 return -EAGAIN;
1843 delayed_node = btrfs_get_or_create_delayed_node(inode);
1844 if (IS_ERR(delayed_node))
1845 return PTR_ERR(delayed_node);
1848 * We don't reserve space for inode ref deletion is because:
1849 * - We ONLY do async inode ref deletion for the inode who has only
1850 * one link(i_nlink == 1), it means there is only one inode ref.
1851 * And in most case, the inode ref and the inode item are in the
1852 * same leaf, and we will deal with them at the same time.
1853 * Since we are sure we will reserve the space for the inode item,
1854 * it is unnecessary to reserve space for inode ref deletion.
1855 * - If the inode ref and the inode item are not in the same leaf,
1856 * We also needn't worry about enospc problem, because we reserve
1857 * much more space for the inode update than it needs.
1858 * - At the worst, we can steal some space from the global reservation.
1859 * It is very rare.
1861 mutex_lock(&delayed_node->mutex);
1862 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1863 goto release_node;
1865 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1866 delayed_node->count++;
1867 atomic_inc(&fs_info->delayed_root->items);
1868 release_node:
1869 mutex_unlock(&delayed_node->mutex);
1870 btrfs_release_delayed_node(delayed_node);
1871 return 0;
1874 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1876 struct btrfs_root *root = delayed_node->root;
1877 struct btrfs_fs_info *fs_info = root->fs_info;
1878 struct btrfs_delayed_item *curr_item, *prev_item;
1880 mutex_lock(&delayed_node->mutex);
1881 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1882 while (curr_item) {
1883 btrfs_delayed_item_release_metadata(fs_info, curr_item);
1884 prev_item = curr_item;
1885 curr_item = __btrfs_next_delayed_item(prev_item);
1886 btrfs_release_delayed_item(prev_item);
1889 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1890 while (curr_item) {
1891 btrfs_delayed_item_release_metadata(fs_info, curr_item);
1892 prev_item = curr_item;
1893 curr_item = __btrfs_next_delayed_item(prev_item);
1894 btrfs_release_delayed_item(prev_item);
1897 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1898 btrfs_release_delayed_iref(delayed_node);
1900 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1901 btrfs_delayed_inode_release_metadata(fs_info, delayed_node);
1902 btrfs_release_delayed_inode(delayed_node);
1904 mutex_unlock(&delayed_node->mutex);
1907 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1909 struct btrfs_delayed_node *delayed_node;
1911 delayed_node = btrfs_get_delayed_node(inode);
1912 if (!delayed_node)
1913 return;
1915 __btrfs_kill_delayed_node(delayed_node);
1916 btrfs_release_delayed_node(delayed_node);
1919 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1921 u64 inode_id = 0;
1922 struct btrfs_delayed_node *delayed_nodes[8];
1923 int i, n;
1925 while (1) {
1926 spin_lock(&root->inode_lock);
1927 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1928 (void **)delayed_nodes, inode_id,
1929 ARRAY_SIZE(delayed_nodes));
1930 if (!n) {
1931 spin_unlock(&root->inode_lock);
1932 break;
1935 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1937 for (i = 0; i < n; i++)
1938 refcount_inc(&delayed_nodes[i]->refs);
1939 spin_unlock(&root->inode_lock);
1941 for (i = 0; i < n; i++) {
1942 __btrfs_kill_delayed_node(delayed_nodes[i]);
1943 btrfs_release_delayed_node(delayed_nodes[i]);
1948 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1950 struct btrfs_delayed_node *curr_node, *prev_node;
1952 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1953 while (curr_node) {
1954 __btrfs_kill_delayed_node(curr_node);
1956 prev_node = curr_node;
1957 curr_node = btrfs_next_delayed_node(curr_node);
1958 btrfs_release_delayed_node(prev_node);