unify {de,}mangle_poll(), get rid of kernel-side POLL...
[cris-mirror.git] / fs / btrfs / raid56.c
blobdec0907dfb8a128fe368a951a76f25cc34563702
1 /*
2 * Copyright (C) 2012 Fusion-io All rights reserved.
3 * Copyright (C) 2012 Intel Corp. All rights reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/wait.h>
21 #include <linux/bio.h>
22 #include <linux/slab.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/random.h>
26 #include <linux/iocontext.h>
27 #include <linux/capability.h>
28 #include <linux/ratelimit.h>
29 #include <linux/kthread.h>
30 #include <linux/raid/pq.h>
31 #include <linux/hash.h>
32 #include <linux/list_sort.h>
33 #include <linux/raid/xor.h>
34 #include <linux/mm.h>
35 #include <asm/div64.h>
36 #include "ctree.h"
37 #include "extent_map.h"
38 #include "disk-io.h"
39 #include "transaction.h"
40 #include "print-tree.h"
41 #include "volumes.h"
42 #include "raid56.h"
43 #include "async-thread.h"
44 #include "check-integrity.h"
45 #include "rcu-string.h"
47 /* set when additional merges to this rbio are not allowed */
48 #define RBIO_RMW_LOCKED_BIT 1
51 * set when this rbio is sitting in the hash, but it is just a cache
52 * of past RMW
54 #define RBIO_CACHE_BIT 2
57 * set when it is safe to trust the stripe_pages for caching
59 #define RBIO_CACHE_READY_BIT 3
61 #define RBIO_CACHE_SIZE 1024
63 enum btrfs_rbio_ops {
64 BTRFS_RBIO_WRITE,
65 BTRFS_RBIO_READ_REBUILD,
66 BTRFS_RBIO_PARITY_SCRUB,
67 BTRFS_RBIO_REBUILD_MISSING,
70 struct btrfs_raid_bio {
71 struct btrfs_fs_info *fs_info;
72 struct btrfs_bio *bbio;
74 /* while we're doing rmw on a stripe
75 * we put it into a hash table so we can
76 * lock the stripe and merge more rbios
77 * into it.
79 struct list_head hash_list;
82 * LRU list for the stripe cache
84 struct list_head stripe_cache;
87 * for scheduling work in the helper threads
89 struct btrfs_work work;
92 * bio list and bio_list_lock are used
93 * to add more bios into the stripe
94 * in hopes of avoiding the full rmw
96 struct bio_list bio_list;
97 spinlock_t bio_list_lock;
99 /* also protected by the bio_list_lock, the
100 * plug list is used by the plugging code
101 * to collect partial bios while plugged. The
102 * stripe locking code also uses it to hand off
103 * the stripe lock to the next pending IO
105 struct list_head plug_list;
108 * flags that tell us if it is safe to
109 * merge with this bio
111 unsigned long flags;
113 /* size of each individual stripe on disk */
114 int stripe_len;
116 /* number of data stripes (no p/q) */
117 int nr_data;
119 int real_stripes;
121 int stripe_npages;
123 * set if we're doing a parity rebuild
124 * for a read from higher up, which is handled
125 * differently from a parity rebuild as part of
126 * rmw
128 enum btrfs_rbio_ops operation;
130 /* first bad stripe */
131 int faila;
133 /* second bad stripe (for raid6 use) */
134 int failb;
136 int scrubp;
138 * number of pages needed to represent the full
139 * stripe
141 int nr_pages;
144 * size of all the bios in the bio_list. This
145 * helps us decide if the rbio maps to a full
146 * stripe or not
148 int bio_list_bytes;
150 int generic_bio_cnt;
152 refcount_t refs;
154 atomic_t stripes_pending;
156 atomic_t error;
158 * these are two arrays of pointers. We allocate the
159 * rbio big enough to hold them both and setup their
160 * locations when the rbio is allocated
163 /* pointers to pages that we allocated for
164 * reading/writing stripes directly from the disk (including P/Q)
166 struct page **stripe_pages;
169 * pointers to the pages in the bio_list. Stored
170 * here for faster lookup
172 struct page **bio_pages;
175 * bitmap to record which horizontal stripe has data
177 unsigned long *dbitmap;
180 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
181 static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
182 static void rmw_work(struct btrfs_work *work);
183 static void read_rebuild_work(struct btrfs_work *work);
184 static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
185 static void async_read_rebuild(struct btrfs_raid_bio *rbio);
186 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
187 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
188 static void __free_raid_bio(struct btrfs_raid_bio *rbio);
189 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
190 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
192 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
193 int need_check);
194 static void async_scrub_parity(struct btrfs_raid_bio *rbio);
197 * the stripe hash table is used for locking, and to collect
198 * bios in hopes of making a full stripe
200 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
202 struct btrfs_stripe_hash_table *table;
203 struct btrfs_stripe_hash_table *x;
204 struct btrfs_stripe_hash *cur;
205 struct btrfs_stripe_hash *h;
206 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
207 int i;
208 int table_size;
210 if (info->stripe_hash_table)
211 return 0;
214 * The table is large, starting with order 4 and can go as high as
215 * order 7 in case lock debugging is turned on.
217 * Try harder to allocate and fallback to vmalloc to lower the chance
218 * of a failing mount.
220 table_size = sizeof(*table) + sizeof(*h) * num_entries;
221 table = kvzalloc(table_size, GFP_KERNEL);
222 if (!table)
223 return -ENOMEM;
225 spin_lock_init(&table->cache_lock);
226 INIT_LIST_HEAD(&table->stripe_cache);
228 h = table->table;
230 for (i = 0; i < num_entries; i++) {
231 cur = h + i;
232 INIT_LIST_HEAD(&cur->hash_list);
233 spin_lock_init(&cur->lock);
236 x = cmpxchg(&info->stripe_hash_table, NULL, table);
237 if (x)
238 kvfree(x);
239 return 0;
243 * caching an rbio means to copy anything from the
244 * bio_pages array into the stripe_pages array. We
245 * use the page uptodate bit in the stripe cache array
246 * to indicate if it has valid data
248 * once the caching is done, we set the cache ready
249 * bit.
251 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
253 int i;
254 char *s;
255 char *d;
256 int ret;
258 ret = alloc_rbio_pages(rbio);
259 if (ret)
260 return;
262 for (i = 0; i < rbio->nr_pages; i++) {
263 if (!rbio->bio_pages[i])
264 continue;
266 s = kmap(rbio->bio_pages[i]);
267 d = kmap(rbio->stripe_pages[i]);
269 memcpy(d, s, PAGE_SIZE);
271 kunmap(rbio->bio_pages[i]);
272 kunmap(rbio->stripe_pages[i]);
273 SetPageUptodate(rbio->stripe_pages[i]);
275 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
279 * we hash on the first logical address of the stripe
281 static int rbio_bucket(struct btrfs_raid_bio *rbio)
283 u64 num = rbio->bbio->raid_map[0];
286 * we shift down quite a bit. We're using byte
287 * addressing, and most of the lower bits are zeros.
288 * This tends to upset hash_64, and it consistently
289 * returns just one or two different values.
291 * shifting off the lower bits fixes things.
293 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
297 * stealing an rbio means taking all the uptodate pages from the stripe
298 * array in the source rbio and putting them into the destination rbio
300 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
302 int i;
303 struct page *s;
304 struct page *d;
306 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
307 return;
309 for (i = 0; i < dest->nr_pages; i++) {
310 s = src->stripe_pages[i];
311 if (!s || !PageUptodate(s)) {
312 continue;
315 d = dest->stripe_pages[i];
316 if (d)
317 __free_page(d);
319 dest->stripe_pages[i] = s;
320 src->stripe_pages[i] = NULL;
325 * merging means we take the bio_list from the victim and
326 * splice it into the destination. The victim should
327 * be discarded afterwards.
329 * must be called with dest->rbio_list_lock held
331 static void merge_rbio(struct btrfs_raid_bio *dest,
332 struct btrfs_raid_bio *victim)
334 bio_list_merge(&dest->bio_list, &victim->bio_list);
335 dest->bio_list_bytes += victim->bio_list_bytes;
336 dest->generic_bio_cnt += victim->generic_bio_cnt;
337 bio_list_init(&victim->bio_list);
341 * used to prune items that are in the cache. The caller
342 * must hold the hash table lock.
344 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
346 int bucket = rbio_bucket(rbio);
347 struct btrfs_stripe_hash_table *table;
348 struct btrfs_stripe_hash *h;
349 int freeit = 0;
352 * check the bit again under the hash table lock.
354 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
355 return;
357 table = rbio->fs_info->stripe_hash_table;
358 h = table->table + bucket;
360 /* hold the lock for the bucket because we may be
361 * removing it from the hash table
363 spin_lock(&h->lock);
366 * hold the lock for the bio list because we need
367 * to make sure the bio list is empty
369 spin_lock(&rbio->bio_list_lock);
371 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
372 list_del_init(&rbio->stripe_cache);
373 table->cache_size -= 1;
374 freeit = 1;
376 /* if the bio list isn't empty, this rbio is
377 * still involved in an IO. We take it out
378 * of the cache list, and drop the ref that
379 * was held for the list.
381 * If the bio_list was empty, we also remove
382 * the rbio from the hash_table, and drop
383 * the corresponding ref
385 if (bio_list_empty(&rbio->bio_list)) {
386 if (!list_empty(&rbio->hash_list)) {
387 list_del_init(&rbio->hash_list);
388 refcount_dec(&rbio->refs);
389 BUG_ON(!list_empty(&rbio->plug_list));
394 spin_unlock(&rbio->bio_list_lock);
395 spin_unlock(&h->lock);
397 if (freeit)
398 __free_raid_bio(rbio);
402 * prune a given rbio from the cache
404 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
406 struct btrfs_stripe_hash_table *table;
407 unsigned long flags;
409 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
410 return;
412 table = rbio->fs_info->stripe_hash_table;
414 spin_lock_irqsave(&table->cache_lock, flags);
415 __remove_rbio_from_cache(rbio);
416 spin_unlock_irqrestore(&table->cache_lock, flags);
420 * remove everything in the cache
422 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
424 struct btrfs_stripe_hash_table *table;
425 unsigned long flags;
426 struct btrfs_raid_bio *rbio;
428 table = info->stripe_hash_table;
430 spin_lock_irqsave(&table->cache_lock, flags);
431 while (!list_empty(&table->stripe_cache)) {
432 rbio = list_entry(table->stripe_cache.next,
433 struct btrfs_raid_bio,
434 stripe_cache);
435 __remove_rbio_from_cache(rbio);
437 spin_unlock_irqrestore(&table->cache_lock, flags);
441 * remove all cached entries and free the hash table
442 * used by unmount
444 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
446 if (!info->stripe_hash_table)
447 return;
448 btrfs_clear_rbio_cache(info);
449 kvfree(info->stripe_hash_table);
450 info->stripe_hash_table = NULL;
454 * insert an rbio into the stripe cache. It
455 * must have already been prepared by calling
456 * cache_rbio_pages
458 * If this rbio was already cached, it gets
459 * moved to the front of the lru.
461 * If the size of the rbio cache is too big, we
462 * prune an item.
464 static void cache_rbio(struct btrfs_raid_bio *rbio)
466 struct btrfs_stripe_hash_table *table;
467 unsigned long flags;
469 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
470 return;
472 table = rbio->fs_info->stripe_hash_table;
474 spin_lock_irqsave(&table->cache_lock, flags);
475 spin_lock(&rbio->bio_list_lock);
477 /* bump our ref if we were not in the list before */
478 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
479 refcount_inc(&rbio->refs);
481 if (!list_empty(&rbio->stripe_cache)){
482 list_move(&rbio->stripe_cache, &table->stripe_cache);
483 } else {
484 list_add(&rbio->stripe_cache, &table->stripe_cache);
485 table->cache_size += 1;
488 spin_unlock(&rbio->bio_list_lock);
490 if (table->cache_size > RBIO_CACHE_SIZE) {
491 struct btrfs_raid_bio *found;
493 found = list_entry(table->stripe_cache.prev,
494 struct btrfs_raid_bio,
495 stripe_cache);
497 if (found != rbio)
498 __remove_rbio_from_cache(found);
501 spin_unlock_irqrestore(&table->cache_lock, flags);
505 * helper function to run the xor_blocks api. It is only
506 * able to do MAX_XOR_BLOCKS at a time, so we need to
507 * loop through.
509 static void run_xor(void **pages, int src_cnt, ssize_t len)
511 int src_off = 0;
512 int xor_src_cnt = 0;
513 void *dest = pages[src_cnt];
515 while(src_cnt > 0) {
516 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
517 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
519 src_cnt -= xor_src_cnt;
520 src_off += xor_src_cnt;
525 * returns true if the bio list inside this rbio
526 * covers an entire stripe (no rmw required).
527 * Must be called with the bio list lock held, or
528 * at a time when you know it is impossible to add
529 * new bios into the list
531 static int __rbio_is_full(struct btrfs_raid_bio *rbio)
533 unsigned long size = rbio->bio_list_bytes;
534 int ret = 1;
536 if (size != rbio->nr_data * rbio->stripe_len)
537 ret = 0;
539 BUG_ON(size > rbio->nr_data * rbio->stripe_len);
540 return ret;
543 static int rbio_is_full(struct btrfs_raid_bio *rbio)
545 unsigned long flags;
546 int ret;
548 spin_lock_irqsave(&rbio->bio_list_lock, flags);
549 ret = __rbio_is_full(rbio);
550 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
551 return ret;
555 * returns 1 if it is safe to merge two rbios together.
556 * The merging is safe if the two rbios correspond to
557 * the same stripe and if they are both going in the same
558 * direction (read vs write), and if neither one is
559 * locked for final IO
561 * The caller is responsible for locking such that
562 * rmw_locked is safe to test
564 static int rbio_can_merge(struct btrfs_raid_bio *last,
565 struct btrfs_raid_bio *cur)
567 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
568 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
569 return 0;
572 * we can't merge with cached rbios, since the
573 * idea is that when we merge the destination
574 * rbio is going to run our IO for us. We can
575 * steal from cached rbios though, other functions
576 * handle that.
578 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
579 test_bit(RBIO_CACHE_BIT, &cur->flags))
580 return 0;
582 if (last->bbio->raid_map[0] !=
583 cur->bbio->raid_map[0])
584 return 0;
586 /* we can't merge with different operations */
587 if (last->operation != cur->operation)
588 return 0;
590 * We've need read the full stripe from the drive.
591 * check and repair the parity and write the new results.
593 * We're not allowed to add any new bios to the
594 * bio list here, anyone else that wants to
595 * change this stripe needs to do their own rmw.
597 if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
598 return 0;
600 if (last->operation == BTRFS_RBIO_REBUILD_MISSING)
601 return 0;
603 if (last->operation == BTRFS_RBIO_READ_REBUILD) {
604 int fa = last->faila;
605 int fb = last->failb;
606 int cur_fa = cur->faila;
607 int cur_fb = cur->failb;
609 if (last->faila >= last->failb) {
610 fa = last->failb;
611 fb = last->faila;
614 if (cur->faila >= cur->failb) {
615 cur_fa = cur->failb;
616 cur_fb = cur->faila;
619 if (fa != cur_fa || fb != cur_fb)
620 return 0;
622 return 1;
625 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
626 int index)
628 return stripe * rbio->stripe_npages + index;
632 * these are just the pages from the rbio array, not from anything
633 * the FS sent down to us
635 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
636 int index)
638 return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
642 * helper to index into the pstripe
644 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
646 return rbio_stripe_page(rbio, rbio->nr_data, index);
650 * helper to index into the qstripe, returns null
651 * if there is no qstripe
653 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
655 if (rbio->nr_data + 1 == rbio->real_stripes)
656 return NULL;
657 return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
661 * The first stripe in the table for a logical address
662 * has the lock. rbios are added in one of three ways:
664 * 1) Nobody has the stripe locked yet. The rbio is given
665 * the lock and 0 is returned. The caller must start the IO
666 * themselves.
668 * 2) Someone has the stripe locked, but we're able to merge
669 * with the lock owner. The rbio is freed and the IO will
670 * start automatically along with the existing rbio. 1 is returned.
672 * 3) Someone has the stripe locked, but we're not able to merge.
673 * The rbio is added to the lock owner's plug list, or merged into
674 * an rbio already on the plug list. When the lock owner unlocks,
675 * the next rbio on the list is run and the IO is started automatically.
676 * 1 is returned
678 * If we return 0, the caller still owns the rbio and must continue with
679 * IO submission. If we return 1, the caller must assume the rbio has
680 * already been freed.
682 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
684 int bucket = rbio_bucket(rbio);
685 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
686 struct btrfs_raid_bio *cur;
687 struct btrfs_raid_bio *pending;
688 unsigned long flags;
689 struct btrfs_raid_bio *freeit = NULL;
690 struct btrfs_raid_bio *cache_drop = NULL;
691 int ret = 0;
693 spin_lock_irqsave(&h->lock, flags);
694 list_for_each_entry(cur, &h->hash_list, hash_list) {
695 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
696 spin_lock(&cur->bio_list_lock);
698 /* can we steal this cached rbio's pages? */
699 if (bio_list_empty(&cur->bio_list) &&
700 list_empty(&cur->plug_list) &&
701 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
702 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
703 list_del_init(&cur->hash_list);
704 refcount_dec(&cur->refs);
706 steal_rbio(cur, rbio);
707 cache_drop = cur;
708 spin_unlock(&cur->bio_list_lock);
710 goto lockit;
713 /* can we merge into the lock owner? */
714 if (rbio_can_merge(cur, rbio)) {
715 merge_rbio(cur, rbio);
716 spin_unlock(&cur->bio_list_lock);
717 freeit = rbio;
718 ret = 1;
719 goto out;
724 * we couldn't merge with the running
725 * rbio, see if we can merge with the
726 * pending ones. We don't have to
727 * check for rmw_locked because there
728 * is no way they are inside finish_rmw
729 * right now
731 list_for_each_entry(pending, &cur->plug_list,
732 plug_list) {
733 if (rbio_can_merge(pending, rbio)) {
734 merge_rbio(pending, rbio);
735 spin_unlock(&cur->bio_list_lock);
736 freeit = rbio;
737 ret = 1;
738 goto out;
742 /* no merging, put us on the tail of the plug list,
743 * our rbio will be started with the currently
744 * running rbio unlocks
746 list_add_tail(&rbio->plug_list, &cur->plug_list);
747 spin_unlock(&cur->bio_list_lock);
748 ret = 1;
749 goto out;
752 lockit:
753 refcount_inc(&rbio->refs);
754 list_add(&rbio->hash_list, &h->hash_list);
755 out:
756 spin_unlock_irqrestore(&h->lock, flags);
757 if (cache_drop)
758 remove_rbio_from_cache(cache_drop);
759 if (freeit)
760 __free_raid_bio(freeit);
761 return ret;
765 * called as rmw or parity rebuild is completed. If the plug list has more
766 * rbios waiting for this stripe, the next one on the list will be started
768 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
770 int bucket;
771 struct btrfs_stripe_hash *h;
772 unsigned long flags;
773 int keep_cache = 0;
775 bucket = rbio_bucket(rbio);
776 h = rbio->fs_info->stripe_hash_table->table + bucket;
778 if (list_empty(&rbio->plug_list))
779 cache_rbio(rbio);
781 spin_lock_irqsave(&h->lock, flags);
782 spin_lock(&rbio->bio_list_lock);
784 if (!list_empty(&rbio->hash_list)) {
786 * if we're still cached and there is no other IO
787 * to perform, just leave this rbio here for others
788 * to steal from later
790 if (list_empty(&rbio->plug_list) &&
791 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
792 keep_cache = 1;
793 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
794 BUG_ON(!bio_list_empty(&rbio->bio_list));
795 goto done;
798 list_del_init(&rbio->hash_list);
799 refcount_dec(&rbio->refs);
802 * we use the plug list to hold all the rbios
803 * waiting for the chance to lock this stripe.
804 * hand the lock over to one of them.
806 if (!list_empty(&rbio->plug_list)) {
807 struct btrfs_raid_bio *next;
808 struct list_head *head = rbio->plug_list.next;
810 next = list_entry(head, struct btrfs_raid_bio,
811 plug_list);
813 list_del_init(&rbio->plug_list);
815 list_add(&next->hash_list, &h->hash_list);
816 refcount_inc(&next->refs);
817 spin_unlock(&rbio->bio_list_lock);
818 spin_unlock_irqrestore(&h->lock, flags);
820 if (next->operation == BTRFS_RBIO_READ_REBUILD)
821 async_read_rebuild(next);
822 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
823 steal_rbio(rbio, next);
824 async_read_rebuild(next);
825 } else if (next->operation == BTRFS_RBIO_WRITE) {
826 steal_rbio(rbio, next);
827 async_rmw_stripe(next);
828 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
829 steal_rbio(rbio, next);
830 async_scrub_parity(next);
833 goto done_nolock;
836 done:
837 spin_unlock(&rbio->bio_list_lock);
838 spin_unlock_irqrestore(&h->lock, flags);
840 done_nolock:
841 if (!keep_cache)
842 remove_rbio_from_cache(rbio);
845 static void __free_raid_bio(struct btrfs_raid_bio *rbio)
847 int i;
849 if (!refcount_dec_and_test(&rbio->refs))
850 return;
852 WARN_ON(!list_empty(&rbio->stripe_cache));
853 WARN_ON(!list_empty(&rbio->hash_list));
854 WARN_ON(!bio_list_empty(&rbio->bio_list));
856 for (i = 0; i < rbio->nr_pages; i++) {
857 if (rbio->stripe_pages[i]) {
858 __free_page(rbio->stripe_pages[i]);
859 rbio->stripe_pages[i] = NULL;
863 btrfs_put_bbio(rbio->bbio);
864 kfree(rbio);
867 static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
869 struct bio *next;
871 while (cur) {
872 next = cur->bi_next;
873 cur->bi_next = NULL;
874 cur->bi_status = err;
875 bio_endio(cur);
876 cur = next;
881 * this frees the rbio and runs through all the bios in the
882 * bio_list and calls end_io on them
884 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
886 struct bio *cur = bio_list_get(&rbio->bio_list);
887 struct bio *extra;
889 if (rbio->generic_bio_cnt)
890 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
893 * At this moment, rbio->bio_list is empty, however since rbio does not
894 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
895 * hash list, rbio may be merged with others so that rbio->bio_list
896 * becomes non-empty.
897 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
898 * more and we can call bio_endio() on all queued bios.
900 unlock_stripe(rbio);
901 extra = bio_list_get(&rbio->bio_list);
902 __free_raid_bio(rbio);
904 rbio_endio_bio_list(cur, err);
905 if (extra)
906 rbio_endio_bio_list(extra, err);
910 * end io function used by finish_rmw. When we finally
911 * get here, we've written a full stripe
913 static void raid_write_end_io(struct bio *bio)
915 struct btrfs_raid_bio *rbio = bio->bi_private;
916 blk_status_t err = bio->bi_status;
917 int max_errors;
919 if (err)
920 fail_bio_stripe(rbio, bio);
922 bio_put(bio);
924 if (!atomic_dec_and_test(&rbio->stripes_pending))
925 return;
927 err = BLK_STS_OK;
929 /* OK, we have read all the stripes we need to. */
930 max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
931 0 : rbio->bbio->max_errors;
932 if (atomic_read(&rbio->error) > max_errors)
933 err = BLK_STS_IOERR;
935 rbio_orig_end_io(rbio, err);
939 * the read/modify/write code wants to use the original bio for
940 * any pages it included, and then use the rbio for everything
941 * else. This function decides if a given index (stripe number)
942 * and page number in that stripe fall inside the original bio
943 * or the rbio.
945 * if you set bio_list_only, you'll get a NULL back for any ranges
946 * that are outside the bio_list
948 * This doesn't take any refs on anything, you get a bare page pointer
949 * and the caller must bump refs as required.
951 * You must call index_rbio_pages once before you can trust
952 * the answers from this function.
954 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
955 int index, int pagenr, int bio_list_only)
957 int chunk_page;
958 struct page *p = NULL;
960 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
962 spin_lock_irq(&rbio->bio_list_lock);
963 p = rbio->bio_pages[chunk_page];
964 spin_unlock_irq(&rbio->bio_list_lock);
966 if (p || bio_list_only)
967 return p;
969 return rbio->stripe_pages[chunk_page];
973 * number of pages we need for the entire stripe across all the
974 * drives
976 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
978 return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
982 * allocation and initial setup for the btrfs_raid_bio. Not
983 * this does not allocate any pages for rbio->pages.
985 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
986 struct btrfs_bio *bbio,
987 u64 stripe_len)
989 struct btrfs_raid_bio *rbio;
990 int nr_data = 0;
991 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
992 int num_pages = rbio_nr_pages(stripe_len, real_stripes);
993 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
994 void *p;
996 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
997 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) *
998 sizeof(long), GFP_NOFS);
999 if (!rbio)
1000 return ERR_PTR(-ENOMEM);
1002 bio_list_init(&rbio->bio_list);
1003 INIT_LIST_HEAD(&rbio->plug_list);
1004 spin_lock_init(&rbio->bio_list_lock);
1005 INIT_LIST_HEAD(&rbio->stripe_cache);
1006 INIT_LIST_HEAD(&rbio->hash_list);
1007 rbio->bbio = bbio;
1008 rbio->fs_info = fs_info;
1009 rbio->stripe_len = stripe_len;
1010 rbio->nr_pages = num_pages;
1011 rbio->real_stripes = real_stripes;
1012 rbio->stripe_npages = stripe_npages;
1013 rbio->faila = -1;
1014 rbio->failb = -1;
1015 refcount_set(&rbio->refs, 1);
1016 atomic_set(&rbio->error, 0);
1017 atomic_set(&rbio->stripes_pending, 0);
1020 * the stripe_pages and bio_pages array point to the extra
1021 * memory we allocated past the end of the rbio
1023 p = rbio + 1;
1024 rbio->stripe_pages = p;
1025 rbio->bio_pages = p + sizeof(struct page *) * num_pages;
1026 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
1028 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1029 nr_data = real_stripes - 1;
1030 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1031 nr_data = real_stripes - 2;
1032 else
1033 BUG();
1035 rbio->nr_data = nr_data;
1036 return rbio;
1039 /* allocate pages for all the stripes in the bio, including parity */
1040 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1042 int i;
1043 struct page *page;
1045 for (i = 0; i < rbio->nr_pages; i++) {
1046 if (rbio->stripe_pages[i])
1047 continue;
1048 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1049 if (!page)
1050 return -ENOMEM;
1051 rbio->stripe_pages[i] = page;
1053 return 0;
1056 /* only allocate pages for p/q stripes */
1057 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1059 int i;
1060 struct page *page;
1062 i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1064 for (; i < rbio->nr_pages; i++) {
1065 if (rbio->stripe_pages[i])
1066 continue;
1067 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1068 if (!page)
1069 return -ENOMEM;
1070 rbio->stripe_pages[i] = page;
1072 return 0;
1076 * add a single page from a specific stripe into our list of bios for IO
1077 * this will try to merge into existing bios if possible, and returns
1078 * zero if all went well.
1080 static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1081 struct bio_list *bio_list,
1082 struct page *page,
1083 int stripe_nr,
1084 unsigned long page_index,
1085 unsigned long bio_max_len)
1087 struct bio *last = bio_list->tail;
1088 u64 last_end = 0;
1089 int ret;
1090 struct bio *bio;
1091 struct btrfs_bio_stripe *stripe;
1092 u64 disk_start;
1094 stripe = &rbio->bbio->stripes[stripe_nr];
1095 disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1097 /* if the device is missing, just fail this stripe */
1098 if (!stripe->dev->bdev)
1099 return fail_rbio_index(rbio, stripe_nr);
1101 /* see if we can add this page onto our existing bio */
1102 if (last) {
1103 last_end = (u64)last->bi_iter.bi_sector << 9;
1104 last_end += last->bi_iter.bi_size;
1107 * we can't merge these if they are from different
1108 * devices or if they are not contiguous
1110 if (last_end == disk_start && stripe->dev->bdev &&
1111 !last->bi_status &&
1112 last->bi_disk == stripe->dev->bdev->bd_disk &&
1113 last->bi_partno == stripe->dev->bdev->bd_partno) {
1114 ret = bio_add_page(last, page, PAGE_SIZE, 0);
1115 if (ret == PAGE_SIZE)
1116 return 0;
1120 /* put a new bio on the list */
1121 bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
1122 bio->bi_iter.bi_size = 0;
1123 bio_set_dev(bio, stripe->dev->bdev);
1124 bio->bi_iter.bi_sector = disk_start >> 9;
1126 bio_add_page(bio, page, PAGE_SIZE, 0);
1127 bio_list_add(bio_list, bio);
1128 return 0;
1132 * while we're doing the read/modify/write cycle, we could
1133 * have errors in reading pages off the disk. This checks
1134 * for errors and if we're not able to read the page it'll
1135 * trigger parity reconstruction. The rmw will be finished
1136 * after we've reconstructed the failed stripes
1138 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1140 if (rbio->faila >= 0 || rbio->failb >= 0) {
1141 BUG_ON(rbio->faila == rbio->real_stripes - 1);
1142 __raid56_parity_recover(rbio);
1143 } else {
1144 finish_rmw(rbio);
1149 * helper function to walk our bio list and populate the bio_pages array with
1150 * the result. This seems expensive, but it is faster than constantly
1151 * searching through the bio list as we setup the IO in finish_rmw or stripe
1152 * reconstruction.
1154 * This must be called before you trust the answers from page_in_rbio
1156 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1158 struct bio *bio;
1159 u64 start;
1160 unsigned long stripe_offset;
1161 unsigned long page_index;
1163 spin_lock_irq(&rbio->bio_list_lock);
1164 bio_list_for_each(bio, &rbio->bio_list) {
1165 struct bio_vec bvec;
1166 struct bvec_iter iter;
1167 int i = 0;
1169 start = (u64)bio->bi_iter.bi_sector << 9;
1170 stripe_offset = start - rbio->bbio->raid_map[0];
1171 page_index = stripe_offset >> PAGE_SHIFT;
1173 if (bio_flagged(bio, BIO_CLONED))
1174 bio->bi_iter = btrfs_io_bio(bio)->iter;
1176 bio_for_each_segment(bvec, bio, iter) {
1177 rbio->bio_pages[page_index + i] = bvec.bv_page;
1178 i++;
1181 spin_unlock_irq(&rbio->bio_list_lock);
1185 * this is called from one of two situations. We either
1186 * have a full stripe from the higher layers, or we've read all
1187 * the missing bits off disk.
1189 * This will calculate the parity and then send down any
1190 * changed blocks.
1192 static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1194 struct btrfs_bio *bbio = rbio->bbio;
1195 void *pointers[rbio->real_stripes];
1196 int nr_data = rbio->nr_data;
1197 int stripe;
1198 int pagenr;
1199 int p_stripe = -1;
1200 int q_stripe = -1;
1201 struct bio_list bio_list;
1202 struct bio *bio;
1203 int ret;
1205 bio_list_init(&bio_list);
1207 if (rbio->real_stripes - rbio->nr_data == 1) {
1208 p_stripe = rbio->real_stripes - 1;
1209 } else if (rbio->real_stripes - rbio->nr_data == 2) {
1210 p_stripe = rbio->real_stripes - 2;
1211 q_stripe = rbio->real_stripes - 1;
1212 } else {
1213 BUG();
1216 /* at this point we either have a full stripe,
1217 * or we've read the full stripe from the drive.
1218 * recalculate the parity and write the new results.
1220 * We're not allowed to add any new bios to the
1221 * bio list here, anyone else that wants to
1222 * change this stripe needs to do their own rmw.
1224 spin_lock_irq(&rbio->bio_list_lock);
1225 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1226 spin_unlock_irq(&rbio->bio_list_lock);
1228 atomic_set(&rbio->error, 0);
1231 * now that we've set rmw_locked, run through the
1232 * bio list one last time and map the page pointers
1234 * We don't cache full rbios because we're assuming
1235 * the higher layers are unlikely to use this area of
1236 * the disk again soon. If they do use it again,
1237 * hopefully they will send another full bio.
1239 index_rbio_pages(rbio);
1240 if (!rbio_is_full(rbio))
1241 cache_rbio_pages(rbio);
1242 else
1243 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1245 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1246 struct page *p;
1247 /* first collect one page from each data stripe */
1248 for (stripe = 0; stripe < nr_data; stripe++) {
1249 p = page_in_rbio(rbio, stripe, pagenr, 0);
1250 pointers[stripe] = kmap(p);
1253 /* then add the parity stripe */
1254 p = rbio_pstripe_page(rbio, pagenr);
1255 SetPageUptodate(p);
1256 pointers[stripe++] = kmap(p);
1258 if (q_stripe != -1) {
1261 * raid6, add the qstripe and call the
1262 * library function to fill in our p/q
1264 p = rbio_qstripe_page(rbio, pagenr);
1265 SetPageUptodate(p);
1266 pointers[stripe++] = kmap(p);
1268 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1269 pointers);
1270 } else {
1271 /* raid5 */
1272 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1273 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1277 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1278 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1282 * time to start writing. Make bios for everything from the
1283 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1284 * everything else.
1286 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1287 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1288 struct page *page;
1289 if (stripe < rbio->nr_data) {
1290 page = page_in_rbio(rbio, stripe, pagenr, 1);
1291 if (!page)
1292 continue;
1293 } else {
1294 page = rbio_stripe_page(rbio, stripe, pagenr);
1297 ret = rbio_add_io_page(rbio, &bio_list,
1298 page, stripe, pagenr, rbio->stripe_len);
1299 if (ret)
1300 goto cleanup;
1304 if (likely(!bbio->num_tgtdevs))
1305 goto write_data;
1307 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1308 if (!bbio->tgtdev_map[stripe])
1309 continue;
1311 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1312 struct page *page;
1313 if (stripe < rbio->nr_data) {
1314 page = page_in_rbio(rbio, stripe, pagenr, 1);
1315 if (!page)
1316 continue;
1317 } else {
1318 page = rbio_stripe_page(rbio, stripe, pagenr);
1321 ret = rbio_add_io_page(rbio, &bio_list, page,
1322 rbio->bbio->tgtdev_map[stripe],
1323 pagenr, rbio->stripe_len);
1324 if (ret)
1325 goto cleanup;
1329 write_data:
1330 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1331 BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1333 while (1) {
1334 bio = bio_list_pop(&bio_list);
1335 if (!bio)
1336 break;
1338 bio->bi_private = rbio;
1339 bio->bi_end_io = raid_write_end_io;
1340 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1342 submit_bio(bio);
1344 return;
1346 cleanup:
1347 rbio_orig_end_io(rbio, BLK_STS_IOERR);
1349 while ((bio = bio_list_pop(&bio_list)))
1350 bio_put(bio);
1354 * helper to find the stripe number for a given bio. Used to figure out which
1355 * stripe has failed. This expects the bio to correspond to a physical disk,
1356 * so it looks up based on physical sector numbers.
1358 static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1359 struct bio *bio)
1361 u64 physical = bio->bi_iter.bi_sector;
1362 u64 stripe_start;
1363 int i;
1364 struct btrfs_bio_stripe *stripe;
1366 physical <<= 9;
1368 for (i = 0; i < rbio->bbio->num_stripes; i++) {
1369 stripe = &rbio->bbio->stripes[i];
1370 stripe_start = stripe->physical;
1371 if (physical >= stripe_start &&
1372 physical < stripe_start + rbio->stripe_len &&
1373 bio->bi_disk == stripe->dev->bdev->bd_disk &&
1374 bio->bi_partno == stripe->dev->bdev->bd_partno) {
1375 return i;
1378 return -1;
1382 * helper to find the stripe number for a given
1383 * bio (before mapping). Used to figure out which stripe has
1384 * failed. This looks up based on logical block numbers.
1386 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1387 struct bio *bio)
1389 u64 logical = bio->bi_iter.bi_sector;
1390 u64 stripe_start;
1391 int i;
1393 logical <<= 9;
1395 for (i = 0; i < rbio->nr_data; i++) {
1396 stripe_start = rbio->bbio->raid_map[i];
1397 if (logical >= stripe_start &&
1398 logical < stripe_start + rbio->stripe_len) {
1399 return i;
1402 return -1;
1406 * returns -EIO if we had too many failures
1408 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1410 unsigned long flags;
1411 int ret = 0;
1413 spin_lock_irqsave(&rbio->bio_list_lock, flags);
1415 /* we already know this stripe is bad, move on */
1416 if (rbio->faila == failed || rbio->failb == failed)
1417 goto out;
1419 if (rbio->faila == -1) {
1420 /* first failure on this rbio */
1421 rbio->faila = failed;
1422 atomic_inc(&rbio->error);
1423 } else if (rbio->failb == -1) {
1424 /* second failure on this rbio */
1425 rbio->failb = failed;
1426 atomic_inc(&rbio->error);
1427 } else {
1428 ret = -EIO;
1430 out:
1431 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1433 return ret;
1437 * helper to fail a stripe based on a physical disk
1438 * bio.
1440 static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1441 struct bio *bio)
1443 int failed = find_bio_stripe(rbio, bio);
1445 if (failed < 0)
1446 return -EIO;
1448 return fail_rbio_index(rbio, failed);
1452 * this sets each page in the bio uptodate. It should only be used on private
1453 * rbio pages, nothing that comes in from the higher layers
1455 static void set_bio_pages_uptodate(struct bio *bio)
1457 struct bio_vec *bvec;
1458 int i;
1460 ASSERT(!bio_flagged(bio, BIO_CLONED));
1462 bio_for_each_segment_all(bvec, bio, i)
1463 SetPageUptodate(bvec->bv_page);
1467 * end io for the read phase of the rmw cycle. All the bios here are physical
1468 * stripe bios we've read from the disk so we can recalculate the parity of the
1469 * stripe.
1471 * This will usually kick off finish_rmw once all the bios are read in, but it
1472 * may trigger parity reconstruction if we had any errors along the way
1474 static void raid_rmw_end_io(struct bio *bio)
1476 struct btrfs_raid_bio *rbio = bio->bi_private;
1478 if (bio->bi_status)
1479 fail_bio_stripe(rbio, bio);
1480 else
1481 set_bio_pages_uptodate(bio);
1483 bio_put(bio);
1485 if (!atomic_dec_and_test(&rbio->stripes_pending))
1486 return;
1488 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1489 goto cleanup;
1492 * this will normally call finish_rmw to start our write
1493 * but if there are any failed stripes we'll reconstruct
1494 * from parity first
1496 validate_rbio_for_rmw(rbio);
1497 return;
1499 cleanup:
1501 rbio_orig_end_io(rbio, BLK_STS_IOERR);
1504 static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1506 btrfs_init_work(&rbio->work, btrfs_rmw_helper, rmw_work, NULL, NULL);
1507 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
1510 static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1512 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1513 read_rebuild_work, NULL, NULL);
1515 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
1519 * the stripe must be locked by the caller. It will
1520 * unlock after all the writes are done
1522 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1524 int bios_to_read = 0;
1525 struct bio_list bio_list;
1526 int ret;
1527 int pagenr;
1528 int stripe;
1529 struct bio *bio;
1531 bio_list_init(&bio_list);
1533 ret = alloc_rbio_pages(rbio);
1534 if (ret)
1535 goto cleanup;
1537 index_rbio_pages(rbio);
1539 atomic_set(&rbio->error, 0);
1541 * build a list of bios to read all the missing parts of this
1542 * stripe
1544 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1545 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1546 struct page *page;
1548 * we want to find all the pages missing from
1549 * the rbio and read them from the disk. If
1550 * page_in_rbio finds a page in the bio list
1551 * we don't need to read it off the stripe.
1553 page = page_in_rbio(rbio, stripe, pagenr, 1);
1554 if (page)
1555 continue;
1557 page = rbio_stripe_page(rbio, stripe, pagenr);
1559 * the bio cache may have handed us an uptodate
1560 * page. If so, be happy and use it
1562 if (PageUptodate(page))
1563 continue;
1565 ret = rbio_add_io_page(rbio, &bio_list, page,
1566 stripe, pagenr, rbio->stripe_len);
1567 if (ret)
1568 goto cleanup;
1572 bios_to_read = bio_list_size(&bio_list);
1573 if (!bios_to_read) {
1575 * this can happen if others have merged with
1576 * us, it means there is nothing left to read.
1577 * But if there are missing devices it may not be
1578 * safe to do the full stripe write yet.
1580 goto finish;
1584 * the bbio may be freed once we submit the last bio. Make sure
1585 * not to touch it after that
1587 atomic_set(&rbio->stripes_pending, bios_to_read);
1588 while (1) {
1589 bio = bio_list_pop(&bio_list);
1590 if (!bio)
1591 break;
1593 bio->bi_private = rbio;
1594 bio->bi_end_io = raid_rmw_end_io;
1595 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1597 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
1599 submit_bio(bio);
1601 /* the actual write will happen once the reads are done */
1602 return 0;
1604 cleanup:
1605 rbio_orig_end_io(rbio, BLK_STS_IOERR);
1607 while ((bio = bio_list_pop(&bio_list)))
1608 bio_put(bio);
1610 return -EIO;
1612 finish:
1613 validate_rbio_for_rmw(rbio);
1614 return 0;
1618 * if the upper layers pass in a full stripe, we thank them by only allocating
1619 * enough pages to hold the parity, and sending it all down quickly.
1621 static int full_stripe_write(struct btrfs_raid_bio *rbio)
1623 int ret;
1625 ret = alloc_rbio_parity_pages(rbio);
1626 if (ret) {
1627 __free_raid_bio(rbio);
1628 return ret;
1631 ret = lock_stripe_add(rbio);
1632 if (ret == 0)
1633 finish_rmw(rbio);
1634 return 0;
1638 * partial stripe writes get handed over to async helpers.
1639 * We're really hoping to merge a few more writes into this
1640 * rbio before calculating new parity
1642 static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1644 int ret;
1646 ret = lock_stripe_add(rbio);
1647 if (ret == 0)
1648 async_rmw_stripe(rbio);
1649 return 0;
1653 * sometimes while we were reading from the drive to
1654 * recalculate parity, enough new bios come into create
1655 * a full stripe. So we do a check here to see if we can
1656 * go directly to finish_rmw
1658 static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1660 /* head off into rmw land if we don't have a full stripe */
1661 if (!rbio_is_full(rbio))
1662 return partial_stripe_write(rbio);
1663 return full_stripe_write(rbio);
1667 * We use plugging call backs to collect full stripes.
1668 * Any time we get a partial stripe write while plugged
1669 * we collect it into a list. When the unplug comes down,
1670 * we sort the list by logical block number and merge
1671 * everything we can into the same rbios
1673 struct btrfs_plug_cb {
1674 struct blk_plug_cb cb;
1675 struct btrfs_fs_info *info;
1676 struct list_head rbio_list;
1677 struct btrfs_work work;
1681 * rbios on the plug list are sorted for easier merging.
1683 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1685 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1686 plug_list);
1687 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1688 plug_list);
1689 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1690 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1692 if (a_sector < b_sector)
1693 return -1;
1694 if (a_sector > b_sector)
1695 return 1;
1696 return 0;
1699 static void run_plug(struct btrfs_plug_cb *plug)
1701 struct btrfs_raid_bio *cur;
1702 struct btrfs_raid_bio *last = NULL;
1705 * sort our plug list then try to merge
1706 * everything we can in hopes of creating full
1707 * stripes.
1709 list_sort(NULL, &plug->rbio_list, plug_cmp);
1710 while (!list_empty(&plug->rbio_list)) {
1711 cur = list_entry(plug->rbio_list.next,
1712 struct btrfs_raid_bio, plug_list);
1713 list_del_init(&cur->plug_list);
1715 if (rbio_is_full(cur)) {
1716 /* we have a full stripe, send it down */
1717 full_stripe_write(cur);
1718 continue;
1720 if (last) {
1721 if (rbio_can_merge(last, cur)) {
1722 merge_rbio(last, cur);
1723 __free_raid_bio(cur);
1724 continue;
1727 __raid56_parity_write(last);
1729 last = cur;
1731 if (last) {
1732 __raid56_parity_write(last);
1734 kfree(plug);
1738 * if the unplug comes from schedule, we have to push the
1739 * work off to a helper thread
1741 static void unplug_work(struct btrfs_work *work)
1743 struct btrfs_plug_cb *plug;
1744 plug = container_of(work, struct btrfs_plug_cb, work);
1745 run_plug(plug);
1748 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1750 struct btrfs_plug_cb *plug;
1751 plug = container_of(cb, struct btrfs_plug_cb, cb);
1753 if (from_schedule) {
1754 btrfs_init_work(&plug->work, btrfs_rmw_helper,
1755 unplug_work, NULL, NULL);
1756 btrfs_queue_work(plug->info->rmw_workers,
1757 &plug->work);
1758 return;
1760 run_plug(plug);
1764 * our main entry point for writes from the rest of the FS.
1766 int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1767 struct btrfs_bio *bbio, u64 stripe_len)
1769 struct btrfs_raid_bio *rbio;
1770 struct btrfs_plug_cb *plug = NULL;
1771 struct blk_plug_cb *cb;
1772 int ret;
1774 rbio = alloc_rbio(fs_info, bbio, stripe_len);
1775 if (IS_ERR(rbio)) {
1776 btrfs_put_bbio(bbio);
1777 return PTR_ERR(rbio);
1779 bio_list_add(&rbio->bio_list, bio);
1780 rbio->bio_list_bytes = bio->bi_iter.bi_size;
1781 rbio->operation = BTRFS_RBIO_WRITE;
1783 btrfs_bio_counter_inc_noblocked(fs_info);
1784 rbio->generic_bio_cnt = 1;
1787 * don't plug on full rbios, just get them out the door
1788 * as quickly as we can
1790 if (rbio_is_full(rbio)) {
1791 ret = full_stripe_write(rbio);
1792 if (ret)
1793 btrfs_bio_counter_dec(fs_info);
1794 return ret;
1797 cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1798 if (cb) {
1799 plug = container_of(cb, struct btrfs_plug_cb, cb);
1800 if (!plug->info) {
1801 plug->info = fs_info;
1802 INIT_LIST_HEAD(&plug->rbio_list);
1804 list_add_tail(&rbio->plug_list, &plug->rbio_list);
1805 ret = 0;
1806 } else {
1807 ret = __raid56_parity_write(rbio);
1808 if (ret)
1809 btrfs_bio_counter_dec(fs_info);
1811 return ret;
1815 * all parity reconstruction happens here. We've read in everything
1816 * we can find from the drives and this does the heavy lifting of
1817 * sorting the good from the bad.
1819 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1821 int pagenr, stripe;
1822 void **pointers;
1823 int faila = -1, failb = -1;
1824 struct page *page;
1825 blk_status_t err;
1826 int i;
1828 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1829 if (!pointers) {
1830 err = BLK_STS_RESOURCE;
1831 goto cleanup_io;
1834 faila = rbio->faila;
1835 failb = rbio->failb;
1837 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1838 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1839 spin_lock_irq(&rbio->bio_list_lock);
1840 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1841 spin_unlock_irq(&rbio->bio_list_lock);
1844 index_rbio_pages(rbio);
1846 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1848 * Now we just use bitmap to mark the horizontal stripes in
1849 * which we have data when doing parity scrub.
1851 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1852 !test_bit(pagenr, rbio->dbitmap))
1853 continue;
1855 /* setup our array of pointers with pages
1856 * from each stripe
1858 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1860 * if we're rebuilding a read, we have to use
1861 * pages from the bio list
1863 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1864 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1865 (stripe == faila || stripe == failb)) {
1866 page = page_in_rbio(rbio, stripe, pagenr, 0);
1867 } else {
1868 page = rbio_stripe_page(rbio, stripe, pagenr);
1870 pointers[stripe] = kmap(page);
1873 /* all raid6 handling here */
1874 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1876 * single failure, rebuild from parity raid5
1877 * style
1879 if (failb < 0) {
1880 if (faila == rbio->nr_data) {
1882 * Just the P stripe has failed, without
1883 * a bad data or Q stripe.
1884 * TODO, we should redo the xor here.
1886 err = BLK_STS_IOERR;
1887 goto cleanup;
1890 * a single failure in raid6 is rebuilt
1891 * in the pstripe code below
1893 goto pstripe;
1896 /* make sure our ps and qs are in order */
1897 if (faila > failb) {
1898 int tmp = failb;
1899 failb = faila;
1900 faila = tmp;
1903 /* if the q stripe is failed, do a pstripe reconstruction
1904 * from the xors.
1905 * If both the q stripe and the P stripe are failed, we're
1906 * here due to a crc mismatch and we can't give them the
1907 * data they want
1909 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1910 if (rbio->bbio->raid_map[faila] ==
1911 RAID5_P_STRIPE) {
1912 err = BLK_STS_IOERR;
1913 goto cleanup;
1916 * otherwise we have one bad data stripe and
1917 * a good P stripe. raid5!
1919 goto pstripe;
1922 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1923 raid6_datap_recov(rbio->real_stripes,
1924 PAGE_SIZE, faila, pointers);
1925 } else {
1926 raid6_2data_recov(rbio->real_stripes,
1927 PAGE_SIZE, faila, failb,
1928 pointers);
1930 } else {
1931 void *p;
1933 /* rebuild from P stripe here (raid5 or raid6) */
1934 BUG_ON(failb != -1);
1935 pstripe:
1936 /* Copy parity block into failed block to start with */
1937 memcpy(pointers[faila],
1938 pointers[rbio->nr_data],
1939 PAGE_SIZE);
1941 /* rearrange the pointer array */
1942 p = pointers[faila];
1943 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1944 pointers[stripe] = pointers[stripe + 1];
1945 pointers[rbio->nr_data - 1] = p;
1947 /* xor in the rest */
1948 run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1950 /* if we're doing this rebuild as part of an rmw, go through
1951 * and set all of our private rbio pages in the
1952 * failed stripes as uptodate. This way finish_rmw will
1953 * know they can be trusted. If this was a read reconstruction,
1954 * other endio functions will fiddle the uptodate bits
1956 if (rbio->operation == BTRFS_RBIO_WRITE) {
1957 for (i = 0; i < rbio->stripe_npages; i++) {
1958 if (faila != -1) {
1959 page = rbio_stripe_page(rbio, faila, i);
1960 SetPageUptodate(page);
1962 if (failb != -1) {
1963 page = rbio_stripe_page(rbio, failb, i);
1964 SetPageUptodate(page);
1968 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1970 * if we're rebuilding a read, we have to use
1971 * pages from the bio list
1973 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1974 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1975 (stripe == faila || stripe == failb)) {
1976 page = page_in_rbio(rbio, stripe, pagenr, 0);
1977 } else {
1978 page = rbio_stripe_page(rbio, stripe, pagenr);
1980 kunmap(page);
1984 err = BLK_STS_OK;
1985 cleanup:
1986 kfree(pointers);
1988 cleanup_io:
1989 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1991 * - In case of two failures, where rbio->failb != -1:
1993 * Do not cache this rbio since the above read reconstruction
1994 * (raid6_datap_recov() or raid6_2data_recov()) may have
1995 * changed some content of stripes which are not identical to
1996 * on-disk content any more, otherwise, a later write/recover
1997 * may steal stripe_pages from this rbio and end up with
1998 * corruptions or rebuild failures.
2000 * - In case of single failure, where rbio->failb == -1:
2002 * Cache this rbio iff the above read reconstruction is
2003 * excuted without problems.
2005 if (err == BLK_STS_OK && rbio->failb < 0)
2006 cache_rbio_pages(rbio);
2007 else
2008 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2010 rbio_orig_end_io(rbio, err);
2011 } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
2012 rbio_orig_end_io(rbio, err);
2013 } else if (err == BLK_STS_OK) {
2014 rbio->faila = -1;
2015 rbio->failb = -1;
2017 if (rbio->operation == BTRFS_RBIO_WRITE)
2018 finish_rmw(rbio);
2019 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
2020 finish_parity_scrub(rbio, 0);
2021 else
2022 BUG();
2023 } else {
2024 rbio_orig_end_io(rbio, err);
2029 * This is called only for stripes we've read from disk to
2030 * reconstruct the parity.
2032 static void raid_recover_end_io(struct bio *bio)
2034 struct btrfs_raid_bio *rbio = bio->bi_private;
2037 * we only read stripe pages off the disk, set them
2038 * up to date if there were no errors
2040 if (bio->bi_status)
2041 fail_bio_stripe(rbio, bio);
2042 else
2043 set_bio_pages_uptodate(bio);
2044 bio_put(bio);
2046 if (!atomic_dec_and_test(&rbio->stripes_pending))
2047 return;
2049 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2050 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2051 else
2052 __raid_recover_end_io(rbio);
2056 * reads everything we need off the disk to reconstruct
2057 * the parity. endio handlers trigger final reconstruction
2058 * when the IO is done.
2060 * This is used both for reads from the higher layers and for
2061 * parity construction required to finish a rmw cycle.
2063 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2065 int bios_to_read = 0;
2066 struct bio_list bio_list;
2067 int ret;
2068 int pagenr;
2069 int stripe;
2070 struct bio *bio;
2072 bio_list_init(&bio_list);
2074 ret = alloc_rbio_pages(rbio);
2075 if (ret)
2076 goto cleanup;
2078 atomic_set(&rbio->error, 0);
2081 * read everything that hasn't failed. Thanks to the
2082 * stripe cache, it is possible that some or all of these
2083 * pages are going to be uptodate.
2085 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2086 if (rbio->faila == stripe || rbio->failb == stripe) {
2087 atomic_inc(&rbio->error);
2088 continue;
2091 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2092 struct page *p;
2095 * the rmw code may have already read this
2096 * page in
2098 p = rbio_stripe_page(rbio, stripe, pagenr);
2099 if (PageUptodate(p))
2100 continue;
2102 ret = rbio_add_io_page(rbio, &bio_list,
2103 rbio_stripe_page(rbio, stripe, pagenr),
2104 stripe, pagenr, rbio->stripe_len);
2105 if (ret < 0)
2106 goto cleanup;
2110 bios_to_read = bio_list_size(&bio_list);
2111 if (!bios_to_read) {
2113 * we might have no bios to read just because the pages
2114 * were up to date, or we might have no bios to read because
2115 * the devices were gone.
2117 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2118 __raid_recover_end_io(rbio);
2119 goto out;
2120 } else {
2121 goto cleanup;
2126 * the bbio may be freed once we submit the last bio. Make sure
2127 * not to touch it after that
2129 atomic_set(&rbio->stripes_pending, bios_to_read);
2130 while (1) {
2131 bio = bio_list_pop(&bio_list);
2132 if (!bio)
2133 break;
2135 bio->bi_private = rbio;
2136 bio->bi_end_io = raid_recover_end_io;
2137 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2139 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2141 submit_bio(bio);
2143 out:
2144 return 0;
2146 cleanup:
2147 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2148 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2149 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2151 while ((bio = bio_list_pop(&bio_list)))
2152 bio_put(bio);
2154 return -EIO;
2158 * the main entry point for reads from the higher layers. This
2159 * is really only called when the normal read path had a failure,
2160 * so we assume the bio they send down corresponds to a failed part
2161 * of the drive.
2163 int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2164 struct btrfs_bio *bbio, u64 stripe_len,
2165 int mirror_num, int generic_io)
2167 struct btrfs_raid_bio *rbio;
2168 int ret;
2170 if (generic_io) {
2171 ASSERT(bbio->mirror_num == mirror_num);
2172 btrfs_io_bio(bio)->mirror_num = mirror_num;
2175 rbio = alloc_rbio(fs_info, bbio, stripe_len);
2176 if (IS_ERR(rbio)) {
2177 if (generic_io)
2178 btrfs_put_bbio(bbio);
2179 return PTR_ERR(rbio);
2182 rbio->operation = BTRFS_RBIO_READ_REBUILD;
2183 bio_list_add(&rbio->bio_list, bio);
2184 rbio->bio_list_bytes = bio->bi_iter.bi_size;
2186 rbio->faila = find_logical_bio_stripe(rbio, bio);
2187 if (rbio->faila == -1) {
2188 btrfs_warn(fs_info,
2189 "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2190 __func__, (u64)bio->bi_iter.bi_sector << 9,
2191 (u64)bio->bi_iter.bi_size, bbio->map_type);
2192 if (generic_io)
2193 btrfs_put_bbio(bbio);
2194 kfree(rbio);
2195 return -EIO;
2198 if (generic_io) {
2199 btrfs_bio_counter_inc_noblocked(fs_info);
2200 rbio->generic_bio_cnt = 1;
2201 } else {
2202 btrfs_get_bbio(bbio);
2206 * Loop retry:
2207 * for 'mirror == 2', reconstruct from all other stripes.
2208 * for 'mirror_num > 2', select a stripe to fail on every retry.
2210 if (mirror_num > 2) {
2212 * 'mirror == 3' is to fail the p stripe and
2213 * reconstruct from the q stripe. 'mirror > 3' is to
2214 * fail a data stripe and reconstruct from p+q stripe.
2216 rbio->failb = rbio->real_stripes - (mirror_num - 1);
2217 ASSERT(rbio->failb > 0);
2218 if (rbio->failb <= rbio->faila)
2219 rbio->failb--;
2222 ret = lock_stripe_add(rbio);
2225 * __raid56_parity_recover will end the bio with
2226 * any errors it hits. We don't want to return
2227 * its error value up the stack because our caller
2228 * will end up calling bio_endio with any nonzero
2229 * return
2231 if (ret == 0)
2232 __raid56_parity_recover(rbio);
2234 * our rbio has been added to the list of
2235 * rbios that will be handled after the
2236 * currently lock owner is done
2238 return 0;
2242 static void rmw_work(struct btrfs_work *work)
2244 struct btrfs_raid_bio *rbio;
2246 rbio = container_of(work, struct btrfs_raid_bio, work);
2247 raid56_rmw_stripe(rbio);
2250 static void read_rebuild_work(struct btrfs_work *work)
2252 struct btrfs_raid_bio *rbio;
2254 rbio = container_of(work, struct btrfs_raid_bio, work);
2255 __raid56_parity_recover(rbio);
2259 * The following code is used to scrub/replace the parity stripe
2261 * Caller must have already increased bio_counter for getting @bbio.
2263 * Note: We need make sure all the pages that add into the scrub/replace
2264 * raid bio are correct and not be changed during the scrub/replace. That
2265 * is those pages just hold metadata or file data with checksum.
2268 struct btrfs_raid_bio *
2269 raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2270 struct btrfs_bio *bbio, u64 stripe_len,
2271 struct btrfs_device *scrub_dev,
2272 unsigned long *dbitmap, int stripe_nsectors)
2274 struct btrfs_raid_bio *rbio;
2275 int i;
2277 rbio = alloc_rbio(fs_info, bbio, stripe_len);
2278 if (IS_ERR(rbio))
2279 return NULL;
2280 bio_list_add(&rbio->bio_list, bio);
2282 * This is a special bio which is used to hold the completion handler
2283 * and make the scrub rbio is similar to the other types
2285 ASSERT(!bio->bi_iter.bi_size);
2286 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2289 * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted
2290 * to the end position, so this search can start from the first parity
2291 * stripe.
2293 for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2294 if (bbio->stripes[i].dev == scrub_dev) {
2295 rbio->scrubp = i;
2296 break;
2299 ASSERT(i < rbio->real_stripes);
2301 /* Now we just support the sectorsize equals to page size */
2302 ASSERT(fs_info->sectorsize == PAGE_SIZE);
2303 ASSERT(rbio->stripe_npages == stripe_nsectors);
2304 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2307 * We have already increased bio_counter when getting bbio, record it
2308 * so we can free it at rbio_orig_end_io().
2310 rbio->generic_bio_cnt = 1;
2312 return rbio;
2315 /* Used for both parity scrub and missing. */
2316 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2317 u64 logical)
2319 int stripe_offset;
2320 int index;
2322 ASSERT(logical >= rbio->bbio->raid_map[0]);
2323 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2324 rbio->stripe_len * rbio->nr_data);
2325 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2326 index = stripe_offset >> PAGE_SHIFT;
2327 rbio->bio_pages[index] = page;
2331 * We just scrub the parity that we have correct data on the same horizontal,
2332 * so we needn't allocate all pages for all the stripes.
2334 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2336 int i;
2337 int bit;
2338 int index;
2339 struct page *page;
2341 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2342 for (i = 0; i < rbio->real_stripes; i++) {
2343 index = i * rbio->stripe_npages + bit;
2344 if (rbio->stripe_pages[index])
2345 continue;
2347 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2348 if (!page)
2349 return -ENOMEM;
2350 rbio->stripe_pages[index] = page;
2353 return 0;
2356 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2357 int need_check)
2359 struct btrfs_bio *bbio = rbio->bbio;
2360 void *pointers[rbio->real_stripes];
2361 DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
2362 int nr_data = rbio->nr_data;
2363 int stripe;
2364 int pagenr;
2365 int p_stripe = -1;
2366 int q_stripe = -1;
2367 struct page *p_page = NULL;
2368 struct page *q_page = NULL;
2369 struct bio_list bio_list;
2370 struct bio *bio;
2371 int is_replace = 0;
2372 int ret;
2374 bio_list_init(&bio_list);
2376 if (rbio->real_stripes - rbio->nr_data == 1) {
2377 p_stripe = rbio->real_stripes - 1;
2378 } else if (rbio->real_stripes - rbio->nr_data == 2) {
2379 p_stripe = rbio->real_stripes - 2;
2380 q_stripe = rbio->real_stripes - 1;
2381 } else {
2382 BUG();
2385 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2386 is_replace = 1;
2387 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2391 * Because the higher layers(scrubber) are unlikely to
2392 * use this area of the disk again soon, so don't cache
2393 * it.
2395 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2397 if (!need_check)
2398 goto writeback;
2400 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2401 if (!p_page)
2402 goto cleanup;
2403 SetPageUptodate(p_page);
2405 if (q_stripe != -1) {
2406 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2407 if (!q_page) {
2408 __free_page(p_page);
2409 goto cleanup;
2411 SetPageUptodate(q_page);
2414 atomic_set(&rbio->error, 0);
2416 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2417 struct page *p;
2418 void *parity;
2419 /* first collect one page from each data stripe */
2420 for (stripe = 0; stripe < nr_data; stripe++) {
2421 p = page_in_rbio(rbio, stripe, pagenr, 0);
2422 pointers[stripe] = kmap(p);
2425 /* then add the parity stripe */
2426 pointers[stripe++] = kmap(p_page);
2428 if (q_stripe != -1) {
2431 * raid6, add the qstripe and call the
2432 * library function to fill in our p/q
2434 pointers[stripe++] = kmap(q_page);
2436 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2437 pointers);
2438 } else {
2439 /* raid5 */
2440 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2441 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2444 /* Check scrubbing parity and repair it */
2445 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2446 parity = kmap(p);
2447 if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2448 memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE);
2449 else
2450 /* Parity is right, needn't writeback */
2451 bitmap_clear(rbio->dbitmap, pagenr, 1);
2452 kunmap(p);
2454 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
2455 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2458 __free_page(p_page);
2459 if (q_page)
2460 __free_page(q_page);
2462 writeback:
2464 * time to start writing. Make bios for everything from the
2465 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2466 * everything else.
2468 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2469 struct page *page;
2471 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2472 ret = rbio_add_io_page(rbio, &bio_list,
2473 page, rbio->scrubp, pagenr, rbio->stripe_len);
2474 if (ret)
2475 goto cleanup;
2478 if (!is_replace)
2479 goto submit_write;
2481 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2482 struct page *page;
2484 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2485 ret = rbio_add_io_page(rbio, &bio_list, page,
2486 bbio->tgtdev_map[rbio->scrubp],
2487 pagenr, rbio->stripe_len);
2488 if (ret)
2489 goto cleanup;
2492 submit_write:
2493 nr_data = bio_list_size(&bio_list);
2494 if (!nr_data) {
2495 /* Every parity is right */
2496 rbio_orig_end_io(rbio, BLK_STS_OK);
2497 return;
2500 atomic_set(&rbio->stripes_pending, nr_data);
2502 while (1) {
2503 bio = bio_list_pop(&bio_list);
2504 if (!bio)
2505 break;
2507 bio->bi_private = rbio;
2508 bio->bi_end_io = raid_write_end_io;
2509 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2511 submit_bio(bio);
2513 return;
2515 cleanup:
2516 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2518 while ((bio = bio_list_pop(&bio_list)))
2519 bio_put(bio);
2522 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2524 if (stripe >= 0 && stripe < rbio->nr_data)
2525 return 1;
2526 return 0;
2530 * While we're doing the parity check and repair, we could have errors
2531 * in reading pages off the disk. This checks for errors and if we're
2532 * not able to read the page it'll trigger parity reconstruction. The
2533 * parity scrub will be finished after we've reconstructed the failed
2534 * stripes
2536 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2538 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2539 goto cleanup;
2541 if (rbio->faila >= 0 || rbio->failb >= 0) {
2542 int dfail = 0, failp = -1;
2544 if (is_data_stripe(rbio, rbio->faila))
2545 dfail++;
2546 else if (is_parity_stripe(rbio->faila))
2547 failp = rbio->faila;
2549 if (is_data_stripe(rbio, rbio->failb))
2550 dfail++;
2551 else if (is_parity_stripe(rbio->failb))
2552 failp = rbio->failb;
2555 * Because we can not use a scrubbing parity to repair
2556 * the data, so the capability of the repair is declined.
2557 * (In the case of RAID5, we can not repair anything)
2559 if (dfail > rbio->bbio->max_errors - 1)
2560 goto cleanup;
2563 * If all data is good, only parity is correctly, just
2564 * repair the parity.
2566 if (dfail == 0) {
2567 finish_parity_scrub(rbio, 0);
2568 return;
2572 * Here means we got one corrupted data stripe and one
2573 * corrupted parity on RAID6, if the corrupted parity
2574 * is scrubbing parity, luckily, use the other one to repair
2575 * the data, or we can not repair the data stripe.
2577 if (failp != rbio->scrubp)
2578 goto cleanup;
2580 __raid_recover_end_io(rbio);
2581 } else {
2582 finish_parity_scrub(rbio, 1);
2584 return;
2586 cleanup:
2587 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2591 * end io for the read phase of the rmw cycle. All the bios here are physical
2592 * stripe bios we've read from the disk so we can recalculate the parity of the
2593 * stripe.
2595 * This will usually kick off finish_rmw once all the bios are read in, but it
2596 * may trigger parity reconstruction if we had any errors along the way
2598 static void raid56_parity_scrub_end_io(struct bio *bio)
2600 struct btrfs_raid_bio *rbio = bio->bi_private;
2602 if (bio->bi_status)
2603 fail_bio_stripe(rbio, bio);
2604 else
2605 set_bio_pages_uptodate(bio);
2607 bio_put(bio);
2609 if (!atomic_dec_and_test(&rbio->stripes_pending))
2610 return;
2613 * this will normally call finish_rmw to start our write
2614 * but if there are any failed stripes we'll reconstruct
2615 * from parity first
2617 validate_rbio_for_parity_scrub(rbio);
2620 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2622 int bios_to_read = 0;
2623 struct bio_list bio_list;
2624 int ret;
2625 int pagenr;
2626 int stripe;
2627 struct bio *bio;
2629 bio_list_init(&bio_list);
2631 ret = alloc_rbio_essential_pages(rbio);
2632 if (ret)
2633 goto cleanup;
2635 atomic_set(&rbio->error, 0);
2637 * build a list of bios to read all the missing parts of this
2638 * stripe
2640 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2641 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2642 struct page *page;
2644 * we want to find all the pages missing from
2645 * the rbio and read them from the disk. If
2646 * page_in_rbio finds a page in the bio list
2647 * we don't need to read it off the stripe.
2649 page = page_in_rbio(rbio, stripe, pagenr, 1);
2650 if (page)
2651 continue;
2653 page = rbio_stripe_page(rbio, stripe, pagenr);
2655 * the bio cache may have handed us an uptodate
2656 * page. If so, be happy and use it
2658 if (PageUptodate(page))
2659 continue;
2661 ret = rbio_add_io_page(rbio, &bio_list, page,
2662 stripe, pagenr, rbio->stripe_len);
2663 if (ret)
2664 goto cleanup;
2668 bios_to_read = bio_list_size(&bio_list);
2669 if (!bios_to_read) {
2671 * this can happen if others have merged with
2672 * us, it means there is nothing left to read.
2673 * But if there are missing devices it may not be
2674 * safe to do the full stripe write yet.
2676 goto finish;
2680 * the bbio may be freed once we submit the last bio. Make sure
2681 * not to touch it after that
2683 atomic_set(&rbio->stripes_pending, bios_to_read);
2684 while (1) {
2685 bio = bio_list_pop(&bio_list);
2686 if (!bio)
2687 break;
2689 bio->bi_private = rbio;
2690 bio->bi_end_io = raid56_parity_scrub_end_io;
2691 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2693 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2695 submit_bio(bio);
2697 /* the actual write will happen once the reads are done */
2698 return;
2700 cleanup:
2701 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2703 while ((bio = bio_list_pop(&bio_list)))
2704 bio_put(bio);
2706 return;
2708 finish:
2709 validate_rbio_for_parity_scrub(rbio);
2712 static void scrub_parity_work(struct btrfs_work *work)
2714 struct btrfs_raid_bio *rbio;
2716 rbio = container_of(work, struct btrfs_raid_bio, work);
2717 raid56_parity_scrub_stripe(rbio);
2720 static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2722 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2723 scrub_parity_work, NULL, NULL);
2725 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2728 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2730 if (!lock_stripe_add(rbio))
2731 async_scrub_parity(rbio);
2734 /* The following code is used for dev replace of a missing RAID 5/6 device. */
2736 struct btrfs_raid_bio *
2737 raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2738 struct btrfs_bio *bbio, u64 length)
2740 struct btrfs_raid_bio *rbio;
2742 rbio = alloc_rbio(fs_info, bbio, length);
2743 if (IS_ERR(rbio))
2744 return NULL;
2746 rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2747 bio_list_add(&rbio->bio_list, bio);
2749 * This is a special bio which is used to hold the completion handler
2750 * and make the scrub rbio is similar to the other types
2752 ASSERT(!bio->bi_iter.bi_size);
2754 rbio->faila = find_logical_bio_stripe(rbio, bio);
2755 if (rbio->faila == -1) {
2756 BUG();
2757 kfree(rbio);
2758 return NULL;
2762 * When we get bbio, we have already increased bio_counter, record it
2763 * so we can free it at rbio_orig_end_io()
2765 rbio->generic_bio_cnt = 1;
2767 return rbio;
2770 static void missing_raid56_work(struct btrfs_work *work)
2772 struct btrfs_raid_bio *rbio;
2774 rbio = container_of(work, struct btrfs_raid_bio, work);
2775 __raid56_parity_recover(rbio);
2778 static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2780 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2781 missing_raid56_work, NULL, NULL);
2783 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2786 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2788 if (!lock_stripe_add(rbio))
2789 async_missing_raid56(rbio);