unify {de,}mangle_poll(), get rid of kernel-side POLL...
[cris-mirror.git] / fs / btrfs / extent-tree.c
blob05751a677da4fb2fd9a2eee3f3d90ad0071c1ebd
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
29 #include <linux/lockdep.h>
30 #include "hash.h"
31 #include "tree-log.h"
32 #include "disk-io.h"
33 #include "print-tree.h"
34 #include "volumes.h"
35 #include "raid56.h"
36 #include "locking.h"
37 #include "free-space-cache.h"
38 #include "free-space-tree.h"
39 #include "math.h"
40 #include "sysfs.h"
41 #include "qgroup.h"
42 #include "ref-verify.h"
44 #undef SCRAMBLE_DELAYED_REFS
47 * control flags for do_chunk_alloc's force field
48 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
49 * if we really need one.
51 * CHUNK_ALLOC_LIMITED means to only try and allocate one
52 * if we have very few chunks already allocated. This is
53 * used as part of the clustering code to help make sure
54 * we have a good pool of storage to cluster in, without
55 * filling the FS with empty chunks
57 * CHUNK_ALLOC_FORCE means it must try to allocate one
60 enum {
61 CHUNK_ALLOC_NO_FORCE = 0,
62 CHUNK_ALLOC_LIMITED = 1,
63 CHUNK_ALLOC_FORCE = 2,
66 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
67 struct btrfs_fs_info *fs_info,
68 struct btrfs_delayed_ref_node *node, u64 parent,
69 u64 root_objectid, u64 owner_objectid,
70 u64 owner_offset, int refs_to_drop,
71 struct btrfs_delayed_extent_op *extra_op);
72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73 struct extent_buffer *leaf,
74 struct btrfs_extent_item *ei);
75 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
76 struct btrfs_fs_info *fs_info,
77 u64 parent, u64 root_objectid,
78 u64 flags, u64 owner, u64 offset,
79 struct btrfs_key *ins, int ref_mod);
80 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
81 struct btrfs_fs_info *fs_info,
82 u64 parent, u64 root_objectid,
83 u64 flags, struct btrfs_disk_key *key,
84 int level, struct btrfs_key *ins);
85 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
86 struct btrfs_fs_info *fs_info, u64 flags,
87 int force);
88 static int find_next_key(struct btrfs_path *path, int level,
89 struct btrfs_key *key);
90 static void dump_space_info(struct btrfs_fs_info *fs_info,
91 struct btrfs_space_info *info, u64 bytes,
92 int dump_block_groups);
93 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
94 u64 num_bytes);
95 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
96 struct btrfs_space_info *space_info,
97 u64 num_bytes);
98 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
99 struct btrfs_space_info *space_info,
100 u64 num_bytes);
102 static noinline int
103 block_group_cache_done(struct btrfs_block_group_cache *cache)
105 smp_mb();
106 return cache->cached == BTRFS_CACHE_FINISHED ||
107 cache->cached == BTRFS_CACHE_ERROR;
110 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
112 return (cache->flags & bits) == bits;
115 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
117 atomic_inc(&cache->count);
120 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
122 if (atomic_dec_and_test(&cache->count)) {
123 WARN_ON(cache->pinned > 0);
124 WARN_ON(cache->reserved > 0);
127 * If not empty, someone is still holding mutex of
128 * full_stripe_lock, which can only be released by caller.
129 * And it will definitely cause use-after-free when caller
130 * tries to release full stripe lock.
132 * No better way to resolve, but only to warn.
134 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
135 kfree(cache->free_space_ctl);
136 kfree(cache);
141 * this adds the block group to the fs_info rb tree for the block group
142 * cache
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145 struct btrfs_block_group_cache *block_group)
147 struct rb_node **p;
148 struct rb_node *parent = NULL;
149 struct btrfs_block_group_cache *cache;
151 spin_lock(&info->block_group_cache_lock);
152 p = &info->block_group_cache_tree.rb_node;
154 while (*p) {
155 parent = *p;
156 cache = rb_entry(parent, struct btrfs_block_group_cache,
157 cache_node);
158 if (block_group->key.objectid < cache->key.objectid) {
159 p = &(*p)->rb_left;
160 } else if (block_group->key.objectid > cache->key.objectid) {
161 p = &(*p)->rb_right;
162 } else {
163 spin_unlock(&info->block_group_cache_lock);
164 return -EEXIST;
168 rb_link_node(&block_group->cache_node, parent, p);
169 rb_insert_color(&block_group->cache_node,
170 &info->block_group_cache_tree);
172 if (info->first_logical_byte > block_group->key.objectid)
173 info->first_logical_byte = block_group->key.objectid;
175 spin_unlock(&info->block_group_cache_lock);
177 return 0;
181 * This will return the block group at or after bytenr if contains is 0, else
182 * it will return the block group that contains the bytenr
184 static struct btrfs_block_group_cache *
185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 int contains)
188 struct btrfs_block_group_cache *cache, *ret = NULL;
189 struct rb_node *n;
190 u64 end, start;
192 spin_lock(&info->block_group_cache_lock);
193 n = info->block_group_cache_tree.rb_node;
195 while (n) {
196 cache = rb_entry(n, struct btrfs_block_group_cache,
197 cache_node);
198 end = cache->key.objectid + cache->key.offset - 1;
199 start = cache->key.objectid;
201 if (bytenr < start) {
202 if (!contains && (!ret || start < ret->key.objectid))
203 ret = cache;
204 n = n->rb_left;
205 } else if (bytenr > start) {
206 if (contains && bytenr <= end) {
207 ret = cache;
208 break;
210 n = n->rb_right;
211 } else {
212 ret = cache;
213 break;
216 if (ret) {
217 btrfs_get_block_group(ret);
218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 info->first_logical_byte = ret->key.objectid;
221 spin_unlock(&info->block_group_cache_lock);
223 return ret;
226 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
227 u64 start, u64 num_bytes)
229 u64 end = start + num_bytes - 1;
230 set_extent_bits(&fs_info->freed_extents[0],
231 start, end, EXTENT_UPTODATE);
232 set_extent_bits(&fs_info->freed_extents[1],
233 start, end, EXTENT_UPTODATE);
234 return 0;
237 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
238 struct btrfs_block_group_cache *cache)
240 u64 start, end;
242 start = cache->key.objectid;
243 end = start + cache->key.offset - 1;
245 clear_extent_bits(&fs_info->freed_extents[0],
246 start, end, EXTENT_UPTODATE);
247 clear_extent_bits(&fs_info->freed_extents[1],
248 start, end, EXTENT_UPTODATE);
251 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
252 struct btrfs_block_group_cache *cache)
254 u64 bytenr;
255 u64 *logical;
256 int stripe_len;
257 int i, nr, ret;
259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 cache->bytes_super += stripe_len;
262 ret = add_excluded_extent(fs_info, cache->key.objectid,
263 stripe_len);
264 if (ret)
265 return ret;
268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 bytenr = btrfs_sb_offset(i);
270 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
271 bytenr, 0, &logical, &nr, &stripe_len);
272 if (ret)
273 return ret;
275 while (nr--) {
276 u64 start, len;
278 if (logical[nr] > cache->key.objectid +
279 cache->key.offset)
280 continue;
282 if (logical[nr] + stripe_len <= cache->key.objectid)
283 continue;
285 start = logical[nr];
286 if (start < cache->key.objectid) {
287 start = cache->key.objectid;
288 len = (logical[nr] + stripe_len) - start;
289 } else {
290 len = min_t(u64, stripe_len,
291 cache->key.objectid +
292 cache->key.offset - start);
295 cache->bytes_super += len;
296 ret = add_excluded_extent(fs_info, start, len);
297 if (ret) {
298 kfree(logical);
299 return ret;
303 kfree(logical);
305 return 0;
308 static struct btrfs_caching_control *
309 get_caching_control(struct btrfs_block_group_cache *cache)
311 struct btrfs_caching_control *ctl;
313 spin_lock(&cache->lock);
314 if (!cache->caching_ctl) {
315 spin_unlock(&cache->lock);
316 return NULL;
319 ctl = cache->caching_ctl;
320 refcount_inc(&ctl->count);
321 spin_unlock(&cache->lock);
322 return ctl;
325 static void put_caching_control(struct btrfs_caching_control *ctl)
327 if (refcount_dec_and_test(&ctl->count))
328 kfree(ctl);
331 #ifdef CONFIG_BTRFS_DEBUG
332 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
334 struct btrfs_fs_info *fs_info = block_group->fs_info;
335 u64 start = block_group->key.objectid;
336 u64 len = block_group->key.offset;
337 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
338 fs_info->nodesize : fs_info->sectorsize;
339 u64 step = chunk << 1;
341 while (len > chunk) {
342 btrfs_remove_free_space(block_group, start, chunk);
343 start += step;
344 if (len < step)
345 len = 0;
346 else
347 len -= step;
350 #endif
353 * this is only called by cache_block_group, since we could have freed extents
354 * we need to check the pinned_extents for any extents that can't be used yet
355 * since their free space will be released as soon as the transaction commits.
357 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
358 struct btrfs_fs_info *info, u64 start, u64 end)
360 u64 extent_start, extent_end, size, total_added = 0;
361 int ret;
363 while (start < end) {
364 ret = find_first_extent_bit(info->pinned_extents, start,
365 &extent_start, &extent_end,
366 EXTENT_DIRTY | EXTENT_UPTODATE,
367 NULL);
368 if (ret)
369 break;
371 if (extent_start <= start) {
372 start = extent_end + 1;
373 } else if (extent_start > start && extent_start < end) {
374 size = extent_start - start;
375 total_added += size;
376 ret = btrfs_add_free_space(block_group, start,
377 size);
378 BUG_ON(ret); /* -ENOMEM or logic error */
379 start = extent_end + 1;
380 } else {
381 break;
385 if (start < end) {
386 size = end - start;
387 total_added += size;
388 ret = btrfs_add_free_space(block_group, start, size);
389 BUG_ON(ret); /* -ENOMEM or logic error */
392 return total_added;
395 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
397 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
398 struct btrfs_fs_info *fs_info = block_group->fs_info;
399 struct btrfs_root *extent_root = fs_info->extent_root;
400 struct btrfs_path *path;
401 struct extent_buffer *leaf;
402 struct btrfs_key key;
403 u64 total_found = 0;
404 u64 last = 0;
405 u32 nritems;
406 int ret;
407 bool wakeup = true;
409 path = btrfs_alloc_path();
410 if (!path)
411 return -ENOMEM;
413 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
415 #ifdef CONFIG_BTRFS_DEBUG
417 * If we're fragmenting we don't want to make anybody think we can
418 * allocate from this block group until we've had a chance to fragment
419 * the free space.
421 if (btrfs_should_fragment_free_space(block_group))
422 wakeup = false;
423 #endif
425 * We don't want to deadlock with somebody trying to allocate a new
426 * extent for the extent root while also trying to search the extent
427 * root to add free space. So we skip locking and search the commit
428 * root, since its read-only
430 path->skip_locking = 1;
431 path->search_commit_root = 1;
432 path->reada = READA_FORWARD;
434 key.objectid = last;
435 key.offset = 0;
436 key.type = BTRFS_EXTENT_ITEM_KEY;
438 next:
439 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
440 if (ret < 0)
441 goto out;
443 leaf = path->nodes[0];
444 nritems = btrfs_header_nritems(leaf);
446 while (1) {
447 if (btrfs_fs_closing(fs_info) > 1) {
448 last = (u64)-1;
449 break;
452 if (path->slots[0] < nritems) {
453 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
454 } else {
455 ret = find_next_key(path, 0, &key);
456 if (ret)
457 break;
459 if (need_resched() ||
460 rwsem_is_contended(&fs_info->commit_root_sem)) {
461 if (wakeup)
462 caching_ctl->progress = last;
463 btrfs_release_path(path);
464 up_read(&fs_info->commit_root_sem);
465 mutex_unlock(&caching_ctl->mutex);
466 cond_resched();
467 mutex_lock(&caching_ctl->mutex);
468 down_read(&fs_info->commit_root_sem);
469 goto next;
472 ret = btrfs_next_leaf(extent_root, path);
473 if (ret < 0)
474 goto out;
475 if (ret)
476 break;
477 leaf = path->nodes[0];
478 nritems = btrfs_header_nritems(leaf);
479 continue;
482 if (key.objectid < last) {
483 key.objectid = last;
484 key.offset = 0;
485 key.type = BTRFS_EXTENT_ITEM_KEY;
487 if (wakeup)
488 caching_ctl->progress = last;
489 btrfs_release_path(path);
490 goto next;
493 if (key.objectid < block_group->key.objectid) {
494 path->slots[0]++;
495 continue;
498 if (key.objectid >= block_group->key.objectid +
499 block_group->key.offset)
500 break;
502 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
503 key.type == BTRFS_METADATA_ITEM_KEY) {
504 total_found += add_new_free_space(block_group,
505 fs_info, last,
506 key.objectid);
507 if (key.type == BTRFS_METADATA_ITEM_KEY)
508 last = key.objectid +
509 fs_info->nodesize;
510 else
511 last = key.objectid + key.offset;
513 if (total_found > CACHING_CTL_WAKE_UP) {
514 total_found = 0;
515 if (wakeup)
516 wake_up(&caching_ctl->wait);
519 path->slots[0]++;
521 ret = 0;
523 total_found += add_new_free_space(block_group, fs_info, last,
524 block_group->key.objectid +
525 block_group->key.offset);
526 caching_ctl->progress = (u64)-1;
528 out:
529 btrfs_free_path(path);
530 return ret;
533 static noinline void caching_thread(struct btrfs_work *work)
535 struct btrfs_block_group_cache *block_group;
536 struct btrfs_fs_info *fs_info;
537 struct btrfs_caching_control *caching_ctl;
538 struct btrfs_root *extent_root;
539 int ret;
541 caching_ctl = container_of(work, struct btrfs_caching_control, work);
542 block_group = caching_ctl->block_group;
543 fs_info = block_group->fs_info;
544 extent_root = fs_info->extent_root;
546 mutex_lock(&caching_ctl->mutex);
547 down_read(&fs_info->commit_root_sem);
549 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
550 ret = load_free_space_tree(caching_ctl);
551 else
552 ret = load_extent_tree_free(caching_ctl);
554 spin_lock(&block_group->lock);
555 block_group->caching_ctl = NULL;
556 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
557 spin_unlock(&block_group->lock);
559 #ifdef CONFIG_BTRFS_DEBUG
560 if (btrfs_should_fragment_free_space(block_group)) {
561 u64 bytes_used;
563 spin_lock(&block_group->space_info->lock);
564 spin_lock(&block_group->lock);
565 bytes_used = block_group->key.offset -
566 btrfs_block_group_used(&block_group->item);
567 block_group->space_info->bytes_used += bytes_used >> 1;
568 spin_unlock(&block_group->lock);
569 spin_unlock(&block_group->space_info->lock);
570 fragment_free_space(block_group);
572 #endif
574 caching_ctl->progress = (u64)-1;
576 up_read(&fs_info->commit_root_sem);
577 free_excluded_extents(fs_info, block_group);
578 mutex_unlock(&caching_ctl->mutex);
580 wake_up(&caching_ctl->wait);
582 put_caching_control(caching_ctl);
583 btrfs_put_block_group(block_group);
586 static int cache_block_group(struct btrfs_block_group_cache *cache,
587 int load_cache_only)
589 DEFINE_WAIT(wait);
590 struct btrfs_fs_info *fs_info = cache->fs_info;
591 struct btrfs_caching_control *caching_ctl;
592 int ret = 0;
594 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
595 if (!caching_ctl)
596 return -ENOMEM;
598 INIT_LIST_HEAD(&caching_ctl->list);
599 mutex_init(&caching_ctl->mutex);
600 init_waitqueue_head(&caching_ctl->wait);
601 caching_ctl->block_group = cache;
602 caching_ctl->progress = cache->key.objectid;
603 refcount_set(&caching_ctl->count, 1);
604 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
605 caching_thread, NULL, NULL);
607 spin_lock(&cache->lock);
609 * This should be a rare occasion, but this could happen I think in the
610 * case where one thread starts to load the space cache info, and then
611 * some other thread starts a transaction commit which tries to do an
612 * allocation while the other thread is still loading the space cache
613 * info. The previous loop should have kept us from choosing this block
614 * group, but if we've moved to the state where we will wait on caching
615 * block groups we need to first check if we're doing a fast load here,
616 * so we can wait for it to finish, otherwise we could end up allocating
617 * from a block group who's cache gets evicted for one reason or
618 * another.
620 while (cache->cached == BTRFS_CACHE_FAST) {
621 struct btrfs_caching_control *ctl;
623 ctl = cache->caching_ctl;
624 refcount_inc(&ctl->count);
625 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
626 spin_unlock(&cache->lock);
628 schedule();
630 finish_wait(&ctl->wait, &wait);
631 put_caching_control(ctl);
632 spin_lock(&cache->lock);
635 if (cache->cached != BTRFS_CACHE_NO) {
636 spin_unlock(&cache->lock);
637 kfree(caching_ctl);
638 return 0;
640 WARN_ON(cache->caching_ctl);
641 cache->caching_ctl = caching_ctl;
642 cache->cached = BTRFS_CACHE_FAST;
643 spin_unlock(&cache->lock);
645 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
646 mutex_lock(&caching_ctl->mutex);
647 ret = load_free_space_cache(fs_info, cache);
649 spin_lock(&cache->lock);
650 if (ret == 1) {
651 cache->caching_ctl = NULL;
652 cache->cached = BTRFS_CACHE_FINISHED;
653 cache->last_byte_to_unpin = (u64)-1;
654 caching_ctl->progress = (u64)-1;
655 } else {
656 if (load_cache_only) {
657 cache->caching_ctl = NULL;
658 cache->cached = BTRFS_CACHE_NO;
659 } else {
660 cache->cached = BTRFS_CACHE_STARTED;
661 cache->has_caching_ctl = 1;
664 spin_unlock(&cache->lock);
665 #ifdef CONFIG_BTRFS_DEBUG
666 if (ret == 1 &&
667 btrfs_should_fragment_free_space(cache)) {
668 u64 bytes_used;
670 spin_lock(&cache->space_info->lock);
671 spin_lock(&cache->lock);
672 bytes_used = cache->key.offset -
673 btrfs_block_group_used(&cache->item);
674 cache->space_info->bytes_used += bytes_used >> 1;
675 spin_unlock(&cache->lock);
676 spin_unlock(&cache->space_info->lock);
677 fragment_free_space(cache);
679 #endif
680 mutex_unlock(&caching_ctl->mutex);
682 wake_up(&caching_ctl->wait);
683 if (ret == 1) {
684 put_caching_control(caching_ctl);
685 free_excluded_extents(fs_info, cache);
686 return 0;
688 } else {
690 * We're either using the free space tree or no caching at all.
691 * Set cached to the appropriate value and wakeup any waiters.
693 spin_lock(&cache->lock);
694 if (load_cache_only) {
695 cache->caching_ctl = NULL;
696 cache->cached = BTRFS_CACHE_NO;
697 } else {
698 cache->cached = BTRFS_CACHE_STARTED;
699 cache->has_caching_ctl = 1;
701 spin_unlock(&cache->lock);
702 wake_up(&caching_ctl->wait);
705 if (load_cache_only) {
706 put_caching_control(caching_ctl);
707 return 0;
710 down_write(&fs_info->commit_root_sem);
711 refcount_inc(&caching_ctl->count);
712 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
713 up_write(&fs_info->commit_root_sem);
715 btrfs_get_block_group(cache);
717 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
719 return ret;
723 * return the block group that starts at or after bytenr
725 static struct btrfs_block_group_cache *
726 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
728 return block_group_cache_tree_search(info, bytenr, 0);
732 * return the block group that contains the given bytenr
734 struct btrfs_block_group_cache *btrfs_lookup_block_group(
735 struct btrfs_fs_info *info,
736 u64 bytenr)
738 return block_group_cache_tree_search(info, bytenr, 1);
741 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
742 u64 flags)
744 struct list_head *head = &info->space_info;
745 struct btrfs_space_info *found;
747 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
749 rcu_read_lock();
750 list_for_each_entry_rcu(found, head, list) {
751 if (found->flags & flags) {
752 rcu_read_unlock();
753 return found;
756 rcu_read_unlock();
757 return NULL;
760 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
761 u64 owner, u64 root_objectid)
763 struct btrfs_space_info *space_info;
764 u64 flags;
766 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
767 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
768 flags = BTRFS_BLOCK_GROUP_SYSTEM;
769 else
770 flags = BTRFS_BLOCK_GROUP_METADATA;
771 } else {
772 flags = BTRFS_BLOCK_GROUP_DATA;
775 space_info = __find_space_info(fs_info, flags);
776 ASSERT(space_info);
777 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
781 * after adding space to the filesystem, we need to clear the full flags
782 * on all the space infos.
784 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
786 struct list_head *head = &info->space_info;
787 struct btrfs_space_info *found;
789 rcu_read_lock();
790 list_for_each_entry_rcu(found, head, list)
791 found->full = 0;
792 rcu_read_unlock();
795 /* simple helper to search for an existing data extent at a given offset */
796 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
798 int ret;
799 struct btrfs_key key;
800 struct btrfs_path *path;
802 path = btrfs_alloc_path();
803 if (!path)
804 return -ENOMEM;
806 key.objectid = start;
807 key.offset = len;
808 key.type = BTRFS_EXTENT_ITEM_KEY;
809 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
810 btrfs_free_path(path);
811 return ret;
815 * helper function to lookup reference count and flags of a tree block.
817 * the head node for delayed ref is used to store the sum of all the
818 * reference count modifications queued up in the rbtree. the head
819 * node may also store the extent flags to set. This way you can check
820 * to see what the reference count and extent flags would be if all of
821 * the delayed refs are not processed.
823 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
824 struct btrfs_fs_info *fs_info, u64 bytenr,
825 u64 offset, int metadata, u64 *refs, u64 *flags)
827 struct btrfs_delayed_ref_head *head;
828 struct btrfs_delayed_ref_root *delayed_refs;
829 struct btrfs_path *path;
830 struct btrfs_extent_item *ei;
831 struct extent_buffer *leaf;
832 struct btrfs_key key;
833 u32 item_size;
834 u64 num_refs;
835 u64 extent_flags;
836 int ret;
839 * If we don't have skinny metadata, don't bother doing anything
840 * different
842 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
843 offset = fs_info->nodesize;
844 metadata = 0;
847 path = btrfs_alloc_path();
848 if (!path)
849 return -ENOMEM;
851 if (!trans) {
852 path->skip_locking = 1;
853 path->search_commit_root = 1;
856 search_again:
857 key.objectid = bytenr;
858 key.offset = offset;
859 if (metadata)
860 key.type = BTRFS_METADATA_ITEM_KEY;
861 else
862 key.type = BTRFS_EXTENT_ITEM_KEY;
864 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
865 if (ret < 0)
866 goto out_free;
868 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
869 if (path->slots[0]) {
870 path->slots[0]--;
871 btrfs_item_key_to_cpu(path->nodes[0], &key,
872 path->slots[0]);
873 if (key.objectid == bytenr &&
874 key.type == BTRFS_EXTENT_ITEM_KEY &&
875 key.offset == fs_info->nodesize)
876 ret = 0;
880 if (ret == 0) {
881 leaf = path->nodes[0];
882 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
883 if (item_size >= sizeof(*ei)) {
884 ei = btrfs_item_ptr(leaf, path->slots[0],
885 struct btrfs_extent_item);
886 num_refs = btrfs_extent_refs(leaf, ei);
887 extent_flags = btrfs_extent_flags(leaf, ei);
888 } else {
889 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
890 struct btrfs_extent_item_v0 *ei0;
891 BUG_ON(item_size != sizeof(*ei0));
892 ei0 = btrfs_item_ptr(leaf, path->slots[0],
893 struct btrfs_extent_item_v0);
894 num_refs = btrfs_extent_refs_v0(leaf, ei0);
895 /* FIXME: this isn't correct for data */
896 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
897 #else
898 BUG();
899 #endif
901 BUG_ON(num_refs == 0);
902 } else {
903 num_refs = 0;
904 extent_flags = 0;
905 ret = 0;
908 if (!trans)
909 goto out;
911 delayed_refs = &trans->transaction->delayed_refs;
912 spin_lock(&delayed_refs->lock);
913 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
914 if (head) {
915 if (!mutex_trylock(&head->mutex)) {
916 refcount_inc(&head->refs);
917 spin_unlock(&delayed_refs->lock);
919 btrfs_release_path(path);
922 * Mutex was contended, block until it's released and try
923 * again
925 mutex_lock(&head->mutex);
926 mutex_unlock(&head->mutex);
927 btrfs_put_delayed_ref_head(head);
928 goto search_again;
930 spin_lock(&head->lock);
931 if (head->extent_op && head->extent_op->update_flags)
932 extent_flags |= head->extent_op->flags_to_set;
933 else
934 BUG_ON(num_refs == 0);
936 num_refs += head->ref_mod;
937 spin_unlock(&head->lock);
938 mutex_unlock(&head->mutex);
940 spin_unlock(&delayed_refs->lock);
941 out:
942 WARN_ON(num_refs == 0);
943 if (refs)
944 *refs = num_refs;
945 if (flags)
946 *flags = extent_flags;
947 out_free:
948 btrfs_free_path(path);
949 return ret;
953 * Back reference rules. Back refs have three main goals:
955 * 1) differentiate between all holders of references to an extent so that
956 * when a reference is dropped we can make sure it was a valid reference
957 * before freeing the extent.
959 * 2) Provide enough information to quickly find the holders of an extent
960 * if we notice a given block is corrupted or bad.
962 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
963 * maintenance. This is actually the same as #2, but with a slightly
964 * different use case.
966 * There are two kinds of back refs. The implicit back refs is optimized
967 * for pointers in non-shared tree blocks. For a given pointer in a block,
968 * back refs of this kind provide information about the block's owner tree
969 * and the pointer's key. These information allow us to find the block by
970 * b-tree searching. The full back refs is for pointers in tree blocks not
971 * referenced by their owner trees. The location of tree block is recorded
972 * in the back refs. Actually the full back refs is generic, and can be
973 * used in all cases the implicit back refs is used. The major shortcoming
974 * of the full back refs is its overhead. Every time a tree block gets
975 * COWed, we have to update back refs entry for all pointers in it.
977 * For a newly allocated tree block, we use implicit back refs for
978 * pointers in it. This means most tree related operations only involve
979 * implicit back refs. For a tree block created in old transaction, the
980 * only way to drop a reference to it is COW it. So we can detect the
981 * event that tree block loses its owner tree's reference and do the
982 * back refs conversion.
984 * When a tree block is COWed through a tree, there are four cases:
986 * The reference count of the block is one and the tree is the block's
987 * owner tree. Nothing to do in this case.
989 * The reference count of the block is one and the tree is not the
990 * block's owner tree. In this case, full back refs is used for pointers
991 * in the block. Remove these full back refs, add implicit back refs for
992 * every pointers in the new block.
994 * The reference count of the block is greater than one and the tree is
995 * the block's owner tree. In this case, implicit back refs is used for
996 * pointers in the block. Add full back refs for every pointers in the
997 * block, increase lower level extents' reference counts. The original
998 * implicit back refs are entailed to the new block.
1000 * The reference count of the block is greater than one and the tree is
1001 * not the block's owner tree. Add implicit back refs for every pointer in
1002 * the new block, increase lower level extents' reference count.
1004 * Back Reference Key composing:
1006 * The key objectid corresponds to the first byte in the extent,
1007 * The key type is used to differentiate between types of back refs.
1008 * There are different meanings of the key offset for different types
1009 * of back refs.
1011 * File extents can be referenced by:
1013 * - multiple snapshots, subvolumes, or different generations in one subvol
1014 * - different files inside a single subvolume
1015 * - different offsets inside a file (bookend extents in file.c)
1017 * The extent ref structure for the implicit back refs has fields for:
1019 * - Objectid of the subvolume root
1020 * - objectid of the file holding the reference
1021 * - original offset in the file
1022 * - how many bookend extents
1024 * The key offset for the implicit back refs is hash of the first
1025 * three fields.
1027 * The extent ref structure for the full back refs has field for:
1029 * - number of pointers in the tree leaf
1031 * The key offset for the implicit back refs is the first byte of
1032 * the tree leaf
1034 * When a file extent is allocated, The implicit back refs is used.
1035 * the fields are filled in:
1037 * (root_key.objectid, inode objectid, offset in file, 1)
1039 * When a file extent is removed file truncation, we find the
1040 * corresponding implicit back refs and check the following fields:
1042 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1044 * Btree extents can be referenced by:
1046 * - Different subvolumes
1048 * Both the implicit back refs and the full back refs for tree blocks
1049 * only consist of key. The key offset for the implicit back refs is
1050 * objectid of block's owner tree. The key offset for the full back refs
1051 * is the first byte of parent block.
1053 * When implicit back refs is used, information about the lowest key and
1054 * level of the tree block are required. These information are stored in
1055 * tree block info structure.
1058 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1059 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1060 struct btrfs_fs_info *fs_info,
1061 struct btrfs_path *path,
1062 u64 owner, u32 extra_size)
1064 struct btrfs_root *root = fs_info->extent_root;
1065 struct btrfs_extent_item *item;
1066 struct btrfs_extent_item_v0 *ei0;
1067 struct btrfs_extent_ref_v0 *ref0;
1068 struct btrfs_tree_block_info *bi;
1069 struct extent_buffer *leaf;
1070 struct btrfs_key key;
1071 struct btrfs_key found_key;
1072 u32 new_size = sizeof(*item);
1073 u64 refs;
1074 int ret;
1076 leaf = path->nodes[0];
1077 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1079 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1080 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1081 struct btrfs_extent_item_v0);
1082 refs = btrfs_extent_refs_v0(leaf, ei0);
1084 if (owner == (u64)-1) {
1085 while (1) {
1086 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1087 ret = btrfs_next_leaf(root, path);
1088 if (ret < 0)
1089 return ret;
1090 BUG_ON(ret > 0); /* Corruption */
1091 leaf = path->nodes[0];
1093 btrfs_item_key_to_cpu(leaf, &found_key,
1094 path->slots[0]);
1095 BUG_ON(key.objectid != found_key.objectid);
1096 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1097 path->slots[0]++;
1098 continue;
1100 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1101 struct btrfs_extent_ref_v0);
1102 owner = btrfs_ref_objectid_v0(leaf, ref0);
1103 break;
1106 btrfs_release_path(path);
1108 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1109 new_size += sizeof(*bi);
1111 new_size -= sizeof(*ei0);
1112 ret = btrfs_search_slot(trans, root, &key, path,
1113 new_size + extra_size, 1);
1114 if (ret < 0)
1115 return ret;
1116 BUG_ON(ret); /* Corruption */
1118 btrfs_extend_item(fs_info, path, new_size);
1120 leaf = path->nodes[0];
1121 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1122 btrfs_set_extent_refs(leaf, item, refs);
1123 /* FIXME: get real generation */
1124 btrfs_set_extent_generation(leaf, item, 0);
1125 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1126 btrfs_set_extent_flags(leaf, item,
1127 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1128 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1129 bi = (struct btrfs_tree_block_info *)(item + 1);
1130 /* FIXME: get first key of the block */
1131 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1132 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1133 } else {
1134 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1136 btrfs_mark_buffer_dirty(leaf);
1137 return 0;
1139 #endif
1142 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1143 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1144 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1146 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1147 struct btrfs_extent_inline_ref *iref,
1148 enum btrfs_inline_ref_type is_data)
1150 int type = btrfs_extent_inline_ref_type(eb, iref);
1151 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1153 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1154 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1155 type == BTRFS_SHARED_DATA_REF_KEY ||
1156 type == BTRFS_EXTENT_DATA_REF_KEY) {
1157 if (is_data == BTRFS_REF_TYPE_BLOCK) {
1158 if (type == BTRFS_TREE_BLOCK_REF_KEY)
1159 return type;
1160 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1161 ASSERT(eb->fs_info);
1163 * Every shared one has parent tree
1164 * block, which must be aligned to
1165 * nodesize.
1167 if (offset &&
1168 IS_ALIGNED(offset, eb->fs_info->nodesize))
1169 return type;
1171 } else if (is_data == BTRFS_REF_TYPE_DATA) {
1172 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1173 return type;
1174 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1175 ASSERT(eb->fs_info);
1177 * Every shared one has parent tree
1178 * block, which must be aligned to
1179 * nodesize.
1181 if (offset &&
1182 IS_ALIGNED(offset, eb->fs_info->nodesize))
1183 return type;
1185 } else {
1186 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1187 return type;
1191 btrfs_print_leaf((struct extent_buffer *)eb);
1192 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1193 eb->start, type);
1194 WARN_ON(1);
1196 return BTRFS_REF_TYPE_INVALID;
1199 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1201 u32 high_crc = ~(u32)0;
1202 u32 low_crc = ~(u32)0;
1203 __le64 lenum;
1205 lenum = cpu_to_le64(root_objectid);
1206 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1207 lenum = cpu_to_le64(owner);
1208 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1209 lenum = cpu_to_le64(offset);
1210 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1212 return ((u64)high_crc << 31) ^ (u64)low_crc;
1215 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1216 struct btrfs_extent_data_ref *ref)
1218 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1219 btrfs_extent_data_ref_objectid(leaf, ref),
1220 btrfs_extent_data_ref_offset(leaf, ref));
1223 static int match_extent_data_ref(struct extent_buffer *leaf,
1224 struct btrfs_extent_data_ref *ref,
1225 u64 root_objectid, u64 owner, u64 offset)
1227 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1228 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1229 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1230 return 0;
1231 return 1;
1234 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1235 struct btrfs_fs_info *fs_info,
1236 struct btrfs_path *path,
1237 u64 bytenr, u64 parent,
1238 u64 root_objectid,
1239 u64 owner, u64 offset)
1241 struct btrfs_root *root = fs_info->extent_root;
1242 struct btrfs_key key;
1243 struct btrfs_extent_data_ref *ref;
1244 struct extent_buffer *leaf;
1245 u32 nritems;
1246 int ret;
1247 int recow;
1248 int err = -ENOENT;
1250 key.objectid = bytenr;
1251 if (parent) {
1252 key.type = BTRFS_SHARED_DATA_REF_KEY;
1253 key.offset = parent;
1254 } else {
1255 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1256 key.offset = hash_extent_data_ref(root_objectid,
1257 owner, offset);
1259 again:
1260 recow = 0;
1261 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1262 if (ret < 0) {
1263 err = ret;
1264 goto fail;
1267 if (parent) {
1268 if (!ret)
1269 return 0;
1270 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1271 key.type = BTRFS_EXTENT_REF_V0_KEY;
1272 btrfs_release_path(path);
1273 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1274 if (ret < 0) {
1275 err = ret;
1276 goto fail;
1278 if (!ret)
1279 return 0;
1280 #endif
1281 goto fail;
1284 leaf = path->nodes[0];
1285 nritems = btrfs_header_nritems(leaf);
1286 while (1) {
1287 if (path->slots[0] >= nritems) {
1288 ret = btrfs_next_leaf(root, path);
1289 if (ret < 0)
1290 err = ret;
1291 if (ret)
1292 goto fail;
1294 leaf = path->nodes[0];
1295 nritems = btrfs_header_nritems(leaf);
1296 recow = 1;
1299 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1300 if (key.objectid != bytenr ||
1301 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1302 goto fail;
1304 ref = btrfs_item_ptr(leaf, path->slots[0],
1305 struct btrfs_extent_data_ref);
1307 if (match_extent_data_ref(leaf, ref, root_objectid,
1308 owner, offset)) {
1309 if (recow) {
1310 btrfs_release_path(path);
1311 goto again;
1313 err = 0;
1314 break;
1316 path->slots[0]++;
1318 fail:
1319 return err;
1322 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1323 struct btrfs_fs_info *fs_info,
1324 struct btrfs_path *path,
1325 u64 bytenr, u64 parent,
1326 u64 root_objectid, u64 owner,
1327 u64 offset, int refs_to_add)
1329 struct btrfs_root *root = fs_info->extent_root;
1330 struct btrfs_key key;
1331 struct extent_buffer *leaf;
1332 u32 size;
1333 u32 num_refs;
1334 int ret;
1336 key.objectid = bytenr;
1337 if (parent) {
1338 key.type = BTRFS_SHARED_DATA_REF_KEY;
1339 key.offset = parent;
1340 size = sizeof(struct btrfs_shared_data_ref);
1341 } else {
1342 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1343 key.offset = hash_extent_data_ref(root_objectid,
1344 owner, offset);
1345 size = sizeof(struct btrfs_extent_data_ref);
1348 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1349 if (ret && ret != -EEXIST)
1350 goto fail;
1352 leaf = path->nodes[0];
1353 if (parent) {
1354 struct btrfs_shared_data_ref *ref;
1355 ref = btrfs_item_ptr(leaf, path->slots[0],
1356 struct btrfs_shared_data_ref);
1357 if (ret == 0) {
1358 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1359 } else {
1360 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1361 num_refs += refs_to_add;
1362 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1364 } else {
1365 struct btrfs_extent_data_ref *ref;
1366 while (ret == -EEXIST) {
1367 ref = btrfs_item_ptr(leaf, path->slots[0],
1368 struct btrfs_extent_data_ref);
1369 if (match_extent_data_ref(leaf, ref, root_objectid,
1370 owner, offset))
1371 break;
1372 btrfs_release_path(path);
1373 key.offset++;
1374 ret = btrfs_insert_empty_item(trans, root, path, &key,
1375 size);
1376 if (ret && ret != -EEXIST)
1377 goto fail;
1379 leaf = path->nodes[0];
1381 ref = btrfs_item_ptr(leaf, path->slots[0],
1382 struct btrfs_extent_data_ref);
1383 if (ret == 0) {
1384 btrfs_set_extent_data_ref_root(leaf, ref,
1385 root_objectid);
1386 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1387 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1388 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1389 } else {
1390 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1391 num_refs += refs_to_add;
1392 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1395 btrfs_mark_buffer_dirty(leaf);
1396 ret = 0;
1397 fail:
1398 btrfs_release_path(path);
1399 return ret;
1402 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1403 struct btrfs_fs_info *fs_info,
1404 struct btrfs_path *path,
1405 int refs_to_drop, int *last_ref)
1407 struct btrfs_key key;
1408 struct btrfs_extent_data_ref *ref1 = NULL;
1409 struct btrfs_shared_data_ref *ref2 = NULL;
1410 struct extent_buffer *leaf;
1411 u32 num_refs = 0;
1412 int ret = 0;
1414 leaf = path->nodes[0];
1415 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1417 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1418 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1419 struct btrfs_extent_data_ref);
1420 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1421 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1422 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1423 struct btrfs_shared_data_ref);
1424 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1425 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1426 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1427 struct btrfs_extent_ref_v0 *ref0;
1428 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1429 struct btrfs_extent_ref_v0);
1430 num_refs = btrfs_ref_count_v0(leaf, ref0);
1431 #endif
1432 } else {
1433 BUG();
1436 BUG_ON(num_refs < refs_to_drop);
1437 num_refs -= refs_to_drop;
1439 if (num_refs == 0) {
1440 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1441 *last_ref = 1;
1442 } else {
1443 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1444 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1445 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1446 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1447 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1448 else {
1449 struct btrfs_extent_ref_v0 *ref0;
1450 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1451 struct btrfs_extent_ref_v0);
1452 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1454 #endif
1455 btrfs_mark_buffer_dirty(leaf);
1457 return ret;
1460 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1461 struct btrfs_extent_inline_ref *iref)
1463 struct btrfs_key key;
1464 struct extent_buffer *leaf;
1465 struct btrfs_extent_data_ref *ref1;
1466 struct btrfs_shared_data_ref *ref2;
1467 u32 num_refs = 0;
1468 int type;
1470 leaf = path->nodes[0];
1471 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1472 if (iref) {
1474 * If type is invalid, we should have bailed out earlier than
1475 * this call.
1477 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1478 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1479 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1480 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1481 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1482 } else {
1483 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1484 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1486 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1487 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1488 struct btrfs_extent_data_ref);
1489 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1490 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1491 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1492 struct btrfs_shared_data_ref);
1493 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1494 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1495 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1496 struct btrfs_extent_ref_v0 *ref0;
1497 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1498 struct btrfs_extent_ref_v0);
1499 num_refs = btrfs_ref_count_v0(leaf, ref0);
1500 #endif
1501 } else {
1502 WARN_ON(1);
1504 return num_refs;
1507 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1508 struct btrfs_fs_info *fs_info,
1509 struct btrfs_path *path,
1510 u64 bytenr, u64 parent,
1511 u64 root_objectid)
1513 struct btrfs_root *root = fs_info->extent_root;
1514 struct btrfs_key key;
1515 int ret;
1517 key.objectid = bytenr;
1518 if (parent) {
1519 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1520 key.offset = parent;
1521 } else {
1522 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1523 key.offset = root_objectid;
1526 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1527 if (ret > 0)
1528 ret = -ENOENT;
1529 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1530 if (ret == -ENOENT && parent) {
1531 btrfs_release_path(path);
1532 key.type = BTRFS_EXTENT_REF_V0_KEY;
1533 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1534 if (ret > 0)
1535 ret = -ENOENT;
1537 #endif
1538 return ret;
1541 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1542 struct btrfs_fs_info *fs_info,
1543 struct btrfs_path *path,
1544 u64 bytenr, u64 parent,
1545 u64 root_objectid)
1547 struct btrfs_key key;
1548 int ret;
1550 key.objectid = bytenr;
1551 if (parent) {
1552 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1553 key.offset = parent;
1554 } else {
1555 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1556 key.offset = root_objectid;
1559 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1560 path, &key, 0);
1561 btrfs_release_path(path);
1562 return ret;
1565 static inline int extent_ref_type(u64 parent, u64 owner)
1567 int type;
1568 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1569 if (parent > 0)
1570 type = BTRFS_SHARED_BLOCK_REF_KEY;
1571 else
1572 type = BTRFS_TREE_BLOCK_REF_KEY;
1573 } else {
1574 if (parent > 0)
1575 type = BTRFS_SHARED_DATA_REF_KEY;
1576 else
1577 type = BTRFS_EXTENT_DATA_REF_KEY;
1579 return type;
1582 static int find_next_key(struct btrfs_path *path, int level,
1583 struct btrfs_key *key)
1586 for (; level < BTRFS_MAX_LEVEL; level++) {
1587 if (!path->nodes[level])
1588 break;
1589 if (path->slots[level] + 1 >=
1590 btrfs_header_nritems(path->nodes[level]))
1591 continue;
1592 if (level == 0)
1593 btrfs_item_key_to_cpu(path->nodes[level], key,
1594 path->slots[level] + 1);
1595 else
1596 btrfs_node_key_to_cpu(path->nodes[level], key,
1597 path->slots[level] + 1);
1598 return 0;
1600 return 1;
1604 * look for inline back ref. if back ref is found, *ref_ret is set
1605 * to the address of inline back ref, and 0 is returned.
1607 * if back ref isn't found, *ref_ret is set to the address where it
1608 * should be inserted, and -ENOENT is returned.
1610 * if insert is true and there are too many inline back refs, the path
1611 * points to the extent item, and -EAGAIN is returned.
1613 * NOTE: inline back refs are ordered in the same way that back ref
1614 * items in the tree are ordered.
1616 static noinline_for_stack
1617 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1618 struct btrfs_fs_info *fs_info,
1619 struct btrfs_path *path,
1620 struct btrfs_extent_inline_ref **ref_ret,
1621 u64 bytenr, u64 num_bytes,
1622 u64 parent, u64 root_objectid,
1623 u64 owner, u64 offset, int insert)
1625 struct btrfs_root *root = fs_info->extent_root;
1626 struct btrfs_key key;
1627 struct extent_buffer *leaf;
1628 struct btrfs_extent_item *ei;
1629 struct btrfs_extent_inline_ref *iref;
1630 u64 flags;
1631 u64 item_size;
1632 unsigned long ptr;
1633 unsigned long end;
1634 int extra_size;
1635 int type;
1636 int want;
1637 int ret;
1638 int err = 0;
1639 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1640 int needed;
1642 key.objectid = bytenr;
1643 key.type = BTRFS_EXTENT_ITEM_KEY;
1644 key.offset = num_bytes;
1646 want = extent_ref_type(parent, owner);
1647 if (insert) {
1648 extra_size = btrfs_extent_inline_ref_size(want);
1649 path->keep_locks = 1;
1650 } else
1651 extra_size = -1;
1654 * Owner is our parent level, so we can just add one to get the level
1655 * for the block we are interested in.
1657 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1658 key.type = BTRFS_METADATA_ITEM_KEY;
1659 key.offset = owner;
1662 again:
1663 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1664 if (ret < 0) {
1665 err = ret;
1666 goto out;
1670 * We may be a newly converted file system which still has the old fat
1671 * extent entries for metadata, so try and see if we have one of those.
1673 if (ret > 0 && skinny_metadata) {
1674 skinny_metadata = false;
1675 if (path->slots[0]) {
1676 path->slots[0]--;
1677 btrfs_item_key_to_cpu(path->nodes[0], &key,
1678 path->slots[0]);
1679 if (key.objectid == bytenr &&
1680 key.type == BTRFS_EXTENT_ITEM_KEY &&
1681 key.offset == num_bytes)
1682 ret = 0;
1684 if (ret) {
1685 key.objectid = bytenr;
1686 key.type = BTRFS_EXTENT_ITEM_KEY;
1687 key.offset = num_bytes;
1688 btrfs_release_path(path);
1689 goto again;
1693 if (ret && !insert) {
1694 err = -ENOENT;
1695 goto out;
1696 } else if (WARN_ON(ret)) {
1697 err = -EIO;
1698 goto out;
1701 leaf = path->nodes[0];
1702 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1703 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1704 if (item_size < sizeof(*ei)) {
1705 if (!insert) {
1706 err = -ENOENT;
1707 goto out;
1709 ret = convert_extent_item_v0(trans, fs_info, path, owner,
1710 extra_size);
1711 if (ret < 0) {
1712 err = ret;
1713 goto out;
1715 leaf = path->nodes[0];
1716 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1718 #endif
1719 BUG_ON(item_size < sizeof(*ei));
1721 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1722 flags = btrfs_extent_flags(leaf, ei);
1724 ptr = (unsigned long)(ei + 1);
1725 end = (unsigned long)ei + item_size;
1727 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1728 ptr += sizeof(struct btrfs_tree_block_info);
1729 BUG_ON(ptr > end);
1732 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1733 needed = BTRFS_REF_TYPE_DATA;
1734 else
1735 needed = BTRFS_REF_TYPE_BLOCK;
1737 err = -ENOENT;
1738 while (1) {
1739 if (ptr >= end) {
1740 WARN_ON(ptr > end);
1741 break;
1743 iref = (struct btrfs_extent_inline_ref *)ptr;
1744 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1745 if (type == BTRFS_REF_TYPE_INVALID) {
1746 err = -EINVAL;
1747 goto out;
1750 if (want < type)
1751 break;
1752 if (want > type) {
1753 ptr += btrfs_extent_inline_ref_size(type);
1754 continue;
1757 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1758 struct btrfs_extent_data_ref *dref;
1759 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1760 if (match_extent_data_ref(leaf, dref, root_objectid,
1761 owner, offset)) {
1762 err = 0;
1763 break;
1765 if (hash_extent_data_ref_item(leaf, dref) <
1766 hash_extent_data_ref(root_objectid, owner, offset))
1767 break;
1768 } else {
1769 u64 ref_offset;
1770 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1771 if (parent > 0) {
1772 if (parent == ref_offset) {
1773 err = 0;
1774 break;
1776 if (ref_offset < parent)
1777 break;
1778 } else {
1779 if (root_objectid == ref_offset) {
1780 err = 0;
1781 break;
1783 if (ref_offset < root_objectid)
1784 break;
1787 ptr += btrfs_extent_inline_ref_size(type);
1789 if (err == -ENOENT && insert) {
1790 if (item_size + extra_size >=
1791 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1792 err = -EAGAIN;
1793 goto out;
1796 * To add new inline back ref, we have to make sure
1797 * there is no corresponding back ref item.
1798 * For simplicity, we just do not add new inline back
1799 * ref if there is any kind of item for this block
1801 if (find_next_key(path, 0, &key) == 0 &&
1802 key.objectid == bytenr &&
1803 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1804 err = -EAGAIN;
1805 goto out;
1808 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1809 out:
1810 if (insert) {
1811 path->keep_locks = 0;
1812 btrfs_unlock_up_safe(path, 1);
1814 return err;
1818 * helper to add new inline back ref
1820 static noinline_for_stack
1821 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1822 struct btrfs_path *path,
1823 struct btrfs_extent_inline_ref *iref,
1824 u64 parent, u64 root_objectid,
1825 u64 owner, u64 offset, int refs_to_add,
1826 struct btrfs_delayed_extent_op *extent_op)
1828 struct extent_buffer *leaf;
1829 struct btrfs_extent_item *ei;
1830 unsigned long ptr;
1831 unsigned long end;
1832 unsigned long item_offset;
1833 u64 refs;
1834 int size;
1835 int type;
1837 leaf = path->nodes[0];
1838 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1839 item_offset = (unsigned long)iref - (unsigned long)ei;
1841 type = extent_ref_type(parent, owner);
1842 size = btrfs_extent_inline_ref_size(type);
1844 btrfs_extend_item(fs_info, path, size);
1846 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1847 refs = btrfs_extent_refs(leaf, ei);
1848 refs += refs_to_add;
1849 btrfs_set_extent_refs(leaf, ei, refs);
1850 if (extent_op)
1851 __run_delayed_extent_op(extent_op, leaf, ei);
1853 ptr = (unsigned long)ei + item_offset;
1854 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1855 if (ptr < end - size)
1856 memmove_extent_buffer(leaf, ptr + size, ptr,
1857 end - size - ptr);
1859 iref = (struct btrfs_extent_inline_ref *)ptr;
1860 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1861 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862 struct btrfs_extent_data_ref *dref;
1863 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1864 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1865 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1866 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1867 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1868 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1869 struct btrfs_shared_data_ref *sref;
1870 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1871 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1872 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1873 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1874 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1875 } else {
1876 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1878 btrfs_mark_buffer_dirty(leaf);
1881 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1882 struct btrfs_fs_info *fs_info,
1883 struct btrfs_path *path,
1884 struct btrfs_extent_inline_ref **ref_ret,
1885 u64 bytenr, u64 num_bytes, u64 parent,
1886 u64 root_objectid, u64 owner, u64 offset)
1888 int ret;
1890 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1891 bytenr, num_bytes, parent,
1892 root_objectid, owner, offset, 0);
1893 if (ret != -ENOENT)
1894 return ret;
1896 btrfs_release_path(path);
1897 *ref_ret = NULL;
1899 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1900 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1901 parent, root_objectid);
1902 } else {
1903 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1904 parent, root_objectid, owner,
1905 offset);
1907 return ret;
1911 * helper to update/remove inline back ref
1913 static noinline_for_stack
1914 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1915 struct btrfs_path *path,
1916 struct btrfs_extent_inline_ref *iref,
1917 int refs_to_mod,
1918 struct btrfs_delayed_extent_op *extent_op,
1919 int *last_ref)
1921 struct extent_buffer *leaf;
1922 struct btrfs_extent_item *ei;
1923 struct btrfs_extent_data_ref *dref = NULL;
1924 struct btrfs_shared_data_ref *sref = NULL;
1925 unsigned long ptr;
1926 unsigned long end;
1927 u32 item_size;
1928 int size;
1929 int type;
1930 u64 refs;
1932 leaf = path->nodes[0];
1933 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1934 refs = btrfs_extent_refs(leaf, ei);
1935 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1936 refs += refs_to_mod;
1937 btrfs_set_extent_refs(leaf, ei, refs);
1938 if (extent_op)
1939 __run_delayed_extent_op(extent_op, leaf, ei);
1942 * If type is invalid, we should have bailed out after
1943 * lookup_inline_extent_backref().
1945 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1946 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1948 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1949 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1950 refs = btrfs_extent_data_ref_count(leaf, dref);
1951 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1952 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1953 refs = btrfs_shared_data_ref_count(leaf, sref);
1954 } else {
1955 refs = 1;
1956 BUG_ON(refs_to_mod != -1);
1959 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1960 refs += refs_to_mod;
1962 if (refs > 0) {
1963 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1964 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1965 else
1966 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1967 } else {
1968 *last_ref = 1;
1969 size = btrfs_extent_inline_ref_size(type);
1970 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1971 ptr = (unsigned long)iref;
1972 end = (unsigned long)ei + item_size;
1973 if (ptr + size < end)
1974 memmove_extent_buffer(leaf, ptr, ptr + size,
1975 end - ptr - size);
1976 item_size -= size;
1977 btrfs_truncate_item(fs_info, path, item_size, 1);
1979 btrfs_mark_buffer_dirty(leaf);
1982 static noinline_for_stack
1983 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1984 struct btrfs_fs_info *fs_info,
1985 struct btrfs_path *path,
1986 u64 bytenr, u64 num_bytes, u64 parent,
1987 u64 root_objectid, u64 owner,
1988 u64 offset, int refs_to_add,
1989 struct btrfs_delayed_extent_op *extent_op)
1991 struct btrfs_extent_inline_ref *iref;
1992 int ret;
1994 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1995 bytenr, num_bytes, parent,
1996 root_objectid, owner, offset, 1);
1997 if (ret == 0) {
1998 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1999 update_inline_extent_backref(fs_info, path, iref,
2000 refs_to_add, extent_op, NULL);
2001 } else if (ret == -ENOENT) {
2002 setup_inline_extent_backref(fs_info, path, iref, parent,
2003 root_objectid, owner, offset,
2004 refs_to_add, extent_op);
2005 ret = 0;
2007 return ret;
2010 static int insert_extent_backref(struct btrfs_trans_handle *trans,
2011 struct btrfs_fs_info *fs_info,
2012 struct btrfs_path *path,
2013 u64 bytenr, u64 parent, u64 root_objectid,
2014 u64 owner, u64 offset, int refs_to_add)
2016 int ret;
2017 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2018 BUG_ON(refs_to_add != 1);
2019 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
2020 parent, root_objectid);
2021 } else {
2022 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
2023 parent, root_objectid,
2024 owner, offset, refs_to_add);
2026 return ret;
2029 static int remove_extent_backref(struct btrfs_trans_handle *trans,
2030 struct btrfs_fs_info *fs_info,
2031 struct btrfs_path *path,
2032 struct btrfs_extent_inline_ref *iref,
2033 int refs_to_drop, int is_data, int *last_ref)
2035 int ret = 0;
2037 BUG_ON(!is_data && refs_to_drop != 1);
2038 if (iref) {
2039 update_inline_extent_backref(fs_info, path, iref,
2040 -refs_to_drop, NULL, last_ref);
2041 } else if (is_data) {
2042 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
2043 last_ref);
2044 } else {
2045 *last_ref = 1;
2046 ret = btrfs_del_item(trans, fs_info->extent_root, path);
2048 return ret;
2051 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
2052 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2053 u64 *discarded_bytes)
2055 int j, ret = 0;
2056 u64 bytes_left, end;
2057 u64 aligned_start = ALIGN(start, 1 << 9);
2059 if (WARN_ON(start != aligned_start)) {
2060 len -= aligned_start - start;
2061 len = round_down(len, 1 << 9);
2062 start = aligned_start;
2065 *discarded_bytes = 0;
2067 if (!len)
2068 return 0;
2070 end = start + len;
2071 bytes_left = len;
2073 /* Skip any superblocks on this device. */
2074 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2075 u64 sb_start = btrfs_sb_offset(j);
2076 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2077 u64 size = sb_start - start;
2079 if (!in_range(sb_start, start, bytes_left) &&
2080 !in_range(sb_end, start, bytes_left) &&
2081 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2082 continue;
2085 * Superblock spans beginning of range. Adjust start and
2086 * try again.
2088 if (sb_start <= start) {
2089 start += sb_end - start;
2090 if (start > end) {
2091 bytes_left = 0;
2092 break;
2094 bytes_left = end - start;
2095 continue;
2098 if (size) {
2099 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2100 GFP_NOFS, 0);
2101 if (!ret)
2102 *discarded_bytes += size;
2103 else if (ret != -EOPNOTSUPP)
2104 return ret;
2107 start = sb_end;
2108 if (start > end) {
2109 bytes_left = 0;
2110 break;
2112 bytes_left = end - start;
2115 if (bytes_left) {
2116 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2117 GFP_NOFS, 0);
2118 if (!ret)
2119 *discarded_bytes += bytes_left;
2121 return ret;
2124 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2125 u64 num_bytes, u64 *actual_bytes)
2127 int ret;
2128 u64 discarded_bytes = 0;
2129 struct btrfs_bio *bbio = NULL;
2133 * Avoid races with device replace and make sure our bbio has devices
2134 * associated to its stripes that don't go away while we are discarding.
2136 btrfs_bio_counter_inc_blocked(fs_info);
2137 /* Tell the block device(s) that the sectors can be discarded */
2138 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2139 &bbio, 0);
2140 /* Error condition is -ENOMEM */
2141 if (!ret) {
2142 struct btrfs_bio_stripe *stripe = bbio->stripes;
2143 int i;
2146 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2147 u64 bytes;
2148 struct request_queue *req_q;
2150 req_q = bdev_get_queue(stripe->dev->bdev);
2151 if (!blk_queue_discard(req_q))
2152 continue;
2154 ret = btrfs_issue_discard(stripe->dev->bdev,
2155 stripe->physical,
2156 stripe->length,
2157 &bytes);
2158 if (!ret)
2159 discarded_bytes += bytes;
2160 else if (ret != -EOPNOTSUPP)
2161 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2164 * Just in case we get back EOPNOTSUPP for some reason,
2165 * just ignore the return value so we don't screw up
2166 * people calling discard_extent.
2168 ret = 0;
2170 btrfs_put_bbio(bbio);
2172 btrfs_bio_counter_dec(fs_info);
2174 if (actual_bytes)
2175 *actual_bytes = discarded_bytes;
2178 if (ret == -EOPNOTSUPP)
2179 ret = 0;
2180 return ret;
2183 /* Can return -ENOMEM */
2184 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2185 struct btrfs_root *root,
2186 u64 bytenr, u64 num_bytes, u64 parent,
2187 u64 root_objectid, u64 owner, u64 offset)
2189 struct btrfs_fs_info *fs_info = root->fs_info;
2190 int old_ref_mod, new_ref_mod;
2191 int ret;
2193 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2194 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2196 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2197 owner, offset, BTRFS_ADD_DELAYED_REF);
2199 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2200 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2201 num_bytes, parent,
2202 root_objectid, (int)owner,
2203 BTRFS_ADD_DELAYED_REF, NULL,
2204 &old_ref_mod, &new_ref_mod);
2205 } else {
2206 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2207 num_bytes, parent,
2208 root_objectid, owner, offset,
2209 0, BTRFS_ADD_DELAYED_REF,
2210 &old_ref_mod, &new_ref_mod);
2213 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2214 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2216 return ret;
2219 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2220 struct btrfs_fs_info *fs_info,
2221 struct btrfs_delayed_ref_node *node,
2222 u64 parent, u64 root_objectid,
2223 u64 owner, u64 offset, int refs_to_add,
2224 struct btrfs_delayed_extent_op *extent_op)
2226 struct btrfs_path *path;
2227 struct extent_buffer *leaf;
2228 struct btrfs_extent_item *item;
2229 struct btrfs_key key;
2230 u64 bytenr = node->bytenr;
2231 u64 num_bytes = node->num_bytes;
2232 u64 refs;
2233 int ret;
2235 path = btrfs_alloc_path();
2236 if (!path)
2237 return -ENOMEM;
2239 path->reada = READA_FORWARD;
2240 path->leave_spinning = 1;
2241 /* this will setup the path even if it fails to insert the back ref */
2242 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2243 num_bytes, parent, root_objectid,
2244 owner, offset,
2245 refs_to_add, extent_op);
2246 if ((ret < 0 && ret != -EAGAIN) || !ret)
2247 goto out;
2250 * Ok we had -EAGAIN which means we didn't have space to insert and
2251 * inline extent ref, so just update the reference count and add a
2252 * normal backref.
2254 leaf = path->nodes[0];
2255 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2256 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2257 refs = btrfs_extent_refs(leaf, item);
2258 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2259 if (extent_op)
2260 __run_delayed_extent_op(extent_op, leaf, item);
2262 btrfs_mark_buffer_dirty(leaf);
2263 btrfs_release_path(path);
2265 path->reada = READA_FORWARD;
2266 path->leave_spinning = 1;
2267 /* now insert the actual backref */
2268 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2269 root_objectid, owner, offset, refs_to_add);
2270 if (ret)
2271 btrfs_abort_transaction(trans, ret);
2272 out:
2273 btrfs_free_path(path);
2274 return ret;
2277 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2278 struct btrfs_fs_info *fs_info,
2279 struct btrfs_delayed_ref_node *node,
2280 struct btrfs_delayed_extent_op *extent_op,
2281 int insert_reserved)
2283 int ret = 0;
2284 struct btrfs_delayed_data_ref *ref;
2285 struct btrfs_key ins;
2286 u64 parent = 0;
2287 u64 ref_root = 0;
2288 u64 flags = 0;
2290 ins.objectid = node->bytenr;
2291 ins.offset = node->num_bytes;
2292 ins.type = BTRFS_EXTENT_ITEM_KEY;
2294 ref = btrfs_delayed_node_to_data_ref(node);
2295 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2297 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2298 parent = ref->parent;
2299 ref_root = ref->root;
2301 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2302 if (extent_op)
2303 flags |= extent_op->flags_to_set;
2304 ret = alloc_reserved_file_extent(trans, fs_info,
2305 parent, ref_root, flags,
2306 ref->objectid, ref->offset,
2307 &ins, node->ref_mod);
2308 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2309 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2310 ref_root, ref->objectid,
2311 ref->offset, node->ref_mod,
2312 extent_op);
2313 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2314 ret = __btrfs_free_extent(trans, fs_info, node, parent,
2315 ref_root, ref->objectid,
2316 ref->offset, node->ref_mod,
2317 extent_op);
2318 } else {
2319 BUG();
2321 return ret;
2324 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2325 struct extent_buffer *leaf,
2326 struct btrfs_extent_item *ei)
2328 u64 flags = btrfs_extent_flags(leaf, ei);
2329 if (extent_op->update_flags) {
2330 flags |= extent_op->flags_to_set;
2331 btrfs_set_extent_flags(leaf, ei, flags);
2334 if (extent_op->update_key) {
2335 struct btrfs_tree_block_info *bi;
2336 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2337 bi = (struct btrfs_tree_block_info *)(ei + 1);
2338 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2342 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2343 struct btrfs_fs_info *fs_info,
2344 struct btrfs_delayed_ref_head *head,
2345 struct btrfs_delayed_extent_op *extent_op)
2347 struct btrfs_key key;
2348 struct btrfs_path *path;
2349 struct btrfs_extent_item *ei;
2350 struct extent_buffer *leaf;
2351 u32 item_size;
2352 int ret;
2353 int err = 0;
2354 int metadata = !extent_op->is_data;
2356 if (trans->aborted)
2357 return 0;
2359 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2360 metadata = 0;
2362 path = btrfs_alloc_path();
2363 if (!path)
2364 return -ENOMEM;
2366 key.objectid = head->bytenr;
2368 if (metadata) {
2369 key.type = BTRFS_METADATA_ITEM_KEY;
2370 key.offset = extent_op->level;
2371 } else {
2372 key.type = BTRFS_EXTENT_ITEM_KEY;
2373 key.offset = head->num_bytes;
2376 again:
2377 path->reada = READA_FORWARD;
2378 path->leave_spinning = 1;
2379 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2380 if (ret < 0) {
2381 err = ret;
2382 goto out;
2384 if (ret > 0) {
2385 if (metadata) {
2386 if (path->slots[0] > 0) {
2387 path->slots[0]--;
2388 btrfs_item_key_to_cpu(path->nodes[0], &key,
2389 path->slots[0]);
2390 if (key.objectid == head->bytenr &&
2391 key.type == BTRFS_EXTENT_ITEM_KEY &&
2392 key.offset == head->num_bytes)
2393 ret = 0;
2395 if (ret > 0) {
2396 btrfs_release_path(path);
2397 metadata = 0;
2399 key.objectid = head->bytenr;
2400 key.offset = head->num_bytes;
2401 key.type = BTRFS_EXTENT_ITEM_KEY;
2402 goto again;
2404 } else {
2405 err = -EIO;
2406 goto out;
2410 leaf = path->nodes[0];
2411 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2412 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2413 if (item_size < sizeof(*ei)) {
2414 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2415 if (ret < 0) {
2416 err = ret;
2417 goto out;
2419 leaf = path->nodes[0];
2420 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2422 #endif
2423 BUG_ON(item_size < sizeof(*ei));
2424 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2425 __run_delayed_extent_op(extent_op, leaf, ei);
2427 btrfs_mark_buffer_dirty(leaf);
2428 out:
2429 btrfs_free_path(path);
2430 return err;
2433 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2434 struct btrfs_fs_info *fs_info,
2435 struct btrfs_delayed_ref_node *node,
2436 struct btrfs_delayed_extent_op *extent_op,
2437 int insert_reserved)
2439 int ret = 0;
2440 struct btrfs_delayed_tree_ref *ref;
2441 struct btrfs_key ins;
2442 u64 parent = 0;
2443 u64 ref_root = 0;
2444 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2446 ref = btrfs_delayed_node_to_tree_ref(node);
2447 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2449 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2450 parent = ref->parent;
2451 ref_root = ref->root;
2453 ins.objectid = node->bytenr;
2454 if (skinny_metadata) {
2455 ins.offset = ref->level;
2456 ins.type = BTRFS_METADATA_ITEM_KEY;
2457 } else {
2458 ins.offset = node->num_bytes;
2459 ins.type = BTRFS_EXTENT_ITEM_KEY;
2462 if (node->ref_mod != 1) {
2463 btrfs_err(fs_info,
2464 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2465 node->bytenr, node->ref_mod, node->action, ref_root,
2466 parent);
2467 return -EIO;
2469 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2470 BUG_ON(!extent_op || !extent_op->update_flags);
2471 ret = alloc_reserved_tree_block(trans, fs_info,
2472 parent, ref_root,
2473 extent_op->flags_to_set,
2474 &extent_op->key,
2475 ref->level, &ins);
2476 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2477 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2478 parent, ref_root,
2479 ref->level, 0, 1,
2480 extent_op);
2481 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2482 ret = __btrfs_free_extent(trans, fs_info, node,
2483 parent, ref_root,
2484 ref->level, 0, 1, extent_op);
2485 } else {
2486 BUG();
2488 return ret;
2491 /* helper function to actually process a single delayed ref entry */
2492 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2493 struct btrfs_fs_info *fs_info,
2494 struct btrfs_delayed_ref_node *node,
2495 struct btrfs_delayed_extent_op *extent_op,
2496 int insert_reserved)
2498 int ret = 0;
2500 if (trans->aborted) {
2501 if (insert_reserved)
2502 btrfs_pin_extent(fs_info, node->bytenr,
2503 node->num_bytes, 1);
2504 return 0;
2507 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2508 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2509 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2510 insert_reserved);
2511 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2512 node->type == BTRFS_SHARED_DATA_REF_KEY)
2513 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2514 insert_reserved);
2515 else
2516 BUG();
2517 return ret;
2520 static inline struct btrfs_delayed_ref_node *
2521 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2523 struct btrfs_delayed_ref_node *ref;
2525 if (RB_EMPTY_ROOT(&head->ref_tree))
2526 return NULL;
2529 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2530 * This is to prevent a ref count from going down to zero, which deletes
2531 * the extent item from the extent tree, when there still are references
2532 * to add, which would fail because they would not find the extent item.
2534 if (!list_empty(&head->ref_add_list))
2535 return list_first_entry(&head->ref_add_list,
2536 struct btrfs_delayed_ref_node, add_list);
2538 ref = rb_entry(rb_first(&head->ref_tree),
2539 struct btrfs_delayed_ref_node, ref_node);
2540 ASSERT(list_empty(&ref->add_list));
2541 return ref;
2544 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2545 struct btrfs_delayed_ref_head *head)
2547 spin_lock(&delayed_refs->lock);
2548 head->processing = 0;
2549 delayed_refs->num_heads_ready++;
2550 spin_unlock(&delayed_refs->lock);
2551 btrfs_delayed_ref_unlock(head);
2554 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2555 struct btrfs_fs_info *fs_info,
2556 struct btrfs_delayed_ref_head *head)
2558 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2559 int ret;
2561 if (!extent_op)
2562 return 0;
2563 head->extent_op = NULL;
2564 if (head->must_insert_reserved) {
2565 btrfs_free_delayed_extent_op(extent_op);
2566 return 0;
2568 spin_unlock(&head->lock);
2569 ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
2570 btrfs_free_delayed_extent_op(extent_op);
2571 return ret ? ret : 1;
2574 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2575 struct btrfs_fs_info *fs_info,
2576 struct btrfs_delayed_ref_head *head)
2578 struct btrfs_delayed_ref_root *delayed_refs;
2579 int ret;
2581 delayed_refs = &trans->transaction->delayed_refs;
2583 ret = cleanup_extent_op(trans, fs_info, head);
2584 if (ret < 0) {
2585 unselect_delayed_ref_head(delayed_refs, head);
2586 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2587 return ret;
2588 } else if (ret) {
2589 return ret;
2593 * Need to drop our head ref lock and re-acquire the delayed ref lock
2594 * and then re-check to make sure nobody got added.
2596 spin_unlock(&head->lock);
2597 spin_lock(&delayed_refs->lock);
2598 spin_lock(&head->lock);
2599 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2600 spin_unlock(&head->lock);
2601 spin_unlock(&delayed_refs->lock);
2602 return 1;
2604 delayed_refs->num_heads--;
2605 rb_erase(&head->href_node, &delayed_refs->href_root);
2606 RB_CLEAR_NODE(&head->href_node);
2607 spin_unlock(&delayed_refs->lock);
2608 spin_unlock(&head->lock);
2609 atomic_dec(&delayed_refs->num_entries);
2611 trace_run_delayed_ref_head(fs_info, head, 0);
2613 if (head->total_ref_mod < 0) {
2614 struct btrfs_block_group_cache *cache;
2616 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
2617 ASSERT(cache);
2618 percpu_counter_add(&cache->space_info->total_bytes_pinned,
2619 -head->num_bytes);
2620 btrfs_put_block_group(cache);
2622 if (head->is_data) {
2623 spin_lock(&delayed_refs->lock);
2624 delayed_refs->pending_csums -= head->num_bytes;
2625 spin_unlock(&delayed_refs->lock);
2629 if (head->must_insert_reserved) {
2630 btrfs_pin_extent(fs_info, head->bytenr,
2631 head->num_bytes, 1);
2632 if (head->is_data) {
2633 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2634 head->num_bytes);
2638 /* Also free its reserved qgroup space */
2639 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2640 head->qgroup_reserved);
2641 btrfs_delayed_ref_unlock(head);
2642 btrfs_put_delayed_ref_head(head);
2643 return 0;
2647 * Returns 0 on success or if called with an already aborted transaction.
2648 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2650 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2651 struct btrfs_fs_info *fs_info,
2652 unsigned long nr)
2654 struct btrfs_delayed_ref_root *delayed_refs;
2655 struct btrfs_delayed_ref_node *ref;
2656 struct btrfs_delayed_ref_head *locked_ref = NULL;
2657 struct btrfs_delayed_extent_op *extent_op;
2658 ktime_t start = ktime_get();
2659 int ret;
2660 unsigned long count = 0;
2661 unsigned long actual_count = 0;
2662 int must_insert_reserved = 0;
2664 delayed_refs = &trans->transaction->delayed_refs;
2665 while (1) {
2666 if (!locked_ref) {
2667 if (count >= nr)
2668 break;
2670 spin_lock(&delayed_refs->lock);
2671 locked_ref = btrfs_select_ref_head(trans);
2672 if (!locked_ref) {
2673 spin_unlock(&delayed_refs->lock);
2674 break;
2677 /* grab the lock that says we are going to process
2678 * all the refs for this head */
2679 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2680 spin_unlock(&delayed_refs->lock);
2682 * we may have dropped the spin lock to get the head
2683 * mutex lock, and that might have given someone else
2684 * time to free the head. If that's true, it has been
2685 * removed from our list and we can move on.
2687 if (ret == -EAGAIN) {
2688 locked_ref = NULL;
2689 count++;
2690 continue;
2695 * We need to try and merge add/drops of the same ref since we
2696 * can run into issues with relocate dropping the implicit ref
2697 * and then it being added back again before the drop can
2698 * finish. If we merged anything we need to re-loop so we can
2699 * get a good ref.
2700 * Or we can get node references of the same type that weren't
2701 * merged when created due to bumps in the tree mod seq, and
2702 * we need to merge them to prevent adding an inline extent
2703 * backref before dropping it (triggering a BUG_ON at
2704 * insert_inline_extent_backref()).
2706 spin_lock(&locked_ref->lock);
2707 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2708 locked_ref);
2711 * locked_ref is the head node, so we have to go one
2712 * node back for any delayed ref updates
2714 ref = select_delayed_ref(locked_ref);
2716 if (ref && ref->seq &&
2717 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2718 spin_unlock(&locked_ref->lock);
2719 unselect_delayed_ref_head(delayed_refs, locked_ref);
2720 locked_ref = NULL;
2721 cond_resched();
2722 count++;
2723 continue;
2727 * We're done processing refs in this ref_head, clean everything
2728 * up and move on to the next ref_head.
2730 if (!ref) {
2731 ret = cleanup_ref_head(trans, fs_info, locked_ref);
2732 if (ret > 0 ) {
2733 /* We dropped our lock, we need to loop. */
2734 ret = 0;
2735 continue;
2736 } else if (ret) {
2737 return ret;
2739 locked_ref = NULL;
2740 count++;
2741 continue;
2744 actual_count++;
2745 ref->in_tree = 0;
2746 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2747 RB_CLEAR_NODE(&ref->ref_node);
2748 if (!list_empty(&ref->add_list))
2749 list_del(&ref->add_list);
2751 * When we play the delayed ref, also correct the ref_mod on
2752 * head
2754 switch (ref->action) {
2755 case BTRFS_ADD_DELAYED_REF:
2756 case BTRFS_ADD_DELAYED_EXTENT:
2757 locked_ref->ref_mod -= ref->ref_mod;
2758 break;
2759 case BTRFS_DROP_DELAYED_REF:
2760 locked_ref->ref_mod += ref->ref_mod;
2761 break;
2762 default:
2763 WARN_ON(1);
2765 atomic_dec(&delayed_refs->num_entries);
2768 * Record the must-insert_reserved flag before we drop the spin
2769 * lock.
2771 must_insert_reserved = locked_ref->must_insert_reserved;
2772 locked_ref->must_insert_reserved = 0;
2774 extent_op = locked_ref->extent_op;
2775 locked_ref->extent_op = NULL;
2776 spin_unlock(&locked_ref->lock);
2778 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2779 must_insert_reserved);
2781 btrfs_free_delayed_extent_op(extent_op);
2782 if (ret) {
2783 unselect_delayed_ref_head(delayed_refs, locked_ref);
2784 btrfs_put_delayed_ref(ref);
2785 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2786 ret);
2787 return ret;
2790 btrfs_put_delayed_ref(ref);
2791 count++;
2792 cond_resched();
2796 * We don't want to include ref heads since we can have empty ref heads
2797 * and those will drastically skew our runtime down since we just do
2798 * accounting, no actual extent tree updates.
2800 if (actual_count > 0) {
2801 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2802 u64 avg;
2805 * We weigh the current average higher than our current runtime
2806 * to avoid large swings in the average.
2808 spin_lock(&delayed_refs->lock);
2809 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2810 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2811 spin_unlock(&delayed_refs->lock);
2813 return 0;
2816 #ifdef SCRAMBLE_DELAYED_REFS
2818 * Normally delayed refs get processed in ascending bytenr order. This
2819 * correlates in most cases to the order added. To expose dependencies on this
2820 * order, we start to process the tree in the middle instead of the beginning
2822 static u64 find_middle(struct rb_root *root)
2824 struct rb_node *n = root->rb_node;
2825 struct btrfs_delayed_ref_node *entry;
2826 int alt = 1;
2827 u64 middle;
2828 u64 first = 0, last = 0;
2830 n = rb_first(root);
2831 if (n) {
2832 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2833 first = entry->bytenr;
2835 n = rb_last(root);
2836 if (n) {
2837 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2838 last = entry->bytenr;
2840 n = root->rb_node;
2842 while (n) {
2843 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2844 WARN_ON(!entry->in_tree);
2846 middle = entry->bytenr;
2848 if (alt)
2849 n = n->rb_left;
2850 else
2851 n = n->rb_right;
2853 alt = 1 - alt;
2855 return middle;
2857 #endif
2859 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2861 u64 num_bytes;
2863 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2864 sizeof(struct btrfs_extent_inline_ref));
2865 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2866 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2869 * We don't ever fill up leaves all the way so multiply by 2 just to be
2870 * closer to what we're really going to want to use.
2872 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2876 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2877 * would require to store the csums for that many bytes.
2879 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2881 u64 csum_size;
2882 u64 num_csums_per_leaf;
2883 u64 num_csums;
2885 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2886 num_csums_per_leaf = div64_u64(csum_size,
2887 (u64)btrfs_super_csum_size(fs_info->super_copy));
2888 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2889 num_csums += num_csums_per_leaf - 1;
2890 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2891 return num_csums;
2894 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2895 struct btrfs_fs_info *fs_info)
2897 struct btrfs_block_rsv *global_rsv;
2898 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2899 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2900 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
2901 u64 num_bytes, num_dirty_bgs_bytes;
2902 int ret = 0;
2904 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2905 num_heads = heads_to_leaves(fs_info, num_heads);
2906 if (num_heads > 1)
2907 num_bytes += (num_heads - 1) * fs_info->nodesize;
2908 num_bytes <<= 1;
2909 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2910 fs_info->nodesize;
2911 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2912 num_dirty_bgs);
2913 global_rsv = &fs_info->global_block_rsv;
2916 * If we can't allocate any more chunks lets make sure we have _lots_ of
2917 * wiggle room since running delayed refs can create more delayed refs.
2919 if (global_rsv->space_info->full) {
2920 num_dirty_bgs_bytes <<= 1;
2921 num_bytes <<= 1;
2924 spin_lock(&global_rsv->lock);
2925 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2926 ret = 1;
2927 spin_unlock(&global_rsv->lock);
2928 return ret;
2931 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2932 struct btrfs_fs_info *fs_info)
2934 u64 num_entries =
2935 atomic_read(&trans->transaction->delayed_refs.num_entries);
2936 u64 avg_runtime;
2937 u64 val;
2939 smp_mb();
2940 avg_runtime = fs_info->avg_delayed_ref_runtime;
2941 val = num_entries * avg_runtime;
2942 if (val >= NSEC_PER_SEC)
2943 return 1;
2944 if (val >= NSEC_PER_SEC / 2)
2945 return 2;
2947 return btrfs_check_space_for_delayed_refs(trans, fs_info);
2950 struct async_delayed_refs {
2951 struct btrfs_root *root;
2952 u64 transid;
2953 int count;
2954 int error;
2955 int sync;
2956 struct completion wait;
2957 struct btrfs_work work;
2960 static inline struct async_delayed_refs *
2961 to_async_delayed_refs(struct btrfs_work *work)
2963 return container_of(work, struct async_delayed_refs, work);
2966 static void delayed_ref_async_start(struct btrfs_work *work)
2968 struct async_delayed_refs *async = to_async_delayed_refs(work);
2969 struct btrfs_trans_handle *trans;
2970 struct btrfs_fs_info *fs_info = async->root->fs_info;
2971 int ret;
2973 /* if the commit is already started, we don't need to wait here */
2974 if (btrfs_transaction_blocked(fs_info))
2975 goto done;
2977 trans = btrfs_join_transaction(async->root);
2978 if (IS_ERR(trans)) {
2979 async->error = PTR_ERR(trans);
2980 goto done;
2984 * trans->sync means that when we call end_transaction, we won't
2985 * wait on delayed refs
2987 trans->sync = true;
2989 /* Don't bother flushing if we got into a different transaction */
2990 if (trans->transid > async->transid)
2991 goto end;
2993 ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
2994 if (ret)
2995 async->error = ret;
2996 end:
2997 ret = btrfs_end_transaction(trans);
2998 if (ret && !async->error)
2999 async->error = ret;
3000 done:
3001 if (async->sync)
3002 complete(&async->wait);
3003 else
3004 kfree(async);
3007 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
3008 unsigned long count, u64 transid, int wait)
3010 struct async_delayed_refs *async;
3011 int ret;
3013 async = kmalloc(sizeof(*async), GFP_NOFS);
3014 if (!async)
3015 return -ENOMEM;
3017 async->root = fs_info->tree_root;
3018 async->count = count;
3019 async->error = 0;
3020 async->transid = transid;
3021 if (wait)
3022 async->sync = 1;
3023 else
3024 async->sync = 0;
3025 init_completion(&async->wait);
3027 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3028 delayed_ref_async_start, NULL, NULL);
3030 btrfs_queue_work(fs_info->extent_workers, &async->work);
3032 if (wait) {
3033 wait_for_completion(&async->wait);
3034 ret = async->error;
3035 kfree(async);
3036 return ret;
3038 return 0;
3042 * this starts processing the delayed reference count updates and
3043 * extent insertions we have queued up so far. count can be
3044 * 0, which means to process everything in the tree at the start
3045 * of the run (but not newly added entries), or it can be some target
3046 * number you'd like to process.
3048 * Returns 0 on success or if called with an aborted transaction
3049 * Returns <0 on error and aborts the transaction
3051 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3052 struct btrfs_fs_info *fs_info, unsigned long count)
3054 struct rb_node *node;
3055 struct btrfs_delayed_ref_root *delayed_refs;
3056 struct btrfs_delayed_ref_head *head;
3057 int ret;
3058 int run_all = count == (unsigned long)-1;
3059 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
3061 /* We'll clean this up in btrfs_cleanup_transaction */
3062 if (trans->aborted)
3063 return 0;
3065 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
3066 return 0;
3068 delayed_refs = &trans->transaction->delayed_refs;
3069 if (count == 0)
3070 count = atomic_read(&delayed_refs->num_entries) * 2;
3072 again:
3073 #ifdef SCRAMBLE_DELAYED_REFS
3074 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3075 #endif
3076 trans->can_flush_pending_bgs = false;
3077 ret = __btrfs_run_delayed_refs(trans, fs_info, count);
3078 if (ret < 0) {
3079 btrfs_abort_transaction(trans, ret);
3080 return ret;
3083 if (run_all) {
3084 if (!list_empty(&trans->new_bgs))
3085 btrfs_create_pending_block_groups(trans, fs_info);
3087 spin_lock(&delayed_refs->lock);
3088 node = rb_first(&delayed_refs->href_root);
3089 if (!node) {
3090 spin_unlock(&delayed_refs->lock);
3091 goto out;
3093 head = rb_entry(node, struct btrfs_delayed_ref_head,
3094 href_node);
3095 refcount_inc(&head->refs);
3096 spin_unlock(&delayed_refs->lock);
3098 /* Mutex was contended, block until it's released and retry. */
3099 mutex_lock(&head->mutex);
3100 mutex_unlock(&head->mutex);
3102 btrfs_put_delayed_ref_head(head);
3103 cond_resched();
3104 goto again;
3106 out:
3107 trans->can_flush_pending_bgs = can_flush_pending_bgs;
3108 return 0;
3111 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3112 struct btrfs_fs_info *fs_info,
3113 u64 bytenr, u64 num_bytes, u64 flags,
3114 int level, int is_data)
3116 struct btrfs_delayed_extent_op *extent_op;
3117 int ret;
3119 extent_op = btrfs_alloc_delayed_extent_op();
3120 if (!extent_op)
3121 return -ENOMEM;
3123 extent_op->flags_to_set = flags;
3124 extent_op->update_flags = true;
3125 extent_op->update_key = false;
3126 extent_op->is_data = is_data ? true : false;
3127 extent_op->level = level;
3129 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3130 num_bytes, extent_op);
3131 if (ret)
3132 btrfs_free_delayed_extent_op(extent_op);
3133 return ret;
3136 static noinline int check_delayed_ref(struct btrfs_root *root,
3137 struct btrfs_path *path,
3138 u64 objectid, u64 offset, u64 bytenr)
3140 struct btrfs_delayed_ref_head *head;
3141 struct btrfs_delayed_ref_node *ref;
3142 struct btrfs_delayed_data_ref *data_ref;
3143 struct btrfs_delayed_ref_root *delayed_refs;
3144 struct btrfs_transaction *cur_trans;
3145 struct rb_node *node;
3146 int ret = 0;
3148 cur_trans = root->fs_info->running_transaction;
3149 if (!cur_trans)
3150 return 0;
3152 delayed_refs = &cur_trans->delayed_refs;
3153 spin_lock(&delayed_refs->lock);
3154 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3155 if (!head) {
3156 spin_unlock(&delayed_refs->lock);
3157 return 0;
3160 if (!mutex_trylock(&head->mutex)) {
3161 refcount_inc(&head->refs);
3162 spin_unlock(&delayed_refs->lock);
3164 btrfs_release_path(path);
3167 * Mutex was contended, block until it's released and let
3168 * caller try again
3170 mutex_lock(&head->mutex);
3171 mutex_unlock(&head->mutex);
3172 btrfs_put_delayed_ref_head(head);
3173 return -EAGAIN;
3175 spin_unlock(&delayed_refs->lock);
3177 spin_lock(&head->lock);
3179 * XXX: We should replace this with a proper search function in the
3180 * future.
3182 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3183 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3184 /* If it's a shared ref we know a cross reference exists */
3185 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3186 ret = 1;
3187 break;
3190 data_ref = btrfs_delayed_node_to_data_ref(ref);
3193 * If our ref doesn't match the one we're currently looking at
3194 * then we have a cross reference.
3196 if (data_ref->root != root->root_key.objectid ||
3197 data_ref->objectid != objectid ||
3198 data_ref->offset != offset) {
3199 ret = 1;
3200 break;
3203 spin_unlock(&head->lock);
3204 mutex_unlock(&head->mutex);
3205 return ret;
3208 static noinline int check_committed_ref(struct btrfs_root *root,
3209 struct btrfs_path *path,
3210 u64 objectid, u64 offset, u64 bytenr)
3212 struct btrfs_fs_info *fs_info = root->fs_info;
3213 struct btrfs_root *extent_root = fs_info->extent_root;
3214 struct extent_buffer *leaf;
3215 struct btrfs_extent_data_ref *ref;
3216 struct btrfs_extent_inline_ref *iref;
3217 struct btrfs_extent_item *ei;
3218 struct btrfs_key key;
3219 u32 item_size;
3220 int type;
3221 int ret;
3223 key.objectid = bytenr;
3224 key.offset = (u64)-1;
3225 key.type = BTRFS_EXTENT_ITEM_KEY;
3227 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3228 if (ret < 0)
3229 goto out;
3230 BUG_ON(ret == 0); /* Corruption */
3232 ret = -ENOENT;
3233 if (path->slots[0] == 0)
3234 goto out;
3236 path->slots[0]--;
3237 leaf = path->nodes[0];
3238 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3240 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3241 goto out;
3243 ret = 1;
3244 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3245 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3246 if (item_size < sizeof(*ei)) {
3247 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3248 goto out;
3250 #endif
3251 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3253 if (item_size != sizeof(*ei) +
3254 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3255 goto out;
3257 if (btrfs_extent_generation(leaf, ei) <=
3258 btrfs_root_last_snapshot(&root->root_item))
3259 goto out;
3261 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3263 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3264 if (type != BTRFS_EXTENT_DATA_REF_KEY)
3265 goto out;
3267 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3268 if (btrfs_extent_refs(leaf, ei) !=
3269 btrfs_extent_data_ref_count(leaf, ref) ||
3270 btrfs_extent_data_ref_root(leaf, ref) !=
3271 root->root_key.objectid ||
3272 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3273 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3274 goto out;
3276 ret = 0;
3277 out:
3278 return ret;
3281 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3282 u64 bytenr)
3284 struct btrfs_path *path;
3285 int ret;
3286 int ret2;
3288 path = btrfs_alloc_path();
3289 if (!path)
3290 return -ENOENT;
3292 do {
3293 ret = check_committed_ref(root, path, objectid,
3294 offset, bytenr);
3295 if (ret && ret != -ENOENT)
3296 goto out;
3298 ret2 = check_delayed_ref(root, path, objectid,
3299 offset, bytenr);
3300 } while (ret2 == -EAGAIN);
3302 if (ret2 && ret2 != -ENOENT) {
3303 ret = ret2;
3304 goto out;
3307 if (ret != -ENOENT || ret2 != -ENOENT)
3308 ret = 0;
3309 out:
3310 btrfs_free_path(path);
3311 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3312 WARN_ON(ret > 0);
3313 return ret;
3316 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3317 struct btrfs_root *root,
3318 struct extent_buffer *buf,
3319 int full_backref, int inc)
3321 struct btrfs_fs_info *fs_info = root->fs_info;
3322 u64 bytenr;
3323 u64 num_bytes;
3324 u64 parent;
3325 u64 ref_root;
3326 u32 nritems;
3327 struct btrfs_key key;
3328 struct btrfs_file_extent_item *fi;
3329 int i;
3330 int level;
3331 int ret = 0;
3332 int (*process_func)(struct btrfs_trans_handle *,
3333 struct btrfs_root *,
3334 u64, u64, u64, u64, u64, u64);
3337 if (btrfs_is_testing(fs_info))
3338 return 0;
3340 ref_root = btrfs_header_owner(buf);
3341 nritems = btrfs_header_nritems(buf);
3342 level = btrfs_header_level(buf);
3344 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3345 return 0;
3347 if (inc)
3348 process_func = btrfs_inc_extent_ref;
3349 else
3350 process_func = btrfs_free_extent;
3352 if (full_backref)
3353 parent = buf->start;
3354 else
3355 parent = 0;
3357 for (i = 0; i < nritems; i++) {
3358 if (level == 0) {
3359 btrfs_item_key_to_cpu(buf, &key, i);
3360 if (key.type != BTRFS_EXTENT_DATA_KEY)
3361 continue;
3362 fi = btrfs_item_ptr(buf, i,
3363 struct btrfs_file_extent_item);
3364 if (btrfs_file_extent_type(buf, fi) ==
3365 BTRFS_FILE_EXTENT_INLINE)
3366 continue;
3367 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3368 if (bytenr == 0)
3369 continue;
3371 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3372 key.offset -= btrfs_file_extent_offset(buf, fi);
3373 ret = process_func(trans, root, bytenr, num_bytes,
3374 parent, ref_root, key.objectid,
3375 key.offset);
3376 if (ret)
3377 goto fail;
3378 } else {
3379 bytenr = btrfs_node_blockptr(buf, i);
3380 num_bytes = fs_info->nodesize;
3381 ret = process_func(trans, root, bytenr, num_bytes,
3382 parent, ref_root, level - 1, 0);
3383 if (ret)
3384 goto fail;
3387 return 0;
3388 fail:
3389 return ret;
3392 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3393 struct extent_buffer *buf, int full_backref)
3395 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3398 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3399 struct extent_buffer *buf, int full_backref)
3401 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3404 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3405 struct btrfs_fs_info *fs_info,
3406 struct btrfs_path *path,
3407 struct btrfs_block_group_cache *cache)
3409 int ret;
3410 struct btrfs_root *extent_root = fs_info->extent_root;
3411 unsigned long bi;
3412 struct extent_buffer *leaf;
3414 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3415 if (ret) {
3416 if (ret > 0)
3417 ret = -ENOENT;
3418 goto fail;
3421 leaf = path->nodes[0];
3422 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3423 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3424 btrfs_mark_buffer_dirty(leaf);
3425 fail:
3426 btrfs_release_path(path);
3427 return ret;
3431 static struct btrfs_block_group_cache *
3432 next_block_group(struct btrfs_fs_info *fs_info,
3433 struct btrfs_block_group_cache *cache)
3435 struct rb_node *node;
3437 spin_lock(&fs_info->block_group_cache_lock);
3439 /* If our block group was removed, we need a full search. */
3440 if (RB_EMPTY_NODE(&cache->cache_node)) {
3441 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3443 spin_unlock(&fs_info->block_group_cache_lock);
3444 btrfs_put_block_group(cache);
3445 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3447 node = rb_next(&cache->cache_node);
3448 btrfs_put_block_group(cache);
3449 if (node) {
3450 cache = rb_entry(node, struct btrfs_block_group_cache,
3451 cache_node);
3452 btrfs_get_block_group(cache);
3453 } else
3454 cache = NULL;
3455 spin_unlock(&fs_info->block_group_cache_lock);
3456 return cache;
3459 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3460 struct btrfs_trans_handle *trans,
3461 struct btrfs_path *path)
3463 struct btrfs_fs_info *fs_info = block_group->fs_info;
3464 struct btrfs_root *root = fs_info->tree_root;
3465 struct inode *inode = NULL;
3466 struct extent_changeset *data_reserved = NULL;
3467 u64 alloc_hint = 0;
3468 int dcs = BTRFS_DC_ERROR;
3469 u64 num_pages = 0;
3470 int retries = 0;
3471 int ret = 0;
3474 * If this block group is smaller than 100 megs don't bother caching the
3475 * block group.
3477 if (block_group->key.offset < (100 * SZ_1M)) {
3478 spin_lock(&block_group->lock);
3479 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3480 spin_unlock(&block_group->lock);
3481 return 0;
3484 if (trans->aborted)
3485 return 0;
3486 again:
3487 inode = lookup_free_space_inode(fs_info, block_group, path);
3488 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3489 ret = PTR_ERR(inode);
3490 btrfs_release_path(path);
3491 goto out;
3494 if (IS_ERR(inode)) {
3495 BUG_ON(retries);
3496 retries++;
3498 if (block_group->ro)
3499 goto out_free;
3501 ret = create_free_space_inode(fs_info, trans, block_group,
3502 path);
3503 if (ret)
3504 goto out_free;
3505 goto again;
3509 * We want to set the generation to 0, that way if anything goes wrong
3510 * from here on out we know not to trust this cache when we load up next
3511 * time.
3513 BTRFS_I(inode)->generation = 0;
3514 ret = btrfs_update_inode(trans, root, inode);
3515 if (ret) {
3517 * So theoretically we could recover from this, simply set the
3518 * super cache generation to 0 so we know to invalidate the
3519 * cache, but then we'd have to keep track of the block groups
3520 * that fail this way so we know we _have_ to reset this cache
3521 * before the next commit or risk reading stale cache. So to
3522 * limit our exposure to horrible edge cases lets just abort the
3523 * transaction, this only happens in really bad situations
3524 * anyway.
3526 btrfs_abort_transaction(trans, ret);
3527 goto out_put;
3529 WARN_ON(ret);
3531 /* We've already setup this transaction, go ahead and exit */
3532 if (block_group->cache_generation == trans->transid &&
3533 i_size_read(inode)) {
3534 dcs = BTRFS_DC_SETUP;
3535 goto out_put;
3538 if (i_size_read(inode) > 0) {
3539 ret = btrfs_check_trunc_cache_free_space(fs_info,
3540 &fs_info->global_block_rsv);
3541 if (ret)
3542 goto out_put;
3544 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3545 if (ret)
3546 goto out_put;
3549 spin_lock(&block_group->lock);
3550 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3551 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3553 * don't bother trying to write stuff out _if_
3554 * a) we're not cached,
3555 * b) we're with nospace_cache mount option,
3556 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3558 dcs = BTRFS_DC_WRITTEN;
3559 spin_unlock(&block_group->lock);
3560 goto out_put;
3562 spin_unlock(&block_group->lock);
3565 * We hit an ENOSPC when setting up the cache in this transaction, just
3566 * skip doing the setup, we've already cleared the cache so we're safe.
3568 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3569 ret = -ENOSPC;
3570 goto out_put;
3574 * Try to preallocate enough space based on how big the block group is.
3575 * Keep in mind this has to include any pinned space which could end up
3576 * taking up quite a bit since it's not folded into the other space
3577 * cache.
3579 num_pages = div_u64(block_group->key.offset, SZ_256M);
3580 if (!num_pages)
3581 num_pages = 1;
3583 num_pages *= 16;
3584 num_pages *= PAGE_SIZE;
3586 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3587 if (ret)
3588 goto out_put;
3590 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3591 num_pages, num_pages,
3592 &alloc_hint);
3594 * Our cache requires contiguous chunks so that we don't modify a bunch
3595 * of metadata or split extents when writing the cache out, which means
3596 * we can enospc if we are heavily fragmented in addition to just normal
3597 * out of space conditions. So if we hit this just skip setting up any
3598 * other block groups for this transaction, maybe we'll unpin enough
3599 * space the next time around.
3601 if (!ret)
3602 dcs = BTRFS_DC_SETUP;
3603 else if (ret == -ENOSPC)
3604 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3606 out_put:
3607 iput(inode);
3608 out_free:
3609 btrfs_release_path(path);
3610 out:
3611 spin_lock(&block_group->lock);
3612 if (!ret && dcs == BTRFS_DC_SETUP)
3613 block_group->cache_generation = trans->transid;
3614 block_group->disk_cache_state = dcs;
3615 spin_unlock(&block_group->lock);
3617 extent_changeset_free(data_reserved);
3618 return ret;
3621 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3622 struct btrfs_fs_info *fs_info)
3624 struct btrfs_block_group_cache *cache, *tmp;
3625 struct btrfs_transaction *cur_trans = trans->transaction;
3626 struct btrfs_path *path;
3628 if (list_empty(&cur_trans->dirty_bgs) ||
3629 !btrfs_test_opt(fs_info, SPACE_CACHE))
3630 return 0;
3632 path = btrfs_alloc_path();
3633 if (!path)
3634 return -ENOMEM;
3636 /* Could add new block groups, use _safe just in case */
3637 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3638 dirty_list) {
3639 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3640 cache_save_setup(cache, trans, path);
3643 btrfs_free_path(path);
3644 return 0;
3648 * transaction commit does final block group cache writeback during a
3649 * critical section where nothing is allowed to change the FS. This is
3650 * required in order for the cache to actually match the block group,
3651 * but can introduce a lot of latency into the commit.
3653 * So, btrfs_start_dirty_block_groups is here to kick off block group
3654 * cache IO. There's a chance we'll have to redo some of it if the
3655 * block group changes again during the commit, but it greatly reduces
3656 * the commit latency by getting rid of the easy block groups while
3657 * we're still allowing others to join the commit.
3659 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3660 struct btrfs_fs_info *fs_info)
3662 struct btrfs_block_group_cache *cache;
3663 struct btrfs_transaction *cur_trans = trans->transaction;
3664 int ret = 0;
3665 int should_put;
3666 struct btrfs_path *path = NULL;
3667 LIST_HEAD(dirty);
3668 struct list_head *io = &cur_trans->io_bgs;
3669 int num_started = 0;
3670 int loops = 0;
3672 spin_lock(&cur_trans->dirty_bgs_lock);
3673 if (list_empty(&cur_trans->dirty_bgs)) {
3674 spin_unlock(&cur_trans->dirty_bgs_lock);
3675 return 0;
3677 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3678 spin_unlock(&cur_trans->dirty_bgs_lock);
3680 again:
3682 * make sure all the block groups on our dirty list actually
3683 * exist
3685 btrfs_create_pending_block_groups(trans, fs_info);
3687 if (!path) {
3688 path = btrfs_alloc_path();
3689 if (!path)
3690 return -ENOMEM;
3694 * cache_write_mutex is here only to save us from balance or automatic
3695 * removal of empty block groups deleting this block group while we are
3696 * writing out the cache
3698 mutex_lock(&trans->transaction->cache_write_mutex);
3699 while (!list_empty(&dirty)) {
3700 cache = list_first_entry(&dirty,
3701 struct btrfs_block_group_cache,
3702 dirty_list);
3704 * this can happen if something re-dirties a block
3705 * group that is already under IO. Just wait for it to
3706 * finish and then do it all again
3708 if (!list_empty(&cache->io_list)) {
3709 list_del_init(&cache->io_list);
3710 btrfs_wait_cache_io(trans, cache, path);
3711 btrfs_put_block_group(cache);
3716 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3717 * if it should update the cache_state. Don't delete
3718 * until after we wait.
3720 * Since we're not running in the commit critical section
3721 * we need the dirty_bgs_lock to protect from update_block_group
3723 spin_lock(&cur_trans->dirty_bgs_lock);
3724 list_del_init(&cache->dirty_list);
3725 spin_unlock(&cur_trans->dirty_bgs_lock);
3727 should_put = 1;
3729 cache_save_setup(cache, trans, path);
3731 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3732 cache->io_ctl.inode = NULL;
3733 ret = btrfs_write_out_cache(fs_info, trans,
3734 cache, path);
3735 if (ret == 0 && cache->io_ctl.inode) {
3736 num_started++;
3737 should_put = 0;
3740 * the cache_write_mutex is protecting
3741 * the io_list
3743 list_add_tail(&cache->io_list, io);
3744 } else {
3746 * if we failed to write the cache, the
3747 * generation will be bad and life goes on
3749 ret = 0;
3752 if (!ret) {
3753 ret = write_one_cache_group(trans, fs_info,
3754 path, cache);
3756 * Our block group might still be attached to the list
3757 * of new block groups in the transaction handle of some
3758 * other task (struct btrfs_trans_handle->new_bgs). This
3759 * means its block group item isn't yet in the extent
3760 * tree. If this happens ignore the error, as we will
3761 * try again later in the critical section of the
3762 * transaction commit.
3764 if (ret == -ENOENT) {
3765 ret = 0;
3766 spin_lock(&cur_trans->dirty_bgs_lock);
3767 if (list_empty(&cache->dirty_list)) {
3768 list_add_tail(&cache->dirty_list,
3769 &cur_trans->dirty_bgs);
3770 btrfs_get_block_group(cache);
3772 spin_unlock(&cur_trans->dirty_bgs_lock);
3773 } else if (ret) {
3774 btrfs_abort_transaction(trans, ret);
3778 /* if its not on the io list, we need to put the block group */
3779 if (should_put)
3780 btrfs_put_block_group(cache);
3782 if (ret)
3783 break;
3786 * Avoid blocking other tasks for too long. It might even save
3787 * us from writing caches for block groups that are going to be
3788 * removed.
3790 mutex_unlock(&trans->transaction->cache_write_mutex);
3791 mutex_lock(&trans->transaction->cache_write_mutex);
3793 mutex_unlock(&trans->transaction->cache_write_mutex);
3796 * go through delayed refs for all the stuff we've just kicked off
3797 * and then loop back (just once)
3799 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
3800 if (!ret && loops == 0) {
3801 loops++;
3802 spin_lock(&cur_trans->dirty_bgs_lock);
3803 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3805 * dirty_bgs_lock protects us from concurrent block group
3806 * deletes too (not just cache_write_mutex).
3808 if (!list_empty(&dirty)) {
3809 spin_unlock(&cur_trans->dirty_bgs_lock);
3810 goto again;
3812 spin_unlock(&cur_trans->dirty_bgs_lock);
3813 } else if (ret < 0) {
3814 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3817 btrfs_free_path(path);
3818 return ret;
3821 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3822 struct btrfs_fs_info *fs_info)
3824 struct btrfs_block_group_cache *cache;
3825 struct btrfs_transaction *cur_trans = trans->transaction;
3826 int ret = 0;
3827 int should_put;
3828 struct btrfs_path *path;
3829 struct list_head *io = &cur_trans->io_bgs;
3830 int num_started = 0;
3832 path = btrfs_alloc_path();
3833 if (!path)
3834 return -ENOMEM;
3837 * Even though we are in the critical section of the transaction commit,
3838 * we can still have concurrent tasks adding elements to this
3839 * transaction's list of dirty block groups. These tasks correspond to
3840 * endio free space workers started when writeback finishes for a
3841 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3842 * allocate new block groups as a result of COWing nodes of the root
3843 * tree when updating the free space inode. The writeback for the space
3844 * caches is triggered by an earlier call to
3845 * btrfs_start_dirty_block_groups() and iterations of the following
3846 * loop.
3847 * Also we want to do the cache_save_setup first and then run the
3848 * delayed refs to make sure we have the best chance at doing this all
3849 * in one shot.
3851 spin_lock(&cur_trans->dirty_bgs_lock);
3852 while (!list_empty(&cur_trans->dirty_bgs)) {
3853 cache = list_first_entry(&cur_trans->dirty_bgs,
3854 struct btrfs_block_group_cache,
3855 dirty_list);
3858 * this can happen if cache_save_setup re-dirties a block
3859 * group that is already under IO. Just wait for it to
3860 * finish and then do it all again
3862 if (!list_empty(&cache->io_list)) {
3863 spin_unlock(&cur_trans->dirty_bgs_lock);
3864 list_del_init(&cache->io_list);
3865 btrfs_wait_cache_io(trans, cache, path);
3866 btrfs_put_block_group(cache);
3867 spin_lock(&cur_trans->dirty_bgs_lock);
3871 * don't remove from the dirty list until after we've waited
3872 * on any pending IO
3874 list_del_init(&cache->dirty_list);
3875 spin_unlock(&cur_trans->dirty_bgs_lock);
3876 should_put = 1;
3878 cache_save_setup(cache, trans, path);
3880 if (!ret)
3881 ret = btrfs_run_delayed_refs(trans, fs_info,
3882 (unsigned long) -1);
3884 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3885 cache->io_ctl.inode = NULL;
3886 ret = btrfs_write_out_cache(fs_info, trans,
3887 cache, path);
3888 if (ret == 0 && cache->io_ctl.inode) {
3889 num_started++;
3890 should_put = 0;
3891 list_add_tail(&cache->io_list, io);
3892 } else {
3894 * if we failed to write the cache, the
3895 * generation will be bad and life goes on
3897 ret = 0;
3900 if (!ret) {
3901 ret = write_one_cache_group(trans, fs_info,
3902 path, cache);
3904 * One of the free space endio workers might have
3905 * created a new block group while updating a free space
3906 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3907 * and hasn't released its transaction handle yet, in
3908 * which case the new block group is still attached to
3909 * its transaction handle and its creation has not
3910 * finished yet (no block group item in the extent tree
3911 * yet, etc). If this is the case, wait for all free
3912 * space endio workers to finish and retry. This is a
3913 * a very rare case so no need for a more efficient and
3914 * complex approach.
3916 if (ret == -ENOENT) {
3917 wait_event(cur_trans->writer_wait,
3918 atomic_read(&cur_trans->num_writers) == 1);
3919 ret = write_one_cache_group(trans, fs_info,
3920 path, cache);
3922 if (ret)
3923 btrfs_abort_transaction(trans, ret);
3926 /* if its not on the io list, we need to put the block group */
3927 if (should_put)
3928 btrfs_put_block_group(cache);
3929 spin_lock(&cur_trans->dirty_bgs_lock);
3931 spin_unlock(&cur_trans->dirty_bgs_lock);
3933 while (!list_empty(io)) {
3934 cache = list_first_entry(io, struct btrfs_block_group_cache,
3935 io_list);
3936 list_del_init(&cache->io_list);
3937 btrfs_wait_cache_io(trans, cache, path);
3938 btrfs_put_block_group(cache);
3941 btrfs_free_path(path);
3942 return ret;
3945 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3947 struct btrfs_block_group_cache *block_group;
3948 int readonly = 0;
3950 block_group = btrfs_lookup_block_group(fs_info, bytenr);
3951 if (!block_group || block_group->ro)
3952 readonly = 1;
3953 if (block_group)
3954 btrfs_put_block_group(block_group);
3955 return readonly;
3958 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3960 struct btrfs_block_group_cache *bg;
3961 bool ret = true;
3963 bg = btrfs_lookup_block_group(fs_info, bytenr);
3964 if (!bg)
3965 return false;
3967 spin_lock(&bg->lock);
3968 if (bg->ro)
3969 ret = false;
3970 else
3971 atomic_inc(&bg->nocow_writers);
3972 spin_unlock(&bg->lock);
3974 /* no put on block group, done by btrfs_dec_nocow_writers */
3975 if (!ret)
3976 btrfs_put_block_group(bg);
3978 return ret;
3982 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3984 struct btrfs_block_group_cache *bg;
3986 bg = btrfs_lookup_block_group(fs_info, bytenr);
3987 ASSERT(bg);
3988 if (atomic_dec_and_test(&bg->nocow_writers))
3989 wake_up_atomic_t(&bg->nocow_writers);
3991 * Once for our lookup and once for the lookup done by a previous call
3992 * to btrfs_inc_nocow_writers()
3994 btrfs_put_block_group(bg);
3995 btrfs_put_block_group(bg);
3998 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
4000 wait_on_atomic_t(&bg->nocow_writers, atomic_t_wait,
4001 TASK_UNINTERRUPTIBLE);
4004 static const char *alloc_name(u64 flags)
4006 switch (flags) {
4007 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4008 return "mixed";
4009 case BTRFS_BLOCK_GROUP_METADATA:
4010 return "metadata";
4011 case BTRFS_BLOCK_GROUP_DATA:
4012 return "data";
4013 case BTRFS_BLOCK_GROUP_SYSTEM:
4014 return "system";
4015 default:
4016 WARN_ON(1);
4017 return "invalid-combination";
4021 static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4022 struct btrfs_space_info **new)
4025 struct btrfs_space_info *space_info;
4026 int i;
4027 int ret;
4029 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4030 if (!space_info)
4031 return -ENOMEM;
4033 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4034 GFP_KERNEL);
4035 if (ret) {
4036 kfree(space_info);
4037 return ret;
4040 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4041 INIT_LIST_HEAD(&space_info->block_groups[i]);
4042 init_rwsem(&space_info->groups_sem);
4043 spin_lock_init(&space_info->lock);
4044 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4045 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4046 init_waitqueue_head(&space_info->wait);
4047 INIT_LIST_HEAD(&space_info->ro_bgs);
4048 INIT_LIST_HEAD(&space_info->tickets);
4049 INIT_LIST_HEAD(&space_info->priority_tickets);
4051 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4052 info->space_info_kobj, "%s",
4053 alloc_name(space_info->flags));
4054 if (ret) {
4055 percpu_counter_destroy(&space_info->total_bytes_pinned);
4056 kfree(space_info);
4057 return ret;
4060 *new = space_info;
4061 list_add_rcu(&space_info->list, &info->space_info);
4062 if (flags & BTRFS_BLOCK_GROUP_DATA)
4063 info->data_sinfo = space_info;
4065 return ret;
4068 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
4069 u64 total_bytes, u64 bytes_used,
4070 u64 bytes_readonly,
4071 struct btrfs_space_info **space_info)
4073 struct btrfs_space_info *found;
4074 int factor;
4076 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4077 BTRFS_BLOCK_GROUP_RAID10))
4078 factor = 2;
4079 else
4080 factor = 1;
4082 found = __find_space_info(info, flags);
4083 ASSERT(found);
4084 spin_lock(&found->lock);
4085 found->total_bytes += total_bytes;
4086 found->disk_total += total_bytes * factor;
4087 found->bytes_used += bytes_used;
4088 found->disk_used += bytes_used * factor;
4089 found->bytes_readonly += bytes_readonly;
4090 if (total_bytes > 0)
4091 found->full = 0;
4092 space_info_add_new_bytes(info, found, total_bytes -
4093 bytes_used - bytes_readonly);
4094 spin_unlock(&found->lock);
4095 *space_info = found;
4098 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4100 u64 extra_flags = chunk_to_extended(flags) &
4101 BTRFS_EXTENDED_PROFILE_MASK;
4103 write_seqlock(&fs_info->profiles_lock);
4104 if (flags & BTRFS_BLOCK_GROUP_DATA)
4105 fs_info->avail_data_alloc_bits |= extra_flags;
4106 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4107 fs_info->avail_metadata_alloc_bits |= extra_flags;
4108 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4109 fs_info->avail_system_alloc_bits |= extra_flags;
4110 write_sequnlock(&fs_info->profiles_lock);
4114 * returns target flags in extended format or 0 if restripe for this
4115 * chunk_type is not in progress
4117 * should be called with either volume_mutex or balance_lock held
4119 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4121 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4122 u64 target = 0;
4124 if (!bctl)
4125 return 0;
4127 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4128 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4129 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4130 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4131 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4132 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4133 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4134 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4135 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4138 return target;
4142 * @flags: available profiles in extended format (see ctree.h)
4144 * Returns reduced profile in chunk format. If profile changing is in
4145 * progress (either running or paused) picks the target profile (if it's
4146 * already available), otherwise falls back to plain reducing.
4148 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4150 u64 num_devices = fs_info->fs_devices->rw_devices;
4151 u64 target;
4152 u64 raid_type;
4153 u64 allowed = 0;
4156 * see if restripe for this chunk_type is in progress, if so
4157 * try to reduce to the target profile
4159 spin_lock(&fs_info->balance_lock);
4160 target = get_restripe_target(fs_info, flags);
4161 if (target) {
4162 /* pick target profile only if it's already available */
4163 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4164 spin_unlock(&fs_info->balance_lock);
4165 return extended_to_chunk(target);
4168 spin_unlock(&fs_info->balance_lock);
4170 /* First, mask out the RAID levels which aren't possible */
4171 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4172 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4173 allowed |= btrfs_raid_group[raid_type];
4175 allowed &= flags;
4177 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4178 allowed = BTRFS_BLOCK_GROUP_RAID6;
4179 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4180 allowed = BTRFS_BLOCK_GROUP_RAID5;
4181 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4182 allowed = BTRFS_BLOCK_GROUP_RAID10;
4183 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4184 allowed = BTRFS_BLOCK_GROUP_RAID1;
4185 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4186 allowed = BTRFS_BLOCK_GROUP_RAID0;
4188 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4190 return extended_to_chunk(flags | allowed);
4193 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4195 unsigned seq;
4196 u64 flags;
4198 do {
4199 flags = orig_flags;
4200 seq = read_seqbegin(&fs_info->profiles_lock);
4202 if (flags & BTRFS_BLOCK_GROUP_DATA)
4203 flags |= fs_info->avail_data_alloc_bits;
4204 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4205 flags |= fs_info->avail_system_alloc_bits;
4206 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4207 flags |= fs_info->avail_metadata_alloc_bits;
4208 } while (read_seqretry(&fs_info->profiles_lock, seq));
4210 return btrfs_reduce_alloc_profile(fs_info, flags);
4213 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4215 struct btrfs_fs_info *fs_info = root->fs_info;
4216 u64 flags;
4217 u64 ret;
4219 if (data)
4220 flags = BTRFS_BLOCK_GROUP_DATA;
4221 else if (root == fs_info->chunk_root)
4222 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4223 else
4224 flags = BTRFS_BLOCK_GROUP_METADATA;
4226 ret = get_alloc_profile(fs_info, flags);
4227 return ret;
4230 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4232 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4235 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4237 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4240 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4242 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4245 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4246 bool may_use_included)
4248 ASSERT(s_info);
4249 return s_info->bytes_used + s_info->bytes_reserved +
4250 s_info->bytes_pinned + s_info->bytes_readonly +
4251 (may_use_included ? s_info->bytes_may_use : 0);
4254 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4256 struct btrfs_root *root = inode->root;
4257 struct btrfs_fs_info *fs_info = root->fs_info;
4258 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4259 u64 used;
4260 int ret = 0;
4261 int need_commit = 2;
4262 int have_pinned_space;
4264 /* make sure bytes are sectorsize aligned */
4265 bytes = ALIGN(bytes, fs_info->sectorsize);
4267 if (btrfs_is_free_space_inode(inode)) {
4268 need_commit = 0;
4269 ASSERT(current->journal_info);
4272 again:
4273 /* make sure we have enough space to handle the data first */
4274 spin_lock(&data_sinfo->lock);
4275 used = btrfs_space_info_used(data_sinfo, true);
4277 if (used + bytes > data_sinfo->total_bytes) {
4278 struct btrfs_trans_handle *trans;
4281 * if we don't have enough free bytes in this space then we need
4282 * to alloc a new chunk.
4284 if (!data_sinfo->full) {
4285 u64 alloc_target;
4287 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4288 spin_unlock(&data_sinfo->lock);
4290 alloc_target = btrfs_data_alloc_profile(fs_info);
4292 * It is ugly that we don't call nolock join
4293 * transaction for the free space inode case here.
4294 * But it is safe because we only do the data space
4295 * reservation for the free space cache in the
4296 * transaction context, the common join transaction
4297 * just increase the counter of the current transaction
4298 * handler, doesn't try to acquire the trans_lock of
4299 * the fs.
4301 trans = btrfs_join_transaction(root);
4302 if (IS_ERR(trans))
4303 return PTR_ERR(trans);
4305 ret = do_chunk_alloc(trans, fs_info, alloc_target,
4306 CHUNK_ALLOC_NO_FORCE);
4307 btrfs_end_transaction(trans);
4308 if (ret < 0) {
4309 if (ret != -ENOSPC)
4310 return ret;
4311 else {
4312 have_pinned_space = 1;
4313 goto commit_trans;
4317 goto again;
4321 * If we don't have enough pinned space to deal with this
4322 * allocation, and no removed chunk in current transaction,
4323 * don't bother committing the transaction.
4325 have_pinned_space = percpu_counter_compare(
4326 &data_sinfo->total_bytes_pinned,
4327 used + bytes - data_sinfo->total_bytes);
4328 spin_unlock(&data_sinfo->lock);
4330 /* commit the current transaction and try again */
4331 commit_trans:
4332 if (need_commit &&
4333 !atomic_read(&fs_info->open_ioctl_trans)) {
4334 need_commit--;
4336 if (need_commit > 0) {
4337 btrfs_start_delalloc_roots(fs_info, 0, -1);
4338 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4339 (u64)-1);
4342 trans = btrfs_join_transaction(root);
4343 if (IS_ERR(trans))
4344 return PTR_ERR(trans);
4345 if (have_pinned_space >= 0 ||
4346 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4347 &trans->transaction->flags) ||
4348 need_commit > 0) {
4349 ret = btrfs_commit_transaction(trans);
4350 if (ret)
4351 return ret;
4353 * The cleaner kthread might still be doing iput
4354 * operations. Wait for it to finish so that
4355 * more space is released.
4357 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4358 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4359 goto again;
4360 } else {
4361 btrfs_end_transaction(trans);
4365 trace_btrfs_space_reservation(fs_info,
4366 "space_info:enospc",
4367 data_sinfo->flags, bytes, 1);
4368 return -ENOSPC;
4370 data_sinfo->bytes_may_use += bytes;
4371 trace_btrfs_space_reservation(fs_info, "space_info",
4372 data_sinfo->flags, bytes, 1);
4373 spin_unlock(&data_sinfo->lock);
4375 return ret;
4378 int btrfs_check_data_free_space(struct inode *inode,
4379 struct extent_changeset **reserved, u64 start, u64 len)
4381 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4382 int ret;
4384 /* align the range */
4385 len = round_up(start + len, fs_info->sectorsize) -
4386 round_down(start, fs_info->sectorsize);
4387 start = round_down(start, fs_info->sectorsize);
4389 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4390 if (ret < 0)
4391 return ret;
4393 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4394 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4395 if (ret < 0)
4396 btrfs_free_reserved_data_space_noquota(inode, start, len);
4397 else
4398 ret = 0;
4399 return ret;
4403 * Called if we need to clear a data reservation for this inode
4404 * Normally in a error case.
4406 * This one will *NOT* use accurate qgroup reserved space API, just for case
4407 * which we can't sleep and is sure it won't affect qgroup reserved space.
4408 * Like clear_bit_hook().
4410 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4411 u64 len)
4413 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4414 struct btrfs_space_info *data_sinfo;
4416 /* Make sure the range is aligned to sectorsize */
4417 len = round_up(start + len, fs_info->sectorsize) -
4418 round_down(start, fs_info->sectorsize);
4419 start = round_down(start, fs_info->sectorsize);
4421 data_sinfo = fs_info->data_sinfo;
4422 spin_lock(&data_sinfo->lock);
4423 if (WARN_ON(data_sinfo->bytes_may_use < len))
4424 data_sinfo->bytes_may_use = 0;
4425 else
4426 data_sinfo->bytes_may_use -= len;
4427 trace_btrfs_space_reservation(fs_info, "space_info",
4428 data_sinfo->flags, len, 0);
4429 spin_unlock(&data_sinfo->lock);
4433 * Called if we need to clear a data reservation for this inode
4434 * Normally in a error case.
4436 * This one will handle the per-inode data rsv map for accurate reserved
4437 * space framework.
4439 void btrfs_free_reserved_data_space(struct inode *inode,
4440 struct extent_changeset *reserved, u64 start, u64 len)
4442 struct btrfs_root *root = BTRFS_I(inode)->root;
4444 /* Make sure the range is aligned to sectorsize */
4445 len = round_up(start + len, root->fs_info->sectorsize) -
4446 round_down(start, root->fs_info->sectorsize);
4447 start = round_down(start, root->fs_info->sectorsize);
4449 btrfs_free_reserved_data_space_noquota(inode, start, len);
4450 btrfs_qgroup_free_data(inode, reserved, start, len);
4453 static void force_metadata_allocation(struct btrfs_fs_info *info)
4455 struct list_head *head = &info->space_info;
4456 struct btrfs_space_info *found;
4458 rcu_read_lock();
4459 list_for_each_entry_rcu(found, head, list) {
4460 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4461 found->force_alloc = CHUNK_ALLOC_FORCE;
4463 rcu_read_unlock();
4466 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4468 return (global->size << 1);
4471 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4472 struct btrfs_space_info *sinfo, int force)
4474 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4475 u64 bytes_used = btrfs_space_info_used(sinfo, false);
4476 u64 thresh;
4478 if (force == CHUNK_ALLOC_FORCE)
4479 return 1;
4482 * We need to take into account the global rsv because for all intents
4483 * and purposes it's used space. Don't worry about locking the
4484 * global_rsv, it doesn't change except when the transaction commits.
4486 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4487 bytes_used += calc_global_rsv_need_space(global_rsv);
4490 * in limited mode, we want to have some free space up to
4491 * about 1% of the FS size.
4493 if (force == CHUNK_ALLOC_LIMITED) {
4494 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4495 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4497 if (sinfo->total_bytes - bytes_used < thresh)
4498 return 1;
4501 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4502 return 0;
4503 return 1;
4506 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4508 u64 num_dev;
4510 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4511 BTRFS_BLOCK_GROUP_RAID0 |
4512 BTRFS_BLOCK_GROUP_RAID5 |
4513 BTRFS_BLOCK_GROUP_RAID6))
4514 num_dev = fs_info->fs_devices->rw_devices;
4515 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4516 num_dev = 2;
4517 else
4518 num_dev = 1; /* DUP or single */
4520 return num_dev;
4524 * If @is_allocation is true, reserve space in the system space info necessary
4525 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4526 * removing a chunk.
4528 void check_system_chunk(struct btrfs_trans_handle *trans,
4529 struct btrfs_fs_info *fs_info, u64 type)
4531 struct btrfs_space_info *info;
4532 u64 left;
4533 u64 thresh;
4534 int ret = 0;
4535 u64 num_devs;
4538 * Needed because we can end up allocating a system chunk and for an
4539 * atomic and race free space reservation in the chunk block reserve.
4541 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4543 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4544 spin_lock(&info->lock);
4545 left = info->total_bytes - btrfs_space_info_used(info, true);
4546 spin_unlock(&info->lock);
4548 num_devs = get_profile_num_devs(fs_info, type);
4550 /* num_devs device items to update and 1 chunk item to add or remove */
4551 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4552 btrfs_calc_trans_metadata_size(fs_info, 1);
4554 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4555 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4556 left, thresh, type);
4557 dump_space_info(fs_info, info, 0, 0);
4560 if (left < thresh) {
4561 u64 flags = btrfs_system_alloc_profile(fs_info);
4564 * Ignore failure to create system chunk. We might end up not
4565 * needing it, as we might not need to COW all nodes/leafs from
4566 * the paths we visit in the chunk tree (they were already COWed
4567 * or created in the current transaction for example).
4569 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4572 if (!ret) {
4573 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4574 &fs_info->chunk_block_rsv,
4575 thresh, BTRFS_RESERVE_NO_FLUSH);
4576 if (!ret)
4577 trans->chunk_bytes_reserved += thresh;
4582 * If force is CHUNK_ALLOC_FORCE:
4583 * - return 1 if it successfully allocates a chunk,
4584 * - return errors including -ENOSPC otherwise.
4585 * If force is NOT CHUNK_ALLOC_FORCE:
4586 * - return 0 if it doesn't need to allocate a new chunk,
4587 * - return 1 if it successfully allocates a chunk,
4588 * - return errors including -ENOSPC otherwise.
4590 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4591 struct btrfs_fs_info *fs_info, u64 flags, int force)
4593 struct btrfs_space_info *space_info;
4594 int wait_for_alloc = 0;
4595 int ret = 0;
4597 /* Don't re-enter if we're already allocating a chunk */
4598 if (trans->allocating_chunk)
4599 return -ENOSPC;
4601 space_info = __find_space_info(fs_info, flags);
4602 if (!space_info) {
4603 ret = create_space_info(fs_info, flags, &space_info);
4604 if (ret)
4605 return ret;
4608 again:
4609 spin_lock(&space_info->lock);
4610 if (force < space_info->force_alloc)
4611 force = space_info->force_alloc;
4612 if (space_info->full) {
4613 if (should_alloc_chunk(fs_info, space_info, force))
4614 ret = -ENOSPC;
4615 else
4616 ret = 0;
4617 spin_unlock(&space_info->lock);
4618 return ret;
4621 if (!should_alloc_chunk(fs_info, space_info, force)) {
4622 spin_unlock(&space_info->lock);
4623 return 0;
4624 } else if (space_info->chunk_alloc) {
4625 wait_for_alloc = 1;
4626 } else {
4627 space_info->chunk_alloc = 1;
4630 spin_unlock(&space_info->lock);
4632 mutex_lock(&fs_info->chunk_mutex);
4635 * The chunk_mutex is held throughout the entirety of a chunk
4636 * allocation, so once we've acquired the chunk_mutex we know that the
4637 * other guy is done and we need to recheck and see if we should
4638 * allocate.
4640 if (wait_for_alloc) {
4641 mutex_unlock(&fs_info->chunk_mutex);
4642 wait_for_alloc = 0;
4643 goto again;
4646 trans->allocating_chunk = true;
4649 * If we have mixed data/metadata chunks we want to make sure we keep
4650 * allocating mixed chunks instead of individual chunks.
4652 if (btrfs_mixed_space_info(space_info))
4653 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4656 * if we're doing a data chunk, go ahead and make sure that
4657 * we keep a reasonable number of metadata chunks allocated in the
4658 * FS as well.
4660 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4661 fs_info->data_chunk_allocations++;
4662 if (!(fs_info->data_chunk_allocations %
4663 fs_info->metadata_ratio))
4664 force_metadata_allocation(fs_info);
4668 * Check if we have enough space in SYSTEM chunk because we may need
4669 * to update devices.
4671 check_system_chunk(trans, fs_info, flags);
4673 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4674 trans->allocating_chunk = false;
4676 spin_lock(&space_info->lock);
4677 if (ret < 0 && ret != -ENOSPC)
4678 goto out;
4679 if (ret)
4680 space_info->full = 1;
4681 else
4682 ret = 1;
4684 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4685 out:
4686 space_info->chunk_alloc = 0;
4687 spin_unlock(&space_info->lock);
4688 mutex_unlock(&fs_info->chunk_mutex);
4690 * When we allocate a new chunk we reserve space in the chunk block
4691 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4692 * add new nodes/leafs to it if we end up needing to do it when
4693 * inserting the chunk item and updating device items as part of the
4694 * second phase of chunk allocation, performed by
4695 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4696 * large number of new block groups to create in our transaction
4697 * handle's new_bgs list to avoid exhausting the chunk block reserve
4698 * in extreme cases - like having a single transaction create many new
4699 * block groups when starting to write out the free space caches of all
4700 * the block groups that were made dirty during the lifetime of the
4701 * transaction.
4703 if (trans->can_flush_pending_bgs &&
4704 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4705 btrfs_create_pending_block_groups(trans, fs_info);
4706 btrfs_trans_release_chunk_metadata(trans);
4708 return ret;
4711 static int can_overcommit(struct btrfs_fs_info *fs_info,
4712 struct btrfs_space_info *space_info, u64 bytes,
4713 enum btrfs_reserve_flush_enum flush,
4714 bool system_chunk)
4716 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4717 u64 profile;
4718 u64 space_size;
4719 u64 avail;
4720 u64 used;
4722 /* Don't overcommit when in mixed mode. */
4723 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4724 return 0;
4726 if (system_chunk)
4727 profile = btrfs_system_alloc_profile(fs_info);
4728 else
4729 profile = btrfs_metadata_alloc_profile(fs_info);
4731 used = btrfs_space_info_used(space_info, false);
4734 * We only want to allow over committing if we have lots of actual space
4735 * free, but if we don't have enough space to handle the global reserve
4736 * space then we could end up having a real enospc problem when trying
4737 * to allocate a chunk or some other such important allocation.
4739 spin_lock(&global_rsv->lock);
4740 space_size = calc_global_rsv_need_space(global_rsv);
4741 spin_unlock(&global_rsv->lock);
4742 if (used + space_size >= space_info->total_bytes)
4743 return 0;
4745 used += space_info->bytes_may_use;
4747 avail = atomic64_read(&fs_info->free_chunk_space);
4750 * If we have dup, raid1 or raid10 then only half of the free
4751 * space is actually useable. For raid56, the space info used
4752 * doesn't include the parity drive, so we don't have to
4753 * change the math
4755 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4756 BTRFS_BLOCK_GROUP_RAID1 |
4757 BTRFS_BLOCK_GROUP_RAID10))
4758 avail >>= 1;
4761 * If we aren't flushing all things, let us overcommit up to
4762 * 1/2th of the space. If we can flush, don't let us overcommit
4763 * too much, let it overcommit up to 1/8 of the space.
4765 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4766 avail >>= 3;
4767 else
4768 avail >>= 1;
4770 if (used + bytes < space_info->total_bytes + avail)
4771 return 1;
4772 return 0;
4775 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4776 unsigned long nr_pages, int nr_items)
4778 struct super_block *sb = fs_info->sb;
4780 if (down_read_trylock(&sb->s_umount)) {
4781 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4782 up_read(&sb->s_umount);
4783 } else {
4785 * We needn't worry the filesystem going from r/w to r/o though
4786 * we don't acquire ->s_umount mutex, because the filesystem
4787 * should guarantee the delalloc inodes list be empty after
4788 * the filesystem is readonly(all dirty pages are written to
4789 * the disk).
4791 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4792 if (!current->journal_info)
4793 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4797 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4798 u64 to_reclaim)
4800 u64 bytes;
4801 u64 nr;
4803 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4804 nr = div64_u64(to_reclaim, bytes);
4805 if (!nr)
4806 nr = 1;
4807 return nr;
4810 #define EXTENT_SIZE_PER_ITEM SZ_256K
4813 * shrink metadata reservation for delalloc
4815 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4816 u64 orig, bool wait_ordered)
4818 struct btrfs_space_info *space_info;
4819 struct btrfs_trans_handle *trans;
4820 u64 delalloc_bytes;
4821 u64 max_reclaim;
4822 u64 items;
4823 long time_left;
4824 unsigned long nr_pages;
4825 int loops;
4826 enum btrfs_reserve_flush_enum flush;
4828 /* Calc the number of the pages we need flush for space reservation */
4829 items = calc_reclaim_items_nr(fs_info, to_reclaim);
4830 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4832 trans = (struct btrfs_trans_handle *)current->journal_info;
4833 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4835 delalloc_bytes = percpu_counter_sum_positive(
4836 &fs_info->delalloc_bytes);
4837 if (delalloc_bytes == 0) {
4838 if (trans)
4839 return;
4840 if (wait_ordered)
4841 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4842 return;
4845 loops = 0;
4846 while (delalloc_bytes && loops < 3) {
4847 max_reclaim = min(delalloc_bytes, to_reclaim);
4848 nr_pages = max_reclaim >> PAGE_SHIFT;
4849 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4851 * We need to wait for the async pages to actually start before
4852 * we do anything.
4854 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4855 if (!max_reclaim)
4856 goto skip_async;
4858 if (max_reclaim <= nr_pages)
4859 max_reclaim = 0;
4860 else
4861 max_reclaim -= nr_pages;
4863 wait_event(fs_info->async_submit_wait,
4864 atomic_read(&fs_info->async_delalloc_pages) <=
4865 (int)max_reclaim);
4866 skip_async:
4867 if (!trans)
4868 flush = BTRFS_RESERVE_FLUSH_ALL;
4869 else
4870 flush = BTRFS_RESERVE_NO_FLUSH;
4871 spin_lock(&space_info->lock);
4872 if (list_empty(&space_info->tickets) &&
4873 list_empty(&space_info->priority_tickets)) {
4874 spin_unlock(&space_info->lock);
4875 break;
4877 spin_unlock(&space_info->lock);
4879 loops++;
4880 if (wait_ordered && !trans) {
4881 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4882 } else {
4883 time_left = schedule_timeout_killable(1);
4884 if (time_left)
4885 break;
4887 delalloc_bytes = percpu_counter_sum_positive(
4888 &fs_info->delalloc_bytes);
4892 struct reserve_ticket {
4893 u64 bytes;
4894 int error;
4895 struct list_head list;
4896 wait_queue_head_t wait;
4900 * maybe_commit_transaction - possibly commit the transaction if its ok to
4901 * @root - the root we're allocating for
4902 * @bytes - the number of bytes we want to reserve
4903 * @force - force the commit
4905 * This will check to make sure that committing the transaction will actually
4906 * get us somewhere and then commit the transaction if it does. Otherwise it
4907 * will return -ENOSPC.
4909 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4910 struct btrfs_space_info *space_info)
4912 struct reserve_ticket *ticket = NULL;
4913 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4914 struct btrfs_trans_handle *trans;
4915 u64 bytes;
4917 trans = (struct btrfs_trans_handle *)current->journal_info;
4918 if (trans)
4919 return -EAGAIN;
4921 spin_lock(&space_info->lock);
4922 if (!list_empty(&space_info->priority_tickets))
4923 ticket = list_first_entry(&space_info->priority_tickets,
4924 struct reserve_ticket, list);
4925 else if (!list_empty(&space_info->tickets))
4926 ticket = list_first_entry(&space_info->tickets,
4927 struct reserve_ticket, list);
4928 bytes = (ticket) ? ticket->bytes : 0;
4929 spin_unlock(&space_info->lock);
4931 if (!bytes)
4932 return 0;
4934 /* See if there is enough pinned space to make this reservation */
4935 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4936 bytes) >= 0)
4937 goto commit;
4940 * See if there is some space in the delayed insertion reservation for
4941 * this reservation.
4943 if (space_info != delayed_rsv->space_info)
4944 return -ENOSPC;
4946 spin_lock(&delayed_rsv->lock);
4947 if (delayed_rsv->size > bytes)
4948 bytes = 0;
4949 else
4950 bytes -= delayed_rsv->size;
4951 spin_unlock(&delayed_rsv->lock);
4953 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4954 bytes) < 0) {
4955 return -ENOSPC;
4958 commit:
4959 trans = btrfs_join_transaction(fs_info->extent_root);
4960 if (IS_ERR(trans))
4961 return -ENOSPC;
4963 return btrfs_commit_transaction(trans);
4967 * Try to flush some data based on policy set by @state. This is only advisory
4968 * and may fail for various reasons. The caller is supposed to examine the
4969 * state of @space_info to detect the outcome.
4971 static void flush_space(struct btrfs_fs_info *fs_info,
4972 struct btrfs_space_info *space_info, u64 num_bytes,
4973 int state)
4975 struct btrfs_root *root = fs_info->extent_root;
4976 struct btrfs_trans_handle *trans;
4977 int nr;
4978 int ret = 0;
4980 switch (state) {
4981 case FLUSH_DELAYED_ITEMS_NR:
4982 case FLUSH_DELAYED_ITEMS:
4983 if (state == FLUSH_DELAYED_ITEMS_NR)
4984 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4985 else
4986 nr = -1;
4988 trans = btrfs_join_transaction(root);
4989 if (IS_ERR(trans)) {
4990 ret = PTR_ERR(trans);
4991 break;
4993 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
4994 btrfs_end_transaction(trans);
4995 break;
4996 case FLUSH_DELALLOC:
4997 case FLUSH_DELALLOC_WAIT:
4998 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
4999 state == FLUSH_DELALLOC_WAIT);
5000 break;
5001 case ALLOC_CHUNK:
5002 trans = btrfs_join_transaction(root);
5003 if (IS_ERR(trans)) {
5004 ret = PTR_ERR(trans);
5005 break;
5007 ret = do_chunk_alloc(trans, fs_info,
5008 btrfs_metadata_alloc_profile(fs_info),
5009 CHUNK_ALLOC_NO_FORCE);
5010 btrfs_end_transaction(trans);
5011 if (ret > 0 || ret == -ENOSPC)
5012 ret = 0;
5013 break;
5014 case COMMIT_TRANS:
5015 ret = may_commit_transaction(fs_info, space_info);
5016 break;
5017 default:
5018 ret = -ENOSPC;
5019 break;
5022 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5023 ret);
5024 return;
5027 static inline u64
5028 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5029 struct btrfs_space_info *space_info,
5030 bool system_chunk)
5032 struct reserve_ticket *ticket;
5033 u64 used;
5034 u64 expected;
5035 u64 to_reclaim = 0;
5037 list_for_each_entry(ticket, &space_info->tickets, list)
5038 to_reclaim += ticket->bytes;
5039 list_for_each_entry(ticket, &space_info->priority_tickets, list)
5040 to_reclaim += ticket->bytes;
5041 if (to_reclaim)
5042 return to_reclaim;
5044 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
5045 if (can_overcommit(fs_info, space_info, to_reclaim,
5046 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5047 return 0;
5049 used = btrfs_space_info_used(space_info, true);
5051 if (can_overcommit(fs_info, space_info, SZ_1M,
5052 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5053 expected = div_factor_fine(space_info->total_bytes, 95);
5054 else
5055 expected = div_factor_fine(space_info->total_bytes, 90);
5057 if (used > expected)
5058 to_reclaim = used - expected;
5059 else
5060 to_reclaim = 0;
5061 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5062 space_info->bytes_reserved);
5063 return to_reclaim;
5066 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5067 struct btrfs_space_info *space_info,
5068 u64 used, bool system_chunk)
5070 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5072 /* If we're just plain full then async reclaim just slows us down. */
5073 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
5074 return 0;
5076 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5077 system_chunk))
5078 return 0;
5080 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5081 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
5084 static void wake_all_tickets(struct list_head *head)
5086 struct reserve_ticket *ticket;
5088 while (!list_empty(head)) {
5089 ticket = list_first_entry(head, struct reserve_ticket, list);
5090 list_del_init(&ticket->list);
5091 ticket->error = -ENOSPC;
5092 wake_up(&ticket->wait);
5097 * This is for normal flushers, we can wait all goddamned day if we want to. We
5098 * will loop and continuously try to flush as long as we are making progress.
5099 * We count progress as clearing off tickets each time we have to loop.
5101 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5103 struct btrfs_fs_info *fs_info;
5104 struct btrfs_space_info *space_info;
5105 u64 to_reclaim;
5106 int flush_state;
5107 int commit_cycles = 0;
5108 u64 last_tickets_id;
5110 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5111 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5113 spin_lock(&space_info->lock);
5114 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5115 false);
5116 if (!to_reclaim) {
5117 space_info->flush = 0;
5118 spin_unlock(&space_info->lock);
5119 return;
5121 last_tickets_id = space_info->tickets_id;
5122 spin_unlock(&space_info->lock);
5124 flush_state = FLUSH_DELAYED_ITEMS_NR;
5125 do {
5126 flush_space(fs_info, space_info, to_reclaim, flush_state);
5127 spin_lock(&space_info->lock);
5128 if (list_empty(&space_info->tickets)) {
5129 space_info->flush = 0;
5130 spin_unlock(&space_info->lock);
5131 return;
5133 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5134 space_info,
5135 false);
5136 if (last_tickets_id == space_info->tickets_id) {
5137 flush_state++;
5138 } else {
5139 last_tickets_id = space_info->tickets_id;
5140 flush_state = FLUSH_DELAYED_ITEMS_NR;
5141 if (commit_cycles)
5142 commit_cycles--;
5145 if (flush_state > COMMIT_TRANS) {
5146 commit_cycles++;
5147 if (commit_cycles > 2) {
5148 wake_all_tickets(&space_info->tickets);
5149 space_info->flush = 0;
5150 } else {
5151 flush_state = FLUSH_DELAYED_ITEMS_NR;
5154 spin_unlock(&space_info->lock);
5155 } while (flush_state <= COMMIT_TRANS);
5158 void btrfs_init_async_reclaim_work(struct work_struct *work)
5160 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5163 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5164 struct btrfs_space_info *space_info,
5165 struct reserve_ticket *ticket)
5167 u64 to_reclaim;
5168 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5170 spin_lock(&space_info->lock);
5171 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5172 false);
5173 if (!to_reclaim) {
5174 spin_unlock(&space_info->lock);
5175 return;
5177 spin_unlock(&space_info->lock);
5179 do {
5180 flush_space(fs_info, space_info, to_reclaim, flush_state);
5181 flush_state++;
5182 spin_lock(&space_info->lock);
5183 if (ticket->bytes == 0) {
5184 spin_unlock(&space_info->lock);
5185 return;
5187 spin_unlock(&space_info->lock);
5190 * Priority flushers can't wait on delalloc without
5191 * deadlocking.
5193 if (flush_state == FLUSH_DELALLOC ||
5194 flush_state == FLUSH_DELALLOC_WAIT)
5195 flush_state = ALLOC_CHUNK;
5196 } while (flush_state < COMMIT_TRANS);
5199 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5200 struct btrfs_space_info *space_info,
5201 struct reserve_ticket *ticket, u64 orig_bytes)
5204 DEFINE_WAIT(wait);
5205 int ret = 0;
5207 spin_lock(&space_info->lock);
5208 while (ticket->bytes > 0 && ticket->error == 0) {
5209 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5210 if (ret) {
5211 ret = -EINTR;
5212 break;
5214 spin_unlock(&space_info->lock);
5216 schedule();
5218 finish_wait(&ticket->wait, &wait);
5219 spin_lock(&space_info->lock);
5221 if (!ret)
5222 ret = ticket->error;
5223 if (!list_empty(&ticket->list))
5224 list_del_init(&ticket->list);
5225 if (ticket->bytes && ticket->bytes < orig_bytes) {
5226 u64 num_bytes = orig_bytes - ticket->bytes;
5227 space_info->bytes_may_use -= num_bytes;
5228 trace_btrfs_space_reservation(fs_info, "space_info",
5229 space_info->flags, num_bytes, 0);
5231 spin_unlock(&space_info->lock);
5233 return ret;
5237 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5238 * @root - the root we're allocating for
5239 * @space_info - the space info we want to allocate from
5240 * @orig_bytes - the number of bytes we want
5241 * @flush - whether or not we can flush to make our reservation
5243 * This will reserve orig_bytes number of bytes from the space info associated
5244 * with the block_rsv. If there is not enough space it will make an attempt to
5245 * flush out space to make room. It will do this by flushing delalloc if
5246 * possible or committing the transaction. If flush is 0 then no attempts to
5247 * regain reservations will be made and this will fail if there is not enough
5248 * space already.
5250 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5251 struct btrfs_space_info *space_info,
5252 u64 orig_bytes,
5253 enum btrfs_reserve_flush_enum flush,
5254 bool system_chunk)
5256 struct reserve_ticket ticket;
5257 u64 used;
5258 int ret = 0;
5260 ASSERT(orig_bytes);
5261 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5263 spin_lock(&space_info->lock);
5264 ret = -ENOSPC;
5265 used = btrfs_space_info_used(space_info, true);
5268 * If we have enough space then hooray, make our reservation and carry
5269 * on. If not see if we can overcommit, and if we can, hooray carry on.
5270 * If not things get more complicated.
5272 if (used + orig_bytes <= space_info->total_bytes) {
5273 space_info->bytes_may_use += orig_bytes;
5274 trace_btrfs_space_reservation(fs_info, "space_info",
5275 space_info->flags, orig_bytes, 1);
5276 ret = 0;
5277 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5278 system_chunk)) {
5279 space_info->bytes_may_use += orig_bytes;
5280 trace_btrfs_space_reservation(fs_info, "space_info",
5281 space_info->flags, orig_bytes, 1);
5282 ret = 0;
5286 * If we couldn't make a reservation then setup our reservation ticket
5287 * and kick the async worker if it's not already running.
5289 * If we are a priority flusher then we just need to add our ticket to
5290 * the list and we will do our own flushing further down.
5292 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5293 ticket.bytes = orig_bytes;
5294 ticket.error = 0;
5295 init_waitqueue_head(&ticket.wait);
5296 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5297 list_add_tail(&ticket.list, &space_info->tickets);
5298 if (!space_info->flush) {
5299 space_info->flush = 1;
5300 trace_btrfs_trigger_flush(fs_info,
5301 space_info->flags,
5302 orig_bytes, flush,
5303 "enospc");
5304 queue_work(system_unbound_wq,
5305 &fs_info->async_reclaim_work);
5307 } else {
5308 list_add_tail(&ticket.list,
5309 &space_info->priority_tickets);
5311 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5312 used += orig_bytes;
5314 * We will do the space reservation dance during log replay,
5315 * which means we won't have fs_info->fs_root set, so don't do
5316 * the async reclaim as we will panic.
5318 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5319 need_do_async_reclaim(fs_info, space_info,
5320 used, system_chunk) &&
5321 !work_busy(&fs_info->async_reclaim_work)) {
5322 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5323 orig_bytes, flush, "preempt");
5324 queue_work(system_unbound_wq,
5325 &fs_info->async_reclaim_work);
5328 spin_unlock(&space_info->lock);
5329 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5330 return ret;
5332 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5333 return wait_reserve_ticket(fs_info, space_info, &ticket,
5334 orig_bytes);
5336 ret = 0;
5337 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5338 spin_lock(&space_info->lock);
5339 if (ticket.bytes) {
5340 if (ticket.bytes < orig_bytes) {
5341 u64 num_bytes = orig_bytes - ticket.bytes;
5342 space_info->bytes_may_use -= num_bytes;
5343 trace_btrfs_space_reservation(fs_info, "space_info",
5344 space_info->flags,
5345 num_bytes, 0);
5348 list_del_init(&ticket.list);
5349 ret = -ENOSPC;
5351 spin_unlock(&space_info->lock);
5352 ASSERT(list_empty(&ticket.list));
5353 return ret;
5357 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5358 * @root - the root we're allocating for
5359 * @block_rsv - the block_rsv we're allocating for
5360 * @orig_bytes - the number of bytes we want
5361 * @flush - whether or not we can flush to make our reservation
5363 * This will reserve orgi_bytes number of bytes from the space info associated
5364 * with the block_rsv. If there is not enough space it will make an attempt to
5365 * flush out space to make room. It will do this by flushing delalloc if
5366 * possible or committing the transaction. If flush is 0 then no attempts to
5367 * regain reservations will be made and this will fail if there is not enough
5368 * space already.
5370 static int reserve_metadata_bytes(struct btrfs_root *root,
5371 struct btrfs_block_rsv *block_rsv,
5372 u64 orig_bytes,
5373 enum btrfs_reserve_flush_enum flush)
5375 struct btrfs_fs_info *fs_info = root->fs_info;
5376 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5377 int ret;
5378 bool system_chunk = (root == fs_info->chunk_root);
5380 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5381 orig_bytes, flush, system_chunk);
5382 if (ret == -ENOSPC &&
5383 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5384 if (block_rsv != global_rsv &&
5385 !block_rsv_use_bytes(global_rsv, orig_bytes))
5386 ret = 0;
5388 if (ret == -ENOSPC)
5389 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5390 block_rsv->space_info->flags,
5391 orig_bytes, 1);
5392 return ret;
5395 static struct btrfs_block_rsv *get_block_rsv(
5396 const struct btrfs_trans_handle *trans,
5397 const struct btrfs_root *root)
5399 struct btrfs_fs_info *fs_info = root->fs_info;
5400 struct btrfs_block_rsv *block_rsv = NULL;
5402 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5403 (root == fs_info->csum_root && trans->adding_csums) ||
5404 (root == fs_info->uuid_root))
5405 block_rsv = trans->block_rsv;
5407 if (!block_rsv)
5408 block_rsv = root->block_rsv;
5410 if (!block_rsv)
5411 block_rsv = &fs_info->empty_block_rsv;
5413 return block_rsv;
5416 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5417 u64 num_bytes)
5419 int ret = -ENOSPC;
5420 spin_lock(&block_rsv->lock);
5421 if (block_rsv->reserved >= num_bytes) {
5422 block_rsv->reserved -= num_bytes;
5423 if (block_rsv->reserved < block_rsv->size)
5424 block_rsv->full = 0;
5425 ret = 0;
5427 spin_unlock(&block_rsv->lock);
5428 return ret;
5431 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5432 u64 num_bytes, int update_size)
5434 spin_lock(&block_rsv->lock);
5435 block_rsv->reserved += num_bytes;
5436 if (update_size)
5437 block_rsv->size += num_bytes;
5438 else if (block_rsv->reserved >= block_rsv->size)
5439 block_rsv->full = 1;
5440 spin_unlock(&block_rsv->lock);
5443 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5444 struct btrfs_block_rsv *dest, u64 num_bytes,
5445 int min_factor)
5447 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5448 u64 min_bytes;
5450 if (global_rsv->space_info != dest->space_info)
5451 return -ENOSPC;
5453 spin_lock(&global_rsv->lock);
5454 min_bytes = div_factor(global_rsv->size, min_factor);
5455 if (global_rsv->reserved < min_bytes + num_bytes) {
5456 spin_unlock(&global_rsv->lock);
5457 return -ENOSPC;
5459 global_rsv->reserved -= num_bytes;
5460 if (global_rsv->reserved < global_rsv->size)
5461 global_rsv->full = 0;
5462 spin_unlock(&global_rsv->lock);
5464 block_rsv_add_bytes(dest, num_bytes, 1);
5465 return 0;
5469 * This is for space we already have accounted in space_info->bytes_may_use, so
5470 * basically when we're returning space from block_rsv's.
5472 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5473 struct btrfs_space_info *space_info,
5474 u64 num_bytes)
5476 struct reserve_ticket *ticket;
5477 struct list_head *head;
5478 u64 used;
5479 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5480 bool check_overcommit = false;
5482 spin_lock(&space_info->lock);
5483 head = &space_info->priority_tickets;
5486 * If we are over our limit then we need to check and see if we can
5487 * overcommit, and if we can't then we just need to free up our space
5488 * and not satisfy any requests.
5490 used = btrfs_space_info_used(space_info, true);
5491 if (used - num_bytes >= space_info->total_bytes)
5492 check_overcommit = true;
5493 again:
5494 while (!list_empty(head) && num_bytes) {
5495 ticket = list_first_entry(head, struct reserve_ticket,
5496 list);
5498 * We use 0 bytes because this space is already reserved, so
5499 * adding the ticket space would be a double count.
5501 if (check_overcommit &&
5502 !can_overcommit(fs_info, space_info, 0, flush, false))
5503 break;
5504 if (num_bytes >= ticket->bytes) {
5505 list_del_init(&ticket->list);
5506 num_bytes -= ticket->bytes;
5507 ticket->bytes = 0;
5508 space_info->tickets_id++;
5509 wake_up(&ticket->wait);
5510 } else {
5511 ticket->bytes -= num_bytes;
5512 num_bytes = 0;
5516 if (num_bytes && head == &space_info->priority_tickets) {
5517 head = &space_info->tickets;
5518 flush = BTRFS_RESERVE_FLUSH_ALL;
5519 goto again;
5521 space_info->bytes_may_use -= num_bytes;
5522 trace_btrfs_space_reservation(fs_info, "space_info",
5523 space_info->flags, num_bytes, 0);
5524 spin_unlock(&space_info->lock);
5528 * This is for newly allocated space that isn't accounted in
5529 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5530 * we use this helper.
5532 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5533 struct btrfs_space_info *space_info,
5534 u64 num_bytes)
5536 struct reserve_ticket *ticket;
5537 struct list_head *head = &space_info->priority_tickets;
5539 again:
5540 while (!list_empty(head) && num_bytes) {
5541 ticket = list_first_entry(head, struct reserve_ticket,
5542 list);
5543 if (num_bytes >= ticket->bytes) {
5544 trace_btrfs_space_reservation(fs_info, "space_info",
5545 space_info->flags,
5546 ticket->bytes, 1);
5547 list_del_init(&ticket->list);
5548 num_bytes -= ticket->bytes;
5549 space_info->bytes_may_use += ticket->bytes;
5550 ticket->bytes = 0;
5551 space_info->tickets_id++;
5552 wake_up(&ticket->wait);
5553 } else {
5554 trace_btrfs_space_reservation(fs_info, "space_info",
5555 space_info->flags,
5556 num_bytes, 1);
5557 space_info->bytes_may_use += num_bytes;
5558 ticket->bytes -= num_bytes;
5559 num_bytes = 0;
5563 if (num_bytes && head == &space_info->priority_tickets) {
5564 head = &space_info->tickets;
5565 goto again;
5569 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5570 struct btrfs_block_rsv *block_rsv,
5571 struct btrfs_block_rsv *dest, u64 num_bytes)
5573 struct btrfs_space_info *space_info = block_rsv->space_info;
5574 u64 ret;
5576 spin_lock(&block_rsv->lock);
5577 if (num_bytes == (u64)-1)
5578 num_bytes = block_rsv->size;
5579 block_rsv->size -= num_bytes;
5580 if (block_rsv->reserved >= block_rsv->size) {
5581 num_bytes = block_rsv->reserved - block_rsv->size;
5582 block_rsv->reserved = block_rsv->size;
5583 block_rsv->full = 1;
5584 } else {
5585 num_bytes = 0;
5587 spin_unlock(&block_rsv->lock);
5589 ret = num_bytes;
5590 if (num_bytes > 0) {
5591 if (dest) {
5592 spin_lock(&dest->lock);
5593 if (!dest->full) {
5594 u64 bytes_to_add;
5596 bytes_to_add = dest->size - dest->reserved;
5597 bytes_to_add = min(num_bytes, bytes_to_add);
5598 dest->reserved += bytes_to_add;
5599 if (dest->reserved >= dest->size)
5600 dest->full = 1;
5601 num_bytes -= bytes_to_add;
5603 spin_unlock(&dest->lock);
5605 if (num_bytes)
5606 space_info_add_old_bytes(fs_info, space_info,
5607 num_bytes);
5609 return ret;
5612 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5613 struct btrfs_block_rsv *dst, u64 num_bytes,
5614 int update_size)
5616 int ret;
5618 ret = block_rsv_use_bytes(src, num_bytes);
5619 if (ret)
5620 return ret;
5622 block_rsv_add_bytes(dst, num_bytes, update_size);
5623 return 0;
5626 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5628 memset(rsv, 0, sizeof(*rsv));
5629 spin_lock_init(&rsv->lock);
5630 rsv->type = type;
5633 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5634 struct btrfs_block_rsv *rsv,
5635 unsigned short type)
5637 btrfs_init_block_rsv(rsv, type);
5638 rsv->space_info = __find_space_info(fs_info,
5639 BTRFS_BLOCK_GROUP_METADATA);
5642 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5643 unsigned short type)
5645 struct btrfs_block_rsv *block_rsv;
5647 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5648 if (!block_rsv)
5649 return NULL;
5651 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5652 return block_rsv;
5655 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5656 struct btrfs_block_rsv *rsv)
5658 if (!rsv)
5659 return;
5660 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5661 kfree(rsv);
5664 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5666 kfree(rsv);
5669 int btrfs_block_rsv_add(struct btrfs_root *root,
5670 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5671 enum btrfs_reserve_flush_enum flush)
5673 int ret;
5675 if (num_bytes == 0)
5676 return 0;
5678 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5679 if (!ret) {
5680 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5681 return 0;
5684 return ret;
5687 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5689 u64 num_bytes = 0;
5690 int ret = -ENOSPC;
5692 if (!block_rsv)
5693 return 0;
5695 spin_lock(&block_rsv->lock);
5696 num_bytes = div_factor(block_rsv->size, min_factor);
5697 if (block_rsv->reserved >= num_bytes)
5698 ret = 0;
5699 spin_unlock(&block_rsv->lock);
5701 return ret;
5704 int btrfs_block_rsv_refill(struct btrfs_root *root,
5705 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5706 enum btrfs_reserve_flush_enum flush)
5708 u64 num_bytes = 0;
5709 int ret = -ENOSPC;
5711 if (!block_rsv)
5712 return 0;
5714 spin_lock(&block_rsv->lock);
5715 num_bytes = min_reserved;
5716 if (block_rsv->reserved >= num_bytes)
5717 ret = 0;
5718 else
5719 num_bytes -= block_rsv->reserved;
5720 spin_unlock(&block_rsv->lock);
5722 if (!ret)
5723 return 0;
5725 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5726 if (!ret) {
5727 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5728 return 0;
5731 return ret;
5735 * btrfs_inode_rsv_refill - refill the inode block rsv.
5736 * @inode - the inode we are refilling.
5737 * @flush - the flusing restriction.
5739 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5740 * block_rsv->size as the minimum size. We'll either refill the missing amount
5741 * or return if we already have enough space. This will also handle the resreve
5742 * tracepoint for the reserved amount.
5744 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5745 enum btrfs_reserve_flush_enum flush)
5747 struct btrfs_root *root = inode->root;
5748 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5749 u64 num_bytes = 0;
5750 int ret = -ENOSPC;
5752 spin_lock(&block_rsv->lock);
5753 if (block_rsv->reserved < block_rsv->size)
5754 num_bytes = block_rsv->size - block_rsv->reserved;
5755 spin_unlock(&block_rsv->lock);
5757 if (num_bytes == 0)
5758 return 0;
5760 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5761 if (!ret) {
5762 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5763 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5764 btrfs_ino(inode), num_bytes, 1);
5766 return ret;
5770 * btrfs_inode_rsv_release - release any excessive reservation.
5771 * @inode - the inode we need to release from.
5773 * This is the same as btrfs_block_rsv_release, except that it handles the
5774 * tracepoint for the reservation.
5776 static void btrfs_inode_rsv_release(struct btrfs_inode *inode)
5778 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5779 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5780 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5781 u64 released = 0;
5784 * Since we statically set the block_rsv->size we just want to say we
5785 * are releasing 0 bytes, and then we'll just get the reservation over
5786 * the size free'd.
5788 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0);
5789 if (released > 0)
5790 trace_btrfs_space_reservation(fs_info, "delalloc",
5791 btrfs_ino(inode), released, 0);
5794 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5795 struct btrfs_block_rsv *block_rsv,
5796 u64 num_bytes)
5798 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5800 if (global_rsv == block_rsv ||
5801 block_rsv->space_info != global_rsv->space_info)
5802 global_rsv = NULL;
5803 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5806 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5808 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5809 struct btrfs_space_info *sinfo = block_rsv->space_info;
5810 u64 num_bytes;
5813 * The global block rsv is based on the size of the extent tree, the
5814 * checksum tree and the root tree. If the fs is empty we want to set
5815 * it to a minimal amount for safety.
5817 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5818 btrfs_root_used(&fs_info->csum_root->root_item) +
5819 btrfs_root_used(&fs_info->tree_root->root_item);
5820 num_bytes = max_t(u64, num_bytes, SZ_16M);
5822 spin_lock(&sinfo->lock);
5823 spin_lock(&block_rsv->lock);
5825 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5827 if (block_rsv->reserved < block_rsv->size) {
5828 num_bytes = btrfs_space_info_used(sinfo, true);
5829 if (sinfo->total_bytes > num_bytes) {
5830 num_bytes = sinfo->total_bytes - num_bytes;
5831 num_bytes = min(num_bytes,
5832 block_rsv->size - block_rsv->reserved);
5833 block_rsv->reserved += num_bytes;
5834 sinfo->bytes_may_use += num_bytes;
5835 trace_btrfs_space_reservation(fs_info, "space_info",
5836 sinfo->flags, num_bytes,
5839 } else if (block_rsv->reserved > block_rsv->size) {
5840 num_bytes = block_rsv->reserved - block_rsv->size;
5841 sinfo->bytes_may_use -= num_bytes;
5842 trace_btrfs_space_reservation(fs_info, "space_info",
5843 sinfo->flags, num_bytes, 0);
5844 block_rsv->reserved = block_rsv->size;
5847 if (block_rsv->reserved == block_rsv->size)
5848 block_rsv->full = 1;
5849 else
5850 block_rsv->full = 0;
5852 spin_unlock(&block_rsv->lock);
5853 spin_unlock(&sinfo->lock);
5856 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5858 struct btrfs_space_info *space_info;
5860 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5861 fs_info->chunk_block_rsv.space_info = space_info;
5863 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5864 fs_info->global_block_rsv.space_info = space_info;
5865 fs_info->trans_block_rsv.space_info = space_info;
5866 fs_info->empty_block_rsv.space_info = space_info;
5867 fs_info->delayed_block_rsv.space_info = space_info;
5869 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5870 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5871 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5872 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5873 if (fs_info->quota_root)
5874 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5875 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5877 update_global_block_rsv(fs_info);
5880 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5882 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5883 (u64)-1);
5884 WARN_ON(fs_info->trans_block_rsv.size > 0);
5885 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5886 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5887 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5888 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5889 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5892 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5893 struct btrfs_fs_info *fs_info)
5895 if (!trans->block_rsv) {
5896 ASSERT(!trans->bytes_reserved);
5897 return;
5900 if (!trans->bytes_reserved)
5901 return;
5903 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
5904 trace_btrfs_space_reservation(fs_info, "transaction",
5905 trans->transid, trans->bytes_reserved, 0);
5906 btrfs_block_rsv_release(fs_info, trans->block_rsv,
5907 trans->bytes_reserved);
5908 trans->bytes_reserved = 0;
5912 * To be called after all the new block groups attached to the transaction
5913 * handle have been created (btrfs_create_pending_block_groups()).
5915 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5917 struct btrfs_fs_info *fs_info = trans->fs_info;
5919 if (!trans->chunk_bytes_reserved)
5920 return;
5922 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5924 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5925 trans->chunk_bytes_reserved);
5926 trans->chunk_bytes_reserved = 0;
5929 /* Can only return 0 or -ENOSPC */
5930 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5931 struct btrfs_inode *inode)
5933 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5934 struct btrfs_root *root = inode->root;
5936 * We always use trans->block_rsv here as we will have reserved space
5937 * for our orphan when starting the transaction, using get_block_rsv()
5938 * here will sometimes make us choose the wrong block rsv as we could be
5939 * doing a reloc inode for a non refcounted root.
5941 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5942 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5945 * We need to hold space in order to delete our orphan item once we've
5946 * added it, so this takes the reservation so we can release it later
5947 * when we are truly done with the orphan item.
5949 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5951 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5952 num_bytes, 1);
5953 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5956 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5958 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5959 struct btrfs_root *root = inode->root;
5960 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5962 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5963 num_bytes, 0);
5964 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5968 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5969 * root: the root of the parent directory
5970 * rsv: block reservation
5971 * items: the number of items that we need do reservation
5972 * qgroup_reserved: used to return the reserved size in qgroup
5974 * This function is used to reserve the space for snapshot/subvolume
5975 * creation and deletion. Those operations are different with the
5976 * common file/directory operations, they change two fs/file trees
5977 * and root tree, the number of items that the qgroup reserves is
5978 * different with the free space reservation. So we can not use
5979 * the space reservation mechanism in start_transaction().
5981 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5982 struct btrfs_block_rsv *rsv,
5983 int items,
5984 u64 *qgroup_reserved,
5985 bool use_global_rsv)
5987 u64 num_bytes;
5988 int ret;
5989 struct btrfs_fs_info *fs_info = root->fs_info;
5990 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5992 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5993 /* One for parent inode, two for dir entries */
5994 num_bytes = 3 * fs_info->nodesize;
5995 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
5996 if (ret)
5997 return ret;
5998 } else {
5999 num_bytes = 0;
6002 *qgroup_reserved = num_bytes;
6004 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6005 rsv->space_info = __find_space_info(fs_info,
6006 BTRFS_BLOCK_GROUP_METADATA);
6007 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6008 BTRFS_RESERVE_FLUSH_ALL);
6010 if (ret == -ENOSPC && use_global_rsv)
6011 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
6013 if (ret && *qgroup_reserved)
6014 btrfs_qgroup_free_meta(root, *qgroup_reserved);
6016 return ret;
6019 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
6020 struct btrfs_block_rsv *rsv)
6022 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
6025 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6026 struct btrfs_inode *inode)
6028 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6029 u64 reserve_size = 0;
6030 u64 csum_leaves;
6031 unsigned outstanding_extents;
6033 lockdep_assert_held(&inode->lock);
6034 outstanding_extents = inode->outstanding_extents;
6035 if (outstanding_extents)
6036 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6037 outstanding_extents + 1);
6038 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6039 inode->csum_bytes);
6040 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6041 csum_leaves);
6043 spin_lock(&block_rsv->lock);
6044 block_rsv->size = reserve_size;
6045 spin_unlock(&block_rsv->lock);
6048 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
6050 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6051 struct btrfs_root *root = inode->root;
6052 unsigned nr_extents;
6053 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
6054 int ret = 0;
6055 bool delalloc_lock = true;
6057 /* If we are a free space inode we need to not flush since we will be in
6058 * the middle of a transaction commit. We also don't need the delalloc
6059 * mutex since we won't race with anybody. We need this mostly to make
6060 * lockdep shut its filthy mouth.
6062 * If we have a transaction open (can happen if we call truncate_block
6063 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6065 if (btrfs_is_free_space_inode(inode)) {
6066 flush = BTRFS_RESERVE_NO_FLUSH;
6067 delalloc_lock = false;
6068 } else if (current->journal_info) {
6069 flush = BTRFS_RESERVE_FLUSH_LIMIT;
6072 if (flush != BTRFS_RESERVE_NO_FLUSH &&
6073 btrfs_transaction_in_commit(fs_info))
6074 schedule_timeout(1);
6076 if (delalloc_lock)
6077 mutex_lock(&inode->delalloc_mutex);
6079 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6081 /* Add our new extents and calculate the new rsv size. */
6082 spin_lock(&inode->lock);
6083 nr_extents = count_max_extents(num_bytes);
6084 btrfs_mod_outstanding_extents(inode, nr_extents);
6085 inode->csum_bytes += num_bytes;
6086 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6087 spin_unlock(&inode->lock);
6089 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
6090 ret = btrfs_qgroup_reserve_meta(root,
6091 nr_extents * fs_info->nodesize, true);
6092 if (ret)
6093 goto out_fail;
6096 ret = btrfs_inode_rsv_refill(inode, flush);
6097 if (unlikely(ret)) {
6098 btrfs_qgroup_free_meta(root,
6099 nr_extents * fs_info->nodesize);
6100 goto out_fail;
6103 if (delalloc_lock)
6104 mutex_unlock(&inode->delalloc_mutex);
6105 return 0;
6107 out_fail:
6108 spin_lock(&inode->lock);
6109 nr_extents = count_max_extents(num_bytes);
6110 btrfs_mod_outstanding_extents(inode, -nr_extents);
6111 inode->csum_bytes -= num_bytes;
6112 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6113 spin_unlock(&inode->lock);
6115 btrfs_inode_rsv_release(inode);
6116 if (delalloc_lock)
6117 mutex_unlock(&inode->delalloc_mutex);
6118 return ret;
6122 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6123 * @inode: the inode to release the reservation for.
6124 * @num_bytes: the number of bytes we are releasing.
6126 * This will release the metadata reservation for an inode. This can be called
6127 * once we complete IO for a given set of bytes to release their metadata
6128 * reservations, or on error for the same reason.
6130 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
6132 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6134 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6135 spin_lock(&inode->lock);
6136 inode->csum_bytes -= num_bytes;
6137 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6138 spin_unlock(&inode->lock);
6140 if (btrfs_is_testing(fs_info))
6141 return;
6143 btrfs_inode_rsv_release(inode);
6147 * btrfs_delalloc_release_extents - release our outstanding_extents
6148 * @inode: the inode to balance the reservation for.
6149 * @num_bytes: the number of bytes we originally reserved with
6151 * When we reserve space we increase outstanding_extents for the extents we may
6152 * add. Once we've set the range as delalloc or created our ordered extents we
6153 * have outstanding_extents to track the real usage, so we use this to free our
6154 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
6155 * with btrfs_delalloc_reserve_metadata.
6157 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
6159 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6160 unsigned num_extents;
6162 spin_lock(&inode->lock);
6163 num_extents = count_max_extents(num_bytes);
6164 btrfs_mod_outstanding_extents(inode, -num_extents);
6165 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6166 spin_unlock(&inode->lock);
6168 if (btrfs_is_testing(fs_info))
6169 return;
6171 btrfs_inode_rsv_release(inode);
6175 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6176 * delalloc
6177 * @inode: inode we're writing to
6178 * @start: start range we are writing to
6179 * @len: how long the range we are writing to
6180 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6181 * current reservation.
6183 * This will do the following things
6185 * o reserve space in data space info for num bytes
6186 * and reserve precious corresponding qgroup space
6187 * (Done in check_data_free_space)
6189 * o reserve space for metadata space, based on the number of outstanding
6190 * extents and how much csums will be needed
6191 * also reserve metadata space in a per root over-reserve method.
6192 * o add to the inodes->delalloc_bytes
6193 * o add it to the fs_info's delalloc inodes list.
6194 * (Above 3 all done in delalloc_reserve_metadata)
6196 * Return 0 for success
6197 * Return <0 for error(-ENOSPC or -EQUOT)
6199 int btrfs_delalloc_reserve_space(struct inode *inode,
6200 struct extent_changeset **reserved, u64 start, u64 len)
6202 int ret;
6204 ret = btrfs_check_data_free_space(inode, reserved, start, len);
6205 if (ret < 0)
6206 return ret;
6207 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6208 if (ret < 0)
6209 btrfs_free_reserved_data_space(inode, *reserved, start, len);
6210 return ret;
6214 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6215 * @inode: inode we're releasing space for
6216 * @start: start position of the space already reserved
6217 * @len: the len of the space already reserved
6218 * @release_bytes: the len of the space we consumed or didn't use
6220 * This function will release the metadata space that was not used and will
6221 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6222 * list if there are no delalloc bytes left.
6223 * Also it will handle the qgroup reserved space.
6225 void btrfs_delalloc_release_space(struct inode *inode,
6226 struct extent_changeset *reserved,
6227 u64 start, u64 len)
6229 btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
6230 btrfs_free_reserved_data_space(inode, reserved, start, len);
6233 static int update_block_group(struct btrfs_trans_handle *trans,
6234 struct btrfs_fs_info *info, u64 bytenr,
6235 u64 num_bytes, int alloc)
6237 struct btrfs_block_group_cache *cache = NULL;
6238 u64 total = num_bytes;
6239 u64 old_val;
6240 u64 byte_in_group;
6241 int factor;
6243 /* block accounting for super block */
6244 spin_lock(&info->delalloc_root_lock);
6245 old_val = btrfs_super_bytes_used(info->super_copy);
6246 if (alloc)
6247 old_val += num_bytes;
6248 else
6249 old_val -= num_bytes;
6250 btrfs_set_super_bytes_used(info->super_copy, old_val);
6251 spin_unlock(&info->delalloc_root_lock);
6253 while (total) {
6254 cache = btrfs_lookup_block_group(info, bytenr);
6255 if (!cache)
6256 return -ENOENT;
6257 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6258 BTRFS_BLOCK_GROUP_RAID1 |
6259 BTRFS_BLOCK_GROUP_RAID10))
6260 factor = 2;
6261 else
6262 factor = 1;
6264 * If this block group has free space cache written out, we
6265 * need to make sure to load it if we are removing space. This
6266 * is because we need the unpinning stage to actually add the
6267 * space back to the block group, otherwise we will leak space.
6269 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6270 cache_block_group(cache, 1);
6272 byte_in_group = bytenr - cache->key.objectid;
6273 WARN_ON(byte_in_group > cache->key.offset);
6275 spin_lock(&cache->space_info->lock);
6276 spin_lock(&cache->lock);
6278 if (btrfs_test_opt(info, SPACE_CACHE) &&
6279 cache->disk_cache_state < BTRFS_DC_CLEAR)
6280 cache->disk_cache_state = BTRFS_DC_CLEAR;
6282 old_val = btrfs_block_group_used(&cache->item);
6283 num_bytes = min(total, cache->key.offset - byte_in_group);
6284 if (alloc) {
6285 old_val += num_bytes;
6286 btrfs_set_block_group_used(&cache->item, old_val);
6287 cache->reserved -= num_bytes;
6288 cache->space_info->bytes_reserved -= num_bytes;
6289 cache->space_info->bytes_used += num_bytes;
6290 cache->space_info->disk_used += num_bytes * factor;
6291 spin_unlock(&cache->lock);
6292 spin_unlock(&cache->space_info->lock);
6293 } else {
6294 old_val -= num_bytes;
6295 btrfs_set_block_group_used(&cache->item, old_val);
6296 cache->pinned += num_bytes;
6297 cache->space_info->bytes_pinned += num_bytes;
6298 cache->space_info->bytes_used -= num_bytes;
6299 cache->space_info->disk_used -= num_bytes * factor;
6300 spin_unlock(&cache->lock);
6301 spin_unlock(&cache->space_info->lock);
6303 trace_btrfs_space_reservation(info, "pinned",
6304 cache->space_info->flags,
6305 num_bytes, 1);
6306 percpu_counter_add(&cache->space_info->total_bytes_pinned,
6307 num_bytes);
6308 set_extent_dirty(info->pinned_extents,
6309 bytenr, bytenr + num_bytes - 1,
6310 GFP_NOFS | __GFP_NOFAIL);
6313 spin_lock(&trans->transaction->dirty_bgs_lock);
6314 if (list_empty(&cache->dirty_list)) {
6315 list_add_tail(&cache->dirty_list,
6316 &trans->transaction->dirty_bgs);
6317 trans->transaction->num_dirty_bgs++;
6318 btrfs_get_block_group(cache);
6320 spin_unlock(&trans->transaction->dirty_bgs_lock);
6323 * No longer have used bytes in this block group, queue it for
6324 * deletion. We do this after adding the block group to the
6325 * dirty list to avoid races between cleaner kthread and space
6326 * cache writeout.
6328 if (!alloc && old_val == 0) {
6329 spin_lock(&info->unused_bgs_lock);
6330 if (list_empty(&cache->bg_list)) {
6331 btrfs_get_block_group(cache);
6332 list_add_tail(&cache->bg_list,
6333 &info->unused_bgs);
6335 spin_unlock(&info->unused_bgs_lock);
6338 btrfs_put_block_group(cache);
6339 total -= num_bytes;
6340 bytenr += num_bytes;
6342 return 0;
6345 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6347 struct btrfs_block_group_cache *cache;
6348 u64 bytenr;
6350 spin_lock(&fs_info->block_group_cache_lock);
6351 bytenr = fs_info->first_logical_byte;
6352 spin_unlock(&fs_info->block_group_cache_lock);
6354 if (bytenr < (u64)-1)
6355 return bytenr;
6357 cache = btrfs_lookup_first_block_group(fs_info, search_start);
6358 if (!cache)
6359 return 0;
6361 bytenr = cache->key.objectid;
6362 btrfs_put_block_group(cache);
6364 return bytenr;
6367 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6368 struct btrfs_block_group_cache *cache,
6369 u64 bytenr, u64 num_bytes, int reserved)
6371 spin_lock(&cache->space_info->lock);
6372 spin_lock(&cache->lock);
6373 cache->pinned += num_bytes;
6374 cache->space_info->bytes_pinned += num_bytes;
6375 if (reserved) {
6376 cache->reserved -= num_bytes;
6377 cache->space_info->bytes_reserved -= num_bytes;
6379 spin_unlock(&cache->lock);
6380 spin_unlock(&cache->space_info->lock);
6382 trace_btrfs_space_reservation(fs_info, "pinned",
6383 cache->space_info->flags, num_bytes, 1);
6384 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
6385 set_extent_dirty(fs_info->pinned_extents, bytenr,
6386 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6387 return 0;
6391 * this function must be called within transaction
6393 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6394 u64 bytenr, u64 num_bytes, int reserved)
6396 struct btrfs_block_group_cache *cache;
6398 cache = btrfs_lookup_block_group(fs_info, bytenr);
6399 BUG_ON(!cache); /* Logic error */
6401 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6403 btrfs_put_block_group(cache);
6404 return 0;
6408 * this function must be called within transaction
6410 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6411 u64 bytenr, u64 num_bytes)
6413 struct btrfs_block_group_cache *cache;
6414 int ret;
6416 cache = btrfs_lookup_block_group(fs_info, bytenr);
6417 if (!cache)
6418 return -EINVAL;
6421 * pull in the free space cache (if any) so that our pin
6422 * removes the free space from the cache. We have load_only set
6423 * to one because the slow code to read in the free extents does check
6424 * the pinned extents.
6426 cache_block_group(cache, 1);
6428 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6430 /* remove us from the free space cache (if we're there at all) */
6431 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6432 btrfs_put_block_group(cache);
6433 return ret;
6436 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6437 u64 start, u64 num_bytes)
6439 int ret;
6440 struct btrfs_block_group_cache *block_group;
6441 struct btrfs_caching_control *caching_ctl;
6443 block_group = btrfs_lookup_block_group(fs_info, start);
6444 if (!block_group)
6445 return -EINVAL;
6447 cache_block_group(block_group, 0);
6448 caching_ctl = get_caching_control(block_group);
6450 if (!caching_ctl) {
6451 /* Logic error */
6452 BUG_ON(!block_group_cache_done(block_group));
6453 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6454 } else {
6455 mutex_lock(&caching_ctl->mutex);
6457 if (start >= caching_ctl->progress) {
6458 ret = add_excluded_extent(fs_info, start, num_bytes);
6459 } else if (start + num_bytes <= caching_ctl->progress) {
6460 ret = btrfs_remove_free_space(block_group,
6461 start, num_bytes);
6462 } else {
6463 num_bytes = caching_ctl->progress - start;
6464 ret = btrfs_remove_free_space(block_group,
6465 start, num_bytes);
6466 if (ret)
6467 goto out_lock;
6469 num_bytes = (start + num_bytes) -
6470 caching_ctl->progress;
6471 start = caching_ctl->progress;
6472 ret = add_excluded_extent(fs_info, start, num_bytes);
6474 out_lock:
6475 mutex_unlock(&caching_ctl->mutex);
6476 put_caching_control(caching_ctl);
6478 btrfs_put_block_group(block_group);
6479 return ret;
6482 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6483 struct extent_buffer *eb)
6485 struct btrfs_file_extent_item *item;
6486 struct btrfs_key key;
6487 int found_type;
6488 int i;
6490 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6491 return 0;
6493 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6494 btrfs_item_key_to_cpu(eb, &key, i);
6495 if (key.type != BTRFS_EXTENT_DATA_KEY)
6496 continue;
6497 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6498 found_type = btrfs_file_extent_type(eb, item);
6499 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6500 continue;
6501 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6502 continue;
6503 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6504 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6505 __exclude_logged_extent(fs_info, key.objectid, key.offset);
6508 return 0;
6511 static void
6512 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6514 atomic_inc(&bg->reservations);
6517 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6518 const u64 start)
6520 struct btrfs_block_group_cache *bg;
6522 bg = btrfs_lookup_block_group(fs_info, start);
6523 ASSERT(bg);
6524 if (atomic_dec_and_test(&bg->reservations))
6525 wake_up_atomic_t(&bg->reservations);
6526 btrfs_put_block_group(bg);
6529 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6531 struct btrfs_space_info *space_info = bg->space_info;
6533 ASSERT(bg->ro);
6535 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6536 return;
6539 * Our block group is read only but before we set it to read only,
6540 * some task might have had allocated an extent from it already, but it
6541 * has not yet created a respective ordered extent (and added it to a
6542 * root's list of ordered extents).
6543 * Therefore wait for any task currently allocating extents, since the
6544 * block group's reservations counter is incremented while a read lock
6545 * on the groups' semaphore is held and decremented after releasing
6546 * the read access on that semaphore and creating the ordered extent.
6548 down_write(&space_info->groups_sem);
6549 up_write(&space_info->groups_sem);
6551 wait_on_atomic_t(&bg->reservations, atomic_t_wait,
6552 TASK_UNINTERRUPTIBLE);
6556 * btrfs_add_reserved_bytes - update the block_group and space info counters
6557 * @cache: The cache we are manipulating
6558 * @ram_bytes: The number of bytes of file content, and will be same to
6559 * @num_bytes except for the compress path.
6560 * @num_bytes: The number of bytes in question
6561 * @delalloc: The blocks are allocated for the delalloc write
6563 * This is called by the allocator when it reserves space. If this is a
6564 * reservation and the block group has become read only we cannot make the
6565 * reservation and return -EAGAIN, otherwise this function always succeeds.
6567 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6568 u64 ram_bytes, u64 num_bytes, int delalloc)
6570 struct btrfs_space_info *space_info = cache->space_info;
6571 int ret = 0;
6573 spin_lock(&space_info->lock);
6574 spin_lock(&cache->lock);
6575 if (cache->ro) {
6576 ret = -EAGAIN;
6577 } else {
6578 cache->reserved += num_bytes;
6579 space_info->bytes_reserved += num_bytes;
6581 trace_btrfs_space_reservation(cache->fs_info,
6582 "space_info", space_info->flags,
6583 ram_bytes, 0);
6584 space_info->bytes_may_use -= ram_bytes;
6585 if (delalloc)
6586 cache->delalloc_bytes += num_bytes;
6588 spin_unlock(&cache->lock);
6589 spin_unlock(&space_info->lock);
6590 return ret;
6594 * btrfs_free_reserved_bytes - update the block_group and space info counters
6595 * @cache: The cache we are manipulating
6596 * @num_bytes: The number of bytes in question
6597 * @delalloc: The blocks are allocated for the delalloc write
6599 * This is called by somebody who is freeing space that was never actually used
6600 * on disk. For example if you reserve some space for a new leaf in transaction
6601 * A and before transaction A commits you free that leaf, you call this with
6602 * reserve set to 0 in order to clear the reservation.
6605 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6606 u64 num_bytes, int delalloc)
6608 struct btrfs_space_info *space_info = cache->space_info;
6609 int ret = 0;
6611 spin_lock(&space_info->lock);
6612 spin_lock(&cache->lock);
6613 if (cache->ro)
6614 space_info->bytes_readonly += num_bytes;
6615 cache->reserved -= num_bytes;
6616 space_info->bytes_reserved -= num_bytes;
6618 if (delalloc)
6619 cache->delalloc_bytes -= num_bytes;
6620 spin_unlock(&cache->lock);
6621 spin_unlock(&space_info->lock);
6622 return ret;
6624 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6626 struct btrfs_caching_control *next;
6627 struct btrfs_caching_control *caching_ctl;
6628 struct btrfs_block_group_cache *cache;
6630 down_write(&fs_info->commit_root_sem);
6632 list_for_each_entry_safe(caching_ctl, next,
6633 &fs_info->caching_block_groups, list) {
6634 cache = caching_ctl->block_group;
6635 if (block_group_cache_done(cache)) {
6636 cache->last_byte_to_unpin = (u64)-1;
6637 list_del_init(&caching_ctl->list);
6638 put_caching_control(caching_ctl);
6639 } else {
6640 cache->last_byte_to_unpin = caching_ctl->progress;
6644 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6645 fs_info->pinned_extents = &fs_info->freed_extents[1];
6646 else
6647 fs_info->pinned_extents = &fs_info->freed_extents[0];
6649 up_write(&fs_info->commit_root_sem);
6651 update_global_block_rsv(fs_info);
6655 * Returns the free cluster for the given space info and sets empty_cluster to
6656 * what it should be based on the mount options.
6658 static struct btrfs_free_cluster *
6659 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6660 struct btrfs_space_info *space_info, u64 *empty_cluster)
6662 struct btrfs_free_cluster *ret = NULL;
6664 *empty_cluster = 0;
6665 if (btrfs_mixed_space_info(space_info))
6666 return ret;
6668 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6669 ret = &fs_info->meta_alloc_cluster;
6670 if (btrfs_test_opt(fs_info, SSD))
6671 *empty_cluster = SZ_2M;
6672 else
6673 *empty_cluster = SZ_64K;
6674 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6675 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6676 *empty_cluster = SZ_2M;
6677 ret = &fs_info->data_alloc_cluster;
6680 return ret;
6683 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6684 u64 start, u64 end,
6685 const bool return_free_space)
6687 struct btrfs_block_group_cache *cache = NULL;
6688 struct btrfs_space_info *space_info;
6689 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6690 struct btrfs_free_cluster *cluster = NULL;
6691 u64 len;
6692 u64 total_unpinned = 0;
6693 u64 empty_cluster = 0;
6694 bool readonly;
6696 while (start <= end) {
6697 readonly = false;
6698 if (!cache ||
6699 start >= cache->key.objectid + cache->key.offset) {
6700 if (cache)
6701 btrfs_put_block_group(cache);
6702 total_unpinned = 0;
6703 cache = btrfs_lookup_block_group(fs_info, start);
6704 BUG_ON(!cache); /* Logic error */
6706 cluster = fetch_cluster_info(fs_info,
6707 cache->space_info,
6708 &empty_cluster);
6709 empty_cluster <<= 1;
6712 len = cache->key.objectid + cache->key.offset - start;
6713 len = min(len, end + 1 - start);
6715 if (start < cache->last_byte_to_unpin) {
6716 len = min(len, cache->last_byte_to_unpin - start);
6717 if (return_free_space)
6718 btrfs_add_free_space(cache, start, len);
6721 start += len;
6722 total_unpinned += len;
6723 space_info = cache->space_info;
6726 * If this space cluster has been marked as fragmented and we've
6727 * unpinned enough in this block group to potentially allow a
6728 * cluster to be created inside of it go ahead and clear the
6729 * fragmented check.
6731 if (cluster && cluster->fragmented &&
6732 total_unpinned > empty_cluster) {
6733 spin_lock(&cluster->lock);
6734 cluster->fragmented = 0;
6735 spin_unlock(&cluster->lock);
6738 spin_lock(&space_info->lock);
6739 spin_lock(&cache->lock);
6740 cache->pinned -= len;
6741 space_info->bytes_pinned -= len;
6743 trace_btrfs_space_reservation(fs_info, "pinned",
6744 space_info->flags, len, 0);
6745 space_info->max_extent_size = 0;
6746 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6747 if (cache->ro) {
6748 space_info->bytes_readonly += len;
6749 readonly = true;
6751 spin_unlock(&cache->lock);
6752 if (!readonly && return_free_space &&
6753 global_rsv->space_info == space_info) {
6754 u64 to_add = len;
6756 spin_lock(&global_rsv->lock);
6757 if (!global_rsv->full) {
6758 to_add = min(len, global_rsv->size -
6759 global_rsv->reserved);
6760 global_rsv->reserved += to_add;
6761 space_info->bytes_may_use += to_add;
6762 if (global_rsv->reserved >= global_rsv->size)
6763 global_rsv->full = 1;
6764 trace_btrfs_space_reservation(fs_info,
6765 "space_info",
6766 space_info->flags,
6767 to_add, 1);
6768 len -= to_add;
6770 spin_unlock(&global_rsv->lock);
6771 /* Add to any tickets we may have */
6772 if (len)
6773 space_info_add_new_bytes(fs_info, space_info,
6774 len);
6776 spin_unlock(&space_info->lock);
6779 if (cache)
6780 btrfs_put_block_group(cache);
6781 return 0;
6784 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6785 struct btrfs_fs_info *fs_info)
6787 struct btrfs_block_group_cache *block_group, *tmp;
6788 struct list_head *deleted_bgs;
6789 struct extent_io_tree *unpin;
6790 u64 start;
6791 u64 end;
6792 int ret;
6794 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6795 unpin = &fs_info->freed_extents[1];
6796 else
6797 unpin = &fs_info->freed_extents[0];
6799 while (!trans->aborted) {
6800 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6801 ret = find_first_extent_bit(unpin, 0, &start, &end,
6802 EXTENT_DIRTY, NULL);
6803 if (ret) {
6804 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6805 break;
6808 if (btrfs_test_opt(fs_info, DISCARD))
6809 ret = btrfs_discard_extent(fs_info, start,
6810 end + 1 - start, NULL);
6812 clear_extent_dirty(unpin, start, end);
6813 unpin_extent_range(fs_info, start, end, true);
6814 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6815 cond_resched();
6819 * Transaction is finished. We don't need the lock anymore. We
6820 * do need to clean up the block groups in case of a transaction
6821 * abort.
6823 deleted_bgs = &trans->transaction->deleted_bgs;
6824 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6825 u64 trimmed = 0;
6827 ret = -EROFS;
6828 if (!trans->aborted)
6829 ret = btrfs_discard_extent(fs_info,
6830 block_group->key.objectid,
6831 block_group->key.offset,
6832 &trimmed);
6834 list_del_init(&block_group->bg_list);
6835 btrfs_put_block_group_trimming(block_group);
6836 btrfs_put_block_group(block_group);
6838 if (ret) {
6839 const char *errstr = btrfs_decode_error(ret);
6840 btrfs_warn(fs_info,
6841 "discard failed while removing blockgroup: errno=%d %s",
6842 ret, errstr);
6846 return 0;
6849 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6850 struct btrfs_fs_info *info,
6851 struct btrfs_delayed_ref_node *node, u64 parent,
6852 u64 root_objectid, u64 owner_objectid,
6853 u64 owner_offset, int refs_to_drop,
6854 struct btrfs_delayed_extent_op *extent_op)
6856 struct btrfs_key key;
6857 struct btrfs_path *path;
6858 struct btrfs_root *extent_root = info->extent_root;
6859 struct extent_buffer *leaf;
6860 struct btrfs_extent_item *ei;
6861 struct btrfs_extent_inline_ref *iref;
6862 int ret;
6863 int is_data;
6864 int extent_slot = 0;
6865 int found_extent = 0;
6866 int num_to_del = 1;
6867 u32 item_size;
6868 u64 refs;
6869 u64 bytenr = node->bytenr;
6870 u64 num_bytes = node->num_bytes;
6871 int last_ref = 0;
6872 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6874 path = btrfs_alloc_path();
6875 if (!path)
6876 return -ENOMEM;
6878 path->reada = READA_FORWARD;
6879 path->leave_spinning = 1;
6881 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6882 BUG_ON(!is_data && refs_to_drop != 1);
6884 if (is_data)
6885 skinny_metadata = false;
6887 ret = lookup_extent_backref(trans, info, path, &iref,
6888 bytenr, num_bytes, parent,
6889 root_objectid, owner_objectid,
6890 owner_offset);
6891 if (ret == 0) {
6892 extent_slot = path->slots[0];
6893 while (extent_slot >= 0) {
6894 btrfs_item_key_to_cpu(path->nodes[0], &key,
6895 extent_slot);
6896 if (key.objectid != bytenr)
6897 break;
6898 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6899 key.offset == num_bytes) {
6900 found_extent = 1;
6901 break;
6903 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6904 key.offset == owner_objectid) {
6905 found_extent = 1;
6906 break;
6908 if (path->slots[0] - extent_slot > 5)
6909 break;
6910 extent_slot--;
6912 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6913 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6914 if (found_extent && item_size < sizeof(*ei))
6915 found_extent = 0;
6916 #endif
6917 if (!found_extent) {
6918 BUG_ON(iref);
6919 ret = remove_extent_backref(trans, info, path, NULL,
6920 refs_to_drop,
6921 is_data, &last_ref);
6922 if (ret) {
6923 btrfs_abort_transaction(trans, ret);
6924 goto out;
6926 btrfs_release_path(path);
6927 path->leave_spinning = 1;
6929 key.objectid = bytenr;
6930 key.type = BTRFS_EXTENT_ITEM_KEY;
6931 key.offset = num_bytes;
6933 if (!is_data && skinny_metadata) {
6934 key.type = BTRFS_METADATA_ITEM_KEY;
6935 key.offset = owner_objectid;
6938 ret = btrfs_search_slot(trans, extent_root,
6939 &key, path, -1, 1);
6940 if (ret > 0 && skinny_metadata && path->slots[0]) {
6942 * Couldn't find our skinny metadata item,
6943 * see if we have ye olde extent item.
6945 path->slots[0]--;
6946 btrfs_item_key_to_cpu(path->nodes[0], &key,
6947 path->slots[0]);
6948 if (key.objectid == bytenr &&
6949 key.type == BTRFS_EXTENT_ITEM_KEY &&
6950 key.offset == num_bytes)
6951 ret = 0;
6954 if (ret > 0 && skinny_metadata) {
6955 skinny_metadata = false;
6956 key.objectid = bytenr;
6957 key.type = BTRFS_EXTENT_ITEM_KEY;
6958 key.offset = num_bytes;
6959 btrfs_release_path(path);
6960 ret = btrfs_search_slot(trans, extent_root,
6961 &key, path, -1, 1);
6964 if (ret) {
6965 btrfs_err(info,
6966 "umm, got %d back from search, was looking for %llu",
6967 ret, bytenr);
6968 if (ret > 0)
6969 btrfs_print_leaf(path->nodes[0]);
6971 if (ret < 0) {
6972 btrfs_abort_transaction(trans, ret);
6973 goto out;
6975 extent_slot = path->slots[0];
6977 } else if (WARN_ON(ret == -ENOENT)) {
6978 btrfs_print_leaf(path->nodes[0]);
6979 btrfs_err(info,
6980 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6981 bytenr, parent, root_objectid, owner_objectid,
6982 owner_offset);
6983 btrfs_abort_transaction(trans, ret);
6984 goto out;
6985 } else {
6986 btrfs_abort_transaction(trans, ret);
6987 goto out;
6990 leaf = path->nodes[0];
6991 item_size = btrfs_item_size_nr(leaf, extent_slot);
6992 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6993 if (item_size < sizeof(*ei)) {
6994 BUG_ON(found_extent || extent_slot != path->slots[0]);
6995 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6997 if (ret < 0) {
6998 btrfs_abort_transaction(trans, ret);
6999 goto out;
7002 btrfs_release_path(path);
7003 path->leave_spinning = 1;
7005 key.objectid = bytenr;
7006 key.type = BTRFS_EXTENT_ITEM_KEY;
7007 key.offset = num_bytes;
7009 ret = btrfs_search_slot(trans, extent_root, &key, path,
7010 -1, 1);
7011 if (ret) {
7012 btrfs_err(info,
7013 "umm, got %d back from search, was looking for %llu",
7014 ret, bytenr);
7015 btrfs_print_leaf(path->nodes[0]);
7017 if (ret < 0) {
7018 btrfs_abort_transaction(trans, ret);
7019 goto out;
7022 extent_slot = path->slots[0];
7023 leaf = path->nodes[0];
7024 item_size = btrfs_item_size_nr(leaf, extent_slot);
7026 #endif
7027 BUG_ON(item_size < sizeof(*ei));
7028 ei = btrfs_item_ptr(leaf, extent_slot,
7029 struct btrfs_extent_item);
7030 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7031 key.type == BTRFS_EXTENT_ITEM_KEY) {
7032 struct btrfs_tree_block_info *bi;
7033 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7034 bi = (struct btrfs_tree_block_info *)(ei + 1);
7035 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7038 refs = btrfs_extent_refs(leaf, ei);
7039 if (refs < refs_to_drop) {
7040 btrfs_err(info,
7041 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7042 refs_to_drop, refs, bytenr);
7043 ret = -EINVAL;
7044 btrfs_abort_transaction(trans, ret);
7045 goto out;
7047 refs -= refs_to_drop;
7049 if (refs > 0) {
7050 if (extent_op)
7051 __run_delayed_extent_op(extent_op, leaf, ei);
7053 * In the case of inline back ref, reference count will
7054 * be updated by remove_extent_backref
7056 if (iref) {
7057 BUG_ON(!found_extent);
7058 } else {
7059 btrfs_set_extent_refs(leaf, ei, refs);
7060 btrfs_mark_buffer_dirty(leaf);
7062 if (found_extent) {
7063 ret = remove_extent_backref(trans, info, path,
7064 iref, refs_to_drop,
7065 is_data, &last_ref);
7066 if (ret) {
7067 btrfs_abort_transaction(trans, ret);
7068 goto out;
7071 } else {
7072 if (found_extent) {
7073 BUG_ON(is_data && refs_to_drop !=
7074 extent_data_ref_count(path, iref));
7075 if (iref) {
7076 BUG_ON(path->slots[0] != extent_slot);
7077 } else {
7078 BUG_ON(path->slots[0] != extent_slot + 1);
7079 path->slots[0] = extent_slot;
7080 num_to_del = 2;
7084 last_ref = 1;
7085 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7086 num_to_del);
7087 if (ret) {
7088 btrfs_abort_transaction(trans, ret);
7089 goto out;
7091 btrfs_release_path(path);
7093 if (is_data) {
7094 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7095 if (ret) {
7096 btrfs_abort_transaction(trans, ret);
7097 goto out;
7101 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7102 if (ret) {
7103 btrfs_abort_transaction(trans, ret);
7104 goto out;
7107 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7108 if (ret) {
7109 btrfs_abort_transaction(trans, ret);
7110 goto out;
7113 btrfs_release_path(path);
7115 out:
7116 btrfs_free_path(path);
7117 return ret;
7121 * when we free an block, it is possible (and likely) that we free the last
7122 * delayed ref for that extent as well. This searches the delayed ref tree for
7123 * a given extent, and if there are no other delayed refs to be processed, it
7124 * removes it from the tree.
7126 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7127 u64 bytenr)
7129 struct btrfs_delayed_ref_head *head;
7130 struct btrfs_delayed_ref_root *delayed_refs;
7131 int ret = 0;
7133 delayed_refs = &trans->transaction->delayed_refs;
7134 spin_lock(&delayed_refs->lock);
7135 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7136 if (!head)
7137 goto out_delayed_unlock;
7139 spin_lock(&head->lock);
7140 if (!RB_EMPTY_ROOT(&head->ref_tree))
7141 goto out;
7143 if (head->extent_op) {
7144 if (!head->must_insert_reserved)
7145 goto out;
7146 btrfs_free_delayed_extent_op(head->extent_op);
7147 head->extent_op = NULL;
7151 * waiting for the lock here would deadlock. If someone else has it
7152 * locked they are already in the process of dropping it anyway
7154 if (!mutex_trylock(&head->mutex))
7155 goto out;
7158 * at this point we have a head with no other entries. Go
7159 * ahead and process it.
7161 rb_erase(&head->href_node, &delayed_refs->href_root);
7162 RB_CLEAR_NODE(&head->href_node);
7163 atomic_dec(&delayed_refs->num_entries);
7166 * we don't take a ref on the node because we're removing it from the
7167 * tree, so we just steal the ref the tree was holding.
7169 delayed_refs->num_heads--;
7170 if (head->processing == 0)
7171 delayed_refs->num_heads_ready--;
7172 head->processing = 0;
7173 spin_unlock(&head->lock);
7174 spin_unlock(&delayed_refs->lock);
7176 BUG_ON(head->extent_op);
7177 if (head->must_insert_reserved)
7178 ret = 1;
7180 mutex_unlock(&head->mutex);
7181 btrfs_put_delayed_ref_head(head);
7182 return ret;
7183 out:
7184 spin_unlock(&head->lock);
7186 out_delayed_unlock:
7187 spin_unlock(&delayed_refs->lock);
7188 return 0;
7191 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7192 struct btrfs_root *root,
7193 struct extent_buffer *buf,
7194 u64 parent, int last_ref)
7196 struct btrfs_fs_info *fs_info = root->fs_info;
7197 int pin = 1;
7198 int ret;
7200 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7201 int old_ref_mod, new_ref_mod;
7203 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7204 root->root_key.objectid,
7205 btrfs_header_level(buf), 0,
7206 BTRFS_DROP_DELAYED_REF);
7207 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7208 buf->len, parent,
7209 root->root_key.objectid,
7210 btrfs_header_level(buf),
7211 BTRFS_DROP_DELAYED_REF, NULL,
7212 &old_ref_mod, &new_ref_mod);
7213 BUG_ON(ret); /* -ENOMEM */
7214 pin = old_ref_mod >= 0 && new_ref_mod < 0;
7217 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7218 struct btrfs_block_group_cache *cache;
7220 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7221 ret = check_ref_cleanup(trans, buf->start);
7222 if (!ret)
7223 goto out;
7226 pin = 0;
7227 cache = btrfs_lookup_block_group(fs_info, buf->start);
7229 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7230 pin_down_extent(fs_info, cache, buf->start,
7231 buf->len, 1);
7232 btrfs_put_block_group(cache);
7233 goto out;
7236 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7238 btrfs_add_free_space(cache, buf->start, buf->len);
7239 btrfs_free_reserved_bytes(cache, buf->len, 0);
7240 btrfs_put_block_group(cache);
7241 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7243 out:
7244 if (pin)
7245 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7246 root->root_key.objectid);
7248 if (last_ref) {
7250 * Deleting the buffer, clear the corrupt flag since it doesn't
7251 * matter anymore.
7253 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7257 /* Can return -ENOMEM */
7258 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7259 struct btrfs_root *root,
7260 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7261 u64 owner, u64 offset)
7263 struct btrfs_fs_info *fs_info = root->fs_info;
7264 int old_ref_mod, new_ref_mod;
7265 int ret;
7267 if (btrfs_is_testing(fs_info))
7268 return 0;
7270 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7271 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7272 root_objectid, owner, offset,
7273 BTRFS_DROP_DELAYED_REF);
7276 * tree log blocks never actually go into the extent allocation
7277 * tree, just update pinning info and exit early.
7279 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7280 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7281 /* unlocks the pinned mutex */
7282 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7283 old_ref_mod = new_ref_mod = 0;
7284 ret = 0;
7285 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7286 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7287 num_bytes, parent,
7288 root_objectid, (int)owner,
7289 BTRFS_DROP_DELAYED_REF, NULL,
7290 &old_ref_mod, &new_ref_mod);
7291 } else {
7292 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7293 num_bytes, parent,
7294 root_objectid, owner, offset,
7295 0, BTRFS_DROP_DELAYED_REF,
7296 &old_ref_mod, &new_ref_mod);
7299 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7300 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7302 return ret;
7306 * when we wait for progress in the block group caching, its because
7307 * our allocation attempt failed at least once. So, we must sleep
7308 * and let some progress happen before we try again.
7310 * This function will sleep at least once waiting for new free space to
7311 * show up, and then it will check the block group free space numbers
7312 * for our min num_bytes. Another option is to have it go ahead
7313 * and look in the rbtree for a free extent of a given size, but this
7314 * is a good start.
7316 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7317 * any of the information in this block group.
7319 static noinline void
7320 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7321 u64 num_bytes)
7323 struct btrfs_caching_control *caching_ctl;
7325 caching_ctl = get_caching_control(cache);
7326 if (!caching_ctl)
7327 return;
7329 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7330 (cache->free_space_ctl->free_space >= num_bytes));
7332 put_caching_control(caching_ctl);
7335 static noinline int
7336 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7338 struct btrfs_caching_control *caching_ctl;
7339 int ret = 0;
7341 caching_ctl = get_caching_control(cache);
7342 if (!caching_ctl)
7343 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7345 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7346 if (cache->cached == BTRFS_CACHE_ERROR)
7347 ret = -EIO;
7348 put_caching_control(caching_ctl);
7349 return ret;
7352 int __get_raid_index(u64 flags)
7354 if (flags & BTRFS_BLOCK_GROUP_RAID10)
7355 return BTRFS_RAID_RAID10;
7356 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7357 return BTRFS_RAID_RAID1;
7358 else if (flags & BTRFS_BLOCK_GROUP_DUP)
7359 return BTRFS_RAID_DUP;
7360 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7361 return BTRFS_RAID_RAID0;
7362 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7363 return BTRFS_RAID_RAID5;
7364 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7365 return BTRFS_RAID_RAID6;
7367 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7370 int get_block_group_index(struct btrfs_block_group_cache *cache)
7372 return __get_raid_index(cache->flags);
7375 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7376 [BTRFS_RAID_RAID10] = "raid10",
7377 [BTRFS_RAID_RAID1] = "raid1",
7378 [BTRFS_RAID_DUP] = "dup",
7379 [BTRFS_RAID_RAID0] = "raid0",
7380 [BTRFS_RAID_SINGLE] = "single",
7381 [BTRFS_RAID_RAID5] = "raid5",
7382 [BTRFS_RAID_RAID6] = "raid6",
7385 static const char *get_raid_name(enum btrfs_raid_types type)
7387 if (type >= BTRFS_NR_RAID_TYPES)
7388 return NULL;
7390 return btrfs_raid_type_names[type];
7393 enum btrfs_loop_type {
7394 LOOP_CACHING_NOWAIT = 0,
7395 LOOP_CACHING_WAIT = 1,
7396 LOOP_ALLOC_CHUNK = 2,
7397 LOOP_NO_EMPTY_SIZE = 3,
7400 static inline void
7401 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7402 int delalloc)
7404 if (delalloc)
7405 down_read(&cache->data_rwsem);
7408 static inline void
7409 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7410 int delalloc)
7412 btrfs_get_block_group(cache);
7413 if (delalloc)
7414 down_read(&cache->data_rwsem);
7417 static struct btrfs_block_group_cache *
7418 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7419 struct btrfs_free_cluster *cluster,
7420 int delalloc)
7422 struct btrfs_block_group_cache *used_bg = NULL;
7424 spin_lock(&cluster->refill_lock);
7425 while (1) {
7426 used_bg = cluster->block_group;
7427 if (!used_bg)
7428 return NULL;
7430 if (used_bg == block_group)
7431 return used_bg;
7433 btrfs_get_block_group(used_bg);
7435 if (!delalloc)
7436 return used_bg;
7438 if (down_read_trylock(&used_bg->data_rwsem))
7439 return used_bg;
7441 spin_unlock(&cluster->refill_lock);
7443 /* We should only have one-level nested. */
7444 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7446 spin_lock(&cluster->refill_lock);
7447 if (used_bg == cluster->block_group)
7448 return used_bg;
7450 up_read(&used_bg->data_rwsem);
7451 btrfs_put_block_group(used_bg);
7455 static inline void
7456 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7457 int delalloc)
7459 if (delalloc)
7460 up_read(&cache->data_rwsem);
7461 btrfs_put_block_group(cache);
7465 * walks the btree of allocated extents and find a hole of a given size.
7466 * The key ins is changed to record the hole:
7467 * ins->objectid == start position
7468 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7469 * ins->offset == the size of the hole.
7470 * Any available blocks before search_start are skipped.
7472 * If there is no suitable free space, we will record the max size of
7473 * the free space extent currently.
7475 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7476 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7477 u64 hint_byte, struct btrfs_key *ins,
7478 u64 flags, int delalloc)
7480 int ret = 0;
7481 struct btrfs_root *root = fs_info->extent_root;
7482 struct btrfs_free_cluster *last_ptr = NULL;
7483 struct btrfs_block_group_cache *block_group = NULL;
7484 u64 search_start = 0;
7485 u64 max_extent_size = 0;
7486 u64 empty_cluster = 0;
7487 struct btrfs_space_info *space_info;
7488 int loop = 0;
7489 int index = __get_raid_index(flags);
7490 bool failed_cluster_refill = false;
7491 bool failed_alloc = false;
7492 bool use_cluster = true;
7493 bool have_caching_bg = false;
7494 bool orig_have_caching_bg = false;
7495 bool full_search = false;
7497 WARN_ON(num_bytes < fs_info->sectorsize);
7498 ins->type = BTRFS_EXTENT_ITEM_KEY;
7499 ins->objectid = 0;
7500 ins->offset = 0;
7502 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7504 space_info = __find_space_info(fs_info, flags);
7505 if (!space_info) {
7506 btrfs_err(fs_info, "No space info for %llu", flags);
7507 return -ENOSPC;
7511 * If our free space is heavily fragmented we may not be able to make
7512 * big contiguous allocations, so instead of doing the expensive search
7513 * for free space, simply return ENOSPC with our max_extent_size so we
7514 * can go ahead and search for a more manageable chunk.
7516 * If our max_extent_size is large enough for our allocation simply
7517 * disable clustering since we will likely not be able to find enough
7518 * space to create a cluster and induce latency trying.
7520 if (unlikely(space_info->max_extent_size)) {
7521 spin_lock(&space_info->lock);
7522 if (space_info->max_extent_size &&
7523 num_bytes > space_info->max_extent_size) {
7524 ins->offset = space_info->max_extent_size;
7525 spin_unlock(&space_info->lock);
7526 return -ENOSPC;
7527 } else if (space_info->max_extent_size) {
7528 use_cluster = false;
7530 spin_unlock(&space_info->lock);
7533 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7534 if (last_ptr) {
7535 spin_lock(&last_ptr->lock);
7536 if (last_ptr->block_group)
7537 hint_byte = last_ptr->window_start;
7538 if (last_ptr->fragmented) {
7540 * We still set window_start so we can keep track of the
7541 * last place we found an allocation to try and save
7542 * some time.
7544 hint_byte = last_ptr->window_start;
7545 use_cluster = false;
7547 spin_unlock(&last_ptr->lock);
7550 search_start = max(search_start, first_logical_byte(fs_info, 0));
7551 search_start = max(search_start, hint_byte);
7552 if (search_start == hint_byte) {
7553 block_group = btrfs_lookup_block_group(fs_info, search_start);
7555 * we don't want to use the block group if it doesn't match our
7556 * allocation bits, or if its not cached.
7558 * However if we are re-searching with an ideal block group
7559 * picked out then we don't care that the block group is cached.
7561 if (block_group && block_group_bits(block_group, flags) &&
7562 block_group->cached != BTRFS_CACHE_NO) {
7563 down_read(&space_info->groups_sem);
7564 if (list_empty(&block_group->list) ||
7565 block_group->ro) {
7567 * someone is removing this block group,
7568 * we can't jump into the have_block_group
7569 * target because our list pointers are not
7570 * valid
7572 btrfs_put_block_group(block_group);
7573 up_read(&space_info->groups_sem);
7574 } else {
7575 index = get_block_group_index(block_group);
7576 btrfs_lock_block_group(block_group, delalloc);
7577 goto have_block_group;
7579 } else if (block_group) {
7580 btrfs_put_block_group(block_group);
7583 search:
7584 have_caching_bg = false;
7585 if (index == 0 || index == __get_raid_index(flags))
7586 full_search = true;
7587 down_read(&space_info->groups_sem);
7588 list_for_each_entry(block_group, &space_info->block_groups[index],
7589 list) {
7590 u64 offset;
7591 int cached;
7593 /* If the block group is read-only, we can skip it entirely. */
7594 if (unlikely(block_group->ro))
7595 continue;
7597 btrfs_grab_block_group(block_group, delalloc);
7598 search_start = block_group->key.objectid;
7601 * this can happen if we end up cycling through all the
7602 * raid types, but we want to make sure we only allocate
7603 * for the proper type.
7605 if (!block_group_bits(block_group, flags)) {
7606 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7607 BTRFS_BLOCK_GROUP_RAID1 |
7608 BTRFS_BLOCK_GROUP_RAID5 |
7609 BTRFS_BLOCK_GROUP_RAID6 |
7610 BTRFS_BLOCK_GROUP_RAID10;
7613 * if they asked for extra copies and this block group
7614 * doesn't provide them, bail. This does allow us to
7615 * fill raid0 from raid1.
7617 if ((flags & extra) && !(block_group->flags & extra))
7618 goto loop;
7621 have_block_group:
7622 cached = block_group_cache_done(block_group);
7623 if (unlikely(!cached)) {
7624 have_caching_bg = true;
7625 ret = cache_block_group(block_group, 0);
7626 BUG_ON(ret < 0);
7627 ret = 0;
7630 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7631 goto loop;
7634 * Ok we want to try and use the cluster allocator, so
7635 * lets look there
7637 if (last_ptr && use_cluster) {
7638 struct btrfs_block_group_cache *used_block_group;
7639 unsigned long aligned_cluster;
7641 * the refill lock keeps out other
7642 * people trying to start a new cluster
7644 used_block_group = btrfs_lock_cluster(block_group,
7645 last_ptr,
7646 delalloc);
7647 if (!used_block_group)
7648 goto refill_cluster;
7650 if (used_block_group != block_group &&
7651 (used_block_group->ro ||
7652 !block_group_bits(used_block_group, flags)))
7653 goto release_cluster;
7655 offset = btrfs_alloc_from_cluster(used_block_group,
7656 last_ptr,
7657 num_bytes,
7658 used_block_group->key.objectid,
7659 &max_extent_size);
7660 if (offset) {
7661 /* we have a block, we're done */
7662 spin_unlock(&last_ptr->refill_lock);
7663 trace_btrfs_reserve_extent_cluster(fs_info,
7664 used_block_group,
7665 search_start, num_bytes);
7666 if (used_block_group != block_group) {
7667 btrfs_release_block_group(block_group,
7668 delalloc);
7669 block_group = used_block_group;
7671 goto checks;
7674 WARN_ON(last_ptr->block_group != used_block_group);
7675 release_cluster:
7676 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7677 * set up a new clusters, so lets just skip it
7678 * and let the allocator find whatever block
7679 * it can find. If we reach this point, we
7680 * will have tried the cluster allocator
7681 * plenty of times and not have found
7682 * anything, so we are likely way too
7683 * fragmented for the clustering stuff to find
7684 * anything.
7686 * However, if the cluster is taken from the
7687 * current block group, release the cluster
7688 * first, so that we stand a better chance of
7689 * succeeding in the unclustered
7690 * allocation. */
7691 if (loop >= LOOP_NO_EMPTY_SIZE &&
7692 used_block_group != block_group) {
7693 spin_unlock(&last_ptr->refill_lock);
7694 btrfs_release_block_group(used_block_group,
7695 delalloc);
7696 goto unclustered_alloc;
7700 * this cluster didn't work out, free it and
7701 * start over
7703 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7705 if (used_block_group != block_group)
7706 btrfs_release_block_group(used_block_group,
7707 delalloc);
7708 refill_cluster:
7709 if (loop >= LOOP_NO_EMPTY_SIZE) {
7710 spin_unlock(&last_ptr->refill_lock);
7711 goto unclustered_alloc;
7714 aligned_cluster = max_t(unsigned long,
7715 empty_cluster + empty_size,
7716 block_group->full_stripe_len);
7718 /* allocate a cluster in this block group */
7719 ret = btrfs_find_space_cluster(fs_info, block_group,
7720 last_ptr, search_start,
7721 num_bytes,
7722 aligned_cluster);
7723 if (ret == 0) {
7725 * now pull our allocation out of this
7726 * cluster
7728 offset = btrfs_alloc_from_cluster(block_group,
7729 last_ptr,
7730 num_bytes,
7731 search_start,
7732 &max_extent_size);
7733 if (offset) {
7734 /* we found one, proceed */
7735 spin_unlock(&last_ptr->refill_lock);
7736 trace_btrfs_reserve_extent_cluster(fs_info,
7737 block_group, search_start,
7738 num_bytes);
7739 goto checks;
7741 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7742 && !failed_cluster_refill) {
7743 spin_unlock(&last_ptr->refill_lock);
7745 failed_cluster_refill = true;
7746 wait_block_group_cache_progress(block_group,
7747 num_bytes + empty_cluster + empty_size);
7748 goto have_block_group;
7752 * at this point we either didn't find a cluster
7753 * or we weren't able to allocate a block from our
7754 * cluster. Free the cluster we've been trying
7755 * to use, and go to the next block group
7757 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7758 spin_unlock(&last_ptr->refill_lock);
7759 goto loop;
7762 unclustered_alloc:
7764 * We are doing an unclustered alloc, set the fragmented flag so
7765 * we don't bother trying to setup a cluster again until we get
7766 * more space.
7768 if (unlikely(last_ptr)) {
7769 spin_lock(&last_ptr->lock);
7770 last_ptr->fragmented = 1;
7771 spin_unlock(&last_ptr->lock);
7773 if (cached) {
7774 struct btrfs_free_space_ctl *ctl =
7775 block_group->free_space_ctl;
7777 spin_lock(&ctl->tree_lock);
7778 if (ctl->free_space <
7779 num_bytes + empty_cluster + empty_size) {
7780 if (ctl->free_space > max_extent_size)
7781 max_extent_size = ctl->free_space;
7782 spin_unlock(&ctl->tree_lock);
7783 goto loop;
7785 spin_unlock(&ctl->tree_lock);
7788 offset = btrfs_find_space_for_alloc(block_group, search_start,
7789 num_bytes, empty_size,
7790 &max_extent_size);
7792 * If we didn't find a chunk, and we haven't failed on this
7793 * block group before, and this block group is in the middle of
7794 * caching and we are ok with waiting, then go ahead and wait
7795 * for progress to be made, and set failed_alloc to true.
7797 * If failed_alloc is true then we've already waited on this
7798 * block group once and should move on to the next block group.
7800 if (!offset && !failed_alloc && !cached &&
7801 loop > LOOP_CACHING_NOWAIT) {
7802 wait_block_group_cache_progress(block_group,
7803 num_bytes + empty_size);
7804 failed_alloc = true;
7805 goto have_block_group;
7806 } else if (!offset) {
7807 goto loop;
7809 checks:
7810 search_start = ALIGN(offset, fs_info->stripesize);
7812 /* move on to the next group */
7813 if (search_start + num_bytes >
7814 block_group->key.objectid + block_group->key.offset) {
7815 btrfs_add_free_space(block_group, offset, num_bytes);
7816 goto loop;
7819 if (offset < search_start)
7820 btrfs_add_free_space(block_group, offset,
7821 search_start - offset);
7822 BUG_ON(offset > search_start);
7824 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7825 num_bytes, delalloc);
7826 if (ret == -EAGAIN) {
7827 btrfs_add_free_space(block_group, offset, num_bytes);
7828 goto loop;
7830 btrfs_inc_block_group_reservations(block_group);
7832 /* we are all good, lets return */
7833 ins->objectid = search_start;
7834 ins->offset = num_bytes;
7836 trace_btrfs_reserve_extent(fs_info, block_group,
7837 search_start, num_bytes);
7838 btrfs_release_block_group(block_group, delalloc);
7839 break;
7840 loop:
7841 failed_cluster_refill = false;
7842 failed_alloc = false;
7843 BUG_ON(index != get_block_group_index(block_group));
7844 btrfs_release_block_group(block_group, delalloc);
7845 cond_resched();
7847 up_read(&space_info->groups_sem);
7849 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7850 && !orig_have_caching_bg)
7851 orig_have_caching_bg = true;
7853 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7854 goto search;
7856 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7857 goto search;
7860 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7861 * caching kthreads as we move along
7862 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7863 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7864 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7865 * again
7867 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7868 index = 0;
7869 if (loop == LOOP_CACHING_NOWAIT) {
7871 * We want to skip the LOOP_CACHING_WAIT step if we
7872 * don't have any uncached bgs and we've already done a
7873 * full search through.
7875 if (orig_have_caching_bg || !full_search)
7876 loop = LOOP_CACHING_WAIT;
7877 else
7878 loop = LOOP_ALLOC_CHUNK;
7879 } else {
7880 loop++;
7883 if (loop == LOOP_ALLOC_CHUNK) {
7884 struct btrfs_trans_handle *trans;
7885 int exist = 0;
7887 trans = current->journal_info;
7888 if (trans)
7889 exist = 1;
7890 else
7891 trans = btrfs_join_transaction(root);
7893 if (IS_ERR(trans)) {
7894 ret = PTR_ERR(trans);
7895 goto out;
7898 ret = do_chunk_alloc(trans, fs_info, flags,
7899 CHUNK_ALLOC_FORCE);
7902 * If we can't allocate a new chunk we've already looped
7903 * through at least once, move on to the NO_EMPTY_SIZE
7904 * case.
7906 if (ret == -ENOSPC)
7907 loop = LOOP_NO_EMPTY_SIZE;
7910 * Do not bail out on ENOSPC since we
7911 * can do more things.
7913 if (ret < 0 && ret != -ENOSPC)
7914 btrfs_abort_transaction(trans, ret);
7915 else
7916 ret = 0;
7917 if (!exist)
7918 btrfs_end_transaction(trans);
7919 if (ret)
7920 goto out;
7923 if (loop == LOOP_NO_EMPTY_SIZE) {
7925 * Don't loop again if we already have no empty_size and
7926 * no empty_cluster.
7928 if (empty_size == 0 &&
7929 empty_cluster == 0) {
7930 ret = -ENOSPC;
7931 goto out;
7933 empty_size = 0;
7934 empty_cluster = 0;
7937 goto search;
7938 } else if (!ins->objectid) {
7939 ret = -ENOSPC;
7940 } else if (ins->objectid) {
7941 if (!use_cluster && last_ptr) {
7942 spin_lock(&last_ptr->lock);
7943 last_ptr->window_start = ins->objectid;
7944 spin_unlock(&last_ptr->lock);
7946 ret = 0;
7948 out:
7949 if (ret == -ENOSPC) {
7950 spin_lock(&space_info->lock);
7951 space_info->max_extent_size = max_extent_size;
7952 spin_unlock(&space_info->lock);
7953 ins->offset = max_extent_size;
7955 return ret;
7958 static void dump_space_info(struct btrfs_fs_info *fs_info,
7959 struct btrfs_space_info *info, u64 bytes,
7960 int dump_block_groups)
7962 struct btrfs_block_group_cache *cache;
7963 int index = 0;
7965 spin_lock(&info->lock);
7966 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7967 info->flags,
7968 info->total_bytes - btrfs_space_info_used(info, true),
7969 info->full ? "" : "not ");
7970 btrfs_info(fs_info,
7971 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7972 info->total_bytes, info->bytes_used, info->bytes_pinned,
7973 info->bytes_reserved, info->bytes_may_use,
7974 info->bytes_readonly);
7975 spin_unlock(&info->lock);
7977 if (!dump_block_groups)
7978 return;
7980 down_read(&info->groups_sem);
7981 again:
7982 list_for_each_entry(cache, &info->block_groups[index], list) {
7983 spin_lock(&cache->lock);
7984 btrfs_info(fs_info,
7985 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7986 cache->key.objectid, cache->key.offset,
7987 btrfs_block_group_used(&cache->item), cache->pinned,
7988 cache->reserved, cache->ro ? "[readonly]" : "");
7989 btrfs_dump_free_space(cache, bytes);
7990 spin_unlock(&cache->lock);
7992 if (++index < BTRFS_NR_RAID_TYPES)
7993 goto again;
7994 up_read(&info->groups_sem);
7997 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7998 u64 num_bytes, u64 min_alloc_size,
7999 u64 empty_size, u64 hint_byte,
8000 struct btrfs_key *ins, int is_data, int delalloc)
8002 struct btrfs_fs_info *fs_info = root->fs_info;
8003 bool final_tried = num_bytes == min_alloc_size;
8004 u64 flags;
8005 int ret;
8007 flags = get_alloc_profile_by_root(root, is_data);
8008 again:
8009 WARN_ON(num_bytes < fs_info->sectorsize);
8010 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8011 hint_byte, ins, flags, delalloc);
8012 if (!ret && !is_data) {
8013 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8014 } else if (ret == -ENOSPC) {
8015 if (!final_tried && ins->offset) {
8016 num_bytes = min(num_bytes >> 1, ins->offset);
8017 num_bytes = round_down(num_bytes,
8018 fs_info->sectorsize);
8019 num_bytes = max(num_bytes, min_alloc_size);
8020 ram_bytes = num_bytes;
8021 if (num_bytes == min_alloc_size)
8022 final_tried = true;
8023 goto again;
8024 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8025 struct btrfs_space_info *sinfo;
8027 sinfo = __find_space_info(fs_info, flags);
8028 btrfs_err(fs_info,
8029 "allocation failed flags %llu, wanted %llu",
8030 flags, num_bytes);
8031 if (sinfo)
8032 dump_space_info(fs_info, sinfo, num_bytes, 1);
8036 return ret;
8039 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8040 u64 start, u64 len,
8041 int pin, int delalloc)
8043 struct btrfs_block_group_cache *cache;
8044 int ret = 0;
8046 cache = btrfs_lookup_block_group(fs_info, start);
8047 if (!cache) {
8048 btrfs_err(fs_info, "Unable to find block group for %llu",
8049 start);
8050 return -ENOSPC;
8053 if (pin)
8054 pin_down_extent(fs_info, cache, start, len, 1);
8055 else {
8056 if (btrfs_test_opt(fs_info, DISCARD))
8057 ret = btrfs_discard_extent(fs_info, start, len, NULL);
8058 btrfs_add_free_space(cache, start, len);
8059 btrfs_free_reserved_bytes(cache, len, delalloc);
8060 trace_btrfs_reserved_extent_free(fs_info, start, len);
8063 btrfs_put_block_group(cache);
8064 return ret;
8067 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8068 u64 start, u64 len, int delalloc)
8070 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8073 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8074 u64 start, u64 len)
8076 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8079 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8080 struct btrfs_fs_info *fs_info,
8081 u64 parent, u64 root_objectid,
8082 u64 flags, u64 owner, u64 offset,
8083 struct btrfs_key *ins, int ref_mod)
8085 int ret;
8086 struct btrfs_extent_item *extent_item;
8087 struct btrfs_extent_inline_ref *iref;
8088 struct btrfs_path *path;
8089 struct extent_buffer *leaf;
8090 int type;
8091 u32 size;
8093 if (parent > 0)
8094 type = BTRFS_SHARED_DATA_REF_KEY;
8095 else
8096 type = BTRFS_EXTENT_DATA_REF_KEY;
8098 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8100 path = btrfs_alloc_path();
8101 if (!path)
8102 return -ENOMEM;
8104 path->leave_spinning = 1;
8105 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8106 ins, size);
8107 if (ret) {
8108 btrfs_free_path(path);
8109 return ret;
8112 leaf = path->nodes[0];
8113 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8114 struct btrfs_extent_item);
8115 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8116 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8117 btrfs_set_extent_flags(leaf, extent_item,
8118 flags | BTRFS_EXTENT_FLAG_DATA);
8120 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8121 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8122 if (parent > 0) {
8123 struct btrfs_shared_data_ref *ref;
8124 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8125 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8126 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8127 } else {
8128 struct btrfs_extent_data_ref *ref;
8129 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8130 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8131 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8132 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8133 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8136 btrfs_mark_buffer_dirty(path->nodes[0]);
8137 btrfs_free_path(path);
8139 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8140 ins->offset);
8141 if (ret)
8142 return ret;
8144 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8145 if (ret) { /* -ENOENT, logic error */
8146 btrfs_err(fs_info, "update block group failed for %llu %llu",
8147 ins->objectid, ins->offset);
8148 BUG();
8150 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8151 return ret;
8154 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8155 struct btrfs_fs_info *fs_info,
8156 u64 parent, u64 root_objectid,
8157 u64 flags, struct btrfs_disk_key *key,
8158 int level, struct btrfs_key *ins)
8160 int ret;
8161 struct btrfs_extent_item *extent_item;
8162 struct btrfs_tree_block_info *block_info;
8163 struct btrfs_extent_inline_ref *iref;
8164 struct btrfs_path *path;
8165 struct extent_buffer *leaf;
8166 u32 size = sizeof(*extent_item) + sizeof(*iref);
8167 u64 num_bytes = ins->offset;
8168 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8170 if (!skinny_metadata)
8171 size += sizeof(*block_info);
8173 path = btrfs_alloc_path();
8174 if (!path) {
8175 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8176 fs_info->nodesize);
8177 return -ENOMEM;
8180 path->leave_spinning = 1;
8181 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8182 ins, size);
8183 if (ret) {
8184 btrfs_free_path(path);
8185 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8186 fs_info->nodesize);
8187 return ret;
8190 leaf = path->nodes[0];
8191 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8192 struct btrfs_extent_item);
8193 btrfs_set_extent_refs(leaf, extent_item, 1);
8194 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8195 btrfs_set_extent_flags(leaf, extent_item,
8196 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8198 if (skinny_metadata) {
8199 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8200 num_bytes = fs_info->nodesize;
8201 } else {
8202 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8203 btrfs_set_tree_block_key(leaf, block_info, key);
8204 btrfs_set_tree_block_level(leaf, block_info, level);
8205 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8208 if (parent > 0) {
8209 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8210 btrfs_set_extent_inline_ref_type(leaf, iref,
8211 BTRFS_SHARED_BLOCK_REF_KEY);
8212 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8213 } else {
8214 btrfs_set_extent_inline_ref_type(leaf, iref,
8215 BTRFS_TREE_BLOCK_REF_KEY);
8216 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8219 btrfs_mark_buffer_dirty(leaf);
8220 btrfs_free_path(path);
8222 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8223 num_bytes);
8224 if (ret)
8225 return ret;
8227 ret = update_block_group(trans, fs_info, ins->objectid,
8228 fs_info->nodesize, 1);
8229 if (ret) { /* -ENOENT, logic error */
8230 btrfs_err(fs_info, "update block group failed for %llu %llu",
8231 ins->objectid, ins->offset);
8232 BUG();
8235 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8236 fs_info->nodesize);
8237 return ret;
8240 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8241 struct btrfs_root *root, u64 owner,
8242 u64 offset, u64 ram_bytes,
8243 struct btrfs_key *ins)
8245 struct btrfs_fs_info *fs_info = root->fs_info;
8246 int ret;
8248 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8250 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8251 root->root_key.objectid, owner, offset,
8252 BTRFS_ADD_DELAYED_EXTENT);
8254 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8255 ins->offset, 0,
8256 root->root_key.objectid, owner,
8257 offset, ram_bytes,
8258 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8259 return ret;
8263 * this is used by the tree logging recovery code. It records that
8264 * an extent has been allocated and makes sure to clear the free
8265 * space cache bits as well
8267 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8268 struct btrfs_fs_info *fs_info,
8269 u64 root_objectid, u64 owner, u64 offset,
8270 struct btrfs_key *ins)
8272 int ret;
8273 struct btrfs_block_group_cache *block_group;
8274 struct btrfs_space_info *space_info;
8277 * Mixed block groups will exclude before processing the log so we only
8278 * need to do the exclude dance if this fs isn't mixed.
8280 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8281 ret = __exclude_logged_extent(fs_info, ins->objectid,
8282 ins->offset);
8283 if (ret)
8284 return ret;
8287 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8288 if (!block_group)
8289 return -EINVAL;
8291 space_info = block_group->space_info;
8292 spin_lock(&space_info->lock);
8293 spin_lock(&block_group->lock);
8294 space_info->bytes_reserved += ins->offset;
8295 block_group->reserved += ins->offset;
8296 spin_unlock(&block_group->lock);
8297 spin_unlock(&space_info->lock);
8299 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8300 0, owner, offset, ins, 1);
8301 btrfs_put_block_group(block_group);
8302 return ret;
8305 static struct extent_buffer *
8306 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8307 u64 bytenr, int level)
8309 struct btrfs_fs_info *fs_info = root->fs_info;
8310 struct extent_buffer *buf;
8312 buf = btrfs_find_create_tree_block(fs_info, bytenr);
8313 if (IS_ERR(buf))
8314 return buf;
8316 btrfs_set_header_generation(buf, trans->transid);
8317 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8318 btrfs_tree_lock(buf);
8319 clean_tree_block(fs_info, buf);
8320 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8322 btrfs_set_lock_blocking(buf);
8323 set_extent_buffer_uptodate(buf);
8325 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8326 buf->log_index = root->log_transid % 2;
8328 * we allow two log transactions at a time, use different
8329 * EXENT bit to differentiate dirty pages.
8331 if (buf->log_index == 0)
8332 set_extent_dirty(&root->dirty_log_pages, buf->start,
8333 buf->start + buf->len - 1, GFP_NOFS);
8334 else
8335 set_extent_new(&root->dirty_log_pages, buf->start,
8336 buf->start + buf->len - 1);
8337 } else {
8338 buf->log_index = -1;
8339 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8340 buf->start + buf->len - 1, GFP_NOFS);
8342 trans->dirty = true;
8343 /* this returns a buffer locked for blocking */
8344 return buf;
8347 static struct btrfs_block_rsv *
8348 use_block_rsv(struct btrfs_trans_handle *trans,
8349 struct btrfs_root *root, u32 blocksize)
8351 struct btrfs_fs_info *fs_info = root->fs_info;
8352 struct btrfs_block_rsv *block_rsv;
8353 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8354 int ret;
8355 bool global_updated = false;
8357 block_rsv = get_block_rsv(trans, root);
8359 if (unlikely(block_rsv->size == 0))
8360 goto try_reserve;
8361 again:
8362 ret = block_rsv_use_bytes(block_rsv, blocksize);
8363 if (!ret)
8364 return block_rsv;
8366 if (block_rsv->failfast)
8367 return ERR_PTR(ret);
8369 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8370 global_updated = true;
8371 update_global_block_rsv(fs_info);
8372 goto again;
8375 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8376 static DEFINE_RATELIMIT_STATE(_rs,
8377 DEFAULT_RATELIMIT_INTERVAL * 10,
8378 /*DEFAULT_RATELIMIT_BURST*/ 1);
8379 if (__ratelimit(&_rs))
8380 WARN(1, KERN_DEBUG
8381 "BTRFS: block rsv returned %d\n", ret);
8383 try_reserve:
8384 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8385 BTRFS_RESERVE_NO_FLUSH);
8386 if (!ret)
8387 return block_rsv;
8389 * If we couldn't reserve metadata bytes try and use some from
8390 * the global reserve if its space type is the same as the global
8391 * reservation.
8393 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8394 block_rsv->space_info == global_rsv->space_info) {
8395 ret = block_rsv_use_bytes(global_rsv, blocksize);
8396 if (!ret)
8397 return global_rsv;
8399 return ERR_PTR(ret);
8402 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8403 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8405 block_rsv_add_bytes(block_rsv, blocksize, 0);
8406 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8410 * finds a free extent and does all the dirty work required for allocation
8411 * returns the tree buffer or an ERR_PTR on error.
8413 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8414 struct btrfs_root *root,
8415 u64 parent, u64 root_objectid,
8416 const struct btrfs_disk_key *key,
8417 int level, u64 hint,
8418 u64 empty_size)
8420 struct btrfs_fs_info *fs_info = root->fs_info;
8421 struct btrfs_key ins;
8422 struct btrfs_block_rsv *block_rsv;
8423 struct extent_buffer *buf;
8424 struct btrfs_delayed_extent_op *extent_op;
8425 u64 flags = 0;
8426 int ret;
8427 u32 blocksize = fs_info->nodesize;
8428 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8430 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8431 if (btrfs_is_testing(fs_info)) {
8432 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8433 level);
8434 if (!IS_ERR(buf))
8435 root->alloc_bytenr += blocksize;
8436 return buf;
8438 #endif
8440 block_rsv = use_block_rsv(trans, root, blocksize);
8441 if (IS_ERR(block_rsv))
8442 return ERR_CAST(block_rsv);
8444 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8445 empty_size, hint, &ins, 0, 0);
8446 if (ret)
8447 goto out_unuse;
8449 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8450 if (IS_ERR(buf)) {
8451 ret = PTR_ERR(buf);
8452 goto out_free_reserved;
8455 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8456 if (parent == 0)
8457 parent = ins.objectid;
8458 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8459 } else
8460 BUG_ON(parent > 0);
8462 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8463 extent_op = btrfs_alloc_delayed_extent_op();
8464 if (!extent_op) {
8465 ret = -ENOMEM;
8466 goto out_free_buf;
8468 if (key)
8469 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8470 else
8471 memset(&extent_op->key, 0, sizeof(extent_op->key));
8472 extent_op->flags_to_set = flags;
8473 extent_op->update_key = skinny_metadata ? false : true;
8474 extent_op->update_flags = true;
8475 extent_op->is_data = false;
8476 extent_op->level = level;
8478 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8479 root_objectid, level, 0,
8480 BTRFS_ADD_DELAYED_EXTENT);
8481 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8482 ins.offset, parent,
8483 root_objectid, level,
8484 BTRFS_ADD_DELAYED_EXTENT,
8485 extent_op, NULL, NULL);
8486 if (ret)
8487 goto out_free_delayed;
8489 return buf;
8491 out_free_delayed:
8492 btrfs_free_delayed_extent_op(extent_op);
8493 out_free_buf:
8494 free_extent_buffer(buf);
8495 out_free_reserved:
8496 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8497 out_unuse:
8498 unuse_block_rsv(fs_info, block_rsv, blocksize);
8499 return ERR_PTR(ret);
8502 struct walk_control {
8503 u64 refs[BTRFS_MAX_LEVEL];
8504 u64 flags[BTRFS_MAX_LEVEL];
8505 struct btrfs_key update_progress;
8506 int stage;
8507 int level;
8508 int shared_level;
8509 int update_ref;
8510 int keep_locks;
8511 int reada_slot;
8512 int reada_count;
8513 int for_reloc;
8516 #define DROP_REFERENCE 1
8517 #define UPDATE_BACKREF 2
8519 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8520 struct btrfs_root *root,
8521 struct walk_control *wc,
8522 struct btrfs_path *path)
8524 struct btrfs_fs_info *fs_info = root->fs_info;
8525 u64 bytenr;
8526 u64 generation;
8527 u64 refs;
8528 u64 flags;
8529 u32 nritems;
8530 struct btrfs_key key;
8531 struct extent_buffer *eb;
8532 int ret;
8533 int slot;
8534 int nread = 0;
8536 if (path->slots[wc->level] < wc->reada_slot) {
8537 wc->reada_count = wc->reada_count * 2 / 3;
8538 wc->reada_count = max(wc->reada_count, 2);
8539 } else {
8540 wc->reada_count = wc->reada_count * 3 / 2;
8541 wc->reada_count = min_t(int, wc->reada_count,
8542 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8545 eb = path->nodes[wc->level];
8546 nritems = btrfs_header_nritems(eb);
8548 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8549 if (nread >= wc->reada_count)
8550 break;
8552 cond_resched();
8553 bytenr = btrfs_node_blockptr(eb, slot);
8554 generation = btrfs_node_ptr_generation(eb, slot);
8556 if (slot == path->slots[wc->level])
8557 goto reada;
8559 if (wc->stage == UPDATE_BACKREF &&
8560 generation <= root->root_key.offset)
8561 continue;
8563 /* We don't lock the tree block, it's OK to be racy here */
8564 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8565 wc->level - 1, 1, &refs,
8566 &flags);
8567 /* We don't care about errors in readahead. */
8568 if (ret < 0)
8569 continue;
8570 BUG_ON(refs == 0);
8572 if (wc->stage == DROP_REFERENCE) {
8573 if (refs == 1)
8574 goto reada;
8576 if (wc->level == 1 &&
8577 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8578 continue;
8579 if (!wc->update_ref ||
8580 generation <= root->root_key.offset)
8581 continue;
8582 btrfs_node_key_to_cpu(eb, &key, slot);
8583 ret = btrfs_comp_cpu_keys(&key,
8584 &wc->update_progress);
8585 if (ret < 0)
8586 continue;
8587 } else {
8588 if (wc->level == 1 &&
8589 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8590 continue;
8592 reada:
8593 readahead_tree_block(fs_info, bytenr);
8594 nread++;
8596 wc->reada_slot = slot;
8600 * helper to process tree block while walking down the tree.
8602 * when wc->stage == UPDATE_BACKREF, this function updates
8603 * back refs for pointers in the block.
8605 * NOTE: return value 1 means we should stop walking down.
8607 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8608 struct btrfs_root *root,
8609 struct btrfs_path *path,
8610 struct walk_control *wc, int lookup_info)
8612 struct btrfs_fs_info *fs_info = root->fs_info;
8613 int level = wc->level;
8614 struct extent_buffer *eb = path->nodes[level];
8615 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8616 int ret;
8618 if (wc->stage == UPDATE_BACKREF &&
8619 btrfs_header_owner(eb) != root->root_key.objectid)
8620 return 1;
8623 * when reference count of tree block is 1, it won't increase
8624 * again. once full backref flag is set, we never clear it.
8626 if (lookup_info &&
8627 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8628 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8629 BUG_ON(!path->locks[level]);
8630 ret = btrfs_lookup_extent_info(trans, fs_info,
8631 eb->start, level, 1,
8632 &wc->refs[level],
8633 &wc->flags[level]);
8634 BUG_ON(ret == -ENOMEM);
8635 if (ret)
8636 return ret;
8637 BUG_ON(wc->refs[level] == 0);
8640 if (wc->stage == DROP_REFERENCE) {
8641 if (wc->refs[level] > 1)
8642 return 1;
8644 if (path->locks[level] && !wc->keep_locks) {
8645 btrfs_tree_unlock_rw(eb, path->locks[level]);
8646 path->locks[level] = 0;
8648 return 0;
8651 /* wc->stage == UPDATE_BACKREF */
8652 if (!(wc->flags[level] & flag)) {
8653 BUG_ON(!path->locks[level]);
8654 ret = btrfs_inc_ref(trans, root, eb, 1);
8655 BUG_ON(ret); /* -ENOMEM */
8656 ret = btrfs_dec_ref(trans, root, eb, 0);
8657 BUG_ON(ret); /* -ENOMEM */
8658 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8659 eb->len, flag,
8660 btrfs_header_level(eb), 0);
8661 BUG_ON(ret); /* -ENOMEM */
8662 wc->flags[level] |= flag;
8666 * the block is shared by multiple trees, so it's not good to
8667 * keep the tree lock
8669 if (path->locks[level] && level > 0) {
8670 btrfs_tree_unlock_rw(eb, path->locks[level]);
8671 path->locks[level] = 0;
8673 return 0;
8677 * helper to process tree block pointer.
8679 * when wc->stage == DROP_REFERENCE, this function checks
8680 * reference count of the block pointed to. if the block
8681 * is shared and we need update back refs for the subtree
8682 * rooted at the block, this function changes wc->stage to
8683 * UPDATE_BACKREF. if the block is shared and there is no
8684 * need to update back, this function drops the reference
8685 * to the block.
8687 * NOTE: return value 1 means we should stop walking down.
8689 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8690 struct btrfs_root *root,
8691 struct btrfs_path *path,
8692 struct walk_control *wc, int *lookup_info)
8694 struct btrfs_fs_info *fs_info = root->fs_info;
8695 u64 bytenr;
8696 u64 generation;
8697 u64 parent;
8698 u32 blocksize;
8699 struct btrfs_key key;
8700 struct extent_buffer *next;
8701 int level = wc->level;
8702 int reada = 0;
8703 int ret = 0;
8704 bool need_account = false;
8706 generation = btrfs_node_ptr_generation(path->nodes[level],
8707 path->slots[level]);
8709 * if the lower level block was created before the snapshot
8710 * was created, we know there is no need to update back refs
8711 * for the subtree
8713 if (wc->stage == UPDATE_BACKREF &&
8714 generation <= root->root_key.offset) {
8715 *lookup_info = 1;
8716 return 1;
8719 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8720 blocksize = fs_info->nodesize;
8722 next = find_extent_buffer(fs_info, bytenr);
8723 if (!next) {
8724 next = btrfs_find_create_tree_block(fs_info, bytenr);
8725 if (IS_ERR(next))
8726 return PTR_ERR(next);
8728 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8729 level - 1);
8730 reada = 1;
8732 btrfs_tree_lock(next);
8733 btrfs_set_lock_blocking(next);
8735 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8736 &wc->refs[level - 1],
8737 &wc->flags[level - 1]);
8738 if (ret < 0)
8739 goto out_unlock;
8741 if (unlikely(wc->refs[level - 1] == 0)) {
8742 btrfs_err(fs_info, "Missing references.");
8743 ret = -EIO;
8744 goto out_unlock;
8746 *lookup_info = 0;
8748 if (wc->stage == DROP_REFERENCE) {
8749 if (wc->refs[level - 1] > 1) {
8750 need_account = true;
8751 if (level == 1 &&
8752 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8753 goto skip;
8755 if (!wc->update_ref ||
8756 generation <= root->root_key.offset)
8757 goto skip;
8759 btrfs_node_key_to_cpu(path->nodes[level], &key,
8760 path->slots[level]);
8761 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8762 if (ret < 0)
8763 goto skip;
8765 wc->stage = UPDATE_BACKREF;
8766 wc->shared_level = level - 1;
8768 } else {
8769 if (level == 1 &&
8770 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8771 goto skip;
8774 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8775 btrfs_tree_unlock(next);
8776 free_extent_buffer(next);
8777 next = NULL;
8778 *lookup_info = 1;
8781 if (!next) {
8782 if (reada && level == 1)
8783 reada_walk_down(trans, root, wc, path);
8784 next = read_tree_block(fs_info, bytenr, generation);
8785 if (IS_ERR(next)) {
8786 return PTR_ERR(next);
8787 } else if (!extent_buffer_uptodate(next)) {
8788 free_extent_buffer(next);
8789 return -EIO;
8791 btrfs_tree_lock(next);
8792 btrfs_set_lock_blocking(next);
8795 level--;
8796 ASSERT(level == btrfs_header_level(next));
8797 if (level != btrfs_header_level(next)) {
8798 btrfs_err(root->fs_info, "mismatched level");
8799 ret = -EIO;
8800 goto out_unlock;
8802 path->nodes[level] = next;
8803 path->slots[level] = 0;
8804 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8805 wc->level = level;
8806 if (wc->level == 1)
8807 wc->reada_slot = 0;
8808 return 0;
8809 skip:
8810 wc->refs[level - 1] = 0;
8811 wc->flags[level - 1] = 0;
8812 if (wc->stage == DROP_REFERENCE) {
8813 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8814 parent = path->nodes[level]->start;
8815 } else {
8816 ASSERT(root->root_key.objectid ==
8817 btrfs_header_owner(path->nodes[level]));
8818 if (root->root_key.objectid !=
8819 btrfs_header_owner(path->nodes[level])) {
8820 btrfs_err(root->fs_info,
8821 "mismatched block owner");
8822 ret = -EIO;
8823 goto out_unlock;
8825 parent = 0;
8828 if (need_account) {
8829 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8830 generation, level - 1);
8831 if (ret) {
8832 btrfs_err_rl(fs_info,
8833 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8834 ret);
8837 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
8838 parent, root->root_key.objectid,
8839 level - 1, 0);
8840 if (ret)
8841 goto out_unlock;
8844 *lookup_info = 1;
8845 ret = 1;
8847 out_unlock:
8848 btrfs_tree_unlock(next);
8849 free_extent_buffer(next);
8851 return ret;
8855 * helper to process tree block while walking up the tree.
8857 * when wc->stage == DROP_REFERENCE, this function drops
8858 * reference count on the block.
8860 * when wc->stage == UPDATE_BACKREF, this function changes
8861 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8862 * to UPDATE_BACKREF previously while processing the block.
8864 * NOTE: return value 1 means we should stop walking up.
8866 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8867 struct btrfs_root *root,
8868 struct btrfs_path *path,
8869 struct walk_control *wc)
8871 struct btrfs_fs_info *fs_info = root->fs_info;
8872 int ret;
8873 int level = wc->level;
8874 struct extent_buffer *eb = path->nodes[level];
8875 u64 parent = 0;
8877 if (wc->stage == UPDATE_BACKREF) {
8878 BUG_ON(wc->shared_level < level);
8879 if (level < wc->shared_level)
8880 goto out;
8882 ret = find_next_key(path, level + 1, &wc->update_progress);
8883 if (ret > 0)
8884 wc->update_ref = 0;
8886 wc->stage = DROP_REFERENCE;
8887 wc->shared_level = -1;
8888 path->slots[level] = 0;
8891 * check reference count again if the block isn't locked.
8892 * we should start walking down the tree again if reference
8893 * count is one.
8895 if (!path->locks[level]) {
8896 BUG_ON(level == 0);
8897 btrfs_tree_lock(eb);
8898 btrfs_set_lock_blocking(eb);
8899 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8901 ret = btrfs_lookup_extent_info(trans, fs_info,
8902 eb->start, level, 1,
8903 &wc->refs[level],
8904 &wc->flags[level]);
8905 if (ret < 0) {
8906 btrfs_tree_unlock_rw(eb, path->locks[level]);
8907 path->locks[level] = 0;
8908 return ret;
8910 BUG_ON(wc->refs[level] == 0);
8911 if (wc->refs[level] == 1) {
8912 btrfs_tree_unlock_rw(eb, path->locks[level]);
8913 path->locks[level] = 0;
8914 return 1;
8919 /* wc->stage == DROP_REFERENCE */
8920 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8922 if (wc->refs[level] == 1) {
8923 if (level == 0) {
8924 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8925 ret = btrfs_dec_ref(trans, root, eb, 1);
8926 else
8927 ret = btrfs_dec_ref(trans, root, eb, 0);
8928 BUG_ON(ret); /* -ENOMEM */
8929 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8930 if (ret) {
8931 btrfs_err_rl(fs_info,
8932 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8933 ret);
8936 /* make block locked assertion in clean_tree_block happy */
8937 if (!path->locks[level] &&
8938 btrfs_header_generation(eb) == trans->transid) {
8939 btrfs_tree_lock(eb);
8940 btrfs_set_lock_blocking(eb);
8941 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8943 clean_tree_block(fs_info, eb);
8946 if (eb == root->node) {
8947 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8948 parent = eb->start;
8949 else
8950 BUG_ON(root->root_key.objectid !=
8951 btrfs_header_owner(eb));
8952 } else {
8953 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8954 parent = path->nodes[level + 1]->start;
8955 else
8956 BUG_ON(root->root_key.objectid !=
8957 btrfs_header_owner(path->nodes[level + 1]));
8960 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8961 out:
8962 wc->refs[level] = 0;
8963 wc->flags[level] = 0;
8964 return 0;
8967 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8968 struct btrfs_root *root,
8969 struct btrfs_path *path,
8970 struct walk_control *wc)
8972 int level = wc->level;
8973 int lookup_info = 1;
8974 int ret;
8976 while (level >= 0) {
8977 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8978 if (ret > 0)
8979 break;
8981 if (level == 0)
8982 break;
8984 if (path->slots[level] >=
8985 btrfs_header_nritems(path->nodes[level]))
8986 break;
8988 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8989 if (ret > 0) {
8990 path->slots[level]++;
8991 continue;
8992 } else if (ret < 0)
8993 return ret;
8994 level = wc->level;
8996 return 0;
8999 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9000 struct btrfs_root *root,
9001 struct btrfs_path *path,
9002 struct walk_control *wc, int max_level)
9004 int level = wc->level;
9005 int ret;
9007 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9008 while (level < max_level && path->nodes[level]) {
9009 wc->level = level;
9010 if (path->slots[level] + 1 <
9011 btrfs_header_nritems(path->nodes[level])) {
9012 path->slots[level]++;
9013 return 0;
9014 } else {
9015 ret = walk_up_proc(trans, root, path, wc);
9016 if (ret > 0)
9017 return 0;
9019 if (path->locks[level]) {
9020 btrfs_tree_unlock_rw(path->nodes[level],
9021 path->locks[level]);
9022 path->locks[level] = 0;
9024 free_extent_buffer(path->nodes[level]);
9025 path->nodes[level] = NULL;
9026 level++;
9029 return 1;
9033 * drop a subvolume tree.
9035 * this function traverses the tree freeing any blocks that only
9036 * referenced by the tree.
9038 * when a shared tree block is found. this function decreases its
9039 * reference count by one. if update_ref is true, this function
9040 * also make sure backrefs for the shared block and all lower level
9041 * blocks are properly updated.
9043 * If called with for_reloc == 0, may exit early with -EAGAIN
9045 int btrfs_drop_snapshot(struct btrfs_root *root,
9046 struct btrfs_block_rsv *block_rsv, int update_ref,
9047 int for_reloc)
9049 struct btrfs_fs_info *fs_info = root->fs_info;
9050 struct btrfs_path *path;
9051 struct btrfs_trans_handle *trans;
9052 struct btrfs_root *tree_root = fs_info->tree_root;
9053 struct btrfs_root_item *root_item = &root->root_item;
9054 struct walk_control *wc;
9055 struct btrfs_key key;
9056 int err = 0;
9057 int ret;
9058 int level;
9059 bool root_dropped = false;
9061 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9063 path = btrfs_alloc_path();
9064 if (!path) {
9065 err = -ENOMEM;
9066 goto out;
9069 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9070 if (!wc) {
9071 btrfs_free_path(path);
9072 err = -ENOMEM;
9073 goto out;
9076 trans = btrfs_start_transaction(tree_root, 0);
9077 if (IS_ERR(trans)) {
9078 err = PTR_ERR(trans);
9079 goto out_free;
9082 if (block_rsv)
9083 trans->block_rsv = block_rsv;
9085 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9086 level = btrfs_header_level(root->node);
9087 path->nodes[level] = btrfs_lock_root_node(root);
9088 btrfs_set_lock_blocking(path->nodes[level]);
9089 path->slots[level] = 0;
9090 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9091 memset(&wc->update_progress, 0,
9092 sizeof(wc->update_progress));
9093 } else {
9094 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9095 memcpy(&wc->update_progress, &key,
9096 sizeof(wc->update_progress));
9098 level = root_item->drop_level;
9099 BUG_ON(level == 0);
9100 path->lowest_level = level;
9101 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9102 path->lowest_level = 0;
9103 if (ret < 0) {
9104 err = ret;
9105 goto out_end_trans;
9107 WARN_ON(ret > 0);
9110 * unlock our path, this is safe because only this
9111 * function is allowed to delete this snapshot
9113 btrfs_unlock_up_safe(path, 0);
9115 level = btrfs_header_level(root->node);
9116 while (1) {
9117 btrfs_tree_lock(path->nodes[level]);
9118 btrfs_set_lock_blocking(path->nodes[level]);
9119 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9121 ret = btrfs_lookup_extent_info(trans, fs_info,
9122 path->nodes[level]->start,
9123 level, 1, &wc->refs[level],
9124 &wc->flags[level]);
9125 if (ret < 0) {
9126 err = ret;
9127 goto out_end_trans;
9129 BUG_ON(wc->refs[level] == 0);
9131 if (level == root_item->drop_level)
9132 break;
9134 btrfs_tree_unlock(path->nodes[level]);
9135 path->locks[level] = 0;
9136 WARN_ON(wc->refs[level] != 1);
9137 level--;
9141 wc->level = level;
9142 wc->shared_level = -1;
9143 wc->stage = DROP_REFERENCE;
9144 wc->update_ref = update_ref;
9145 wc->keep_locks = 0;
9146 wc->for_reloc = for_reloc;
9147 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9149 while (1) {
9151 ret = walk_down_tree(trans, root, path, wc);
9152 if (ret < 0) {
9153 err = ret;
9154 break;
9157 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9158 if (ret < 0) {
9159 err = ret;
9160 break;
9163 if (ret > 0) {
9164 BUG_ON(wc->stage != DROP_REFERENCE);
9165 break;
9168 if (wc->stage == DROP_REFERENCE) {
9169 level = wc->level;
9170 btrfs_node_key(path->nodes[level],
9171 &root_item->drop_progress,
9172 path->slots[level]);
9173 root_item->drop_level = level;
9176 BUG_ON(wc->level == 0);
9177 if (btrfs_should_end_transaction(trans) ||
9178 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9179 ret = btrfs_update_root(trans, tree_root,
9180 &root->root_key,
9181 root_item);
9182 if (ret) {
9183 btrfs_abort_transaction(trans, ret);
9184 err = ret;
9185 goto out_end_trans;
9188 btrfs_end_transaction_throttle(trans);
9189 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9190 btrfs_debug(fs_info,
9191 "drop snapshot early exit");
9192 err = -EAGAIN;
9193 goto out_free;
9196 trans = btrfs_start_transaction(tree_root, 0);
9197 if (IS_ERR(trans)) {
9198 err = PTR_ERR(trans);
9199 goto out_free;
9201 if (block_rsv)
9202 trans->block_rsv = block_rsv;
9205 btrfs_release_path(path);
9206 if (err)
9207 goto out_end_trans;
9209 ret = btrfs_del_root(trans, fs_info, &root->root_key);
9210 if (ret) {
9211 btrfs_abort_transaction(trans, ret);
9212 err = ret;
9213 goto out_end_trans;
9216 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9217 ret = btrfs_find_root(tree_root, &root->root_key, path,
9218 NULL, NULL);
9219 if (ret < 0) {
9220 btrfs_abort_transaction(trans, ret);
9221 err = ret;
9222 goto out_end_trans;
9223 } else if (ret > 0) {
9224 /* if we fail to delete the orphan item this time
9225 * around, it'll get picked up the next time.
9227 * The most common failure here is just -ENOENT.
9229 btrfs_del_orphan_item(trans, tree_root,
9230 root->root_key.objectid);
9234 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9235 btrfs_add_dropped_root(trans, root);
9236 } else {
9237 free_extent_buffer(root->node);
9238 free_extent_buffer(root->commit_root);
9239 btrfs_put_fs_root(root);
9241 root_dropped = true;
9242 out_end_trans:
9243 btrfs_end_transaction_throttle(trans);
9244 out_free:
9245 kfree(wc);
9246 btrfs_free_path(path);
9247 out:
9249 * So if we need to stop dropping the snapshot for whatever reason we
9250 * need to make sure to add it back to the dead root list so that we
9251 * keep trying to do the work later. This also cleans up roots if we
9252 * don't have it in the radix (like when we recover after a power fail
9253 * or unmount) so we don't leak memory.
9255 if (!for_reloc && !root_dropped)
9256 btrfs_add_dead_root(root);
9257 if (err && err != -EAGAIN)
9258 btrfs_handle_fs_error(fs_info, err, NULL);
9259 return err;
9263 * drop subtree rooted at tree block 'node'.
9265 * NOTE: this function will unlock and release tree block 'node'
9266 * only used by relocation code
9268 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9269 struct btrfs_root *root,
9270 struct extent_buffer *node,
9271 struct extent_buffer *parent)
9273 struct btrfs_fs_info *fs_info = root->fs_info;
9274 struct btrfs_path *path;
9275 struct walk_control *wc;
9276 int level;
9277 int parent_level;
9278 int ret = 0;
9279 int wret;
9281 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9283 path = btrfs_alloc_path();
9284 if (!path)
9285 return -ENOMEM;
9287 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9288 if (!wc) {
9289 btrfs_free_path(path);
9290 return -ENOMEM;
9293 btrfs_assert_tree_locked(parent);
9294 parent_level = btrfs_header_level(parent);
9295 extent_buffer_get(parent);
9296 path->nodes[parent_level] = parent;
9297 path->slots[parent_level] = btrfs_header_nritems(parent);
9299 btrfs_assert_tree_locked(node);
9300 level = btrfs_header_level(node);
9301 path->nodes[level] = node;
9302 path->slots[level] = 0;
9303 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9305 wc->refs[parent_level] = 1;
9306 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9307 wc->level = level;
9308 wc->shared_level = -1;
9309 wc->stage = DROP_REFERENCE;
9310 wc->update_ref = 0;
9311 wc->keep_locks = 1;
9312 wc->for_reloc = 1;
9313 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9315 while (1) {
9316 wret = walk_down_tree(trans, root, path, wc);
9317 if (wret < 0) {
9318 ret = wret;
9319 break;
9322 wret = walk_up_tree(trans, root, path, wc, parent_level);
9323 if (wret < 0)
9324 ret = wret;
9325 if (wret != 0)
9326 break;
9329 kfree(wc);
9330 btrfs_free_path(path);
9331 return ret;
9334 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9336 u64 num_devices;
9337 u64 stripped;
9340 * if restripe for this chunk_type is on pick target profile and
9341 * return, otherwise do the usual balance
9343 stripped = get_restripe_target(fs_info, flags);
9344 if (stripped)
9345 return extended_to_chunk(stripped);
9347 num_devices = fs_info->fs_devices->rw_devices;
9349 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9350 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9351 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9353 if (num_devices == 1) {
9354 stripped |= BTRFS_BLOCK_GROUP_DUP;
9355 stripped = flags & ~stripped;
9357 /* turn raid0 into single device chunks */
9358 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9359 return stripped;
9361 /* turn mirroring into duplication */
9362 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9363 BTRFS_BLOCK_GROUP_RAID10))
9364 return stripped | BTRFS_BLOCK_GROUP_DUP;
9365 } else {
9366 /* they already had raid on here, just return */
9367 if (flags & stripped)
9368 return flags;
9370 stripped |= BTRFS_BLOCK_GROUP_DUP;
9371 stripped = flags & ~stripped;
9373 /* switch duplicated blocks with raid1 */
9374 if (flags & BTRFS_BLOCK_GROUP_DUP)
9375 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9377 /* this is drive concat, leave it alone */
9380 return flags;
9383 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9385 struct btrfs_space_info *sinfo = cache->space_info;
9386 u64 num_bytes;
9387 u64 min_allocable_bytes;
9388 int ret = -ENOSPC;
9391 * We need some metadata space and system metadata space for
9392 * allocating chunks in some corner cases until we force to set
9393 * it to be readonly.
9395 if ((sinfo->flags &
9396 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9397 !force)
9398 min_allocable_bytes = SZ_1M;
9399 else
9400 min_allocable_bytes = 0;
9402 spin_lock(&sinfo->lock);
9403 spin_lock(&cache->lock);
9405 if (cache->ro) {
9406 cache->ro++;
9407 ret = 0;
9408 goto out;
9411 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9412 cache->bytes_super - btrfs_block_group_used(&cache->item);
9414 if (btrfs_space_info_used(sinfo, true) + num_bytes +
9415 min_allocable_bytes <= sinfo->total_bytes) {
9416 sinfo->bytes_readonly += num_bytes;
9417 cache->ro++;
9418 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9419 ret = 0;
9421 out:
9422 spin_unlock(&cache->lock);
9423 spin_unlock(&sinfo->lock);
9424 return ret;
9427 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9428 struct btrfs_block_group_cache *cache)
9431 struct btrfs_trans_handle *trans;
9432 u64 alloc_flags;
9433 int ret;
9435 again:
9436 trans = btrfs_join_transaction(fs_info->extent_root);
9437 if (IS_ERR(trans))
9438 return PTR_ERR(trans);
9441 * we're not allowed to set block groups readonly after the dirty
9442 * block groups cache has started writing. If it already started,
9443 * back off and let this transaction commit
9445 mutex_lock(&fs_info->ro_block_group_mutex);
9446 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9447 u64 transid = trans->transid;
9449 mutex_unlock(&fs_info->ro_block_group_mutex);
9450 btrfs_end_transaction(trans);
9452 ret = btrfs_wait_for_commit(fs_info, transid);
9453 if (ret)
9454 return ret;
9455 goto again;
9459 * if we are changing raid levels, try to allocate a corresponding
9460 * block group with the new raid level.
9462 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9463 if (alloc_flags != cache->flags) {
9464 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9465 CHUNK_ALLOC_FORCE);
9467 * ENOSPC is allowed here, we may have enough space
9468 * already allocated at the new raid level to
9469 * carry on
9471 if (ret == -ENOSPC)
9472 ret = 0;
9473 if (ret < 0)
9474 goto out;
9477 ret = inc_block_group_ro(cache, 0);
9478 if (!ret)
9479 goto out;
9480 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9481 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9482 CHUNK_ALLOC_FORCE);
9483 if (ret < 0)
9484 goto out;
9485 ret = inc_block_group_ro(cache, 0);
9486 out:
9487 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9488 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9489 mutex_lock(&fs_info->chunk_mutex);
9490 check_system_chunk(trans, fs_info, alloc_flags);
9491 mutex_unlock(&fs_info->chunk_mutex);
9493 mutex_unlock(&fs_info->ro_block_group_mutex);
9495 btrfs_end_transaction(trans);
9496 return ret;
9499 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9500 struct btrfs_fs_info *fs_info, u64 type)
9502 u64 alloc_flags = get_alloc_profile(fs_info, type);
9504 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9508 * helper to account the unused space of all the readonly block group in the
9509 * space_info. takes mirrors into account.
9511 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9513 struct btrfs_block_group_cache *block_group;
9514 u64 free_bytes = 0;
9515 int factor;
9517 /* It's df, we don't care if it's racy */
9518 if (list_empty(&sinfo->ro_bgs))
9519 return 0;
9521 spin_lock(&sinfo->lock);
9522 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9523 spin_lock(&block_group->lock);
9525 if (!block_group->ro) {
9526 spin_unlock(&block_group->lock);
9527 continue;
9530 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9531 BTRFS_BLOCK_GROUP_RAID10 |
9532 BTRFS_BLOCK_GROUP_DUP))
9533 factor = 2;
9534 else
9535 factor = 1;
9537 free_bytes += (block_group->key.offset -
9538 btrfs_block_group_used(&block_group->item)) *
9539 factor;
9541 spin_unlock(&block_group->lock);
9543 spin_unlock(&sinfo->lock);
9545 return free_bytes;
9548 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9550 struct btrfs_space_info *sinfo = cache->space_info;
9551 u64 num_bytes;
9553 BUG_ON(!cache->ro);
9555 spin_lock(&sinfo->lock);
9556 spin_lock(&cache->lock);
9557 if (!--cache->ro) {
9558 num_bytes = cache->key.offset - cache->reserved -
9559 cache->pinned - cache->bytes_super -
9560 btrfs_block_group_used(&cache->item);
9561 sinfo->bytes_readonly -= num_bytes;
9562 list_del_init(&cache->ro_list);
9564 spin_unlock(&cache->lock);
9565 spin_unlock(&sinfo->lock);
9569 * checks to see if its even possible to relocate this block group.
9571 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9572 * ok to go ahead and try.
9574 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9576 struct btrfs_root *root = fs_info->extent_root;
9577 struct btrfs_block_group_cache *block_group;
9578 struct btrfs_space_info *space_info;
9579 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9580 struct btrfs_device *device;
9581 struct btrfs_trans_handle *trans;
9582 u64 min_free;
9583 u64 dev_min = 1;
9584 u64 dev_nr = 0;
9585 u64 target;
9586 int debug;
9587 int index;
9588 int full = 0;
9589 int ret = 0;
9591 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9593 block_group = btrfs_lookup_block_group(fs_info, bytenr);
9595 /* odd, couldn't find the block group, leave it alone */
9596 if (!block_group) {
9597 if (debug)
9598 btrfs_warn(fs_info,
9599 "can't find block group for bytenr %llu",
9600 bytenr);
9601 return -1;
9604 min_free = btrfs_block_group_used(&block_group->item);
9606 /* no bytes used, we're good */
9607 if (!min_free)
9608 goto out;
9610 space_info = block_group->space_info;
9611 spin_lock(&space_info->lock);
9613 full = space_info->full;
9616 * if this is the last block group we have in this space, we can't
9617 * relocate it unless we're able to allocate a new chunk below.
9619 * Otherwise, we need to make sure we have room in the space to handle
9620 * all of the extents from this block group. If we can, we're good
9622 if ((space_info->total_bytes != block_group->key.offset) &&
9623 (btrfs_space_info_used(space_info, false) + min_free <
9624 space_info->total_bytes)) {
9625 spin_unlock(&space_info->lock);
9626 goto out;
9628 spin_unlock(&space_info->lock);
9631 * ok we don't have enough space, but maybe we have free space on our
9632 * devices to allocate new chunks for relocation, so loop through our
9633 * alloc devices and guess if we have enough space. if this block
9634 * group is going to be restriped, run checks against the target
9635 * profile instead of the current one.
9637 ret = -1;
9640 * index:
9641 * 0: raid10
9642 * 1: raid1
9643 * 2: dup
9644 * 3: raid0
9645 * 4: single
9647 target = get_restripe_target(fs_info, block_group->flags);
9648 if (target) {
9649 index = __get_raid_index(extended_to_chunk(target));
9650 } else {
9652 * this is just a balance, so if we were marked as full
9653 * we know there is no space for a new chunk
9655 if (full) {
9656 if (debug)
9657 btrfs_warn(fs_info,
9658 "no space to alloc new chunk for block group %llu",
9659 block_group->key.objectid);
9660 goto out;
9663 index = get_block_group_index(block_group);
9666 if (index == BTRFS_RAID_RAID10) {
9667 dev_min = 4;
9668 /* Divide by 2 */
9669 min_free >>= 1;
9670 } else if (index == BTRFS_RAID_RAID1) {
9671 dev_min = 2;
9672 } else if (index == BTRFS_RAID_DUP) {
9673 /* Multiply by 2 */
9674 min_free <<= 1;
9675 } else if (index == BTRFS_RAID_RAID0) {
9676 dev_min = fs_devices->rw_devices;
9677 min_free = div64_u64(min_free, dev_min);
9680 /* We need to do this so that we can look at pending chunks */
9681 trans = btrfs_join_transaction(root);
9682 if (IS_ERR(trans)) {
9683 ret = PTR_ERR(trans);
9684 goto out;
9687 mutex_lock(&fs_info->chunk_mutex);
9688 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9689 u64 dev_offset;
9692 * check to make sure we can actually find a chunk with enough
9693 * space to fit our block group in.
9695 if (device->total_bytes > device->bytes_used + min_free &&
9696 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9697 ret = find_free_dev_extent(trans, device, min_free,
9698 &dev_offset, NULL);
9699 if (!ret)
9700 dev_nr++;
9702 if (dev_nr >= dev_min)
9703 break;
9705 ret = -1;
9708 if (debug && ret == -1)
9709 btrfs_warn(fs_info,
9710 "no space to allocate a new chunk for block group %llu",
9711 block_group->key.objectid);
9712 mutex_unlock(&fs_info->chunk_mutex);
9713 btrfs_end_transaction(trans);
9714 out:
9715 btrfs_put_block_group(block_group);
9716 return ret;
9719 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9720 struct btrfs_path *path,
9721 struct btrfs_key *key)
9723 struct btrfs_root *root = fs_info->extent_root;
9724 int ret = 0;
9725 struct btrfs_key found_key;
9726 struct extent_buffer *leaf;
9727 int slot;
9729 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9730 if (ret < 0)
9731 goto out;
9733 while (1) {
9734 slot = path->slots[0];
9735 leaf = path->nodes[0];
9736 if (slot >= btrfs_header_nritems(leaf)) {
9737 ret = btrfs_next_leaf(root, path);
9738 if (ret == 0)
9739 continue;
9740 if (ret < 0)
9741 goto out;
9742 break;
9744 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9746 if (found_key.objectid >= key->objectid &&
9747 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9748 struct extent_map_tree *em_tree;
9749 struct extent_map *em;
9751 em_tree = &root->fs_info->mapping_tree.map_tree;
9752 read_lock(&em_tree->lock);
9753 em = lookup_extent_mapping(em_tree, found_key.objectid,
9754 found_key.offset);
9755 read_unlock(&em_tree->lock);
9756 if (!em) {
9757 btrfs_err(fs_info,
9758 "logical %llu len %llu found bg but no related chunk",
9759 found_key.objectid, found_key.offset);
9760 ret = -ENOENT;
9761 } else {
9762 ret = 0;
9764 free_extent_map(em);
9765 goto out;
9767 path->slots[0]++;
9769 out:
9770 return ret;
9773 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9775 struct btrfs_block_group_cache *block_group;
9776 u64 last = 0;
9778 while (1) {
9779 struct inode *inode;
9781 block_group = btrfs_lookup_first_block_group(info, last);
9782 while (block_group) {
9783 spin_lock(&block_group->lock);
9784 if (block_group->iref)
9785 break;
9786 spin_unlock(&block_group->lock);
9787 block_group = next_block_group(info, block_group);
9789 if (!block_group) {
9790 if (last == 0)
9791 break;
9792 last = 0;
9793 continue;
9796 inode = block_group->inode;
9797 block_group->iref = 0;
9798 block_group->inode = NULL;
9799 spin_unlock(&block_group->lock);
9800 ASSERT(block_group->io_ctl.inode == NULL);
9801 iput(inode);
9802 last = block_group->key.objectid + block_group->key.offset;
9803 btrfs_put_block_group(block_group);
9808 * Must be called only after stopping all workers, since we could have block
9809 * group caching kthreads running, and therefore they could race with us if we
9810 * freed the block groups before stopping them.
9812 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9814 struct btrfs_block_group_cache *block_group;
9815 struct btrfs_space_info *space_info;
9816 struct btrfs_caching_control *caching_ctl;
9817 struct rb_node *n;
9819 down_write(&info->commit_root_sem);
9820 while (!list_empty(&info->caching_block_groups)) {
9821 caching_ctl = list_entry(info->caching_block_groups.next,
9822 struct btrfs_caching_control, list);
9823 list_del(&caching_ctl->list);
9824 put_caching_control(caching_ctl);
9826 up_write(&info->commit_root_sem);
9828 spin_lock(&info->unused_bgs_lock);
9829 while (!list_empty(&info->unused_bgs)) {
9830 block_group = list_first_entry(&info->unused_bgs,
9831 struct btrfs_block_group_cache,
9832 bg_list);
9833 list_del_init(&block_group->bg_list);
9834 btrfs_put_block_group(block_group);
9836 spin_unlock(&info->unused_bgs_lock);
9838 spin_lock(&info->block_group_cache_lock);
9839 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9840 block_group = rb_entry(n, struct btrfs_block_group_cache,
9841 cache_node);
9842 rb_erase(&block_group->cache_node,
9843 &info->block_group_cache_tree);
9844 RB_CLEAR_NODE(&block_group->cache_node);
9845 spin_unlock(&info->block_group_cache_lock);
9847 down_write(&block_group->space_info->groups_sem);
9848 list_del(&block_group->list);
9849 up_write(&block_group->space_info->groups_sem);
9852 * We haven't cached this block group, which means we could
9853 * possibly have excluded extents on this block group.
9855 if (block_group->cached == BTRFS_CACHE_NO ||
9856 block_group->cached == BTRFS_CACHE_ERROR)
9857 free_excluded_extents(info, block_group);
9859 btrfs_remove_free_space_cache(block_group);
9860 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9861 ASSERT(list_empty(&block_group->dirty_list));
9862 ASSERT(list_empty(&block_group->io_list));
9863 ASSERT(list_empty(&block_group->bg_list));
9864 ASSERT(atomic_read(&block_group->count) == 1);
9865 btrfs_put_block_group(block_group);
9867 spin_lock(&info->block_group_cache_lock);
9869 spin_unlock(&info->block_group_cache_lock);
9871 /* now that all the block groups are freed, go through and
9872 * free all the space_info structs. This is only called during
9873 * the final stages of unmount, and so we know nobody is
9874 * using them. We call synchronize_rcu() once before we start,
9875 * just to be on the safe side.
9877 synchronize_rcu();
9879 release_global_block_rsv(info);
9881 while (!list_empty(&info->space_info)) {
9882 int i;
9884 space_info = list_entry(info->space_info.next,
9885 struct btrfs_space_info,
9886 list);
9889 * Do not hide this behind enospc_debug, this is actually
9890 * important and indicates a real bug if this happens.
9892 if (WARN_ON(space_info->bytes_pinned > 0 ||
9893 space_info->bytes_reserved > 0 ||
9894 space_info->bytes_may_use > 0))
9895 dump_space_info(info, space_info, 0, 0);
9896 list_del(&space_info->list);
9897 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9898 struct kobject *kobj;
9899 kobj = space_info->block_group_kobjs[i];
9900 space_info->block_group_kobjs[i] = NULL;
9901 if (kobj) {
9902 kobject_del(kobj);
9903 kobject_put(kobj);
9906 kobject_del(&space_info->kobj);
9907 kobject_put(&space_info->kobj);
9909 return 0;
9912 static void link_block_group(struct btrfs_block_group_cache *cache)
9914 struct btrfs_space_info *space_info = cache->space_info;
9915 int index = get_block_group_index(cache);
9916 bool first = false;
9918 down_write(&space_info->groups_sem);
9919 if (list_empty(&space_info->block_groups[index]))
9920 first = true;
9921 list_add_tail(&cache->list, &space_info->block_groups[index]);
9922 up_write(&space_info->groups_sem);
9924 if (first) {
9925 struct raid_kobject *rkobj;
9926 int ret;
9928 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9929 if (!rkobj)
9930 goto out_err;
9931 rkobj->raid_type = index;
9932 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9933 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9934 "%s", get_raid_name(index));
9935 if (ret) {
9936 kobject_put(&rkobj->kobj);
9937 goto out_err;
9939 space_info->block_group_kobjs[index] = &rkobj->kobj;
9942 return;
9943 out_err:
9944 btrfs_warn(cache->fs_info,
9945 "failed to add kobject for block cache, ignoring");
9948 static struct btrfs_block_group_cache *
9949 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9950 u64 start, u64 size)
9952 struct btrfs_block_group_cache *cache;
9954 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9955 if (!cache)
9956 return NULL;
9958 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9959 GFP_NOFS);
9960 if (!cache->free_space_ctl) {
9961 kfree(cache);
9962 return NULL;
9965 cache->key.objectid = start;
9966 cache->key.offset = size;
9967 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9969 cache->fs_info = fs_info;
9970 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
9971 set_free_space_tree_thresholds(cache);
9973 atomic_set(&cache->count, 1);
9974 spin_lock_init(&cache->lock);
9975 init_rwsem(&cache->data_rwsem);
9976 INIT_LIST_HEAD(&cache->list);
9977 INIT_LIST_HEAD(&cache->cluster_list);
9978 INIT_LIST_HEAD(&cache->bg_list);
9979 INIT_LIST_HEAD(&cache->ro_list);
9980 INIT_LIST_HEAD(&cache->dirty_list);
9981 INIT_LIST_HEAD(&cache->io_list);
9982 btrfs_init_free_space_ctl(cache);
9983 atomic_set(&cache->trimming, 0);
9984 mutex_init(&cache->free_space_lock);
9985 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9987 return cache;
9990 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9992 struct btrfs_path *path;
9993 int ret;
9994 struct btrfs_block_group_cache *cache;
9995 struct btrfs_space_info *space_info;
9996 struct btrfs_key key;
9997 struct btrfs_key found_key;
9998 struct extent_buffer *leaf;
9999 int need_clear = 0;
10000 u64 cache_gen;
10001 u64 feature;
10002 int mixed;
10004 feature = btrfs_super_incompat_flags(info->super_copy);
10005 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10007 key.objectid = 0;
10008 key.offset = 0;
10009 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10010 path = btrfs_alloc_path();
10011 if (!path)
10012 return -ENOMEM;
10013 path->reada = READA_FORWARD;
10015 cache_gen = btrfs_super_cache_generation(info->super_copy);
10016 if (btrfs_test_opt(info, SPACE_CACHE) &&
10017 btrfs_super_generation(info->super_copy) != cache_gen)
10018 need_clear = 1;
10019 if (btrfs_test_opt(info, CLEAR_CACHE))
10020 need_clear = 1;
10022 while (1) {
10023 ret = find_first_block_group(info, path, &key);
10024 if (ret > 0)
10025 break;
10026 if (ret != 0)
10027 goto error;
10029 leaf = path->nodes[0];
10030 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10032 cache = btrfs_create_block_group_cache(info, found_key.objectid,
10033 found_key.offset);
10034 if (!cache) {
10035 ret = -ENOMEM;
10036 goto error;
10039 if (need_clear) {
10041 * When we mount with old space cache, we need to
10042 * set BTRFS_DC_CLEAR and set dirty flag.
10044 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10045 * truncate the old free space cache inode and
10046 * setup a new one.
10047 * b) Setting 'dirty flag' makes sure that we flush
10048 * the new space cache info onto disk.
10050 if (btrfs_test_opt(info, SPACE_CACHE))
10051 cache->disk_cache_state = BTRFS_DC_CLEAR;
10054 read_extent_buffer(leaf, &cache->item,
10055 btrfs_item_ptr_offset(leaf, path->slots[0]),
10056 sizeof(cache->item));
10057 cache->flags = btrfs_block_group_flags(&cache->item);
10058 if (!mixed &&
10059 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10060 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10061 btrfs_err(info,
10062 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10063 cache->key.objectid);
10064 ret = -EINVAL;
10065 goto error;
10068 key.objectid = found_key.objectid + found_key.offset;
10069 btrfs_release_path(path);
10072 * We need to exclude the super stripes now so that the space
10073 * info has super bytes accounted for, otherwise we'll think
10074 * we have more space than we actually do.
10076 ret = exclude_super_stripes(info, cache);
10077 if (ret) {
10079 * We may have excluded something, so call this just in
10080 * case.
10082 free_excluded_extents(info, cache);
10083 btrfs_put_block_group(cache);
10084 goto error;
10088 * check for two cases, either we are full, and therefore
10089 * don't need to bother with the caching work since we won't
10090 * find any space, or we are empty, and we can just add all
10091 * the space in and be done with it. This saves us _alot_ of
10092 * time, particularly in the full case.
10094 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10095 cache->last_byte_to_unpin = (u64)-1;
10096 cache->cached = BTRFS_CACHE_FINISHED;
10097 free_excluded_extents(info, cache);
10098 } else if (btrfs_block_group_used(&cache->item) == 0) {
10099 cache->last_byte_to_unpin = (u64)-1;
10100 cache->cached = BTRFS_CACHE_FINISHED;
10101 add_new_free_space(cache, info,
10102 found_key.objectid,
10103 found_key.objectid +
10104 found_key.offset);
10105 free_excluded_extents(info, cache);
10108 ret = btrfs_add_block_group_cache(info, cache);
10109 if (ret) {
10110 btrfs_remove_free_space_cache(cache);
10111 btrfs_put_block_group(cache);
10112 goto error;
10115 trace_btrfs_add_block_group(info, cache, 0);
10116 update_space_info(info, cache->flags, found_key.offset,
10117 btrfs_block_group_used(&cache->item),
10118 cache->bytes_super, &space_info);
10120 cache->space_info = space_info;
10122 link_block_group(cache);
10124 set_avail_alloc_bits(info, cache->flags);
10125 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10126 inc_block_group_ro(cache, 1);
10127 } else if (btrfs_block_group_used(&cache->item) == 0) {
10128 spin_lock(&info->unused_bgs_lock);
10129 /* Should always be true but just in case. */
10130 if (list_empty(&cache->bg_list)) {
10131 btrfs_get_block_group(cache);
10132 list_add_tail(&cache->bg_list,
10133 &info->unused_bgs);
10135 spin_unlock(&info->unused_bgs_lock);
10139 list_for_each_entry_rcu(space_info, &info->space_info, list) {
10140 if (!(get_alloc_profile(info, space_info->flags) &
10141 (BTRFS_BLOCK_GROUP_RAID10 |
10142 BTRFS_BLOCK_GROUP_RAID1 |
10143 BTRFS_BLOCK_GROUP_RAID5 |
10144 BTRFS_BLOCK_GROUP_RAID6 |
10145 BTRFS_BLOCK_GROUP_DUP)))
10146 continue;
10148 * avoid allocating from un-mirrored block group if there are
10149 * mirrored block groups.
10151 list_for_each_entry(cache,
10152 &space_info->block_groups[BTRFS_RAID_RAID0],
10153 list)
10154 inc_block_group_ro(cache, 1);
10155 list_for_each_entry(cache,
10156 &space_info->block_groups[BTRFS_RAID_SINGLE],
10157 list)
10158 inc_block_group_ro(cache, 1);
10161 init_global_block_rsv(info);
10162 ret = 0;
10163 error:
10164 btrfs_free_path(path);
10165 return ret;
10168 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10169 struct btrfs_fs_info *fs_info)
10171 struct btrfs_block_group_cache *block_group, *tmp;
10172 struct btrfs_root *extent_root = fs_info->extent_root;
10173 struct btrfs_block_group_item item;
10174 struct btrfs_key key;
10175 int ret = 0;
10176 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10178 trans->can_flush_pending_bgs = false;
10179 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10180 if (ret)
10181 goto next;
10183 spin_lock(&block_group->lock);
10184 memcpy(&item, &block_group->item, sizeof(item));
10185 memcpy(&key, &block_group->key, sizeof(key));
10186 spin_unlock(&block_group->lock);
10188 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10189 sizeof(item));
10190 if (ret)
10191 btrfs_abort_transaction(trans, ret);
10192 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10193 key.offset);
10194 if (ret)
10195 btrfs_abort_transaction(trans, ret);
10196 add_block_group_free_space(trans, fs_info, block_group);
10197 /* already aborted the transaction if it failed. */
10198 next:
10199 list_del_init(&block_group->bg_list);
10201 trans->can_flush_pending_bgs = can_flush_pending_bgs;
10204 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10205 struct btrfs_fs_info *fs_info, u64 bytes_used,
10206 u64 type, u64 chunk_offset, u64 size)
10208 struct btrfs_block_group_cache *cache;
10209 int ret;
10211 btrfs_set_log_full_commit(fs_info, trans);
10213 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10214 if (!cache)
10215 return -ENOMEM;
10217 btrfs_set_block_group_used(&cache->item, bytes_used);
10218 btrfs_set_block_group_chunk_objectid(&cache->item,
10219 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10220 btrfs_set_block_group_flags(&cache->item, type);
10222 cache->flags = type;
10223 cache->last_byte_to_unpin = (u64)-1;
10224 cache->cached = BTRFS_CACHE_FINISHED;
10225 cache->needs_free_space = 1;
10226 ret = exclude_super_stripes(fs_info, cache);
10227 if (ret) {
10229 * We may have excluded something, so call this just in
10230 * case.
10232 free_excluded_extents(fs_info, cache);
10233 btrfs_put_block_group(cache);
10234 return ret;
10237 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10239 free_excluded_extents(fs_info, cache);
10241 #ifdef CONFIG_BTRFS_DEBUG
10242 if (btrfs_should_fragment_free_space(cache)) {
10243 u64 new_bytes_used = size - bytes_used;
10245 bytes_used += new_bytes_used >> 1;
10246 fragment_free_space(cache);
10248 #endif
10250 * Ensure the corresponding space_info object is created and
10251 * assigned to our block group. We want our bg to be added to the rbtree
10252 * with its ->space_info set.
10254 cache->space_info = __find_space_info(fs_info, cache->flags);
10255 if (!cache->space_info) {
10256 ret = create_space_info(fs_info, cache->flags,
10257 &cache->space_info);
10258 if (ret) {
10259 btrfs_remove_free_space_cache(cache);
10260 btrfs_put_block_group(cache);
10261 return ret;
10265 ret = btrfs_add_block_group_cache(fs_info, cache);
10266 if (ret) {
10267 btrfs_remove_free_space_cache(cache);
10268 btrfs_put_block_group(cache);
10269 return ret;
10273 * Now that our block group has its ->space_info set and is inserted in
10274 * the rbtree, update the space info's counters.
10276 trace_btrfs_add_block_group(fs_info, cache, 1);
10277 update_space_info(fs_info, cache->flags, size, bytes_used,
10278 cache->bytes_super, &cache->space_info);
10279 update_global_block_rsv(fs_info);
10281 link_block_group(cache);
10283 list_add_tail(&cache->bg_list, &trans->new_bgs);
10285 set_avail_alloc_bits(fs_info, type);
10286 return 0;
10289 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10291 u64 extra_flags = chunk_to_extended(flags) &
10292 BTRFS_EXTENDED_PROFILE_MASK;
10294 write_seqlock(&fs_info->profiles_lock);
10295 if (flags & BTRFS_BLOCK_GROUP_DATA)
10296 fs_info->avail_data_alloc_bits &= ~extra_flags;
10297 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10298 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10299 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10300 fs_info->avail_system_alloc_bits &= ~extra_flags;
10301 write_sequnlock(&fs_info->profiles_lock);
10304 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10305 struct btrfs_fs_info *fs_info, u64 group_start,
10306 struct extent_map *em)
10308 struct btrfs_root *root = fs_info->extent_root;
10309 struct btrfs_path *path;
10310 struct btrfs_block_group_cache *block_group;
10311 struct btrfs_free_cluster *cluster;
10312 struct btrfs_root *tree_root = fs_info->tree_root;
10313 struct btrfs_key key;
10314 struct inode *inode;
10315 struct kobject *kobj = NULL;
10316 int ret;
10317 int index;
10318 int factor;
10319 struct btrfs_caching_control *caching_ctl = NULL;
10320 bool remove_em;
10322 block_group = btrfs_lookup_block_group(fs_info, group_start);
10323 BUG_ON(!block_group);
10324 BUG_ON(!block_group->ro);
10327 * Free the reserved super bytes from this block group before
10328 * remove it.
10330 free_excluded_extents(fs_info, block_group);
10331 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10332 block_group->key.offset);
10334 memcpy(&key, &block_group->key, sizeof(key));
10335 index = get_block_group_index(block_group);
10336 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10337 BTRFS_BLOCK_GROUP_RAID1 |
10338 BTRFS_BLOCK_GROUP_RAID10))
10339 factor = 2;
10340 else
10341 factor = 1;
10343 /* make sure this block group isn't part of an allocation cluster */
10344 cluster = &fs_info->data_alloc_cluster;
10345 spin_lock(&cluster->refill_lock);
10346 btrfs_return_cluster_to_free_space(block_group, cluster);
10347 spin_unlock(&cluster->refill_lock);
10350 * make sure this block group isn't part of a metadata
10351 * allocation cluster
10353 cluster = &fs_info->meta_alloc_cluster;
10354 spin_lock(&cluster->refill_lock);
10355 btrfs_return_cluster_to_free_space(block_group, cluster);
10356 spin_unlock(&cluster->refill_lock);
10358 path = btrfs_alloc_path();
10359 if (!path) {
10360 ret = -ENOMEM;
10361 goto out;
10365 * get the inode first so any iput calls done for the io_list
10366 * aren't the final iput (no unlinks allowed now)
10368 inode = lookup_free_space_inode(fs_info, block_group, path);
10370 mutex_lock(&trans->transaction->cache_write_mutex);
10372 * make sure our free spache cache IO is done before remove the
10373 * free space inode
10375 spin_lock(&trans->transaction->dirty_bgs_lock);
10376 if (!list_empty(&block_group->io_list)) {
10377 list_del_init(&block_group->io_list);
10379 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10381 spin_unlock(&trans->transaction->dirty_bgs_lock);
10382 btrfs_wait_cache_io(trans, block_group, path);
10383 btrfs_put_block_group(block_group);
10384 spin_lock(&trans->transaction->dirty_bgs_lock);
10387 if (!list_empty(&block_group->dirty_list)) {
10388 list_del_init(&block_group->dirty_list);
10389 btrfs_put_block_group(block_group);
10391 spin_unlock(&trans->transaction->dirty_bgs_lock);
10392 mutex_unlock(&trans->transaction->cache_write_mutex);
10394 if (!IS_ERR(inode)) {
10395 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10396 if (ret) {
10397 btrfs_add_delayed_iput(inode);
10398 goto out;
10400 clear_nlink(inode);
10401 /* One for the block groups ref */
10402 spin_lock(&block_group->lock);
10403 if (block_group->iref) {
10404 block_group->iref = 0;
10405 block_group->inode = NULL;
10406 spin_unlock(&block_group->lock);
10407 iput(inode);
10408 } else {
10409 spin_unlock(&block_group->lock);
10411 /* One for our lookup ref */
10412 btrfs_add_delayed_iput(inode);
10415 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10416 key.offset = block_group->key.objectid;
10417 key.type = 0;
10419 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10420 if (ret < 0)
10421 goto out;
10422 if (ret > 0)
10423 btrfs_release_path(path);
10424 if (ret == 0) {
10425 ret = btrfs_del_item(trans, tree_root, path);
10426 if (ret)
10427 goto out;
10428 btrfs_release_path(path);
10431 spin_lock(&fs_info->block_group_cache_lock);
10432 rb_erase(&block_group->cache_node,
10433 &fs_info->block_group_cache_tree);
10434 RB_CLEAR_NODE(&block_group->cache_node);
10436 if (fs_info->first_logical_byte == block_group->key.objectid)
10437 fs_info->first_logical_byte = (u64)-1;
10438 spin_unlock(&fs_info->block_group_cache_lock);
10440 down_write(&block_group->space_info->groups_sem);
10442 * we must use list_del_init so people can check to see if they
10443 * are still on the list after taking the semaphore
10445 list_del_init(&block_group->list);
10446 if (list_empty(&block_group->space_info->block_groups[index])) {
10447 kobj = block_group->space_info->block_group_kobjs[index];
10448 block_group->space_info->block_group_kobjs[index] = NULL;
10449 clear_avail_alloc_bits(fs_info, block_group->flags);
10451 up_write(&block_group->space_info->groups_sem);
10452 if (kobj) {
10453 kobject_del(kobj);
10454 kobject_put(kobj);
10457 if (block_group->has_caching_ctl)
10458 caching_ctl = get_caching_control(block_group);
10459 if (block_group->cached == BTRFS_CACHE_STARTED)
10460 wait_block_group_cache_done(block_group);
10461 if (block_group->has_caching_ctl) {
10462 down_write(&fs_info->commit_root_sem);
10463 if (!caching_ctl) {
10464 struct btrfs_caching_control *ctl;
10466 list_for_each_entry(ctl,
10467 &fs_info->caching_block_groups, list)
10468 if (ctl->block_group == block_group) {
10469 caching_ctl = ctl;
10470 refcount_inc(&caching_ctl->count);
10471 break;
10474 if (caching_ctl)
10475 list_del_init(&caching_ctl->list);
10476 up_write(&fs_info->commit_root_sem);
10477 if (caching_ctl) {
10478 /* Once for the caching bgs list and once for us. */
10479 put_caching_control(caching_ctl);
10480 put_caching_control(caching_ctl);
10484 spin_lock(&trans->transaction->dirty_bgs_lock);
10485 if (!list_empty(&block_group->dirty_list)) {
10486 WARN_ON(1);
10488 if (!list_empty(&block_group->io_list)) {
10489 WARN_ON(1);
10491 spin_unlock(&trans->transaction->dirty_bgs_lock);
10492 btrfs_remove_free_space_cache(block_group);
10494 spin_lock(&block_group->space_info->lock);
10495 list_del_init(&block_group->ro_list);
10497 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10498 WARN_ON(block_group->space_info->total_bytes
10499 < block_group->key.offset);
10500 WARN_ON(block_group->space_info->bytes_readonly
10501 < block_group->key.offset);
10502 WARN_ON(block_group->space_info->disk_total
10503 < block_group->key.offset * factor);
10505 block_group->space_info->total_bytes -= block_group->key.offset;
10506 block_group->space_info->bytes_readonly -= block_group->key.offset;
10507 block_group->space_info->disk_total -= block_group->key.offset * factor;
10509 spin_unlock(&block_group->space_info->lock);
10511 memcpy(&key, &block_group->key, sizeof(key));
10513 mutex_lock(&fs_info->chunk_mutex);
10514 if (!list_empty(&em->list)) {
10515 /* We're in the transaction->pending_chunks list. */
10516 free_extent_map(em);
10518 spin_lock(&block_group->lock);
10519 block_group->removed = 1;
10521 * At this point trimming can't start on this block group, because we
10522 * removed the block group from the tree fs_info->block_group_cache_tree
10523 * so no one can't find it anymore and even if someone already got this
10524 * block group before we removed it from the rbtree, they have already
10525 * incremented block_group->trimming - if they didn't, they won't find
10526 * any free space entries because we already removed them all when we
10527 * called btrfs_remove_free_space_cache().
10529 * And we must not remove the extent map from the fs_info->mapping_tree
10530 * to prevent the same logical address range and physical device space
10531 * ranges from being reused for a new block group. This is because our
10532 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10533 * completely transactionless, so while it is trimming a range the
10534 * currently running transaction might finish and a new one start,
10535 * allowing for new block groups to be created that can reuse the same
10536 * physical device locations unless we take this special care.
10538 * There may also be an implicit trim operation if the file system
10539 * is mounted with -odiscard. The same protections must remain
10540 * in place until the extents have been discarded completely when
10541 * the transaction commit has completed.
10543 remove_em = (atomic_read(&block_group->trimming) == 0);
10545 * Make sure a trimmer task always sees the em in the pinned_chunks list
10546 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10547 * before checking block_group->removed).
10549 if (!remove_em) {
10551 * Our em might be in trans->transaction->pending_chunks which
10552 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10553 * and so is the fs_info->pinned_chunks list.
10555 * So at this point we must be holding the chunk_mutex to avoid
10556 * any races with chunk allocation (more specifically at
10557 * volumes.c:contains_pending_extent()), to ensure it always
10558 * sees the em, either in the pending_chunks list or in the
10559 * pinned_chunks list.
10561 list_move_tail(&em->list, &fs_info->pinned_chunks);
10563 spin_unlock(&block_group->lock);
10565 if (remove_em) {
10566 struct extent_map_tree *em_tree;
10568 em_tree = &fs_info->mapping_tree.map_tree;
10569 write_lock(&em_tree->lock);
10571 * The em might be in the pending_chunks list, so make sure the
10572 * chunk mutex is locked, since remove_extent_mapping() will
10573 * delete us from that list.
10575 remove_extent_mapping(em_tree, em);
10576 write_unlock(&em_tree->lock);
10577 /* once for the tree */
10578 free_extent_map(em);
10581 mutex_unlock(&fs_info->chunk_mutex);
10583 ret = remove_block_group_free_space(trans, fs_info, block_group);
10584 if (ret)
10585 goto out;
10587 btrfs_put_block_group(block_group);
10588 btrfs_put_block_group(block_group);
10590 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10591 if (ret > 0)
10592 ret = -EIO;
10593 if (ret < 0)
10594 goto out;
10596 ret = btrfs_del_item(trans, root, path);
10597 out:
10598 btrfs_free_path(path);
10599 return ret;
10602 struct btrfs_trans_handle *
10603 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10604 const u64 chunk_offset)
10606 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10607 struct extent_map *em;
10608 struct map_lookup *map;
10609 unsigned int num_items;
10611 read_lock(&em_tree->lock);
10612 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10613 read_unlock(&em_tree->lock);
10614 ASSERT(em && em->start == chunk_offset);
10617 * We need to reserve 3 + N units from the metadata space info in order
10618 * to remove a block group (done at btrfs_remove_chunk() and at
10619 * btrfs_remove_block_group()), which are used for:
10621 * 1 unit for adding the free space inode's orphan (located in the tree
10622 * of tree roots).
10623 * 1 unit for deleting the block group item (located in the extent
10624 * tree).
10625 * 1 unit for deleting the free space item (located in tree of tree
10626 * roots).
10627 * N units for deleting N device extent items corresponding to each
10628 * stripe (located in the device tree).
10630 * In order to remove a block group we also need to reserve units in the
10631 * system space info in order to update the chunk tree (update one or
10632 * more device items and remove one chunk item), but this is done at
10633 * btrfs_remove_chunk() through a call to check_system_chunk().
10635 map = em->map_lookup;
10636 num_items = 3 + map->num_stripes;
10637 free_extent_map(em);
10639 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10640 num_items, 1);
10644 * Process the unused_bgs list and remove any that don't have any allocated
10645 * space inside of them.
10647 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10649 struct btrfs_block_group_cache *block_group;
10650 struct btrfs_space_info *space_info;
10651 struct btrfs_trans_handle *trans;
10652 int ret = 0;
10654 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10655 return;
10657 spin_lock(&fs_info->unused_bgs_lock);
10658 while (!list_empty(&fs_info->unused_bgs)) {
10659 u64 start, end;
10660 int trimming;
10662 block_group = list_first_entry(&fs_info->unused_bgs,
10663 struct btrfs_block_group_cache,
10664 bg_list);
10665 list_del_init(&block_group->bg_list);
10667 space_info = block_group->space_info;
10669 if (ret || btrfs_mixed_space_info(space_info)) {
10670 btrfs_put_block_group(block_group);
10671 continue;
10673 spin_unlock(&fs_info->unused_bgs_lock);
10675 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10677 /* Don't want to race with allocators so take the groups_sem */
10678 down_write(&space_info->groups_sem);
10679 spin_lock(&block_group->lock);
10680 if (block_group->reserved ||
10681 btrfs_block_group_used(&block_group->item) ||
10682 block_group->ro ||
10683 list_is_singular(&block_group->list)) {
10685 * We want to bail if we made new allocations or have
10686 * outstanding allocations in this block group. We do
10687 * the ro check in case balance is currently acting on
10688 * this block group.
10690 spin_unlock(&block_group->lock);
10691 up_write(&space_info->groups_sem);
10692 goto next;
10694 spin_unlock(&block_group->lock);
10696 /* We don't want to force the issue, only flip if it's ok. */
10697 ret = inc_block_group_ro(block_group, 0);
10698 up_write(&space_info->groups_sem);
10699 if (ret < 0) {
10700 ret = 0;
10701 goto next;
10705 * Want to do this before we do anything else so we can recover
10706 * properly if we fail to join the transaction.
10708 trans = btrfs_start_trans_remove_block_group(fs_info,
10709 block_group->key.objectid);
10710 if (IS_ERR(trans)) {
10711 btrfs_dec_block_group_ro(block_group);
10712 ret = PTR_ERR(trans);
10713 goto next;
10717 * We could have pending pinned extents for this block group,
10718 * just delete them, we don't care about them anymore.
10720 start = block_group->key.objectid;
10721 end = start + block_group->key.offset - 1;
10723 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10724 * btrfs_finish_extent_commit(). If we are at transaction N,
10725 * another task might be running finish_extent_commit() for the
10726 * previous transaction N - 1, and have seen a range belonging
10727 * to the block group in freed_extents[] before we were able to
10728 * clear the whole block group range from freed_extents[]. This
10729 * means that task can lookup for the block group after we
10730 * unpinned it from freed_extents[] and removed it, leading to
10731 * a BUG_ON() at btrfs_unpin_extent_range().
10733 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10734 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10735 EXTENT_DIRTY);
10736 if (ret) {
10737 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10738 btrfs_dec_block_group_ro(block_group);
10739 goto end_trans;
10741 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10742 EXTENT_DIRTY);
10743 if (ret) {
10744 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10745 btrfs_dec_block_group_ro(block_group);
10746 goto end_trans;
10748 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10750 /* Reset pinned so btrfs_put_block_group doesn't complain */
10751 spin_lock(&space_info->lock);
10752 spin_lock(&block_group->lock);
10754 space_info->bytes_pinned -= block_group->pinned;
10755 space_info->bytes_readonly += block_group->pinned;
10756 percpu_counter_add(&space_info->total_bytes_pinned,
10757 -block_group->pinned);
10758 block_group->pinned = 0;
10760 spin_unlock(&block_group->lock);
10761 spin_unlock(&space_info->lock);
10763 /* DISCARD can flip during remount */
10764 trimming = btrfs_test_opt(fs_info, DISCARD);
10766 /* Implicit trim during transaction commit. */
10767 if (trimming)
10768 btrfs_get_block_group_trimming(block_group);
10771 * Btrfs_remove_chunk will abort the transaction if things go
10772 * horribly wrong.
10774 ret = btrfs_remove_chunk(trans, fs_info,
10775 block_group->key.objectid);
10777 if (ret) {
10778 if (trimming)
10779 btrfs_put_block_group_trimming(block_group);
10780 goto end_trans;
10784 * If we're not mounted with -odiscard, we can just forget
10785 * about this block group. Otherwise we'll need to wait
10786 * until transaction commit to do the actual discard.
10788 if (trimming) {
10789 spin_lock(&fs_info->unused_bgs_lock);
10791 * A concurrent scrub might have added us to the list
10792 * fs_info->unused_bgs, so use a list_move operation
10793 * to add the block group to the deleted_bgs list.
10795 list_move(&block_group->bg_list,
10796 &trans->transaction->deleted_bgs);
10797 spin_unlock(&fs_info->unused_bgs_lock);
10798 btrfs_get_block_group(block_group);
10800 end_trans:
10801 btrfs_end_transaction(trans);
10802 next:
10803 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10804 btrfs_put_block_group(block_group);
10805 spin_lock(&fs_info->unused_bgs_lock);
10807 spin_unlock(&fs_info->unused_bgs_lock);
10810 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10812 struct btrfs_space_info *space_info;
10813 struct btrfs_super_block *disk_super;
10814 u64 features;
10815 u64 flags;
10816 int mixed = 0;
10817 int ret;
10819 disk_super = fs_info->super_copy;
10820 if (!btrfs_super_root(disk_super))
10821 return -EINVAL;
10823 features = btrfs_super_incompat_flags(disk_super);
10824 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10825 mixed = 1;
10827 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10828 ret = create_space_info(fs_info, flags, &space_info);
10829 if (ret)
10830 goto out;
10832 if (mixed) {
10833 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10834 ret = create_space_info(fs_info, flags, &space_info);
10835 } else {
10836 flags = BTRFS_BLOCK_GROUP_METADATA;
10837 ret = create_space_info(fs_info, flags, &space_info);
10838 if (ret)
10839 goto out;
10841 flags = BTRFS_BLOCK_GROUP_DATA;
10842 ret = create_space_info(fs_info, flags, &space_info);
10844 out:
10845 return ret;
10848 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10849 u64 start, u64 end)
10851 return unpin_extent_range(fs_info, start, end, false);
10855 * It used to be that old block groups would be left around forever.
10856 * Iterating over them would be enough to trim unused space. Since we
10857 * now automatically remove them, we also need to iterate over unallocated
10858 * space.
10860 * We don't want a transaction for this since the discard may take a
10861 * substantial amount of time. We don't require that a transaction be
10862 * running, but we do need to take a running transaction into account
10863 * to ensure that we're not discarding chunks that were released in
10864 * the current transaction.
10866 * Holding the chunks lock will prevent other threads from allocating
10867 * or releasing chunks, but it won't prevent a running transaction
10868 * from committing and releasing the memory that the pending chunks
10869 * list head uses. For that, we need to take a reference to the
10870 * transaction.
10872 static int btrfs_trim_free_extents(struct btrfs_device *device,
10873 u64 minlen, u64 *trimmed)
10875 u64 start = 0, len = 0;
10876 int ret;
10878 *trimmed = 0;
10880 /* Not writeable = nothing to do. */
10881 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
10882 return 0;
10884 /* No free space = nothing to do. */
10885 if (device->total_bytes <= device->bytes_used)
10886 return 0;
10888 ret = 0;
10890 while (1) {
10891 struct btrfs_fs_info *fs_info = device->fs_info;
10892 struct btrfs_transaction *trans;
10893 u64 bytes;
10895 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10896 if (ret)
10897 return ret;
10899 down_read(&fs_info->commit_root_sem);
10901 spin_lock(&fs_info->trans_lock);
10902 trans = fs_info->running_transaction;
10903 if (trans)
10904 refcount_inc(&trans->use_count);
10905 spin_unlock(&fs_info->trans_lock);
10907 ret = find_free_dev_extent_start(trans, device, minlen, start,
10908 &start, &len);
10909 if (trans)
10910 btrfs_put_transaction(trans);
10912 if (ret) {
10913 up_read(&fs_info->commit_root_sem);
10914 mutex_unlock(&fs_info->chunk_mutex);
10915 if (ret == -ENOSPC)
10916 ret = 0;
10917 break;
10920 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10921 up_read(&fs_info->commit_root_sem);
10922 mutex_unlock(&fs_info->chunk_mutex);
10924 if (ret)
10925 break;
10927 start += len;
10928 *trimmed += bytes;
10930 if (fatal_signal_pending(current)) {
10931 ret = -ERESTARTSYS;
10932 break;
10935 cond_resched();
10938 return ret;
10941 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10943 struct btrfs_block_group_cache *cache = NULL;
10944 struct btrfs_device *device;
10945 struct list_head *devices;
10946 u64 group_trimmed;
10947 u64 start;
10948 u64 end;
10949 u64 trimmed = 0;
10950 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10951 int ret = 0;
10954 * try to trim all FS space, our block group may start from non-zero.
10956 if (range->len == total_bytes)
10957 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10958 else
10959 cache = btrfs_lookup_block_group(fs_info, range->start);
10961 while (cache) {
10962 if (cache->key.objectid >= (range->start + range->len)) {
10963 btrfs_put_block_group(cache);
10964 break;
10967 start = max(range->start, cache->key.objectid);
10968 end = min(range->start + range->len,
10969 cache->key.objectid + cache->key.offset);
10971 if (end - start >= range->minlen) {
10972 if (!block_group_cache_done(cache)) {
10973 ret = cache_block_group(cache, 0);
10974 if (ret) {
10975 btrfs_put_block_group(cache);
10976 break;
10978 ret = wait_block_group_cache_done(cache);
10979 if (ret) {
10980 btrfs_put_block_group(cache);
10981 break;
10984 ret = btrfs_trim_block_group(cache,
10985 &group_trimmed,
10986 start,
10987 end,
10988 range->minlen);
10990 trimmed += group_trimmed;
10991 if (ret) {
10992 btrfs_put_block_group(cache);
10993 break;
10997 cache = next_block_group(fs_info, cache);
11000 mutex_lock(&fs_info->fs_devices->device_list_mutex);
11001 devices = &fs_info->fs_devices->alloc_list;
11002 list_for_each_entry(device, devices, dev_alloc_list) {
11003 ret = btrfs_trim_free_extents(device, range->minlen,
11004 &group_trimmed);
11005 if (ret)
11006 break;
11008 trimmed += group_trimmed;
11010 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
11012 range->len = trimmed;
11013 return ret;
11017 * btrfs_{start,end}_write_no_snapshotting() are similar to
11018 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11019 * data into the page cache through nocow before the subvolume is snapshoted,
11020 * but flush the data into disk after the snapshot creation, or to prevent
11021 * operations while snapshotting is ongoing and that cause the snapshot to be
11022 * inconsistent (writes followed by expanding truncates for example).
11024 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
11026 percpu_counter_dec(&root->subv_writers->counter);
11028 * Make sure counter is updated before we wake up waiters.
11030 smp_mb();
11031 if (waitqueue_active(&root->subv_writers->wait))
11032 wake_up(&root->subv_writers->wait);
11035 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11037 if (atomic_read(&root->will_be_snapshotted))
11038 return 0;
11040 percpu_counter_inc(&root->subv_writers->counter);
11042 * Make sure counter is updated before we check for snapshot creation.
11044 smp_mb();
11045 if (atomic_read(&root->will_be_snapshotted)) {
11046 btrfs_end_write_no_snapshotting(root);
11047 return 0;
11049 return 1;
11052 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11054 while (true) {
11055 int ret;
11057 ret = btrfs_start_write_no_snapshotting(root);
11058 if (ret)
11059 break;
11060 wait_on_atomic_t(&root->will_be_snapshotted, atomic_t_wait,
11061 TASK_UNINTERRUPTIBLE);