2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include <linux/iversion.h>
27 #include "print-tree.h"
30 #include "compression.h"
33 /* magic values for the inode_only field in btrfs_log_inode:
35 * LOG_INODE_ALL means to log everything
36 * LOG_INODE_EXISTS means to log just enough to recreate the inode
39 #define LOG_INODE_ALL 0
40 #define LOG_INODE_EXISTS 1
41 #define LOG_OTHER_INODE 2
44 * directory trouble cases
46 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
47 * log, we must force a full commit before doing an fsync of the directory
48 * where the unlink was done.
49 * ---> record transid of last unlink/rename per directory
53 * rename foo/some_dir foo2/some_dir
55 * fsync foo/some_dir/some_file
57 * The fsync above will unlink the original some_dir without recording
58 * it in its new location (foo2). After a crash, some_dir will be gone
59 * unless the fsync of some_file forces a full commit
61 * 2) we must log any new names for any file or dir that is in the fsync
62 * log. ---> check inode while renaming/linking.
64 * 2a) we must log any new names for any file or dir during rename
65 * when the directory they are being removed from was logged.
66 * ---> check inode and old parent dir during rename
68 * 2a is actually the more important variant. With the extra logging
69 * a crash might unlink the old name without recreating the new one
71 * 3) after a crash, we must go through any directories with a link count
72 * of zero and redo the rm -rf
79 * The directory f1 was fully removed from the FS, but fsync was never
80 * called on f1, only its parent dir. After a crash the rm -rf must
81 * be replayed. This must be able to recurse down the entire
82 * directory tree. The inode link count fixup code takes care of the
87 * stages for the tree walking. The first
88 * stage (0) is to only pin down the blocks we find
89 * the second stage (1) is to make sure that all the inodes
90 * we find in the log are created in the subvolume.
92 * The last stage is to deal with directories and links and extents
93 * and all the other fun semantics
95 #define LOG_WALK_PIN_ONLY 0
96 #define LOG_WALK_REPLAY_INODES 1
97 #define LOG_WALK_REPLAY_DIR_INDEX 2
98 #define LOG_WALK_REPLAY_ALL 3
100 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
101 struct btrfs_root
*root
, struct btrfs_inode
*inode
,
105 struct btrfs_log_ctx
*ctx
);
106 static int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
107 struct btrfs_root
*root
,
108 struct btrfs_path
*path
, u64 objectid
);
109 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
110 struct btrfs_root
*root
,
111 struct btrfs_root
*log
,
112 struct btrfs_path
*path
,
113 u64 dirid
, int del_all
);
116 * tree logging is a special write ahead log used to make sure that
117 * fsyncs and O_SYNCs can happen without doing full tree commits.
119 * Full tree commits are expensive because they require commonly
120 * modified blocks to be recowed, creating many dirty pages in the
121 * extent tree an 4x-6x higher write load than ext3.
123 * Instead of doing a tree commit on every fsync, we use the
124 * key ranges and transaction ids to find items for a given file or directory
125 * that have changed in this transaction. Those items are copied into
126 * a special tree (one per subvolume root), that tree is written to disk
127 * and then the fsync is considered complete.
129 * After a crash, items are copied out of the log-tree back into the
130 * subvolume tree. Any file data extents found are recorded in the extent
131 * allocation tree, and the log-tree freed.
133 * The log tree is read three times, once to pin down all the extents it is
134 * using in ram and once, once to create all the inodes logged in the tree
135 * and once to do all the other items.
139 * start a sub transaction and setup the log tree
140 * this increments the log tree writer count to make the people
141 * syncing the tree wait for us to finish
143 static int start_log_trans(struct btrfs_trans_handle
*trans
,
144 struct btrfs_root
*root
,
145 struct btrfs_log_ctx
*ctx
)
147 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
150 mutex_lock(&root
->log_mutex
);
152 if (root
->log_root
) {
153 if (btrfs_need_log_full_commit(fs_info
, trans
)) {
158 if (!root
->log_start_pid
) {
159 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
160 root
->log_start_pid
= current
->pid
;
161 } else if (root
->log_start_pid
!= current
->pid
) {
162 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
165 mutex_lock(&fs_info
->tree_log_mutex
);
166 if (!fs_info
->log_root_tree
)
167 ret
= btrfs_init_log_root_tree(trans
, fs_info
);
168 mutex_unlock(&fs_info
->tree_log_mutex
);
172 ret
= btrfs_add_log_tree(trans
, root
);
176 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
177 root
->log_start_pid
= current
->pid
;
180 atomic_inc(&root
->log_batch
);
181 atomic_inc(&root
->log_writers
);
183 int index
= root
->log_transid
% 2;
184 list_add_tail(&ctx
->list
, &root
->log_ctxs
[index
]);
185 ctx
->log_transid
= root
->log_transid
;
189 mutex_unlock(&root
->log_mutex
);
194 * returns 0 if there was a log transaction running and we were able
195 * to join, or returns -ENOENT if there were not transactions
198 static int join_running_log_trans(struct btrfs_root
*root
)
206 mutex_lock(&root
->log_mutex
);
207 if (root
->log_root
) {
209 atomic_inc(&root
->log_writers
);
211 mutex_unlock(&root
->log_mutex
);
216 * This either makes the current running log transaction wait
217 * until you call btrfs_end_log_trans() or it makes any future
218 * log transactions wait until you call btrfs_end_log_trans()
220 int btrfs_pin_log_trans(struct btrfs_root
*root
)
224 mutex_lock(&root
->log_mutex
);
225 atomic_inc(&root
->log_writers
);
226 mutex_unlock(&root
->log_mutex
);
231 * indicate we're done making changes to the log tree
232 * and wake up anyone waiting to do a sync
234 void btrfs_end_log_trans(struct btrfs_root
*root
)
236 if (atomic_dec_and_test(&root
->log_writers
)) {
238 * Implicit memory barrier after atomic_dec_and_test
240 if (waitqueue_active(&root
->log_writer_wait
))
241 wake_up(&root
->log_writer_wait
);
247 * the walk control struct is used to pass state down the chain when
248 * processing the log tree. The stage field tells us which part
249 * of the log tree processing we are currently doing. The others
250 * are state fields used for that specific part
252 struct walk_control
{
253 /* should we free the extent on disk when done? This is used
254 * at transaction commit time while freeing a log tree
258 /* should we write out the extent buffer? This is used
259 * while flushing the log tree to disk during a sync
263 /* should we wait for the extent buffer io to finish? Also used
264 * while flushing the log tree to disk for a sync
268 /* pin only walk, we record which extents on disk belong to the
273 /* what stage of the replay code we're currently in */
276 /* the root we are currently replaying */
277 struct btrfs_root
*replay_dest
;
279 /* the trans handle for the current replay */
280 struct btrfs_trans_handle
*trans
;
282 /* the function that gets used to process blocks we find in the
283 * tree. Note the extent_buffer might not be up to date when it is
284 * passed in, and it must be checked or read if you need the data
287 int (*process_func
)(struct btrfs_root
*log
, struct extent_buffer
*eb
,
288 struct walk_control
*wc
, u64 gen
);
292 * process_func used to pin down extents, write them or wait on them
294 static int process_one_buffer(struct btrfs_root
*log
,
295 struct extent_buffer
*eb
,
296 struct walk_control
*wc
, u64 gen
)
298 struct btrfs_fs_info
*fs_info
= log
->fs_info
;
302 * If this fs is mixed then we need to be able to process the leaves to
303 * pin down any logged extents, so we have to read the block.
305 if (btrfs_fs_incompat(fs_info
, MIXED_GROUPS
)) {
306 ret
= btrfs_read_buffer(eb
, gen
);
312 ret
= btrfs_pin_extent_for_log_replay(fs_info
, eb
->start
,
315 if (!ret
&& btrfs_buffer_uptodate(eb
, gen
, 0)) {
316 if (wc
->pin
&& btrfs_header_level(eb
) == 0)
317 ret
= btrfs_exclude_logged_extents(fs_info
, eb
);
319 btrfs_write_tree_block(eb
);
321 btrfs_wait_tree_block_writeback(eb
);
327 * Item overwrite used by replay and tree logging. eb, slot and key all refer
328 * to the src data we are copying out.
330 * root is the tree we are copying into, and path is a scratch
331 * path for use in this function (it should be released on entry and
332 * will be released on exit).
334 * If the key is already in the destination tree the existing item is
335 * overwritten. If the existing item isn't big enough, it is extended.
336 * If it is too large, it is truncated.
338 * If the key isn't in the destination yet, a new item is inserted.
340 static noinline
int overwrite_item(struct btrfs_trans_handle
*trans
,
341 struct btrfs_root
*root
,
342 struct btrfs_path
*path
,
343 struct extent_buffer
*eb
, int slot
,
344 struct btrfs_key
*key
)
346 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
349 u64 saved_i_size
= 0;
350 int save_old_i_size
= 0;
351 unsigned long src_ptr
;
352 unsigned long dst_ptr
;
353 int overwrite_root
= 0;
354 bool inode_item
= key
->type
== BTRFS_INODE_ITEM_KEY
;
356 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
359 item_size
= btrfs_item_size_nr(eb
, slot
);
360 src_ptr
= btrfs_item_ptr_offset(eb
, slot
);
362 /* look for the key in the destination tree */
363 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
370 u32 dst_size
= btrfs_item_size_nr(path
->nodes
[0],
372 if (dst_size
!= item_size
)
375 if (item_size
== 0) {
376 btrfs_release_path(path
);
379 dst_copy
= kmalloc(item_size
, GFP_NOFS
);
380 src_copy
= kmalloc(item_size
, GFP_NOFS
);
381 if (!dst_copy
|| !src_copy
) {
382 btrfs_release_path(path
);
388 read_extent_buffer(eb
, src_copy
, src_ptr
, item_size
);
390 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
391 read_extent_buffer(path
->nodes
[0], dst_copy
, dst_ptr
,
393 ret
= memcmp(dst_copy
, src_copy
, item_size
);
398 * they have the same contents, just return, this saves
399 * us from cowing blocks in the destination tree and doing
400 * extra writes that may not have been done by a previous
404 btrfs_release_path(path
);
409 * We need to load the old nbytes into the inode so when we
410 * replay the extents we've logged we get the right nbytes.
413 struct btrfs_inode_item
*item
;
417 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
418 struct btrfs_inode_item
);
419 nbytes
= btrfs_inode_nbytes(path
->nodes
[0], item
);
420 item
= btrfs_item_ptr(eb
, slot
,
421 struct btrfs_inode_item
);
422 btrfs_set_inode_nbytes(eb
, item
, nbytes
);
425 * If this is a directory we need to reset the i_size to
426 * 0 so that we can set it up properly when replaying
427 * the rest of the items in this log.
429 mode
= btrfs_inode_mode(eb
, item
);
431 btrfs_set_inode_size(eb
, item
, 0);
433 } else if (inode_item
) {
434 struct btrfs_inode_item
*item
;
438 * New inode, set nbytes to 0 so that the nbytes comes out
439 * properly when we replay the extents.
441 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_item
);
442 btrfs_set_inode_nbytes(eb
, item
, 0);
445 * If this is a directory we need to reset the i_size to 0 so
446 * that we can set it up properly when replaying the rest of
447 * the items in this log.
449 mode
= btrfs_inode_mode(eb
, item
);
451 btrfs_set_inode_size(eb
, item
, 0);
454 btrfs_release_path(path
);
455 /* try to insert the key into the destination tree */
456 path
->skip_release_on_error
= 1;
457 ret
= btrfs_insert_empty_item(trans
, root
, path
,
459 path
->skip_release_on_error
= 0;
461 /* make sure any existing item is the correct size */
462 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
) {
464 found_size
= btrfs_item_size_nr(path
->nodes
[0],
466 if (found_size
> item_size
)
467 btrfs_truncate_item(fs_info
, path
, item_size
, 1);
468 else if (found_size
< item_size
)
469 btrfs_extend_item(fs_info
, path
,
470 item_size
- found_size
);
474 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0],
477 /* don't overwrite an existing inode if the generation number
478 * was logged as zero. This is done when the tree logging code
479 * is just logging an inode to make sure it exists after recovery.
481 * Also, don't overwrite i_size on directories during replay.
482 * log replay inserts and removes directory items based on the
483 * state of the tree found in the subvolume, and i_size is modified
486 if (key
->type
== BTRFS_INODE_ITEM_KEY
&& ret
== -EEXIST
) {
487 struct btrfs_inode_item
*src_item
;
488 struct btrfs_inode_item
*dst_item
;
490 src_item
= (struct btrfs_inode_item
*)src_ptr
;
491 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
493 if (btrfs_inode_generation(eb
, src_item
) == 0) {
494 struct extent_buffer
*dst_eb
= path
->nodes
[0];
495 const u64 ino_size
= btrfs_inode_size(eb
, src_item
);
498 * For regular files an ino_size == 0 is used only when
499 * logging that an inode exists, as part of a directory
500 * fsync, and the inode wasn't fsynced before. In this
501 * case don't set the size of the inode in the fs/subvol
502 * tree, otherwise we would be throwing valid data away.
504 if (S_ISREG(btrfs_inode_mode(eb
, src_item
)) &&
505 S_ISREG(btrfs_inode_mode(dst_eb
, dst_item
)) &&
507 struct btrfs_map_token token
;
509 btrfs_init_map_token(&token
);
510 btrfs_set_token_inode_size(dst_eb
, dst_item
,
516 if (overwrite_root
&&
517 S_ISDIR(btrfs_inode_mode(eb
, src_item
)) &&
518 S_ISDIR(btrfs_inode_mode(path
->nodes
[0], dst_item
))) {
520 saved_i_size
= btrfs_inode_size(path
->nodes
[0],
525 copy_extent_buffer(path
->nodes
[0], eb
, dst_ptr
,
528 if (save_old_i_size
) {
529 struct btrfs_inode_item
*dst_item
;
530 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
531 btrfs_set_inode_size(path
->nodes
[0], dst_item
, saved_i_size
);
534 /* make sure the generation is filled in */
535 if (key
->type
== BTRFS_INODE_ITEM_KEY
) {
536 struct btrfs_inode_item
*dst_item
;
537 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
538 if (btrfs_inode_generation(path
->nodes
[0], dst_item
) == 0) {
539 btrfs_set_inode_generation(path
->nodes
[0], dst_item
,
544 btrfs_mark_buffer_dirty(path
->nodes
[0]);
545 btrfs_release_path(path
);
550 * simple helper to read an inode off the disk from a given root
551 * This can only be called for subvolume roots and not for the log
553 static noinline
struct inode
*read_one_inode(struct btrfs_root
*root
,
556 struct btrfs_key key
;
559 key
.objectid
= objectid
;
560 key
.type
= BTRFS_INODE_ITEM_KEY
;
562 inode
= btrfs_iget(root
->fs_info
->sb
, &key
, root
, NULL
);
565 } else if (is_bad_inode(inode
)) {
572 /* replays a single extent in 'eb' at 'slot' with 'key' into the
573 * subvolume 'root'. path is released on entry and should be released
576 * extents in the log tree have not been allocated out of the extent
577 * tree yet. So, this completes the allocation, taking a reference
578 * as required if the extent already exists or creating a new extent
579 * if it isn't in the extent allocation tree yet.
581 * The extent is inserted into the file, dropping any existing extents
582 * from the file that overlap the new one.
584 static noinline
int replay_one_extent(struct btrfs_trans_handle
*trans
,
585 struct btrfs_root
*root
,
586 struct btrfs_path
*path
,
587 struct extent_buffer
*eb
, int slot
,
588 struct btrfs_key
*key
)
590 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
593 u64 start
= key
->offset
;
595 struct btrfs_file_extent_item
*item
;
596 struct inode
*inode
= NULL
;
600 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
601 found_type
= btrfs_file_extent_type(eb
, item
);
603 if (found_type
== BTRFS_FILE_EXTENT_REG
||
604 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
605 nbytes
= btrfs_file_extent_num_bytes(eb
, item
);
606 extent_end
= start
+ nbytes
;
609 * We don't add to the inodes nbytes if we are prealloc or a
612 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
614 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
615 size
= btrfs_file_extent_inline_len(eb
, slot
, item
);
616 nbytes
= btrfs_file_extent_ram_bytes(eb
, item
);
617 extent_end
= ALIGN(start
+ size
,
618 fs_info
->sectorsize
);
624 inode
= read_one_inode(root
, key
->objectid
);
631 * first check to see if we already have this extent in the
632 * file. This must be done before the btrfs_drop_extents run
633 * so we don't try to drop this extent.
635 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
636 btrfs_ino(BTRFS_I(inode
)), start
, 0);
639 (found_type
== BTRFS_FILE_EXTENT_REG
||
640 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)) {
641 struct btrfs_file_extent_item cmp1
;
642 struct btrfs_file_extent_item cmp2
;
643 struct btrfs_file_extent_item
*existing
;
644 struct extent_buffer
*leaf
;
646 leaf
= path
->nodes
[0];
647 existing
= btrfs_item_ptr(leaf
, path
->slots
[0],
648 struct btrfs_file_extent_item
);
650 read_extent_buffer(eb
, &cmp1
, (unsigned long)item
,
652 read_extent_buffer(leaf
, &cmp2
, (unsigned long)existing
,
656 * we already have a pointer to this exact extent,
657 * we don't have to do anything
659 if (memcmp(&cmp1
, &cmp2
, sizeof(cmp1
)) == 0) {
660 btrfs_release_path(path
);
664 btrfs_release_path(path
);
666 /* drop any overlapping extents */
667 ret
= btrfs_drop_extents(trans
, root
, inode
, start
, extent_end
, 1);
671 if (found_type
== BTRFS_FILE_EXTENT_REG
||
672 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
674 unsigned long dest_offset
;
675 struct btrfs_key ins
;
677 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0 &&
678 btrfs_fs_incompat(fs_info
, NO_HOLES
))
681 ret
= btrfs_insert_empty_item(trans
, root
, path
, key
,
685 dest_offset
= btrfs_item_ptr_offset(path
->nodes
[0],
687 copy_extent_buffer(path
->nodes
[0], eb
, dest_offset
,
688 (unsigned long)item
, sizeof(*item
));
690 ins
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
691 ins
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
692 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
693 offset
= key
->offset
- btrfs_file_extent_offset(eb
, item
);
696 * Manually record dirty extent, as here we did a shallow
697 * file extent item copy and skip normal backref update,
698 * but modifying extent tree all by ourselves.
699 * So need to manually record dirty extent for qgroup,
700 * as the owner of the file extent changed from log tree
701 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
703 ret
= btrfs_qgroup_trace_extent(trans
, fs_info
,
704 btrfs_file_extent_disk_bytenr(eb
, item
),
705 btrfs_file_extent_disk_num_bytes(eb
, item
),
710 if (ins
.objectid
> 0) {
713 LIST_HEAD(ordered_sums
);
715 * is this extent already allocated in the extent
716 * allocation tree? If so, just add a reference
718 ret
= btrfs_lookup_data_extent(fs_info
, ins
.objectid
,
721 ret
= btrfs_inc_extent_ref(trans
, root
,
722 ins
.objectid
, ins
.offset
,
723 0, root
->root_key
.objectid
,
724 key
->objectid
, offset
);
729 * insert the extent pointer in the extent
732 ret
= btrfs_alloc_logged_file_extent(trans
,
734 root
->root_key
.objectid
,
735 key
->objectid
, offset
, &ins
);
739 btrfs_release_path(path
);
741 if (btrfs_file_extent_compression(eb
, item
)) {
742 csum_start
= ins
.objectid
;
743 csum_end
= csum_start
+ ins
.offset
;
745 csum_start
= ins
.objectid
+
746 btrfs_file_extent_offset(eb
, item
);
747 csum_end
= csum_start
+
748 btrfs_file_extent_num_bytes(eb
, item
);
751 ret
= btrfs_lookup_csums_range(root
->log_root
,
752 csum_start
, csum_end
- 1,
757 * Now delete all existing cums in the csum root that
758 * cover our range. We do this because we can have an
759 * extent that is completely referenced by one file
760 * extent item and partially referenced by another
761 * file extent item (like after using the clone or
762 * extent_same ioctls). In this case if we end up doing
763 * the replay of the one that partially references the
764 * extent first, and we do not do the csum deletion
765 * below, we can get 2 csum items in the csum tree that
766 * overlap each other. For example, imagine our log has
767 * the two following file extent items:
769 * key (257 EXTENT_DATA 409600)
770 * extent data disk byte 12845056 nr 102400
771 * extent data offset 20480 nr 20480 ram 102400
773 * key (257 EXTENT_DATA 819200)
774 * extent data disk byte 12845056 nr 102400
775 * extent data offset 0 nr 102400 ram 102400
777 * Where the second one fully references the 100K extent
778 * that starts at disk byte 12845056, and the log tree
779 * has a single csum item that covers the entire range
782 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
784 * After the first file extent item is replayed, the
785 * csum tree gets the following csum item:
787 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
789 * Which covers the 20K sub-range starting at offset 20K
790 * of our extent. Now when we replay the second file
791 * extent item, if we do not delete existing csum items
792 * that cover any of its blocks, we end up getting two
793 * csum items in our csum tree that overlap each other:
795 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
796 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
798 * Which is a problem, because after this anyone trying
799 * to lookup up for the checksum of any block of our
800 * extent starting at an offset of 40K or higher, will
801 * end up looking at the second csum item only, which
802 * does not contain the checksum for any block starting
803 * at offset 40K or higher of our extent.
805 while (!list_empty(&ordered_sums
)) {
806 struct btrfs_ordered_sum
*sums
;
807 sums
= list_entry(ordered_sums
.next
,
808 struct btrfs_ordered_sum
,
811 ret
= btrfs_del_csums(trans
, fs_info
,
815 ret
= btrfs_csum_file_blocks(trans
,
816 fs_info
->csum_root
, sums
);
817 list_del(&sums
->list
);
823 btrfs_release_path(path
);
825 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
826 /* inline extents are easy, we just overwrite them */
827 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
832 inode_add_bytes(inode
, nbytes
);
834 ret
= btrfs_update_inode(trans
, root
, inode
);
842 * when cleaning up conflicts between the directory names in the
843 * subvolume, directory names in the log and directory names in the
844 * inode back references, we may have to unlink inodes from directories.
846 * This is a helper function to do the unlink of a specific directory
849 static noinline
int drop_one_dir_item(struct btrfs_trans_handle
*trans
,
850 struct btrfs_root
*root
,
851 struct btrfs_path
*path
,
852 struct btrfs_inode
*dir
,
853 struct btrfs_dir_item
*di
)
855 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
859 struct extent_buffer
*leaf
;
860 struct btrfs_key location
;
863 leaf
= path
->nodes
[0];
865 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
866 name_len
= btrfs_dir_name_len(leaf
, di
);
867 name
= kmalloc(name_len
, GFP_NOFS
);
871 read_extent_buffer(leaf
, name
, (unsigned long)(di
+ 1), name_len
);
872 btrfs_release_path(path
);
874 inode
= read_one_inode(root
, location
.objectid
);
880 ret
= link_to_fixup_dir(trans
, root
, path
, location
.objectid
);
884 ret
= btrfs_unlink_inode(trans
, root
, dir
, BTRFS_I(inode
), name
,
889 ret
= btrfs_run_delayed_items(trans
, fs_info
);
897 * helper function to see if a given name and sequence number found
898 * in an inode back reference are already in a directory and correctly
899 * point to this inode
901 static noinline
int inode_in_dir(struct btrfs_root
*root
,
902 struct btrfs_path
*path
,
903 u64 dirid
, u64 objectid
, u64 index
,
904 const char *name
, int name_len
)
906 struct btrfs_dir_item
*di
;
907 struct btrfs_key location
;
910 di
= btrfs_lookup_dir_index_item(NULL
, root
, path
, dirid
,
911 index
, name
, name_len
, 0);
912 if (di
&& !IS_ERR(di
)) {
913 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
914 if (location
.objectid
!= objectid
)
918 btrfs_release_path(path
);
920 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dirid
, name
, name_len
, 0);
921 if (di
&& !IS_ERR(di
)) {
922 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
923 if (location
.objectid
!= objectid
)
929 btrfs_release_path(path
);
934 * helper function to check a log tree for a named back reference in
935 * an inode. This is used to decide if a back reference that is
936 * found in the subvolume conflicts with what we find in the log.
938 * inode backreferences may have multiple refs in a single item,
939 * during replay we process one reference at a time, and we don't
940 * want to delete valid links to a file from the subvolume if that
941 * link is also in the log.
943 static noinline
int backref_in_log(struct btrfs_root
*log
,
944 struct btrfs_key
*key
,
946 const char *name
, int namelen
)
948 struct btrfs_path
*path
;
949 struct btrfs_inode_ref
*ref
;
951 unsigned long ptr_end
;
952 unsigned long name_ptr
;
958 path
= btrfs_alloc_path();
962 ret
= btrfs_search_slot(NULL
, log
, key
, path
, 0, 0);
966 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
968 if (key
->type
== BTRFS_INODE_EXTREF_KEY
) {
969 if (btrfs_find_name_in_ext_backref(path
, ref_objectid
,
970 name
, namelen
, NULL
))
976 item_size
= btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]);
977 ptr_end
= ptr
+ item_size
;
978 while (ptr
< ptr_end
) {
979 ref
= (struct btrfs_inode_ref
*)ptr
;
980 found_name_len
= btrfs_inode_ref_name_len(path
->nodes
[0], ref
);
981 if (found_name_len
== namelen
) {
982 name_ptr
= (unsigned long)(ref
+ 1);
983 ret
= memcmp_extent_buffer(path
->nodes
[0], name
,
990 ptr
= (unsigned long)(ref
+ 1) + found_name_len
;
993 btrfs_free_path(path
);
997 static inline int __add_inode_ref(struct btrfs_trans_handle
*trans
,
998 struct btrfs_root
*root
,
999 struct btrfs_path
*path
,
1000 struct btrfs_root
*log_root
,
1001 struct btrfs_inode
*dir
,
1002 struct btrfs_inode
*inode
,
1003 u64 inode_objectid
, u64 parent_objectid
,
1004 u64 ref_index
, char *name
, int namelen
,
1007 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1010 int victim_name_len
;
1011 struct extent_buffer
*leaf
;
1012 struct btrfs_dir_item
*di
;
1013 struct btrfs_key search_key
;
1014 struct btrfs_inode_extref
*extref
;
1017 /* Search old style refs */
1018 search_key
.objectid
= inode_objectid
;
1019 search_key
.type
= BTRFS_INODE_REF_KEY
;
1020 search_key
.offset
= parent_objectid
;
1021 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
1023 struct btrfs_inode_ref
*victim_ref
;
1025 unsigned long ptr_end
;
1027 leaf
= path
->nodes
[0];
1029 /* are we trying to overwrite a back ref for the root directory
1030 * if so, just jump out, we're done
1032 if (search_key
.objectid
== search_key
.offset
)
1035 /* check all the names in this back reference to see
1036 * if they are in the log. if so, we allow them to stay
1037 * otherwise they must be unlinked as a conflict
1039 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1040 ptr_end
= ptr
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1041 while (ptr
< ptr_end
) {
1042 victim_ref
= (struct btrfs_inode_ref
*)ptr
;
1043 victim_name_len
= btrfs_inode_ref_name_len(leaf
,
1045 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
1049 read_extent_buffer(leaf
, victim_name
,
1050 (unsigned long)(victim_ref
+ 1),
1053 if (!backref_in_log(log_root
, &search_key
,
1057 inc_nlink(&inode
->vfs_inode
);
1058 btrfs_release_path(path
);
1060 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
,
1061 victim_name
, victim_name_len
);
1065 ret
= btrfs_run_delayed_items(trans
, fs_info
);
1073 ptr
= (unsigned long)(victim_ref
+ 1) + victim_name_len
;
1077 * NOTE: we have searched root tree and checked the
1078 * corresponding ref, it does not need to check again.
1082 btrfs_release_path(path
);
1084 /* Same search but for extended refs */
1085 extref
= btrfs_lookup_inode_extref(NULL
, root
, path
, name
, namelen
,
1086 inode_objectid
, parent_objectid
, 0,
1088 if (!IS_ERR_OR_NULL(extref
)) {
1092 struct inode
*victim_parent
;
1094 leaf
= path
->nodes
[0];
1096 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1097 base
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1099 while (cur_offset
< item_size
) {
1100 extref
= (struct btrfs_inode_extref
*)(base
+ cur_offset
);
1102 victim_name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
1104 if (btrfs_inode_extref_parent(leaf
, extref
) != parent_objectid
)
1107 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
1110 read_extent_buffer(leaf
, victim_name
, (unsigned long)&extref
->name
,
1113 search_key
.objectid
= inode_objectid
;
1114 search_key
.type
= BTRFS_INODE_EXTREF_KEY
;
1115 search_key
.offset
= btrfs_extref_hash(parent_objectid
,
1119 if (!backref_in_log(log_root
, &search_key
,
1120 parent_objectid
, victim_name
,
1123 victim_parent
= read_one_inode(root
,
1125 if (victim_parent
) {
1126 inc_nlink(&inode
->vfs_inode
);
1127 btrfs_release_path(path
);
1129 ret
= btrfs_unlink_inode(trans
, root
,
1130 BTRFS_I(victim_parent
),
1135 ret
= btrfs_run_delayed_items(
1139 iput(victim_parent
);
1148 cur_offset
+= victim_name_len
+ sizeof(*extref
);
1152 btrfs_release_path(path
);
1154 /* look for a conflicting sequence number */
1155 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, btrfs_ino(dir
),
1156 ref_index
, name
, namelen
, 0);
1157 if (di
&& !IS_ERR(di
)) {
1158 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
1162 btrfs_release_path(path
);
1164 /* look for a conflicing name */
1165 di
= btrfs_lookup_dir_item(trans
, root
, path
, btrfs_ino(dir
),
1167 if (di
&& !IS_ERR(di
)) {
1168 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
1172 btrfs_release_path(path
);
1177 static int extref_get_fields(struct extent_buffer
*eb
, unsigned long ref_ptr
,
1178 u32
*namelen
, char **name
, u64
*index
,
1179 u64
*parent_objectid
)
1181 struct btrfs_inode_extref
*extref
;
1183 extref
= (struct btrfs_inode_extref
*)ref_ptr
;
1185 *namelen
= btrfs_inode_extref_name_len(eb
, extref
);
1186 *name
= kmalloc(*namelen
, GFP_NOFS
);
1190 read_extent_buffer(eb
, *name
, (unsigned long)&extref
->name
,
1193 *index
= btrfs_inode_extref_index(eb
, extref
);
1194 if (parent_objectid
)
1195 *parent_objectid
= btrfs_inode_extref_parent(eb
, extref
);
1200 static int ref_get_fields(struct extent_buffer
*eb
, unsigned long ref_ptr
,
1201 u32
*namelen
, char **name
, u64
*index
)
1203 struct btrfs_inode_ref
*ref
;
1205 ref
= (struct btrfs_inode_ref
*)ref_ptr
;
1207 *namelen
= btrfs_inode_ref_name_len(eb
, ref
);
1208 *name
= kmalloc(*namelen
, GFP_NOFS
);
1212 read_extent_buffer(eb
, *name
, (unsigned long)(ref
+ 1), *namelen
);
1214 *index
= btrfs_inode_ref_index(eb
, ref
);
1220 * replay one inode back reference item found in the log tree.
1221 * eb, slot and key refer to the buffer and key found in the log tree.
1222 * root is the destination we are replaying into, and path is for temp
1223 * use by this function. (it should be released on return).
1225 static noinline
int add_inode_ref(struct btrfs_trans_handle
*trans
,
1226 struct btrfs_root
*root
,
1227 struct btrfs_root
*log
,
1228 struct btrfs_path
*path
,
1229 struct extent_buffer
*eb
, int slot
,
1230 struct btrfs_key
*key
)
1232 struct inode
*dir
= NULL
;
1233 struct inode
*inode
= NULL
;
1234 unsigned long ref_ptr
;
1235 unsigned long ref_end
;
1239 int search_done
= 0;
1240 int log_ref_ver
= 0;
1241 u64 parent_objectid
;
1244 int ref_struct_size
;
1246 ref_ptr
= btrfs_item_ptr_offset(eb
, slot
);
1247 ref_end
= ref_ptr
+ btrfs_item_size_nr(eb
, slot
);
1249 if (key
->type
== BTRFS_INODE_EXTREF_KEY
) {
1250 struct btrfs_inode_extref
*r
;
1252 ref_struct_size
= sizeof(struct btrfs_inode_extref
);
1254 r
= (struct btrfs_inode_extref
*)ref_ptr
;
1255 parent_objectid
= btrfs_inode_extref_parent(eb
, r
);
1257 ref_struct_size
= sizeof(struct btrfs_inode_ref
);
1258 parent_objectid
= key
->offset
;
1260 inode_objectid
= key
->objectid
;
1263 * it is possible that we didn't log all the parent directories
1264 * for a given inode. If we don't find the dir, just don't
1265 * copy the back ref in. The link count fixup code will take
1268 dir
= read_one_inode(root
, parent_objectid
);
1274 inode
= read_one_inode(root
, inode_objectid
);
1280 while (ref_ptr
< ref_end
) {
1282 ret
= extref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1283 &ref_index
, &parent_objectid
);
1285 * parent object can change from one array
1289 dir
= read_one_inode(root
, parent_objectid
);
1295 ret
= ref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1301 /* if we already have a perfect match, we're done */
1302 if (!inode_in_dir(root
, path
, btrfs_ino(BTRFS_I(dir
)),
1303 btrfs_ino(BTRFS_I(inode
)), ref_index
,
1306 * look for a conflicting back reference in the
1307 * metadata. if we find one we have to unlink that name
1308 * of the file before we add our new link. Later on, we
1309 * overwrite any existing back reference, and we don't
1310 * want to create dangling pointers in the directory.
1314 ret
= __add_inode_ref(trans
, root
, path
, log
,
1319 ref_index
, name
, namelen
,
1328 /* insert our name */
1329 ret
= btrfs_add_link(trans
, BTRFS_I(dir
),
1331 name
, namelen
, 0, ref_index
);
1335 btrfs_update_inode(trans
, root
, inode
);
1338 ref_ptr
= (unsigned long)(ref_ptr
+ ref_struct_size
) + namelen
;
1347 /* finally write the back reference in the inode */
1348 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
1350 btrfs_release_path(path
);
1357 static int insert_orphan_item(struct btrfs_trans_handle
*trans
,
1358 struct btrfs_root
*root
, u64 ino
)
1362 ret
= btrfs_insert_orphan_item(trans
, root
, ino
);
1369 static int count_inode_extrefs(struct btrfs_root
*root
,
1370 struct btrfs_inode
*inode
, struct btrfs_path
*path
)
1374 unsigned int nlink
= 0;
1377 u64 inode_objectid
= btrfs_ino(inode
);
1380 struct btrfs_inode_extref
*extref
;
1381 struct extent_buffer
*leaf
;
1384 ret
= btrfs_find_one_extref(root
, inode_objectid
, offset
, path
,
1389 leaf
= path
->nodes
[0];
1390 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1391 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1394 while (cur_offset
< item_size
) {
1395 extref
= (struct btrfs_inode_extref
*) (ptr
+ cur_offset
);
1396 name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
1400 cur_offset
+= name_len
+ sizeof(*extref
);
1404 btrfs_release_path(path
);
1406 btrfs_release_path(path
);
1408 if (ret
< 0 && ret
!= -ENOENT
)
1413 static int count_inode_refs(struct btrfs_root
*root
,
1414 struct btrfs_inode
*inode
, struct btrfs_path
*path
)
1417 struct btrfs_key key
;
1418 unsigned int nlink
= 0;
1420 unsigned long ptr_end
;
1422 u64 ino
= btrfs_ino(inode
);
1425 key
.type
= BTRFS_INODE_REF_KEY
;
1426 key
.offset
= (u64
)-1;
1429 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1433 if (path
->slots
[0] == 0)
1438 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1440 if (key
.objectid
!= ino
||
1441 key
.type
!= BTRFS_INODE_REF_KEY
)
1443 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
1444 ptr_end
= ptr
+ btrfs_item_size_nr(path
->nodes
[0],
1446 while (ptr
< ptr_end
) {
1447 struct btrfs_inode_ref
*ref
;
1449 ref
= (struct btrfs_inode_ref
*)ptr
;
1450 name_len
= btrfs_inode_ref_name_len(path
->nodes
[0],
1452 ptr
= (unsigned long)(ref
+ 1) + name_len
;
1456 if (key
.offset
== 0)
1458 if (path
->slots
[0] > 0) {
1463 btrfs_release_path(path
);
1465 btrfs_release_path(path
);
1471 * There are a few corners where the link count of the file can't
1472 * be properly maintained during replay. So, instead of adding
1473 * lots of complexity to the log code, we just scan the backrefs
1474 * for any file that has been through replay.
1476 * The scan will update the link count on the inode to reflect the
1477 * number of back refs found. If it goes down to zero, the iput
1478 * will free the inode.
1480 static noinline
int fixup_inode_link_count(struct btrfs_trans_handle
*trans
,
1481 struct btrfs_root
*root
,
1482 struct inode
*inode
)
1484 struct btrfs_path
*path
;
1487 u64 ino
= btrfs_ino(BTRFS_I(inode
));
1489 path
= btrfs_alloc_path();
1493 ret
= count_inode_refs(root
, BTRFS_I(inode
), path
);
1499 ret
= count_inode_extrefs(root
, BTRFS_I(inode
), path
);
1507 if (nlink
!= inode
->i_nlink
) {
1508 set_nlink(inode
, nlink
);
1509 btrfs_update_inode(trans
, root
, inode
);
1511 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1513 if (inode
->i_nlink
== 0) {
1514 if (S_ISDIR(inode
->i_mode
)) {
1515 ret
= replay_dir_deletes(trans
, root
, NULL
, path
,
1520 ret
= insert_orphan_item(trans
, root
, ino
);
1524 btrfs_free_path(path
);
1528 static noinline
int fixup_inode_link_counts(struct btrfs_trans_handle
*trans
,
1529 struct btrfs_root
*root
,
1530 struct btrfs_path
*path
)
1533 struct btrfs_key key
;
1534 struct inode
*inode
;
1536 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1537 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1538 key
.offset
= (u64
)-1;
1540 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1545 if (path
->slots
[0] == 0)
1550 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1551 if (key
.objectid
!= BTRFS_TREE_LOG_FIXUP_OBJECTID
||
1552 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
1555 ret
= btrfs_del_item(trans
, root
, path
);
1559 btrfs_release_path(path
);
1560 inode
= read_one_inode(root
, key
.offset
);
1564 ret
= fixup_inode_link_count(trans
, root
, inode
);
1570 * fixup on a directory may create new entries,
1571 * make sure we always look for the highset possible
1574 key
.offset
= (u64
)-1;
1578 btrfs_release_path(path
);
1584 * record a given inode in the fixup dir so we can check its link
1585 * count when replay is done. The link count is incremented here
1586 * so the inode won't go away until we check it
1588 static noinline
int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
1589 struct btrfs_root
*root
,
1590 struct btrfs_path
*path
,
1593 struct btrfs_key key
;
1595 struct inode
*inode
;
1597 inode
= read_one_inode(root
, objectid
);
1601 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1602 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1603 key
.offset
= objectid
;
1605 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1607 btrfs_release_path(path
);
1609 if (!inode
->i_nlink
)
1610 set_nlink(inode
, 1);
1613 ret
= btrfs_update_inode(trans
, root
, inode
);
1614 } else if (ret
== -EEXIST
) {
1617 BUG(); /* Logic Error */
1625 * when replaying the log for a directory, we only insert names
1626 * for inodes that actually exist. This means an fsync on a directory
1627 * does not implicitly fsync all the new files in it
1629 static noinline
int insert_one_name(struct btrfs_trans_handle
*trans
,
1630 struct btrfs_root
*root
,
1631 u64 dirid
, u64 index
,
1632 char *name
, int name_len
,
1633 struct btrfs_key
*location
)
1635 struct inode
*inode
;
1639 inode
= read_one_inode(root
, location
->objectid
);
1643 dir
= read_one_inode(root
, dirid
);
1649 ret
= btrfs_add_link(trans
, BTRFS_I(dir
), BTRFS_I(inode
), name
,
1650 name_len
, 1, index
);
1652 /* FIXME, put inode into FIXUP list */
1660 * Return true if an inode reference exists in the log for the given name,
1661 * inode and parent inode.
1663 static bool name_in_log_ref(struct btrfs_root
*log_root
,
1664 const char *name
, const int name_len
,
1665 const u64 dirid
, const u64 ino
)
1667 struct btrfs_key search_key
;
1669 search_key
.objectid
= ino
;
1670 search_key
.type
= BTRFS_INODE_REF_KEY
;
1671 search_key
.offset
= dirid
;
1672 if (backref_in_log(log_root
, &search_key
, dirid
, name
, name_len
))
1675 search_key
.type
= BTRFS_INODE_EXTREF_KEY
;
1676 search_key
.offset
= btrfs_extref_hash(dirid
, name
, name_len
);
1677 if (backref_in_log(log_root
, &search_key
, dirid
, name
, name_len
))
1684 * take a single entry in a log directory item and replay it into
1687 * if a conflicting item exists in the subdirectory already,
1688 * the inode it points to is unlinked and put into the link count
1691 * If a name from the log points to a file or directory that does
1692 * not exist in the FS, it is skipped. fsyncs on directories
1693 * do not force down inodes inside that directory, just changes to the
1694 * names or unlinks in a directory.
1696 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1697 * non-existing inode) and 1 if the name was replayed.
1699 static noinline
int replay_one_name(struct btrfs_trans_handle
*trans
,
1700 struct btrfs_root
*root
,
1701 struct btrfs_path
*path
,
1702 struct extent_buffer
*eb
,
1703 struct btrfs_dir_item
*di
,
1704 struct btrfs_key
*key
)
1708 struct btrfs_dir_item
*dst_di
;
1709 struct btrfs_key found_key
;
1710 struct btrfs_key log_key
;
1715 bool update_size
= (key
->type
== BTRFS_DIR_INDEX_KEY
);
1716 bool name_added
= false;
1718 dir
= read_one_inode(root
, key
->objectid
);
1722 name_len
= btrfs_dir_name_len(eb
, di
);
1723 name
= kmalloc(name_len
, GFP_NOFS
);
1729 log_type
= btrfs_dir_type(eb
, di
);
1730 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1733 btrfs_dir_item_key_to_cpu(eb
, di
, &log_key
);
1734 exists
= btrfs_lookup_inode(trans
, root
, path
, &log_key
, 0);
1739 btrfs_release_path(path
);
1741 if (key
->type
== BTRFS_DIR_ITEM_KEY
) {
1742 dst_di
= btrfs_lookup_dir_item(trans
, root
, path
, key
->objectid
,
1744 } else if (key
->type
== BTRFS_DIR_INDEX_KEY
) {
1745 dst_di
= btrfs_lookup_dir_index_item(trans
, root
, path
,
1754 if (IS_ERR_OR_NULL(dst_di
)) {
1755 /* we need a sequence number to insert, so we only
1756 * do inserts for the BTRFS_DIR_INDEX_KEY types
1758 if (key
->type
!= BTRFS_DIR_INDEX_KEY
)
1763 btrfs_dir_item_key_to_cpu(path
->nodes
[0], dst_di
, &found_key
);
1764 /* the existing item matches the logged item */
1765 if (found_key
.objectid
== log_key
.objectid
&&
1766 found_key
.type
== log_key
.type
&&
1767 found_key
.offset
== log_key
.offset
&&
1768 btrfs_dir_type(path
->nodes
[0], dst_di
) == log_type
) {
1769 update_size
= false;
1774 * don't drop the conflicting directory entry if the inode
1775 * for the new entry doesn't exist
1780 ret
= drop_one_dir_item(trans
, root
, path
, BTRFS_I(dir
), dst_di
);
1784 if (key
->type
== BTRFS_DIR_INDEX_KEY
)
1787 btrfs_release_path(path
);
1788 if (!ret
&& update_size
) {
1789 btrfs_i_size_write(BTRFS_I(dir
), dir
->i_size
+ name_len
* 2);
1790 ret
= btrfs_update_inode(trans
, root
, dir
);
1794 if (!ret
&& name_added
)
1799 if (name_in_log_ref(root
->log_root
, name
, name_len
,
1800 key
->objectid
, log_key
.objectid
)) {
1801 /* The dentry will be added later. */
1803 update_size
= false;
1806 btrfs_release_path(path
);
1807 ret
= insert_one_name(trans
, root
, key
->objectid
, key
->offset
,
1808 name
, name_len
, &log_key
);
1809 if (ret
&& ret
!= -ENOENT
&& ret
!= -EEXIST
)
1813 update_size
= false;
1819 * find all the names in a directory item and reconcile them into
1820 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1821 * one name in a directory item, but the same code gets used for
1822 * both directory index types
1824 static noinline
int replay_one_dir_item(struct btrfs_trans_handle
*trans
,
1825 struct btrfs_root
*root
,
1826 struct btrfs_path
*path
,
1827 struct extent_buffer
*eb
, int slot
,
1828 struct btrfs_key
*key
)
1831 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
1832 struct btrfs_dir_item
*di
;
1835 unsigned long ptr_end
;
1836 struct btrfs_path
*fixup_path
= NULL
;
1838 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1839 ptr_end
= ptr
+ item_size
;
1840 while (ptr
< ptr_end
) {
1841 di
= (struct btrfs_dir_item
*)ptr
;
1842 name_len
= btrfs_dir_name_len(eb
, di
);
1843 ret
= replay_one_name(trans
, root
, path
, eb
, di
, key
);
1846 ptr
= (unsigned long)(di
+ 1);
1850 * If this entry refers to a non-directory (directories can not
1851 * have a link count > 1) and it was added in the transaction
1852 * that was not committed, make sure we fixup the link count of
1853 * the inode it the entry points to. Otherwise something like
1854 * the following would result in a directory pointing to an
1855 * inode with a wrong link that does not account for this dir
1863 * ln testdir/bar testdir/bar_link
1864 * ln testdir/foo testdir/foo_link
1865 * xfs_io -c "fsync" testdir/bar
1869 * mount fs, log replay happens
1871 * File foo would remain with a link count of 1 when it has two
1872 * entries pointing to it in the directory testdir. This would
1873 * make it impossible to ever delete the parent directory has
1874 * it would result in stale dentries that can never be deleted.
1876 if (ret
== 1 && btrfs_dir_type(eb
, di
) != BTRFS_FT_DIR
) {
1877 struct btrfs_key di_key
;
1880 fixup_path
= btrfs_alloc_path();
1887 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
1888 ret
= link_to_fixup_dir(trans
, root
, fixup_path
,
1895 btrfs_free_path(fixup_path
);
1900 * directory replay has two parts. There are the standard directory
1901 * items in the log copied from the subvolume, and range items
1902 * created in the log while the subvolume was logged.
1904 * The range items tell us which parts of the key space the log
1905 * is authoritative for. During replay, if a key in the subvolume
1906 * directory is in a logged range item, but not actually in the log
1907 * that means it was deleted from the directory before the fsync
1908 * and should be removed.
1910 static noinline
int find_dir_range(struct btrfs_root
*root
,
1911 struct btrfs_path
*path
,
1912 u64 dirid
, int key_type
,
1913 u64
*start_ret
, u64
*end_ret
)
1915 struct btrfs_key key
;
1917 struct btrfs_dir_log_item
*item
;
1921 if (*start_ret
== (u64
)-1)
1924 key
.objectid
= dirid
;
1925 key
.type
= key_type
;
1926 key
.offset
= *start_ret
;
1928 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1932 if (path
->slots
[0] == 0)
1937 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1939 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1943 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1944 struct btrfs_dir_log_item
);
1945 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1947 if (*start_ret
>= key
.offset
&& *start_ret
<= found_end
) {
1949 *start_ret
= key
.offset
;
1950 *end_ret
= found_end
;
1955 /* check the next slot in the tree to see if it is a valid item */
1956 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1958 if (path
->slots
[0] >= nritems
) {
1959 ret
= btrfs_next_leaf(root
, path
);
1964 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1966 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1970 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1971 struct btrfs_dir_log_item
);
1972 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1973 *start_ret
= key
.offset
;
1974 *end_ret
= found_end
;
1977 btrfs_release_path(path
);
1982 * this looks for a given directory item in the log. If the directory
1983 * item is not in the log, the item is removed and the inode it points
1986 static noinline
int check_item_in_log(struct btrfs_trans_handle
*trans
,
1987 struct btrfs_root
*root
,
1988 struct btrfs_root
*log
,
1989 struct btrfs_path
*path
,
1990 struct btrfs_path
*log_path
,
1992 struct btrfs_key
*dir_key
)
1994 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1996 struct extent_buffer
*eb
;
1999 struct btrfs_dir_item
*di
;
2000 struct btrfs_dir_item
*log_di
;
2003 unsigned long ptr_end
;
2005 struct inode
*inode
;
2006 struct btrfs_key location
;
2009 eb
= path
->nodes
[0];
2010 slot
= path
->slots
[0];
2011 item_size
= btrfs_item_size_nr(eb
, slot
);
2012 ptr
= btrfs_item_ptr_offset(eb
, slot
);
2013 ptr_end
= ptr
+ item_size
;
2014 while (ptr
< ptr_end
) {
2015 di
= (struct btrfs_dir_item
*)ptr
;
2016 name_len
= btrfs_dir_name_len(eb
, di
);
2017 name
= kmalloc(name_len
, GFP_NOFS
);
2022 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
2025 if (log
&& dir_key
->type
== BTRFS_DIR_ITEM_KEY
) {
2026 log_di
= btrfs_lookup_dir_item(trans
, log
, log_path
,
2029 } else if (log
&& dir_key
->type
== BTRFS_DIR_INDEX_KEY
) {
2030 log_di
= btrfs_lookup_dir_index_item(trans
, log
,
2036 if (!log_di
|| (IS_ERR(log_di
) && PTR_ERR(log_di
) == -ENOENT
)) {
2037 btrfs_dir_item_key_to_cpu(eb
, di
, &location
);
2038 btrfs_release_path(path
);
2039 btrfs_release_path(log_path
);
2040 inode
= read_one_inode(root
, location
.objectid
);
2046 ret
= link_to_fixup_dir(trans
, root
,
2047 path
, location
.objectid
);
2055 ret
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
2056 BTRFS_I(inode
), name
, name_len
);
2058 ret
= btrfs_run_delayed_items(trans
, fs_info
);
2064 /* there might still be more names under this key
2065 * check and repeat if required
2067 ret
= btrfs_search_slot(NULL
, root
, dir_key
, path
,
2073 } else if (IS_ERR(log_di
)) {
2075 return PTR_ERR(log_di
);
2077 btrfs_release_path(log_path
);
2080 ptr
= (unsigned long)(di
+ 1);
2085 btrfs_release_path(path
);
2086 btrfs_release_path(log_path
);
2090 static int replay_xattr_deletes(struct btrfs_trans_handle
*trans
,
2091 struct btrfs_root
*root
,
2092 struct btrfs_root
*log
,
2093 struct btrfs_path
*path
,
2096 struct btrfs_key search_key
;
2097 struct btrfs_path
*log_path
;
2102 log_path
= btrfs_alloc_path();
2106 search_key
.objectid
= ino
;
2107 search_key
.type
= BTRFS_XATTR_ITEM_KEY
;
2108 search_key
.offset
= 0;
2110 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
2114 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2115 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
2116 struct btrfs_key key
;
2117 struct btrfs_dir_item
*di
;
2118 struct btrfs_dir_item
*log_di
;
2122 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, i
);
2123 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_XATTR_ITEM_KEY
) {
2128 di
= btrfs_item_ptr(path
->nodes
[0], i
, struct btrfs_dir_item
);
2129 total_size
= btrfs_item_size_nr(path
->nodes
[0], i
);
2131 while (cur
< total_size
) {
2132 u16 name_len
= btrfs_dir_name_len(path
->nodes
[0], di
);
2133 u16 data_len
= btrfs_dir_data_len(path
->nodes
[0], di
);
2134 u32 this_len
= sizeof(*di
) + name_len
+ data_len
;
2137 name
= kmalloc(name_len
, GFP_NOFS
);
2142 read_extent_buffer(path
->nodes
[0], name
,
2143 (unsigned long)(di
+ 1), name_len
);
2145 log_di
= btrfs_lookup_xattr(NULL
, log
, log_path
, ino
,
2147 btrfs_release_path(log_path
);
2149 /* Doesn't exist in log tree, so delete it. */
2150 btrfs_release_path(path
);
2151 di
= btrfs_lookup_xattr(trans
, root
, path
, ino
,
2152 name
, name_len
, -1);
2159 ret
= btrfs_delete_one_dir_name(trans
, root
,
2163 btrfs_release_path(path
);
2168 if (IS_ERR(log_di
)) {
2169 ret
= PTR_ERR(log_di
);
2173 di
= (struct btrfs_dir_item
*)((char *)di
+ this_len
);
2176 ret
= btrfs_next_leaf(root
, path
);
2182 btrfs_free_path(log_path
);
2183 btrfs_release_path(path
);
2189 * deletion replay happens before we copy any new directory items
2190 * out of the log or out of backreferences from inodes. It
2191 * scans the log to find ranges of keys that log is authoritative for,
2192 * and then scans the directory to find items in those ranges that are
2193 * not present in the log.
2195 * Anything we don't find in the log is unlinked and removed from the
2198 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
2199 struct btrfs_root
*root
,
2200 struct btrfs_root
*log
,
2201 struct btrfs_path
*path
,
2202 u64 dirid
, int del_all
)
2206 int key_type
= BTRFS_DIR_LOG_ITEM_KEY
;
2208 struct btrfs_key dir_key
;
2209 struct btrfs_key found_key
;
2210 struct btrfs_path
*log_path
;
2213 dir_key
.objectid
= dirid
;
2214 dir_key
.type
= BTRFS_DIR_ITEM_KEY
;
2215 log_path
= btrfs_alloc_path();
2219 dir
= read_one_inode(root
, dirid
);
2220 /* it isn't an error if the inode isn't there, that can happen
2221 * because we replay the deletes before we copy in the inode item
2225 btrfs_free_path(log_path
);
2233 range_end
= (u64
)-1;
2235 ret
= find_dir_range(log
, path
, dirid
, key_type
,
2236 &range_start
, &range_end
);
2241 dir_key
.offset
= range_start
;
2244 ret
= btrfs_search_slot(NULL
, root
, &dir_key
, path
,
2249 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2250 if (path
->slots
[0] >= nritems
) {
2251 ret
= btrfs_next_leaf(root
, path
);
2255 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2257 if (found_key
.objectid
!= dirid
||
2258 found_key
.type
!= dir_key
.type
)
2261 if (found_key
.offset
> range_end
)
2264 ret
= check_item_in_log(trans
, root
, log
, path
,
2269 if (found_key
.offset
== (u64
)-1)
2271 dir_key
.offset
= found_key
.offset
+ 1;
2273 btrfs_release_path(path
);
2274 if (range_end
== (u64
)-1)
2276 range_start
= range_end
+ 1;
2281 if (key_type
== BTRFS_DIR_LOG_ITEM_KEY
) {
2282 key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
2283 dir_key
.type
= BTRFS_DIR_INDEX_KEY
;
2284 btrfs_release_path(path
);
2288 btrfs_release_path(path
);
2289 btrfs_free_path(log_path
);
2295 * the process_func used to replay items from the log tree. This
2296 * gets called in two different stages. The first stage just looks
2297 * for inodes and makes sure they are all copied into the subvolume.
2299 * The second stage copies all the other item types from the log into
2300 * the subvolume. The two stage approach is slower, but gets rid of
2301 * lots of complexity around inodes referencing other inodes that exist
2302 * only in the log (references come from either directory items or inode
2305 static int replay_one_buffer(struct btrfs_root
*log
, struct extent_buffer
*eb
,
2306 struct walk_control
*wc
, u64 gen
)
2309 struct btrfs_path
*path
;
2310 struct btrfs_root
*root
= wc
->replay_dest
;
2311 struct btrfs_key key
;
2316 ret
= btrfs_read_buffer(eb
, gen
);
2320 level
= btrfs_header_level(eb
);
2325 path
= btrfs_alloc_path();
2329 nritems
= btrfs_header_nritems(eb
);
2330 for (i
= 0; i
< nritems
; i
++) {
2331 btrfs_item_key_to_cpu(eb
, &key
, i
);
2333 /* inode keys are done during the first stage */
2334 if (key
.type
== BTRFS_INODE_ITEM_KEY
&&
2335 wc
->stage
== LOG_WALK_REPLAY_INODES
) {
2336 struct btrfs_inode_item
*inode_item
;
2339 inode_item
= btrfs_item_ptr(eb
, i
,
2340 struct btrfs_inode_item
);
2341 ret
= replay_xattr_deletes(wc
->trans
, root
, log
,
2342 path
, key
.objectid
);
2345 mode
= btrfs_inode_mode(eb
, inode_item
);
2346 if (S_ISDIR(mode
)) {
2347 ret
= replay_dir_deletes(wc
->trans
,
2348 root
, log
, path
, key
.objectid
, 0);
2352 ret
= overwrite_item(wc
->trans
, root
, path
,
2357 /* for regular files, make sure corresponding
2358 * orphan item exist. extents past the new EOF
2359 * will be truncated later by orphan cleanup.
2361 if (S_ISREG(mode
)) {
2362 ret
= insert_orphan_item(wc
->trans
, root
,
2368 ret
= link_to_fixup_dir(wc
->trans
, root
,
2369 path
, key
.objectid
);
2374 if (key
.type
== BTRFS_DIR_INDEX_KEY
&&
2375 wc
->stage
== LOG_WALK_REPLAY_DIR_INDEX
) {
2376 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
2382 if (wc
->stage
< LOG_WALK_REPLAY_ALL
)
2385 /* these keys are simply copied */
2386 if (key
.type
== BTRFS_XATTR_ITEM_KEY
) {
2387 ret
= overwrite_item(wc
->trans
, root
, path
,
2391 } else if (key
.type
== BTRFS_INODE_REF_KEY
||
2392 key
.type
== BTRFS_INODE_EXTREF_KEY
) {
2393 ret
= add_inode_ref(wc
->trans
, root
, log
, path
,
2395 if (ret
&& ret
!= -ENOENT
)
2398 } else if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
2399 ret
= replay_one_extent(wc
->trans
, root
, path
,
2403 } else if (key
.type
== BTRFS_DIR_ITEM_KEY
) {
2404 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
2410 btrfs_free_path(path
);
2414 static noinline
int walk_down_log_tree(struct btrfs_trans_handle
*trans
,
2415 struct btrfs_root
*root
,
2416 struct btrfs_path
*path
, int *level
,
2417 struct walk_control
*wc
)
2419 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2423 struct extent_buffer
*next
;
2424 struct extent_buffer
*cur
;
2425 struct extent_buffer
*parent
;
2429 WARN_ON(*level
< 0);
2430 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2432 while (*level
> 0) {
2433 WARN_ON(*level
< 0);
2434 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2435 cur
= path
->nodes
[*level
];
2437 WARN_ON(btrfs_header_level(cur
) != *level
);
2439 if (path
->slots
[*level
] >=
2440 btrfs_header_nritems(cur
))
2443 bytenr
= btrfs_node_blockptr(cur
, path
->slots
[*level
]);
2444 ptr_gen
= btrfs_node_ptr_generation(cur
, path
->slots
[*level
]);
2445 blocksize
= fs_info
->nodesize
;
2447 parent
= path
->nodes
[*level
];
2448 root_owner
= btrfs_header_owner(parent
);
2450 next
= btrfs_find_create_tree_block(fs_info
, bytenr
);
2452 return PTR_ERR(next
);
2455 ret
= wc
->process_func(root
, next
, wc
, ptr_gen
);
2457 free_extent_buffer(next
);
2461 path
->slots
[*level
]++;
2463 ret
= btrfs_read_buffer(next
, ptr_gen
);
2465 free_extent_buffer(next
);
2470 btrfs_tree_lock(next
);
2471 btrfs_set_lock_blocking(next
);
2472 clean_tree_block(fs_info
, next
);
2473 btrfs_wait_tree_block_writeback(next
);
2474 btrfs_tree_unlock(next
);
2477 WARN_ON(root_owner
!=
2478 BTRFS_TREE_LOG_OBJECTID
);
2479 ret
= btrfs_free_and_pin_reserved_extent(
2483 free_extent_buffer(next
);
2487 free_extent_buffer(next
);
2490 ret
= btrfs_read_buffer(next
, ptr_gen
);
2492 free_extent_buffer(next
);
2496 WARN_ON(*level
<= 0);
2497 if (path
->nodes
[*level
-1])
2498 free_extent_buffer(path
->nodes
[*level
-1]);
2499 path
->nodes
[*level
-1] = next
;
2500 *level
= btrfs_header_level(next
);
2501 path
->slots
[*level
] = 0;
2504 WARN_ON(*level
< 0);
2505 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2507 path
->slots
[*level
] = btrfs_header_nritems(path
->nodes
[*level
]);
2513 static noinline
int walk_up_log_tree(struct btrfs_trans_handle
*trans
,
2514 struct btrfs_root
*root
,
2515 struct btrfs_path
*path
, int *level
,
2516 struct walk_control
*wc
)
2518 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2524 for (i
= *level
; i
< BTRFS_MAX_LEVEL
- 1 && path
->nodes
[i
]; i
++) {
2525 slot
= path
->slots
[i
];
2526 if (slot
+ 1 < btrfs_header_nritems(path
->nodes
[i
])) {
2529 WARN_ON(*level
== 0);
2532 struct extent_buffer
*parent
;
2533 if (path
->nodes
[*level
] == root
->node
)
2534 parent
= path
->nodes
[*level
];
2536 parent
= path
->nodes
[*level
+ 1];
2538 root_owner
= btrfs_header_owner(parent
);
2539 ret
= wc
->process_func(root
, path
->nodes
[*level
], wc
,
2540 btrfs_header_generation(path
->nodes
[*level
]));
2545 struct extent_buffer
*next
;
2547 next
= path
->nodes
[*level
];
2550 btrfs_tree_lock(next
);
2551 btrfs_set_lock_blocking(next
);
2552 clean_tree_block(fs_info
, next
);
2553 btrfs_wait_tree_block_writeback(next
);
2554 btrfs_tree_unlock(next
);
2557 WARN_ON(root_owner
!= BTRFS_TREE_LOG_OBJECTID
);
2558 ret
= btrfs_free_and_pin_reserved_extent(
2560 path
->nodes
[*level
]->start
,
2561 path
->nodes
[*level
]->len
);
2565 free_extent_buffer(path
->nodes
[*level
]);
2566 path
->nodes
[*level
] = NULL
;
2574 * drop the reference count on the tree rooted at 'snap'. This traverses
2575 * the tree freeing any blocks that have a ref count of zero after being
2578 static int walk_log_tree(struct btrfs_trans_handle
*trans
,
2579 struct btrfs_root
*log
, struct walk_control
*wc
)
2581 struct btrfs_fs_info
*fs_info
= log
->fs_info
;
2585 struct btrfs_path
*path
;
2588 path
= btrfs_alloc_path();
2592 level
= btrfs_header_level(log
->node
);
2594 path
->nodes
[level
] = log
->node
;
2595 extent_buffer_get(log
->node
);
2596 path
->slots
[level
] = 0;
2599 wret
= walk_down_log_tree(trans
, log
, path
, &level
, wc
);
2607 wret
= walk_up_log_tree(trans
, log
, path
, &level
, wc
);
2616 /* was the root node processed? if not, catch it here */
2617 if (path
->nodes
[orig_level
]) {
2618 ret
= wc
->process_func(log
, path
->nodes
[orig_level
], wc
,
2619 btrfs_header_generation(path
->nodes
[orig_level
]));
2623 struct extent_buffer
*next
;
2625 next
= path
->nodes
[orig_level
];
2628 btrfs_tree_lock(next
);
2629 btrfs_set_lock_blocking(next
);
2630 clean_tree_block(fs_info
, next
);
2631 btrfs_wait_tree_block_writeback(next
);
2632 btrfs_tree_unlock(next
);
2635 WARN_ON(log
->root_key
.objectid
!=
2636 BTRFS_TREE_LOG_OBJECTID
);
2637 ret
= btrfs_free_and_pin_reserved_extent(fs_info
,
2638 next
->start
, next
->len
);
2645 btrfs_free_path(path
);
2650 * helper function to update the item for a given subvolumes log root
2651 * in the tree of log roots
2653 static int update_log_root(struct btrfs_trans_handle
*trans
,
2654 struct btrfs_root
*log
)
2656 struct btrfs_fs_info
*fs_info
= log
->fs_info
;
2659 if (log
->log_transid
== 1) {
2660 /* insert root item on the first sync */
2661 ret
= btrfs_insert_root(trans
, fs_info
->log_root_tree
,
2662 &log
->root_key
, &log
->root_item
);
2664 ret
= btrfs_update_root(trans
, fs_info
->log_root_tree
,
2665 &log
->root_key
, &log
->root_item
);
2670 static void wait_log_commit(struct btrfs_root
*root
, int transid
)
2673 int index
= transid
% 2;
2676 * we only allow two pending log transactions at a time,
2677 * so we know that if ours is more than 2 older than the
2678 * current transaction, we're done
2681 prepare_to_wait(&root
->log_commit_wait
[index
],
2682 &wait
, TASK_UNINTERRUPTIBLE
);
2684 if (!(root
->log_transid_committed
< transid
&&
2685 atomic_read(&root
->log_commit
[index
])))
2688 mutex_unlock(&root
->log_mutex
);
2690 mutex_lock(&root
->log_mutex
);
2692 finish_wait(&root
->log_commit_wait
[index
], &wait
);
2695 static void wait_for_writer(struct btrfs_root
*root
)
2700 prepare_to_wait(&root
->log_writer_wait
, &wait
,
2701 TASK_UNINTERRUPTIBLE
);
2702 if (!atomic_read(&root
->log_writers
))
2705 mutex_unlock(&root
->log_mutex
);
2707 mutex_lock(&root
->log_mutex
);
2709 finish_wait(&root
->log_writer_wait
, &wait
);
2712 static inline void btrfs_remove_log_ctx(struct btrfs_root
*root
,
2713 struct btrfs_log_ctx
*ctx
)
2718 mutex_lock(&root
->log_mutex
);
2719 list_del_init(&ctx
->list
);
2720 mutex_unlock(&root
->log_mutex
);
2724 * Invoked in log mutex context, or be sure there is no other task which
2725 * can access the list.
2727 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root
*root
,
2728 int index
, int error
)
2730 struct btrfs_log_ctx
*ctx
;
2731 struct btrfs_log_ctx
*safe
;
2733 list_for_each_entry_safe(ctx
, safe
, &root
->log_ctxs
[index
], list
) {
2734 list_del_init(&ctx
->list
);
2735 ctx
->log_ret
= error
;
2738 INIT_LIST_HEAD(&root
->log_ctxs
[index
]);
2742 * btrfs_sync_log does sends a given tree log down to the disk and
2743 * updates the super blocks to record it. When this call is done,
2744 * you know that any inodes previously logged are safely on disk only
2747 * Any other return value means you need to call btrfs_commit_transaction.
2748 * Some of the edge cases for fsyncing directories that have had unlinks
2749 * or renames done in the past mean that sometimes the only safe
2750 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2751 * that has happened.
2753 int btrfs_sync_log(struct btrfs_trans_handle
*trans
,
2754 struct btrfs_root
*root
, struct btrfs_log_ctx
*ctx
)
2760 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2761 struct btrfs_root
*log
= root
->log_root
;
2762 struct btrfs_root
*log_root_tree
= fs_info
->log_root_tree
;
2763 int log_transid
= 0;
2764 struct btrfs_log_ctx root_log_ctx
;
2765 struct blk_plug plug
;
2767 mutex_lock(&root
->log_mutex
);
2768 log_transid
= ctx
->log_transid
;
2769 if (root
->log_transid_committed
>= log_transid
) {
2770 mutex_unlock(&root
->log_mutex
);
2771 return ctx
->log_ret
;
2774 index1
= log_transid
% 2;
2775 if (atomic_read(&root
->log_commit
[index1
])) {
2776 wait_log_commit(root
, log_transid
);
2777 mutex_unlock(&root
->log_mutex
);
2778 return ctx
->log_ret
;
2780 ASSERT(log_transid
== root
->log_transid
);
2781 atomic_set(&root
->log_commit
[index1
], 1);
2783 /* wait for previous tree log sync to complete */
2784 if (atomic_read(&root
->log_commit
[(index1
+ 1) % 2]))
2785 wait_log_commit(root
, log_transid
- 1);
2788 int batch
= atomic_read(&root
->log_batch
);
2789 /* when we're on an ssd, just kick the log commit out */
2790 if (!btrfs_test_opt(fs_info
, SSD
) &&
2791 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
)) {
2792 mutex_unlock(&root
->log_mutex
);
2793 schedule_timeout_uninterruptible(1);
2794 mutex_lock(&root
->log_mutex
);
2796 wait_for_writer(root
);
2797 if (batch
== atomic_read(&root
->log_batch
))
2801 /* bail out if we need to do a full commit */
2802 if (btrfs_need_log_full_commit(fs_info
, trans
)) {
2804 btrfs_free_logged_extents(log
, log_transid
);
2805 mutex_unlock(&root
->log_mutex
);
2809 if (log_transid
% 2 == 0)
2810 mark
= EXTENT_DIRTY
;
2814 /* we start IO on all the marked extents here, but we don't actually
2815 * wait for them until later.
2817 blk_start_plug(&plug
);
2818 ret
= btrfs_write_marked_extents(fs_info
, &log
->dirty_log_pages
, mark
);
2820 blk_finish_plug(&plug
);
2821 btrfs_abort_transaction(trans
, ret
);
2822 btrfs_free_logged_extents(log
, log_transid
);
2823 btrfs_set_log_full_commit(fs_info
, trans
);
2824 mutex_unlock(&root
->log_mutex
);
2828 btrfs_set_root_node(&log
->root_item
, log
->node
);
2830 root
->log_transid
++;
2831 log
->log_transid
= root
->log_transid
;
2832 root
->log_start_pid
= 0;
2834 * IO has been started, blocks of the log tree have WRITTEN flag set
2835 * in their headers. new modifications of the log will be written to
2836 * new positions. so it's safe to allow log writers to go in.
2838 mutex_unlock(&root
->log_mutex
);
2840 btrfs_init_log_ctx(&root_log_ctx
, NULL
);
2842 mutex_lock(&log_root_tree
->log_mutex
);
2843 atomic_inc(&log_root_tree
->log_batch
);
2844 atomic_inc(&log_root_tree
->log_writers
);
2846 index2
= log_root_tree
->log_transid
% 2;
2847 list_add_tail(&root_log_ctx
.list
, &log_root_tree
->log_ctxs
[index2
]);
2848 root_log_ctx
.log_transid
= log_root_tree
->log_transid
;
2850 mutex_unlock(&log_root_tree
->log_mutex
);
2852 ret
= update_log_root(trans
, log
);
2854 mutex_lock(&log_root_tree
->log_mutex
);
2855 if (atomic_dec_and_test(&log_root_tree
->log_writers
)) {
2857 * Implicit memory barrier after atomic_dec_and_test
2859 if (waitqueue_active(&log_root_tree
->log_writer_wait
))
2860 wake_up(&log_root_tree
->log_writer_wait
);
2864 if (!list_empty(&root_log_ctx
.list
))
2865 list_del_init(&root_log_ctx
.list
);
2867 blk_finish_plug(&plug
);
2868 btrfs_set_log_full_commit(fs_info
, trans
);
2870 if (ret
!= -ENOSPC
) {
2871 btrfs_abort_transaction(trans
, ret
);
2872 mutex_unlock(&log_root_tree
->log_mutex
);
2875 btrfs_wait_tree_log_extents(log
, mark
);
2876 btrfs_free_logged_extents(log
, log_transid
);
2877 mutex_unlock(&log_root_tree
->log_mutex
);
2882 if (log_root_tree
->log_transid_committed
>= root_log_ctx
.log_transid
) {
2883 blk_finish_plug(&plug
);
2884 list_del_init(&root_log_ctx
.list
);
2885 mutex_unlock(&log_root_tree
->log_mutex
);
2886 ret
= root_log_ctx
.log_ret
;
2890 index2
= root_log_ctx
.log_transid
% 2;
2891 if (atomic_read(&log_root_tree
->log_commit
[index2
])) {
2892 blk_finish_plug(&plug
);
2893 ret
= btrfs_wait_tree_log_extents(log
, mark
);
2894 btrfs_wait_logged_extents(trans
, log
, log_transid
);
2895 wait_log_commit(log_root_tree
,
2896 root_log_ctx
.log_transid
);
2897 mutex_unlock(&log_root_tree
->log_mutex
);
2899 ret
= root_log_ctx
.log_ret
;
2902 ASSERT(root_log_ctx
.log_transid
== log_root_tree
->log_transid
);
2903 atomic_set(&log_root_tree
->log_commit
[index2
], 1);
2905 if (atomic_read(&log_root_tree
->log_commit
[(index2
+ 1) % 2])) {
2906 wait_log_commit(log_root_tree
,
2907 root_log_ctx
.log_transid
- 1);
2910 wait_for_writer(log_root_tree
);
2913 * now that we've moved on to the tree of log tree roots,
2914 * check the full commit flag again
2916 if (btrfs_need_log_full_commit(fs_info
, trans
)) {
2917 blk_finish_plug(&plug
);
2918 btrfs_wait_tree_log_extents(log
, mark
);
2919 btrfs_free_logged_extents(log
, log_transid
);
2920 mutex_unlock(&log_root_tree
->log_mutex
);
2922 goto out_wake_log_root
;
2925 ret
= btrfs_write_marked_extents(fs_info
,
2926 &log_root_tree
->dirty_log_pages
,
2927 EXTENT_DIRTY
| EXTENT_NEW
);
2928 blk_finish_plug(&plug
);
2930 btrfs_set_log_full_commit(fs_info
, trans
);
2931 btrfs_abort_transaction(trans
, ret
);
2932 btrfs_free_logged_extents(log
, log_transid
);
2933 mutex_unlock(&log_root_tree
->log_mutex
);
2934 goto out_wake_log_root
;
2936 ret
= btrfs_wait_tree_log_extents(log
, mark
);
2938 ret
= btrfs_wait_tree_log_extents(log_root_tree
,
2939 EXTENT_NEW
| EXTENT_DIRTY
);
2941 btrfs_set_log_full_commit(fs_info
, trans
);
2942 btrfs_free_logged_extents(log
, log_transid
);
2943 mutex_unlock(&log_root_tree
->log_mutex
);
2944 goto out_wake_log_root
;
2946 btrfs_wait_logged_extents(trans
, log
, log_transid
);
2948 btrfs_set_super_log_root(fs_info
->super_for_commit
,
2949 log_root_tree
->node
->start
);
2950 btrfs_set_super_log_root_level(fs_info
->super_for_commit
,
2951 btrfs_header_level(log_root_tree
->node
));
2953 log_root_tree
->log_transid
++;
2954 mutex_unlock(&log_root_tree
->log_mutex
);
2957 * nobody else is going to jump in and write the the ctree
2958 * super here because the log_commit atomic below is protecting
2959 * us. We must be called with a transaction handle pinning
2960 * the running transaction open, so a full commit can't hop
2961 * in and cause problems either.
2963 ret
= write_all_supers(fs_info
, 1);
2965 btrfs_set_log_full_commit(fs_info
, trans
);
2966 btrfs_abort_transaction(trans
, ret
);
2967 goto out_wake_log_root
;
2970 mutex_lock(&root
->log_mutex
);
2971 if (root
->last_log_commit
< log_transid
)
2972 root
->last_log_commit
= log_transid
;
2973 mutex_unlock(&root
->log_mutex
);
2976 mutex_lock(&log_root_tree
->log_mutex
);
2977 btrfs_remove_all_log_ctxs(log_root_tree
, index2
, ret
);
2979 log_root_tree
->log_transid_committed
++;
2980 atomic_set(&log_root_tree
->log_commit
[index2
], 0);
2981 mutex_unlock(&log_root_tree
->log_mutex
);
2984 * The barrier before waitqueue_active is implied by mutex_unlock
2986 if (waitqueue_active(&log_root_tree
->log_commit_wait
[index2
]))
2987 wake_up(&log_root_tree
->log_commit_wait
[index2
]);
2989 mutex_lock(&root
->log_mutex
);
2990 btrfs_remove_all_log_ctxs(root
, index1
, ret
);
2991 root
->log_transid_committed
++;
2992 atomic_set(&root
->log_commit
[index1
], 0);
2993 mutex_unlock(&root
->log_mutex
);
2996 * The barrier before waitqueue_active is implied by mutex_unlock
2998 if (waitqueue_active(&root
->log_commit_wait
[index1
]))
2999 wake_up(&root
->log_commit_wait
[index1
]);
3003 static void free_log_tree(struct btrfs_trans_handle
*trans
,
3004 struct btrfs_root
*log
)
3009 struct walk_control wc
= {
3011 .process_func
= process_one_buffer
3014 ret
= walk_log_tree(trans
, log
, &wc
);
3015 /* I don't think this can happen but just in case */
3017 btrfs_abort_transaction(trans
, ret
);
3020 ret
= find_first_extent_bit(&log
->dirty_log_pages
,
3021 0, &start
, &end
, EXTENT_DIRTY
| EXTENT_NEW
,
3026 clear_extent_bits(&log
->dirty_log_pages
, start
, end
,
3027 EXTENT_DIRTY
| EXTENT_NEW
);
3031 * We may have short-circuited the log tree with the full commit logic
3032 * and left ordered extents on our list, so clear these out to keep us
3033 * from leaking inodes and memory.
3035 btrfs_free_logged_extents(log
, 0);
3036 btrfs_free_logged_extents(log
, 1);
3038 free_extent_buffer(log
->node
);
3043 * free all the extents used by the tree log. This should be called
3044 * at commit time of the full transaction
3046 int btrfs_free_log(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
)
3048 if (root
->log_root
) {
3049 free_log_tree(trans
, root
->log_root
);
3050 root
->log_root
= NULL
;
3055 int btrfs_free_log_root_tree(struct btrfs_trans_handle
*trans
,
3056 struct btrfs_fs_info
*fs_info
)
3058 if (fs_info
->log_root_tree
) {
3059 free_log_tree(trans
, fs_info
->log_root_tree
);
3060 fs_info
->log_root_tree
= NULL
;
3066 * If both a file and directory are logged, and unlinks or renames are
3067 * mixed in, we have a few interesting corners:
3069 * create file X in dir Y
3070 * link file X to X.link in dir Y
3072 * unlink file X but leave X.link
3075 * After a crash we would expect only X.link to exist. But file X
3076 * didn't get fsync'd again so the log has back refs for X and X.link.
3078 * We solve this by removing directory entries and inode backrefs from the
3079 * log when a file that was logged in the current transaction is
3080 * unlinked. Any later fsync will include the updated log entries, and
3081 * we'll be able to reconstruct the proper directory items from backrefs.
3083 * This optimizations allows us to avoid relogging the entire inode
3084 * or the entire directory.
3086 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle
*trans
,
3087 struct btrfs_root
*root
,
3088 const char *name
, int name_len
,
3089 struct btrfs_inode
*dir
, u64 index
)
3091 struct btrfs_root
*log
;
3092 struct btrfs_dir_item
*di
;
3093 struct btrfs_path
*path
;
3097 u64 dir_ino
= btrfs_ino(dir
);
3099 if (dir
->logged_trans
< trans
->transid
)
3102 ret
= join_running_log_trans(root
);
3106 mutex_lock(&dir
->log_mutex
);
3108 log
= root
->log_root
;
3109 path
= btrfs_alloc_path();
3115 di
= btrfs_lookup_dir_item(trans
, log
, path
, dir_ino
,
3116 name
, name_len
, -1);
3122 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
3123 bytes_del
+= name_len
;
3129 btrfs_release_path(path
);
3130 di
= btrfs_lookup_dir_index_item(trans
, log
, path
, dir_ino
,
3131 index
, name
, name_len
, -1);
3137 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
3138 bytes_del
+= name_len
;
3145 /* update the directory size in the log to reflect the names
3149 struct btrfs_key key
;
3151 key
.objectid
= dir_ino
;
3153 key
.type
= BTRFS_INODE_ITEM_KEY
;
3154 btrfs_release_path(path
);
3156 ret
= btrfs_search_slot(trans
, log
, &key
, path
, 0, 1);
3162 struct btrfs_inode_item
*item
;
3165 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3166 struct btrfs_inode_item
);
3167 i_size
= btrfs_inode_size(path
->nodes
[0], item
);
3168 if (i_size
> bytes_del
)
3169 i_size
-= bytes_del
;
3172 btrfs_set_inode_size(path
->nodes
[0], item
, i_size
);
3173 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3176 btrfs_release_path(path
);
3179 btrfs_free_path(path
);
3181 mutex_unlock(&dir
->log_mutex
);
3182 if (ret
== -ENOSPC
) {
3183 btrfs_set_log_full_commit(root
->fs_info
, trans
);
3186 btrfs_abort_transaction(trans
, ret
);
3188 btrfs_end_log_trans(root
);
3193 /* see comments for btrfs_del_dir_entries_in_log */
3194 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle
*trans
,
3195 struct btrfs_root
*root
,
3196 const char *name
, int name_len
,
3197 struct btrfs_inode
*inode
, u64 dirid
)
3199 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3200 struct btrfs_root
*log
;
3204 if (inode
->logged_trans
< trans
->transid
)
3207 ret
= join_running_log_trans(root
);
3210 log
= root
->log_root
;
3211 mutex_lock(&inode
->log_mutex
);
3213 ret
= btrfs_del_inode_ref(trans
, log
, name
, name_len
, btrfs_ino(inode
),
3215 mutex_unlock(&inode
->log_mutex
);
3216 if (ret
== -ENOSPC
) {
3217 btrfs_set_log_full_commit(fs_info
, trans
);
3219 } else if (ret
< 0 && ret
!= -ENOENT
)
3220 btrfs_abort_transaction(trans
, ret
);
3221 btrfs_end_log_trans(root
);
3227 * creates a range item in the log for 'dirid'. first_offset and
3228 * last_offset tell us which parts of the key space the log should
3229 * be considered authoritative for.
3231 static noinline
int insert_dir_log_key(struct btrfs_trans_handle
*trans
,
3232 struct btrfs_root
*log
,
3233 struct btrfs_path
*path
,
3234 int key_type
, u64 dirid
,
3235 u64 first_offset
, u64 last_offset
)
3238 struct btrfs_key key
;
3239 struct btrfs_dir_log_item
*item
;
3241 key
.objectid
= dirid
;
3242 key
.offset
= first_offset
;
3243 if (key_type
== BTRFS_DIR_ITEM_KEY
)
3244 key
.type
= BTRFS_DIR_LOG_ITEM_KEY
;
3246 key
.type
= BTRFS_DIR_LOG_INDEX_KEY
;
3247 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
, sizeof(*item
));
3251 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3252 struct btrfs_dir_log_item
);
3253 btrfs_set_dir_log_end(path
->nodes
[0], item
, last_offset
);
3254 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3255 btrfs_release_path(path
);
3260 * log all the items included in the current transaction for a given
3261 * directory. This also creates the range items in the log tree required
3262 * to replay anything deleted before the fsync
3264 static noinline
int log_dir_items(struct btrfs_trans_handle
*trans
,
3265 struct btrfs_root
*root
, struct btrfs_inode
*inode
,
3266 struct btrfs_path
*path
,
3267 struct btrfs_path
*dst_path
, int key_type
,
3268 struct btrfs_log_ctx
*ctx
,
3269 u64 min_offset
, u64
*last_offset_ret
)
3271 struct btrfs_key min_key
;
3272 struct btrfs_root
*log
= root
->log_root
;
3273 struct extent_buffer
*src
;
3278 u64 first_offset
= min_offset
;
3279 u64 last_offset
= (u64
)-1;
3280 u64 ino
= btrfs_ino(inode
);
3282 log
= root
->log_root
;
3284 min_key
.objectid
= ino
;
3285 min_key
.type
= key_type
;
3286 min_key
.offset
= min_offset
;
3288 ret
= btrfs_search_forward(root
, &min_key
, path
, trans
->transid
);
3291 * we didn't find anything from this transaction, see if there
3292 * is anything at all
3294 if (ret
!= 0 || min_key
.objectid
!= ino
|| min_key
.type
!= key_type
) {
3295 min_key
.objectid
= ino
;
3296 min_key
.type
= key_type
;
3297 min_key
.offset
= (u64
)-1;
3298 btrfs_release_path(path
);
3299 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
3301 btrfs_release_path(path
);
3304 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
3306 /* if ret == 0 there are items for this type,
3307 * create a range to tell us the last key of this type.
3308 * otherwise, there are no items in this directory after
3309 * *min_offset, and we create a range to indicate that.
3312 struct btrfs_key tmp
;
3313 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
,
3315 if (key_type
== tmp
.type
)
3316 first_offset
= max(min_offset
, tmp
.offset
) + 1;
3321 /* go backward to find any previous key */
3322 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
3324 struct btrfs_key tmp
;
3325 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
3326 if (key_type
== tmp
.type
) {
3327 first_offset
= tmp
.offset
;
3328 ret
= overwrite_item(trans
, log
, dst_path
,
3329 path
->nodes
[0], path
->slots
[0],
3337 btrfs_release_path(path
);
3339 /* find the first key from this transaction again */
3340 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
3341 if (WARN_ON(ret
!= 0))
3345 * we have a block from this transaction, log every item in it
3346 * from our directory
3349 struct btrfs_key tmp
;
3350 src
= path
->nodes
[0];
3351 nritems
= btrfs_header_nritems(src
);
3352 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
3353 struct btrfs_dir_item
*di
;
3355 btrfs_item_key_to_cpu(src
, &min_key
, i
);
3357 if (min_key
.objectid
!= ino
|| min_key
.type
!= key_type
)
3359 ret
= overwrite_item(trans
, log
, dst_path
, src
, i
,
3367 * We must make sure that when we log a directory entry,
3368 * the corresponding inode, after log replay, has a
3369 * matching link count. For example:
3375 * xfs_io -c "fsync" mydir
3377 * <mount fs and log replay>
3379 * Would result in a fsync log that when replayed, our
3380 * file inode would have a link count of 1, but we get
3381 * two directory entries pointing to the same inode.
3382 * After removing one of the names, it would not be
3383 * possible to remove the other name, which resulted
3384 * always in stale file handle errors, and would not
3385 * be possible to rmdir the parent directory, since
3386 * its i_size could never decrement to the value
3387 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3389 di
= btrfs_item_ptr(src
, i
, struct btrfs_dir_item
);
3390 btrfs_dir_item_key_to_cpu(src
, di
, &tmp
);
3392 (btrfs_dir_transid(src
, di
) == trans
->transid
||
3393 btrfs_dir_type(src
, di
) == BTRFS_FT_DIR
) &&
3394 tmp
.type
!= BTRFS_ROOT_ITEM_KEY
)
3395 ctx
->log_new_dentries
= true;
3397 path
->slots
[0] = nritems
;
3400 * look ahead to the next item and see if it is also
3401 * from this directory and from this transaction
3403 ret
= btrfs_next_leaf(root
, path
);
3405 last_offset
= (u64
)-1;
3408 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
3409 if (tmp
.objectid
!= ino
|| tmp
.type
!= key_type
) {
3410 last_offset
= (u64
)-1;
3413 if (btrfs_header_generation(path
->nodes
[0]) != trans
->transid
) {
3414 ret
= overwrite_item(trans
, log
, dst_path
,
3415 path
->nodes
[0], path
->slots
[0],
3420 last_offset
= tmp
.offset
;
3425 btrfs_release_path(path
);
3426 btrfs_release_path(dst_path
);
3429 *last_offset_ret
= last_offset
;
3431 * insert the log range keys to indicate where the log
3434 ret
= insert_dir_log_key(trans
, log
, path
, key_type
,
3435 ino
, first_offset
, last_offset
);
3443 * logging directories is very similar to logging inodes, We find all the items
3444 * from the current transaction and write them to the log.
3446 * The recovery code scans the directory in the subvolume, and if it finds a
3447 * key in the range logged that is not present in the log tree, then it means
3448 * that dir entry was unlinked during the transaction.
3450 * In order for that scan to work, we must include one key smaller than
3451 * the smallest logged by this transaction and one key larger than the largest
3452 * key logged by this transaction.
3454 static noinline
int log_directory_changes(struct btrfs_trans_handle
*trans
,
3455 struct btrfs_root
*root
, struct btrfs_inode
*inode
,
3456 struct btrfs_path
*path
,
3457 struct btrfs_path
*dst_path
,
3458 struct btrfs_log_ctx
*ctx
)
3463 int key_type
= BTRFS_DIR_ITEM_KEY
;
3469 ret
= log_dir_items(trans
, root
, inode
, path
, dst_path
, key_type
,
3470 ctx
, min_key
, &max_key
);
3473 if (max_key
== (u64
)-1)
3475 min_key
= max_key
+ 1;
3478 if (key_type
== BTRFS_DIR_ITEM_KEY
) {
3479 key_type
= BTRFS_DIR_INDEX_KEY
;
3486 * a helper function to drop items from the log before we relog an
3487 * inode. max_key_type indicates the highest item type to remove.
3488 * This cannot be run for file data extents because it does not
3489 * free the extents they point to.
3491 static int drop_objectid_items(struct btrfs_trans_handle
*trans
,
3492 struct btrfs_root
*log
,
3493 struct btrfs_path
*path
,
3494 u64 objectid
, int max_key_type
)
3497 struct btrfs_key key
;
3498 struct btrfs_key found_key
;
3501 key
.objectid
= objectid
;
3502 key
.type
= max_key_type
;
3503 key
.offset
= (u64
)-1;
3506 ret
= btrfs_search_slot(trans
, log
, &key
, path
, -1, 1);
3507 BUG_ON(ret
== 0); /* Logic error */
3511 if (path
->slots
[0] == 0)
3515 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
3518 if (found_key
.objectid
!= objectid
)
3521 found_key
.offset
= 0;
3523 ret
= btrfs_bin_search(path
->nodes
[0], &found_key
, 0,
3526 ret
= btrfs_del_items(trans
, log
, path
, start_slot
,
3527 path
->slots
[0] - start_slot
+ 1);
3529 * If start slot isn't 0 then we don't need to re-search, we've
3530 * found the last guy with the objectid in this tree.
3532 if (ret
|| start_slot
!= 0)
3534 btrfs_release_path(path
);
3536 btrfs_release_path(path
);
3542 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3543 struct extent_buffer
*leaf
,
3544 struct btrfs_inode_item
*item
,
3545 struct inode
*inode
, int log_inode_only
,
3548 struct btrfs_map_token token
;
3550 btrfs_init_map_token(&token
);
3552 if (log_inode_only
) {
3553 /* set the generation to zero so the recover code
3554 * can tell the difference between an logging
3555 * just to say 'this inode exists' and a logging
3556 * to say 'update this inode with these values'
3558 btrfs_set_token_inode_generation(leaf
, item
, 0, &token
);
3559 btrfs_set_token_inode_size(leaf
, item
, logged_isize
, &token
);
3561 btrfs_set_token_inode_generation(leaf
, item
,
3562 BTRFS_I(inode
)->generation
,
3564 btrfs_set_token_inode_size(leaf
, item
, inode
->i_size
, &token
);
3567 btrfs_set_token_inode_uid(leaf
, item
, i_uid_read(inode
), &token
);
3568 btrfs_set_token_inode_gid(leaf
, item
, i_gid_read(inode
), &token
);
3569 btrfs_set_token_inode_mode(leaf
, item
, inode
->i_mode
, &token
);
3570 btrfs_set_token_inode_nlink(leaf
, item
, inode
->i_nlink
, &token
);
3572 btrfs_set_token_timespec_sec(leaf
, &item
->atime
,
3573 inode
->i_atime
.tv_sec
, &token
);
3574 btrfs_set_token_timespec_nsec(leaf
, &item
->atime
,
3575 inode
->i_atime
.tv_nsec
, &token
);
3577 btrfs_set_token_timespec_sec(leaf
, &item
->mtime
,
3578 inode
->i_mtime
.tv_sec
, &token
);
3579 btrfs_set_token_timespec_nsec(leaf
, &item
->mtime
,
3580 inode
->i_mtime
.tv_nsec
, &token
);
3582 btrfs_set_token_timespec_sec(leaf
, &item
->ctime
,
3583 inode
->i_ctime
.tv_sec
, &token
);
3584 btrfs_set_token_timespec_nsec(leaf
, &item
->ctime
,
3585 inode
->i_ctime
.tv_nsec
, &token
);
3587 btrfs_set_token_inode_nbytes(leaf
, item
, inode_get_bytes(inode
),
3590 btrfs_set_token_inode_sequence(leaf
, item
,
3591 inode_peek_iversion(inode
), &token
);
3592 btrfs_set_token_inode_transid(leaf
, item
, trans
->transid
, &token
);
3593 btrfs_set_token_inode_rdev(leaf
, item
, inode
->i_rdev
, &token
);
3594 btrfs_set_token_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
, &token
);
3595 btrfs_set_token_inode_block_group(leaf
, item
, 0, &token
);
3598 static int log_inode_item(struct btrfs_trans_handle
*trans
,
3599 struct btrfs_root
*log
, struct btrfs_path
*path
,
3600 struct btrfs_inode
*inode
)
3602 struct btrfs_inode_item
*inode_item
;
3605 ret
= btrfs_insert_empty_item(trans
, log
, path
,
3606 &inode
->location
, sizeof(*inode_item
));
3607 if (ret
&& ret
!= -EEXIST
)
3609 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3610 struct btrfs_inode_item
);
3611 fill_inode_item(trans
, path
->nodes
[0], inode_item
, &inode
->vfs_inode
,
3613 btrfs_release_path(path
);
3617 static noinline
int copy_items(struct btrfs_trans_handle
*trans
,
3618 struct btrfs_inode
*inode
,
3619 struct btrfs_path
*dst_path
,
3620 struct btrfs_path
*src_path
, u64
*last_extent
,
3621 int start_slot
, int nr
, int inode_only
,
3624 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
3625 unsigned long src_offset
;
3626 unsigned long dst_offset
;
3627 struct btrfs_root
*log
= inode
->root
->log_root
;
3628 struct btrfs_file_extent_item
*extent
;
3629 struct btrfs_inode_item
*inode_item
;
3630 struct extent_buffer
*src
= src_path
->nodes
[0];
3631 struct btrfs_key first_key
, last_key
, key
;
3633 struct btrfs_key
*ins_keys
;
3637 struct list_head ordered_sums
;
3638 int skip_csum
= inode
->flags
& BTRFS_INODE_NODATASUM
;
3639 bool has_extents
= false;
3640 bool need_find_last_extent
= true;
3643 INIT_LIST_HEAD(&ordered_sums
);
3645 ins_data
= kmalloc(nr
* sizeof(struct btrfs_key
) +
3646 nr
* sizeof(u32
), GFP_NOFS
);
3650 first_key
.objectid
= (u64
)-1;
3652 ins_sizes
= (u32
*)ins_data
;
3653 ins_keys
= (struct btrfs_key
*)(ins_data
+ nr
* sizeof(u32
));
3655 for (i
= 0; i
< nr
; i
++) {
3656 ins_sizes
[i
] = btrfs_item_size_nr(src
, i
+ start_slot
);
3657 btrfs_item_key_to_cpu(src
, ins_keys
+ i
, i
+ start_slot
);
3659 ret
= btrfs_insert_empty_items(trans
, log
, dst_path
,
3660 ins_keys
, ins_sizes
, nr
);
3666 for (i
= 0; i
< nr
; i
++, dst_path
->slots
[0]++) {
3667 dst_offset
= btrfs_item_ptr_offset(dst_path
->nodes
[0],
3668 dst_path
->slots
[0]);
3670 src_offset
= btrfs_item_ptr_offset(src
, start_slot
+ i
);
3673 last_key
= ins_keys
[i
];
3675 if (ins_keys
[i
].type
== BTRFS_INODE_ITEM_KEY
) {
3676 inode_item
= btrfs_item_ptr(dst_path
->nodes
[0],
3678 struct btrfs_inode_item
);
3679 fill_inode_item(trans
, dst_path
->nodes
[0], inode_item
,
3681 inode_only
== LOG_INODE_EXISTS
,
3684 copy_extent_buffer(dst_path
->nodes
[0], src
, dst_offset
,
3685 src_offset
, ins_sizes
[i
]);
3689 * We set need_find_last_extent here in case we know we were
3690 * processing other items and then walk into the first extent in
3691 * the inode. If we don't hit an extent then nothing changes,
3692 * we'll do the last search the next time around.
3694 if (ins_keys
[i
].type
== BTRFS_EXTENT_DATA_KEY
) {
3696 if (first_key
.objectid
== (u64
)-1)
3697 first_key
= ins_keys
[i
];
3699 need_find_last_extent
= false;
3702 /* take a reference on file data extents so that truncates
3703 * or deletes of this inode don't have to relog the inode
3706 if (ins_keys
[i
].type
== BTRFS_EXTENT_DATA_KEY
&&
3709 extent
= btrfs_item_ptr(src
, start_slot
+ i
,
3710 struct btrfs_file_extent_item
);
3712 if (btrfs_file_extent_generation(src
, extent
) < trans
->transid
)
3715 found_type
= btrfs_file_extent_type(src
, extent
);
3716 if (found_type
== BTRFS_FILE_EXTENT_REG
) {
3718 ds
= btrfs_file_extent_disk_bytenr(src
,
3720 /* ds == 0 is a hole */
3724 dl
= btrfs_file_extent_disk_num_bytes(src
,
3726 cs
= btrfs_file_extent_offset(src
, extent
);
3727 cl
= btrfs_file_extent_num_bytes(src
,
3729 if (btrfs_file_extent_compression(src
,
3735 ret
= btrfs_lookup_csums_range(
3737 ds
+ cs
, ds
+ cs
+ cl
- 1,
3740 btrfs_release_path(dst_path
);
3748 btrfs_mark_buffer_dirty(dst_path
->nodes
[0]);
3749 btrfs_release_path(dst_path
);
3753 * we have to do this after the loop above to avoid changing the
3754 * log tree while trying to change the log tree.
3757 while (!list_empty(&ordered_sums
)) {
3758 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
3759 struct btrfs_ordered_sum
,
3762 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
3763 list_del(&sums
->list
);
3770 if (need_find_last_extent
&& *last_extent
== first_key
.offset
) {
3772 * We don't have any leafs between our current one and the one
3773 * we processed before that can have file extent items for our
3774 * inode (and have a generation number smaller than our current
3777 need_find_last_extent
= false;
3781 * Because we use btrfs_search_forward we could skip leaves that were
3782 * not modified and then assume *last_extent is valid when it really
3783 * isn't. So back up to the previous leaf and read the end of the last
3784 * extent before we go and fill in holes.
3786 if (need_find_last_extent
) {
3789 ret
= btrfs_prev_leaf(inode
->root
, src_path
);
3794 if (src_path
->slots
[0])
3795 src_path
->slots
[0]--;
3796 src
= src_path
->nodes
[0];
3797 btrfs_item_key_to_cpu(src
, &key
, src_path
->slots
[0]);
3798 if (key
.objectid
!= btrfs_ino(inode
) ||
3799 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
3801 extent
= btrfs_item_ptr(src
, src_path
->slots
[0],
3802 struct btrfs_file_extent_item
);
3803 if (btrfs_file_extent_type(src
, extent
) ==
3804 BTRFS_FILE_EXTENT_INLINE
) {
3805 len
= btrfs_file_extent_inline_len(src
,
3808 *last_extent
= ALIGN(key
.offset
+ len
,
3809 fs_info
->sectorsize
);
3811 len
= btrfs_file_extent_num_bytes(src
, extent
);
3812 *last_extent
= key
.offset
+ len
;
3816 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3817 * things could have happened
3819 * 1) A merge could have happened, so we could currently be on a leaf
3820 * that holds what we were copying in the first place.
3821 * 2) A split could have happened, and now not all of the items we want
3822 * are on the same leaf.
3824 * So we need to adjust how we search for holes, we need to drop the
3825 * path and re-search for the first extent key we found, and then walk
3826 * forward until we hit the last one we copied.
3828 if (need_find_last_extent
) {
3829 /* btrfs_prev_leaf could return 1 without releasing the path */
3830 btrfs_release_path(src_path
);
3831 ret
= btrfs_search_slot(NULL
, inode
->root
, &first_key
,
3836 src
= src_path
->nodes
[0];
3837 i
= src_path
->slots
[0];
3843 * Ok so here we need to go through and fill in any holes we may have
3844 * to make sure that holes are punched for those areas in case they had
3845 * extents previously.
3851 if (i
>= btrfs_header_nritems(src_path
->nodes
[0])) {
3852 ret
= btrfs_next_leaf(inode
->root
, src_path
);
3856 src
= src_path
->nodes
[0];
3860 btrfs_item_key_to_cpu(src
, &key
, i
);
3861 if (!btrfs_comp_cpu_keys(&key
, &last_key
))
3863 if (key
.objectid
!= btrfs_ino(inode
) ||
3864 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
3868 extent
= btrfs_item_ptr(src
, i
, struct btrfs_file_extent_item
);
3869 if (btrfs_file_extent_type(src
, extent
) ==
3870 BTRFS_FILE_EXTENT_INLINE
) {
3871 len
= btrfs_file_extent_inline_len(src
, i
, extent
);
3872 extent_end
= ALIGN(key
.offset
+ len
,
3873 fs_info
->sectorsize
);
3875 len
= btrfs_file_extent_num_bytes(src
, extent
);
3876 extent_end
= key
.offset
+ len
;
3880 if (*last_extent
== key
.offset
) {
3881 *last_extent
= extent_end
;
3884 offset
= *last_extent
;
3885 len
= key
.offset
- *last_extent
;
3886 ret
= btrfs_insert_file_extent(trans
, log
, btrfs_ino(inode
),
3887 offset
, 0, 0, len
, 0, len
, 0, 0, 0);
3890 *last_extent
= extent_end
;
3893 * Need to let the callers know we dropped the path so they should
3896 if (!ret
&& need_find_last_extent
)
3901 static int extent_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
3903 struct extent_map
*em1
, *em2
;
3905 em1
= list_entry(a
, struct extent_map
, list
);
3906 em2
= list_entry(b
, struct extent_map
, list
);
3908 if (em1
->start
< em2
->start
)
3910 else if (em1
->start
> em2
->start
)
3915 static int wait_ordered_extents(struct btrfs_trans_handle
*trans
,
3916 struct inode
*inode
,
3917 struct btrfs_root
*root
,
3918 const struct extent_map
*em
,
3919 const struct list_head
*logged_list
,
3920 bool *ordered_io_error
)
3922 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3923 struct btrfs_ordered_extent
*ordered
;
3924 struct btrfs_root
*log
= root
->log_root
;
3925 u64 mod_start
= em
->mod_start
;
3926 u64 mod_len
= em
->mod_len
;
3927 const bool skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
3930 LIST_HEAD(ordered_sums
);
3933 *ordered_io_error
= false;
3935 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
3936 em
->block_start
== EXTENT_MAP_HOLE
)
3940 * Wait far any ordered extent that covers our extent map. If it
3941 * finishes without an error, first check and see if our csums are on
3942 * our outstanding ordered extents.
3944 list_for_each_entry(ordered
, logged_list
, log_list
) {
3945 struct btrfs_ordered_sum
*sum
;
3950 if (ordered
->file_offset
+ ordered
->len
<= mod_start
||
3951 mod_start
+ mod_len
<= ordered
->file_offset
)
3954 if (!test_bit(BTRFS_ORDERED_IO_DONE
, &ordered
->flags
) &&
3955 !test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
) &&
3956 !test_bit(BTRFS_ORDERED_DIRECT
, &ordered
->flags
)) {
3957 const u64 start
= ordered
->file_offset
;
3958 const u64 end
= ordered
->file_offset
+ ordered
->len
- 1;
3960 WARN_ON(ordered
->inode
!= inode
);
3961 filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
3964 wait_event(ordered
->wait
,
3965 (test_bit(BTRFS_ORDERED_IO_DONE
, &ordered
->flags
) ||
3966 test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
)));
3968 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
)) {
3970 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3971 * i_mapping flags, so that the next fsync won't get
3972 * an outdated io error too.
3974 filemap_check_errors(inode
->i_mapping
);
3975 *ordered_io_error
= true;
3979 * We are going to copy all the csums on this ordered extent, so
3980 * go ahead and adjust mod_start and mod_len in case this
3981 * ordered extent has already been logged.
3983 if (ordered
->file_offset
> mod_start
) {
3984 if (ordered
->file_offset
+ ordered
->len
>=
3985 mod_start
+ mod_len
)
3986 mod_len
= ordered
->file_offset
- mod_start
;
3988 * If we have this case
3990 * |--------- logged extent ---------|
3991 * |----- ordered extent ----|
3993 * Just don't mess with mod_start and mod_len, we'll
3994 * just end up logging more csums than we need and it
3998 if (ordered
->file_offset
+ ordered
->len
<
3999 mod_start
+ mod_len
) {
4000 mod_len
= (mod_start
+ mod_len
) -
4001 (ordered
->file_offset
+ ordered
->len
);
4002 mod_start
= ordered
->file_offset
+
4013 * To keep us from looping for the above case of an ordered
4014 * extent that falls inside of the logged extent.
4016 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM
,
4020 list_for_each_entry(sum
, &ordered
->list
, list
) {
4021 ret
= btrfs_csum_file_blocks(trans
, log
, sum
);
4027 if (*ordered_io_error
|| !mod_len
|| ret
|| skip_csum
)
4030 if (em
->compress_type
) {
4032 csum_len
= max(em
->block_len
, em
->orig_block_len
);
4034 csum_offset
= mod_start
- em
->start
;
4038 /* block start is already adjusted for the file extent offset. */
4039 ret
= btrfs_lookup_csums_range(fs_info
->csum_root
,
4040 em
->block_start
+ csum_offset
,
4041 em
->block_start
+ csum_offset
+
4042 csum_len
- 1, &ordered_sums
, 0);
4046 while (!list_empty(&ordered_sums
)) {
4047 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
4048 struct btrfs_ordered_sum
,
4051 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
4052 list_del(&sums
->list
);
4059 static int log_one_extent(struct btrfs_trans_handle
*trans
,
4060 struct btrfs_inode
*inode
, struct btrfs_root
*root
,
4061 const struct extent_map
*em
,
4062 struct btrfs_path
*path
,
4063 const struct list_head
*logged_list
,
4064 struct btrfs_log_ctx
*ctx
)
4066 struct btrfs_root
*log
= root
->log_root
;
4067 struct btrfs_file_extent_item
*fi
;
4068 struct extent_buffer
*leaf
;
4069 struct btrfs_map_token token
;
4070 struct btrfs_key key
;
4071 u64 extent_offset
= em
->start
- em
->orig_start
;
4074 int extent_inserted
= 0;
4075 bool ordered_io_err
= false;
4077 ret
= wait_ordered_extents(trans
, &inode
->vfs_inode
, root
, em
,
4078 logged_list
, &ordered_io_err
);
4082 if (ordered_io_err
) {
4087 btrfs_init_map_token(&token
);
4089 ret
= __btrfs_drop_extents(trans
, log
, &inode
->vfs_inode
, path
, em
->start
,
4090 em
->start
+ em
->len
, NULL
, 0, 1,
4091 sizeof(*fi
), &extent_inserted
);
4095 if (!extent_inserted
) {
4096 key
.objectid
= btrfs_ino(inode
);
4097 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4098 key
.offset
= em
->start
;
4100 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
,
4105 leaf
= path
->nodes
[0];
4106 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4107 struct btrfs_file_extent_item
);
4109 btrfs_set_token_file_extent_generation(leaf
, fi
, trans
->transid
,
4111 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
4112 btrfs_set_token_file_extent_type(leaf
, fi
,
4113 BTRFS_FILE_EXTENT_PREALLOC
,
4116 btrfs_set_token_file_extent_type(leaf
, fi
,
4117 BTRFS_FILE_EXTENT_REG
,
4120 block_len
= max(em
->block_len
, em
->orig_block_len
);
4121 if (em
->compress_type
!= BTRFS_COMPRESS_NONE
) {
4122 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
,
4125 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, block_len
,
4127 } else if (em
->block_start
< EXTENT_MAP_LAST_BYTE
) {
4128 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
,
4130 extent_offset
, &token
);
4131 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, block_len
,
4134 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
, 0, &token
);
4135 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, 0,
4139 btrfs_set_token_file_extent_offset(leaf
, fi
, extent_offset
, &token
);
4140 btrfs_set_token_file_extent_num_bytes(leaf
, fi
, em
->len
, &token
);
4141 btrfs_set_token_file_extent_ram_bytes(leaf
, fi
, em
->ram_bytes
, &token
);
4142 btrfs_set_token_file_extent_compression(leaf
, fi
, em
->compress_type
,
4144 btrfs_set_token_file_extent_encryption(leaf
, fi
, 0, &token
);
4145 btrfs_set_token_file_extent_other_encoding(leaf
, fi
, 0, &token
);
4146 btrfs_mark_buffer_dirty(leaf
);
4148 btrfs_release_path(path
);
4153 static int btrfs_log_changed_extents(struct btrfs_trans_handle
*trans
,
4154 struct btrfs_root
*root
,
4155 struct btrfs_inode
*inode
,
4156 struct btrfs_path
*path
,
4157 struct list_head
*logged_list
,
4158 struct btrfs_log_ctx
*ctx
,
4162 struct extent_map
*em
, *n
;
4163 struct list_head extents
;
4164 struct extent_map_tree
*tree
= &inode
->extent_tree
;
4165 u64 logged_start
, logged_end
;
4170 INIT_LIST_HEAD(&extents
);
4172 down_write(&inode
->dio_sem
);
4173 write_lock(&tree
->lock
);
4174 test_gen
= root
->fs_info
->last_trans_committed
;
4175 logged_start
= start
;
4178 list_for_each_entry_safe(em
, n
, &tree
->modified_extents
, list
) {
4179 list_del_init(&em
->list
);
4181 * Just an arbitrary number, this can be really CPU intensive
4182 * once we start getting a lot of extents, and really once we
4183 * have a bunch of extents we just want to commit since it will
4186 if (++num
> 32768) {
4187 list_del_init(&tree
->modified_extents
);
4192 if (em
->generation
<= test_gen
)
4195 if (em
->start
< logged_start
)
4196 logged_start
= em
->start
;
4197 if ((em
->start
+ em
->len
- 1) > logged_end
)
4198 logged_end
= em
->start
+ em
->len
- 1;
4200 /* Need a ref to keep it from getting evicted from cache */
4201 refcount_inc(&em
->refs
);
4202 set_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
4203 list_add_tail(&em
->list
, &extents
);
4207 list_sort(NULL
, &extents
, extent_cmp
);
4208 btrfs_get_logged_extents(inode
, logged_list
, logged_start
, logged_end
);
4210 * Some ordered extents started by fsync might have completed
4211 * before we could collect them into the list logged_list, which
4212 * means they're gone, not in our logged_list nor in the inode's
4213 * ordered tree. We want the application/user space to know an
4214 * error happened while attempting to persist file data so that
4215 * it can take proper action. If such error happened, we leave
4216 * without writing to the log tree and the fsync must report the
4217 * file data write error and not commit the current transaction.
4219 ret
= filemap_check_errors(inode
->vfs_inode
.i_mapping
);
4223 while (!list_empty(&extents
)) {
4224 em
= list_entry(extents
.next
, struct extent_map
, list
);
4226 list_del_init(&em
->list
);
4229 * If we had an error we just need to delete everybody from our
4233 clear_em_logging(tree
, em
);
4234 free_extent_map(em
);
4238 write_unlock(&tree
->lock
);
4240 ret
= log_one_extent(trans
, inode
, root
, em
, path
, logged_list
,
4242 write_lock(&tree
->lock
);
4243 clear_em_logging(tree
, em
);
4244 free_extent_map(em
);
4246 WARN_ON(!list_empty(&extents
));
4247 write_unlock(&tree
->lock
);
4248 up_write(&inode
->dio_sem
);
4250 btrfs_release_path(path
);
4254 static int logged_inode_size(struct btrfs_root
*log
, struct btrfs_inode
*inode
,
4255 struct btrfs_path
*path
, u64
*size_ret
)
4257 struct btrfs_key key
;
4260 key
.objectid
= btrfs_ino(inode
);
4261 key
.type
= BTRFS_INODE_ITEM_KEY
;
4264 ret
= btrfs_search_slot(NULL
, log
, &key
, path
, 0, 0);
4267 } else if (ret
> 0) {
4270 struct btrfs_inode_item
*item
;
4272 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4273 struct btrfs_inode_item
);
4274 *size_ret
= btrfs_inode_size(path
->nodes
[0], item
);
4277 btrfs_release_path(path
);
4282 * At the moment we always log all xattrs. This is to figure out at log replay
4283 * time which xattrs must have their deletion replayed. If a xattr is missing
4284 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4285 * because if a xattr is deleted, the inode is fsynced and a power failure
4286 * happens, causing the log to be replayed the next time the fs is mounted,
4287 * we want the xattr to not exist anymore (same behaviour as other filesystems
4288 * with a journal, ext3/4, xfs, f2fs, etc).
4290 static int btrfs_log_all_xattrs(struct btrfs_trans_handle
*trans
,
4291 struct btrfs_root
*root
,
4292 struct btrfs_inode
*inode
,
4293 struct btrfs_path
*path
,
4294 struct btrfs_path
*dst_path
)
4297 struct btrfs_key key
;
4298 const u64 ino
= btrfs_ino(inode
);
4303 key
.type
= BTRFS_XATTR_ITEM_KEY
;
4306 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4311 int slot
= path
->slots
[0];
4312 struct extent_buffer
*leaf
= path
->nodes
[0];
4313 int nritems
= btrfs_header_nritems(leaf
);
4315 if (slot
>= nritems
) {
4317 u64 last_extent
= 0;
4319 ret
= copy_items(trans
, inode
, dst_path
, path
,
4320 &last_extent
, start_slot
,
4322 /* can't be 1, extent items aren't processed */
4328 ret
= btrfs_next_leaf(root
, path
);
4336 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
4337 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_XATTR_ITEM_KEY
)
4347 u64 last_extent
= 0;
4349 ret
= copy_items(trans
, inode
, dst_path
, path
,
4350 &last_extent
, start_slot
,
4352 /* can't be 1, extent items aren't processed */
4362 * If the no holes feature is enabled we need to make sure any hole between the
4363 * last extent and the i_size of our inode is explicitly marked in the log. This
4364 * is to make sure that doing something like:
4366 * 1) create file with 128Kb of data
4367 * 2) truncate file to 64Kb
4368 * 3) truncate file to 256Kb
4370 * 5) <crash/power failure>
4371 * 6) mount fs and trigger log replay
4373 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4374 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4375 * file correspond to a hole. The presence of explicit holes in a log tree is
4376 * what guarantees that log replay will remove/adjust file extent items in the
4379 * Here we do not need to care about holes between extents, that is already done
4380 * by copy_items(). We also only need to do this in the full sync path, where we
4381 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4382 * lookup the list of modified extent maps and if any represents a hole, we
4383 * insert a corresponding extent representing a hole in the log tree.
4385 static int btrfs_log_trailing_hole(struct btrfs_trans_handle
*trans
,
4386 struct btrfs_root
*root
,
4387 struct btrfs_inode
*inode
,
4388 struct btrfs_path
*path
)
4390 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4392 struct btrfs_key key
;
4395 struct extent_buffer
*leaf
;
4396 struct btrfs_root
*log
= root
->log_root
;
4397 const u64 ino
= btrfs_ino(inode
);
4398 const u64 i_size
= i_size_read(&inode
->vfs_inode
);
4400 if (!btrfs_fs_incompat(fs_info
, NO_HOLES
))
4404 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4405 key
.offset
= (u64
)-1;
4407 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4412 ASSERT(path
->slots
[0] > 0);
4414 leaf
= path
->nodes
[0];
4415 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4417 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
4418 /* inode does not have any extents */
4422 struct btrfs_file_extent_item
*extent
;
4426 * If there's an extent beyond i_size, an explicit hole was
4427 * already inserted by copy_items().
4429 if (key
.offset
>= i_size
)
4432 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
4433 struct btrfs_file_extent_item
);
4435 if (btrfs_file_extent_type(leaf
, extent
) ==
4436 BTRFS_FILE_EXTENT_INLINE
) {
4437 len
= btrfs_file_extent_inline_len(leaf
,
4440 ASSERT(len
== i_size
||
4441 (len
== fs_info
->sectorsize
&&
4442 btrfs_file_extent_compression(leaf
, extent
) !=
4443 BTRFS_COMPRESS_NONE
));
4447 len
= btrfs_file_extent_num_bytes(leaf
, extent
);
4448 /* Last extent goes beyond i_size, no need to log a hole. */
4449 if (key
.offset
+ len
> i_size
)
4451 hole_start
= key
.offset
+ len
;
4452 hole_size
= i_size
- hole_start
;
4454 btrfs_release_path(path
);
4456 /* Last extent ends at i_size. */
4460 hole_size
= ALIGN(hole_size
, fs_info
->sectorsize
);
4461 ret
= btrfs_insert_file_extent(trans
, log
, ino
, hole_start
, 0, 0,
4462 hole_size
, 0, hole_size
, 0, 0, 0);
4467 * When we are logging a new inode X, check if it doesn't have a reference that
4468 * matches the reference from some other inode Y created in a past transaction
4469 * and that was renamed in the current transaction. If we don't do this, then at
4470 * log replay time we can lose inode Y (and all its files if it's a directory):
4473 * echo "hello world" > /mnt/x/foobar
4476 * mkdir /mnt/x # or touch /mnt/x
4477 * xfs_io -c fsync /mnt/x
4479 * mount fs, trigger log replay
4481 * After the log replay procedure, we would lose the first directory and all its
4482 * files (file foobar).
4483 * For the case where inode Y is not a directory we simply end up losing it:
4485 * echo "123" > /mnt/foo
4487 * mv /mnt/foo /mnt/bar
4488 * echo "abc" > /mnt/foo
4489 * xfs_io -c fsync /mnt/foo
4492 * We also need this for cases where a snapshot entry is replaced by some other
4493 * entry (file or directory) otherwise we end up with an unreplayable log due to
4494 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4495 * if it were a regular entry:
4498 * btrfs subvolume snapshot /mnt /mnt/x/snap
4499 * btrfs subvolume delete /mnt/x/snap
4502 * fsync /mnt/x or fsync some new file inside it
4505 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4506 * the same transaction.
4508 static int btrfs_check_ref_name_override(struct extent_buffer
*eb
,
4510 const struct btrfs_key
*key
,
4511 struct btrfs_inode
*inode
,
4515 struct btrfs_path
*search_path
;
4518 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
4520 unsigned long ptr
= btrfs_item_ptr_offset(eb
, slot
);
4522 search_path
= btrfs_alloc_path();
4525 search_path
->search_commit_root
= 1;
4526 search_path
->skip_locking
= 1;
4528 while (cur_offset
< item_size
) {
4532 unsigned long name_ptr
;
4533 struct btrfs_dir_item
*di
;
4535 if (key
->type
== BTRFS_INODE_REF_KEY
) {
4536 struct btrfs_inode_ref
*iref
;
4538 iref
= (struct btrfs_inode_ref
*)(ptr
+ cur_offset
);
4539 parent
= key
->offset
;
4540 this_name_len
= btrfs_inode_ref_name_len(eb
, iref
);
4541 name_ptr
= (unsigned long)(iref
+ 1);
4542 this_len
= sizeof(*iref
) + this_name_len
;
4544 struct btrfs_inode_extref
*extref
;
4546 extref
= (struct btrfs_inode_extref
*)(ptr
+
4548 parent
= btrfs_inode_extref_parent(eb
, extref
);
4549 this_name_len
= btrfs_inode_extref_name_len(eb
, extref
);
4550 name_ptr
= (unsigned long)&extref
->name
;
4551 this_len
= sizeof(*extref
) + this_name_len
;
4554 if (this_name_len
> name_len
) {
4557 new_name
= krealloc(name
, this_name_len
, GFP_NOFS
);
4562 name_len
= this_name_len
;
4566 read_extent_buffer(eb
, name
, name_ptr
, this_name_len
);
4567 di
= btrfs_lookup_dir_item(NULL
, inode
->root
, search_path
,
4568 parent
, name
, this_name_len
, 0);
4569 if (di
&& !IS_ERR(di
)) {
4570 struct btrfs_key di_key
;
4572 btrfs_dir_item_key_to_cpu(search_path
->nodes
[0],
4574 if (di_key
.type
== BTRFS_INODE_ITEM_KEY
) {
4576 *other_ino
= di_key
.objectid
;
4581 } else if (IS_ERR(di
)) {
4585 btrfs_release_path(search_path
);
4587 cur_offset
+= this_len
;
4591 btrfs_free_path(search_path
);
4596 /* log a single inode in the tree log.
4597 * At least one parent directory for this inode must exist in the tree
4598 * or be logged already.
4600 * Any items from this inode changed by the current transaction are copied
4601 * to the log tree. An extra reference is taken on any extents in this
4602 * file, allowing us to avoid a whole pile of corner cases around logging
4603 * blocks that have been removed from the tree.
4605 * See LOG_INODE_ALL and related defines for a description of what inode_only
4608 * This handles both files and directories.
4610 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
4611 struct btrfs_root
*root
, struct btrfs_inode
*inode
,
4615 struct btrfs_log_ctx
*ctx
)
4617 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4618 struct btrfs_path
*path
;
4619 struct btrfs_path
*dst_path
;
4620 struct btrfs_key min_key
;
4621 struct btrfs_key max_key
;
4622 struct btrfs_root
*log
= root
->log_root
;
4623 LIST_HEAD(logged_list
);
4624 u64 last_extent
= 0;
4628 int ins_start_slot
= 0;
4630 bool fast_search
= false;
4631 u64 ino
= btrfs_ino(inode
);
4632 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
4633 u64 logged_isize
= 0;
4634 bool need_log_inode_item
= true;
4636 path
= btrfs_alloc_path();
4639 dst_path
= btrfs_alloc_path();
4641 btrfs_free_path(path
);
4645 min_key
.objectid
= ino
;
4646 min_key
.type
= BTRFS_INODE_ITEM_KEY
;
4649 max_key
.objectid
= ino
;
4652 /* today the code can only do partial logging of directories */
4653 if (S_ISDIR(inode
->vfs_inode
.i_mode
) ||
4654 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4655 &inode
->runtime_flags
) &&
4656 inode_only
>= LOG_INODE_EXISTS
))
4657 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
4659 max_key
.type
= (u8
)-1;
4660 max_key
.offset
= (u64
)-1;
4663 * Only run delayed items if we are a dir or a new file.
4664 * Otherwise commit the delayed inode only, which is needed in
4665 * order for the log replay code to mark inodes for link count
4666 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4668 if (S_ISDIR(inode
->vfs_inode
.i_mode
) ||
4669 inode
->generation
> fs_info
->last_trans_committed
)
4670 ret
= btrfs_commit_inode_delayed_items(trans
, inode
);
4672 ret
= btrfs_commit_inode_delayed_inode(inode
);
4675 btrfs_free_path(path
);
4676 btrfs_free_path(dst_path
);
4680 if (inode_only
== LOG_OTHER_INODE
) {
4681 inode_only
= LOG_INODE_EXISTS
;
4682 mutex_lock_nested(&inode
->log_mutex
, SINGLE_DEPTH_NESTING
);
4684 mutex_lock(&inode
->log_mutex
);
4688 * a brute force approach to making sure we get the most uptodate
4689 * copies of everything.
4691 if (S_ISDIR(inode
->vfs_inode
.i_mode
)) {
4692 int max_key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
4694 if (inode_only
== LOG_INODE_EXISTS
)
4695 max_key_type
= BTRFS_XATTR_ITEM_KEY
;
4696 ret
= drop_objectid_items(trans
, log
, path
, ino
, max_key_type
);
4698 if (inode_only
== LOG_INODE_EXISTS
) {
4700 * Make sure the new inode item we write to the log has
4701 * the same isize as the current one (if it exists).
4702 * This is necessary to prevent data loss after log
4703 * replay, and also to prevent doing a wrong expanding
4704 * truncate - for e.g. create file, write 4K into offset
4705 * 0, fsync, write 4K into offset 4096, add hard link,
4706 * fsync some other file (to sync log), power fail - if
4707 * we use the inode's current i_size, after log replay
4708 * we get a 8Kb file, with the last 4Kb extent as a hole
4709 * (zeroes), as if an expanding truncate happened,
4710 * instead of getting a file of 4Kb only.
4712 err
= logged_inode_size(log
, inode
, path
, &logged_isize
);
4716 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4717 &inode
->runtime_flags
)) {
4718 if (inode_only
== LOG_INODE_EXISTS
) {
4719 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
4720 ret
= drop_objectid_items(trans
, log
, path
, ino
,
4723 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4724 &inode
->runtime_flags
);
4725 clear_bit(BTRFS_INODE_COPY_EVERYTHING
,
4726 &inode
->runtime_flags
);
4728 ret
= btrfs_truncate_inode_items(trans
,
4729 log
, &inode
->vfs_inode
, 0, 0);
4734 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING
,
4735 &inode
->runtime_flags
) ||
4736 inode_only
== LOG_INODE_EXISTS
) {
4737 if (inode_only
== LOG_INODE_ALL
)
4739 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
4740 ret
= drop_objectid_items(trans
, log
, path
, ino
,
4743 if (inode_only
== LOG_INODE_ALL
)
4756 ret
= btrfs_search_forward(root
, &min_key
,
4757 path
, trans
->transid
);
4765 /* note, ins_nr might be > 0 here, cleanup outside the loop */
4766 if (min_key
.objectid
!= ino
)
4768 if (min_key
.type
> max_key
.type
)
4771 if (min_key
.type
== BTRFS_INODE_ITEM_KEY
)
4772 need_log_inode_item
= false;
4774 if ((min_key
.type
== BTRFS_INODE_REF_KEY
||
4775 min_key
.type
== BTRFS_INODE_EXTREF_KEY
) &&
4776 inode
->generation
== trans
->transid
) {
4779 ret
= btrfs_check_ref_name_override(path
->nodes
[0],
4780 path
->slots
[0], &min_key
, inode
,
4785 } else if (ret
> 0 && ctx
&&
4786 other_ino
!= btrfs_ino(BTRFS_I(ctx
->inode
))) {
4787 struct btrfs_key inode_key
;
4788 struct inode
*other_inode
;
4794 ins_start_slot
= path
->slots
[0];
4796 ret
= copy_items(trans
, inode
, dst_path
, path
,
4797 &last_extent
, ins_start_slot
,
4805 btrfs_release_path(path
);
4806 inode_key
.objectid
= other_ino
;
4807 inode_key
.type
= BTRFS_INODE_ITEM_KEY
;
4808 inode_key
.offset
= 0;
4809 other_inode
= btrfs_iget(fs_info
->sb
,
4813 * If the other inode that had a conflicting dir
4814 * entry was deleted in the current transaction,
4815 * we don't need to do more work nor fallback to
4816 * a transaction commit.
4818 if (IS_ERR(other_inode
) &&
4819 PTR_ERR(other_inode
) == -ENOENT
) {
4821 } else if (IS_ERR(other_inode
)) {
4822 err
= PTR_ERR(other_inode
);
4826 * We are safe logging the other inode without
4827 * acquiring its i_mutex as long as we log with
4828 * the LOG_INODE_EXISTS mode. We're safe against
4829 * concurrent renames of the other inode as well
4830 * because during a rename we pin the log and
4831 * update the log with the new name before we
4834 err
= btrfs_log_inode(trans
, root
,
4835 BTRFS_I(other_inode
),
4836 LOG_OTHER_INODE
, 0, LLONG_MAX
,
4846 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4847 if (min_key
.type
== BTRFS_XATTR_ITEM_KEY
) {
4850 ret
= copy_items(trans
, inode
, dst_path
, path
,
4851 &last_extent
, ins_start_slot
,
4852 ins_nr
, inode_only
, logged_isize
);
4859 btrfs_release_path(path
);
4865 if (ins_nr
&& ins_start_slot
+ ins_nr
== path
->slots
[0]) {
4868 } else if (!ins_nr
) {
4869 ins_start_slot
= path
->slots
[0];
4874 ret
= copy_items(trans
, inode
, dst_path
, path
, &last_extent
,
4875 ins_start_slot
, ins_nr
, inode_only
,
4883 btrfs_release_path(path
);
4887 ins_start_slot
= path
->slots
[0];
4890 nritems
= btrfs_header_nritems(path
->nodes
[0]);
4892 if (path
->slots
[0] < nritems
) {
4893 btrfs_item_key_to_cpu(path
->nodes
[0], &min_key
,
4898 ret
= copy_items(trans
, inode
, dst_path
, path
,
4899 &last_extent
, ins_start_slot
,
4900 ins_nr
, inode_only
, logged_isize
);
4908 btrfs_release_path(path
);
4910 if (min_key
.offset
< (u64
)-1) {
4912 } else if (min_key
.type
< max_key
.type
) {
4920 ret
= copy_items(trans
, inode
, dst_path
, path
, &last_extent
,
4921 ins_start_slot
, ins_nr
, inode_only
,
4931 btrfs_release_path(path
);
4932 btrfs_release_path(dst_path
);
4933 err
= btrfs_log_all_xattrs(trans
, root
, inode
, path
, dst_path
);
4936 if (max_key
.type
>= BTRFS_EXTENT_DATA_KEY
&& !fast_search
) {
4937 btrfs_release_path(path
);
4938 btrfs_release_path(dst_path
);
4939 err
= btrfs_log_trailing_hole(trans
, root
, inode
, path
);
4944 btrfs_release_path(path
);
4945 btrfs_release_path(dst_path
);
4946 if (need_log_inode_item
) {
4947 err
= log_inode_item(trans
, log
, dst_path
, inode
);
4952 ret
= btrfs_log_changed_extents(trans
, root
, inode
, dst_path
,
4953 &logged_list
, ctx
, start
, end
);
4958 } else if (inode_only
== LOG_INODE_ALL
) {
4959 struct extent_map
*em
, *n
;
4961 write_lock(&em_tree
->lock
);
4963 * We can't just remove every em if we're called for a ranged
4964 * fsync - that is, one that doesn't cover the whole possible
4965 * file range (0 to LLONG_MAX). This is because we can have
4966 * em's that fall outside the range we're logging and therefore
4967 * their ordered operations haven't completed yet
4968 * (btrfs_finish_ordered_io() not invoked yet). This means we
4969 * didn't get their respective file extent item in the fs/subvol
4970 * tree yet, and need to let the next fast fsync (one which
4971 * consults the list of modified extent maps) find the em so
4972 * that it logs a matching file extent item and waits for the
4973 * respective ordered operation to complete (if it's still
4976 * Removing every em outside the range we're logging would make
4977 * the next fast fsync not log their matching file extent items,
4978 * therefore making us lose data after a log replay.
4980 list_for_each_entry_safe(em
, n
, &em_tree
->modified_extents
,
4982 const u64 mod_end
= em
->mod_start
+ em
->mod_len
- 1;
4984 if (em
->mod_start
>= start
&& mod_end
<= end
)
4985 list_del_init(&em
->list
);
4987 write_unlock(&em_tree
->lock
);
4990 if (inode_only
== LOG_INODE_ALL
&& S_ISDIR(inode
->vfs_inode
.i_mode
)) {
4991 ret
= log_directory_changes(trans
, root
, inode
, path
, dst_path
,
4999 spin_lock(&inode
->lock
);
5000 inode
->logged_trans
= trans
->transid
;
5001 inode
->last_log_commit
= inode
->last_sub_trans
;
5002 spin_unlock(&inode
->lock
);
5005 btrfs_put_logged_extents(&logged_list
);
5007 btrfs_submit_logged_extents(&logged_list
, log
);
5008 mutex_unlock(&inode
->log_mutex
);
5010 btrfs_free_path(path
);
5011 btrfs_free_path(dst_path
);
5016 * Check if we must fallback to a transaction commit when logging an inode.
5017 * This must be called after logging the inode and is used only in the context
5018 * when fsyncing an inode requires the need to log some other inode - in which
5019 * case we can't lock the i_mutex of each other inode we need to log as that
5020 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5021 * log inodes up or down in the hierarchy) or rename operations for example. So
5022 * we take the log_mutex of the inode after we have logged it and then check for
5023 * its last_unlink_trans value - this is safe because any task setting
5024 * last_unlink_trans must take the log_mutex and it must do this before it does
5025 * the actual unlink operation, so if we do this check before a concurrent task
5026 * sets last_unlink_trans it means we've logged a consistent version/state of
5027 * all the inode items, otherwise we are not sure and must do a transaction
5028 * commit (the concurrent task might have only updated last_unlink_trans before
5029 * we logged the inode or it might have also done the unlink).
5031 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle
*trans
,
5032 struct btrfs_inode
*inode
)
5034 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
5037 mutex_lock(&inode
->log_mutex
);
5038 if (inode
->last_unlink_trans
> fs_info
->last_trans_committed
) {
5040 * Make sure any commits to the log are forced to be full
5043 btrfs_set_log_full_commit(fs_info
, trans
);
5046 mutex_unlock(&inode
->log_mutex
);
5052 * follow the dentry parent pointers up the chain and see if any
5053 * of the directories in it require a full commit before they can
5054 * be logged. Returns zero if nothing special needs to be done or 1 if
5055 * a full commit is required.
5057 static noinline
int check_parent_dirs_for_sync(struct btrfs_trans_handle
*trans
,
5058 struct btrfs_inode
*inode
,
5059 struct dentry
*parent
,
5060 struct super_block
*sb
,
5064 struct dentry
*old_parent
= NULL
;
5065 struct btrfs_inode
*orig_inode
= inode
;
5068 * for regular files, if its inode is already on disk, we don't
5069 * have to worry about the parents at all. This is because
5070 * we can use the last_unlink_trans field to record renames
5071 * and other fun in this file.
5073 if (S_ISREG(inode
->vfs_inode
.i_mode
) &&
5074 inode
->generation
<= last_committed
&&
5075 inode
->last_unlink_trans
<= last_committed
)
5078 if (!S_ISDIR(inode
->vfs_inode
.i_mode
)) {
5079 if (!parent
|| d_really_is_negative(parent
) || sb
!= parent
->d_sb
)
5081 inode
= BTRFS_I(d_inode(parent
));
5086 * If we are logging a directory then we start with our inode,
5087 * not our parent's inode, so we need to skip setting the
5088 * logged_trans so that further down in the log code we don't
5089 * think this inode has already been logged.
5091 if (inode
!= orig_inode
)
5092 inode
->logged_trans
= trans
->transid
;
5095 if (btrfs_must_commit_transaction(trans
, inode
)) {
5100 if (!parent
|| d_really_is_negative(parent
) || sb
!= parent
->d_sb
)
5103 if (IS_ROOT(parent
)) {
5104 inode
= BTRFS_I(d_inode(parent
));
5105 if (btrfs_must_commit_transaction(trans
, inode
))
5110 parent
= dget_parent(parent
);
5112 old_parent
= parent
;
5113 inode
= BTRFS_I(d_inode(parent
));
5121 struct btrfs_dir_list
{
5123 struct list_head list
;
5127 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5128 * details about the why it is needed.
5129 * This is a recursive operation - if an existing dentry corresponds to a
5130 * directory, that directory's new entries are logged too (same behaviour as
5131 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5132 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5133 * complains about the following circular lock dependency / possible deadlock:
5137 * lock(&type->i_mutex_dir_key#3/2);
5138 * lock(sb_internal#2);
5139 * lock(&type->i_mutex_dir_key#3/2);
5140 * lock(&sb->s_type->i_mutex_key#14);
5142 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5143 * sb_start_intwrite() in btrfs_start_transaction().
5144 * Not locking i_mutex of the inodes is still safe because:
5146 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5147 * that while logging the inode new references (names) are added or removed
5148 * from the inode, leaving the logged inode item with a link count that does
5149 * not match the number of logged inode reference items. This is fine because
5150 * at log replay time we compute the real number of links and correct the
5151 * link count in the inode item (see replay_one_buffer() and
5152 * link_to_fixup_dir());
5154 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5155 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5156 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5157 * has a size that doesn't match the sum of the lengths of all the logged
5158 * names. This does not result in a problem because if a dir_item key is
5159 * logged but its matching dir_index key is not logged, at log replay time we
5160 * don't use it to replay the respective name (see replay_one_name()). On the
5161 * other hand if only the dir_index key ends up being logged, the respective
5162 * name is added to the fs/subvol tree with both the dir_item and dir_index
5163 * keys created (see replay_one_name()).
5164 * The directory's inode item with a wrong i_size is not a problem as well,
5165 * since we don't use it at log replay time to set the i_size in the inode
5166 * item of the fs/subvol tree (see overwrite_item()).
5168 static int log_new_dir_dentries(struct btrfs_trans_handle
*trans
,
5169 struct btrfs_root
*root
,
5170 struct btrfs_inode
*start_inode
,
5171 struct btrfs_log_ctx
*ctx
)
5173 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5174 struct btrfs_root
*log
= root
->log_root
;
5175 struct btrfs_path
*path
;
5176 LIST_HEAD(dir_list
);
5177 struct btrfs_dir_list
*dir_elem
;
5180 path
= btrfs_alloc_path();
5184 dir_elem
= kmalloc(sizeof(*dir_elem
), GFP_NOFS
);
5186 btrfs_free_path(path
);
5189 dir_elem
->ino
= btrfs_ino(start_inode
);
5190 list_add_tail(&dir_elem
->list
, &dir_list
);
5192 while (!list_empty(&dir_list
)) {
5193 struct extent_buffer
*leaf
;
5194 struct btrfs_key min_key
;
5198 dir_elem
= list_first_entry(&dir_list
, struct btrfs_dir_list
,
5201 goto next_dir_inode
;
5203 min_key
.objectid
= dir_elem
->ino
;
5204 min_key
.type
= BTRFS_DIR_ITEM_KEY
;
5207 btrfs_release_path(path
);
5208 ret
= btrfs_search_forward(log
, &min_key
, path
, trans
->transid
);
5210 goto next_dir_inode
;
5211 } else if (ret
> 0) {
5213 goto next_dir_inode
;
5217 leaf
= path
->nodes
[0];
5218 nritems
= btrfs_header_nritems(leaf
);
5219 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
5220 struct btrfs_dir_item
*di
;
5221 struct btrfs_key di_key
;
5222 struct inode
*di_inode
;
5223 struct btrfs_dir_list
*new_dir_elem
;
5224 int log_mode
= LOG_INODE_EXISTS
;
5227 btrfs_item_key_to_cpu(leaf
, &min_key
, i
);
5228 if (min_key
.objectid
!= dir_elem
->ino
||
5229 min_key
.type
!= BTRFS_DIR_ITEM_KEY
)
5230 goto next_dir_inode
;
5232 di
= btrfs_item_ptr(leaf
, i
, struct btrfs_dir_item
);
5233 type
= btrfs_dir_type(leaf
, di
);
5234 if (btrfs_dir_transid(leaf
, di
) < trans
->transid
&&
5235 type
!= BTRFS_FT_DIR
)
5237 btrfs_dir_item_key_to_cpu(leaf
, di
, &di_key
);
5238 if (di_key
.type
== BTRFS_ROOT_ITEM_KEY
)
5241 btrfs_release_path(path
);
5242 di_inode
= btrfs_iget(fs_info
->sb
, &di_key
, root
, NULL
);
5243 if (IS_ERR(di_inode
)) {
5244 ret
= PTR_ERR(di_inode
);
5245 goto next_dir_inode
;
5248 if (btrfs_inode_in_log(BTRFS_I(di_inode
), trans
->transid
)) {
5253 ctx
->log_new_dentries
= false;
5254 if (type
== BTRFS_FT_DIR
|| type
== BTRFS_FT_SYMLINK
)
5255 log_mode
= LOG_INODE_ALL
;
5256 ret
= btrfs_log_inode(trans
, root
, BTRFS_I(di_inode
),
5257 log_mode
, 0, LLONG_MAX
, ctx
);
5259 btrfs_must_commit_transaction(trans
, BTRFS_I(di_inode
)))
5263 goto next_dir_inode
;
5264 if (ctx
->log_new_dentries
) {
5265 new_dir_elem
= kmalloc(sizeof(*new_dir_elem
),
5267 if (!new_dir_elem
) {
5269 goto next_dir_inode
;
5271 new_dir_elem
->ino
= di_key
.objectid
;
5272 list_add_tail(&new_dir_elem
->list
, &dir_list
);
5277 ret
= btrfs_next_leaf(log
, path
);
5279 goto next_dir_inode
;
5280 } else if (ret
> 0) {
5282 goto next_dir_inode
;
5286 if (min_key
.offset
< (u64
)-1) {
5291 list_del(&dir_elem
->list
);
5295 btrfs_free_path(path
);
5299 static int btrfs_log_all_parents(struct btrfs_trans_handle
*trans
,
5300 struct btrfs_inode
*inode
,
5301 struct btrfs_log_ctx
*ctx
)
5303 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
5305 struct btrfs_path
*path
;
5306 struct btrfs_key key
;
5307 struct btrfs_root
*root
= inode
->root
;
5308 const u64 ino
= btrfs_ino(inode
);
5310 path
= btrfs_alloc_path();
5313 path
->skip_locking
= 1;
5314 path
->search_commit_root
= 1;
5317 key
.type
= BTRFS_INODE_REF_KEY
;
5319 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5324 struct extent_buffer
*leaf
= path
->nodes
[0];
5325 int slot
= path
->slots
[0];
5330 if (slot
>= btrfs_header_nritems(leaf
)) {
5331 ret
= btrfs_next_leaf(root
, path
);
5339 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5340 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5341 if (key
.objectid
!= ino
|| key
.type
> BTRFS_INODE_EXTREF_KEY
)
5344 item_size
= btrfs_item_size_nr(leaf
, slot
);
5345 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
5346 while (cur_offset
< item_size
) {
5347 struct btrfs_key inode_key
;
5348 struct inode
*dir_inode
;
5350 inode_key
.type
= BTRFS_INODE_ITEM_KEY
;
5351 inode_key
.offset
= 0;
5353 if (key
.type
== BTRFS_INODE_EXTREF_KEY
) {
5354 struct btrfs_inode_extref
*extref
;
5356 extref
= (struct btrfs_inode_extref
*)
5358 inode_key
.objectid
= btrfs_inode_extref_parent(
5360 cur_offset
+= sizeof(*extref
);
5361 cur_offset
+= btrfs_inode_extref_name_len(leaf
,
5364 inode_key
.objectid
= key
.offset
;
5365 cur_offset
= item_size
;
5368 dir_inode
= btrfs_iget(fs_info
->sb
, &inode_key
,
5370 /* If parent inode was deleted, skip it. */
5371 if (IS_ERR(dir_inode
))
5375 ctx
->log_new_dentries
= false;
5376 ret
= btrfs_log_inode(trans
, root
, BTRFS_I(dir_inode
),
5377 LOG_INODE_ALL
, 0, LLONG_MAX
, ctx
);
5379 btrfs_must_commit_transaction(trans
, BTRFS_I(dir_inode
)))
5381 if (!ret
&& ctx
&& ctx
->log_new_dentries
)
5382 ret
= log_new_dir_dentries(trans
, root
,
5383 BTRFS_I(dir_inode
), ctx
);
5392 btrfs_free_path(path
);
5397 * helper function around btrfs_log_inode to make sure newly created
5398 * parent directories also end up in the log. A minimal inode and backref
5399 * only logging is done of any parent directories that are older than
5400 * the last committed transaction
5402 static int btrfs_log_inode_parent(struct btrfs_trans_handle
*trans
,
5403 struct btrfs_root
*root
,
5404 struct btrfs_inode
*inode
,
5405 struct dentry
*parent
,
5409 struct btrfs_log_ctx
*ctx
)
5411 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5412 struct super_block
*sb
;
5413 struct dentry
*old_parent
= NULL
;
5415 u64 last_committed
= fs_info
->last_trans_committed
;
5416 bool log_dentries
= false;
5417 struct btrfs_inode
*orig_inode
= inode
;
5419 sb
= inode
->vfs_inode
.i_sb
;
5421 if (btrfs_test_opt(fs_info
, NOTREELOG
)) {
5427 * The prev transaction commit doesn't complete, we need do
5428 * full commit by ourselves.
5430 if (fs_info
->last_trans_log_full_commit
>
5431 fs_info
->last_trans_committed
) {
5436 if (root
!= inode
->root
|| btrfs_root_refs(&root
->root_item
) == 0) {
5441 ret
= check_parent_dirs_for_sync(trans
, inode
, parent
, sb
,
5446 if (btrfs_inode_in_log(inode
, trans
->transid
)) {
5447 ret
= BTRFS_NO_LOG_SYNC
;
5451 ret
= start_log_trans(trans
, root
, ctx
);
5455 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
, start
, end
, ctx
);
5460 * for regular files, if its inode is already on disk, we don't
5461 * have to worry about the parents at all. This is because
5462 * we can use the last_unlink_trans field to record renames
5463 * and other fun in this file.
5465 if (S_ISREG(inode
->vfs_inode
.i_mode
) &&
5466 inode
->generation
<= last_committed
&&
5467 inode
->last_unlink_trans
<= last_committed
) {
5472 if (S_ISDIR(inode
->vfs_inode
.i_mode
) && ctx
&& ctx
->log_new_dentries
)
5473 log_dentries
= true;
5476 * On unlink we must make sure all our current and old parent directory
5477 * inodes are fully logged. This is to prevent leaving dangling
5478 * directory index entries in directories that were our parents but are
5479 * not anymore. Not doing this results in old parent directory being
5480 * impossible to delete after log replay (rmdir will always fail with
5481 * error -ENOTEMPTY).
5487 * ln testdir/foo testdir/bar
5489 * unlink testdir/bar
5490 * xfs_io -c fsync testdir/foo
5492 * mount fs, triggers log replay
5494 * If we don't log the parent directory (testdir), after log replay the
5495 * directory still has an entry pointing to the file inode using the bar
5496 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5497 * the file inode has a link count of 1.
5503 * ln foo testdir/foo2
5504 * ln foo testdir/foo3
5506 * unlink testdir/foo3
5507 * xfs_io -c fsync foo
5509 * mount fs, triggers log replay
5511 * Similar as the first example, after log replay the parent directory
5512 * testdir still has an entry pointing to the inode file with name foo3
5513 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5514 * and has a link count of 2.
5516 if (inode
->last_unlink_trans
> last_committed
) {
5517 ret
= btrfs_log_all_parents(trans
, orig_inode
, ctx
);
5523 if (!parent
|| d_really_is_negative(parent
) || sb
!= parent
->d_sb
)
5526 inode
= BTRFS_I(d_inode(parent
));
5527 if (root
!= inode
->root
)
5530 if (inode
->generation
> last_committed
) {
5531 ret
= btrfs_log_inode(trans
, root
, inode
,
5532 LOG_INODE_EXISTS
, 0, LLONG_MAX
, ctx
);
5536 if (IS_ROOT(parent
))
5539 parent
= dget_parent(parent
);
5541 old_parent
= parent
;
5544 ret
= log_new_dir_dentries(trans
, root
, orig_inode
, ctx
);
5550 btrfs_set_log_full_commit(fs_info
, trans
);
5555 btrfs_remove_log_ctx(root
, ctx
);
5556 btrfs_end_log_trans(root
);
5562 * it is not safe to log dentry if the chunk root has added new
5563 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5564 * If this returns 1, you must commit the transaction to safely get your
5567 int btrfs_log_dentry_safe(struct btrfs_trans_handle
*trans
,
5568 struct btrfs_root
*root
, struct dentry
*dentry
,
5571 struct btrfs_log_ctx
*ctx
)
5573 struct dentry
*parent
= dget_parent(dentry
);
5576 ret
= btrfs_log_inode_parent(trans
, root
, BTRFS_I(d_inode(dentry
)),
5577 parent
, start
, end
, LOG_INODE_ALL
, ctx
);
5584 * should be called during mount to recover any replay any log trees
5587 int btrfs_recover_log_trees(struct btrfs_root
*log_root_tree
)
5590 struct btrfs_path
*path
;
5591 struct btrfs_trans_handle
*trans
;
5592 struct btrfs_key key
;
5593 struct btrfs_key found_key
;
5594 struct btrfs_key tmp_key
;
5595 struct btrfs_root
*log
;
5596 struct btrfs_fs_info
*fs_info
= log_root_tree
->fs_info
;
5597 struct walk_control wc
= {
5598 .process_func
= process_one_buffer
,
5602 path
= btrfs_alloc_path();
5606 set_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
);
5608 trans
= btrfs_start_transaction(fs_info
->tree_root
, 0);
5609 if (IS_ERR(trans
)) {
5610 ret
= PTR_ERR(trans
);
5617 ret
= walk_log_tree(trans
, log_root_tree
, &wc
);
5619 btrfs_handle_fs_error(fs_info
, ret
,
5620 "Failed to pin buffers while recovering log root tree.");
5625 key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
5626 key
.offset
= (u64
)-1;
5627 key
.type
= BTRFS_ROOT_ITEM_KEY
;
5630 ret
= btrfs_search_slot(NULL
, log_root_tree
, &key
, path
, 0, 0);
5633 btrfs_handle_fs_error(fs_info
, ret
,
5634 "Couldn't find tree log root.");
5638 if (path
->slots
[0] == 0)
5642 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
5644 btrfs_release_path(path
);
5645 if (found_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
5648 log
= btrfs_read_fs_root(log_root_tree
, &found_key
);
5651 btrfs_handle_fs_error(fs_info
, ret
,
5652 "Couldn't read tree log root.");
5656 tmp_key
.objectid
= found_key
.offset
;
5657 tmp_key
.type
= BTRFS_ROOT_ITEM_KEY
;
5658 tmp_key
.offset
= (u64
)-1;
5660 wc
.replay_dest
= btrfs_read_fs_root_no_name(fs_info
, &tmp_key
);
5661 if (IS_ERR(wc
.replay_dest
)) {
5662 ret
= PTR_ERR(wc
.replay_dest
);
5663 free_extent_buffer(log
->node
);
5664 free_extent_buffer(log
->commit_root
);
5666 btrfs_handle_fs_error(fs_info
, ret
,
5667 "Couldn't read target root for tree log recovery.");
5671 wc
.replay_dest
->log_root
= log
;
5672 btrfs_record_root_in_trans(trans
, wc
.replay_dest
);
5673 ret
= walk_log_tree(trans
, log
, &wc
);
5675 if (!ret
&& wc
.stage
== LOG_WALK_REPLAY_ALL
) {
5676 ret
= fixup_inode_link_counts(trans
, wc
.replay_dest
,
5680 key
.offset
= found_key
.offset
- 1;
5681 wc
.replay_dest
->log_root
= NULL
;
5682 free_extent_buffer(log
->node
);
5683 free_extent_buffer(log
->commit_root
);
5689 if (found_key
.offset
== 0)
5692 btrfs_release_path(path
);
5694 /* step one is to pin it all, step two is to replay just inodes */
5697 wc
.process_func
= replay_one_buffer
;
5698 wc
.stage
= LOG_WALK_REPLAY_INODES
;
5701 /* step three is to replay everything */
5702 if (wc
.stage
< LOG_WALK_REPLAY_ALL
) {
5707 btrfs_free_path(path
);
5709 /* step 4: commit the transaction, which also unpins the blocks */
5710 ret
= btrfs_commit_transaction(trans
);
5714 free_extent_buffer(log_root_tree
->node
);
5715 log_root_tree
->log_root
= NULL
;
5716 clear_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
);
5717 kfree(log_root_tree
);
5722 btrfs_end_transaction(wc
.trans
);
5723 btrfs_free_path(path
);
5728 * there are some corner cases where we want to force a full
5729 * commit instead of allowing a directory to be logged.
5731 * They revolve around files there were unlinked from the directory, and
5732 * this function updates the parent directory so that a full commit is
5733 * properly done if it is fsync'd later after the unlinks are done.
5735 * Must be called before the unlink operations (updates to the subvolume tree,
5736 * inodes, etc) are done.
5738 void btrfs_record_unlink_dir(struct btrfs_trans_handle
*trans
,
5739 struct btrfs_inode
*dir
, struct btrfs_inode
*inode
,
5743 * when we're logging a file, if it hasn't been renamed
5744 * or unlinked, and its inode is fully committed on disk,
5745 * we don't have to worry about walking up the directory chain
5746 * to log its parents.
5748 * So, we use the last_unlink_trans field to put this transid
5749 * into the file. When the file is logged we check it and
5750 * don't log the parents if the file is fully on disk.
5752 mutex_lock(&inode
->log_mutex
);
5753 inode
->last_unlink_trans
= trans
->transid
;
5754 mutex_unlock(&inode
->log_mutex
);
5757 * if this directory was already logged any new
5758 * names for this file/dir will get recorded
5761 if (dir
->logged_trans
== trans
->transid
)
5765 * if the inode we're about to unlink was logged,
5766 * the log will be properly updated for any new names
5768 if (inode
->logged_trans
== trans
->transid
)
5772 * when renaming files across directories, if the directory
5773 * there we're unlinking from gets fsync'd later on, there's
5774 * no way to find the destination directory later and fsync it
5775 * properly. So, we have to be conservative and force commits
5776 * so the new name gets discovered.
5781 /* we can safely do the unlink without any special recording */
5785 mutex_lock(&dir
->log_mutex
);
5786 dir
->last_unlink_trans
= trans
->transid
;
5787 mutex_unlock(&dir
->log_mutex
);
5791 * Make sure that if someone attempts to fsync the parent directory of a deleted
5792 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5793 * that after replaying the log tree of the parent directory's root we will not
5794 * see the snapshot anymore and at log replay time we will not see any log tree
5795 * corresponding to the deleted snapshot's root, which could lead to replaying
5796 * it after replaying the log tree of the parent directory (which would replay
5797 * the snapshot delete operation).
5799 * Must be called before the actual snapshot destroy operation (updates to the
5800 * parent root and tree of tree roots trees, etc) are done.
5802 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle
*trans
,
5803 struct btrfs_inode
*dir
)
5805 mutex_lock(&dir
->log_mutex
);
5806 dir
->last_unlink_trans
= trans
->transid
;
5807 mutex_unlock(&dir
->log_mutex
);
5811 * Call this after adding a new name for a file and it will properly
5812 * update the log to reflect the new name.
5814 * It will return zero if all goes well, and it will return 1 if a
5815 * full transaction commit is required.
5817 int btrfs_log_new_name(struct btrfs_trans_handle
*trans
,
5818 struct btrfs_inode
*inode
, struct btrfs_inode
*old_dir
,
5819 struct dentry
*parent
)
5821 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
5822 struct btrfs_root
*root
= inode
->root
;
5825 * this will force the logging code to walk the dentry chain
5828 if (S_ISREG(inode
->vfs_inode
.i_mode
))
5829 inode
->last_unlink_trans
= trans
->transid
;
5832 * if this inode hasn't been logged and directory we're renaming it
5833 * from hasn't been logged, we don't need to log it
5835 if (inode
->logged_trans
<= fs_info
->last_trans_committed
&&
5836 (!old_dir
|| old_dir
->logged_trans
<= fs_info
->last_trans_committed
))
5839 return btrfs_log_inode_parent(trans
, root
, inode
, parent
, 0,
5840 LLONG_MAX
, LOG_INODE_EXISTS
, NULL
);