2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
29 #include <linux/lockdep.h>
33 #include "print-tree.h"
37 #include "free-space-cache.h"
38 #include "free-space-tree.h"
42 #include "ref-verify.h"
44 #undef SCRAMBLE_DELAYED_REFS
47 * control flags for do_chunk_alloc's force field
48 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
49 * if we really need one.
51 * CHUNK_ALLOC_LIMITED means to only try and allocate one
52 * if we have very few chunks already allocated. This is
53 * used as part of the clustering code to help make sure
54 * we have a good pool of storage to cluster in, without
55 * filling the FS with empty chunks
57 * CHUNK_ALLOC_FORCE means it must try to allocate one
61 CHUNK_ALLOC_NO_FORCE
= 0,
62 CHUNK_ALLOC_LIMITED
= 1,
63 CHUNK_ALLOC_FORCE
= 2,
66 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
67 struct btrfs_fs_info
*fs_info
,
68 struct btrfs_delayed_ref_node
*node
, u64 parent
,
69 u64 root_objectid
, u64 owner_objectid
,
70 u64 owner_offset
, int refs_to_drop
,
71 struct btrfs_delayed_extent_op
*extra_op
);
72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
73 struct extent_buffer
*leaf
,
74 struct btrfs_extent_item
*ei
);
75 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
76 struct btrfs_fs_info
*fs_info
,
77 u64 parent
, u64 root_objectid
,
78 u64 flags
, u64 owner
, u64 offset
,
79 struct btrfs_key
*ins
, int ref_mod
);
80 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
81 struct btrfs_fs_info
*fs_info
,
82 u64 parent
, u64 root_objectid
,
83 u64 flags
, struct btrfs_disk_key
*key
,
84 int level
, struct btrfs_key
*ins
);
85 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
86 struct btrfs_fs_info
*fs_info
, u64 flags
,
88 static int find_next_key(struct btrfs_path
*path
, int level
,
89 struct btrfs_key
*key
);
90 static void dump_space_info(struct btrfs_fs_info
*fs_info
,
91 struct btrfs_space_info
*info
, u64 bytes
,
92 int dump_block_groups
);
93 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
95 static void space_info_add_new_bytes(struct btrfs_fs_info
*fs_info
,
96 struct btrfs_space_info
*space_info
,
98 static void space_info_add_old_bytes(struct btrfs_fs_info
*fs_info
,
99 struct btrfs_space_info
*space_info
,
103 block_group_cache_done(struct btrfs_block_group_cache
*cache
)
106 return cache
->cached
== BTRFS_CACHE_FINISHED
||
107 cache
->cached
== BTRFS_CACHE_ERROR
;
110 static int block_group_bits(struct btrfs_block_group_cache
*cache
, u64 bits
)
112 return (cache
->flags
& bits
) == bits
;
115 void btrfs_get_block_group(struct btrfs_block_group_cache
*cache
)
117 atomic_inc(&cache
->count
);
120 void btrfs_put_block_group(struct btrfs_block_group_cache
*cache
)
122 if (atomic_dec_and_test(&cache
->count
)) {
123 WARN_ON(cache
->pinned
> 0);
124 WARN_ON(cache
->reserved
> 0);
127 * If not empty, someone is still holding mutex of
128 * full_stripe_lock, which can only be released by caller.
129 * And it will definitely cause use-after-free when caller
130 * tries to release full stripe lock.
132 * No better way to resolve, but only to warn.
134 WARN_ON(!RB_EMPTY_ROOT(&cache
->full_stripe_locks_root
.root
));
135 kfree(cache
->free_space_ctl
);
141 * this adds the block group to the fs_info rb tree for the block group
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
145 struct btrfs_block_group_cache
*block_group
)
148 struct rb_node
*parent
= NULL
;
149 struct btrfs_block_group_cache
*cache
;
151 spin_lock(&info
->block_group_cache_lock
);
152 p
= &info
->block_group_cache_tree
.rb_node
;
156 cache
= rb_entry(parent
, struct btrfs_block_group_cache
,
158 if (block_group
->key
.objectid
< cache
->key
.objectid
) {
160 } else if (block_group
->key
.objectid
> cache
->key
.objectid
) {
163 spin_unlock(&info
->block_group_cache_lock
);
168 rb_link_node(&block_group
->cache_node
, parent
, p
);
169 rb_insert_color(&block_group
->cache_node
,
170 &info
->block_group_cache_tree
);
172 if (info
->first_logical_byte
> block_group
->key
.objectid
)
173 info
->first_logical_byte
= block_group
->key
.objectid
;
175 spin_unlock(&info
->block_group_cache_lock
);
181 * This will return the block group at or after bytenr if contains is 0, else
182 * it will return the block group that contains the bytenr
184 static struct btrfs_block_group_cache
*
185 block_group_cache_tree_search(struct btrfs_fs_info
*info
, u64 bytenr
,
188 struct btrfs_block_group_cache
*cache
, *ret
= NULL
;
192 spin_lock(&info
->block_group_cache_lock
);
193 n
= info
->block_group_cache_tree
.rb_node
;
196 cache
= rb_entry(n
, struct btrfs_block_group_cache
,
198 end
= cache
->key
.objectid
+ cache
->key
.offset
- 1;
199 start
= cache
->key
.objectid
;
201 if (bytenr
< start
) {
202 if (!contains
&& (!ret
|| start
< ret
->key
.objectid
))
205 } else if (bytenr
> start
) {
206 if (contains
&& bytenr
<= end
) {
217 btrfs_get_block_group(ret
);
218 if (bytenr
== 0 && info
->first_logical_byte
> ret
->key
.objectid
)
219 info
->first_logical_byte
= ret
->key
.objectid
;
221 spin_unlock(&info
->block_group_cache_lock
);
226 static int add_excluded_extent(struct btrfs_fs_info
*fs_info
,
227 u64 start
, u64 num_bytes
)
229 u64 end
= start
+ num_bytes
- 1;
230 set_extent_bits(&fs_info
->freed_extents
[0],
231 start
, end
, EXTENT_UPTODATE
);
232 set_extent_bits(&fs_info
->freed_extents
[1],
233 start
, end
, EXTENT_UPTODATE
);
237 static void free_excluded_extents(struct btrfs_fs_info
*fs_info
,
238 struct btrfs_block_group_cache
*cache
)
242 start
= cache
->key
.objectid
;
243 end
= start
+ cache
->key
.offset
- 1;
245 clear_extent_bits(&fs_info
->freed_extents
[0],
246 start
, end
, EXTENT_UPTODATE
);
247 clear_extent_bits(&fs_info
->freed_extents
[1],
248 start
, end
, EXTENT_UPTODATE
);
251 static int exclude_super_stripes(struct btrfs_fs_info
*fs_info
,
252 struct btrfs_block_group_cache
*cache
)
259 if (cache
->key
.objectid
< BTRFS_SUPER_INFO_OFFSET
) {
260 stripe_len
= BTRFS_SUPER_INFO_OFFSET
- cache
->key
.objectid
;
261 cache
->bytes_super
+= stripe_len
;
262 ret
= add_excluded_extent(fs_info
, cache
->key
.objectid
,
268 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
269 bytenr
= btrfs_sb_offset(i
);
270 ret
= btrfs_rmap_block(fs_info
, cache
->key
.objectid
,
271 bytenr
, 0, &logical
, &nr
, &stripe_len
);
278 if (logical
[nr
] > cache
->key
.objectid
+
282 if (logical
[nr
] + stripe_len
<= cache
->key
.objectid
)
286 if (start
< cache
->key
.objectid
) {
287 start
= cache
->key
.objectid
;
288 len
= (logical
[nr
] + stripe_len
) - start
;
290 len
= min_t(u64
, stripe_len
,
291 cache
->key
.objectid
+
292 cache
->key
.offset
- start
);
295 cache
->bytes_super
+= len
;
296 ret
= add_excluded_extent(fs_info
, start
, len
);
308 static struct btrfs_caching_control
*
309 get_caching_control(struct btrfs_block_group_cache
*cache
)
311 struct btrfs_caching_control
*ctl
;
313 spin_lock(&cache
->lock
);
314 if (!cache
->caching_ctl
) {
315 spin_unlock(&cache
->lock
);
319 ctl
= cache
->caching_ctl
;
320 refcount_inc(&ctl
->count
);
321 spin_unlock(&cache
->lock
);
325 static void put_caching_control(struct btrfs_caching_control
*ctl
)
327 if (refcount_dec_and_test(&ctl
->count
))
331 #ifdef CONFIG_BTRFS_DEBUG
332 static void fragment_free_space(struct btrfs_block_group_cache
*block_group
)
334 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
335 u64 start
= block_group
->key
.objectid
;
336 u64 len
= block_group
->key
.offset
;
337 u64 chunk
= block_group
->flags
& BTRFS_BLOCK_GROUP_METADATA
?
338 fs_info
->nodesize
: fs_info
->sectorsize
;
339 u64 step
= chunk
<< 1;
341 while (len
> chunk
) {
342 btrfs_remove_free_space(block_group
, start
, chunk
);
353 * this is only called by cache_block_group, since we could have freed extents
354 * we need to check the pinned_extents for any extents that can't be used yet
355 * since their free space will be released as soon as the transaction commits.
357 u64
add_new_free_space(struct btrfs_block_group_cache
*block_group
,
358 struct btrfs_fs_info
*info
, u64 start
, u64 end
)
360 u64 extent_start
, extent_end
, size
, total_added
= 0;
363 while (start
< end
) {
364 ret
= find_first_extent_bit(info
->pinned_extents
, start
,
365 &extent_start
, &extent_end
,
366 EXTENT_DIRTY
| EXTENT_UPTODATE
,
371 if (extent_start
<= start
) {
372 start
= extent_end
+ 1;
373 } else if (extent_start
> start
&& extent_start
< end
) {
374 size
= extent_start
- start
;
376 ret
= btrfs_add_free_space(block_group
, start
,
378 BUG_ON(ret
); /* -ENOMEM or logic error */
379 start
= extent_end
+ 1;
388 ret
= btrfs_add_free_space(block_group
, start
, size
);
389 BUG_ON(ret
); /* -ENOMEM or logic error */
395 static int load_extent_tree_free(struct btrfs_caching_control
*caching_ctl
)
397 struct btrfs_block_group_cache
*block_group
= caching_ctl
->block_group
;
398 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
399 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
400 struct btrfs_path
*path
;
401 struct extent_buffer
*leaf
;
402 struct btrfs_key key
;
409 path
= btrfs_alloc_path();
413 last
= max_t(u64
, block_group
->key
.objectid
, BTRFS_SUPER_INFO_OFFSET
);
415 #ifdef CONFIG_BTRFS_DEBUG
417 * If we're fragmenting we don't want to make anybody think we can
418 * allocate from this block group until we've had a chance to fragment
421 if (btrfs_should_fragment_free_space(block_group
))
425 * We don't want to deadlock with somebody trying to allocate a new
426 * extent for the extent root while also trying to search the extent
427 * root to add free space. So we skip locking and search the commit
428 * root, since its read-only
430 path
->skip_locking
= 1;
431 path
->search_commit_root
= 1;
432 path
->reada
= READA_FORWARD
;
436 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
439 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
443 leaf
= path
->nodes
[0];
444 nritems
= btrfs_header_nritems(leaf
);
447 if (btrfs_fs_closing(fs_info
) > 1) {
452 if (path
->slots
[0] < nritems
) {
453 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
455 ret
= find_next_key(path
, 0, &key
);
459 if (need_resched() ||
460 rwsem_is_contended(&fs_info
->commit_root_sem
)) {
462 caching_ctl
->progress
= last
;
463 btrfs_release_path(path
);
464 up_read(&fs_info
->commit_root_sem
);
465 mutex_unlock(&caching_ctl
->mutex
);
467 mutex_lock(&caching_ctl
->mutex
);
468 down_read(&fs_info
->commit_root_sem
);
472 ret
= btrfs_next_leaf(extent_root
, path
);
477 leaf
= path
->nodes
[0];
478 nritems
= btrfs_header_nritems(leaf
);
482 if (key
.objectid
< last
) {
485 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
488 caching_ctl
->progress
= last
;
489 btrfs_release_path(path
);
493 if (key
.objectid
< block_group
->key
.objectid
) {
498 if (key
.objectid
>= block_group
->key
.objectid
+
499 block_group
->key
.offset
)
502 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
||
503 key
.type
== BTRFS_METADATA_ITEM_KEY
) {
504 total_found
+= add_new_free_space(block_group
,
507 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
508 last
= key
.objectid
+
511 last
= key
.objectid
+ key
.offset
;
513 if (total_found
> CACHING_CTL_WAKE_UP
) {
516 wake_up(&caching_ctl
->wait
);
523 total_found
+= add_new_free_space(block_group
, fs_info
, last
,
524 block_group
->key
.objectid
+
525 block_group
->key
.offset
);
526 caching_ctl
->progress
= (u64
)-1;
529 btrfs_free_path(path
);
533 static noinline
void caching_thread(struct btrfs_work
*work
)
535 struct btrfs_block_group_cache
*block_group
;
536 struct btrfs_fs_info
*fs_info
;
537 struct btrfs_caching_control
*caching_ctl
;
538 struct btrfs_root
*extent_root
;
541 caching_ctl
= container_of(work
, struct btrfs_caching_control
, work
);
542 block_group
= caching_ctl
->block_group
;
543 fs_info
= block_group
->fs_info
;
544 extent_root
= fs_info
->extent_root
;
546 mutex_lock(&caching_ctl
->mutex
);
547 down_read(&fs_info
->commit_root_sem
);
549 if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
))
550 ret
= load_free_space_tree(caching_ctl
);
552 ret
= load_extent_tree_free(caching_ctl
);
554 spin_lock(&block_group
->lock
);
555 block_group
->caching_ctl
= NULL
;
556 block_group
->cached
= ret
? BTRFS_CACHE_ERROR
: BTRFS_CACHE_FINISHED
;
557 spin_unlock(&block_group
->lock
);
559 #ifdef CONFIG_BTRFS_DEBUG
560 if (btrfs_should_fragment_free_space(block_group
)) {
563 spin_lock(&block_group
->space_info
->lock
);
564 spin_lock(&block_group
->lock
);
565 bytes_used
= block_group
->key
.offset
-
566 btrfs_block_group_used(&block_group
->item
);
567 block_group
->space_info
->bytes_used
+= bytes_used
>> 1;
568 spin_unlock(&block_group
->lock
);
569 spin_unlock(&block_group
->space_info
->lock
);
570 fragment_free_space(block_group
);
574 caching_ctl
->progress
= (u64
)-1;
576 up_read(&fs_info
->commit_root_sem
);
577 free_excluded_extents(fs_info
, block_group
);
578 mutex_unlock(&caching_ctl
->mutex
);
580 wake_up(&caching_ctl
->wait
);
582 put_caching_control(caching_ctl
);
583 btrfs_put_block_group(block_group
);
586 static int cache_block_group(struct btrfs_block_group_cache
*cache
,
590 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
591 struct btrfs_caching_control
*caching_ctl
;
594 caching_ctl
= kzalloc(sizeof(*caching_ctl
), GFP_NOFS
);
598 INIT_LIST_HEAD(&caching_ctl
->list
);
599 mutex_init(&caching_ctl
->mutex
);
600 init_waitqueue_head(&caching_ctl
->wait
);
601 caching_ctl
->block_group
= cache
;
602 caching_ctl
->progress
= cache
->key
.objectid
;
603 refcount_set(&caching_ctl
->count
, 1);
604 btrfs_init_work(&caching_ctl
->work
, btrfs_cache_helper
,
605 caching_thread
, NULL
, NULL
);
607 spin_lock(&cache
->lock
);
609 * This should be a rare occasion, but this could happen I think in the
610 * case where one thread starts to load the space cache info, and then
611 * some other thread starts a transaction commit which tries to do an
612 * allocation while the other thread is still loading the space cache
613 * info. The previous loop should have kept us from choosing this block
614 * group, but if we've moved to the state where we will wait on caching
615 * block groups we need to first check if we're doing a fast load here,
616 * so we can wait for it to finish, otherwise we could end up allocating
617 * from a block group who's cache gets evicted for one reason or
620 while (cache
->cached
== BTRFS_CACHE_FAST
) {
621 struct btrfs_caching_control
*ctl
;
623 ctl
= cache
->caching_ctl
;
624 refcount_inc(&ctl
->count
);
625 prepare_to_wait(&ctl
->wait
, &wait
, TASK_UNINTERRUPTIBLE
);
626 spin_unlock(&cache
->lock
);
630 finish_wait(&ctl
->wait
, &wait
);
631 put_caching_control(ctl
);
632 spin_lock(&cache
->lock
);
635 if (cache
->cached
!= BTRFS_CACHE_NO
) {
636 spin_unlock(&cache
->lock
);
640 WARN_ON(cache
->caching_ctl
);
641 cache
->caching_ctl
= caching_ctl
;
642 cache
->cached
= BTRFS_CACHE_FAST
;
643 spin_unlock(&cache
->lock
);
645 if (btrfs_test_opt(fs_info
, SPACE_CACHE
)) {
646 mutex_lock(&caching_ctl
->mutex
);
647 ret
= load_free_space_cache(fs_info
, cache
);
649 spin_lock(&cache
->lock
);
651 cache
->caching_ctl
= NULL
;
652 cache
->cached
= BTRFS_CACHE_FINISHED
;
653 cache
->last_byte_to_unpin
= (u64
)-1;
654 caching_ctl
->progress
= (u64
)-1;
656 if (load_cache_only
) {
657 cache
->caching_ctl
= NULL
;
658 cache
->cached
= BTRFS_CACHE_NO
;
660 cache
->cached
= BTRFS_CACHE_STARTED
;
661 cache
->has_caching_ctl
= 1;
664 spin_unlock(&cache
->lock
);
665 #ifdef CONFIG_BTRFS_DEBUG
667 btrfs_should_fragment_free_space(cache
)) {
670 spin_lock(&cache
->space_info
->lock
);
671 spin_lock(&cache
->lock
);
672 bytes_used
= cache
->key
.offset
-
673 btrfs_block_group_used(&cache
->item
);
674 cache
->space_info
->bytes_used
+= bytes_used
>> 1;
675 spin_unlock(&cache
->lock
);
676 spin_unlock(&cache
->space_info
->lock
);
677 fragment_free_space(cache
);
680 mutex_unlock(&caching_ctl
->mutex
);
682 wake_up(&caching_ctl
->wait
);
684 put_caching_control(caching_ctl
);
685 free_excluded_extents(fs_info
, cache
);
690 * We're either using the free space tree or no caching at all.
691 * Set cached to the appropriate value and wakeup any waiters.
693 spin_lock(&cache
->lock
);
694 if (load_cache_only
) {
695 cache
->caching_ctl
= NULL
;
696 cache
->cached
= BTRFS_CACHE_NO
;
698 cache
->cached
= BTRFS_CACHE_STARTED
;
699 cache
->has_caching_ctl
= 1;
701 spin_unlock(&cache
->lock
);
702 wake_up(&caching_ctl
->wait
);
705 if (load_cache_only
) {
706 put_caching_control(caching_ctl
);
710 down_write(&fs_info
->commit_root_sem
);
711 refcount_inc(&caching_ctl
->count
);
712 list_add_tail(&caching_ctl
->list
, &fs_info
->caching_block_groups
);
713 up_write(&fs_info
->commit_root_sem
);
715 btrfs_get_block_group(cache
);
717 btrfs_queue_work(fs_info
->caching_workers
, &caching_ctl
->work
);
723 * return the block group that starts at or after bytenr
725 static struct btrfs_block_group_cache
*
726 btrfs_lookup_first_block_group(struct btrfs_fs_info
*info
, u64 bytenr
)
728 return block_group_cache_tree_search(info
, bytenr
, 0);
732 * return the block group that contains the given bytenr
734 struct btrfs_block_group_cache
*btrfs_lookup_block_group(
735 struct btrfs_fs_info
*info
,
738 return block_group_cache_tree_search(info
, bytenr
, 1);
741 static struct btrfs_space_info
*__find_space_info(struct btrfs_fs_info
*info
,
744 struct list_head
*head
= &info
->space_info
;
745 struct btrfs_space_info
*found
;
747 flags
&= BTRFS_BLOCK_GROUP_TYPE_MASK
;
750 list_for_each_entry_rcu(found
, head
, list
) {
751 if (found
->flags
& flags
) {
760 static void add_pinned_bytes(struct btrfs_fs_info
*fs_info
, s64 num_bytes
,
761 u64 owner
, u64 root_objectid
)
763 struct btrfs_space_info
*space_info
;
766 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
767 if (root_objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
768 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
770 flags
= BTRFS_BLOCK_GROUP_METADATA
;
772 flags
= BTRFS_BLOCK_GROUP_DATA
;
775 space_info
= __find_space_info(fs_info
, flags
);
777 percpu_counter_add(&space_info
->total_bytes_pinned
, num_bytes
);
781 * after adding space to the filesystem, we need to clear the full flags
782 * on all the space infos.
784 void btrfs_clear_space_info_full(struct btrfs_fs_info
*info
)
786 struct list_head
*head
= &info
->space_info
;
787 struct btrfs_space_info
*found
;
790 list_for_each_entry_rcu(found
, head
, list
)
795 /* simple helper to search for an existing data extent at a given offset */
796 int btrfs_lookup_data_extent(struct btrfs_fs_info
*fs_info
, u64 start
, u64 len
)
799 struct btrfs_key key
;
800 struct btrfs_path
*path
;
802 path
= btrfs_alloc_path();
806 key
.objectid
= start
;
808 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
809 ret
= btrfs_search_slot(NULL
, fs_info
->extent_root
, &key
, path
, 0, 0);
810 btrfs_free_path(path
);
815 * helper function to lookup reference count and flags of a tree block.
817 * the head node for delayed ref is used to store the sum of all the
818 * reference count modifications queued up in the rbtree. the head
819 * node may also store the extent flags to set. This way you can check
820 * to see what the reference count and extent flags would be if all of
821 * the delayed refs are not processed.
823 int btrfs_lookup_extent_info(struct btrfs_trans_handle
*trans
,
824 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
825 u64 offset
, int metadata
, u64
*refs
, u64
*flags
)
827 struct btrfs_delayed_ref_head
*head
;
828 struct btrfs_delayed_ref_root
*delayed_refs
;
829 struct btrfs_path
*path
;
830 struct btrfs_extent_item
*ei
;
831 struct extent_buffer
*leaf
;
832 struct btrfs_key key
;
839 * If we don't have skinny metadata, don't bother doing anything
842 if (metadata
&& !btrfs_fs_incompat(fs_info
, SKINNY_METADATA
)) {
843 offset
= fs_info
->nodesize
;
847 path
= btrfs_alloc_path();
852 path
->skip_locking
= 1;
853 path
->search_commit_root
= 1;
857 key
.objectid
= bytenr
;
860 key
.type
= BTRFS_METADATA_ITEM_KEY
;
862 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
864 ret
= btrfs_search_slot(trans
, fs_info
->extent_root
, &key
, path
, 0, 0);
868 if (ret
> 0 && metadata
&& key
.type
== BTRFS_METADATA_ITEM_KEY
) {
869 if (path
->slots
[0]) {
871 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
873 if (key
.objectid
== bytenr
&&
874 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
875 key
.offset
== fs_info
->nodesize
)
881 leaf
= path
->nodes
[0];
882 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
883 if (item_size
>= sizeof(*ei
)) {
884 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
885 struct btrfs_extent_item
);
886 num_refs
= btrfs_extent_refs(leaf
, ei
);
887 extent_flags
= btrfs_extent_flags(leaf
, ei
);
889 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
890 struct btrfs_extent_item_v0
*ei0
;
891 BUG_ON(item_size
!= sizeof(*ei0
));
892 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
893 struct btrfs_extent_item_v0
);
894 num_refs
= btrfs_extent_refs_v0(leaf
, ei0
);
895 /* FIXME: this isn't correct for data */
896 extent_flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
901 BUG_ON(num_refs
== 0);
911 delayed_refs
= &trans
->transaction
->delayed_refs
;
912 spin_lock(&delayed_refs
->lock
);
913 head
= btrfs_find_delayed_ref_head(delayed_refs
, bytenr
);
915 if (!mutex_trylock(&head
->mutex
)) {
916 refcount_inc(&head
->refs
);
917 spin_unlock(&delayed_refs
->lock
);
919 btrfs_release_path(path
);
922 * Mutex was contended, block until it's released and try
925 mutex_lock(&head
->mutex
);
926 mutex_unlock(&head
->mutex
);
927 btrfs_put_delayed_ref_head(head
);
930 spin_lock(&head
->lock
);
931 if (head
->extent_op
&& head
->extent_op
->update_flags
)
932 extent_flags
|= head
->extent_op
->flags_to_set
;
934 BUG_ON(num_refs
== 0);
936 num_refs
+= head
->ref_mod
;
937 spin_unlock(&head
->lock
);
938 mutex_unlock(&head
->mutex
);
940 spin_unlock(&delayed_refs
->lock
);
942 WARN_ON(num_refs
== 0);
946 *flags
= extent_flags
;
948 btrfs_free_path(path
);
953 * Back reference rules. Back refs have three main goals:
955 * 1) differentiate between all holders of references to an extent so that
956 * when a reference is dropped we can make sure it was a valid reference
957 * before freeing the extent.
959 * 2) Provide enough information to quickly find the holders of an extent
960 * if we notice a given block is corrupted or bad.
962 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
963 * maintenance. This is actually the same as #2, but with a slightly
964 * different use case.
966 * There are two kinds of back refs. The implicit back refs is optimized
967 * for pointers in non-shared tree blocks. For a given pointer in a block,
968 * back refs of this kind provide information about the block's owner tree
969 * and the pointer's key. These information allow us to find the block by
970 * b-tree searching. The full back refs is for pointers in tree blocks not
971 * referenced by their owner trees. The location of tree block is recorded
972 * in the back refs. Actually the full back refs is generic, and can be
973 * used in all cases the implicit back refs is used. The major shortcoming
974 * of the full back refs is its overhead. Every time a tree block gets
975 * COWed, we have to update back refs entry for all pointers in it.
977 * For a newly allocated tree block, we use implicit back refs for
978 * pointers in it. This means most tree related operations only involve
979 * implicit back refs. For a tree block created in old transaction, the
980 * only way to drop a reference to it is COW it. So we can detect the
981 * event that tree block loses its owner tree's reference and do the
982 * back refs conversion.
984 * When a tree block is COWed through a tree, there are four cases:
986 * The reference count of the block is one and the tree is the block's
987 * owner tree. Nothing to do in this case.
989 * The reference count of the block is one and the tree is not the
990 * block's owner tree. In this case, full back refs is used for pointers
991 * in the block. Remove these full back refs, add implicit back refs for
992 * every pointers in the new block.
994 * The reference count of the block is greater than one and the tree is
995 * the block's owner tree. In this case, implicit back refs is used for
996 * pointers in the block. Add full back refs for every pointers in the
997 * block, increase lower level extents' reference counts. The original
998 * implicit back refs are entailed to the new block.
1000 * The reference count of the block is greater than one and the tree is
1001 * not the block's owner tree. Add implicit back refs for every pointer in
1002 * the new block, increase lower level extents' reference count.
1004 * Back Reference Key composing:
1006 * The key objectid corresponds to the first byte in the extent,
1007 * The key type is used to differentiate between types of back refs.
1008 * There are different meanings of the key offset for different types
1011 * File extents can be referenced by:
1013 * - multiple snapshots, subvolumes, or different generations in one subvol
1014 * - different files inside a single subvolume
1015 * - different offsets inside a file (bookend extents in file.c)
1017 * The extent ref structure for the implicit back refs has fields for:
1019 * - Objectid of the subvolume root
1020 * - objectid of the file holding the reference
1021 * - original offset in the file
1022 * - how many bookend extents
1024 * The key offset for the implicit back refs is hash of the first
1027 * The extent ref structure for the full back refs has field for:
1029 * - number of pointers in the tree leaf
1031 * The key offset for the implicit back refs is the first byte of
1034 * When a file extent is allocated, The implicit back refs is used.
1035 * the fields are filled in:
1037 * (root_key.objectid, inode objectid, offset in file, 1)
1039 * When a file extent is removed file truncation, we find the
1040 * corresponding implicit back refs and check the following fields:
1042 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1044 * Btree extents can be referenced by:
1046 * - Different subvolumes
1048 * Both the implicit back refs and the full back refs for tree blocks
1049 * only consist of key. The key offset for the implicit back refs is
1050 * objectid of block's owner tree. The key offset for the full back refs
1051 * is the first byte of parent block.
1053 * When implicit back refs is used, information about the lowest key and
1054 * level of the tree block are required. These information are stored in
1055 * tree block info structure.
1058 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1059 static int convert_extent_item_v0(struct btrfs_trans_handle
*trans
,
1060 struct btrfs_fs_info
*fs_info
,
1061 struct btrfs_path
*path
,
1062 u64 owner
, u32 extra_size
)
1064 struct btrfs_root
*root
= fs_info
->extent_root
;
1065 struct btrfs_extent_item
*item
;
1066 struct btrfs_extent_item_v0
*ei0
;
1067 struct btrfs_extent_ref_v0
*ref0
;
1068 struct btrfs_tree_block_info
*bi
;
1069 struct extent_buffer
*leaf
;
1070 struct btrfs_key key
;
1071 struct btrfs_key found_key
;
1072 u32 new_size
= sizeof(*item
);
1076 leaf
= path
->nodes
[0];
1077 BUG_ON(btrfs_item_size_nr(leaf
, path
->slots
[0]) != sizeof(*ei0
));
1079 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1080 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1081 struct btrfs_extent_item_v0
);
1082 refs
= btrfs_extent_refs_v0(leaf
, ei0
);
1084 if (owner
== (u64
)-1) {
1086 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1087 ret
= btrfs_next_leaf(root
, path
);
1090 BUG_ON(ret
> 0); /* Corruption */
1091 leaf
= path
->nodes
[0];
1093 btrfs_item_key_to_cpu(leaf
, &found_key
,
1095 BUG_ON(key
.objectid
!= found_key
.objectid
);
1096 if (found_key
.type
!= BTRFS_EXTENT_REF_V0_KEY
) {
1100 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1101 struct btrfs_extent_ref_v0
);
1102 owner
= btrfs_ref_objectid_v0(leaf
, ref0
);
1106 btrfs_release_path(path
);
1108 if (owner
< BTRFS_FIRST_FREE_OBJECTID
)
1109 new_size
+= sizeof(*bi
);
1111 new_size
-= sizeof(*ei0
);
1112 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
1113 new_size
+ extra_size
, 1);
1116 BUG_ON(ret
); /* Corruption */
1118 btrfs_extend_item(fs_info
, path
, new_size
);
1120 leaf
= path
->nodes
[0];
1121 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1122 btrfs_set_extent_refs(leaf
, item
, refs
);
1123 /* FIXME: get real generation */
1124 btrfs_set_extent_generation(leaf
, item
, 0);
1125 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1126 btrfs_set_extent_flags(leaf
, item
,
1127 BTRFS_EXTENT_FLAG_TREE_BLOCK
|
1128 BTRFS_BLOCK_FLAG_FULL_BACKREF
);
1129 bi
= (struct btrfs_tree_block_info
*)(item
+ 1);
1130 /* FIXME: get first key of the block */
1131 memzero_extent_buffer(leaf
, (unsigned long)bi
, sizeof(*bi
));
1132 btrfs_set_tree_block_level(leaf
, bi
, (int)owner
);
1134 btrfs_set_extent_flags(leaf
, item
, BTRFS_EXTENT_FLAG_DATA
);
1136 btrfs_mark_buffer_dirty(leaf
);
1142 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1143 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1144 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1146 int btrfs_get_extent_inline_ref_type(const struct extent_buffer
*eb
,
1147 struct btrfs_extent_inline_ref
*iref
,
1148 enum btrfs_inline_ref_type is_data
)
1150 int type
= btrfs_extent_inline_ref_type(eb
, iref
);
1151 u64 offset
= btrfs_extent_inline_ref_offset(eb
, iref
);
1153 if (type
== BTRFS_TREE_BLOCK_REF_KEY
||
1154 type
== BTRFS_SHARED_BLOCK_REF_KEY
||
1155 type
== BTRFS_SHARED_DATA_REF_KEY
||
1156 type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1157 if (is_data
== BTRFS_REF_TYPE_BLOCK
) {
1158 if (type
== BTRFS_TREE_BLOCK_REF_KEY
)
1160 if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1161 ASSERT(eb
->fs_info
);
1163 * Every shared one has parent tree
1164 * block, which must be aligned to
1168 IS_ALIGNED(offset
, eb
->fs_info
->nodesize
))
1171 } else if (is_data
== BTRFS_REF_TYPE_DATA
) {
1172 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1174 if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1175 ASSERT(eb
->fs_info
);
1177 * Every shared one has parent tree
1178 * block, which must be aligned to
1182 IS_ALIGNED(offset
, eb
->fs_info
->nodesize
))
1186 ASSERT(is_data
== BTRFS_REF_TYPE_ANY
);
1191 btrfs_print_leaf((struct extent_buffer
*)eb
);
1192 btrfs_err(eb
->fs_info
, "eb %llu invalid extent inline ref type %d",
1196 return BTRFS_REF_TYPE_INVALID
;
1199 static u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
1201 u32 high_crc
= ~(u32
)0;
1202 u32 low_crc
= ~(u32
)0;
1205 lenum
= cpu_to_le64(root_objectid
);
1206 high_crc
= btrfs_crc32c(high_crc
, &lenum
, sizeof(lenum
));
1207 lenum
= cpu_to_le64(owner
);
1208 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
1209 lenum
= cpu_to_le64(offset
);
1210 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
1212 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
1215 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
1216 struct btrfs_extent_data_ref
*ref
)
1218 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
1219 btrfs_extent_data_ref_objectid(leaf
, ref
),
1220 btrfs_extent_data_ref_offset(leaf
, ref
));
1223 static int match_extent_data_ref(struct extent_buffer
*leaf
,
1224 struct btrfs_extent_data_ref
*ref
,
1225 u64 root_objectid
, u64 owner
, u64 offset
)
1227 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
1228 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
1229 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
1234 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
1235 struct btrfs_fs_info
*fs_info
,
1236 struct btrfs_path
*path
,
1237 u64 bytenr
, u64 parent
,
1239 u64 owner
, u64 offset
)
1241 struct btrfs_root
*root
= fs_info
->extent_root
;
1242 struct btrfs_key key
;
1243 struct btrfs_extent_data_ref
*ref
;
1244 struct extent_buffer
*leaf
;
1250 key
.objectid
= bytenr
;
1252 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1253 key
.offset
= parent
;
1255 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1256 key
.offset
= hash_extent_data_ref(root_objectid
,
1261 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1270 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1271 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1272 btrfs_release_path(path
);
1273 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1284 leaf
= path
->nodes
[0];
1285 nritems
= btrfs_header_nritems(leaf
);
1287 if (path
->slots
[0] >= nritems
) {
1288 ret
= btrfs_next_leaf(root
, path
);
1294 leaf
= path
->nodes
[0];
1295 nritems
= btrfs_header_nritems(leaf
);
1299 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1300 if (key
.objectid
!= bytenr
||
1301 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
1304 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1305 struct btrfs_extent_data_ref
);
1307 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1310 btrfs_release_path(path
);
1322 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
1323 struct btrfs_fs_info
*fs_info
,
1324 struct btrfs_path
*path
,
1325 u64 bytenr
, u64 parent
,
1326 u64 root_objectid
, u64 owner
,
1327 u64 offset
, int refs_to_add
)
1329 struct btrfs_root
*root
= fs_info
->extent_root
;
1330 struct btrfs_key key
;
1331 struct extent_buffer
*leaf
;
1336 key
.objectid
= bytenr
;
1338 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1339 key
.offset
= parent
;
1340 size
= sizeof(struct btrfs_shared_data_ref
);
1342 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1343 key
.offset
= hash_extent_data_ref(root_objectid
,
1345 size
= sizeof(struct btrfs_extent_data_ref
);
1348 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
1349 if (ret
&& ret
!= -EEXIST
)
1352 leaf
= path
->nodes
[0];
1354 struct btrfs_shared_data_ref
*ref
;
1355 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1356 struct btrfs_shared_data_ref
);
1358 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
1360 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
1361 num_refs
+= refs_to_add
;
1362 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
1365 struct btrfs_extent_data_ref
*ref
;
1366 while (ret
== -EEXIST
) {
1367 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1368 struct btrfs_extent_data_ref
);
1369 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1372 btrfs_release_path(path
);
1374 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1376 if (ret
&& ret
!= -EEXIST
)
1379 leaf
= path
->nodes
[0];
1381 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1382 struct btrfs_extent_data_ref
);
1384 btrfs_set_extent_data_ref_root(leaf
, ref
,
1386 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
1387 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
1388 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
1390 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
1391 num_refs
+= refs_to_add
;
1392 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
1395 btrfs_mark_buffer_dirty(leaf
);
1398 btrfs_release_path(path
);
1402 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
1403 struct btrfs_fs_info
*fs_info
,
1404 struct btrfs_path
*path
,
1405 int refs_to_drop
, int *last_ref
)
1407 struct btrfs_key key
;
1408 struct btrfs_extent_data_ref
*ref1
= NULL
;
1409 struct btrfs_shared_data_ref
*ref2
= NULL
;
1410 struct extent_buffer
*leaf
;
1414 leaf
= path
->nodes
[0];
1415 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1417 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1418 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1419 struct btrfs_extent_data_ref
);
1420 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1421 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1422 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1423 struct btrfs_shared_data_ref
);
1424 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1425 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1426 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1427 struct btrfs_extent_ref_v0
*ref0
;
1428 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1429 struct btrfs_extent_ref_v0
);
1430 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1436 BUG_ON(num_refs
< refs_to_drop
);
1437 num_refs
-= refs_to_drop
;
1439 if (num_refs
== 0) {
1440 ret
= btrfs_del_item(trans
, fs_info
->extent_root
, path
);
1443 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
1444 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
1445 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
1446 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
1447 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1449 struct btrfs_extent_ref_v0
*ref0
;
1450 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1451 struct btrfs_extent_ref_v0
);
1452 btrfs_set_ref_count_v0(leaf
, ref0
, num_refs
);
1455 btrfs_mark_buffer_dirty(leaf
);
1460 static noinline u32
extent_data_ref_count(struct btrfs_path
*path
,
1461 struct btrfs_extent_inline_ref
*iref
)
1463 struct btrfs_key key
;
1464 struct extent_buffer
*leaf
;
1465 struct btrfs_extent_data_ref
*ref1
;
1466 struct btrfs_shared_data_ref
*ref2
;
1470 leaf
= path
->nodes
[0];
1471 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1474 * If type is invalid, we should have bailed out earlier than
1477 type
= btrfs_get_extent_inline_ref_type(leaf
, iref
, BTRFS_REF_TYPE_DATA
);
1478 ASSERT(type
!= BTRFS_REF_TYPE_INVALID
);
1479 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1480 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1481 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1483 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1484 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1486 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1487 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1488 struct btrfs_extent_data_ref
);
1489 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1490 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1491 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1492 struct btrfs_shared_data_ref
);
1493 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1494 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1495 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1496 struct btrfs_extent_ref_v0
*ref0
;
1497 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1498 struct btrfs_extent_ref_v0
);
1499 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1507 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
1508 struct btrfs_fs_info
*fs_info
,
1509 struct btrfs_path
*path
,
1510 u64 bytenr
, u64 parent
,
1513 struct btrfs_root
*root
= fs_info
->extent_root
;
1514 struct btrfs_key key
;
1517 key
.objectid
= bytenr
;
1519 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1520 key
.offset
= parent
;
1522 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1523 key
.offset
= root_objectid
;
1526 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1529 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1530 if (ret
== -ENOENT
&& parent
) {
1531 btrfs_release_path(path
);
1532 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1533 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1541 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
1542 struct btrfs_fs_info
*fs_info
,
1543 struct btrfs_path
*path
,
1544 u64 bytenr
, u64 parent
,
1547 struct btrfs_key key
;
1550 key
.objectid
= bytenr
;
1552 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1553 key
.offset
= parent
;
1555 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1556 key
.offset
= root_objectid
;
1559 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
,
1561 btrfs_release_path(path
);
1565 static inline int extent_ref_type(u64 parent
, u64 owner
)
1568 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1570 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1572 type
= BTRFS_TREE_BLOCK_REF_KEY
;
1575 type
= BTRFS_SHARED_DATA_REF_KEY
;
1577 type
= BTRFS_EXTENT_DATA_REF_KEY
;
1582 static int find_next_key(struct btrfs_path
*path
, int level
,
1583 struct btrfs_key
*key
)
1586 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
1587 if (!path
->nodes
[level
])
1589 if (path
->slots
[level
] + 1 >=
1590 btrfs_header_nritems(path
->nodes
[level
]))
1593 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
1594 path
->slots
[level
] + 1);
1596 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1597 path
->slots
[level
] + 1);
1604 * look for inline back ref. if back ref is found, *ref_ret is set
1605 * to the address of inline back ref, and 0 is returned.
1607 * if back ref isn't found, *ref_ret is set to the address where it
1608 * should be inserted, and -ENOENT is returned.
1610 * if insert is true and there are too many inline back refs, the path
1611 * points to the extent item, and -EAGAIN is returned.
1613 * NOTE: inline back refs are ordered in the same way that back ref
1614 * items in the tree are ordered.
1616 static noinline_for_stack
1617 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1618 struct btrfs_fs_info
*fs_info
,
1619 struct btrfs_path
*path
,
1620 struct btrfs_extent_inline_ref
**ref_ret
,
1621 u64 bytenr
, u64 num_bytes
,
1622 u64 parent
, u64 root_objectid
,
1623 u64 owner
, u64 offset
, int insert
)
1625 struct btrfs_root
*root
= fs_info
->extent_root
;
1626 struct btrfs_key key
;
1627 struct extent_buffer
*leaf
;
1628 struct btrfs_extent_item
*ei
;
1629 struct btrfs_extent_inline_ref
*iref
;
1639 bool skinny_metadata
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
1642 key
.objectid
= bytenr
;
1643 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1644 key
.offset
= num_bytes
;
1646 want
= extent_ref_type(parent
, owner
);
1648 extra_size
= btrfs_extent_inline_ref_size(want
);
1649 path
->keep_locks
= 1;
1654 * Owner is our parent level, so we can just add one to get the level
1655 * for the block we are interested in.
1657 if (skinny_metadata
&& owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1658 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1663 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
1670 * We may be a newly converted file system which still has the old fat
1671 * extent entries for metadata, so try and see if we have one of those.
1673 if (ret
> 0 && skinny_metadata
) {
1674 skinny_metadata
= false;
1675 if (path
->slots
[0]) {
1677 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1679 if (key
.objectid
== bytenr
&&
1680 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
1681 key
.offset
== num_bytes
)
1685 key
.objectid
= bytenr
;
1686 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1687 key
.offset
= num_bytes
;
1688 btrfs_release_path(path
);
1693 if (ret
&& !insert
) {
1696 } else if (WARN_ON(ret
)) {
1701 leaf
= path
->nodes
[0];
1702 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1703 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1704 if (item_size
< sizeof(*ei
)) {
1709 ret
= convert_extent_item_v0(trans
, fs_info
, path
, owner
,
1715 leaf
= path
->nodes
[0];
1716 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1719 BUG_ON(item_size
< sizeof(*ei
));
1721 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1722 flags
= btrfs_extent_flags(leaf
, ei
);
1724 ptr
= (unsigned long)(ei
+ 1);
1725 end
= (unsigned long)ei
+ item_size
;
1727 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
&& !skinny_metadata
) {
1728 ptr
+= sizeof(struct btrfs_tree_block_info
);
1732 if (owner
>= BTRFS_FIRST_FREE_OBJECTID
)
1733 needed
= BTRFS_REF_TYPE_DATA
;
1735 needed
= BTRFS_REF_TYPE_BLOCK
;
1743 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1744 type
= btrfs_get_extent_inline_ref_type(leaf
, iref
, needed
);
1745 if (type
== BTRFS_REF_TYPE_INVALID
) {
1753 ptr
+= btrfs_extent_inline_ref_size(type
);
1757 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1758 struct btrfs_extent_data_ref
*dref
;
1759 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1760 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
1765 if (hash_extent_data_ref_item(leaf
, dref
) <
1766 hash_extent_data_ref(root_objectid
, owner
, offset
))
1770 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
1772 if (parent
== ref_offset
) {
1776 if (ref_offset
< parent
)
1779 if (root_objectid
== ref_offset
) {
1783 if (ref_offset
< root_objectid
)
1787 ptr
+= btrfs_extent_inline_ref_size(type
);
1789 if (err
== -ENOENT
&& insert
) {
1790 if (item_size
+ extra_size
>=
1791 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
1796 * To add new inline back ref, we have to make sure
1797 * there is no corresponding back ref item.
1798 * For simplicity, we just do not add new inline back
1799 * ref if there is any kind of item for this block
1801 if (find_next_key(path
, 0, &key
) == 0 &&
1802 key
.objectid
== bytenr
&&
1803 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
1808 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
1811 path
->keep_locks
= 0;
1812 btrfs_unlock_up_safe(path
, 1);
1818 * helper to add new inline back ref
1820 static noinline_for_stack
1821 void setup_inline_extent_backref(struct btrfs_fs_info
*fs_info
,
1822 struct btrfs_path
*path
,
1823 struct btrfs_extent_inline_ref
*iref
,
1824 u64 parent
, u64 root_objectid
,
1825 u64 owner
, u64 offset
, int refs_to_add
,
1826 struct btrfs_delayed_extent_op
*extent_op
)
1828 struct extent_buffer
*leaf
;
1829 struct btrfs_extent_item
*ei
;
1832 unsigned long item_offset
;
1837 leaf
= path
->nodes
[0];
1838 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1839 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1841 type
= extent_ref_type(parent
, owner
);
1842 size
= btrfs_extent_inline_ref_size(type
);
1844 btrfs_extend_item(fs_info
, path
, size
);
1846 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1847 refs
= btrfs_extent_refs(leaf
, ei
);
1848 refs
+= refs_to_add
;
1849 btrfs_set_extent_refs(leaf
, ei
, refs
);
1851 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1853 ptr
= (unsigned long)ei
+ item_offset
;
1854 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1855 if (ptr
< end
- size
)
1856 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1859 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1860 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1861 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1862 struct btrfs_extent_data_ref
*dref
;
1863 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1864 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1865 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1866 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1867 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1868 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1869 struct btrfs_shared_data_ref
*sref
;
1870 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1871 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1872 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1873 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1874 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1876 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1878 btrfs_mark_buffer_dirty(leaf
);
1881 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1882 struct btrfs_fs_info
*fs_info
,
1883 struct btrfs_path
*path
,
1884 struct btrfs_extent_inline_ref
**ref_ret
,
1885 u64 bytenr
, u64 num_bytes
, u64 parent
,
1886 u64 root_objectid
, u64 owner
, u64 offset
)
1890 ret
= lookup_inline_extent_backref(trans
, fs_info
, path
, ref_ret
,
1891 bytenr
, num_bytes
, parent
,
1892 root_objectid
, owner
, offset
, 0);
1896 btrfs_release_path(path
);
1899 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1900 ret
= lookup_tree_block_ref(trans
, fs_info
, path
, bytenr
,
1901 parent
, root_objectid
);
1903 ret
= lookup_extent_data_ref(trans
, fs_info
, path
, bytenr
,
1904 parent
, root_objectid
, owner
,
1911 * helper to update/remove inline back ref
1913 static noinline_for_stack
1914 void update_inline_extent_backref(struct btrfs_fs_info
*fs_info
,
1915 struct btrfs_path
*path
,
1916 struct btrfs_extent_inline_ref
*iref
,
1918 struct btrfs_delayed_extent_op
*extent_op
,
1921 struct extent_buffer
*leaf
;
1922 struct btrfs_extent_item
*ei
;
1923 struct btrfs_extent_data_ref
*dref
= NULL
;
1924 struct btrfs_shared_data_ref
*sref
= NULL
;
1932 leaf
= path
->nodes
[0];
1933 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1934 refs
= btrfs_extent_refs(leaf
, ei
);
1935 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1936 refs
+= refs_to_mod
;
1937 btrfs_set_extent_refs(leaf
, ei
, refs
);
1939 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1942 * If type is invalid, we should have bailed out after
1943 * lookup_inline_extent_backref().
1945 type
= btrfs_get_extent_inline_ref_type(leaf
, iref
, BTRFS_REF_TYPE_ANY
);
1946 ASSERT(type
!= BTRFS_REF_TYPE_INVALID
);
1948 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1949 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1950 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1951 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1952 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1953 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1956 BUG_ON(refs_to_mod
!= -1);
1959 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1960 refs
+= refs_to_mod
;
1963 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1964 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1966 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1969 size
= btrfs_extent_inline_ref_size(type
);
1970 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1971 ptr
= (unsigned long)iref
;
1972 end
= (unsigned long)ei
+ item_size
;
1973 if (ptr
+ size
< end
)
1974 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1977 btrfs_truncate_item(fs_info
, path
, item_size
, 1);
1979 btrfs_mark_buffer_dirty(leaf
);
1982 static noinline_for_stack
1983 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1984 struct btrfs_fs_info
*fs_info
,
1985 struct btrfs_path
*path
,
1986 u64 bytenr
, u64 num_bytes
, u64 parent
,
1987 u64 root_objectid
, u64 owner
,
1988 u64 offset
, int refs_to_add
,
1989 struct btrfs_delayed_extent_op
*extent_op
)
1991 struct btrfs_extent_inline_ref
*iref
;
1994 ret
= lookup_inline_extent_backref(trans
, fs_info
, path
, &iref
,
1995 bytenr
, num_bytes
, parent
,
1996 root_objectid
, owner
, offset
, 1);
1998 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
1999 update_inline_extent_backref(fs_info
, path
, iref
,
2000 refs_to_add
, extent_op
, NULL
);
2001 } else if (ret
== -ENOENT
) {
2002 setup_inline_extent_backref(fs_info
, path
, iref
, parent
,
2003 root_objectid
, owner
, offset
,
2004 refs_to_add
, extent_op
);
2010 static int insert_extent_backref(struct btrfs_trans_handle
*trans
,
2011 struct btrfs_fs_info
*fs_info
,
2012 struct btrfs_path
*path
,
2013 u64 bytenr
, u64 parent
, u64 root_objectid
,
2014 u64 owner
, u64 offset
, int refs_to_add
)
2017 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
2018 BUG_ON(refs_to_add
!= 1);
2019 ret
= insert_tree_block_ref(trans
, fs_info
, path
, bytenr
,
2020 parent
, root_objectid
);
2022 ret
= insert_extent_data_ref(trans
, fs_info
, path
, bytenr
,
2023 parent
, root_objectid
,
2024 owner
, offset
, refs_to_add
);
2029 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
2030 struct btrfs_fs_info
*fs_info
,
2031 struct btrfs_path
*path
,
2032 struct btrfs_extent_inline_ref
*iref
,
2033 int refs_to_drop
, int is_data
, int *last_ref
)
2037 BUG_ON(!is_data
&& refs_to_drop
!= 1);
2039 update_inline_extent_backref(fs_info
, path
, iref
,
2040 -refs_to_drop
, NULL
, last_ref
);
2041 } else if (is_data
) {
2042 ret
= remove_extent_data_ref(trans
, fs_info
, path
, refs_to_drop
,
2046 ret
= btrfs_del_item(trans
, fs_info
->extent_root
, path
);
2051 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
2052 static int btrfs_issue_discard(struct block_device
*bdev
, u64 start
, u64 len
,
2053 u64
*discarded_bytes
)
2056 u64 bytes_left
, end
;
2057 u64 aligned_start
= ALIGN(start
, 1 << 9);
2059 if (WARN_ON(start
!= aligned_start
)) {
2060 len
-= aligned_start
- start
;
2061 len
= round_down(len
, 1 << 9);
2062 start
= aligned_start
;
2065 *discarded_bytes
= 0;
2073 /* Skip any superblocks on this device. */
2074 for (j
= 0; j
< BTRFS_SUPER_MIRROR_MAX
; j
++) {
2075 u64 sb_start
= btrfs_sb_offset(j
);
2076 u64 sb_end
= sb_start
+ BTRFS_SUPER_INFO_SIZE
;
2077 u64 size
= sb_start
- start
;
2079 if (!in_range(sb_start
, start
, bytes_left
) &&
2080 !in_range(sb_end
, start
, bytes_left
) &&
2081 !in_range(start
, sb_start
, BTRFS_SUPER_INFO_SIZE
))
2085 * Superblock spans beginning of range. Adjust start and
2088 if (sb_start
<= start
) {
2089 start
+= sb_end
- start
;
2094 bytes_left
= end
- start
;
2099 ret
= blkdev_issue_discard(bdev
, start
>> 9, size
>> 9,
2102 *discarded_bytes
+= size
;
2103 else if (ret
!= -EOPNOTSUPP
)
2112 bytes_left
= end
- start
;
2116 ret
= blkdev_issue_discard(bdev
, start
>> 9, bytes_left
>> 9,
2119 *discarded_bytes
+= bytes_left
;
2124 int btrfs_discard_extent(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
2125 u64 num_bytes
, u64
*actual_bytes
)
2128 u64 discarded_bytes
= 0;
2129 struct btrfs_bio
*bbio
= NULL
;
2133 * Avoid races with device replace and make sure our bbio has devices
2134 * associated to its stripes that don't go away while we are discarding.
2136 btrfs_bio_counter_inc_blocked(fs_info
);
2137 /* Tell the block device(s) that the sectors can be discarded */
2138 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_DISCARD
, bytenr
, &num_bytes
,
2140 /* Error condition is -ENOMEM */
2142 struct btrfs_bio_stripe
*stripe
= bbio
->stripes
;
2146 for (i
= 0; i
< bbio
->num_stripes
; i
++, stripe
++) {
2148 struct request_queue
*req_q
;
2150 req_q
= bdev_get_queue(stripe
->dev
->bdev
);
2151 if (!blk_queue_discard(req_q
))
2154 ret
= btrfs_issue_discard(stripe
->dev
->bdev
,
2159 discarded_bytes
+= bytes
;
2160 else if (ret
!= -EOPNOTSUPP
)
2161 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2164 * Just in case we get back EOPNOTSUPP for some reason,
2165 * just ignore the return value so we don't screw up
2166 * people calling discard_extent.
2170 btrfs_put_bbio(bbio
);
2172 btrfs_bio_counter_dec(fs_info
);
2175 *actual_bytes
= discarded_bytes
;
2178 if (ret
== -EOPNOTSUPP
)
2183 /* Can return -ENOMEM */
2184 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
2185 struct btrfs_root
*root
,
2186 u64 bytenr
, u64 num_bytes
, u64 parent
,
2187 u64 root_objectid
, u64 owner
, u64 offset
)
2189 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2190 int old_ref_mod
, new_ref_mod
;
2193 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
&&
2194 root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
2196 btrfs_ref_tree_mod(root
, bytenr
, num_bytes
, parent
, root_objectid
,
2197 owner
, offset
, BTRFS_ADD_DELAYED_REF
);
2199 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
2200 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
2202 root_objectid
, (int)owner
,
2203 BTRFS_ADD_DELAYED_REF
, NULL
,
2204 &old_ref_mod
, &new_ref_mod
);
2206 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
2208 root_objectid
, owner
, offset
,
2209 0, BTRFS_ADD_DELAYED_REF
,
2210 &old_ref_mod
, &new_ref_mod
);
2213 if (ret
== 0 && old_ref_mod
< 0 && new_ref_mod
>= 0)
2214 add_pinned_bytes(fs_info
, -num_bytes
, owner
, root_objectid
);
2219 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
2220 struct btrfs_fs_info
*fs_info
,
2221 struct btrfs_delayed_ref_node
*node
,
2222 u64 parent
, u64 root_objectid
,
2223 u64 owner
, u64 offset
, int refs_to_add
,
2224 struct btrfs_delayed_extent_op
*extent_op
)
2226 struct btrfs_path
*path
;
2227 struct extent_buffer
*leaf
;
2228 struct btrfs_extent_item
*item
;
2229 struct btrfs_key key
;
2230 u64 bytenr
= node
->bytenr
;
2231 u64 num_bytes
= node
->num_bytes
;
2235 path
= btrfs_alloc_path();
2239 path
->reada
= READA_FORWARD
;
2240 path
->leave_spinning
= 1;
2241 /* this will setup the path even if it fails to insert the back ref */
2242 ret
= insert_inline_extent_backref(trans
, fs_info
, path
, bytenr
,
2243 num_bytes
, parent
, root_objectid
,
2245 refs_to_add
, extent_op
);
2246 if ((ret
< 0 && ret
!= -EAGAIN
) || !ret
)
2250 * Ok we had -EAGAIN which means we didn't have space to insert and
2251 * inline extent ref, so just update the reference count and add a
2254 leaf
= path
->nodes
[0];
2255 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2256 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2257 refs
= btrfs_extent_refs(leaf
, item
);
2258 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
2260 __run_delayed_extent_op(extent_op
, leaf
, item
);
2262 btrfs_mark_buffer_dirty(leaf
);
2263 btrfs_release_path(path
);
2265 path
->reada
= READA_FORWARD
;
2266 path
->leave_spinning
= 1;
2267 /* now insert the actual backref */
2268 ret
= insert_extent_backref(trans
, fs_info
, path
, bytenr
, parent
,
2269 root_objectid
, owner
, offset
, refs_to_add
);
2271 btrfs_abort_transaction(trans
, ret
);
2273 btrfs_free_path(path
);
2277 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
2278 struct btrfs_fs_info
*fs_info
,
2279 struct btrfs_delayed_ref_node
*node
,
2280 struct btrfs_delayed_extent_op
*extent_op
,
2281 int insert_reserved
)
2284 struct btrfs_delayed_data_ref
*ref
;
2285 struct btrfs_key ins
;
2290 ins
.objectid
= node
->bytenr
;
2291 ins
.offset
= node
->num_bytes
;
2292 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2294 ref
= btrfs_delayed_node_to_data_ref(node
);
2295 trace_run_delayed_data_ref(fs_info
, node
, ref
, node
->action
);
2297 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2298 parent
= ref
->parent
;
2299 ref_root
= ref
->root
;
2301 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2303 flags
|= extent_op
->flags_to_set
;
2304 ret
= alloc_reserved_file_extent(trans
, fs_info
,
2305 parent
, ref_root
, flags
,
2306 ref
->objectid
, ref
->offset
,
2307 &ins
, node
->ref_mod
);
2308 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2309 ret
= __btrfs_inc_extent_ref(trans
, fs_info
, node
, parent
,
2310 ref_root
, ref
->objectid
,
2311 ref
->offset
, node
->ref_mod
,
2313 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2314 ret
= __btrfs_free_extent(trans
, fs_info
, node
, parent
,
2315 ref_root
, ref
->objectid
,
2316 ref
->offset
, node
->ref_mod
,
2324 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
2325 struct extent_buffer
*leaf
,
2326 struct btrfs_extent_item
*ei
)
2328 u64 flags
= btrfs_extent_flags(leaf
, ei
);
2329 if (extent_op
->update_flags
) {
2330 flags
|= extent_op
->flags_to_set
;
2331 btrfs_set_extent_flags(leaf
, ei
, flags
);
2334 if (extent_op
->update_key
) {
2335 struct btrfs_tree_block_info
*bi
;
2336 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
2337 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
2338 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
2342 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
2343 struct btrfs_fs_info
*fs_info
,
2344 struct btrfs_delayed_ref_head
*head
,
2345 struct btrfs_delayed_extent_op
*extent_op
)
2347 struct btrfs_key key
;
2348 struct btrfs_path
*path
;
2349 struct btrfs_extent_item
*ei
;
2350 struct extent_buffer
*leaf
;
2354 int metadata
= !extent_op
->is_data
;
2359 if (metadata
&& !btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
2362 path
= btrfs_alloc_path();
2366 key
.objectid
= head
->bytenr
;
2369 key
.type
= BTRFS_METADATA_ITEM_KEY
;
2370 key
.offset
= extent_op
->level
;
2372 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2373 key
.offset
= head
->num_bytes
;
2377 path
->reada
= READA_FORWARD
;
2378 path
->leave_spinning
= 1;
2379 ret
= btrfs_search_slot(trans
, fs_info
->extent_root
, &key
, path
, 0, 1);
2386 if (path
->slots
[0] > 0) {
2388 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
2390 if (key
.objectid
== head
->bytenr
&&
2391 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
2392 key
.offset
== head
->num_bytes
)
2396 btrfs_release_path(path
);
2399 key
.objectid
= head
->bytenr
;
2400 key
.offset
= head
->num_bytes
;
2401 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2410 leaf
= path
->nodes
[0];
2411 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2412 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2413 if (item_size
< sizeof(*ei
)) {
2414 ret
= convert_extent_item_v0(trans
, fs_info
, path
, (u64
)-1, 0);
2419 leaf
= path
->nodes
[0];
2420 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2423 BUG_ON(item_size
< sizeof(*ei
));
2424 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2425 __run_delayed_extent_op(extent_op
, leaf
, ei
);
2427 btrfs_mark_buffer_dirty(leaf
);
2429 btrfs_free_path(path
);
2433 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
2434 struct btrfs_fs_info
*fs_info
,
2435 struct btrfs_delayed_ref_node
*node
,
2436 struct btrfs_delayed_extent_op
*extent_op
,
2437 int insert_reserved
)
2440 struct btrfs_delayed_tree_ref
*ref
;
2441 struct btrfs_key ins
;
2444 bool skinny_metadata
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
2446 ref
= btrfs_delayed_node_to_tree_ref(node
);
2447 trace_run_delayed_tree_ref(fs_info
, node
, ref
, node
->action
);
2449 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2450 parent
= ref
->parent
;
2451 ref_root
= ref
->root
;
2453 ins
.objectid
= node
->bytenr
;
2454 if (skinny_metadata
) {
2455 ins
.offset
= ref
->level
;
2456 ins
.type
= BTRFS_METADATA_ITEM_KEY
;
2458 ins
.offset
= node
->num_bytes
;
2459 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2462 if (node
->ref_mod
!= 1) {
2464 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2465 node
->bytenr
, node
->ref_mod
, node
->action
, ref_root
,
2469 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2470 BUG_ON(!extent_op
|| !extent_op
->update_flags
);
2471 ret
= alloc_reserved_tree_block(trans
, fs_info
,
2473 extent_op
->flags_to_set
,
2476 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2477 ret
= __btrfs_inc_extent_ref(trans
, fs_info
, node
,
2481 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2482 ret
= __btrfs_free_extent(trans
, fs_info
, node
,
2484 ref
->level
, 0, 1, extent_op
);
2491 /* helper function to actually process a single delayed ref entry */
2492 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
2493 struct btrfs_fs_info
*fs_info
,
2494 struct btrfs_delayed_ref_node
*node
,
2495 struct btrfs_delayed_extent_op
*extent_op
,
2496 int insert_reserved
)
2500 if (trans
->aborted
) {
2501 if (insert_reserved
)
2502 btrfs_pin_extent(fs_info
, node
->bytenr
,
2503 node
->num_bytes
, 1);
2507 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
2508 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2509 ret
= run_delayed_tree_ref(trans
, fs_info
, node
, extent_op
,
2511 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
2512 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2513 ret
= run_delayed_data_ref(trans
, fs_info
, node
, extent_op
,
2520 static inline struct btrfs_delayed_ref_node
*
2521 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
2523 struct btrfs_delayed_ref_node
*ref
;
2525 if (RB_EMPTY_ROOT(&head
->ref_tree
))
2529 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2530 * This is to prevent a ref count from going down to zero, which deletes
2531 * the extent item from the extent tree, when there still are references
2532 * to add, which would fail because they would not find the extent item.
2534 if (!list_empty(&head
->ref_add_list
))
2535 return list_first_entry(&head
->ref_add_list
,
2536 struct btrfs_delayed_ref_node
, add_list
);
2538 ref
= rb_entry(rb_first(&head
->ref_tree
),
2539 struct btrfs_delayed_ref_node
, ref_node
);
2540 ASSERT(list_empty(&ref
->add_list
));
2544 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root
*delayed_refs
,
2545 struct btrfs_delayed_ref_head
*head
)
2547 spin_lock(&delayed_refs
->lock
);
2548 head
->processing
= 0;
2549 delayed_refs
->num_heads_ready
++;
2550 spin_unlock(&delayed_refs
->lock
);
2551 btrfs_delayed_ref_unlock(head
);
2554 static int cleanup_extent_op(struct btrfs_trans_handle
*trans
,
2555 struct btrfs_fs_info
*fs_info
,
2556 struct btrfs_delayed_ref_head
*head
)
2558 struct btrfs_delayed_extent_op
*extent_op
= head
->extent_op
;
2563 head
->extent_op
= NULL
;
2564 if (head
->must_insert_reserved
) {
2565 btrfs_free_delayed_extent_op(extent_op
);
2568 spin_unlock(&head
->lock
);
2569 ret
= run_delayed_extent_op(trans
, fs_info
, head
, extent_op
);
2570 btrfs_free_delayed_extent_op(extent_op
);
2571 return ret
? ret
: 1;
2574 static int cleanup_ref_head(struct btrfs_trans_handle
*trans
,
2575 struct btrfs_fs_info
*fs_info
,
2576 struct btrfs_delayed_ref_head
*head
)
2578 struct btrfs_delayed_ref_root
*delayed_refs
;
2581 delayed_refs
= &trans
->transaction
->delayed_refs
;
2583 ret
= cleanup_extent_op(trans
, fs_info
, head
);
2585 unselect_delayed_ref_head(delayed_refs
, head
);
2586 btrfs_debug(fs_info
, "run_delayed_extent_op returned %d", ret
);
2593 * Need to drop our head ref lock and re-acquire the delayed ref lock
2594 * and then re-check to make sure nobody got added.
2596 spin_unlock(&head
->lock
);
2597 spin_lock(&delayed_refs
->lock
);
2598 spin_lock(&head
->lock
);
2599 if (!RB_EMPTY_ROOT(&head
->ref_tree
) || head
->extent_op
) {
2600 spin_unlock(&head
->lock
);
2601 spin_unlock(&delayed_refs
->lock
);
2604 delayed_refs
->num_heads
--;
2605 rb_erase(&head
->href_node
, &delayed_refs
->href_root
);
2606 RB_CLEAR_NODE(&head
->href_node
);
2607 spin_unlock(&delayed_refs
->lock
);
2608 spin_unlock(&head
->lock
);
2609 atomic_dec(&delayed_refs
->num_entries
);
2611 trace_run_delayed_ref_head(fs_info
, head
, 0);
2613 if (head
->total_ref_mod
< 0) {
2614 struct btrfs_block_group_cache
*cache
;
2616 cache
= btrfs_lookup_block_group(fs_info
, head
->bytenr
);
2618 percpu_counter_add(&cache
->space_info
->total_bytes_pinned
,
2620 btrfs_put_block_group(cache
);
2622 if (head
->is_data
) {
2623 spin_lock(&delayed_refs
->lock
);
2624 delayed_refs
->pending_csums
-= head
->num_bytes
;
2625 spin_unlock(&delayed_refs
->lock
);
2629 if (head
->must_insert_reserved
) {
2630 btrfs_pin_extent(fs_info
, head
->bytenr
,
2631 head
->num_bytes
, 1);
2632 if (head
->is_data
) {
2633 ret
= btrfs_del_csums(trans
, fs_info
, head
->bytenr
,
2638 /* Also free its reserved qgroup space */
2639 btrfs_qgroup_free_delayed_ref(fs_info
, head
->qgroup_ref_root
,
2640 head
->qgroup_reserved
);
2641 btrfs_delayed_ref_unlock(head
);
2642 btrfs_put_delayed_ref_head(head
);
2647 * Returns 0 on success or if called with an already aborted transaction.
2648 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2650 static noinline
int __btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2651 struct btrfs_fs_info
*fs_info
,
2654 struct btrfs_delayed_ref_root
*delayed_refs
;
2655 struct btrfs_delayed_ref_node
*ref
;
2656 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
2657 struct btrfs_delayed_extent_op
*extent_op
;
2658 ktime_t start
= ktime_get();
2660 unsigned long count
= 0;
2661 unsigned long actual_count
= 0;
2662 int must_insert_reserved
= 0;
2664 delayed_refs
= &trans
->transaction
->delayed_refs
;
2670 spin_lock(&delayed_refs
->lock
);
2671 locked_ref
= btrfs_select_ref_head(trans
);
2673 spin_unlock(&delayed_refs
->lock
);
2677 /* grab the lock that says we are going to process
2678 * all the refs for this head */
2679 ret
= btrfs_delayed_ref_lock(trans
, locked_ref
);
2680 spin_unlock(&delayed_refs
->lock
);
2682 * we may have dropped the spin lock to get the head
2683 * mutex lock, and that might have given someone else
2684 * time to free the head. If that's true, it has been
2685 * removed from our list and we can move on.
2687 if (ret
== -EAGAIN
) {
2695 * We need to try and merge add/drops of the same ref since we
2696 * can run into issues with relocate dropping the implicit ref
2697 * and then it being added back again before the drop can
2698 * finish. If we merged anything we need to re-loop so we can
2700 * Or we can get node references of the same type that weren't
2701 * merged when created due to bumps in the tree mod seq, and
2702 * we need to merge them to prevent adding an inline extent
2703 * backref before dropping it (triggering a BUG_ON at
2704 * insert_inline_extent_backref()).
2706 spin_lock(&locked_ref
->lock
);
2707 btrfs_merge_delayed_refs(trans
, fs_info
, delayed_refs
,
2711 * locked_ref is the head node, so we have to go one
2712 * node back for any delayed ref updates
2714 ref
= select_delayed_ref(locked_ref
);
2716 if (ref
&& ref
->seq
&&
2717 btrfs_check_delayed_seq(fs_info
, delayed_refs
, ref
->seq
)) {
2718 spin_unlock(&locked_ref
->lock
);
2719 unselect_delayed_ref_head(delayed_refs
, locked_ref
);
2727 * We're done processing refs in this ref_head, clean everything
2728 * up and move on to the next ref_head.
2731 ret
= cleanup_ref_head(trans
, fs_info
, locked_ref
);
2733 /* We dropped our lock, we need to loop. */
2746 rb_erase(&ref
->ref_node
, &locked_ref
->ref_tree
);
2747 RB_CLEAR_NODE(&ref
->ref_node
);
2748 if (!list_empty(&ref
->add_list
))
2749 list_del(&ref
->add_list
);
2751 * When we play the delayed ref, also correct the ref_mod on
2754 switch (ref
->action
) {
2755 case BTRFS_ADD_DELAYED_REF
:
2756 case BTRFS_ADD_DELAYED_EXTENT
:
2757 locked_ref
->ref_mod
-= ref
->ref_mod
;
2759 case BTRFS_DROP_DELAYED_REF
:
2760 locked_ref
->ref_mod
+= ref
->ref_mod
;
2765 atomic_dec(&delayed_refs
->num_entries
);
2768 * Record the must-insert_reserved flag before we drop the spin
2771 must_insert_reserved
= locked_ref
->must_insert_reserved
;
2772 locked_ref
->must_insert_reserved
= 0;
2774 extent_op
= locked_ref
->extent_op
;
2775 locked_ref
->extent_op
= NULL
;
2776 spin_unlock(&locked_ref
->lock
);
2778 ret
= run_one_delayed_ref(trans
, fs_info
, ref
, extent_op
,
2779 must_insert_reserved
);
2781 btrfs_free_delayed_extent_op(extent_op
);
2783 unselect_delayed_ref_head(delayed_refs
, locked_ref
);
2784 btrfs_put_delayed_ref(ref
);
2785 btrfs_debug(fs_info
, "run_one_delayed_ref returned %d",
2790 btrfs_put_delayed_ref(ref
);
2796 * We don't want to include ref heads since we can have empty ref heads
2797 * and those will drastically skew our runtime down since we just do
2798 * accounting, no actual extent tree updates.
2800 if (actual_count
> 0) {
2801 u64 runtime
= ktime_to_ns(ktime_sub(ktime_get(), start
));
2805 * We weigh the current average higher than our current runtime
2806 * to avoid large swings in the average.
2808 spin_lock(&delayed_refs
->lock
);
2809 avg
= fs_info
->avg_delayed_ref_runtime
* 3 + runtime
;
2810 fs_info
->avg_delayed_ref_runtime
= avg
>> 2; /* div by 4 */
2811 spin_unlock(&delayed_refs
->lock
);
2816 #ifdef SCRAMBLE_DELAYED_REFS
2818 * Normally delayed refs get processed in ascending bytenr order. This
2819 * correlates in most cases to the order added. To expose dependencies on this
2820 * order, we start to process the tree in the middle instead of the beginning
2822 static u64
find_middle(struct rb_root
*root
)
2824 struct rb_node
*n
= root
->rb_node
;
2825 struct btrfs_delayed_ref_node
*entry
;
2828 u64 first
= 0, last
= 0;
2832 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2833 first
= entry
->bytenr
;
2837 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2838 last
= entry
->bytenr
;
2843 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2844 WARN_ON(!entry
->in_tree
);
2846 middle
= entry
->bytenr
;
2859 static inline u64
heads_to_leaves(struct btrfs_fs_info
*fs_info
, u64 heads
)
2863 num_bytes
= heads
* (sizeof(struct btrfs_extent_item
) +
2864 sizeof(struct btrfs_extent_inline_ref
));
2865 if (!btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
2866 num_bytes
+= heads
* sizeof(struct btrfs_tree_block_info
);
2869 * We don't ever fill up leaves all the way so multiply by 2 just to be
2870 * closer to what we're really going to want to use.
2872 return div_u64(num_bytes
, BTRFS_LEAF_DATA_SIZE(fs_info
));
2876 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2877 * would require to store the csums for that many bytes.
2879 u64
btrfs_csum_bytes_to_leaves(struct btrfs_fs_info
*fs_info
, u64 csum_bytes
)
2882 u64 num_csums_per_leaf
;
2885 csum_size
= BTRFS_MAX_ITEM_SIZE(fs_info
);
2886 num_csums_per_leaf
= div64_u64(csum_size
,
2887 (u64
)btrfs_super_csum_size(fs_info
->super_copy
));
2888 num_csums
= div64_u64(csum_bytes
, fs_info
->sectorsize
);
2889 num_csums
+= num_csums_per_leaf
- 1;
2890 num_csums
= div64_u64(num_csums
, num_csums_per_leaf
);
2894 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle
*trans
,
2895 struct btrfs_fs_info
*fs_info
)
2897 struct btrfs_block_rsv
*global_rsv
;
2898 u64 num_heads
= trans
->transaction
->delayed_refs
.num_heads_ready
;
2899 u64 csum_bytes
= trans
->transaction
->delayed_refs
.pending_csums
;
2900 unsigned int num_dirty_bgs
= trans
->transaction
->num_dirty_bgs
;
2901 u64 num_bytes
, num_dirty_bgs_bytes
;
2904 num_bytes
= btrfs_calc_trans_metadata_size(fs_info
, 1);
2905 num_heads
= heads_to_leaves(fs_info
, num_heads
);
2907 num_bytes
+= (num_heads
- 1) * fs_info
->nodesize
;
2909 num_bytes
+= btrfs_csum_bytes_to_leaves(fs_info
, csum_bytes
) *
2911 num_dirty_bgs_bytes
= btrfs_calc_trans_metadata_size(fs_info
,
2913 global_rsv
= &fs_info
->global_block_rsv
;
2916 * If we can't allocate any more chunks lets make sure we have _lots_ of
2917 * wiggle room since running delayed refs can create more delayed refs.
2919 if (global_rsv
->space_info
->full
) {
2920 num_dirty_bgs_bytes
<<= 1;
2924 spin_lock(&global_rsv
->lock
);
2925 if (global_rsv
->reserved
<= num_bytes
+ num_dirty_bgs_bytes
)
2927 spin_unlock(&global_rsv
->lock
);
2931 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle
*trans
,
2932 struct btrfs_fs_info
*fs_info
)
2935 atomic_read(&trans
->transaction
->delayed_refs
.num_entries
);
2940 avg_runtime
= fs_info
->avg_delayed_ref_runtime
;
2941 val
= num_entries
* avg_runtime
;
2942 if (val
>= NSEC_PER_SEC
)
2944 if (val
>= NSEC_PER_SEC
/ 2)
2947 return btrfs_check_space_for_delayed_refs(trans
, fs_info
);
2950 struct async_delayed_refs
{
2951 struct btrfs_root
*root
;
2956 struct completion wait
;
2957 struct btrfs_work work
;
2960 static inline struct async_delayed_refs
*
2961 to_async_delayed_refs(struct btrfs_work
*work
)
2963 return container_of(work
, struct async_delayed_refs
, work
);
2966 static void delayed_ref_async_start(struct btrfs_work
*work
)
2968 struct async_delayed_refs
*async
= to_async_delayed_refs(work
);
2969 struct btrfs_trans_handle
*trans
;
2970 struct btrfs_fs_info
*fs_info
= async
->root
->fs_info
;
2973 /* if the commit is already started, we don't need to wait here */
2974 if (btrfs_transaction_blocked(fs_info
))
2977 trans
= btrfs_join_transaction(async
->root
);
2978 if (IS_ERR(trans
)) {
2979 async
->error
= PTR_ERR(trans
);
2984 * trans->sync means that when we call end_transaction, we won't
2985 * wait on delayed refs
2989 /* Don't bother flushing if we got into a different transaction */
2990 if (trans
->transid
> async
->transid
)
2993 ret
= btrfs_run_delayed_refs(trans
, fs_info
, async
->count
);
2997 ret
= btrfs_end_transaction(trans
);
2998 if (ret
&& !async
->error
)
3002 complete(&async
->wait
);
3007 int btrfs_async_run_delayed_refs(struct btrfs_fs_info
*fs_info
,
3008 unsigned long count
, u64 transid
, int wait
)
3010 struct async_delayed_refs
*async
;
3013 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
3017 async
->root
= fs_info
->tree_root
;
3018 async
->count
= count
;
3020 async
->transid
= transid
;
3025 init_completion(&async
->wait
);
3027 btrfs_init_work(&async
->work
, btrfs_extent_refs_helper
,
3028 delayed_ref_async_start
, NULL
, NULL
);
3030 btrfs_queue_work(fs_info
->extent_workers
, &async
->work
);
3033 wait_for_completion(&async
->wait
);
3042 * this starts processing the delayed reference count updates and
3043 * extent insertions we have queued up so far. count can be
3044 * 0, which means to process everything in the tree at the start
3045 * of the run (but not newly added entries), or it can be some target
3046 * number you'd like to process.
3048 * Returns 0 on success or if called with an aborted transaction
3049 * Returns <0 on error and aborts the transaction
3051 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
3052 struct btrfs_fs_info
*fs_info
, unsigned long count
)
3054 struct rb_node
*node
;
3055 struct btrfs_delayed_ref_root
*delayed_refs
;
3056 struct btrfs_delayed_ref_head
*head
;
3058 int run_all
= count
== (unsigned long)-1;
3059 bool can_flush_pending_bgs
= trans
->can_flush_pending_bgs
;
3061 /* We'll clean this up in btrfs_cleanup_transaction */
3065 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE
, &fs_info
->flags
))
3068 delayed_refs
= &trans
->transaction
->delayed_refs
;
3070 count
= atomic_read(&delayed_refs
->num_entries
) * 2;
3073 #ifdef SCRAMBLE_DELAYED_REFS
3074 delayed_refs
->run_delayed_start
= find_middle(&delayed_refs
->root
);
3076 trans
->can_flush_pending_bgs
= false;
3077 ret
= __btrfs_run_delayed_refs(trans
, fs_info
, count
);
3079 btrfs_abort_transaction(trans
, ret
);
3084 if (!list_empty(&trans
->new_bgs
))
3085 btrfs_create_pending_block_groups(trans
, fs_info
);
3087 spin_lock(&delayed_refs
->lock
);
3088 node
= rb_first(&delayed_refs
->href_root
);
3090 spin_unlock(&delayed_refs
->lock
);
3093 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
3095 refcount_inc(&head
->refs
);
3096 spin_unlock(&delayed_refs
->lock
);
3098 /* Mutex was contended, block until it's released and retry. */
3099 mutex_lock(&head
->mutex
);
3100 mutex_unlock(&head
->mutex
);
3102 btrfs_put_delayed_ref_head(head
);
3107 trans
->can_flush_pending_bgs
= can_flush_pending_bgs
;
3111 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
3112 struct btrfs_fs_info
*fs_info
,
3113 u64 bytenr
, u64 num_bytes
, u64 flags
,
3114 int level
, int is_data
)
3116 struct btrfs_delayed_extent_op
*extent_op
;
3119 extent_op
= btrfs_alloc_delayed_extent_op();
3123 extent_op
->flags_to_set
= flags
;
3124 extent_op
->update_flags
= true;
3125 extent_op
->update_key
= false;
3126 extent_op
->is_data
= is_data
? true : false;
3127 extent_op
->level
= level
;
3129 ret
= btrfs_add_delayed_extent_op(fs_info
, trans
, bytenr
,
3130 num_bytes
, extent_op
);
3132 btrfs_free_delayed_extent_op(extent_op
);
3136 static noinline
int check_delayed_ref(struct btrfs_root
*root
,
3137 struct btrfs_path
*path
,
3138 u64 objectid
, u64 offset
, u64 bytenr
)
3140 struct btrfs_delayed_ref_head
*head
;
3141 struct btrfs_delayed_ref_node
*ref
;
3142 struct btrfs_delayed_data_ref
*data_ref
;
3143 struct btrfs_delayed_ref_root
*delayed_refs
;
3144 struct btrfs_transaction
*cur_trans
;
3145 struct rb_node
*node
;
3148 cur_trans
= root
->fs_info
->running_transaction
;
3152 delayed_refs
= &cur_trans
->delayed_refs
;
3153 spin_lock(&delayed_refs
->lock
);
3154 head
= btrfs_find_delayed_ref_head(delayed_refs
, bytenr
);
3156 spin_unlock(&delayed_refs
->lock
);
3160 if (!mutex_trylock(&head
->mutex
)) {
3161 refcount_inc(&head
->refs
);
3162 spin_unlock(&delayed_refs
->lock
);
3164 btrfs_release_path(path
);
3167 * Mutex was contended, block until it's released and let
3170 mutex_lock(&head
->mutex
);
3171 mutex_unlock(&head
->mutex
);
3172 btrfs_put_delayed_ref_head(head
);
3175 spin_unlock(&delayed_refs
->lock
);
3177 spin_lock(&head
->lock
);
3179 * XXX: We should replace this with a proper search function in the
3182 for (node
= rb_first(&head
->ref_tree
); node
; node
= rb_next(node
)) {
3183 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, ref_node
);
3184 /* If it's a shared ref we know a cross reference exists */
3185 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
) {
3190 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
3193 * If our ref doesn't match the one we're currently looking at
3194 * then we have a cross reference.
3196 if (data_ref
->root
!= root
->root_key
.objectid
||
3197 data_ref
->objectid
!= objectid
||
3198 data_ref
->offset
!= offset
) {
3203 spin_unlock(&head
->lock
);
3204 mutex_unlock(&head
->mutex
);
3208 static noinline
int check_committed_ref(struct btrfs_root
*root
,
3209 struct btrfs_path
*path
,
3210 u64 objectid
, u64 offset
, u64 bytenr
)
3212 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3213 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
3214 struct extent_buffer
*leaf
;
3215 struct btrfs_extent_data_ref
*ref
;
3216 struct btrfs_extent_inline_ref
*iref
;
3217 struct btrfs_extent_item
*ei
;
3218 struct btrfs_key key
;
3223 key
.objectid
= bytenr
;
3224 key
.offset
= (u64
)-1;
3225 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3227 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
3230 BUG_ON(ret
== 0); /* Corruption */
3233 if (path
->slots
[0] == 0)
3237 leaf
= path
->nodes
[0];
3238 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3240 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
3244 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
3245 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3246 if (item_size
< sizeof(*ei
)) {
3247 WARN_ON(item_size
!= sizeof(struct btrfs_extent_item_v0
));
3251 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
3253 if (item_size
!= sizeof(*ei
) +
3254 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
3257 if (btrfs_extent_generation(leaf
, ei
) <=
3258 btrfs_root_last_snapshot(&root
->root_item
))
3261 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
3263 type
= btrfs_get_extent_inline_ref_type(leaf
, iref
, BTRFS_REF_TYPE_DATA
);
3264 if (type
!= BTRFS_EXTENT_DATA_REF_KEY
)
3267 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
3268 if (btrfs_extent_refs(leaf
, ei
) !=
3269 btrfs_extent_data_ref_count(leaf
, ref
) ||
3270 btrfs_extent_data_ref_root(leaf
, ref
) !=
3271 root
->root_key
.objectid
||
3272 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
3273 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
3281 int btrfs_cross_ref_exist(struct btrfs_root
*root
, u64 objectid
, u64 offset
,
3284 struct btrfs_path
*path
;
3288 path
= btrfs_alloc_path();
3293 ret
= check_committed_ref(root
, path
, objectid
,
3295 if (ret
&& ret
!= -ENOENT
)
3298 ret2
= check_delayed_ref(root
, path
, objectid
,
3300 } while (ret2
== -EAGAIN
);
3302 if (ret2
&& ret2
!= -ENOENT
) {
3307 if (ret
!= -ENOENT
|| ret2
!= -ENOENT
)
3310 btrfs_free_path(path
);
3311 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
3316 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
3317 struct btrfs_root
*root
,
3318 struct extent_buffer
*buf
,
3319 int full_backref
, int inc
)
3321 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3327 struct btrfs_key key
;
3328 struct btrfs_file_extent_item
*fi
;
3332 int (*process_func
)(struct btrfs_trans_handle
*,
3333 struct btrfs_root
*,
3334 u64
, u64
, u64
, u64
, u64
, u64
);
3337 if (btrfs_is_testing(fs_info
))
3340 ref_root
= btrfs_header_owner(buf
);
3341 nritems
= btrfs_header_nritems(buf
);
3342 level
= btrfs_header_level(buf
);
3344 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) && level
== 0)
3348 process_func
= btrfs_inc_extent_ref
;
3350 process_func
= btrfs_free_extent
;
3353 parent
= buf
->start
;
3357 for (i
= 0; i
< nritems
; i
++) {
3359 btrfs_item_key_to_cpu(buf
, &key
, i
);
3360 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
3362 fi
= btrfs_item_ptr(buf
, i
,
3363 struct btrfs_file_extent_item
);
3364 if (btrfs_file_extent_type(buf
, fi
) ==
3365 BTRFS_FILE_EXTENT_INLINE
)
3367 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
3371 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
3372 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
3373 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
3374 parent
, ref_root
, key
.objectid
,
3379 bytenr
= btrfs_node_blockptr(buf
, i
);
3380 num_bytes
= fs_info
->nodesize
;
3381 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
3382 parent
, ref_root
, level
- 1, 0);
3392 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3393 struct extent_buffer
*buf
, int full_backref
)
3395 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1);
3398 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3399 struct extent_buffer
*buf
, int full_backref
)
3401 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0);
3404 static int write_one_cache_group(struct btrfs_trans_handle
*trans
,
3405 struct btrfs_fs_info
*fs_info
,
3406 struct btrfs_path
*path
,
3407 struct btrfs_block_group_cache
*cache
)
3410 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
3412 struct extent_buffer
*leaf
;
3414 ret
= btrfs_search_slot(trans
, extent_root
, &cache
->key
, path
, 0, 1);
3421 leaf
= path
->nodes
[0];
3422 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3423 write_extent_buffer(leaf
, &cache
->item
, bi
, sizeof(cache
->item
));
3424 btrfs_mark_buffer_dirty(leaf
);
3426 btrfs_release_path(path
);
3431 static struct btrfs_block_group_cache
*
3432 next_block_group(struct btrfs_fs_info
*fs_info
,
3433 struct btrfs_block_group_cache
*cache
)
3435 struct rb_node
*node
;
3437 spin_lock(&fs_info
->block_group_cache_lock
);
3439 /* If our block group was removed, we need a full search. */
3440 if (RB_EMPTY_NODE(&cache
->cache_node
)) {
3441 const u64 next_bytenr
= cache
->key
.objectid
+ cache
->key
.offset
;
3443 spin_unlock(&fs_info
->block_group_cache_lock
);
3444 btrfs_put_block_group(cache
);
3445 cache
= btrfs_lookup_first_block_group(fs_info
, next_bytenr
); return cache
;
3447 node
= rb_next(&cache
->cache_node
);
3448 btrfs_put_block_group(cache
);
3450 cache
= rb_entry(node
, struct btrfs_block_group_cache
,
3452 btrfs_get_block_group(cache
);
3455 spin_unlock(&fs_info
->block_group_cache_lock
);
3459 static int cache_save_setup(struct btrfs_block_group_cache
*block_group
,
3460 struct btrfs_trans_handle
*trans
,
3461 struct btrfs_path
*path
)
3463 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
3464 struct btrfs_root
*root
= fs_info
->tree_root
;
3465 struct inode
*inode
= NULL
;
3466 struct extent_changeset
*data_reserved
= NULL
;
3468 int dcs
= BTRFS_DC_ERROR
;
3474 * If this block group is smaller than 100 megs don't bother caching the
3477 if (block_group
->key
.offset
< (100 * SZ_1M
)) {
3478 spin_lock(&block_group
->lock
);
3479 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
3480 spin_unlock(&block_group
->lock
);
3487 inode
= lookup_free_space_inode(fs_info
, block_group
, path
);
3488 if (IS_ERR(inode
) && PTR_ERR(inode
) != -ENOENT
) {
3489 ret
= PTR_ERR(inode
);
3490 btrfs_release_path(path
);
3494 if (IS_ERR(inode
)) {
3498 if (block_group
->ro
)
3501 ret
= create_free_space_inode(fs_info
, trans
, block_group
,
3509 * We want to set the generation to 0, that way if anything goes wrong
3510 * from here on out we know not to trust this cache when we load up next
3513 BTRFS_I(inode
)->generation
= 0;
3514 ret
= btrfs_update_inode(trans
, root
, inode
);
3517 * So theoretically we could recover from this, simply set the
3518 * super cache generation to 0 so we know to invalidate the
3519 * cache, but then we'd have to keep track of the block groups
3520 * that fail this way so we know we _have_ to reset this cache
3521 * before the next commit or risk reading stale cache. So to
3522 * limit our exposure to horrible edge cases lets just abort the
3523 * transaction, this only happens in really bad situations
3526 btrfs_abort_transaction(trans
, ret
);
3531 /* We've already setup this transaction, go ahead and exit */
3532 if (block_group
->cache_generation
== trans
->transid
&&
3533 i_size_read(inode
)) {
3534 dcs
= BTRFS_DC_SETUP
;
3538 if (i_size_read(inode
) > 0) {
3539 ret
= btrfs_check_trunc_cache_free_space(fs_info
,
3540 &fs_info
->global_block_rsv
);
3544 ret
= btrfs_truncate_free_space_cache(trans
, NULL
, inode
);
3549 spin_lock(&block_group
->lock
);
3550 if (block_group
->cached
!= BTRFS_CACHE_FINISHED
||
3551 !btrfs_test_opt(fs_info
, SPACE_CACHE
)) {
3553 * don't bother trying to write stuff out _if_
3554 * a) we're not cached,
3555 * b) we're with nospace_cache mount option,
3556 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3558 dcs
= BTRFS_DC_WRITTEN
;
3559 spin_unlock(&block_group
->lock
);
3562 spin_unlock(&block_group
->lock
);
3565 * We hit an ENOSPC when setting up the cache in this transaction, just
3566 * skip doing the setup, we've already cleared the cache so we're safe.
3568 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC
, &trans
->transaction
->flags
)) {
3574 * Try to preallocate enough space based on how big the block group is.
3575 * Keep in mind this has to include any pinned space which could end up
3576 * taking up quite a bit since it's not folded into the other space
3579 num_pages
= div_u64(block_group
->key
.offset
, SZ_256M
);
3584 num_pages
*= PAGE_SIZE
;
3586 ret
= btrfs_check_data_free_space(inode
, &data_reserved
, 0, num_pages
);
3590 ret
= btrfs_prealloc_file_range_trans(inode
, trans
, 0, 0, num_pages
,
3591 num_pages
, num_pages
,
3594 * Our cache requires contiguous chunks so that we don't modify a bunch
3595 * of metadata or split extents when writing the cache out, which means
3596 * we can enospc if we are heavily fragmented in addition to just normal
3597 * out of space conditions. So if we hit this just skip setting up any
3598 * other block groups for this transaction, maybe we'll unpin enough
3599 * space the next time around.
3602 dcs
= BTRFS_DC_SETUP
;
3603 else if (ret
== -ENOSPC
)
3604 set_bit(BTRFS_TRANS_CACHE_ENOSPC
, &trans
->transaction
->flags
);
3609 btrfs_release_path(path
);
3611 spin_lock(&block_group
->lock
);
3612 if (!ret
&& dcs
== BTRFS_DC_SETUP
)
3613 block_group
->cache_generation
= trans
->transid
;
3614 block_group
->disk_cache_state
= dcs
;
3615 spin_unlock(&block_group
->lock
);
3617 extent_changeset_free(data_reserved
);
3621 int btrfs_setup_space_cache(struct btrfs_trans_handle
*trans
,
3622 struct btrfs_fs_info
*fs_info
)
3624 struct btrfs_block_group_cache
*cache
, *tmp
;
3625 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3626 struct btrfs_path
*path
;
3628 if (list_empty(&cur_trans
->dirty_bgs
) ||
3629 !btrfs_test_opt(fs_info
, SPACE_CACHE
))
3632 path
= btrfs_alloc_path();
3636 /* Could add new block groups, use _safe just in case */
3637 list_for_each_entry_safe(cache
, tmp
, &cur_trans
->dirty_bgs
,
3639 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
)
3640 cache_save_setup(cache
, trans
, path
);
3643 btrfs_free_path(path
);
3648 * transaction commit does final block group cache writeback during a
3649 * critical section where nothing is allowed to change the FS. This is
3650 * required in order for the cache to actually match the block group,
3651 * but can introduce a lot of latency into the commit.
3653 * So, btrfs_start_dirty_block_groups is here to kick off block group
3654 * cache IO. There's a chance we'll have to redo some of it if the
3655 * block group changes again during the commit, but it greatly reduces
3656 * the commit latency by getting rid of the easy block groups while
3657 * we're still allowing others to join the commit.
3659 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle
*trans
,
3660 struct btrfs_fs_info
*fs_info
)
3662 struct btrfs_block_group_cache
*cache
;
3663 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3666 struct btrfs_path
*path
= NULL
;
3668 struct list_head
*io
= &cur_trans
->io_bgs
;
3669 int num_started
= 0;
3672 spin_lock(&cur_trans
->dirty_bgs_lock
);
3673 if (list_empty(&cur_trans
->dirty_bgs
)) {
3674 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3677 list_splice_init(&cur_trans
->dirty_bgs
, &dirty
);
3678 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3682 * make sure all the block groups on our dirty list actually
3685 btrfs_create_pending_block_groups(trans
, fs_info
);
3688 path
= btrfs_alloc_path();
3694 * cache_write_mutex is here only to save us from balance or automatic
3695 * removal of empty block groups deleting this block group while we are
3696 * writing out the cache
3698 mutex_lock(&trans
->transaction
->cache_write_mutex
);
3699 while (!list_empty(&dirty
)) {
3700 cache
= list_first_entry(&dirty
,
3701 struct btrfs_block_group_cache
,
3704 * this can happen if something re-dirties a block
3705 * group that is already under IO. Just wait for it to
3706 * finish and then do it all again
3708 if (!list_empty(&cache
->io_list
)) {
3709 list_del_init(&cache
->io_list
);
3710 btrfs_wait_cache_io(trans
, cache
, path
);
3711 btrfs_put_block_group(cache
);
3716 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3717 * if it should update the cache_state. Don't delete
3718 * until after we wait.
3720 * Since we're not running in the commit critical section
3721 * we need the dirty_bgs_lock to protect from update_block_group
3723 spin_lock(&cur_trans
->dirty_bgs_lock
);
3724 list_del_init(&cache
->dirty_list
);
3725 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3729 cache_save_setup(cache
, trans
, path
);
3731 if (cache
->disk_cache_state
== BTRFS_DC_SETUP
) {
3732 cache
->io_ctl
.inode
= NULL
;
3733 ret
= btrfs_write_out_cache(fs_info
, trans
,
3735 if (ret
== 0 && cache
->io_ctl
.inode
) {
3740 * the cache_write_mutex is protecting
3743 list_add_tail(&cache
->io_list
, io
);
3746 * if we failed to write the cache, the
3747 * generation will be bad and life goes on
3753 ret
= write_one_cache_group(trans
, fs_info
,
3756 * Our block group might still be attached to the list
3757 * of new block groups in the transaction handle of some
3758 * other task (struct btrfs_trans_handle->new_bgs). This
3759 * means its block group item isn't yet in the extent
3760 * tree. If this happens ignore the error, as we will
3761 * try again later in the critical section of the
3762 * transaction commit.
3764 if (ret
== -ENOENT
) {
3766 spin_lock(&cur_trans
->dirty_bgs_lock
);
3767 if (list_empty(&cache
->dirty_list
)) {
3768 list_add_tail(&cache
->dirty_list
,
3769 &cur_trans
->dirty_bgs
);
3770 btrfs_get_block_group(cache
);
3772 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3774 btrfs_abort_transaction(trans
, ret
);
3778 /* if its not on the io list, we need to put the block group */
3780 btrfs_put_block_group(cache
);
3786 * Avoid blocking other tasks for too long. It might even save
3787 * us from writing caches for block groups that are going to be
3790 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
3791 mutex_lock(&trans
->transaction
->cache_write_mutex
);
3793 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
3796 * go through delayed refs for all the stuff we've just kicked off
3797 * and then loop back (just once)
3799 ret
= btrfs_run_delayed_refs(trans
, fs_info
, 0);
3800 if (!ret
&& loops
== 0) {
3802 spin_lock(&cur_trans
->dirty_bgs_lock
);
3803 list_splice_init(&cur_trans
->dirty_bgs
, &dirty
);
3805 * dirty_bgs_lock protects us from concurrent block group
3806 * deletes too (not just cache_write_mutex).
3808 if (!list_empty(&dirty
)) {
3809 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3812 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3813 } else if (ret
< 0) {
3814 btrfs_cleanup_dirty_bgs(cur_trans
, fs_info
);
3817 btrfs_free_path(path
);
3821 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
,
3822 struct btrfs_fs_info
*fs_info
)
3824 struct btrfs_block_group_cache
*cache
;
3825 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3828 struct btrfs_path
*path
;
3829 struct list_head
*io
= &cur_trans
->io_bgs
;
3830 int num_started
= 0;
3832 path
= btrfs_alloc_path();
3837 * Even though we are in the critical section of the transaction commit,
3838 * we can still have concurrent tasks adding elements to this
3839 * transaction's list of dirty block groups. These tasks correspond to
3840 * endio free space workers started when writeback finishes for a
3841 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3842 * allocate new block groups as a result of COWing nodes of the root
3843 * tree when updating the free space inode. The writeback for the space
3844 * caches is triggered by an earlier call to
3845 * btrfs_start_dirty_block_groups() and iterations of the following
3847 * Also we want to do the cache_save_setup first and then run the
3848 * delayed refs to make sure we have the best chance at doing this all
3851 spin_lock(&cur_trans
->dirty_bgs_lock
);
3852 while (!list_empty(&cur_trans
->dirty_bgs
)) {
3853 cache
= list_first_entry(&cur_trans
->dirty_bgs
,
3854 struct btrfs_block_group_cache
,
3858 * this can happen if cache_save_setup re-dirties a block
3859 * group that is already under IO. Just wait for it to
3860 * finish and then do it all again
3862 if (!list_empty(&cache
->io_list
)) {
3863 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3864 list_del_init(&cache
->io_list
);
3865 btrfs_wait_cache_io(trans
, cache
, path
);
3866 btrfs_put_block_group(cache
);
3867 spin_lock(&cur_trans
->dirty_bgs_lock
);
3871 * don't remove from the dirty list until after we've waited
3874 list_del_init(&cache
->dirty_list
);
3875 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3878 cache_save_setup(cache
, trans
, path
);
3881 ret
= btrfs_run_delayed_refs(trans
, fs_info
,
3882 (unsigned long) -1);
3884 if (!ret
&& cache
->disk_cache_state
== BTRFS_DC_SETUP
) {
3885 cache
->io_ctl
.inode
= NULL
;
3886 ret
= btrfs_write_out_cache(fs_info
, trans
,
3888 if (ret
== 0 && cache
->io_ctl
.inode
) {
3891 list_add_tail(&cache
->io_list
, io
);
3894 * if we failed to write the cache, the
3895 * generation will be bad and life goes on
3901 ret
= write_one_cache_group(trans
, fs_info
,
3904 * One of the free space endio workers might have
3905 * created a new block group while updating a free space
3906 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3907 * and hasn't released its transaction handle yet, in
3908 * which case the new block group is still attached to
3909 * its transaction handle and its creation has not
3910 * finished yet (no block group item in the extent tree
3911 * yet, etc). If this is the case, wait for all free
3912 * space endio workers to finish and retry. This is a
3913 * a very rare case so no need for a more efficient and
3916 if (ret
== -ENOENT
) {
3917 wait_event(cur_trans
->writer_wait
,
3918 atomic_read(&cur_trans
->num_writers
) == 1);
3919 ret
= write_one_cache_group(trans
, fs_info
,
3923 btrfs_abort_transaction(trans
, ret
);
3926 /* if its not on the io list, we need to put the block group */
3928 btrfs_put_block_group(cache
);
3929 spin_lock(&cur_trans
->dirty_bgs_lock
);
3931 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3933 while (!list_empty(io
)) {
3934 cache
= list_first_entry(io
, struct btrfs_block_group_cache
,
3936 list_del_init(&cache
->io_list
);
3937 btrfs_wait_cache_io(trans
, cache
, path
);
3938 btrfs_put_block_group(cache
);
3941 btrfs_free_path(path
);
3945 int btrfs_extent_readonly(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
3947 struct btrfs_block_group_cache
*block_group
;
3950 block_group
= btrfs_lookup_block_group(fs_info
, bytenr
);
3951 if (!block_group
|| block_group
->ro
)
3954 btrfs_put_block_group(block_group
);
3958 bool btrfs_inc_nocow_writers(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
3960 struct btrfs_block_group_cache
*bg
;
3963 bg
= btrfs_lookup_block_group(fs_info
, bytenr
);
3967 spin_lock(&bg
->lock
);
3971 atomic_inc(&bg
->nocow_writers
);
3972 spin_unlock(&bg
->lock
);
3974 /* no put on block group, done by btrfs_dec_nocow_writers */
3976 btrfs_put_block_group(bg
);
3982 void btrfs_dec_nocow_writers(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
3984 struct btrfs_block_group_cache
*bg
;
3986 bg
= btrfs_lookup_block_group(fs_info
, bytenr
);
3988 if (atomic_dec_and_test(&bg
->nocow_writers
))
3989 wake_up_atomic_t(&bg
->nocow_writers
);
3991 * Once for our lookup and once for the lookup done by a previous call
3992 * to btrfs_inc_nocow_writers()
3994 btrfs_put_block_group(bg
);
3995 btrfs_put_block_group(bg
);
3998 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache
*bg
)
4000 wait_on_atomic_t(&bg
->nocow_writers
, atomic_t_wait
,
4001 TASK_UNINTERRUPTIBLE
);
4004 static const char *alloc_name(u64 flags
)
4007 case BTRFS_BLOCK_GROUP_METADATA
|BTRFS_BLOCK_GROUP_DATA
:
4009 case BTRFS_BLOCK_GROUP_METADATA
:
4011 case BTRFS_BLOCK_GROUP_DATA
:
4013 case BTRFS_BLOCK_GROUP_SYSTEM
:
4017 return "invalid-combination";
4021 static int create_space_info(struct btrfs_fs_info
*info
, u64 flags
,
4022 struct btrfs_space_info
**new)
4025 struct btrfs_space_info
*space_info
;
4029 space_info
= kzalloc(sizeof(*space_info
), GFP_NOFS
);
4033 ret
= percpu_counter_init(&space_info
->total_bytes_pinned
, 0,
4040 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
4041 INIT_LIST_HEAD(&space_info
->block_groups
[i
]);
4042 init_rwsem(&space_info
->groups_sem
);
4043 spin_lock_init(&space_info
->lock
);
4044 space_info
->flags
= flags
& BTRFS_BLOCK_GROUP_TYPE_MASK
;
4045 space_info
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
4046 init_waitqueue_head(&space_info
->wait
);
4047 INIT_LIST_HEAD(&space_info
->ro_bgs
);
4048 INIT_LIST_HEAD(&space_info
->tickets
);
4049 INIT_LIST_HEAD(&space_info
->priority_tickets
);
4051 ret
= kobject_init_and_add(&space_info
->kobj
, &space_info_ktype
,
4052 info
->space_info_kobj
, "%s",
4053 alloc_name(space_info
->flags
));
4055 percpu_counter_destroy(&space_info
->total_bytes_pinned
);
4061 list_add_rcu(&space_info
->list
, &info
->space_info
);
4062 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
4063 info
->data_sinfo
= space_info
;
4068 static void update_space_info(struct btrfs_fs_info
*info
, u64 flags
,
4069 u64 total_bytes
, u64 bytes_used
,
4071 struct btrfs_space_info
**space_info
)
4073 struct btrfs_space_info
*found
;
4076 if (flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
4077 BTRFS_BLOCK_GROUP_RAID10
))
4082 found
= __find_space_info(info
, flags
);
4084 spin_lock(&found
->lock
);
4085 found
->total_bytes
+= total_bytes
;
4086 found
->disk_total
+= total_bytes
* factor
;
4087 found
->bytes_used
+= bytes_used
;
4088 found
->disk_used
+= bytes_used
* factor
;
4089 found
->bytes_readonly
+= bytes_readonly
;
4090 if (total_bytes
> 0)
4092 space_info_add_new_bytes(info
, found
, total_bytes
-
4093 bytes_used
- bytes_readonly
);
4094 spin_unlock(&found
->lock
);
4095 *space_info
= found
;
4098 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
4100 u64 extra_flags
= chunk_to_extended(flags
) &
4101 BTRFS_EXTENDED_PROFILE_MASK
;
4103 write_seqlock(&fs_info
->profiles_lock
);
4104 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
4105 fs_info
->avail_data_alloc_bits
|= extra_flags
;
4106 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
4107 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
4108 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
4109 fs_info
->avail_system_alloc_bits
|= extra_flags
;
4110 write_sequnlock(&fs_info
->profiles_lock
);
4114 * returns target flags in extended format or 0 if restripe for this
4115 * chunk_type is not in progress
4117 * should be called with either volume_mutex or balance_lock held
4119 static u64
get_restripe_target(struct btrfs_fs_info
*fs_info
, u64 flags
)
4121 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
4127 if (flags
& BTRFS_BLOCK_GROUP_DATA
&&
4128 bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
4129 target
= BTRFS_BLOCK_GROUP_DATA
| bctl
->data
.target
;
4130 } else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
&&
4131 bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
4132 target
= BTRFS_BLOCK_GROUP_SYSTEM
| bctl
->sys
.target
;
4133 } else if (flags
& BTRFS_BLOCK_GROUP_METADATA
&&
4134 bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
4135 target
= BTRFS_BLOCK_GROUP_METADATA
| bctl
->meta
.target
;
4142 * @flags: available profiles in extended format (see ctree.h)
4144 * Returns reduced profile in chunk format. If profile changing is in
4145 * progress (either running or paused) picks the target profile (if it's
4146 * already available), otherwise falls back to plain reducing.
4148 static u64
btrfs_reduce_alloc_profile(struct btrfs_fs_info
*fs_info
, u64 flags
)
4150 u64 num_devices
= fs_info
->fs_devices
->rw_devices
;
4156 * see if restripe for this chunk_type is in progress, if so
4157 * try to reduce to the target profile
4159 spin_lock(&fs_info
->balance_lock
);
4160 target
= get_restripe_target(fs_info
, flags
);
4162 /* pick target profile only if it's already available */
4163 if ((flags
& target
) & BTRFS_EXTENDED_PROFILE_MASK
) {
4164 spin_unlock(&fs_info
->balance_lock
);
4165 return extended_to_chunk(target
);
4168 spin_unlock(&fs_info
->balance_lock
);
4170 /* First, mask out the RAID levels which aren't possible */
4171 for (raid_type
= 0; raid_type
< BTRFS_NR_RAID_TYPES
; raid_type
++) {
4172 if (num_devices
>= btrfs_raid_array
[raid_type
].devs_min
)
4173 allowed
|= btrfs_raid_group
[raid_type
];
4177 if (allowed
& BTRFS_BLOCK_GROUP_RAID6
)
4178 allowed
= BTRFS_BLOCK_GROUP_RAID6
;
4179 else if (allowed
& BTRFS_BLOCK_GROUP_RAID5
)
4180 allowed
= BTRFS_BLOCK_GROUP_RAID5
;
4181 else if (allowed
& BTRFS_BLOCK_GROUP_RAID10
)
4182 allowed
= BTRFS_BLOCK_GROUP_RAID10
;
4183 else if (allowed
& BTRFS_BLOCK_GROUP_RAID1
)
4184 allowed
= BTRFS_BLOCK_GROUP_RAID1
;
4185 else if (allowed
& BTRFS_BLOCK_GROUP_RAID0
)
4186 allowed
= BTRFS_BLOCK_GROUP_RAID0
;
4188 flags
&= ~BTRFS_BLOCK_GROUP_PROFILE_MASK
;
4190 return extended_to_chunk(flags
| allowed
);
4193 static u64
get_alloc_profile(struct btrfs_fs_info
*fs_info
, u64 orig_flags
)
4200 seq
= read_seqbegin(&fs_info
->profiles_lock
);
4202 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
4203 flags
|= fs_info
->avail_data_alloc_bits
;
4204 else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
4205 flags
|= fs_info
->avail_system_alloc_bits
;
4206 else if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
4207 flags
|= fs_info
->avail_metadata_alloc_bits
;
4208 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
4210 return btrfs_reduce_alloc_profile(fs_info
, flags
);
4213 static u64
get_alloc_profile_by_root(struct btrfs_root
*root
, int data
)
4215 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4220 flags
= BTRFS_BLOCK_GROUP_DATA
;
4221 else if (root
== fs_info
->chunk_root
)
4222 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
4224 flags
= BTRFS_BLOCK_GROUP_METADATA
;
4226 ret
= get_alloc_profile(fs_info
, flags
);
4230 u64
btrfs_data_alloc_profile(struct btrfs_fs_info
*fs_info
)
4232 return get_alloc_profile(fs_info
, BTRFS_BLOCK_GROUP_DATA
);
4235 u64
btrfs_metadata_alloc_profile(struct btrfs_fs_info
*fs_info
)
4237 return get_alloc_profile(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4240 u64
btrfs_system_alloc_profile(struct btrfs_fs_info
*fs_info
)
4242 return get_alloc_profile(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
4245 static u64
btrfs_space_info_used(struct btrfs_space_info
*s_info
,
4246 bool may_use_included
)
4249 return s_info
->bytes_used
+ s_info
->bytes_reserved
+
4250 s_info
->bytes_pinned
+ s_info
->bytes_readonly
+
4251 (may_use_included
? s_info
->bytes_may_use
: 0);
4254 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode
*inode
, u64 bytes
)
4256 struct btrfs_root
*root
= inode
->root
;
4257 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4258 struct btrfs_space_info
*data_sinfo
= fs_info
->data_sinfo
;
4261 int need_commit
= 2;
4262 int have_pinned_space
;
4264 /* make sure bytes are sectorsize aligned */
4265 bytes
= ALIGN(bytes
, fs_info
->sectorsize
);
4267 if (btrfs_is_free_space_inode(inode
)) {
4269 ASSERT(current
->journal_info
);
4273 /* make sure we have enough space to handle the data first */
4274 spin_lock(&data_sinfo
->lock
);
4275 used
= btrfs_space_info_used(data_sinfo
, true);
4277 if (used
+ bytes
> data_sinfo
->total_bytes
) {
4278 struct btrfs_trans_handle
*trans
;
4281 * if we don't have enough free bytes in this space then we need
4282 * to alloc a new chunk.
4284 if (!data_sinfo
->full
) {
4287 data_sinfo
->force_alloc
= CHUNK_ALLOC_FORCE
;
4288 spin_unlock(&data_sinfo
->lock
);
4290 alloc_target
= btrfs_data_alloc_profile(fs_info
);
4292 * It is ugly that we don't call nolock join
4293 * transaction for the free space inode case here.
4294 * But it is safe because we only do the data space
4295 * reservation for the free space cache in the
4296 * transaction context, the common join transaction
4297 * just increase the counter of the current transaction
4298 * handler, doesn't try to acquire the trans_lock of
4301 trans
= btrfs_join_transaction(root
);
4303 return PTR_ERR(trans
);
4305 ret
= do_chunk_alloc(trans
, fs_info
, alloc_target
,
4306 CHUNK_ALLOC_NO_FORCE
);
4307 btrfs_end_transaction(trans
);
4312 have_pinned_space
= 1;
4321 * If we don't have enough pinned space to deal with this
4322 * allocation, and no removed chunk in current transaction,
4323 * don't bother committing the transaction.
4325 have_pinned_space
= percpu_counter_compare(
4326 &data_sinfo
->total_bytes_pinned
,
4327 used
+ bytes
- data_sinfo
->total_bytes
);
4328 spin_unlock(&data_sinfo
->lock
);
4330 /* commit the current transaction and try again */
4333 !atomic_read(&fs_info
->open_ioctl_trans
)) {
4336 if (need_commit
> 0) {
4337 btrfs_start_delalloc_roots(fs_info
, 0, -1);
4338 btrfs_wait_ordered_roots(fs_info
, U64_MAX
, 0,
4342 trans
= btrfs_join_transaction(root
);
4344 return PTR_ERR(trans
);
4345 if (have_pinned_space
>= 0 ||
4346 test_bit(BTRFS_TRANS_HAVE_FREE_BGS
,
4347 &trans
->transaction
->flags
) ||
4349 ret
= btrfs_commit_transaction(trans
);
4353 * The cleaner kthread might still be doing iput
4354 * operations. Wait for it to finish so that
4355 * more space is released.
4357 mutex_lock(&fs_info
->cleaner_delayed_iput_mutex
);
4358 mutex_unlock(&fs_info
->cleaner_delayed_iput_mutex
);
4361 btrfs_end_transaction(trans
);
4365 trace_btrfs_space_reservation(fs_info
,
4366 "space_info:enospc",
4367 data_sinfo
->flags
, bytes
, 1);
4370 data_sinfo
->bytes_may_use
+= bytes
;
4371 trace_btrfs_space_reservation(fs_info
, "space_info",
4372 data_sinfo
->flags
, bytes
, 1);
4373 spin_unlock(&data_sinfo
->lock
);
4378 int btrfs_check_data_free_space(struct inode
*inode
,
4379 struct extent_changeset
**reserved
, u64 start
, u64 len
)
4381 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4384 /* align the range */
4385 len
= round_up(start
+ len
, fs_info
->sectorsize
) -
4386 round_down(start
, fs_info
->sectorsize
);
4387 start
= round_down(start
, fs_info
->sectorsize
);
4389 ret
= btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode
), len
);
4393 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4394 ret
= btrfs_qgroup_reserve_data(inode
, reserved
, start
, len
);
4396 btrfs_free_reserved_data_space_noquota(inode
, start
, len
);
4403 * Called if we need to clear a data reservation for this inode
4404 * Normally in a error case.
4406 * This one will *NOT* use accurate qgroup reserved space API, just for case
4407 * which we can't sleep and is sure it won't affect qgroup reserved space.
4408 * Like clear_bit_hook().
4410 void btrfs_free_reserved_data_space_noquota(struct inode
*inode
, u64 start
,
4413 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4414 struct btrfs_space_info
*data_sinfo
;
4416 /* Make sure the range is aligned to sectorsize */
4417 len
= round_up(start
+ len
, fs_info
->sectorsize
) -
4418 round_down(start
, fs_info
->sectorsize
);
4419 start
= round_down(start
, fs_info
->sectorsize
);
4421 data_sinfo
= fs_info
->data_sinfo
;
4422 spin_lock(&data_sinfo
->lock
);
4423 if (WARN_ON(data_sinfo
->bytes_may_use
< len
))
4424 data_sinfo
->bytes_may_use
= 0;
4426 data_sinfo
->bytes_may_use
-= len
;
4427 trace_btrfs_space_reservation(fs_info
, "space_info",
4428 data_sinfo
->flags
, len
, 0);
4429 spin_unlock(&data_sinfo
->lock
);
4433 * Called if we need to clear a data reservation for this inode
4434 * Normally in a error case.
4436 * This one will handle the per-inode data rsv map for accurate reserved
4439 void btrfs_free_reserved_data_space(struct inode
*inode
,
4440 struct extent_changeset
*reserved
, u64 start
, u64 len
)
4442 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4444 /* Make sure the range is aligned to sectorsize */
4445 len
= round_up(start
+ len
, root
->fs_info
->sectorsize
) -
4446 round_down(start
, root
->fs_info
->sectorsize
);
4447 start
= round_down(start
, root
->fs_info
->sectorsize
);
4449 btrfs_free_reserved_data_space_noquota(inode
, start
, len
);
4450 btrfs_qgroup_free_data(inode
, reserved
, start
, len
);
4453 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
4455 struct list_head
*head
= &info
->space_info
;
4456 struct btrfs_space_info
*found
;
4459 list_for_each_entry_rcu(found
, head
, list
) {
4460 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
4461 found
->force_alloc
= CHUNK_ALLOC_FORCE
;
4466 static inline u64
calc_global_rsv_need_space(struct btrfs_block_rsv
*global
)
4468 return (global
->size
<< 1);
4471 static int should_alloc_chunk(struct btrfs_fs_info
*fs_info
,
4472 struct btrfs_space_info
*sinfo
, int force
)
4474 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
4475 u64 bytes_used
= btrfs_space_info_used(sinfo
, false);
4478 if (force
== CHUNK_ALLOC_FORCE
)
4482 * We need to take into account the global rsv because for all intents
4483 * and purposes it's used space. Don't worry about locking the
4484 * global_rsv, it doesn't change except when the transaction commits.
4486 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
4487 bytes_used
+= calc_global_rsv_need_space(global_rsv
);
4490 * in limited mode, we want to have some free space up to
4491 * about 1% of the FS size.
4493 if (force
== CHUNK_ALLOC_LIMITED
) {
4494 thresh
= btrfs_super_total_bytes(fs_info
->super_copy
);
4495 thresh
= max_t(u64
, SZ_64M
, div_factor_fine(thresh
, 1));
4497 if (sinfo
->total_bytes
- bytes_used
< thresh
)
4501 if (bytes_used
+ SZ_2M
< div_factor(sinfo
->total_bytes
, 8))
4506 static u64
get_profile_num_devs(struct btrfs_fs_info
*fs_info
, u64 type
)
4510 if (type
& (BTRFS_BLOCK_GROUP_RAID10
|
4511 BTRFS_BLOCK_GROUP_RAID0
|
4512 BTRFS_BLOCK_GROUP_RAID5
|
4513 BTRFS_BLOCK_GROUP_RAID6
))
4514 num_dev
= fs_info
->fs_devices
->rw_devices
;
4515 else if (type
& BTRFS_BLOCK_GROUP_RAID1
)
4518 num_dev
= 1; /* DUP or single */
4524 * If @is_allocation is true, reserve space in the system space info necessary
4525 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4528 void check_system_chunk(struct btrfs_trans_handle
*trans
,
4529 struct btrfs_fs_info
*fs_info
, u64 type
)
4531 struct btrfs_space_info
*info
;
4538 * Needed because we can end up allocating a system chunk and for an
4539 * atomic and race free space reservation in the chunk block reserve.
4541 ASSERT(mutex_is_locked(&fs_info
->chunk_mutex
));
4543 info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
4544 spin_lock(&info
->lock
);
4545 left
= info
->total_bytes
- btrfs_space_info_used(info
, true);
4546 spin_unlock(&info
->lock
);
4548 num_devs
= get_profile_num_devs(fs_info
, type
);
4550 /* num_devs device items to update and 1 chunk item to add or remove */
4551 thresh
= btrfs_calc_trunc_metadata_size(fs_info
, num_devs
) +
4552 btrfs_calc_trans_metadata_size(fs_info
, 1);
4554 if (left
< thresh
&& btrfs_test_opt(fs_info
, ENOSPC_DEBUG
)) {
4555 btrfs_info(fs_info
, "left=%llu, need=%llu, flags=%llu",
4556 left
, thresh
, type
);
4557 dump_space_info(fs_info
, info
, 0, 0);
4560 if (left
< thresh
) {
4561 u64 flags
= btrfs_system_alloc_profile(fs_info
);
4564 * Ignore failure to create system chunk. We might end up not
4565 * needing it, as we might not need to COW all nodes/leafs from
4566 * the paths we visit in the chunk tree (they were already COWed
4567 * or created in the current transaction for example).
4569 ret
= btrfs_alloc_chunk(trans
, fs_info
, flags
);
4573 ret
= btrfs_block_rsv_add(fs_info
->chunk_root
,
4574 &fs_info
->chunk_block_rsv
,
4575 thresh
, BTRFS_RESERVE_NO_FLUSH
);
4577 trans
->chunk_bytes_reserved
+= thresh
;
4582 * If force is CHUNK_ALLOC_FORCE:
4583 * - return 1 if it successfully allocates a chunk,
4584 * - return errors including -ENOSPC otherwise.
4585 * If force is NOT CHUNK_ALLOC_FORCE:
4586 * - return 0 if it doesn't need to allocate a new chunk,
4587 * - return 1 if it successfully allocates a chunk,
4588 * - return errors including -ENOSPC otherwise.
4590 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
4591 struct btrfs_fs_info
*fs_info
, u64 flags
, int force
)
4593 struct btrfs_space_info
*space_info
;
4594 int wait_for_alloc
= 0;
4597 /* Don't re-enter if we're already allocating a chunk */
4598 if (trans
->allocating_chunk
)
4601 space_info
= __find_space_info(fs_info
, flags
);
4603 ret
= create_space_info(fs_info
, flags
, &space_info
);
4609 spin_lock(&space_info
->lock
);
4610 if (force
< space_info
->force_alloc
)
4611 force
= space_info
->force_alloc
;
4612 if (space_info
->full
) {
4613 if (should_alloc_chunk(fs_info
, space_info
, force
))
4617 spin_unlock(&space_info
->lock
);
4621 if (!should_alloc_chunk(fs_info
, space_info
, force
)) {
4622 spin_unlock(&space_info
->lock
);
4624 } else if (space_info
->chunk_alloc
) {
4627 space_info
->chunk_alloc
= 1;
4630 spin_unlock(&space_info
->lock
);
4632 mutex_lock(&fs_info
->chunk_mutex
);
4635 * The chunk_mutex is held throughout the entirety of a chunk
4636 * allocation, so once we've acquired the chunk_mutex we know that the
4637 * other guy is done and we need to recheck and see if we should
4640 if (wait_for_alloc
) {
4641 mutex_unlock(&fs_info
->chunk_mutex
);
4646 trans
->allocating_chunk
= true;
4649 * If we have mixed data/metadata chunks we want to make sure we keep
4650 * allocating mixed chunks instead of individual chunks.
4652 if (btrfs_mixed_space_info(space_info
))
4653 flags
|= (BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
);
4656 * if we're doing a data chunk, go ahead and make sure that
4657 * we keep a reasonable number of metadata chunks allocated in the
4660 if (flags
& BTRFS_BLOCK_GROUP_DATA
&& fs_info
->metadata_ratio
) {
4661 fs_info
->data_chunk_allocations
++;
4662 if (!(fs_info
->data_chunk_allocations
%
4663 fs_info
->metadata_ratio
))
4664 force_metadata_allocation(fs_info
);
4668 * Check if we have enough space in SYSTEM chunk because we may need
4669 * to update devices.
4671 check_system_chunk(trans
, fs_info
, flags
);
4673 ret
= btrfs_alloc_chunk(trans
, fs_info
, flags
);
4674 trans
->allocating_chunk
= false;
4676 spin_lock(&space_info
->lock
);
4677 if (ret
< 0 && ret
!= -ENOSPC
)
4680 space_info
->full
= 1;
4684 space_info
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
4686 space_info
->chunk_alloc
= 0;
4687 spin_unlock(&space_info
->lock
);
4688 mutex_unlock(&fs_info
->chunk_mutex
);
4690 * When we allocate a new chunk we reserve space in the chunk block
4691 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4692 * add new nodes/leafs to it if we end up needing to do it when
4693 * inserting the chunk item and updating device items as part of the
4694 * second phase of chunk allocation, performed by
4695 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4696 * large number of new block groups to create in our transaction
4697 * handle's new_bgs list to avoid exhausting the chunk block reserve
4698 * in extreme cases - like having a single transaction create many new
4699 * block groups when starting to write out the free space caches of all
4700 * the block groups that were made dirty during the lifetime of the
4703 if (trans
->can_flush_pending_bgs
&&
4704 trans
->chunk_bytes_reserved
>= (u64
)SZ_2M
) {
4705 btrfs_create_pending_block_groups(trans
, fs_info
);
4706 btrfs_trans_release_chunk_metadata(trans
);
4711 static int can_overcommit(struct btrfs_fs_info
*fs_info
,
4712 struct btrfs_space_info
*space_info
, u64 bytes
,
4713 enum btrfs_reserve_flush_enum flush
,
4716 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
4722 /* Don't overcommit when in mixed mode. */
4723 if (space_info
->flags
& BTRFS_BLOCK_GROUP_DATA
)
4727 profile
= btrfs_system_alloc_profile(fs_info
);
4729 profile
= btrfs_metadata_alloc_profile(fs_info
);
4731 used
= btrfs_space_info_used(space_info
, false);
4734 * We only want to allow over committing if we have lots of actual space
4735 * free, but if we don't have enough space to handle the global reserve
4736 * space then we could end up having a real enospc problem when trying
4737 * to allocate a chunk or some other such important allocation.
4739 spin_lock(&global_rsv
->lock
);
4740 space_size
= calc_global_rsv_need_space(global_rsv
);
4741 spin_unlock(&global_rsv
->lock
);
4742 if (used
+ space_size
>= space_info
->total_bytes
)
4745 used
+= space_info
->bytes_may_use
;
4747 avail
= atomic64_read(&fs_info
->free_chunk_space
);
4750 * If we have dup, raid1 or raid10 then only half of the free
4751 * space is actually useable. For raid56, the space info used
4752 * doesn't include the parity drive, so we don't have to
4755 if (profile
& (BTRFS_BLOCK_GROUP_DUP
|
4756 BTRFS_BLOCK_GROUP_RAID1
|
4757 BTRFS_BLOCK_GROUP_RAID10
))
4761 * If we aren't flushing all things, let us overcommit up to
4762 * 1/2th of the space. If we can flush, don't let us overcommit
4763 * too much, let it overcommit up to 1/8 of the space.
4765 if (flush
== BTRFS_RESERVE_FLUSH_ALL
)
4770 if (used
+ bytes
< space_info
->total_bytes
+ avail
)
4775 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info
*fs_info
,
4776 unsigned long nr_pages
, int nr_items
)
4778 struct super_block
*sb
= fs_info
->sb
;
4780 if (down_read_trylock(&sb
->s_umount
)) {
4781 writeback_inodes_sb_nr(sb
, nr_pages
, WB_REASON_FS_FREE_SPACE
);
4782 up_read(&sb
->s_umount
);
4785 * We needn't worry the filesystem going from r/w to r/o though
4786 * we don't acquire ->s_umount mutex, because the filesystem
4787 * should guarantee the delalloc inodes list be empty after
4788 * the filesystem is readonly(all dirty pages are written to
4791 btrfs_start_delalloc_roots(fs_info
, 0, nr_items
);
4792 if (!current
->journal_info
)
4793 btrfs_wait_ordered_roots(fs_info
, nr_items
, 0, (u64
)-1);
4797 static inline u64
calc_reclaim_items_nr(struct btrfs_fs_info
*fs_info
,
4803 bytes
= btrfs_calc_trans_metadata_size(fs_info
, 1);
4804 nr
= div64_u64(to_reclaim
, bytes
);
4810 #define EXTENT_SIZE_PER_ITEM SZ_256K
4813 * shrink metadata reservation for delalloc
4815 static void shrink_delalloc(struct btrfs_fs_info
*fs_info
, u64 to_reclaim
,
4816 u64 orig
, bool wait_ordered
)
4818 struct btrfs_space_info
*space_info
;
4819 struct btrfs_trans_handle
*trans
;
4824 unsigned long nr_pages
;
4826 enum btrfs_reserve_flush_enum flush
;
4828 /* Calc the number of the pages we need flush for space reservation */
4829 items
= calc_reclaim_items_nr(fs_info
, to_reclaim
);
4830 to_reclaim
= items
* EXTENT_SIZE_PER_ITEM
;
4832 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4833 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4835 delalloc_bytes
= percpu_counter_sum_positive(
4836 &fs_info
->delalloc_bytes
);
4837 if (delalloc_bytes
== 0) {
4841 btrfs_wait_ordered_roots(fs_info
, items
, 0, (u64
)-1);
4846 while (delalloc_bytes
&& loops
< 3) {
4847 max_reclaim
= min(delalloc_bytes
, to_reclaim
);
4848 nr_pages
= max_reclaim
>> PAGE_SHIFT
;
4849 btrfs_writeback_inodes_sb_nr(fs_info
, nr_pages
, items
);
4851 * We need to wait for the async pages to actually start before
4854 max_reclaim
= atomic_read(&fs_info
->async_delalloc_pages
);
4858 if (max_reclaim
<= nr_pages
)
4861 max_reclaim
-= nr_pages
;
4863 wait_event(fs_info
->async_submit_wait
,
4864 atomic_read(&fs_info
->async_delalloc_pages
) <=
4868 flush
= BTRFS_RESERVE_FLUSH_ALL
;
4870 flush
= BTRFS_RESERVE_NO_FLUSH
;
4871 spin_lock(&space_info
->lock
);
4872 if (list_empty(&space_info
->tickets
) &&
4873 list_empty(&space_info
->priority_tickets
)) {
4874 spin_unlock(&space_info
->lock
);
4877 spin_unlock(&space_info
->lock
);
4880 if (wait_ordered
&& !trans
) {
4881 btrfs_wait_ordered_roots(fs_info
, items
, 0, (u64
)-1);
4883 time_left
= schedule_timeout_killable(1);
4887 delalloc_bytes
= percpu_counter_sum_positive(
4888 &fs_info
->delalloc_bytes
);
4892 struct reserve_ticket
{
4895 struct list_head list
;
4896 wait_queue_head_t wait
;
4900 * maybe_commit_transaction - possibly commit the transaction if its ok to
4901 * @root - the root we're allocating for
4902 * @bytes - the number of bytes we want to reserve
4903 * @force - force the commit
4905 * This will check to make sure that committing the transaction will actually
4906 * get us somewhere and then commit the transaction if it does. Otherwise it
4907 * will return -ENOSPC.
4909 static int may_commit_transaction(struct btrfs_fs_info
*fs_info
,
4910 struct btrfs_space_info
*space_info
)
4912 struct reserve_ticket
*ticket
= NULL
;
4913 struct btrfs_block_rsv
*delayed_rsv
= &fs_info
->delayed_block_rsv
;
4914 struct btrfs_trans_handle
*trans
;
4917 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4921 spin_lock(&space_info
->lock
);
4922 if (!list_empty(&space_info
->priority_tickets
))
4923 ticket
= list_first_entry(&space_info
->priority_tickets
,
4924 struct reserve_ticket
, list
);
4925 else if (!list_empty(&space_info
->tickets
))
4926 ticket
= list_first_entry(&space_info
->tickets
,
4927 struct reserve_ticket
, list
);
4928 bytes
= (ticket
) ? ticket
->bytes
: 0;
4929 spin_unlock(&space_info
->lock
);
4934 /* See if there is enough pinned space to make this reservation */
4935 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4940 * See if there is some space in the delayed insertion reservation for
4943 if (space_info
!= delayed_rsv
->space_info
)
4946 spin_lock(&delayed_rsv
->lock
);
4947 if (delayed_rsv
->size
> bytes
)
4950 bytes
-= delayed_rsv
->size
;
4951 spin_unlock(&delayed_rsv
->lock
);
4953 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4959 trans
= btrfs_join_transaction(fs_info
->extent_root
);
4963 return btrfs_commit_transaction(trans
);
4967 * Try to flush some data based on policy set by @state. This is only advisory
4968 * and may fail for various reasons. The caller is supposed to examine the
4969 * state of @space_info to detect the outcome.
4971 static void flush_space(struct btrfs_fs_info
*fs_info
,
4972 struct btrfs_space_info
*space_info
, u64 num_bytes
,
4975 struct btrfs_root
*root
= fs_info
->extent_root
;
4976 struct btrfs_trans_handle
*trans
;
4981 case FLUSH_DELAYED_ITEMS_NR
:
4982 case FLUSH_DELAYED_ITEMS
:
4983 if (state
== FLUSH_DELAYED_ITEMS_NR
)
4984 nr
= calc_reclaim_items_nr(fs_info
, num_bytes
) * 2;
4988 trans
= btrfs_join_transaction(root
);
4989 if (IS_ERR(trans
)) {
4990 ret
= PTR_ERR(trans
);
4993 ret
= btrfs_run_delayed_items_nr(trans
, fs_info
, nr
);
4994 btrfs_end_transaction(trans
);
4996 case FLUSH_DELALLOC
:
4997 case FLUSH_DELALLOC_WAIT
:
4998 shrink_delalloc(fs_info
, num_bytes
* 2, num_bytes
,
4999 state
== FLUSH_DELALLOC_WAIT
);
5002 trans
= btrfs_join_transaction(root
);
5003 if (IS_ERR(trans
)) {
5004 ret
= PTR_ERR(trans
);
5007 ret
= do_chunk_alloc(trans
, fs_info
,
5008 btrfs_metadata_alloc_profile(fs_info
),
5009 CHUNK_ALLOC_NO_FORCE
);
5010 btrfs_end_transaction(trans
);
5011 if (ret
> 0 || ret
== -ENOSPC
)
5015 ret
= may_commit_transaction(fs_info
, space_info
);
5022 trace_btrfs_flush_space(fs_info
, space_info
->flags
, num_bytes
, state
,
5028 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info
*fs_info
,
5029 struct btrfs_space_info
*space_info
,
5032 struct reserve_ticket
*ticket
;
5037 list_for_each_entry(ticket
, &space_info
->tickets
, list
)
5038 to_reclaim
+= ticket
->bytes
;
5039 list_for_each_entry(ticket
, &space_info
->priority_tickets
, list
)
5040 to_reclaim
+= ticket
->bytes
;
5044 to_reclaim
= min_t(u64
, num_online_cpus() * SZ_1M
, SZ_16M
);
5045 if (can_overcommit(fs_info
, space_info
, to_reclaim
,
5046 BTRFS_RESERVE_FLUSH_ALL
, system_chunk
))
5049 used
= btrfs_space_info_used(space_info
, true);
5051 if (can_overcommit(fs_info
, space_info
, SZ_1M
,
5052 BTRFS_RESERVE_FLUSH_ALL
, system_chunk
))
5053 expected
= div_factor_fine(space_info
->total_bytes
, 95);
5055 expected
= div_factor_fine(space_info
->total_bytes
, 90);
5057 if (used
> expected
)
5058 to_reclaim
= used
- expected
;
5061 to_reclaim
= min(to_reclaim
, space_info
->bytes_may_use
+
5062 space_info
->bytes_reserved
);
5066 static inline int need_do_async_reclaim(struct btrfs_fs_info
*fs_info
,
5067 struct btrfs_space_info
*space_info
,
5068 u64 used
, bool system_chunk
)
5070 u64 thresh
= div_factor_fine(space_info
->total_bytes
, 98);
5072 /* If we're just plain full then async reclaim just slows us down. */
5073 if ((space_info
->bytes_used
+ space_info
->bytes_reserved
) >= thresh
)
5076 if (!btrfs_calc_reclaim_metadata_size(fs_info
, space_info
,
5080 return (used
>= thresh
&& !btrfs_fs_closing(fs_info
) &&
5081 !test_bit(BTRFS_FS_STATE_REMOUNTING
, &fs_info
->fs_state
));
5084 static void wake_all_tickets(struct list_head
*head
)
5086 struct reserve_ticket
*ticket
;
5088 while (!list_empty(head
)) {
5089 ticket
= list_first_entry(head
, struct reserve_ticket
, list
);
5090 list_del_init(&ticket
->list
);
5091 ticket
->error
= -ENOSPC
;
5092 wake_up(&ticket
->wait
);
5097 * This is for normal flushers, we can wait all goddamned day if we want to. We
5098 * will loop and continuously try to flush as long as we are making progress.
5099 * We count progress as clearing off tickets each time we have to loop.
5101 static void btrfs_async_reclaim_metadata_space(struct work_struct
*work
)
5103 struct btrfs_fs_info
*fs_info
;
5104 struct btrfs_space_info
*space_info
;
5107 int commit_cycles
= 0;
5108 u64 last_tickets_id
;
5110 fs_info
= container_of(work
, struct btrfs_fs_info
, async_reclaim_work
);
5111 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
5113 spin_lock(&space_info
->lock
);
5114 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
, space_info
,
5117 space_info
->flush
= 0;
5118 spin_unlock(&space_info
->lock
);
5121 last_tickets_id
= space_info
->tickets_id
;
5122 spin_unlock(&space_info
->lock
);
5124 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
5126 flush_space(fs_info
, space_info
, to_reclaim
, flush_state
);
5127 spin_lock(&space_info
->lock
);
5128 if (list_empty(&space_info
->tickets
)) {
5129 space_info
->flush
= 0;
5130 spin_unlock(&space_info
->lock
);
5133 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
,
5136 if (last_tickets_id
== space_info
->tickets_id
) {
5139 last_tickets_id
= space_info
->tickets_id
;
5140 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
5145 if (flush_state
> COMMIT_TRANS
) {
5147 if (commit_cycles
> 2) {
5148 wake_all_tickets(&space_info
->tickets
);
5149 space_info
->flush
= 0;
5151 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
5154 spin_unlock(&space_info
->lock
);
5155 } while (flush_state
<= COMMIT_TRANS
);
5158 void btrfs_init_async_reclaim_work(struct work_struct
*work
)
5160 INIT_WORK(work
, btrfs_async_reclaim_metadata_space
);
5163 static void priority_reclaim_metadata_space(struct btrfs_fs_info
*fs_info
,
5164 struct btrfs_space_info
*space_info
,
5165 struct reserve_ticket
*ticket
)
5168 int flush_state
= FLUSH_DELAYED_ITEMS_NR
;
5170 spin_lock(&space_info
->lock
);
5171 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
, space_info
,
5174 spin_unlock(&space_info
->lock
);
5177 spin_unlock(&space_info
->lock
);
5180 flush_space(fs_info
, space_info
, to_reclaim
, flush_state
);
5182 spin_lock(&space_info
->lock
);
5183 if (ticket
->bytes
== 0) {
5184 spin_unlock(&space_info
->lock
);
5187 spin_unlock(&space_info
->lock
);
5190 * Priority flushers can't wait on delalloc without
5193 if (flush_state
== FLUSH_DELALLOC
||
5194 flush_state
== FLUSH_DELALLOC_WAIT
)
5195 flush_state
= ALLOC_CHUNK
;
5196 } while (flush_state
< COMMIT_TRANS
);
5199 static int wait_reserve_ticket(struct btrfs_fs_info
*fs_info
,
5200 struct btrfs_space_info
*space_info
,
5201 struct reserve_ticket
*ticket
, u64 orig_bytes
)
5207 spin_lock(&space_info
->lock
);
5208 while (ticket
->bytes
> 0 && ticket
->error
== 0) {
5209 ret
= prepare_to_wait_event(&ticket
->wait
, &wait
, TASK_KILLABLE
);
5214 spin_unlock(&space_info
->lock
);
5218 finish_wait(&ticket
->wait
, &wait
);
5219 spin_lock(&space_info
->lock
);
5222 ret
= ticket
->error
;
5223 if (!list_empty(&ticket
->list
))
5224 list_del_init(&ticket
->list
);
5225 if (ticket
->bytes
&& ticket
->bytes
< orig_bytes
) {
5226 u64 num_bytes
= orig_bytes
- ticket
->bytes
;
5227 space_info
->bytes_may_use
-= num_bytes
;
5228 trace_btrfs_space_reservation(fs_info
, "space_info",
5229 space_info
->flags
, num_bytes
, 0);
5231 spin_unlock(&space_info
->lock
);
5237 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5238 * @root - the root we're allocating for
5239 * @space_info - the space info we want to allocate from
5240 * @orig_bytes - the number of bytes we want
5241 * @flush - whether or not we can flush to make our reservation
5243 * This will reserve orig_bytes number of bytes from the space info associated
5244 * with the block_rsv. If there is not enough space it will make an attempt to
5245 * flush out space to make room. It will do this by flushing delalloc if
5246 * possible or committing the transaction. If flush is 0 then no attempts to
5247 * regain reservations will be made and this will fail if there is not enough
5250 static int __reserve_metadata_bytes(struct btrfs_fs_info
*fs_info
,
5251 struct btrfs_space_info
*space_info
,
5253 enum btrfs_reserve_flush_enum flush
,
5256 struct reserve_ticket ticket
;
5261 ASSERT(!current
->journal_info
|| flush
!= BTRFS_RESERVE_FLUSH_ALL
);
5263 spin_lock(&space_info
->lock
);
5265 used
= btrfs_space_info_used(space_info
, true);
5268 * If we have enough space then hooray, make our reservation and carry
5269 * on. If not see if we can overcommit, and if we can, hooray carry on.
5270 * If not things get more complicated.
5272 if (used
+ orig_bytes
<= space_info
->total_bytes
) {
5273 space_info
->bytes_may_use
+= orig_bytes
;
5274 trace_btrfs_space_reservation(fs_info
, "space_info",
5275 space_info
->flags
, orig_bytes
, 1);
5277 } else if (can_overcommit(fs_info
, space_info
, orig_bytes
, flush
,
5279 space_info
->bytes_may_use
+= orig_bytes
;
5280 trace_btrfs_space_reservation(fs_info
, "space_info",
5281 space_info
->flags
, orig_bytes
, 1);
5286 * If we couldn't make a reservation then setup our reservation ticket
5287 * and kick the async worker if it's not already running.
5289 * If we are a priority flusher then we just need to add our ticket to
5290 * the list and we will do our own flushing further down.
5292 if (ret
&& flush
!= BTRFS_RESERVE_NO_FLUSH
) {
5293 ticket
.bytes
= orig_bytes
;
5295 init_waitqueue_head(&ticket
.wait
);
5296 if (flush
== BTRFS_RESERVE_FLUSH_ALL
) {
5297 list_add_tail(&ticket
.list
, &space_info
->tickets
);
5298 if (!space_info
->flush
) {
5299 space_info
->flush
= 1;
5300 trace_btrfs_trigger_flush(fs_info
,
5304 queue_work(system_unbound_wq
,
5305 &fs_info
->async_reclaim_work
);
5308 list_add_tail(&ticket
.list
,
5309 &space_info
->priority_tickets
);
5311 } else if (!ret
&& space_info
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
5314 * We will do the space reservation dance during log replay,
5315 * which means we won't have fs_info->fs_root set, so don't do
5316 * the async reclaim as we will panic.
5318 if (!test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
) &&
5319 need_do_async_reclaim(fs_info
, space_info
,
5320 used
, system_chunk
) &&
5321 !work_busy(&fs_info
->async_reclaim_work
)) {
5322 trace_btrfs_trigger_flush(fs_info
, space_info
->flags
,
5323 orig_bytes
, flush
, "preempt");
5324 queue_work(system_unbound_wq
,
5325 &fs_info
->async_reclaim_work
);
5328 spin_unlock(&space_info
->lock
);
5329 if (!ret
|| flush
== BTRFS_RESERVE_NO_FLUSH
)
5332 if (flush
== BTRFS_RESERVE_FLUSH_ALL
)
5333 return wait_reserve_ticket(fs_info
, space_info
, &ticket
,
5337 priority_reclaim_metadata_space(fs_info
, space_info
, &ticket
);
5338 spin_lock(&space_info
->lock
);
5340 if (ticket
.bytes
< orig_bytes
) {
5341 u64 num_bytes
= orig_bytes
- ticket
.bytes
;
5342 space_info
->bytes_may_use
-= num_bytes
;
5343 trace_btrfs_space_reservation(fs_info
, "space_info",
5348 list_del_init(&ticket
.list
);
5351 spin_unlock(&space_info
->lock
);
5352 ASSERT(list_empty(&ticket
.list
));
5357 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5358 * @root - the root we're allocating for
5359 * @block_rsv - the block_rsv we're allocating for
5360 * @orig_bytes - the number of bytes we want
5361 * @flush - whether or not we can flush to make our reservation
5363 * This will reserve orgi_bytes number of bytes from the space info associated
5364 * with the block_rsv. If there is not enough space it will make an attempt to
5365 * flush out space to make room. It will do this by flushing delalloc if
5366 * possible or committing the transaction. If flush is 0 then no attempts to
5367 * regain reservations will be made and this will fail if there is not enough
5370 static int reserve_metadata_bytes(struct btrfs_root
*root
,
5371 struct btrfs_block_rsv
*block_rsv
,
5373 enum btrfs_reserve_flush_enum flush
)
5375 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5376 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5378 bool system_chunk
= (root
== fs_info
->chunk_root
);
5380 ret
= __reserve_metadata_bytes(fs_info
, block_rsv
->space_info
,
5381 orig_bytes
, flush
, system_chunk
);
5382 if (ret
== -ENOSPC
&&
5383 unlikely(root
->orphan_cleanup_state
== ORPHAN_CLEANUP_STARTED
)) {
5384 if (block_rsv
!= global_rsv
&&
5385 !block_rsv_use_bytes(global_rsv
, orig_bytes
))
5389 trace_btrfs_space_reservation(fs_info
, "space_info:enospc",
5390 block_rsv
->space_info
->flags
,
5395 static struct btrfs_block_rsv
*get_block_rsv(
5396 const struct btrfs_trans_handle
*trans
,
5397 const struct btrfs_root
*root
)
5399 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5400 struct btrfs_block_rsv
*block_rsv
= NULL
;
5402 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
5403 (root
== fs_info
->csum_root
&& trans
->adding_csums
) ||
5404 (root
== fs_info
->uuid_root
))
5405 block_rsv
= trans
->block_rsv
;
5408 block_rsv
= root
->block_rsv
;
5411 block_rsv
= &fs_info
->empty_block_rsv
;
5416 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
5420 spin_lock(&block_rsv
->lock
);
5421 if (block_rsv
->reserved
>= num_bytes
) {
5422 block_rsv
->reserved
-= num_bytes
;
5423 if (block_rsv
->reserved
< block_rsv
->size
)
5424 block_rsv
->full
= 0;
5427 spin_unlock(&block_rsv
->lock
);
5431 static void block_rsv_add_bytes(struct btrfs_block_rsv
*block_rsv
,
5432 u64 num_bytes
, int update_size
)
5434 spin_lock(&block_rsv
->lock
);
5435 block_rsv
->reserved
+= num_bytes
;
5437 block_rsv
->size
+= num_bytes
;
5438 else if (block_rsv
->reserved
>= block_rsv
->size
)
5439 block_rsv
->full
= 1;
5440 spin_unlock(&block_rsv
->lock
);
5443 int btrfs_cond_migrate_bytes(struct btrfs_fs_info
*fs_info
,
5444 struct btrfs_block_rsv
*dest
, u64 num_bytes
,
5447 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5450 if (global_rsv
->space_info
!= dest
->space_info
)
5453 spin_lock(&global_rsv
->lock
);
5454 min_bytes
= div_factor(global_rsv
->size
, min_factor
);
5455 if (global_rsv
->reserved
< min_bytes
+ num_bytes
) {
5456 spin_unlock(&global_rsv
->lock
);
5459 global_rsv
->reserved
-= num_bytes
;
5460 if (global_rsv
->reserved
< global_rsv
->size
)
5461 global_rsv
->full
= 0;
5462 spin_unlock(&global_rsv
->lock
);
5464 block_rsv_add_bytes(dest
, num_bytes
, 1);
5469 * This is for space we already have accounted in space_info->bytes_may_use, so
5470 * basically when we're returning space from block_rsv's.
5472 static void space_info_add_old_bytes(struct btrfs_fs_info
*fs_info
,
5473 struct btrfs_space_info
*space_info
,
5476 struct reserve_ticket
*ticket
;
5477 struct list_head
*head
;
5479 enum btrfs_reserve_flush_enum flush
= BTRFS_RESERVE_NO_FLUSH
;
5480 bool check_overcommit
= false;
5482 spin_lock(&space_info
->lock
);
5483 head
= &space_info
->priority_tickets
;
5486 * If we are over our limit then we need to check and see if we can
5487 * overcommit, and if we can't then we just need to free up our space
5488 * and not satisfy any requests.
5490 used
= btrfs_space_info_used(space_info
, true);
5491 if (used
- num_bytes
>= space_info
->total_bytes
)
5492 check_overcommit
= true;
5494 while (!list_empty(head
) && num_bytes
) {
5495 ticket
= list_first_entry(head
, struct reserve_ticket
,
5498 * We use 0 bytes because this space is already reserved, so
5499 * adding the ticket space would be a double count.
5501 if (check_overcommit
&&
5502 !can_overcommit(fs_info
, space_info
, 0, flush
, false))
5504 if (num_bytes
>= ticket
->bytes
) {
5505 list_del_init(&ticket
->list
);
5506 num_bytes
-= ticket
->bytes
;
5508 space_info
->tickets_id
++;
5509 wake_up(&ticket
->wait
);
5511 ticket
->bytes
-= num_bytes
;
5516 if (num_bytes
&& head
== &space_info
->priority_tickets
) {
5517 head
= &space_info
->tickets
;
5518 flush
= BTRFS_RESERVE_FLUSH_ALL
;
5521 space_info
->bytes_may_use
-= num_bytes
;
5522 trace_btrfs_space_reservation(fs_info
, "space_info",
5523 space_info
->flags
, num_bytes
, 0);
5524 spin_unlock(&space_info
->lock
);
5528 * This is for newly allocated space that isn't accounted in
5529 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5530 * we use this helper.
5532 static void space_info_add_new_bytes(struct btrfs_fs_info
*fs_info
,
5533 struct btrfs_space_info
*space_info
,
5536 struct reserve_ticket
*ticket
;
5537 struct list_head
*head
= &space_info
->priority_tickets
;
5540 while (!list_empty(head
) && num_bytes
) {
5541 ticket
= list_first_entry(head
, struct reserve_ticket
,
5543 if (num_bytes
>= ticket
->bytes
) {
5544 trace_btrfs_space_reservation(fs_info
, "space_info",
5547 list_del_init(&ticket
->list
);
5548 num_bytes
-= ticket
->bytes
;
5549 space_info
->bytes_may_use
+= ticket
->bytes
;
5551 space_info
->tickets_id
++;
5552 wake_up(&ticket
->wait
);
5554 trace_btrfs_space_reservation(fs_info
, "space_info",
5557 space_info
->bytes_may_use
+= num_bytes
;
5558 ticket
->bytes
-= num_bytes
;
5563 if (num_bytes
&& head
== &space_info
->priority_tickets
) {
5564 head
= &space_info
->tickets
;
5569 static u64
block_rsv_release_bytes(struct btrfs_fs_info
*fs_info
,
5570 struct btrfs_block_rsv
*block_rsv
,
5571 struct btrfs_block_rsv
*dest
, u64 num_bytes
)
5573 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
5576 spin_lock(&block_rsv
->lock
);
5577 if (num_bytes
== (u64
)-1)
5578 num_bytes
= block_rsv
->size
;
5579 block_rsv
->size
-= num_bytes
;
5580 if (block_rsv
->reserved
>= block_rsv
->size
) {
5581 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
5582 block_rsv
->reserved
= block_rsv
->size
;
5583 block_rsv
->full
= 1;
5587 spin_unlock(&block_rsv
->lock
);
5590 if (num_bytes
> 0) {
5592 spin_lock(&dest
->lock
);
5596 bytes_to_add
= dest
->size
- dest
->reserved
;
5597 bytes_to_add
= min(num_bytes
, bytes_to_add
);
5598 dest
->reserved
+= bytes_to_add
;
5599 if (dest
->reserved
>= dest
->size
)
5601 num_bytes
-= bytes_to_add
;
5603 spin_unlock(&dest
->lock
);
5606 space_info_add_old_bytes(fs_info
, space_info
,
5612 int btrfs_block_rsv_migrate(struct btrfs_block_rsv
*src
,
5613 struct btrfs_block_rsv
*dst
, u64 num_bytes
,
5618 ret
= block_rsv_use_bytes(src
, num_bytes
);
5622 block_rsv_add_bytes(dst
, num_bytes
, update_size
);
5626 void btrfs_init_block_rsv(struct btrfs_block_rsv
*rsv
, unsigned short type
)
5628 memset(rsv
, 0, sizeof(*rsv
));
5629 spin_lock_init(&rsv
->lock
);
5633 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info
*fs_info
,
5634 struct btrfs_block_rsv
*rsv
,
5635 unsigned short type
)
5637 btrfs_init_block_rsv(rsv
, type
);
5638 rsv
->space_info
= __find_space_info(fs_info
,
5639 BTRFS_BLOCK_GROUP_METADATA
);
5642 struct btrfs_block_rsv
*btrfs_alloc_block_rsv(struct btrfs_fs_info
*fs_info
,
5643 unsigned short type
)
5645 struct btrfs_block_rsv
*block_rsv
;
5647 block_rsv
= kmalloc(sizeof(*block_rsv
), GFP_NOFS
);
5651 btrfs_init_metadata_block_rsv(fs_info
, block_rsv
, type
);
5655 void btrfs_free_block_rsv(struct btrfs_fs_info
*fs_info
,
5656 struct btrfs_block_rsv
*rsv
)
5660 btrfs_block_rsv_release(fs_info
, rsv
, (u64
)-1);
5664 void __btrfs_free_block_rsv(struct btrfs_block_rsv
*rsv
)
5669 int btrfs_block_rsv_add(struct btrfs_root
*root
,
5670 struct btrfs_block_rsv
*block_rsv
, u64 num_bytes
,
5671 enum btrfs_reserve_flush_enum flush
)
5678 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
5680 block_rsv_add_bytes(block_rsv
, num_bytes
, 1);
5687 int btrfs_block_rsv_check(struct btrfs_block_rsv
*block_rsv
, int min_factor
)
5695 spin_lock(&block_rsv
->lock
);
5696 num_bytes
= div_factor(block_rsv
->size
, min_factor
);
5697 if (block_rsv
->reserved
>= num_bytes
)
5699 spin_unlock(&block_rsv
->lock
);
5704 int btrfs_block_rsv_refill(struct btrfs_root
*root
,
5705 struct btrfs_block_rsv
*block_rsv
, u64 min_reserved
,
5706 enum btrfs_reserve_flush_enum flush
)
5714 spin_lock(&block_rsv
->lock
);
5715 num_bytes
= min_reserved
;
5716 if (block_rsv
->reserved
>= num_bytes
)
5719 num_bytes
-= block_rsv
->reserved
;
5720 spin_unlock(&block_rsv
->lock
);
5725 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
5727 block_rsv_add_bytes(block_rsv
, num_bytes
, 0);
5735 * btrfs_inode_rsv_refill - refill the inode block rsv.
5736 * @inode - the inode we are refilling.
5737 * @flush - the flusing restriction.
5739 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5740 * block_rsv->size as the minimum size. We'll either refill the missing amount
5741 * or return if we already have enough space. This will also handle the resreve
5742 * tracepoint for the reserved amount.
5744 static int btrfs_inode_rsv_refill(struct btrfs_inode
*inode
,
5745 enum btrfs_reserve_flush_enum flush
)
5747 struct btrfs_root
*root
= inode
->root
;
5748 struct btrfs_block_rsv
*block_rsv
= &inode
->block_rsv
;
5752 spin_lock(&block_rsv
->lock
);
5753 if (block_rsv
->reserved
< block_rsv
->size
)
5754 num_bytes
= block_rsv
->size
- block_rsv
->reserved
;
5755 spin_unlock(&block_rsv
->lock
);
5760 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
5762 block_rsv_add_bytes(block_rsv
, num_bytes
, 0);
5763 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
5764 btrfs_ino(inode
), num_bytes
, 1);
5770 * btrfs_inode_rsv_release - release any excessive reservation.
5771 * @inode - the inode we need to release from.
5773 * This is the same as btrfs_block_rsv_release, except that it handles the
5774 * tracepoint for the reservation.
5776 static void btrfs_inode_rsv_release(struct btrfs_inode
*inode
)
5778 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
5779 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5780 struct btrfs_block_rsv
*block_rsv
= &inode
->block_rsv
;
5784 * Since we statically set the block_rsv->size we just want to say we
5785 * are releasing 0 bytes, and then we'll just get the reservation over
5788 released
= block_rsv_release_bytes(fs_info
, block_rsv
, global_rsv
, 0);
5790 trace_btrfs_space_reservation(fs_info
, "delalloc",
5791 btrfs_ino(inode
), released
, 0);
5794 void btrfs_block_rsv_release(struct btrfs_fs_info
*fs_info
,
5795 struct btrfs_block_rsv
*block_rsv
,
5798 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5800 if (global_rsv
== block_rsv
||
5801 block_rsv
->space_info
!= global_rsv
->space_info
)
5803 block_rsv_release_bytes(fs_info
, block_rsv
, global_rsv
, num_bytes
);
5806 static void update_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5808 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
5809 struct btrfs_space_info
*sinfo
= block_rsv
->space_info
;
5813 * The global block rsv is based on the size of the extent tree, the
5814 * checksum tree and the root tree. If the fs is empty we want to set
5815 * it to a minimal amount for safety.
5817 num_bytes
= btrfs_root_used(&fs_info
->extent_root
->root_item
) +
5818 btrfs_root_used(&fs_info
->csum_root
->root_item
) +
5819 btrfs_root_used(&fs_info
->tree_root
->root_item
);
5820 num_bytes
= max_t(u64
, num_bytes
, SZ_16M
);
5822 spin_lock(&sinfo
->lock
);
5823 spin_lock(&block_rsv
->lock
);
5825 block_rsv
->size
= min_t(u64
, num_bytes
, SZ_512M
);
5827 if (block_rsv
->reserved
< block_rsv
->size
) {
5828 num_bytes
= btrfs_space_info_used(sinfo
, true);
5829 if (sinfo
->total_bytes
> num_bytes
) {
5830 num_bytes
= sinfo
->total_bytes
- num_bytes
;
5831 num_bytes
= min(num_bytes
,
5832 block_rsv
->size
- block_rsv
->reserved
);
5833 block_rsv
->reserved
+= num_bytes
;
5834 sinfo
->bytes_may_use
+= num_bytes
;
5835 trace_btrfs_space_reservation(fs_info
, "space_info",
5836 sinfo
->flags
, num_bytes
,
5839 } else if (block_rsv
->reserved
> block_rsv
->size
) {
5840 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
5841 sinfo
->bytes_may_use
-= num_bytes
;
5842 trace_btrfs_space_reservation(fs_info
, "space_info",
5843 sinfo
->flags
, num_bytes
, 0);
5844 block_rsv
->reserved
= block_rsv
->size
;
5847 if (block_rsv
->reserved
== block_rsv
->size
)
5848 block_rsv
->full
= 1;
5850 block_rsv
->full
= 0;
5852 spin_unlock(&block_rsv
->lock
);
5853 spin_unlock(&sinfo
->lock
);
5856 static void init_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5858 struct btrfs_space_info
*space_info
;
5860 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
5861 fs_info
->chunk_block_rsv
.space_info
= space_info
;
5863 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
5864 fs_info
->global_block_rsv
.space_info
= space_info
;
5865 fs_info
->trans_block_rsv
.space_info
= space_info
;
5866 fs_info
->empty_block_rsv
.space_info
= space_info
;
5867 fs_info
->delayed_block_rsv
.space_info
= space_info
;
5869 fs_info
->extent_root
->block_rsv
= &fs_info
->global_block_rsv
;
5870 fs_info
->csum_root
->block_rsv
= &fs_info
->global_block_rsv
;
5871 fs_info
->dev_root
->block_rsv
= &fs_info
->global_block_rsv
;
5872 fs_info
->tree_root
->block_rsv
= &fs_info
->global_block_rsv
;
5873 if (fs_info
->quota_root
)
5874 fs_info
->quota_root
->block_rsv
= &fs_info
->global_block_rsv
;
5875 fs_info
->chunk_root
->block_rsv
= &fs_info
->chunk_block_rsv
;
5877 update_global_block_rsv(fs_info
);
5880 static void release_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5882 block_rsv_release_bytes(fs_info
, &fs_info
->global_block_rsv
, NULL
,
5884 WARN_ON(fs_info
->trans_block_rsv
.size
> 0);
5885 WARN_ON(fs_info
->trans_block_rsv
.reserved
> 0);
5886 WARN_ON(fs_info
->chunk_block_rsv
.size
> 0);
5887 WARN_ON(fs_info
->chunk_block_rsv
.reserved
> 0);
5888 WARN_ON(fs_info
->delayed_block_rsv
.size
> 0);
5889 WARN_ON(fs_info
->delayed_block_rsv
.reserved
> 0);
5892 void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
,
5893 struct btrfs_fs_info
*fs_info
)
5895 if (!trans
->block_rsv
) {
5896 ASSERT(!trans
->bytes_reserved
);
5900 if (!trans
->bytes_reserved
)
5903 ASSERT(trans
->block_rsv
== &fs_info
->trans_block_rsv
);
5904 trace_btrfs_space_reservation(fs_info
, "transaction",
5905 trans
->transid
, trans
->bytes_reserved
, 0);
5906 btrfs_block_rsv_release(fs_info
, trans
->block_rsv
,
5907 trans
->bytes_reserved
);
5908 trans
->bytes_reserved
= 0;
5912 * To be called after all the new block groups attached to the transaction
5913 * handle have been created (btrfs_create_pending_block_groups()).
5915 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle
*trans
)
5917 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
5919 if (!trans
->chunk_bytes_reserved
)
5922 WARN_ON_ONCE(!list_empty(&trans
->new_bgs
));
5924 block_rsv_release_bytes(fs_info
, &fs_info
->chunk_block_rsv
, NULL
,
5925 trans
->chunk_bytes_reserved
);
5926 trans
->chunk_bytes_reserved
= 0;
5929 /* Can only return 0 or -ENOSPC */
5930 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle
*trans
,
5931 struct btrfs_inode
*inode
)
5933 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
5934 struct btrfs_root
*root
= inode
->root
;
5936 * We always use trans->block_rsv here as we will have reserved space
5937 * for our orphan when starting the transaction, using get_block_rsv()
5938 * here will sometimes make us choose the wrong block rsv as we could be
5939 * doing a reloc inode for a non refcounted root.
5941 struct btrfs_block_rsv
*src_rsv
= trans
->block_rsv
;
5942 struct btrfs_block_rsv
*dst_rsv
= root
->orphan_block_rsv
;
5945 * We need to hold space in order to delete our orphan item once we've
5946 * added it, so this takes the reservation so we can release it later
5947 * when we are truly done with the orphan item.
5949 u64 num_bytes
= btrfs_calc_trans_metadata_size(fs_info
, 1);
5951 trace_btrfs_space_reservation(fs_info
, "orphan", btrfs_ino(inode
),
5953 return btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
, 1);
5956 void btrfs_orphan_release_metadata(struct btrfs_inode
*inode
)
5958 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
5959 struct btrfs_root
*root
= inode
->root
;
5960 u64 num_bytes
= btrfs_calc_trans_metadata_size(fs_info
, 1);
5962 trace_btrfs_space_reservation(fs_info
, "orphan", btrfs_ino(inode
),
5964 btrfs_block_rsv_release(fs_info
, root
->orphan_block_rsv
, num_bytes
);
5968 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5969 * root: the root of the parent directory
5970 * rsv: block reservation
5971 * items: the number of items that we need do reservation
5972 * qgroup_reserved: used to return the reserved size in qgroup
5974 * This function is used to reserve the space for snapshot/subvolume
5975 * creation and deletion. Those operations are different with the
5976 * common file/directory operations, they change two fs/file trees
5977 * and root tree, the number of items that the qgroup reserves is
5978 * different with the free space reservation. So we can not use
5979 * the space reservation mechanism in start_transaction().
5981 int btrfs_subvolume_reserve_metadata(struct btrfs_root
*root
,
5982 struct btrfs_block_rsv
*rsv
,
5984 u64
*qgroup_reserved
,
5985 bool use_global_rsv
)
5989 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5990 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5992 if (test_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
)) {
5993 /* One for parent inode, two for dir entries */
5994 num_bytes
= 3 * fs_info
->nodesize
;
5995 ret
= btrfs_qgroup_reserve_meta(root
, num_bytes
, true);
6002 *qgroup_reserved
= num_bytes
;
6004 num_bytes
= btrfs_calc_trans_metadata_size(fs_info
, items
);
6005 rsv
->space_info
= __find_space_info(fs_info
,
6006 BTRFS_BLOCK_GROUP_METADATA
);
6007 ret
= btrfs_block_rsv_add(root
, rsv
, num_bytes
,
6008 BTRFS_RESERVE_FLUSH_ALL
);
6010 if (ret
== -ENOSPC
&& use_global_rsv
)
6011 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
, num_bytes
, 1);
6013 if (ret
&& *qgroup_reserved
)
6014 btrfs_qgroup_free_meta(root
, *qgroup_reserved
);
6019 void btrfs_subvolume_release_metadata(struct btrfs_fs_info
*fs_info
,
6020 struct btrfs_block_rsv
*rsv
)
6022 btrfs_block_rsv_release(fs_info
, rsv
, (u64
)-1);
6025 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info
*fs_info
,
6026 struct btrfs_inode
*inode
)
6028 struct btrfs_block_rsv
*block_rsv
= &inode
->block_rsv
;
6029 u64 reserve_size
= 0;
6031 unsigned outstanding_extents
;
6033 lockdep_assert_held(&inode
->lock
);
6034 outstanding_extents
= inode
->outstanding_extents
;
6035 if (outstanding_extents
)
6036 reserve_size
= btrfs_calc_trans_metadata_size(fs_info
,
6037 outstanding_extents
+ 1);
6038 csum_leaves
= btrfs_csum_bytes_to_leaves(fs_info
,
6040 reserve_size
+= btrfs_calc_trans_metadata_size(fs_info
,
6043 spin_lock(&block_rsv
->lock
);
6044 block_rsv
->size
= reserve_size
;
6045 spin_unlock(&block_rsv
->lock
);
6048 int btrfs_delalloc_reserve_metadata(struct btrfs_inode
*inode
, u64 num_bytes
)
6050 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
6051 struct btrfs_root
*root
= inode
->root
;
6052 unsigned nr_extents
;
6053 enum btrfs_reserve_flush_enum flush
= BTRFS_RESERVE_FLUSH_ALL
;
6055 bool delalloc_lock
= true;
6057 /* If we are a free space inode we need to not flush since we will be in
6058 * the middle of a transaction commit. We also don't need the delalloc
6059 * mutex since we won't race with anybody. We need this mostly to make
6060 * lockdep shut its filthy mouth.
6062 * If we have a transaction open (can happen if we call truncate_block
6063 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6065 if (btrfs_is_free_space_inode(inode
)) {
6066 flush
= BTRFS_RESERVE_NO_FLUSH
;
6067 delalloc_lock
= false;
6068 } else if (current
->journal_info
) {
6069 flush
= BTRFS_RESERVE_FLUSH_LIMIT
;
6072 if (flush
!= BTRFS_RESERVE_NO_FLUSH
&&
6073 btrfs_transaction_in_commit(fs_info
))
6074 schedule_timeout(1);
6077 mutex_lock(&inode
->delalloc_mutex
);
6079 num_bytes
= ALIGN(num_bytes
, fs_info
->sectorsize
);
6081 /* Add our new extents and calculate the new rsv size. */
6082 spin_lock(&inode
->lock
);
6083 nr_extents
= count_max_extents(num_bytes
);
6084 btrfs_mod_outstanding_extents(inode
, nr_extents
);
6085 inode
->csum_bytes
+= num_bytes
;
6086 btrfs_calculate_inode_block_rsv_size(fs_info
, inode
);
6087 spin_unlock(&inode
->lock
);
6089 if (test_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
)) {
6090 ret
= btrfs_qgroup_reserve_meta(root
,
6091 nr_extents
* fs_info
->nodesize
, true);
6096 ret
= btrfs_inode_rsv_refill(inode
, flush
);
6097 if (unlikely(ret
)) {
6098 btrfs_qgroup_free_meta(root
,
6099 nr_extents
* fs_info
->nodesize
);
6104 mutex_unlock(&inode
->delalloc_mutex
);
6108 spin_lock(&inode
->lock
);
6109 nr_extents
= count_max_extents(num_bytes
);
6110 btrfs_mod_outstanding_extents(inode
, -nr_extents
);
6111 inode
->csum_bytes
-= num_bytes
;
6112 btrfs_calculate_inode_block_rsv_size(fs_info
, inode
);
6113 spin_unlock(&inode
->lock
);
6115 btrfs_inode_rsv_release(inode
);
6117 mutex_unlock(&inode
->delalloc_mutex
);
6122 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6123 * @inode: the inode to release the reservation for.
6124 * @num_bytes: the number of bytes we are releasing.
6126 * This will release the metadata reservation for an inode. This can be called
6127 * once we complete IO for a given set of bytes to release their metadata
6128 * reservations, or on error for the same reason.
6130 void btrfs_delalloc_release_metadata(struct btrfs_inode
*inode
, u64 num_bytes
)
6132 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
6134 num_bytes
= ALIGN(num_bytes
, fs_info
->sectorsize
);
6135 spin_lock(&inode
->lock
);
6136 inode
->csum_bytes
-= num_bytes
;
6137 btrfs_calculate_inode_block_rsv_size(fs_info
, inode
);
6138 spin_unlock(&inode
->lock
);
6140 if (btrfs_is_testing(fs_info
))
6143 btrfs_inode_rsv_release(inode
);
6147 * btrfs_delalloc_release_extents - release our outstanding_extents
6148 * @inode: the inode to balance the reservation for.
6149 * @num_bytes: the number of bytes we originally reserved with
6151 * When we reserve space we increase outstanding_extents for the extents we may
6152 * add. Once we've set the range as delalloc or created our ordered extents we
6153 * have outstanding_extents to track the real usage, so we use this to free our
6154 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
6155 * with btrfs_delalloc_reserve_metadata.
6157 void btrfs_delalloc_release_extents(struct btrfs_inode
*inode
, u64 num_bytes
)
6159 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
6160 unsigned num_extents
;
6162 spin_lock(&inode
->lock
);
6163 num_extents
= count_max_extents(num_bytes
);
6164 btrfs_mod_outstanding_extents(inode
, -num_extents
);
6165 btrfs_calculate_inode_block_rsv_size(fs_info
, inode
);
6166 spin_unlock(&inode
->lock
);
6168 if (btrfs_is_testing(fs_info
))
6171 btrfs_inode_rsv_release(inode
);
6175 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6177 * @inode: inode we're writing to
6178 * @start: start range we are writing to
6179 * @len: how long the range we are writing to
6180 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6181 * current reservation.
6183 * This will do the following things
6185 * o reserve space in data space info for num bytes
6186 * and reserve precious corresponding qgroup space
6187 * (Done in check_data_free_space)
6189 * o reserve space for metadata space, based on the number of outstanding
6190 * extents and how much csums will be needed
6191 * also reserve metadata space in a per root over-reserve method.
6192 * o add to the inodes->delalloc_bytes
6193 * o add it to the fs_info's delalloc inodes list.
6194 * (Above 3 all done in delalloc_reserve_metadata)
6196 * Return 0 for success
6197 * Return <0 for error(-ENOSPC or -EQUOT)
6199 int btrfs_delalloc_reserve_space(struct inode
*inode
,
6200 struct extent_changeset
**reserved
, u64 start
, u64 len
)
6204 ret
= btrfs_check_data_free_space(inode
, reserved
, start
, len
);
6207 ret
= btrfs_delalloc_reserve_metadata(BTRFS_I(inode
), len
);
6209 btrfs_free_reserved_data_space(inode
, *reserved
, start
, len
);
6214 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6215 * @inode: inode we're releasing space for
6216 * @start: start position of the space already reserved
6217 * @len: the len of the space already reserved
6218 * @release_bytes: the len of the space we consumed or didn't use
6220 * This function will release the metadata space that was not used and will
6221 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6222 * list if there are no delalloc bytes left.
6223 * Also it will handle the qgroup reserved space.
6225 void btrfs_delalloc_release_space(struct inode
*inode
,
6226 struct extent_changeset
*reserved
,
6229 btrfs_delalloc_release_metadata(BTRFS_I(inode
), len
);
6230 btrfs_free_reserved_data_space(inode
, reserved
, start
, len
);
6233 static int update_block_group(struct btrfs_trans_handle
*trans
,
6234 struct btrfs_fs_info
*info
, u64 bytenr
,
6235 u64 num_bytes
, int alloc
)
6237 struct btrfs_block_group_cache
*cache
= NULL
;
6238 u64 total
= num_bytes
;
6243 /* block accounting for super block */
6244 spin_lock(&info
->delalloc_root_lock
);
6245 old_val
= btrfs_super_bytes_used(info
->super_copy
);
6247 old_val
+= num_bytes
;
6249 old_val
-= num_bytes
;
6250 btrfs_set_super_bytes_used(info
->super_copy
, old_val
);
6251 spin_unlock(&info
->delalloc_root_lock
);
6254 cache
= btrfs_lookup_block_group(info
, bytenr
);
6257 if (cache
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
6258 BTRFS_BLOCK_GROUP_RAID1
|
6259 BTRFS_BLOCK_GROUP_RAID10
))
6264 * If this block group has free space cache written out, we
6265 * need to make sure to load it if we are removing space. This
6266 * is because we need the unpinning stage to actually add the
6267 * space back to the block group, otherwise we will leak space.
6269 if (!alloc
&& cache
->cached
== BTRFS_CACHE_NO
)
6270 cache_block_group(cache
, 1);
6272 byte_in_group
= bytenr
- cache
->key
.objectid
;
6273 WARN_ON(byte_in_group
> cache
->key
.offset
);
6275 spin_lock(&cache
->space_info
->lock
);
6276 spin_lock(&cache
->lock
);
6278 if (btrfs_test_opt(info
, SPACE_CACHE
) &&
6279 cache
->disk_cache_state
< BTRFS_DC_CLEAR
)
6280 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
6282 old_val
= btrfs_block_group_used(&cache
->item
);
6283 num_bytes
= min(total
, cache
->key
.offset
- byte_in_group
);
6285 old_val
+= num_bytes
;
6286 btrfs_set_block_group_used(&cache
->item
, old_val
);
6287 cache
->reserved
-= num_bytes
;
6288 cache
->space_info
->bytes_reserved
-= num_bytes
;
6289 cache
->space_info
->bytes_used
+= num_bytes
;
6290 cache
->space_info
->disk_used
+= num_bytes
* factor
;
6291 spin_unlock(&cache
->lock
);
6292 spin_unlock(&cache
->space_info
->lock
);
6294 old_val
-= num_bytes
;
6295 btrfs_set_block_group_used(&cache
->item
, old_val
);
6296 cache
->pinned
+= num_bytes
;
6297 cache
->space_info
->bytes_pinned
+= num_bytes
;
6298 cache
->space_info
->bytes_used
-= num_bytes
;
6299 cache
->space_info
->disk_used
-= num_bytes
* factor
;
6300 spin_unlock(&cache
->lock
);
6301 spin_unlock(&cache
->space_info
->lock
);
6303 trace_btrfs_space_reservation(info
, "pinned",
6304 cache
->space_info
->flags
,
6306 percpu_counter_add(&cache
->space_info
->total_bytes_pinned
,
6308 set_extent_dirty(info
->pinned_extents
,
6309 bytenr
, bytenr
+ num_bytes
- 1,
6310 GFP_NOFS
| __GFP_NOFAIL
);
6313 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
6314 if (list_empty(&cache
->dirty_list
)) {
6315 list_add_tail(&cache
->dirty_list
,
6316 &trans
->transaction
->dirty_bgs
);
6317 trans
->transaction
->num_dirty_bgs
++;
6318 btrfs_get_block_group(cache
);
6320 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
6323 * No longer have used bytes in this block group, queue it for
6324 * deletion. We do this after adding the block group to the
6325 * dirty list to avoid races between cleaner kthread and space
6328 if (!alloc
&& old_val
== 0) {
6329 spin_lock(&info
->unused_bgs_lock
);
6330 if (list_empty(&cache
->bg_list
)) {
6331 btrfs_get_block_group(cache
);
6332 list_add_tail(&cache
->bg_list
,
6335 spin_unlock(&info
->unused_bgs_lock
);
6338 btrfs_put_block_group(cache
);
6340 bytenr
+= num_bytes
;
6345 static u64
first_logical_byte(struct btrfs_fs_info
*fs_info
, u64 search_start
)
6347 struct btrfs_block_group_cache
*cache
;
6350 spin_lock(&fs_info
->block_group_cache_lock
);
6351 bytenr
= fs_info
->first_logical_byte
;
6352 spin_unlock(&fs_info
->block_group_cache_lock
);
6354 if (bytenr
< (u64
)-1)
6357 cache
= btrfs_lookup_first_block_group(fs_info
, search_start
);
6361 bytenr
= cache
->key
.objectid
;
6362 btrfs_put_block_group(cache
);
6367 static int pin_down_extent(struct btrfs_fs_info
*fs_info
,
6368 struct btrfs_block_group_cache
*cache
,
6369 u64 bytenr
, u64 num_bytes
, int reserved
)
6371 spin_lock(&cache
->space_info
->lock
);
6372 spin_lock(&cache
->lock
);
6373 cache
->pinned
+= num_bytes
;
6374 cache
->space_info
->bytes_pinned
+= num_bytes
;
6376 cache
->reserved
-= num_bytes
;
6377 cache
->space_info
->bytes_reserved
-= num_bytes
;
6379 spin_unlock(&cache
->lock
);
6380 spin_unlock(&cache
->space_info
->lock
);
6382 trace_btrfs_space_reservation(fs_info
, "pinned",
6383 cache
->space_info
->flags
, num_bytes
, 1);
6384 percpu_counter_add(&cache
->space_info
->total_bytes_pinned
, num_bytes
);
6385 set_extent_dirty(fs_info
->pinned_extents
, bytenr
,
6386 bytenr
+ num_bytes
- 1, GFP_NOFS
| __GFP_NOFAIL
);
6391 * this function must be called within transaction
6393 int btrfs_pin_extent(struct btrfs_fs_info
*fs_info
,
6394 u64 bytenr
, u64 num_bytes
, int reserved
)
6396 struct btrfs_block_group_cache
*cache
;
6398 cache
= btrfs_lookup_block_group(fs_info
, bytenr
);
6399 BUG_ON(!cache
); /* Logic error */
6401 pin_down_extent(fs_info
, cache
, bytenr
, num_bytes
, reserved
);
6403 btrfs_put_block_group(cache
);
6408 * this function must be called within transaction
6410 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info
*fs_info
,
6411 u64 bytenr
, u64 num_bytes
)
6413 struct btrfs_block_group_cache
*cache
;
6416 cache
= btrfs_lookup_block_group(fs_info
, bytenr
);
6421 * pull in the free space cache (if any) so that our pin
6422 * removes the free space from the cache. We have load_only set
6423 * to one because the slow code to read in the free extents does check
6424 * the pinned extents.
6426 cache_block_group(cache
, 1);
6428 pin_down_extent(fs_info
, cache
, bytenr
, num_bytes
, 0);
6430 /* remove us from the free space cache (if we're there at all) */
6431 ret
= btrfs_remove_free_space(cache
, bytenr
, num_bytes
);
6432 btrfs_put_block_group(cache
);
6436 static int __exclude_logged_extent(struct btrfs_fs_info
*fs_info
,
6437 u64 start
, u64 num_bytes
)
6440 struct btrfs_block_group_cache
*block_group
;
6441 struct btrfs_caching_control
*caching_ctl
;
6443 block_group
= btrfs_lookup_block_group(fs_info
, start
);
6447 cache_block_group(block_group
, 0);
6448 caching_ctl
= get_caching_control(block_group
);
6452 BUG_ON(!block_group_cache_done(block_group
));
6453 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
6455 mutex_lock(&caching_ctl
->mutex
);
6457 if (start
>= caching_ctl
->progress
) {
6458 ret
= add_excluded_extent(fs_info
, start
, num_bytes
);
6459 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
6460 ret
= btrfs_remove_free_space(block_group
,
6463 num_bytes
= caching_ctl
->progress
- start
;
6464 ret
= btrfs_remove_free_space(block_group
,
6469 num_bytes
= (start
+ num_bytes
) -
6470 caching_ctl
->progress
;
6471 start
= caching_ctl
->progress
;
6472 ret
= add_excluded_extent(fs_info
, start
, num_bytes
);
6475 mutex_unlock(&caching_ctl
->mutex
);
6476 put_caching_control(caching_ctl
);
6478 btrfs_put_block_group(block_group
);
6482 int btrfs_exclude_logged_extents(struct btrfs_fs_info
*fs_info
,
6483 struct extent_buffer
*eb
)
6485 struct btrfs_file_extent_item
*item
;
6486 struct btrfs_key key
;
6490 if (!btrfs_fs_incompat(fs_info
, MIXED_GROUPS
))
6493 for (i
= 0; i
< btrfs_header_nritems(eb
); i
++) {
6494 btrfs_item_key_to_cpu(eb
, &key
, i
);
6495 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
6497 item
= btrfs_item_ptr(eb
, i
, struct btrfs_file_extent_item
);
6498 found_type
= btrfs_file_extent_type(eb
, item
);
6499 if (found_type
== BTRFS_FILE_EXTENT_INLINE
)
6501 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
6503 key
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
6504 key
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
6505 __exclude_logged_extent(fs_info
, key
.objectid
, key
.offset
);
6512 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache
*bg
)
6514 atomic_inc(&bg
->reservations
);
6517 void btrfs_dec_block_group_reservations(struct btrfs_fs_info
*fs_info
,
6520 struct btrfs_block_group_cache
*bg
;
6522 bg
= btrfs_lookup_block_group(fs_info
, start
);
6524 if (atomic_dec_and_test(&bg
->reservations
))
6525 wake_up_atomic_t(&bg
->reservations
);
6526 btrfs_put_block_group(bg
);
6529 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache
*bg
)
6531 struct btrfs_space_info
*space_info
= bg
->space_info
;
6535 if (!(bg
->flags
& BTRFS_BLOCK_GROUP_DATA
))
6539 * Our block group is read only but before we set it to read only,
6540 * some task might have had allocated an extent from it already, but it
6541 * has not yet created a respective ordered extent (and added it to a
6542 * root's list of ordered extents).
6543 * Therefore wait for any task currently allocating extents, since the
6544 * block group's reservations counter is incremented while a read lock
6545 * on the groups' semaphore is held and decremented after releasing
6546 * the read access on that semaphore and creating the ordered extent.
6548 down_write(&space_info
->groups_sem
);
6549 up_write(&space_info
->groups_sem
);
6551 wait_on_atomic_t(&bg
->reservations
, atomic_t_wait
,
6552 TASK_UNINTERRUPTIBLE
);
6556 * btrfs_add_reserved_bytes - update the block_group and space info counters
6557 * @cache: The cache we are manipulating
6558 * @ram_bytes: The number of bytes of file content, and will be same to
6559 * @num_bytes except for the compress path.
6560 * @num_bytes: The number of bytes in question
6561 * @delalloc: The blocks are allocated for the delalloc write
6563 * This is called by the allocator when it reserves space. If this is a
6564 * reservation and the block group has become read only we cannot make the
6565 * reservation and return -EAGAIN, otherwise this function always succeeds.
6567 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache
*cache
,
6568 u64 ram_bytes
, u64 num_bytes
, int delalloc
)
6570 struct btrfs_space_info
*space_info
= cache
->space_info
;
6573 spin_lock(&space_info
->lock
);
6574 spin_lock(&cache
->lock
);
6578 cache
->reserved
+= num_bytes
;
6579 space_info
->bytes_reserved
+= num_bytes
;
6581 trace_btrfs_space_reservation(cache
->fs_info
,
6582 "space_info", space_info
->flags
,
6584 space_info
->bytes_may_use
-= ram_bytes
;
6586 cache
->delalloc_bytes
+= num_bytes
;
6588 spin_unlock(&cache
->lock
);
6589 spin_unlock(&space_info
->lock
);
6594 * btrfs_free_reserved_bytes - update the block_group and space info counters
6595 * @cache: The cache we are manipulating
6596 * @num_bytes: The number of bytes in question
6597 * @delalloc: The blocks are allocated for the delalloc write
6599 * This is called by somebody who is freeing space that was never actually used
6600 * on disk. For example if you reserve some space for a new leaf in transaction
6601 * A and before transaction A commits you free that leaf, you call this with
6602 * reserve set to 0 in order to clear the reservation.
6605 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache
*cache
,
6606 u64 num_bytes
, int delalloc
)
6608 struct btrfs_space_info
*space_info
= cache
->space_info
;
6611 spin_lock(&space_info
->lock
);
6612 spin_lock(&cache
->lock
);
6614 space_info
->bytes_readonly
+= num_bytes
;
6615 cache
->reserved
-= num_bytes
;
6616 space_info
->bytes_reserved
-= num_bytes
;
6619 cache
->delalloc_bytes
-= num_bytes
;
6620 spin_unlock(&cache
->lock
);
6621 spin_unlock(&space_info
->lock
);
6624 void btrfs_prepare_extent_commit(struct btrfs_fs_info
*fs_info
)
6626 struct btrfs_caching_control
*next
;
6627 struct btrfs_caching_control
*caching_ctl
;
6628 struct btrfs_block_group_cache
*cache
;
6630 down_write(&fs_info
->commit_root_sem
);
6632 list_for_each_entry_safe(caching_ctl
, next
,
6633 &fs_info
->caching_block_groups
, list
) {
6634 cache
= caching_ctl
->block_group
;
6635 if (block_group_cache_done(cache
)) {
6636 cache
->last_byte_to_unpin
= (u64
)-1;
6637 list_del_init(&caching_ctl
->list
);
6638 put_caching_control(caching_ctl
);
6640 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
6644 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
6645 fs_info
->pinned_extents
= &fs_info
->freed_extents
[1];
6647 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
6649 up_write(&fs_info
->commit_root_sem
);
6651 update_global_block_rsv(fs_info
);
6655 * Returns the free cluster for the given space info and sets empty_cluster to
6656 * what it should be based on the mount options.
6658 static struct btrfs_free_cluster
*
6659 fetch_cluster_info(struct btrfs_fs_info
*fs_info
,
6660 struct btrfs_space_info
*space_info
, u64
*empty_cluster
)
6662 struct btrfs_free_cluster
*ret
= NULL
;
6665 if (btrfs_mixed_space_info(space_info
))
6668 if (space_info
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
6669 ret
= &fs_info
->meta_alloc_cluster
;
6670 if (btrfs_test_opt(fs_info
, SSD
))
6671 *empty_cluster
= SZ_2M
;
6673 *empty_cluster
= SZ_64K
;
6674 } else if ((space_info
->flags
& BTRFS_BLOCK_GROUP_DATA
) &&
6675 btrfs_test_opt(fs_info
, SSD_SPREAD
)) {
6676 *empty_cluster
= SZ_2M
;
6677 ret
= &fs_info
->data_alloc_cluster
;
6683 static int unpin_extent_range(struct btrfs_fs_info
*fs_info
,
6685 const bool return_free_space
)
6687 struct btrfs_block_group_cache
*cache
= NULL
;
6688 struct btrfs_space_info
*space_info
;
6689 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
6690 struct btrfs_free_cluster
*cluster
= NULL
;
6692 u64 total_unpinned
= 0;
6693 u64 empty_cluster
= 0;
6696 while (start
<= end
) {
6699 start
>= cache
->key
.objectid
+ cache
->key
.offset
) {
6701 btrfs_put_block_group(cache
);
6703 cache
= btrfs_lookup_block_group(fs_info
, start
);
6704 BUG_ON(!cache
); /* Logic error */
6706 cluster
= fetch_cluster_info(fs_info
,
6709 empty_cluster
<<= 1;
6712 len
= cache
->key
.objectid
+ cache
->key
.offset
- start
;
6713 len
= min(len
, end
+ 1 - start
);
6715 if (start
< cache
->last_byte_to_unpin
) {
6716 len
= min(len
, cache
->last_byte_to_unpin
- start
);
6717 if (return_free_space
)
6718 btrfs_add_free_space(cache
, start
, len
);
6722 total_unpinned
+= len
;
6723 space_info
= cache
->space_info
;
6726 * If this space cluster has been marked as fragmented and we've
6727 * unpinned enough in this block group to potentially allow a
6728 * cluster to be created inside of it go ahead and clear the
6731 if (cluster
&& cluster
->fragmented
&&
6732 total_unpinned
> empty_cluster
) {
6733 spin_lock(&cluster
->lock
);
6734 cluster
->fragmented
= 0;
6735 spin_unlock(&cluster
->lock
);
6738 spin_lock(&space_info
->lock
);
6739 spin_lock(&cache
->lock
);
6740 cache
->pinned
-= len
;
6741 space_info
->bytes_pinned
-= len
;
6743 trace_btrfs_space_reservation(fs_info
, "pinned",
6744 space_info
->flags
, len
, 0);
6745 space_info
->max_extent_size
= 0;
6746 percpu_counter_add(&space_info
->total_bytes_pinned
, -len
);
6748 space_info
->bytes_readonly
+= len
;
6751 spin_unlock(&cache
->lock
);
6752 if (!readonly
&& return_free_space
&&
6753 global_rsv
->space_info
== space_info
) {
6756 spin_lock(&global_rsv
->lock
);
6757 if (!global_rsv
->full
) {
6758 to_add
= min(len
, global_rsv
->size
-
6759 global_rsv
->reserved
);
6760 global_rsv
->reserved
+= to_add
;
6761 space_info
->bytes_may_use
+= to_add
;
6762 if (global_rsv
->reserved
>= global_rsv
->size
)
6763 global_rsv
->full
= 1;
6764 trace_btrfs_space_reservation(fs_info
,
6770 spin_unlock(&global_rsv
->lock
);
6771 /* Add to any tickets we may have */
6773 space_info_add_new_bytes(fs_info
, space_info
,
6776 spin_unlock(&space_info
->lock
);
6780 btrfs_put_block_group(cache
);
6784 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
,
6785 struct btrfs_fs_info
*fs_info
)
6787 struct btrfs_block_group_cache
*block_group
, *tmp
;
6788 struct list_head
*deleted_bgs
;
6789 struct extent_io_tree
*unpin
;
6794 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
6795 unpin
= &fs_info
->freed_extents
[1];
6797 unpin
= &fs_info
->freed_extents
[0];
6799 while (!trans
->aborted
) {
6800 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
6801 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
6802 EXTENT_DIRTY
, NULL
);
6804 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
6808 if (btrfs_test_opt(fs_info
, DISCARD
))
6809 ret
= btrfs_discard_extent(fs_info
, start
,
6810 end
+ 1 - start
, NULL
);
6812 clear_extent_dirty(unpin
, start
, end
);
6813 unpin_extent_range(fs_info
, start
, end
, true);
6814 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
6819 * Transaction is finished. We don't need the lock anymore. We
6820 * do need to clean up the block groups in case of a transaction
6823 deleted_bgs
= &trans
->transaction
->deleted_bgs
;
6824 list_for_each_entry_safe(block_group
, tmp
, deleted_bgs
, bg_list
) {
6828 if (!trans
->aborted
)
6829 ret
= btrfs_discard_extent(fs_info
,
6830 block_group
->key
.objectid
,
6831 block_group
->key
.offset
,
6834 list_del_init(&block_group
->bg_list
);
6835 btrfs_put_block_group_trimming(block_group
);
6836 btrfs_put_block_group(block_group
);
6839 const char *errstr
= btrfs_decode_error(ret
);
6841 "discard failed while removing blockgroup: errno=%d %s",
6849 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
6850 struct btrfs_fs_info
*info
,
6851 struct btrfs_delayed_ref_node
*node
, u64 parent
,
6852 u64 root_objectid
, u64 owner_objectid
,
6853 u64 owner_offset
, int refs_to_drop
,
6854 struct btrfs_delayed_extent_op
*extent_op
)
6856 struct btrfs_key key
;
6857 struct btrfs_path
*path
;
6858 struct btrfs_root
*extent_root
= info
->extent_root
;
6859 struct extent_buffer
*leaf
;
6860 struct btrfs_extent_item
*ei
;
6861 struct btrfs_extent_inline_ref
*iref
;
6864 int extent_slot
= 0;
6865 int found_extent
= 0;
6869 u64 bytenr
= node
->bytenr
;
6870 u64 num_bytes
= node
->num_bytes
;
6872 bool skinny_metadata
= btrfs_fs_incompat(info
, SKINNY_METADATA
);
6874 path
= btrfs_alloc_path();
6878 path
->reada
= READA_FORWARD
;
6879 path
->leave_spinning
= 1;
6881 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
6882 BUG_ON(!is_data
&& refs_to_drop
!= 1);
6885 skinny_metadata
= false;
6887 ret
= lookup_extent_backref(trans
, info
, path
, &iref
,
6888 bytenr
, num_bytes
, parent
,
6889 root_objectid
, owner_objectid
,
6892 extent_slot
= path
->slots
[0];
6893 while (extent_slot
>= 0) {
6894 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
6896 if (key
.objectid
!= bytenr
)
6898 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
6899 key
.offset
== num_bytes
) {
6903 if (key
.type
== BTRFS_METADATA_ITEM_KEY
&&
6904 key
.offset
== owner_objectid
) {
6908 if (path
->slots
[0] - extent_slot
> 5)
6912 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6913 item_size
= btrfs_item_size_nr(path
->nodes
[0], extent_slot
);
6914 if (found_extent
&& item_size
< sizeof(*ei
))
6917 if (!found_extent
) {
6919 ret
= remove_extent_backref(trans
, info
, path
, NULL
,
6921 is_data
, &last_ref
);
6923 btrfs_abort_transaction(trans
, ret
);
6926 btrfs_release_path(path
);
6927 path
->leave_spinning
= 1;
6929 key
.objectid
= bytenr
;
6930 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6931 key
.offset
= num_bytes
;
6933 if (!is_data
&& skinny_metadata
) {
6934 key
.type
= BTRFS_METADATA_ITEM_KEY
;
6935 key
.offset
= owner_objectid
;
6938 ret
= btrfs_search_slot(trans
, extent_root
,
6940 if (ret
> 0 && skinny_metadata
&& path
->slots
[0]) {
6942 * Couldn't find our skinny metadata item,
6943 * see if we have ye olde extent item.
6946 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
6948 if (key
.objectid
== bytenr
&&
6949 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
6950 key
.offset
== num_bytes
)
6954 if (ret
> 0 && skinny_metadata
) {
6955 skinny_metadata
= false;
6956 key
.objectid
= bytenr
;
6957 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6958 key
.offset
= num_bytes
;
6959 btrfs_release_path(path
);
6960 ret
= btrfs_search_slot(trans
, extent_root
,
6966 "umm, got %d back from search, was looking for %llu",
6969 btrfs_print_leaf(path
->nodes
[0]);
6972 btrfs_abort_transaction(trans
, ret
);
6975 extent_slot
= path
->slots
[0];
6977 } else if (WARN_ON(ret
== -ENOENT
)) {
6978 btrfs_print_leaf(path
->nodes
[0]);
6980 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6981 bytenr
, parent
, root_objectid
, owner_objectid
,
6983 btrfs_abort_transaction(trans
, ret
);
6986 btrfs_abort_transaction(trans
, ret
);
6990 leaf
= path
->nodes
[0];
6991 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
6992 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6993 if (item_size
< sizeof(*ei
)) {
6994 BUG_ON(found_extent
|| extent_slot
!= path
->slots
[0]);
6995 ret
= convert_extent_item_v0(trans
, info
, path
, owner_objectid
,
6998 btrfs_abort_transaction(trans
, ret
);
7002 btrfs_release_path(path
);
7003 path
->leave_spinning
= 1;
7005 key
.objectid
= bytenr
;
7006 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
7007 key
.offset
= num_bytes
;
7009 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
,
7013 "umm, got %d back from search, was looking for %llu",
7015 btrfs_print_leaf(path
->nodes
[0]);
7018 btrfs_abort_transaction(trans
, ret
);
7022 extent_slot
= path
->slots
[0];
7023 leaf
= path
->nodes
[0];
7024 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
7027 BUG_ON(item_size
< sizeof(*ei
));
7028 ei
= btrfs_item_ptr(leaf
, extent_slot
,
7029 struct btrfs_extent_item
);
7030 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
7031 key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
7032 struct btrfs_tree_block_info
*bi
;
7033 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
7034 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
7035 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
7038 refs
= btrfs_extent_refs(leaf
, ei
);
7039 if (refs
< refs_to_drop
) {
7041 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7042 refs_to_drop
, refs
, bytenr
);
7044 btrfs_abort_transaction(trans
, ret
);
7047 refs
-= refs_to_drop
;
7051 __run_delayed_extent_op(extent_op
, leaf
, ei
);
7053 * In the case of inline back ref, reference count will
7054 * be updated by remove_extent_backref
7057 BUG_ON(!found_extent
);
7059 btrfs_set_extent_refs(leaf
, ei
, refs
);
7060 btrfs_mark_buffer_dirty(leaf
);
7063 ret
= remove_extent_backref(trans
, info
, path
,
7065 is_data
, &last_ref
);
7067 btrfs_abort_transaction(trans
, ret
);
7073 BUG_ON(is_data
&& refs_to_drop
!=
7074 extent_data_ref_count(path
, iref
));
7076 BUG_ON(path
->slots
[0] != extent_slot
);
7078 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
7079 path
->slots
[0] = extent_slot
;
7085 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
7088 btrfs_abort_transaction(trans
, ret
);
7091 btrfs_release_path(path
);
7094 ret
= btrfs_del_csums(trans
, info
, bytenr
, num_bytes
);
7096 btrfs_abort_transaction(trans
, ret
);
7101 ret
= add_to_free_space_tree(trans
, info
, bytenr
, num_bytes
);
7103 btrfs_abort_transaction(trans
, ret
);
7107 ret
= update_block_group(trans
, info
, bytenr
, num_bytes
, 0);
7109 btrfs_abort_transaction(trans
, ret
);
7113 btrfs_release_path(path
);
7116 btrfs_free_path(path
);
7121 * when we free an block, it is possible (and likely) that we free the last
7122 * delayed ref for that extent as well. This searches the delayed ref tree for
7123 * a given extent, and if there are no other delayed refs to be processed, it
7124 * removes it from the tree.
7126 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
7129 struct btrfs_delayed_ref_head
*head
;
7130 struct btrfs_delayed_ref_root
*delayed_refs
;
7133 delayed_refs
= &trans
->transaction
->delayed_refs
;
7134 spin_lock(&delayed_refs
->lock
);
7135 head
= btrfs_find_delayed_ref_head(delayed_refs
, bytenr
);
7137 goto out_delayed_unlock
;
7139 spin_lock(&head
->lock
);
7140 if (!RB_EMPTY_ROOT(&head
->ref_tree
))
7143 if (head
->extent_op
) {
7144 if (!head
->must_insert_reserved
)
7146 btrfs_free_delayed_extent_op(head
->extent_op
);
7147 head
->extent_op
= NULL
;
7151 * waiting for the lock here would deadlock. If someone else has it
7152 * locked they are already in the process of dropping it anyway
7154 if (!mutex_trylock(&head
->mutex
))
7158 * at this point we have a head with no other entries. Go
7159 * ahead and process it.
7161 rb_erase(&head
->href_node
, &delayed_refs
->href_root
);
7162 RB_CLEAR_NODE(&head
->href_node
);
7163 atomic_dec(&delayed_refs
->num_entries
);
7166 * we don't take a ref on the node because we're removing it from the
7167 * tree, so we just steal the ref the tree was holding.
7169 delayed_refs
->num_heads
--;
7170 if (head
->processing
== 0)
7171 delayed_refs
->num_heads_ready
--;
7172 head
->processing
= 0;
7173 spin_unlock(&head
->lock
);
7174 spin_unlock(&delayed_refs
->lock
);
7176 BUG_ON(head
->extent_op
);
7177 if (head
->must_insert_reserved
)
7180 mutex_unlock(&head
->mutex
);
7181 btrfs_put_delayed_ref_head(head
);
7184 spin_unlock(&head
->lock
);
7187 spin_unlock(&delayed_refs
->lock
);
7191 void btrfs_free_tree_block(struct btrfs_trans_handle
*trans
,
7192 struct btrfs_root
*root
,
7193 struct extent_buffer
*buf
,
7194 u64 parent
, int last_ref
)
7196 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7200 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
7201 int old_ref_mod
, new_ref_mod
;
7203 btrfs_ref_tree_mod(root
, buf
->start
, buf
->len
, parent
,
7204 root
->root_key
.objectid
,
7205 btrfs_header_level(buf
), 0,
7206 BTRFS_DROP_DELAYED_REF
);
7207 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, buf
->start
,
7209 root
->root_key
.objectid
,
7210 btrfs_header_level(buf
),
7211 BTRFS_DROP_DELAYED_REF
, NULL
,
7212 &old_ref_mod
, &new_ref_mod
);
7213 BUG_ON(ret
); /* -ENOMEM */
7214 pin
= old_ref_mod
>= 0 && new_ref_mod
< 0;
7217 if (last_ref
&& btrfs_header_generation(buf
) == trans
->transid
) {
7218 struct btrfs_block_group_cache
*cache
;
7220 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
7221 ret
= check_ref_cleanup(trans
, buf
->start
);
7227 cache
= btrfs_lookup_block_group(fs_info
, buf
->start
);
7229 if (btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
7230 pin_down_extent(fs_info
, cache
, buf
->start
,
7232 btrfs_put_block_group(cache
);
7236 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
));
7238 btrfs_add_free_space(cache
, buf
->start
, buf
->len
);
7239 btrfs_free_reserved_bytes(cache
, buf
->len
, 0);
7240 btrfs_put_block_group(cache
);
7241 trace_btrfs_reserved_extent_free(fs_info
, buf
->start
, buf
->len
);
7245 add_pinned_bytes(fs_info
, buf
->len
, btrfs_header_level(buf
),
7246 root
->root_key
.objectid
);
7250 * Deleting the buffer, clear the corrupt flag since it doesn't
7253 clear_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
);
7257 /* Can return -ENOMEM */
7258 int btrfs_free_extent(struct btrfs_trans_handle
*trans
,
7259 struct btrfs_root
*root
,
7260 u64 bytenr
, u64 num_bytes
, u64 parent
, u64 root_objectid
,
7261 u64 owner
, u64 offset
)
7263 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7264 int old_ref_mod
, new_ref_mod
;
7267 if (btrfs_is_testing(fs_info
))
7270 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
)
7271 btrfs_ref_tree_mod(root
, bytenr
, num_bytes
, parent
,
7272 root_objectid
, owner
, offset
,
7273 BTRFS_DROP_DELAYED_REF
);
7276 * tree log blocks never actually go into the extent allocation
7277 * tree, just update pinning info and exit early.
7279 if (root_objectid
== BTRFS_TREE_LOG_OBJECTID
) {
7280 WARN_ON(owner
>= BTRFS_FIRST_FREE_OBJECTID
);
7281 /* unlocks the pinned mutex */
7282 btrfs_pin_extent(fs_info
, bytenr
, num_bytes
, 1);
7283 old_ref_mod
= new_ref_mod
= 0;
7285 } else if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
7286 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
7288 root_objectid
, (int)owner
,
7289 BTRFS_DROP_DELAYED_REF
, NULL
,
7290 &old_ref_mod
, &new_ref_mod
);
7292 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
7294 root_objectid
, owner
, offset
,
7295 0, BTRFS_DROP_DELAYED_REF
,
7296 &old_ref_mod
, &new_ref_mod
);
7299 if (ret
== 0 && old_ref_mod
>= 0 && new_ref_mod
< 0)
7300 add_pinned_bytes(fs_info
, num_bytes
, owner
, root_objectid
);
7306 * when we wait for progress in the block group caching, its because
7307 * our allocation attempt failed at least once. So, we must sleep
7308 * and let some progress happen before we try again.
7310 * This function will sleep at least once waiting for new free space to
7311 * show up, and then it will check the block group free space numbers
7312 * for our min num_bytes. Another option is to have it go ahead
7313 * and look in the rbtree for a free extent of a given size, but this
7316 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7317 * any of the information in this block group.
7319 static noinline
void
7320 wait_block_group_cache_progress(struct btrfs_block_group_cache
*cache
,
7323 struct btrfs_caching_control
*caching_ctl
;
7325 caching_ctl
= get_caching_control(cache
);
7329 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
) ||
7330 (cache
->free_space_ctl
->free_space
>= num_bytes
));
7332 put_caching_control(caching_ctl
);
7336 wait_block_group_cache_done(struct btrfs_block_group_cache
*cache
)
7338 struct btrfs_caching_control
*caching_ctl
;
7341 caching_ctl
= get_caching_control(cache
);
7343 return (cache
->cached
== BTRFS_CACHE_ERROR
) ? -EIO
: 0;
7345 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
));
7346 if (cache
->cached
== BTRFS_CACHE_ERROR
)
7348 put_caching_control(caching_ctl
);
7352 int __get_raid_index(u64 flags
)
7354 if (flags
& BTRFS_BLOCK_GROUP_RAID10
)
7355 return BTRFS_RAID_RAID10
;
7356 else if (flags
& BTRFS_BLOCK_GROUP_RAID1
)
7357 return BTRFS_RAID_RAID1
;
7358 else if (flags
& BTRFS_BLOCK_GROUP_DUP
)
7359 return BTRFS_RAID_DUP
;
7360 else if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
7361 return BTRFS_RAID_RAID0
;
7362 else if (flags
& BTRFS_BLOCK_GROUP_RAID5
)
7363 return BTRFS_RAID_RAID5
;
7364 else if (flags
& BTRFS_BLOCK_GROUP_RAID6
)
7365 return BTRFS_RAID_RAID6
;
7367 return BTRFS_RAID_SINGLE
; /* BTRFS_BLOCK_GROUP_SINGLE */
7370 int get_block_group_index(struct btrfs_block_group_cache
*cache
)
7372 return __get_raid_index(cache
->flags
);
7375 static const char *btrfs_raid_type_names
[BTRFS_NR_RAID_TYPES
] = {
7376 [BTRFS_RAID_RAID10
] = "raid10",
7377 [BTRFS_RAID_RAID1
] = "raid1",
7378 [BTRFS_RAID_DUP
] = "dup",
7379 [BTRFS_RAID_RAID0
] = "raid0",
7380 [BTRFS_RAID_SINGLE
] = "single",
7381 [BTRFS_RAID_RAID5
] = "raid5",
7382 [BTRFS_RAID_RAID6
] = "raid6",
7385 static const char *get_raid_name(enum btrfs_raid_types type
)
7387 if (type
>= BTRFS_NR_RAID_TYPES
)
7390 return btrfs_raid_type_names
[type
];
7393 enum btrfs_loop_type
{
7394 LOOP_CACHING_NOWAIT
= 0,
7395 LOOP_CACHING_WAIT
= 1,
7396 LOOP_ALLOC_CHUNK
= 2,
7397 LOOP_NO_EMPTY_SIZE
= 3,
7401 btrfs_lock_block_group(struct btrfs_block_group_cache
*cache
,
7405 down_read(&cache
->data_rwsem
);
7409 btrfs_grab_block_group(struct btrfs_block_group_cache
*cache
,
7412 btrfs_get_block_group(cache
);
7414 down_read(&cache
->data_rwsem
);
7417 static struct btrfs_block_group_cache
*
7418 btrfs_lock_cluster(struct btrfs_block_group_cache
*block_group
,
7419 struct btrfs_free_cluster
*cluster
,
7422 struct btrfs_block_group_cache
*used_bg
= NULL
;
7424 spin_lock(&cluster
->refill_lock
);
7426 used_bg
= cluster
->block_group
;
7430 if (used_bg
== block_group
)
7433 btrfs_get_block_group(used_bg
);
7438 if (down_read_trylock(&used_bg
->data_rwsem
))
7441 spin_unlock(&cluster
->refill_lock
);
7443 /* We should only have one-level nested. */
7444 down_read_nested(&used_bg
->data_rwsem
, SINGLE_DEPTH_NESTING
);
7446 spin_lock(&cluster
->refill_lock
);
7447 if (used_bg
== cluster
->block_group
)
7450 up_read(&used_bg
->data_rwsem
);
7451 btrfs_put_block_group(used_bg
);
7456 btrfs_release_block_group(struct btrfs_block_group_cache
*cache
,
7460 up_read(&cache
->data_rwsem
);
7461 btrfs_put_block_group(cache
);
7465 * walks the btree of allocated extents and find a hole of a given size.
7466 * The key ins is changed to record the hole:
7467 * ins->objectid == start position
7468 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7469 * ins->offset == the size of the hole.
7470 * Any available blocks before search_start are skipped.
7472 * If there is no suitable free space, we will record the max size of
7473 * the free space extent currently.
7475 static noinline
int find_free_extent(struct btrfs_fs_info
*fs_info
,
7476 u64 ram_bytes
, u64 num_bytes
, u64 empty_size
,
7477 u64 hint_byte
, struct btrfs_key
*ins
,
7478 u64 flags
, int delalloc
)
7481 struct btrfs_root
*root
= fs_info
->extent_root
;
7482 struct btrfs_free_cluster
*last_ptr
= NULL
;
7483 struct btrfs_block_group_cache
*block_group
= NULL
;
7484 u64 search_start
= 0;
7485 u64 max_extent_size
= 0;
7486 u64 empty_cluster
= 0;
7487 struct btrfs_space_info
*space_info
;
7489 int index
= __get_raid_index(flags
);
7490 bool failed_cluster_refill
= false;
7491 bool failed_alloc
= false;
7492 bool use_cluster
= true;
7493 bool have_caching_bg
= false;
7494 bool orig_have_caching_bg
= false;
7495 bool full_search
= false;
7497 WARN_ON(num_bytes
< fs_info
->sectorsize
);
7498 ins
->type
= BTRFS_EXTENT_ITEM_KEY
;
7502 trace_find_free_extent(fs_info
, num_bytes
, empty_size
, flags
);
7504 space_info
= __find_space_info(fs_info
, flags
);
7506 btrfs_err(fs_info
, "No space info for %llu", flags
);
7511 * If our free space is heavily fragmented we may not be able to make
7512 * big contiguous allocations, so instead of doing the expensive search
7513 * for free space, simply return ENOSPC with our max_extent_size so we
7514 * can go ahead and search for a more manageable chunk.
7516 * If our max_extent_size is large enough for our allocation simply
7517 * disable clustering since we will likely not be able to find enough
7518 * space to create a cluster and induce latency trying.
7520 if (unlikely(space_info
->max_extent_size
)) {
7521 spin_lock(&space_info
->lock
);
7522 if (space_info
->max_extent_size
&&
7523 num_bytes
> space_info
->max_extent_size
) {
7524 ins
->offset
= space_info
->max_extent_size
;
7525 spin_unlock(&space_info
->lock
);
7527 } else if (space_info
->max_extent_size
) {
7528 use_cluster
= false;
7530 spin_unlock(&space_info
->lock
);
7533 last_ptr
= fetch_cluster_info(fs_info
, space_info
, &empty_cluster
);
7535 spin_lock(&last_ptr
->lock
);
7536 if (last_ptr
->block_group
)
7537 hint_byte
= last_ptr
->window_start
;
7538 if (last_ptr
->fragmented
) {
7540 * We still set window_start so we can keep track of the
7541 * last place we found an allocation to try and save
7544 hint_byte
= last_ptr
->window_start
;
7545 use_cluster
= false;
7547 spin_unlock(&last_ptr
->lock
);
7550 search_start
= max(search_start
, first_logical_byte(fs_info
, 0));
7551 search_start
= max(search_start
, hint_byte
);
7552 if (search_start
== hint_byte
) {
7553 block_group
= btrfs_lookup_block_group(fs_info
, search_start
);
7555 * we don't want to use the block group if it doesn't match our
7556 * allocation bits, or if its not cached.
7558 * However if we are re-searching with an ideal block group
7559 * picked out then we don't care that the block group is cached.
7561 if (block_group
&& block_group_bits(block_group
, flags
) &&
7562 block_group
->cached
!= BTRFS_CACHE_NO
) {
7563 down_read(&space_info
->groups_sem
);
7564 if (list_empty(&block_group
->list
) ||
7567 * someone is removing this block group,
7568 * we can't jump into the have_block_group
7569 * target because our list pointers are not
7572 btrfs_put_block_group(block_group
);
7573 up_read(&space_info
->groups_sem
);
7575 index
= get_block_group_index(block_group
);
7576 btrfs_lock_block_group(block_group
, delalloc
);
7577 goto have_block_group
;
7579 } else if (block_group
) {
7580 btrfs_put_block_group(block_group
);
7584 have_caching_bg
= false;
7585 if (index
== 0 || index
== __get_raid_index(flags
))
7587 down_read(&space_info
->groups_sem
);
7588 list_for_each_entry(block_group
, &space_info
->block_groups
[index
],
7593 /* If the block group is read-only, we can skip it entirely. */
7594 if (unlikely(block_group
->ro
))
7597 btrfs_grab_block_group(block_group
, delalloc
);
7598 search_start
= block_group
->key
.objectid
;
7601 * this can happen if we end up cycling through all the
7602 * raid types, but we want to make sure we only allocate
7603 * for the proper type.
7605 if (!block_group_bits(block_group
, flags
)) {
7606 u64 extra
= BTRFS_BLOCK_GROUP_DUP
|
7607 BTRFS_BLOCK_GROUP_RAID1
|
7608 BTRFS_BLOCK_GROUP_RAID5
|
7609 BTRFS_BLOCK_GROUP_RAID6
|
7610 BTRFS_BLOCK_GROUP_RAID10
;
7613 * if they asked for extra copies and this block group
7614 * doesn't provide them, bail. This does allow us to
7615 * fill raid0 from raid1.
7617 if ((flags
& extra
) && !(block_group
->flags
& extra
))
7622 cached
= block_group_cache_done(block_group
);
7623 if (unlikely(!cached
)) {
7624 have_caching_bg
= true;
7625 ret
= cache_block_group(block_group
, 0);
7630 if (unlikely(block_group
->cached
== BTRFS_CACHE_ERROR
))
7634 * Ok we want to try and use the cluster allocator, so
7637 if (last_ptr
&& use_cluster
) {
7638 struct btrfs_block_group_cache
*used_block_group
;
7639 unsigned long aligned_cluster
;
7641 * the refill lock keeps out other
7642 * people trying to start a new cluster
7644 used_block_group
= btrfs_lock_cluster(block_group
,
7647 if (!used_block_group
)
7648 goto refill_cluster
;
7650 if (used_block_group
!= block_group
&&
7651 (used_block_group
->ro
||
7652 !block_group_bits(used_block_group
, flags
)))
7653 goto release_cluster
;
7655 offset
= btrfs_alloc_from_cluster(used_block_group
,
7658 used_block_group
->key
.objectid
,
7661 /* we have a block, we're done */
7662 spin_unlock(&last_ptr
->refill_lock
);
7663 trace_btrfs_reserve_extent_cluster(fs_info
,
7665 search_start
, num_bytes
);
7666 if (used_block_group
!= block_group
) {
7667 btrfs_release_block_group(block_group
,
7669 block_group
= used_block_group
;
7674 WARN_ON(last_ptr
->block_group
!= used_block_group
);
7676 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7677 * set up a new clusters, so lets just skip it
7678 * and let the allocator find whatever block
7679 * it can find. If we reach this point, we
7680 * will have tried the cluster allocator
7681 * plenty of times and not have found
7682 * anything, so we are likely way too
7683 * fragmented for the clustering stuff to find
7686 * However, if the cluster is taken from the
7687 * current block group, release the cluster
7688 * first, so that we stand a better chance of
7689 * succeeding in the unclustered
7691 if (loop
>= LOOP_NO_EMPTY_SIZE
&&
7692 used_block_group
!= block_group
) {
7693 spin_unlock(&last_ptr
->refill_lock
);
7694 btrfs_release_block_group(used_block_group
,
7696 goto unclustered_alloc
;
7700 * this cluster didn't work out, free it and
7703 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
7705 if (used_block_group
!= block_group
)
7706 btrfs_release_block_group(used_block_group
,
7709 if (loop
>= LOOP_NO_EMPTY_SIZE
) {
7710 spin_unlock(&last_ptr
->refill_lock
);
7711 goto unclustered_alloc
;
7714 aligned_cluster
= max_t(unsigned long,
7715 empty_cluster
+ empty_size
,
7716 block_group
->full_stripe_len
);
7718 /* allocate a cluster in this block group */
7719 ret
= btrfs_find_space_cluster(fs_info
, block_group
,
7720 last_ptr
, search_start
,
7725 * now pull our allocation out of this
7728 offset
= btrfs_alloc_from_cluster(block_group
,
7734 /* we found one, proceed */
7735 spin_unlock(&last_ptr
->refill_lock
);
7736 trace_btrfs_reserve_extent_cluster(fs_info
,
7737 block_group
, search_start
,
7741 } else if (!cached
&& loop
> LOOP_CACHING_NOWAIT
7742 && !failed_cluster_refill
) {
7743 spin_unlock(&last_ptr
->refill_lock
);
7745 failed_cluster_refill
= true;
7746 wait_block_group_cache_progress(block_group
,
7747 num_bytes
+ empty_cluster
+ empty_size
);
7748 goto have_block_group
;
7752 * at this point we either didn't find a cluster
7753 * or we weren't able to allocate a block from our
7754 * cluster. Free the cluster we've been trying
7755 * to use, and go to the next block group
7757 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
7758 spin_unlock(&last_ptr
->refill_lock
);
7764 * We are doing an unclustered alloc, set the fragmented flag so
7765 * we don't bother trying to setup a cluster again until we get
7768 if (unlikely(last_ptr
)) {
7769 spin_lock(&last_ptr
->lock
);
7770 last_ptr
->fragmented
= 1;
7771 spin_unlock(&last_ptr
->lock
);
7774 struct btrfs_free_space_ctl
*ctl
=
7775 block_group
->free_space_ctl
;
7777 spin_lock(&ctl
->tree_lock
);
7778 if (ctl
->free_space
<
7779 num_bytes
+ empty_cluster
+ empty_size
) {
7780 if (ctl
->free_space
> max_extent_size
)
7781 max_extent_size
= ctl
->free_space
;
7782 spin_unlock(&ctl
->tree_lock
);
7785 spin_unlock(&ctl
->tree_lock
);
7788 offset
= btrfs_find_space_for_alloc(block_group
, search_start
,
7789 num_bytes
, empty_size
,
7792 * If we didn't find a chunk, and we haven't failed on this
7793 * block group before, and this block group is in the middle of
7794 * caching and we are ok with waiting, then go ahead and wait
7795 * for progress to be made, and set failed_alloc to true.
7797 * If failed_alloc is true then we've already waited on this
7798 * block group once and should move on to the next block group.
7800 if (!offset
&& !failed_alloc
&& !cached
&&
7801 loop
> LOOP_CACHING_NOWAIT
) {
7802 wait_block_group_cache_progress(block_group
,
7803 num_bytes
+ empty_size
);
7804 failed_alloc
= true;
7805 goto have_block_group
;
7806 } else if (!offset
) {
7810 search_start
= ALIGN(offset
, fs_info
->stripesize
);
7812 /* move on to the next group */
7813 if (search_start
+ num_bytes
>
7814 block_group
->key
.objectid
+ block_group
->key
.offset
) {
7815 btrfs_add_free_space(block_group
, offset
, num_bytes
);
7819 if (offset
< search_start
)
7820 btrfs_add_free_space(block_group
, offset
,
7821 search_start
- offset
);
7822 BUG_ON(offset
> search_start
);
7824 ret
= btrfs_add_reserved_bytes(block_group
, ram_bytes
,
7825 num_bytes
, delalloc
);
7826 if (ret
== -EAGAIN
) {
7827 btrfs_add_free_space(block_group
, offset
, num_bytes
);
7830 btrfs_inc_block_group_reservations(block_group
);
7832 /* we are all good, lets return */
7833 ins
->objectid
= search_start
;
7834 ins
->offset
= num_bytes
;
7836 trace_btrfs_reserve_extent(fs_info
, block_group
,
7837 search_start
, num_bytes
);
7838 btrfs_release_block_group(block_group
, delalloc
);
7841 failed_cluster_refill
= false;
7842 failed_alloc
= false;
7843 BUG_ON(index
!= get_block_group_index(block_group
));
7844 btrfs_release_block_group(block_group
, delalloc
);
7847 up_read(&space_info
->groups_sem
);
7849 if ((loop
== LOOP_CACHING_NOWAIT
) && have_caching_bg
7850 && !orig_have_caching_bg
)
7851 orig_have_caching_bg
= true;
7853 if (!ins
->objectid
&& loop
>= LOOP_CACHING_WAIT
&& have_caching_bg
)
7856 if (!ins
->objectid
&& ++index
< BTRFS_NR_RAID_TYPES
)
7860 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7861 * caching kthreads as we move along
7862 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7863 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7864 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7867 if (!ins
->objectid
&& loop
< LOOP_NO_EMPTY_SIZE
) {
7869 if (loop
== LOOP_CACHING_NOWAIT
) {
7871 * We want to skip the LOOP_CACHING_WAIT step if we
7872 * don't have any uncached bgs and we've already done a
7873 * full search through.
7875 if (orig_have_caching_bg
|| !full_search
)
7876 loop
= LOOP_CACHING_WAIT
;
7878 loop
= LOOP_ALLOC_CHUNK
;
7883 if (loop
== LOOP_ALLOC_CHUNK
) {
7884 struct btrfs_trans_handle
*trans
;
7887 trans
= current
->journal_info
;
7891 trans
= btrfs_join_transaction(root
);
7893 if (IS_ERR(trans
)) {
7894 ret
= PTR_ERR(trans
);
7898 ret
= do_chunk_alloc(trans
, fs_info
, flags
,
7902 * If we can't allocate a new chunk we've already looped
7903 * through at least once, move on to the NO_EMPTY_SIZE
7907 loop
= LOOP_NO_EMPTY_SIZE
;
7910 * Do not bail out on ENOSPC since we
7911 * can do more things.
7913 if (ret
< 0 && ret
!= -ENOSPC
)
7914 btrfs_abort_transaction(trans
, ret
);
7918 btrfs_end_transaction(trans
);
7923 if (loop
== LOOP_NO_EMPTY_SIZE
) {
7925 * Don't loop again if we already have no empty_size and
7928 if (empty_size
== 0 &&
7929 empty_cluster
== 0) {
7938 } else if (!ins
->objectid
) {
7940 } else if (ins
->objectid
) {
7941 if (!use_cluster
&& last_ptr
) {
7942 spin_lock(&last_ptr
->lock
);
7943 last_ptr
->window_start
= ins
->objectid
;
7944 spin_unlock(&last_ptr
->lock
);
7949 if (ret
== -ENOSPC
) {
7950 spin_lock(&space_info
->lock
);
7951 space_info
->max_extent_size
= max_extent_size
;
7952 spin_unlock(&space_info
->lock
);
7953 ins
->offset
= max_extent_size
;
7958 static void dump_space_info(struct btrfs_fs_info
*fs_info
,
7959 struct btrfs_space_info
*info
, u64 bytes
,
7960 int dump_block_groups
)
7962 struct btrfs_block_group_cache
*cache
;
7965 spin_lock(&info
->lock
);
7966 btrfs_info(fs_info
, "space_info %llu has %llu free, is %sfull",
7968 info
->total_bytes
- btrfs_space_info_used(info
, true),
7969 info
->full
? "" : "not ");
7971 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7972 info
->total_bytes
, info
->bytes_used
, info
->bytes_pinned
,
7973 info
->bytes_reserved
, info
->bytes_may_use
,
7974 info
->bytes_readonly
);
7975 spin_unlock(&info
->lock
);
7977 if (!dump_block_groups
)
7980 down_read(&info
->groups_sem
);
7982 list_for_each_entry(cache
, &info
->block_groups
[index
], list
) {
7983 spin_lock(&cache
->lock
);
7985 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7986 cache
->key
.objectid
, cache
->key
.offset
,
7987 btrfs_block_group_used(&cache
->item
), cache
->pinned
,
7988 cache
->reserved
, cache
->ro
? "[readonly]" : "");
7989 btrfs_dump_free_space(cache
, bytes
);
7990 spin_unlock(&cache
->lock
);
7992 if (++index
< BTRFS_NR_RAID_TYPES
)
7994 up_read(&info
->groups_sem
);
7997 int btrfs_reserve_extent(struct btrfs_root
*root
, u64 ram_bytes
,
7998 u64 num_bytes
, u64 min_alloc_size
,
7999 u64 empty_size
, u64 hint_byte
,
8000 struct btrfs_key
*ins
, int is_data
, int delalloc
)
8002 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8003 bool final_tried
= num_bytes
== min_alloc_size
;
8007 flags
= get_alloc_profile_by_root(root
, is_data
);
8009 WARN_ON(num_bytes
< fs_info
->sectorsize
);
8010 ret
= find_free_extent(fs_info
, ram_bytes
, num_bytes
, empty_size
,
8011 hint_byte
, ins
, flags
, delalloc
);
8012 if (!ret
&& !is_data
) {
8013 btrfs_dec_block_group_reservations(fs_info
, ins
->objectid
);
8014 } else if (ret
== -ENOSPC
) {
8015 if (!final_tried
&& ins
->offset
) {
8016 num_bytes
= min(num_bytes
>> 1, ins
->offset
);
8017 num_bytes
= round_down(num_bytes
,
8018 fs_info
->sectorsize
);
8019 num_bytes
= max(num_bytes
, min_alloc_size
);
8020 ram_bytes
= num_bytes
;
8021 if (num_bytes
== min_alloc_size
)
8024 } else if (btrfs_test_opt(fs_info
, ENOSPC_DEBUG
)) {
8025 struct btrfs_space_info
*sinfo
;
8027 sinfo
= __find_space_info(fs_info
, flags
);
8029 "allocation failed flags %llu, wanted %llu",
8032 dump_space_info(fs_info
, sinfo
, num_bytes
, 1);
8039 static int __btrfs_free_reserved_extent(struct btrfs_fs_info
*fs_info
,
8041 int pin
, int delalloc
)
8043 struct btrfs_block_group_cache
*cache
;
8046 cache
= btrfs_lookup_block_group(fs_info
, start
);
8048 btrfs_err(fs_info
, "Unable to find block group for %llu",
8054 pin_down_extent(fs_info
, cache
, start
, len
, 1);
8056 if (btrfs_test_opt(fs_info
, DISCARD
))
8057 ret
= btrfs_discard_extent(fs_info
, start
, len
, NULL
);
8058 btrfs_add_free_space(cache
, start
, len
);
8059 btrfs_free_reserved_bytes(cache
, len
, delalloc
);
8060 trace_btrfs_reserved_extent_free(fs_info
, start
, len
);
8063 btrfs_put_block_group(cache
);
8067 int btrfs_free_reserved_extent(struct btrfs_fs_info
*fs_info
,
8068 u64 start
, u64 len
, int delalloc
)
8070 return __btrfs_free_reserved_extent(fs_info
, start
, len
, 0, delalloc
);
8073 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info
*fs_info
,
8076 return __btrfs_free_reserved_extent(fs_info
, start
, len
, 1, 0);
8079 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
8080 struct btrfs_fs_info
*fs_info
,
8081 u64 parent
, u64 root_objectid
,
8082 u64 flags
, u64 owner
, u64 offset
,
8083 struct btrfs_key
*ins
, int ref_mod
)
8086 struct btrfs_extent_item
*extent_item
;
8087 struct btrfs_extent_inline_ref
*iref
;
8088 struct btrfs_path
*path
;
8089 struct extent_buffer
*leaf
;
8094 type
= BTRFS_SHARED_DATA_REF_KEY
;
8096 type
= BTRFS_EXTENT_DATA_REF_KEY
;
8098 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
8100 path
= btrfs_alloc_path();
8104 path
->leave_spinning
= 1;
8105 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
8108 btrfs_free_path(path
);
8112 leaf
= path
->nodes
[0];
8113 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
8114 struct btrfs_extent_item
);
8115 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
8116 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
8117 btrfs_set_extent_flags(leaf
, extent_item
,
8118 flags
| BTRFS_EXTENT_FLAG_DATA
);
8120 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
8121 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
8123 struct btrfs_shared_data_ref
*ref
;
8124 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
8125 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
8126 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
8128 struct btrfs_extent_data_ref
*ref
;
8129 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
8130 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
8131 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
8132 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
8133 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
8136 btrfs_mark_buffer_dirty(path
->nodes
[0]);
8137 btrfs_free_path(path
);
8139 ret
= remove_from_free_space_tree(trans
, fs_info
, ins
->objectid
,
8144 ret
= update_block_group(trans
, fs_info
, ins
->objectid
, ins
->offset
, 1);
8145 if (ret
) { /* -ENOENT, logic error */
8146 btrfs_err(fs_info
, "update block group failed for %llu %llu",
8147 ins
->objectid
, ins
->offset
);
8150 trace_btrfs_reserved_extent_alloc(fs_info
, ins
->objectid
, ins
->offset
);
8154 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
8155 struct btrfs_fs_info
*fs_info
,
8156 u64 parent
, u64 root_objectid
,
8157 u64 flags
, struct btrfs_disk_key
*key
,
8158 int level
, struct btrfs_key
*ins
)
8161 struct btrfs_extent_item
*extent_item
;
8162 struct btrfs_tree_block_info
*block_info
;
8163 struct btrfs_extent_inline_ref
*iref
;
8164 struct btrfs_path
*path
;
8165 struct extent_buffer
*leaf
;
8166 u32 size
= sizeof(*extent_item
) + sizeof(*iref
);
8167 u64 num_bytes
= ins
->offset
;
8168 bool skinny_metadata
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
8170 if (!skinny_metadata
)
8171 size
+= sizeof(*block_info
);
8173 path
= btrfs_alloc_path();
8175 btrfs_free_and_pin_reserved_extent(fs_info
, ins
->objectid
,
8180 path
->leave_spinning
= 1;
8181 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
8184 btrfs_free_path(path
);
8185 btrfs_free_and_pin_reserved_extent(fs_info
, ins
->objectid
,
8190 leaf
= path
->nodes
[0];
8191 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
8192 struct btrfs_extent_item
);
8193 btrfs_set_extent_refs(leaf
, extent_item
, 1);
8194 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
8195 btrfs_set_extent_flags(leaf
, extent_item
,
8196 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
8198 if (skinny_metadata
) {
8199 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
8200 num_bytes
= fs_info
->nodesize
;
8202 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
8203 btrfs_set_tree_block_key(leaf
, block_info
, key
);
8204 btrfs_set_tree_block_level(leaf
, block_info
, level
);
8205 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
8209 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
8210 btrfs_set_extent_inline_ref_type(leaf
, iref
,
8211 BTRFS_SHARED_BLOCK_REF_KEY
);
8212 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
8214 btrfs_set_extent_inline_ref_type(leaf
, iref
,
8215 BTRFS_TREE_BLOCK_REF_KEY
);
8216 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
8219 btrfs_mark_buffer_dirty(leaf
);
8220 btrfs_free_path(path
);
8222 ret
= remove_from_free_space_tree(trans
, fs_info
, ins
->objectid
,
8227 ret
= update_block_group(trans
, fs_info
, ins
->objectid
,
8228 fs_info
->nodesize
, 1);
8229 if (ret
) { /* -ENOENT, logic error */
8230 btrfs_err(fs_info
, "update block group failed for %llu %llu",
8231 ins
->objectid
, ins
->offset
);
8235 trace_btrfs_reserved_extent_alloc(fs_info
, ins
->objectid
,
8240 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
8241 struct btrfs_root
*root
, u64 owner
,
8242 u64 offset
, u64 ram_bytes
,
8243 struct btrfs_key
*ins
)
8245 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8248 BUG_ON(root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
);
8250 btrfs_ref_tree_mod(root
, ins
->objectid
, ins
->offset
, 0,
8251 root
->root_key
.objectid
, owner
, offset
,
8252 BTRFS_ADD_DELAYED_EXTENT
);
8254 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, ins
->objectid
,
8256 root
->root_key
.objectid
, owner
,
8258 BTRFS_ADD_DELAYED_EXTENT
, NULL
, NULL
);
8263 * this is used by the tree logging recovery code. It records that
8264 * an extent has been allocated and makes sure to clear the free
8265 * space cache bits as well
8267 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
8268 struct btrfs_fs_info
*fs_info
,
8269 u64 root_objectid
, u64 owner
, u64 offset
,
8270 struct btrfs_key
*ins
)
8273 struct btrfs_block_group_cache
*block_group
;
8274 struct btrfs_space_info
*space_info
;
8277 * Mixed block groups will exclude before processing the log so we only
8278 * need to do the exclude dance if this fs isn't mixed.
8280 if (!btrfs_fs_incompat(fs_info
, MIXED_GROUPS
)) {
8281 ret
= __exclude_logged_extent(fs_info
, ins
->objectid
,
8287 block_group
= btrfs_lookup_block_group(fs_info
, ins
->objectid
);
8291 space_info
= block_group
->space_info
;
8292 spin_lock(&space_info
->lock
);
8293 spin_lock(&block_group
->lock
);
8294 space_info
->bytes_reserved
+= ins
->offset
;
8295 block_group
->reserved
+= ins
->offset
;
8296 spin_unlock(&block_group
->lock
);
8297 spin_unlock(&space_info
->lock
);
8299 ret
= alloc_reserved_file_extent(trans
, fs_info
, 0, root_objectid
,
8300 0, owner
, offset
, ins
, 1);
8301 btrfs_put_block_group(block_group
);
8305 static struct extent_buffer
*
8306 btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
8307 u64 bytenr
, int level
)
8309 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8310 struct extent_buffer
*buf
;
8312 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
8316 btrfs_set_header_generation(buf
, trans
->transid
);
8317 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, buf
, level
);
8318 btrfs_tree_lock(buf
);
8319 clean_tree_block(fs_info
, buf
);
8320 clear_bit(EXTENT_BUFFER_STALE
, &buf
->bflags
);
8322 btrfs_set_lock_blocking(buf
);
8323 set_extent_buffer_uptodate(buf
);
8325 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
8326 buf
->log_index
= root
->log_transid
% 2;
8328 * we allow two log transactions at a time, use different
8329 * EXENT bit to differentiate dirty pages.
8331 if (buf
->log_index
== 0)
8332 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
8333 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
8335 set_extent_new(&root
->dirty_log_pages
, buf
->start
,
8336 buf
->start
+ buf
->len
- 1);
8338 buf
->log_index
= -1;
8339 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
8340 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
8342 trans
->dirty
= true;
8343 /* this returns a buffer locked for blocking */
8347 static struct btrfs_block_rsv
*
8348 use_block_rsv(struct btrfs_trans_handle
*trans
,
8349 struct btrfs_root
*root
, u32 blocksize
)
8351 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8352 struct btrfs_block_rsv
*block_rsv
;
8353 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
8355 bool global_updated
= false;
8357 block_rsv
= get_block_rsv(trans
, root
);
8359 if (unlikely(block_rsv
->size
== 0))
8362 ret
= block_rsv_use_bytes(block_rsv
, blocksize
);
8366 if (block_rsv
->failfast
)
8367 return ERR_PTR(ret
);
8369 if (block_rsv
->type
== BTRFS_BLOCK_RSV_GLOBAL
&& !global_updated
) {
8370 global_updated
= true;
8371 update_global_block_rsv(fs_info
);
8375 if (btrfs_test_opt(fs_info
, ENOSPC_DEBUG
)) {
8376 static DEFINE_RATELIMIT_STATE(_rs
,
8377 DEFAULT_RATELIMIT_INTERVAL
* 10,
8378 /*DEFAULT_RATELIMIT_BURST*/ 1);
8379 if (__ratelimit(&_rs
))
8381 "BTRFS: block rsv returned %d\n", ret
);
8384 ret
= reserve_metadata_bytes(root
, block_rsv
, blocksize
,
8385 BTRFS_RESERVE_NO_FLUSH
);
8389 * If we couldn't reserve metadata bytes try and use some from
8390 * the global reserve if its space type is the same as the global
8393 if (block_rsv
->type
!= BTRFS_BLOCK_RSV_GLOBAL
&&
8394 block_rsv
->space_info
== global_rsv
->space_info
) {
8395 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
8399 return ERR_PTR(ret
);
8402 static void unuse_block_rsv(struct btrfs_fs_info
*fs_info
,
8403 struct btrfs_block_rsv
*block_rsv
, u32 blocksize
)
8405 block_rsv_add_bytes(block_rsv
, blocksize
, 0);
8406 block_rsv_release_bytes(fs_info
, block_rsv
, NULL
, 0);
8410 * finds a free extent and does all the dirty work required for allocation
8411 * returns the tree buffer or an ERR_PTR on error.
8413 struct extent_buffer
*btrfs_alloc_tree_block(struct btrfs_trans_handle
*trans
,
8414 struct btrfs_root
*root
,
8415 u64 parent
, u64 root_objectid
,
8416 const struct btrfs_disk_key
*key
,
8417 int level
, u64 hint
,
8420 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8421 struct btrfs_key ins
;
8422 struct btrfs_block_rsv
*block_rsv
;
8423 struct extent_buffer
*buf
;
8424 struct btrfs_delayed_extent_op
*extent_op
;
8427 u32 blocksize
= fs_info
->nodesize
;
8428 bool skinny_metadata
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
8430 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8431 if (btrfs_is_testing(fs_info
)) {
8432 buf
= btrfs_init_new_buffer(trans
, root
, root
->alloc_bytenr
,
8435 root
->alloc_bytenr
+= blocksize
;
8440 block_rsv
= use_block_rsv(trans
, root
, blocksize
);
8441 if (IS_ERR(block_rsv
))
8442 return ERR_CAST(block_rsv
);
8444 ret
= btrfs_reserve_extent(root
, blocksize
, blocksize
, blocksize
,
8445 empty_size
, hint
, &ins
, 0, 0);
8449 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
, level
);
8452 goto out_free_reserved
;
8455 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
8457 parent
= ins
.objectid
;
8458 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
8462 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
8463 extent_op
= btrfs_alloc_delayed_extent_op();
8469 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
8471 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
8472 extent_op
->flags_to_set
= flags
;
8473 extent_op
->update_key
= skinny_metadata
? false : true;
8474 extent_op
->update_flags
= true;
8475 extent_op
->is_data
= false;
8476 extent_op
->level
= level
;
8478 btrfs_ref_tree_mod(root
, ins
.objectid
, ins
.offset
, parent
,
8479 root_objectid
, level
, 0,
8480 BTRFS_ADD_DELAYED_EXTENT
);
8481 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, ins
.objectid
,
8483 root_objectid
, level
,
8484 BTRFS_ADD_DELAYED_EXTENT
,
8485 extent_op
, NULL
, NULL
);
8487 goto out_free_delayed
;
8492 btrfs_free_delayed_extent_op(extent_op
);
8494 free_extent_buffer(buf
);
8496 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 0);
8498 unuse_block_rsv(fs_info
, block_rsv
, blocksize
);
8499 return ERR_PTR(ret
);
8502 struct walk_control
{
8503 u64 refs
[BTRFS_MAX_LEVEL
];
8504 u64 flags
[BTRFS_MAX_LEVEL
];
8505 struct btrfs_key update_progress
;
8516 #define DROP_REFERENCE 1
8517 #define UPDATE_BACKREF 2
8519 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
8520 struct btrfs_root
*root
,
8521 struct walk_control
*wc
,
8522 struct btrfs_path
*path
)
8524 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8530 struct btrfs_key key
;
8531 struct extent_buffer
*eb
;
8536 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
8537 wc
->reada_count
= wc
->reada_count
* 2 / 3;
8538 wc
->reada_count
= max(wc
->reada_count
, 2);
8540 wc
->reada_count
= wc
->reada_count
* 3 / 2;
8541 wc
->reada_count
= min_t(int, wc
->reada_count
,
8542 BTRFS_NODEPTRS_PER_BLOCK(fs_info
));
8545 eb
= path
->nodes
[wc
->level
];
8546 nritems
= btrfs_header_nritems(eb
);
8548 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
8549 if (nread
>= wc
->reada_count
)
8553 bytenr
= btrfs_node_blockptr(eb
, slot
);
8554 generation
= btrfs_node_ptr_generation(eb
, slot
);
8556 if (slot
== path
->slots
[wc
->level
])
8559 if (wc
->stage
== UPDATE_BACKREF
&&
8560 generation
<= root
->root_key
.offset
)
8563 /* We don't lock the tree block, it's OK to be racy here */
8564 ret
= btrfs_lookup_extent_info(trans
, fs_info
, bytenr
,
8565 wc
->level
- 1, 1, &refs
,
8567 /* We don't care about errors in readahead. */
8572 if (wc
->stage
== DROP_REFERENCE
) {
8576 if (wc
->level
== 1 &&
8577 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8579 if (!wc
->update_ref
||
8580 generation
<= root
->root_key
.offset
)
8582 btrfs_node_key_to_cpu(eb
, &key
, slot
);
8583 ret
= btrfs_comp_cpu_keys(&key
,
8584 &wc
->update_progress
);
8588 if (wc
->level
== 1 &&
8589 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8593 readahead_tree_block(fs_info
, bytenr
);
8596 wc
->reada_slot
= slot
;
8600 * helper to process tree block while walking down the tree.
8602 * when wc->stage == UPDATE_BACKREF, this function updates
8603 * back refs for pointers in the block.
8605 * NOTE: return value 1 means we should stop walking down.
8607 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
8608 struct btrfs_root
*root
,
8609 struct btrfs_path
*path
,
8610 struct walk_control
*wc
, int lookup_info
)
8612 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8613 int level
= wc
->level
;
8614 struct extent_buffer
*eb
= path
->nodes
[level
];
8615 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
8618 if (wc
->stage
== UPDATE_BACKREF
&&
8619 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
8623 * when reference count of tree block is 1, it won't increase
8624 * again. once full backref flag is set, we never clear it.
8627 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
8628 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
8629 BUG_ON(!path
->locks
[level
]);
8630 ret
= btrfs_lookup_extent_info(trans
, fs_info
,
8631 eb
->start
, level
, 1,
8634 BUG_ON(ret
== -ENOMEM
);
8637 BUG_ON(wc
->refs
[level
] == 0);
8640 if (wc
->stage
== DROP_REFERENCE
) {
8641 if (wc
->refs
[level
] > 1)
8644 if (path
->locks
[level
] && !wc
->keep_locks
) {
8645 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8646 path
->locks
[level
] = 0;
8651 /* wc->stage == UPDATE_BACKREF */
8652 if (!(wc
->flags
[level
] & flag
)) {
8653 BUG_ON(!path
->locks
[level
]);
8654 ret
= btrfs_inc_ref(trans
, root
, eb
, 1);
8655 BUG_ON(ret
); /* -ENOMEM */
8656 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
8657 BUG_ON(ret
); /* -ENOMEM */
8658 ret
= btrfs_set_disk_extent_flags(trans
, fs_info
, eb
->start
,
8660 btrfs_header_level(eb
), 0);
8661 BUG_ON(ret
); /* -ENOMEM */
8662 wc
->flags
[level
] |= flag
;
8666 * the block is shared by multiple trees, so it's not good to
8667 * keep the tree lock
8669 if (path
->locks
[level
] && level
> 0) {
8670 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8671 path
->locks
[level
] = 0;
8677 * helper to process tree block pointer.
8679 * when wc->stage == DROP_REFERENCE, this function checks
8680 * reference count of the block pointed to. if the block
8681 * is shared and we need update back refs for the subtree
8682 * rooted at the block, this function changes wc->stage to
8683 * UPDATE_BACKREF. if the block is shared and there is no
8684 * need to update back, this function drops the reference
8687 * NOTE: return value 1 means we should stop walking down.
8689 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
8690 struct btrfs_root
*root
,
8691 struct btrfs_path
*path
,
8692 struct walk_control
*wc
, int *lookup_info
)
8694 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8699 struct btrfs_key key
;
8700 struct extent_buffer
*next
;
8701 int level
= wc
->level
;
8704 bool need_account
= false;
8706 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
8707 path
->slots
[level
]);
8709 * if the lower level block was created before the snapshot
8710 * was created, we know there is no need to update back refs
8713 if (wc
->stage
== UPDATE_BACKREF
&&
8714 generation
<= root
->root_key
.offset
) {
8719 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
8720 blocksize
= fs_info
->nodesize
;
8722 next
= find_extent_buffer(fs_info
, bytenr
);
8724 next
= btrfs_find_create_tree_block(fs_info
, bytenr
);
8726 return PTR_ERR(next
);
8728 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, next
,
8732 btrfs_tree_lock(next
);
8733 btrfs_set_lock_blocking(next
);
8735 ret
= btrfs_lookup_extent_info(trans
, fs_info
, bytenr
, level
- 1, 1,
8736 &wc
->refs
[level
- 1],
8737 &wc
->flags
[level
- 1]);
8741 if (unlikely(wc
->refs
[level
- 1] == 0)) {
8742 btrfs_err(fs_info
, "Missing references.");
8748 if (wc
->stage
== DROP_REFERENCE
) {
8749 if (wc
->refs
[level
- 1] > 1) {
8750 need_account
= true;
8752 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8755 if (!wc
->update_ref
||
8756 generation
<= root
->root_key
.offset
)
8759 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
8760 path
->slots
[level
]);
8761 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
8765 wc
->stage
= UPDATE_BACKREF
;
8766 wc
->shared_level
= level
- 1;
8770 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8774 if (!btrfs_buffer_uptodate(next
, generation
, 0)) {
8775 btrfs_tree_unlock(next
);
8776 free_extent_buffer(next
);
8782 if (reada
&& level
== 1)
8783 reada_walk_down(trans
, root
, wc
, path
);
8784 next
= read_tree_block(fs_info
, bytenr
, generation
);
8786 return PTR_ERR(next
);
8787 } else if (!extent_buffer_uptodate(next
)) {
8788 free_extent_buffer(next
);
8791 btrfs_tree_lock(next
);
8792 btrfs_set_lock_blocking(next
);
8796 ASSERT(level
== btrfs_header_level(next
));
8797 if (level
!= btrfs_header_level(next
)) {
8798 btrfs_err(root
->fs_info
, "mismatched level");
8802 path
->nodes
[level
] = next
;
8803 path
->slots
[level
] = 0;
8804 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8810 wc
->refs
[level
- 1] = 0;
8811 wc
->flags
[level
- 1] = 0;
8812 if (wc
->stage
== DROP_REFERENCE
) {
8813 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
8814 parent
= path
->nodes
[level
]->start
;
8816 ASSERT(root
->root_key
.objectid
==
8817 btrfs_header_owner(path
->nodes
[level
]));
8818 if (root
->root_key
.objectid
!=
8819 btrfs_header_owner(path
->nodes
[level
])) {
8820 btrfs_err(root
->fs_info
,
8821 "mismatched block owner");
8829 ret
= btrfs_qgroup_trace_subtree(trans
, root
, next
,
8830 generation
, level
- 1);
8832 btrfs_err_rl(fs_info
,
8833 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8837 ret
= btrfs_free_extent(trans
, root
, bytenr
, blocksize
,
8838 parent
, root
->root_key
.objectid
,
8848 btrfs_tree_unlock(next
);
8849 free_extent_buffer(next
);
8855 * helper to process tree block while walking up the tree.
8857 * when wc->stage == DROP_REFERENCE, this function drops
8858 * reference count on the block.
8860 * when wc->stage == UPDATE_BACKREF, this function changes
8861 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8862 * to UPDATE_BACKREF previously while processing the block.
8864 * NOTE: return value 1 means we should stop walking up.
8866 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
8867 struct btrfs_root
*root
,
8868 struct btrfs_path
*path
,
8869 struct walk_control
*wc
)
8871 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8873 int level
= wc
->level
;
8874 struct extent_buffer
*eb
= path
->nodes
[level
];
8877 if (wc
->stage
== UPDATE_BACKREF
) {
8878 BUG_ON(wc
->shared_level
< level
);
8879 if (level
< wc
->shared_level
)
8882 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
8886 wc
->stage
= DROP_REFERENCE
;
8887 wc
->shared_level
= -1;
8888 path
->slots
[level
] = 0;
8891 * check reference count again if the block isn't locked.
8892 * we should start walking down the tree again if reference
8895 if (!path
->locks
[level
]) {
8897 btrfs_tree_lock(eb
);
8898 btrfs_set_lock_blocking(eb
);
8899 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8901 ret
= btrfs_lookup_extent_info(trans
, fs_info
,
8902 eb
->start
, level
, 1,
8906 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8907 path
->locks
[level
] = 0;
8910 BUG_ON(wc
->refs
[level
] == 0);
8911 if (wc
->refs
[level
] == 1) {
8912 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8913 path
->locks
[level
] = 0;
8919 /* wc->stage == DROP_REFERENCE */
8920 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
8922 if (wc
->refs
[level
] == 1) {
8924 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
8925 ret
= btrfs_dec_ref(trans
, root
, eb
, 1);
8927 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
8928 BUG_ON(ret
); /* -ENOMEM */
8929 ret
= btrfs_qgroup_trace_leaf_items(trans
, fs_info
, eb
);
8931 btrfs_err_rl(fs_info
,
8932 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8936 /* make block locked assertion in clean_tree_block happy */
8937 if (!path
->locks
[level
] &&
8938 btrfs_header_generation(eb
) == trans
->transid
) {
8939 btrfs_tree_lock(eb
);
8940 btrfs_set_lock_blocking(eb
);
8941 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8943 clean_tree_block(fs_info
, eb
);
8946 if (eb
== root
->node
) {
8947 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
8950 BUG_ON(root
->root_key
.objectid
!=
8951 btrfs_header_owner(eb
));
8953 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
8954 parent
= path
->nodes
[level
+ 1]->start
;
8956 BUG_ON(root
->root_key
.objectid
!=
8957 btrfs_header_owner(path
->nodes
[level
+ 1]));
8960 btrfs_free_tree_block(trans
, root
, eb
, parent
, wc
->refs
[level
] == 1);
8962 wc
->refs
[level
] = 0;
8963 wc
->flags
[level
] = 0;
8967 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
8968 struct btrfs_root
*root
,
8969 struct btrfs_path
*path
,
8970 struct walk_control
*wc
)
8972 int level
= wc
->level
;
8973 int lookup_info
= 1;
8976 while (level
>= 0) {
8977 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
8984 if (path
->slots
[level
] >=
8985 btrfs_header_nritems(path
->nodes
[level
]))
8988 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
8990 path
->slots
[level
]++;
8999 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
9000 struct btrfs_root
*root
,
9001 struct btrfs_path
*path
,
9002 struct walk_control
*wc
, int max_level
)
9004 int level
= wc
->level
;
9007 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
9008 while (level
< max_level
&& path
->nodes
[level
]) {
9010 if (path
->slots
[level
] + 1 <
9011 btrfs_header_nritems(path
->nodes
[level
])) {
9012 path
->slots
[level
]++;
9015 ret
= walk_up_proc(trans
, root
, path
, wc
);
9019 if (path
->locks
[level
]) {
9020 btrfs_tree_unlock_rw(path
->nodes
[level
],
9021 path
->locks
[level
]);
9022 path
->locks
[level
] = 0;
9024 free_extent_buffer(path
->nodes
[level
]);
9025 path
->nodes
[level
] = NULL
;
9033 * drop a subvolume tree.
9035 * this function traverses the tree freeing any blocks that only
9036 * referenced by the tree.
9038 * when a shared tree block is found. this function decreases its
9039 * reference count by one. if update_ref is true, this function
9040 * also make sure backrefs for the shared block and all lower level
9041 * blocks are properly updated.
9043 * If called with for_reloc == 0, may exit early with -EAGAIN
9045 int btrfs_drop_snapshot(struct btrfs_root
*root
,
9046 struct btrfs_block_rsv
*block_rsv
, int update_ref
,
9049 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
9050 struct btrfs_path
*path
;
9051 struct btrfs_trans_handle
*trans
;
9052 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
9053 struct btrfs_root_item
*root_item
= &root
->root_item
;
9054 struct walk_control
*wc
;
9055 struct btrfs_key key
;
9059 bool root_dropped
= false;
9061 btrfs_debug(fs_info
, "Drop subvolume %llu", root
->objectid
);
9063 path
= btrfs_alloc_path();
9069 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
9071 btrfs_free_path(path
);
9076 trans
= btrfs_start_transaction(tree_root
, 0);
9077 if (IS_ERR(trans
)) {
9078 err
= PTR_ERR(trans
);
9083 trans
->block_rsv
= block_rsv
;
9085 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
9086 level
= btrfs_header_level(root
->node
);
9087 path
->nodes
[level
] = btrfs_lock_root_node(root
);
9088 btrfs_set_lock_blocking(path
->nodes
[level
]);
9089 path
->slots
[level
] = 0;
9090 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9091 memset(&wc
->update_progress
, 0,
9092 sizeof(wc
->update_progress
));
9094 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
9095 memcpy(&wc
->update_progress
, &key
,
9096 sizeof(wc
->update_progress
));
9098 level
= root_item
->drop_level
;
9100 path
->lowest_level
= level
;
9101 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
9102 path
->lowest_level
= 0;
9110 * unlock our path, this is safe because only this
9111 * function is allowed to delete this snapshot
9113 btrfs_unlock_up_safe(path
, 0);
9115 level
= btrfs_header_level(root
->node
);
9117 btrfs_tree_lock(path
->nodes
[level
]);
9118 btrfs_set_lock_blocking(path
->nodes
[level
]);
9119 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9121 ret
= btrfs_lookup_extent_info(trans
, fs_info
,
9122 path
->nodes
[level
]->start
,
9123 level
, 1, &wc
->refs
[level
],
9129 BUG_ON(wc
->refs
[level
] == 0);
9131 if (level
== root_item
->drop_level
)
9134 btrfs_tree_unlock(path
->nodes
[level
]);
9135 path
->locks
[level
] = 0;
9136 WARN_ON(wc
->refs
[level
] != 1);
9142 wc
->shared_level
= -1;
9143 wc
->stage
= DROP_REFERENCE
;
9144 wc
->update_ref
= update_ref
;
9146 wc
->for_reloc
= for_reloc
;
9147 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(fs_info
);
9151 ret
= walk_down_tree(trans
, root
, path
, wc
);
9157 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
9164 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
9168 if (wc
->stage
== DROP_REFERENCE
) {
9170 btrfs_node_key(path
->nodes
[level
],
9171 &root_item
->drop_progress
,
9172 path
->slots
[level
]);
9173 root_item
->drop_level
= level
;
9176 BUG_ON(wc
->level
== 0);
9177 if (btrfs_should_end_transaction(trans
) ||
9178 (!for_reloc
&& btrfs_need_cleaner_sleep(fs_info
))) {
9179 ret
= btrfs_update_root(trans
, tree_root
,
9183 btrfs_abort_transaction(trans
, ret
);
9188 btrfs_end_transaction_throttle(trans
);
9189 if (!for_reloc
&& btrfs_need_cleaner_sleep(fs_info
)) {
9190 btrfs_debug(fs_info
,
9191 "drop snapshot early exit");
9196 trans
= btrfs_start_transaction(tree_root
, 0);
9197 if (IS_ERR(trans
)) {
9198 err
= PTR_ERR(trans
);
9202 trans
->block_rsv
= block_rsv
;
9205 btrfs_release_path(path
);
9209 ret
= btrfs_del_root(trans
, fs_info
, &root
->root_key
);
9211 btrfs_abort_transaction(trans
, ret
);
9216 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
9217 ret
= btrfs_find_root(tree_root
, &root
->root_key
, path
,
9220 btrfs_abort_transaction(trans
, ret
);
9223 } else if (ret
> 0) {
9224 /* if we fail to delete the orphan item this time
9225 * around, it'll get picked up the next time.
9227 * The most common failure here is just -ENOENT.
9229 btrfs_del_orphan_item(trans
, tree_root
,
9230 root
->root_key
.objectid
);
9234 if (test_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
)) {
9235 btrfs_add_dropped_root(trans
, root
);
9237 free_extent_buffer(root
->node
);
9238 free_extent_buffer(root
->commit_root
);
9239 btrfs_put_fs_root(root
);
9241 root_dropped
= true;
9243 btrfs_end_transaction_throttle(trans
);
9246 btrfs_free_path(path
);
9249 * So if we need to stop dropping the snapshot for whatever reason we
9250 * need to make sure to add it back to the dead root list so that we
9251 * keep trying to do the work later. This also cleans up roots if we
9252 * don't have it in the radix (like when we recover after a power fail
9253 * or unmount) so we don't leak memory.
9255 if (!for_reloc
&& !root_dropped
)
9256 btrfs_add_dead_root(root
);
9257 if (err
&& err
!= -EAGAIN
)
9258 btrfs_handle_fs_error(fs_info
, err
, NULL
);
9263 * drop subtree rooted at tree block 'node'.
9265 * NOTE: this function will unlock and release tree block 'node'
9266 * only used by relocation code
9268 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
9269 struct btrfs_root
*root
,
9270 struct extent_buffer
*node
,
9271 struct extent_buffer
*parent
)
9273 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
9274 struct btrfs_path
*path
;
9275 struct walk_control
*wc
;
9281 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
9283 path
= btrfs_alloc_path();
9287 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
9289 btrfs_free_path(path
);
9293 btrfs_assert_tree_locked(parent
);
9294 parent_level
= btrfs_header_level(parent
);
9295 extent_buffer_get(parent
);
9296 path
->nodes
[parent_level
] = parent
;
9297 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
9299 btrfs_assert_tree_locked(node
);
9300 level
= btrfs_header_level(node
);
9301 path
->nodes
[level
] = node
;
9302 path
->slots
[level
] = 0;
9303 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9305 wc
->refs
[parent_level
] = 1;
9306 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
9308 wc
->shared_level
= -1;
9309 wc
->stage
= DROP_REFERENCE
;
9313 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(fs_info
);
9316 wret
= walk_down_tree(trans
, root
, path
, wc
);
9322 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
9330 btrfs_free_path(path
);
9334 static u64
update_block_group_flags(struct btrfs_fs_info
*fs_info
, u64 flags
)
9340 * if restripe for this chunk_type is on pick target profile and
9341 * return, otherwise do the usual balance
9343 stripped
= get_restripe_target(fs_info
, flags
);
9345 return extended_to_chunk(stripped
);
9347 num_devices
= fs_info
->fs_devices
->rw_devices
;
9349 stripped
= BTRFS_BLOCK_GROUP_RAID0
|
9350 BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
|
9351 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
;
9353 if (num_devices
== 1) {
9354 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
9355 stripped
= flags
& ~stripped
;
9357 /* turn raid0 into single device chunks */
9358 if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
9361 /* turn mirroring into duplication */
9362 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
9363 BTRFS_BLOCK_GROUP_RAID10
))
9364 return stripped
| BTRFS_BLOCK_GROUP_DUP
;
9366 /* they already had raid on here, just return */
9367 if (flags
& stripped
)
9370 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
9371 stripped
= flags
& ~stripped
;
9373 /* switch duplicated blocks with raid1 */
9374 if (flags
& BTRFS_BLOCK_GROUP_DUP
)
9375 return stripped
| BTRFS_BLOCK_GROUP_RAID1
;
9377 /* this is drive concat, leave it alone */
9383 static int inc_block_group_ro(struct btrfs_block_group_cache
*cache
, int force
)
9385 struct btrfs_space_info
*sinfo
= cache
->space_info
;
9387 u64 min_allocable_bytes
;
9391 * We need some metadata space and system metadata space for
9392 * allocating chunks in some corner cases until we force to set
9393 * it to be readonly.
9396 (BTRFS_BLOCK_GROUP_SYSTEM
| BTRFS_BLOCK_GROUP_METADATA
)) &&
9398 min_allocable_bytes
= SZ_1M
;
9400 min_allocable_bytes
= 0;
9402 spin_lock(&sinfo
->lock
);
9403 spin_lock(&cache
->lock
);
9411 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
9412 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
9414 if (btrfs_space_info_used(sinfo
, true) + num_bytes
+
9415 min_allocable_bytes
<= sinfo
->total_bytes
) {
9416 sinfo
->bytes_readonly
+= num_bytes
;
9418 list_add_tail(&cache
->ro_list
, &sinfo
->ro_bgs
);
9422 spin_unlock(&cache
->lock
);
9423 spin_unlock(&sinfo
->lock
);
9427 int btrfs_inc_block_group_ro(struct btrfs_fs_info
*fs_info
,
9428 struct btrfs_block_group_cache
*cache
)
9431 struct btrfs_trans_handle
*trans
;
9436 trans
= btrfs_join_transaction(fs_info
->extent_root
);
9438 return PTR_ERR(trans
);
9441 * we're not allowed to set block groups readonly after the dirty
9442 * block groups cache has started writing. If it already started,
9443 * back off and let this transaction commit
9445 mutex_lock(&fs_info
->ro_block_group_mutex
);
9446 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN
, &trans
->transaction
->flags
)) {
9447 u64 transid
= trans
->transid
;
9449 mutex_unlock(&fs_info
->ro_block_group_mutex
);
9450 btrfs_end_transaction(trans
);
9452 ret
= btrfs_wait_for_commit(fs_info
, transid
);
9459 * if we are changing raid levels, try to allocate a corresponding
9460 * block group with the new raid level.
9462 alloc_flags
= update_block_group_flags(fs_info
, cache
->flags
);
9463 if (alloc_flags
!= cache
->flags
) {
9464 ret
= do_chunk_alloc(trans
, fs_info
, alloc_flags
,
9467 * ENOSPC is allowed here, we may have enough space
9468 * already allocated at the new raid level to
9477 ret
= inc_block_group_ro(cache
, 0);
9480 alloc_flags
= get_alloc_profile(fs_info
, cache
->space_info
->flags
);
9481 ret
= do_chunk_alloc(trans
, fs_info
, alloc_flags
,
9485 ret
= inc_block_group_ro(cache
, 0);
9487 if (cache
->flags
& BTRFS_BLOCK_GROUP_SYSTEM
) {
9488 alloc_flags
= update_block_group_flags(fs_info
, cache
->flags
);
9489 mutex_lock(&fs_info
->chunk_mutex
);
9490 check_system_chunk(trans
, fs_info
, alloc_flags
);
9491 mutex_unlock(&fs_info
->chunk_mutex
);
9493 mutex_unlock(&fs_info
->ro_block_group_mutex
);
9495 btrfs_end_transaction(trans
);
9499 int btrfs_force_chunk_alloc(struct btrfs_trans_handle
*trans
,
9500 struct btrfs_fs_info
*fs_info
, u64 type
)
9502 u64 alloc_flags
= get_alloc_profile(fs_info
, type
);
9504 return do_chunk_alloc(trans
, fs_info
, alloc_flags
, CHUNK_ALLOC_FORCE
);
9508 * helper to account the unused space of all the readonly block group in the
9509 * space_info. takes mirrors into account.
9511 u64
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info
*sinfo
)
9513 struct btrfs_block_group_cache
*block_group
;
9517 /* It's df, we don't care if it's racy */
9518 if (list_empty(&sinfo
->ro_bgs
))
9521 spin_lock(&sinfo
->lock
);
9522 list_for_each_entry(block_group
, &sinfo
->ro_bgs
, ro_list
) {
9523 spin_lock(&block_group
->lock
);
9525 if (!block_group
->ro
) {
9526 spin_unlock(&block_group
->lock
);
9530 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_RAID1
|
9531 BTRFS_BLOCK_GROUP_RAID10
|
9532 BTRFS_BLOCK_GROUP_DUP
))
9537 free_bytes
+= (block_group
->key
.offset
-
9538 btrfs_block_group_used(&block_group
->item
)) *
9541 spin_unlock(&block_group
->lock
);
9543 spin_unlock(&sinfo
->lock
);
9548 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache
*cache
)
9550 struct btrfs_space_info
*sinfo
= cache
->space_info
;
9555 spin_lock(&sinfo
->lock
);
9556 spin_lock(&cache
->lock
);
9558 num_bytes
= cache
->key
.offset
- cache
->reserved
-
9559 cache
->pinned
- cache
->bytes_super
-
9560 btrfs_block_group_used(&cache
->item
);
9561 sinfo
->bytes_readonly
-= num_bytes
;
9562 list_del_init(&cache
->ro_list
);
9564 spin_unlock(&cache
->lock
);
9565 spin_unlock(&sinfo
->lock
);
9569 * checks to see if its even possible to relocate this block group.
9571 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9572 * ok to go ahead and try.
9574 int btrfs_can_relocate(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
9576 struct btrfs_root
*root
= fs_info
->extent_root
;
9577 struct btrfs_block_group_cache
*block_group
;
9578 struct btrfs_space_info
*space_info
;
9579 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
9580 struct btrfs_device
*device
;
9581 struct btrfs_trans_handle
*trans
;
9591 debug
= btrfs_test_opt(fs_info
, ENOSPC_DEBUG
);
9593 block_group
= btrfs_lookup_block_group(fs_info
, bytenr
);
9595 /* odd, couldn't find the block group, leave it alone */
9599 "can't find block group for bytenr %llu",
9604 min_free
= btrfs_block_group_used(&block_group
->item
);
9606 /* no bytes used, we're good */
9610 space_info
= block_group
->space_info
;
9611 spin_lock(&space_info
->lock
);
9613 full
= space_info
->full
;
9616 * if this is the last block group we have in this space, we can't
9617 * relocate it unless we're able to allocate a new chunk below.
9619 * Otherwise, we need to make sure we have room in the space to handle
9620 * all of the extents from this block group. If we can, we're good
9622 if ((space_info
->total_bytes
!= block_group
->key
.offset
) &&
9623 (btrfs_space_info_used(space_info
, false) + min_free
<
9624 space_info
->total_bytes
)) {
9625 spin_unlock(&space_info
->lock
);
9628 spin_unlock(&space_info
->lock
);
9631 * ok we don't have enough space, but maybe we have free space on our
9632 * devices to allocate new chunks for relocation, so loop through our
9633 * alloc devices and guess if we have enough space. if this block
9634 * group is going to be restriped, run checks against the target
9635 * profile instead of the current one.
9647 target
= get_restripe_target(fs_info
, block_group
->flags
);
9649 index
= __get_raid_index(extended_to_chunk(target
));
9652 * this is just a balance, so if we were marked as full
9653 * we know there is no space for a new chunk
9658 "no space to alloc new chunk for block group %llu",
9659 block_group
->key
.objectid
);
9663 index
= get_block_group_index(block_group
);
9666 if (index
== BTRFS_RAID_RAID10
) {
9670 } else if (index
== BTRFS_RAID_RAID1
) {
9672 } else if (index
== BTRFS_RAID_DUP
) {
9675 } else if (index
== BTRFS_RAID_RAID0
) {
9676 dev_min
= fs_devices
->rw_devices
;
9677 min_free
= div64_u64(min_free
, dev_min
);
9680 /* We need to do this so that we can look at pending chunks */
9681 trans
= btrfs_join_transaction(root
);
9682 if (IS_ERR(trans
)) {
9683 ret
= PTR_ERR(trans
);
9687 mutex_lock(&fs_info
->chunk_mutex
);
9688 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
9692 * check to make sure we can actually find a chunk with enough
9693 * space to fit our block group in.
9695 if (device
->total_bytes
> device
->bytes_used
+ min_free
&&
9696 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
9697 ret
= find_free_dev_extent(trans
, device
, min_free
,
9702 if (dev_nr
>= dev_min
)
9708 if (debug
&& ret
== -1)
9710 "no space to allocate a new chunk for block group %llu",
9711 block_group
->key
.objectid
);
9712 mutex_unlock(&fs_info
->chunk_mutex
);
9713 btrfs_end_transaction(trans
);
9715 btrfs_put_block_group(block_group
);
9719 static int find_first_block_group(struct btrfs_fs_info
*fs_info
,
9720 struct btrfs_path
*path
,
9721 struct btrfs_key
*key
)
9723 struct btrfs_root
*root
= fs_info
->extent_root
;
9725 struct btrfs_key found_key
;
9726 struct extent_buffer
*leaf
;
9729 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
9734 slot
= path
->slots
[0];
9735 leaf
= path
->nodes
[0];
9736 if (slot
>= btrfs_header_nritems(leaf
)) {
9737 ret
= btrfs_next_leaf(root
, path
);
9744 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
9746 if (found_key
.objectid
>= key
->objectid
&&
9747 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
9748 struct extent_map_tree
*em_tree
;
9749 struct extent_map
*em
;
9751 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
9752 read_lock(&em_tree
->lock
);
9753 em
= lookup_extent_mapping(em_tree
, found_key
.objectid
,
9755 read_unlock(&em_tree
->lock
);
9758 "logical %llu len %llu found bg but no related chunk",
9759 found_key
.objectid
, found_key
.offset
);
9764 free_extent_map(em
);
9773 void btrfs_put_block_group_cache(struct btrfs_fs_info
*info
)
9775 struct btrfs_block_group_cache
*block_group
;
9779 struct inode
*inode
;
9781 block_group
= btrfs_lookup_first_block_group(info
, last
);
9782 while (block_group
) {
9783 spin_lock(&block_group
->lock
);
9784 if (block_group
->iref
)
9786 spin_unlock(&block_group
->lock
);
9787 block_group
= next_block_group(info
, block_group
);
9796 inode
= block_group
->inode
;
9797 block_group
->iref
= 0;
9798 block_group
->inode
= NULL
;
9799 spin_unlock(&block_group
->lock
);
9800 ASSERT(block_group
->io_ctl
.inode
== NULL
);
9802 last
= block_group
->key
.objectid
+ block_group
->key
.offset
;
9803 btrfs_put_block_group(block_group
);
9808 * Must be called only after stopping all workers, since we could have block
9809 * group caching kthreads running, and therefore they could race with us if we
9810 * freed the block groups before stopping them.
9812 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
9814 struct btrfs_block_group_cache
*block_group
;
9815 struct btrfs_space_info
*space_info
;
9816 struct btrfs_caching_control
*caching_ctl
;
9819 down_write(&info
->commit_root_sem
);
9820 while (!list_empty(&info
->caching_block_groups
)) {
9821 caching_ctl
= list_entry(info
->caching_block_groups
.next
,
9822 struct btrfs_caching_control
, list
);
9823 list_del(&caching_ctl
->list
);
9824 put_caching_control(caching_ctl
);
9826 up_write(&info
->commit_root_sem
);
9828 spin_lock(&info
->unused_bgs_lock
);
9829 while (!list_empty(&info
->unused_bgs
)) {
9830 block_group
= list_first_entry(&info
->unused_bgs
,
9831 struct btrfs_block_group_cache
,
9833 list_del_init(&block_group
->bg_list
);
9834 btrfs_put_block_group(block_group
);
9836 spin_unlock(&info
->unused_bgs_lock
);
9838 spin_lock(&info
->block_group_cache_lock
);
9839 while ((n
= rb_last(&info
->block_group_cache_tree
)) != NULL
) {
9840 block_group
= rb_entry(n
, struct btrfs_block_group_cache
,
9842 rb_erase(&block_group
->cache_node
,
9843 &info
->block_group_cache_tree
);
9844 RB_CLEAR_NODE(&block_group
->cache_node
);
9845 spin_unlock(&info
->block_group_cache_lock
);
9847 down_write(&block_group
->space_info
->groups_sem
);
9848 list_del(&block_group
->list
);
9849 up_write(&block_group
->space_info
->groups_sem
);
9852 * We haven't cached this block group, which means we could
9853 * possibly have excluded extents on this block group.
9855 if (block_group
->cached
== BTRFS_CACHE_NO
||
9856 block_group
->cached
== BTRFS_CACHE_ERROR
)
9857 free_excluded_extents(info
, block_group
);
9859 btrfs_remove_free_space_cache(block_group
);
9860 ASSERT(block_group
->cached
!= BTRFS_CACHE_STARTED
);
9861 ASSERT(list_empty(&block_group
->dirty_list
));
9862 ASSERT(list_empty(&block_group
->io_list
));
9863 ASSERT(list_empty(&block_group
->bg_list
));
9864 ASSERT(atomic_read(&block_group
->count
) == 1);
9865 btrfs_put_block_group(block_group
);
9867 spin_lock(&info
->block_group_cache_lock
);
9869 spin_unlock(&info
->block_group_cache_lock
);
9871 /* now that all the block groups are freed, go through and
9872 * free all the space_info structs. This is only called during
9873 * the final stages of unmount, and so we know nobody is
9874 * using them. We call synchronize_rcu() once before we start,
9875 * just to be on the safe side.
9879 release_global_block_rsv(info
);
9881 while (!list_empty(&info
->space_info
)) {
9884 space_info
= list_entry(info
->space_info
.next
,
9885 struct btrfs_space_info
,
9889 * Do not hide this behind enospc_debug, this is actually
9890 * important and indicates a real bug if this happens.
9892 if (WARN_ON(space_info
->bytes_pinned
> 0 ||
9893 space_info
->bytes_reserved
> 0 ||
9894 space_info
->bytes_may_use
> 0))
9895 dump_space_info(info
, space_info
, 0, 0);
9896 list_del(&space_info
->list
);
9897 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
9898 struct kobject
*kobj
;
9899 kobj
= space_info
->block_group_kobjs
[i
];
9900 space_info
->block_group_kobjs
[i
] = NULL
;
9906 kobject_del(&space_info
->kobj
);
9907 kobject_put(&space_info
->kobj
);
9912 static void link_block_group(struct btrfs_block_group_cache
*cache
)
9914 struct btrfs_space_info
*space_info
= cache
->space_info
;
9915 int index
= get_block_group_index(cache
);
9918 down_write(&space_info
->groups_sem
);
9919 if (list_empty(&space_info
->block_groups
[index
]))
9921 list_add_tail(&cache
->list
, &space_info
->block_groups
[index
]);
9922 up_write(&space_info
->groups_sem
);
9925 struct raid_kobject
*rkobj
;
9928 rkobj
= kzalloc(sizeof(*rkobj
), GFP_NOFS
);
9931 rkobj
->raid_type
= index
;
9932 kobject_init(&rkobj
->kobj
, &btrfs_raid_ktype
);
9933 ret
= kobject_add(&rkobj
->kobj
, &space_info
->kobj
,
9934 "%s", get_raid_name(index
));
9936 kobject_put(&rkobj
->kobj
);
9939 space_info
->block_group_kobjs
[index
] = &rkobj
->kobj
;
9944 btrfs_warn(cache
->fs_info
,
9945 "failed to add kobject for block cache, ignoring");
9948 static struct btrfs_block_group_cache
*
9949 btrfs_create_block_group_cache(struct btrfs_fs_info
*fs_info
,
9950 u64 start
, u64 size
)
9952 struct btrfs_block_group_cache
*cache
;
9954 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
9958 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
9960 if (!cache
->free_space_ctl
) {
9965 cache
->key
.objectid
= start
;
9966 cache
->key
.offset
= size
;
9967 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
9969 cache
->fs_info
= fs_info
;
9970 cache
->full_stripe_len
= btrfs_full_stripe_len(fs_info
, start
);
9971 set_free_space_tree_thresholds(cache
);
9973 atomic_set(&cache
->count
, 1);
9974 spin_lock_init(&cache
->lock
);
9975 init_rwsem(&cache
->data_rwsem
);
9976 INIT_LIST_HEAD(&cache
->list
);
9977 INIT_LIST_HEAD(&cache
->cluster_list
);
9978 INIT_LIST_HEAD(&cache
->bg_list
);
9979 INIT_LIST_HEAD(&cache
->ro_list
);
9980 INIT_LIST_HEAD(&cache
->dirty_list
);
9981 INIT_LIST_HEAD(&cache
->io_list
);
9982 btrfs_init_free_space_ctl(cache
);
9983 atomic_set(&cache
->trimming
, 0);
9984 mutex_init(&cache
->free_space_lock
);
9985 btrfs_init_full_stripe_locks_tree(&cache
->full_stripe_locks_root
);
9990 int btrfs_read_block_groups(struct btrfs_fs_info
*info
)
9992 struct btrfs_path
*path
;
9994 struct btrfs_block_group_cache
*cache
;
9995 struct btrfs_space_info
*space_info
;
9996 struct btrfs_key key
;
9997 struct btrfs_key found_key
;
9998 struct extent_buffer
*leaf
;
10004 feature
= btrfs_super_incompat_flags(info
->super_copy
);
10005 mixed
= !!(feature
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
);
10009 key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
10010 path
= btrfs_alloc_path();
10013 path
->reada
= READA_FORWARD
;
10015 cache_gen
= btrfs_super_cache_generation(info
->super_copy
);
10016 if (btrfs_test_opt(info
, SPACE_CACHE
) &&
10017 btrfs_super_generation(info
->super_copy
) != cache_gen
)
10019 if (btrfs_test_opt(info
, CLEAR_CACHE
))
10023 ret
= find_first_block_group(info
, path
, &key
);
10029 leaf
= path
->nodes
[0];
10030 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
10032 cache
= btrfs_create_block_group_cache(info
, found_key
.objectid
,
10041 * When we mount with old space cache, we need to
10042 * set BTRFS_DC_CLEAR and set dirty flag.
10044 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10045 * truncate the old free space cache inode and
10047 * b) Setting 'dirty flag' makes sure that we flush
10048 * the new space cache info onto disk.
10050 if (btrfs_test_opt(info
, SPACE_CACHE
))
10051 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
10054 read_extent_buffer(leaf
, &cache
->item
,
10055 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
10056 sizeof(cache
->item
));
10057 cache
->flags
= btrfs_block_group_flags(&cache
->item
);
10059 ((cache
->flags
& BTRFS_BLOCK_GROUP_METADATA
) &&
10060 (cache
->flags
& BTRFS_BLOCK_GROUP_DATA
))) {
10062 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10063 cache
->key
.objectid
);
10068 key
.objectid
= found_key
.objectid
+ found_key
.offset
;
10069 btrfs_release_path(path
);
10072 * We need to exclude the super stripes now so that the space
10073 * info has super bytes accounted for, otherwise we'll think
10074 * we have more space than we actually do.
10076 ret
= exclude_super_stripes(info
, cache
);
10079 * We may have excluded something, so call this just in
10082 free_excluded_extents(info
, cache
);
10083 btrfs_put_block_group(cache
);
10088 * check for two cases, either we are full, and therefore
10089 * don't need to bother with the caching work since we won't
10090 * find any space, or we are empty, and we can just add all
10091 * the space in and be done with it. This saves us _alot_ of
10092 * time, particularly in the full case.
10094 if (found_key
.offset
== btrfs_block_group_used(&cache
->item
)) {
10095 cache
->last_byte_to_unpin
= (u64
)-1;
10096 cache
->cached
= BTRFS_CACHE_FINISHED
;
10097 free_excluded_extents(info
, cache
);
10098 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
10099 cache
->last_byte_to_unpin
= (u64
)-1;
10100 cache
->cached
= BTRFS_CACHE_FINISHED
;
10101 add_new_free_space(cache
, info
,
10102 found_key
.objectid
,
10103 found_key
.objectid
+
10105 free_excluded_extents(info
, cache
);
10108 ret
= btrfs_add_block_group_cache(info
, cache
);
10110 btrfs_remove_free_space_cache(cache
);
10111 btrfs_put_block_group(cache
);
10115 trace_btrfs_add_block_group(info
, cache
, 0);
10116 update_space_info(info
, cache
->flags
, found_key
.offset
,
10117 btrfs_block_group_used(&cache
->item
),
10118 cache
->bytes_super
, &space_info
);
10120 cache
->space_info
= space_info
;
10122 link_block_group(cache
);
10124 set_avail_alloc_bits(info
, cache
->flags
);
10125 if (btrfs_chunk_readonly(info
, cache
->key
.objectid
)) {
10126 inc_block_group_ro(cache
, 1);
10127 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
10128 spin_lock(&info
->unused_bgs_lock
);
10129 /* Should always be true but just in case. */
10130 if (list_empty(&cache
->bg_list
)) {
10131 btrfs_get_block_group(cache
);
10132 list_add_tail(&cache
->bg_list
,
10133 &info
->unused_bgs
);
10135 spin_unlock(&info
->unused_bgs_lock
);
10139 list_for_each_entry_rcu(space_info
, &info
->space_info
, list
) {
10140 if (!(get_alloc_profile(info
, space_info
->flags
) &
10141 (BTRFS_BLOCK_GROUP_RAID10
|
10142 BTRFS_BLOCK_GROUP_RAID1
|
10143 BTRFS_BLOCK_GROUP_RAID5
|
10144 BTRFS_BLOCK_GROUP_RAID6
|
10145 BTRFS_BLOCK_GROUP_DUP
)))
10148 * avoid allocating from un-mirrored block group if there are
10149 * mirrored block groups.
10151 list_for_each_entry(cache
,
10152 &space_info
->block_groups
[BTRFS_RAID_RAID0
],
10154 inc_block_group_ro(cache
, 1);
10155 list_for_each_entry(cache
,
10156 &space_info
->block_groups
[BTRFS_RAID_SINGLE
],
10158 inc_block_group_ro(cache
, 1);
10161 init_global_block_rsv(info
);
10164 btrfs_free_path(path
);
10168 void btrfs_create_pending_block_groups(struct btrfs_trans_handle
*trans
,
10169 struct btrfs_fs_info
*fs_info
)
10171 struct btrfs_block_group_cache
*block_group
, *tmp
;
10172 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
10173 struct btrfs_block_group_item item
;
10174 struct btrfs_key key
;
10176 bool can_flush_pending_bgs
= trans
->can_flush_pending_bgs
;
10178 trans
->can_flush_pending_bgs
= false;
10179 list_for_each_entry_safe(block_group
, tmp
, &trans
->new_bgs
, bg_list
) {
10183 spin_lock(&block_group
->lock
);
10184 memcpy(&item
, &block_group
->item
, sizeof(item
));
10185 memcpy(&key
, &block_group
->key
, sizeof(key
));
10186 spin_unlock(&block_group
->lock
);
10188 ret
= btrfs_insert_item(trans
, extent_root
, &key
, &item
,
10191 btrfs_abort_transaction(trans
, ret
);
10192 ret
= btrfs_finish_chunk_alloc(trans
, fs_info
, key
.objectid
,
10195 btrfs_abort_transaction(trans
, ret
);
10196 add_block_group_free_space(trans
, fs_info
, block_group
);
10197 /* already aborted the transaction if it failed. */
10199 list_del_init(&block_group
->bg_list
);
10201 trans
->can_flush_pending_bgs
= can_flush_pending_bgs
;
10204 int btrfs_make_block_group(struct btrfs_trans_handle
*trans
,
10205 struct btrfs_fs_info
*fs_info
, u64 bytes_used
,
10206 u64 type
, u64 chunk_offset
, u64 size
)
10208 struct btrfs_block_group_cache
*cache
;
10211 btrfs_set_log_full_commit(fs_info
, trans
);
10213 cache
= btrfs_create_block_group_cache(fs_info
, chunk_offset
, size
);
10217 btrfs_set_block_group_used(&cache
->item
, bytes_used
);
10218 btrfs_set_block_group_chunk_objectid(&cache
->item
,
10219 BTRFS_FIRST_CHUNK_TREE_OBJECTID
);
10220 btrfs_set_block_group_flags(&cache
->item
, type
);
10222 cache
->flags
= type
;
10223 cache
->last_byte_to_unpin
= (u64
)-1;
10224 cache
->cached
= BTRFS_CACHE_FINISHED
;
10225 cache
->needs_free_space
= 1;
10226 ret
= exclude_super_stripes(fs_info
, cache
);
10229 * We may have excluded something, so call this just in
10232 free_excluded_extents(fs_info
, cache
);
10233 btrfs_put_block_group(cache
);
10237 add_new_free_space(cache
, fs_info
, chunk_offset
, chunk_offset
+ size
);
10239 free_excluded_extents(fs_info
, cache
);
10241 #ifdef CONFIG_BTRFS_DEBUG
10242 if (btrfs_should_fragment_free_space(cache
)) {
10243 u64 new_bytes_used
= size
- bytes_used
;
10245 bytes_used
+= new_bytes_used
>> 1;
10246 fragment_free_space(cache
);
10250 * Ensure the corresponding space_info object is created and
10251 * assigned to our block group. We want our bg to be added to the rbtree
10252 * with its ->space_info set.
10254 cache
->space_info
= __find_space_info(fs_info
, cache
->flags
);
10255 if (!cache
->space_info
) {
10256 ret
= create_space_info(fs_info
, cache
->flags
,
10257 &cache
->space_info
);
10259 btrfs_remove_free_space_cache(cache
);
10260 btrfs_put_block_group(cache
);
10265 ret
= btrfs_add_block_group_cache(fs_info
, cache
);
10267 btrfs_remove_free_space_cache(cache
);
10268 btrfs_put_block_group(cache
);
10273 * Now that our block group has its ->space_info set and is inserted in
10274 * the rbtree, update the space info's counters.
10276 trace_btrfs_add_block_group(fs_info
, cache
, 1);
10277 update_space_info(fs_info
, cache
->flags
, size
, bytes_used
,
10278 cache
->bytes_super
, &cache
->space_info
);
10279 update_global_block_rsv(fs_info
);
10281 link_block_group(cache
);
10283 list_add_tail(&cache
->bg_list
, &trans
->new_bgs
);
10285 set_avail_alloc_bits(fs_info
, type
);
10289 static void clear_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
10291 u64 extra_flags
= chunk_to_extended(flags
) &
10292 BTRFS_EXTENDED_PROFILE_MASK
;
10294 write_seqlock(&fs_info
->profiles_lock
);
10295 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
10296 fs_info
->avail_data_alloc_bits
&= ~extra_flags
;
10297 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
10298 fs_info
->avail_metadata_alloc_bits
&= ~extra_flags
;
10299 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
10300 fs_info
->avail_system_alloc_bits
&= ~extra_flags
;
10301 write_sequnlock(&fs_info
->profiles_lock
);
10304 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
10305 struct btrfs_fs_info
*fs_info
, u64 group_start
,
10306 struct extent_map
*em
)
10308 struct btrfs_root
*root
= fs_info
->extent_root
;
10309 struct btrfs_path
*path
;
10310 struct btrfs_block_group_cache
*block_group
;
10311 struct btrfs_free_cluster
*cluster
;
10312 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
10313 struct btrfs_key key
;
10314 struct inode
*inode
;
10315 struct kobject
*kobj
= NULL
;
10319 struct btrfs_caching_control
*caching_ctl
= NULL
;
10322 block_group
= btrfs_lookup_block_group(fs_info
, group_start
);
10323 BUG_ON(!block_group
);
10324 BUG_ON(!block_group
->ro
);
10327 * Free the reserved super bytes from this block group before
10330 free_excluded_extents(fs_info
, block_group
);
10331 btrfs_free_ref_tree_range(fs_info
, block_group
->key
.objectid
,
10332 block_group
->key
.offset
);
10334 memcpy(&key
, &block_group
->key
, sizeof(key
));
10335 index
= get_block_group_index(block_group
);
10336 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
10337 BTRFS_BLOCK_GROUP_RAID1
|
10338 BTRFS_BLOCK_GROUP_RAID10
))
10343 /* make sure this block group isn't part of an allocation cluster */
10344 cluster
= &fs_info
->data_alloc_cluster
;
10345 spin_lock(&cluster
->refill_lock
);
10346 btrfs_return_cluster_to_free_space(block_group
, cluster
);
10347 spin_unlock(&cluster
->refill_lock
);
10350 * make sure this block group isn't part of a metadata
10351 * allocation cluster
10353 cluster
= &fs_info
->meta_alloc_cluster
;
10354 spin_lock(&cluster
->refill_lock
);
10355 btrfs_return_cluster_to_free_space(block_group
, cluster
);
10356 spin_unlock(&cluster
->refill_lock
);
10358 path
= btrfs_alloc_path();
10365 * get the inode first so any iput calls done for the io_list
10366 * aren't the final iput (no unlinks allowed now)
10368 inode
= lookup_free_space_inode(fs_info
, block_group
, path
);
10370 mutex_lock(&trans
->transaction
->cache_write_mutex
);
10372 * make sure our free spache cache IO is done before remove the
10375 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10376 if (!list_empty(&block_group
->io_list
)) {
10377 list_del_init(&block_group
->io_list
);
10379 WARN_ON(!IS_ERR(inode
) && inode
!= block_group
->io_ctl
.inode
);
10381 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10382 btrfs_wait_cache_io(trans
, block_group
, path
);
10383 btrfs_put_block_group(block_group
);
10384 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10387 if (!list_empty(&block_group
->dirty_list
)) {
10388 list_del_init(&block_group
->dirty_list
);
10389 btrfs_put_block_group(block_group
);
10391 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10392 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
10394 if (!IS_ERR(inode
)) {
10395 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
10397 btrfs_add_delayed_iput(inode
);
10400 clear_nlink(inode
);
10401 /* One for the block groups ref */
10402 spin_lock(&block_group
->lock
);
10403 if (block_group
->iref
) {
10404 block_group
->iref
= 0;
10405 block_group
->inode
= NULL
;
10406 spin_unlock(&block_group
->lock
);
10409 spin_unlock(&block_group
->lock
);
10411 /* One for our lookup ref */
10412 btrfs_add_delayed_iput(inode
);
10415 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
10416 key
.offset
= block_group
->key
.objectid
;
10419 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
10423 btrfs_release_path(path
);
10425 ret
= btrfs_del_item(trans
, tree_root
, path
);
10428 btrfs_release_path(path
);
10431 spin_lock(&fs_info
->block_group_cache_lock
);
10432 rb_erase(&block_group
->cache_node
,
10433 &fs_info
->block_group_cache_tree
);
10434 RB_CLEAR_NODE(&block_group
->cache_node
);
10436 if (fs_info
->first_logical_byte
== block_group
->key
.objectid
)
10437 fs_info
->first_logical_byte
= (u64
)-1;
10438 spin_unlock(&fs_info
->block_group_cache_lock
);
10440 down_write(&block_group
->space_info
->groups_sem
);
10442 * we must use list_del_init so people can check to see if they
10443 * are still on the list after taking the semaphore
10445 list_del_init(&block_group
->list
);
10446 if (list_empty(&block_group
->space_info
->block_groups
[index
])) {
10447 kobj
= block_group
->space_info
->block_group_kobjs
[index
];
10448 block_group
->space_info
->block_group_kobjs
[index
] = NULL
;
10449 clear_avail_alloc_bits(fs_info
, block_group
->flags
);
10451 up_write(&block_group
->space_info
->groups_sem
);
10457 if (block_group
->has_caching_ctl
)
10458 caching_ctl
= get_caching_control(block_group
);
10459 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
10460 wait_block_group_cache_done(block_group
);
10461 if (block_group
->has_caching_ctl
) {
10462 down_write(&fs_info
->commit_root_sem
);
10463 if (!caching_ctl
) {
10464 struct btrfs_caching_control
*ctl
;
10466 list_for_each_entry(ctl
,
10467 &fs_info
->caching_block_groups
, list
)
10468 if (ctl
->block_group
== block_group
) {
10470 refcount_inc(&caching_ctl
->count
);
10475 list_del_init(&caching_ctl
->list
);
10476 up_write(&fs_info
->commit_root_sem
);
10478 /* Once for the caching bgs list and once for us. */
10479 put_caching_control(caching_ctl
);
10480 put_caching_control(caching_ctl
);
10484 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10485 if (!list_empty(&block_group
->dirty_list
)) {
10488 if (!list_empty(&block_group
->io_list
)) {
10491 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10492 btrfs_remove_free_space_cache(block_group
);
10494 spin_lock(&block_group
->space_info
->lock
);
10495 list_del_init(&block_group
->ro_list
);
10497 if (btrfs_test_opt(fs_info
, ENOSPC_DEBUG
)) {
10498 WARN_ON(block_group
->space_info
->total_bytes
10499 < block_group
->key
.offset
);
10500 WARN_ON(block_group
->space_info
->bytes_readonly
10501 < block_group
->key
.offset
);
10502 WARN_ON(block_group
->space_info
->disk_total
10503 < block_group
->key
.offset
* factor
);
10505 block_group
->space_info
->total_bytes
-= block_group
->key
.offset
;
10506 block_group
->space_info
->bytes_readonly
-= block_group
->key
.offset
;
10507 block_group
->space_info
->disk_total
-= block_group
->key
.offset
* factor
;
10509 spin_unlock(&block_group
->space_info
->lock
);
10511 memcpy(&key
, &block_group
->key
, sizeof(key
));
10513 mutex_lock(&fs_info
->chunk_mutex
);
10514 if (!list_empty(&em
->list
)) {
10515 /* We're in the transaction->pending_chunks list. */
10516 free_extent_map(em
);
10518 spin_lock(&block_group
->lock
);
10519 block_group
->removed
= 1;
10521 * At this point trimming can't start on this block group, because we
10522 * removed the block group from the tree fs_info->block_group_cache_tree
10523 * so no one can't find it anymore and even if someone already got this
10524 * block group before we removed it from the rbtree, they have already
10525 * incremented block_group->trimming - if they didn't, they won't find
10526 * any free space entries because we already removed them all when we
10527 * called btrfs_remove_free_space_cache().
10529 * And we must not remove the extent map from the fs_info->mapping_tree
10530 * to prevent the same logical address range and physical device space
10531 * ranges from being reused for a new block group. This is because our
10532 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10533 * completely transactionless, so while it is trimming a range the
10534 * currently running transaction might finish and a new one start,
10535 * allowing for new block groups to be created that can reuse the same
10536 * physical device locations unless we take this special care.
10538 * There may also be an implicit trim operation if the file system
10539 * is mounted with -odiscard. The same protections must remain
10540 * in place until the extents have been discarded completely when
10541 * the transaction commit has completed.
10543 remove_em
= (atomic_read(&block_group
->trimming
) == 0);
10545 * Make sure a trimmer task always sees the em in the pinned_chunks list
10546 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10547 * before checking block_group->removed).
10551 * Our em might be in trans->transaction->pending_chunks which
10552 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10553 * and so is the fs_info->pinned_chunks list.
10555 * So at this point we must be holding the chunk_mutex to avoid
10556 * any races with chunk allocation (more specifically at
10557 * volumes.c:contains_pending_extent()), to ensure it always
10558 * sees the em, either in the pending_chunks list or in the
10559 * pinned_chunks list.
10561 list_move_tail(&em
->list
, &fs_info
->pinned_chunks
);
10563 spin_unlock(&block_group
->lock
);
10566 struct extent_map_tree
*em_tree
;
10568 em_tree
= &fs_info
->mapping_tree
.map_tree
;
10569 write_lock(&em_tree
->lock
);
10571 * The em might be in the pending_chunks list, so make sure the
10572 * chunk mutex is locked, since remove_extent_mapping() will
10573 * delete us from that list.
10575 remove_extent_mapping(em_tree
, em
);
10576 write_unlock(&em_tree
->lock
);
10577 /* once for the tree */
10578 free_extent_map(em
);
10581 mutex_unlock(&fs_info
->chunk_mutex
);
10583 ret
= remove_block_group_free_space(trans
, fs_info
, block_group
);
10587 btrfs_put_block_group(block_group
);
10588 btrfs_put_block_group(block_group
);
10590 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
10596 ret
= btrfs_del_item(trans
, root
, path
);
10598 btrfs_free_path(path
);
10602 struct btrfs_trans_handle
*
10603 btrfs_start_trans_remove_block_group(struct btrfs_fs_info
*fs_info
,
10604 const u64 chunk_offset
)
10606 struct extent_map_tree
*em_tree
= &fs_info
->mapping_tree
.map_tree
;
10607 struct extent_map
*em
;
10608 struct map_lookup
*map
;
10609 unsigned int num_items
;
10611 read_lock(&em_tree
->lock
);
10612 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
10613 read_unlock(&em_tree
->lock
);
10614 ASSERT(em
&& em
->start
== chunk_offset
);
10617 * We need to reserve 3 + N units from the metadata space info in order
10618 * to remove a block group (done at btrfs_remove_chunk() and at
10619 * btrfs_remove_block_group()), which are used for:
10621 * 1 unit for adding the free space inode's orphan (located in the tree
10623 * 1 unit for deleting the block group item (located in the extent
10625 * 1 unit for deleting the free space item (located in tree of tree
10627 * N units for deleting N device extent items corresponding to each
10628 * stripe (located in the device tree).
10630 * In order to remove a block group we also need to reserve units in the
10631 * system space info in order to update the chunk tree (update one or
10632 * more device items and remove one chunk item), but this is done at
10633 * btrfs_remove_chunk() through a call to check_system_chunk().
10635 map
= em
->map_lookup
;
10636 num_items
= 3 + map
->num_stripes
;
10637 free_extent_map(em
);
10639 return btrfs_start_transaction_fallback_global_rsv(fs_info
->extent_root
,
10644 * Process the unused_bgs list and remove any that don't have any allocated
10645 * space inside of them.
10647 void btrfs_delete_unused_bgs(struct btrfs_fs_info
*fs_info
)
10649 struct btrfs_block_group_cache
*block_group
;
10650 struct btrfs_space_info
*space_info
;
10651 struct btrfs_trans_handle
*trans
;
10654 if (!test_bit(BTRFS_FS_OPEN
, &fs_info
->flags
))
10657 spin_lock(&fs_info
->unused_bgs_lock
);
10658 while (!list_empty(&fs_info
->unused_bgs
)) {
10662 block_group
= list_first_entry(&fs_info
->unused_bgs
,
10663 struct btrfs_block_group_cache
,
10665 list_del_init(&block_group
->bg_list
);
10667 space_info
= block_group
->space_info
;
10669 if (ret
|| btrfs_mixed_space_info(space_info
)) {
10670 btrfs_put_block_group(block_group
);
10673 spin_unlock(&fs_info
->unused_bgs_lock
);
10675 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
10677 /* Don't want to race with allocators so take the groups_sem */
10678 down_write(&space_info
->groups_sem
);
10679 spin_lock(&block_group
->lock
);
10680 if (block_group
->reserved
||
10681 btrfs_block_group_used(&block_group
->item
) ||
10683 list_is_singular(&block_group
->list
)) {
10685 * We want to bail if we made new allocations or have
10686 * outstanding allocations in this block group. We do
10687 * the ro check in case balance is currently acting on
10688 * this block group.
10690 spin_unlock(&block_group
->lock
);
10691 up_write(&space_info
->groups_sem
);
10694 spin_unlock(&block_group
->lock
);
10696 /* We don't want to force the issue, only flip if it's ok. */
10697 ret
= inc_block_group_ro(block_group
, 0);
10698 up_write(&space_info
->groups_sem
);
10705 * Want to do this before we do anything else so we can recover
10706 * properly if we fail to join the transaction.
10708 trans
= btrfs_start_trans_remove_block_group(fs_info
,
10709 block_group
->key
.objectid
);
10710 if (IS_ERR(trans
)) {
10711 btrfs_dec_block_group_ro(block_group
);
10712 ret
= PTR_ERR(trans
);
10717 * We could have pending pinned extents for this block group,
10718 * just delete them, we don't care about them anymore.
10720 start
= block_group
->key
.objectid
;
10721 end
= start
+ block_group
->key
.offset
- 1;
10723 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10724 * btrfs_finish_extent_commit(). If we are at transaction N,
10725 * another task might be running finish_extent_commit() for the
10726 * previous transaction N - 1, and have seen a range belonging
10727 * to the block group in freed_extents[] before we were able to
10728 * clear the whole block group range from freed_extents[]. This
10729 * means that task can lookup for the block group after we
10730 * unpinned it from freed_extents[] and removed it, leading to
10731 * a BUG_ON() at btrfs_unpin_extent_range().
10733 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
10734 ret
= clear_extent_bits(&fs_info
->freed_extents
[0], start
, end
,
10737 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10738 btrfs_dec_block_group_ro(block_group
);
10741 ret
= clear_extent_bits(&fs_info
->freed_extents
[1], start
, end
,
10744 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10745 btrfs_dec_block_group_ro(block_group
);
10748 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10750 /* Reset pinned so btrfs_put_block_group doesn't complain */
10751 spin_lock(&space_info
->lock
);
10752 spin_lock(&block_group
->lock
);
10754 space_info
->bytes_pinned
-= block_group
->pinned
;
10755 space_info
->bytes_readonly
+= block_group
->pinned
;
10756 percpu_counter_add(&space_info
->total_bytes_pinned
,
10757 -block_group
->pinned
);
10758 block_group
->pinned
= 0;
10760 spin_unlock(&block_group
->lock
);
10761 spin_unlock(&space_info
->lock
);
10763 /* DISCARD can flip during remount */
10764 trimming
= btrfs_test_opt(fs_info
, DISCARD
);
10766 /* Implicit trim during transaction commit. */
10768 btrfs_get_block_group_trimming(block_group
);
10771 * Btrfs_remove_chunk will abort the transaction if things go
10774 ret
= btrfs_remove_chunk(trans
, fs_info
,
10775 block_group
->key
.objectid
);
10779 btrfs_put_block_group_trimming(block_group
);
10784 * If we're not mounted with -odiscard, we can just forget
10785 * about this block group. Otherwise we'll need to wait
10786 * until transaction commit to do the actual discard.
10789 spin_lock(&fs_info
->unused_bgs_lock
);
10791 * A concurrent scrub might have added us to the list
10792 * fs_info->unused_bgs, so use a list_move operation
10793 * to add the block group to the deleted_bgs list.
10795 list_move(&block_group
->bg_list
,
10796 &trans
->transaction
->deleted_bgs
);
10797 spin_unlock(&fs_info
->unused_bgs_lock
);
10798 btrfs_get_block_group(block_group
);
10801 btrfs_end_transaction(trans
);
10803 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
10804 btrfs_put_block_group(block_group
);
10805 spin_lock(&fs_info
->unused_bgs_lock
);
10807 spin_unlock(&fs_info
->unused_bgs_lock
);
10810 int btrfs_init_space_info(struct btrfs_fs_info
*fs_info
)
10812 struct btrfs_space_info
*space_info
;
10813 struct btrfs_super_block
*disk_super
;
10819 disk_super
= fs_info
->super_copy
;
10820 if (!btrfs_super_root(disk_super
))
10823 features
= btrfs_super_incompat_flags(disk_super
);
10824 if (features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
10827 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
10828 ret
= create_space_info(fs_info
, flags
, &space_info
);
10833 flags
= BTRFS_BLOCK_GROUP_METADATA
| BTRFS_BLOCK_GROUP_DATA
;
10834 ret
= create_space_info(fs_info
, flags
, &space_info
);
10836 flags
= BTRFS_BLOCK_GROUP_METADATA
;
10837 ret
= create_space_info(fs_info
, flags
, &space_info
);
10841 flags
= BTRFS_BLOCK_GROUP_DATA
;
10842 ret
= create_space_info(fs_info
, flags
, &space_info
);
10848 int btrfs_error_unpin_extent_range(struct btrfs_fs_info
*fs_info
,
10849 u64 start
, u64 end
)
10851 return unpin_extent_range(fs_info
, start
, end
, false);
10855 * It used to be that old block groups would be left around forever.
10856 * Iterating over them would be enough to trim unused space. Since we
10857 * now automatically remove them, we also need to iterate over unallocated
10860 * We don't want a transaction for this since the discard may take a
10861 * substantial amount of time. We don't require that a transaction be
10862 * running, but we do need to take a running transaction into account
10863 * to ensure that we're not discarding chunks that were released in
10864 * the current transaction.
10866 * Holding the chunks lock will prevent other threads from allocating
10867 * or releasing chunks, but it won't prevent a running transaction
10868 * from committing and releasing the memory that the pending chunks
10869 * list head uses. For that, we need to take a reference to the
10872 static int btrfs_trim_free_extents(struct btrfs_device
*device
,
10873 u64 minlen
, u64
*trimmed
)
10875 u64 start
= 0, len
= 0;
10880 /* Not writeable = nothing to do. */
10881 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
))
10884 /* No free space = nothing to do. */
10885 if (device
->total_bytes
<= device
->bytes_used
)
10891 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
10892 struct btrfs_transaction
*trans
;
10895 ret
= mutex_lock_interruptible(&fs_info
->chunk_mutex
);
10899 down_read(&fs_info
->commit_root_sem
);
10901 spin_lock(&fs_info
->trans_lock
);
10902 trans
= fs_info
->running_transaction
;
10904 refcount_inc(&trans
->use_count
);
10905 spin_unlock(&fs_info
->trans_lock
);
10907 ret
= find_free_dev_extent_start(trans
, device
, minlen
, start
,
10910 btrfs_put_transaction(trans
);
10913 up_read(&fs_info
->commit_root_sem
);
10914 mutex_unlock(&fs_info
->chunk_mutex
);
10915 if (ret
== -ENOSPC
)
10920 ret
= btrfs_issue_discard(device
->bdev
, start
, len
, &bytes
);
10921 up_read(&fs_info
->commit_root_sem
);
10922 mutex_unlock(&fs_info
->chunk_mutex
);
10930 if (fatal_signal_pending(current
)) {
10931 ret
= -ERESTARTSYS
;
10941 int btrfs_trim_fs(struct btrfs_fs_info
*fs_info
, struct fstrim_range
*range
)
10943 struct btrfs_block_group_cache
*cache
= NULL
;
10944 struct btrfs_device
*device
;
10945 struct list_head
*devices
;
10950 u64 total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
10954 * try to trim all FS space, our block group may start from non-zero.
10956 if (range
->len
== total_bytes
)
10957 cache
= btrfs_lookup_first_block_group(fs_info
, range
->start
);
10959 cache
= btrfs_lookup_block_group(fs_info
, range
->start
);
10962 if (cache
->key
.objectid
>= (range
->start
+ range
->len
)) {
10963 btrfs_put_block_group(cache
);
10967 start
= max(range
->start
, cache
->key
.objectid
);
10968 end
= min(range
->start
+ range
->len
,
10969 cache
->key
.objectid
+ cache
->key
.offset
);
10971 if (end
- start
>= range
->minlen
) {
10972 if (!block_group_cache_done(cache
)) {
10973 ret
= cache_block_group(cache
, 0);
10975 btrfs_put_block_group(cache
);
10978 ret
= wait_block_group_cache_done(cache
);
10980 btrfs_put_block_group(cache
);
10984 ret
= btrfs_trim_block_group(cache
,
10990 trimmed
+= group_trimmed
;
10992 btrfs_put_block_group(cache
);
10997 cache
= next_block_group(fs_info
, cache
);
11000 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
11001 devices
= &fs_info
->fs_devices
->alloc_list
;
11002 list_for_each_entry(device
, devices
, dev_alloc_list
) {
11003 ret
= btrfs_trim_free_extents(device
, range
->minlen
,
11008 trimmed
+= group_trimmed
;
11010 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
11012 range
->len
= trimmed
;
11017 * btrfs_{start,end}_write_no_snapshotting() are similar to
11018 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11019 * data into the page cache through nocow before the subvolume is snapshoted,
11020 * but flush the data into disk after the snapshot creation, or to prevent
11021 * operations while snapshotting is ongoing and that cause the snapshot to be
11022 * inconsistent (writes followed by expanding truncates for example).
11024 void btrfs_end_write_no_snapshotting(struct btrfs_root
*root
)
11026 percpu_counter_dec(&root
->subv_writers
->counter
);
11028 * Make sure counter is updated before we wake up waiters.
11031 if (waitqueue_active(&root
->subv_writers
->wait
))
11032 wake_up(&root
->subv_writers
->wait
);
11035 int btrfs_start_write_no_snapshotting(struct btrfs_root
*root
)
11037 if (atomic_read(&root
->will_be_snapshotted
))
11040 percpu_counter_inc(&root
->subv_writers
->counter
);
11042 * Make sure counter is updated before we check for snapshot creation.
11045 if (atomic_read(&root
->will_be_snapshotted
)) {
11046 btrfs_end_write_no_snapshotting(root
);
11052 void btrfs_wait_for_snapshot_creation(struct btrfs_root
*root
)
11057 ret
= btrfs_start_write_no_snapshotting(root
);
11060 wait_on_atomic_t(&root
->will_be_snapshotted
, atomic_t_wait
,
11061 TASK_UNINTERRUPTIBLE
);