unify {de,}mangle_poll(), get rid of kernel-side POLL...
[cris-mirror.git] / fs / btrfs / tree-log.c
blobafadaadab18e45f5901600be18405d7a74e1a1f6
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include <linux/iversion.h>
24 #include "tree-log.h"
25 #include "disk-io.h"
26 #include "locking.h"
27 #include "print-tree.h"
28 #include "backref.h"
29 #include "hash.h"
30 #include "compression.h"
31 #include "qgroup.h"
33 /* magic values for the inode_only field in btrfs_log_inode:
35 * LOG_INODE_ALL means to log everything
36 * LOG_INODE_EXISTS means to log just enough to recreate the inode
37 * during log replay
39 #define LOG_INODE_ALL 0
40 #define LOG_INODE_EXISTS 1
41 #define LOG_OTHER_INODE 2
44 * directory trouble cases
46 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
47 * log, we must force a full commit before doing an fsync of the directory
48 * where the unlink was done.
49 * ---> record transid of last unlink/rename per directory
51 * mkdir foo/some_dir
52 * normal commit
53 * rename foo/some_dir foo2/some_dir
54 * mkdir foo/some_dir
55 * fsync foo/some_dir/some_file
57 * The fsync above will unlink the original some_dir without recording
58 * it in its new location (foo2). After a crash, some_dir will be gone
59 * unless the fsync of some_file forces a full commit
61 * 2) we must log any new names for any file or dir that is in the fsync
62 * log. ---> check inode while renaming/linking.
64 * 2a) we must log any new names for any file or dir during rename
65 * when the directory they are being removed from was logged.
66 * ---> check inode and old parent dir during rename
68 * 2a is actually the more important variant. With the extra logging
69 * a crash might unlink the old name without recreating the new one
71 * 3) after a crash, we must go through any directories with a link count
72 * of zero and redo the rm -rf
74 * mkdir f1/foo
75 * normal commit
76 * rm -rf f1/foo
77 * fsync(f1)
79 * The directory f1 was fully removed from the FS, but fsync was never
80 * called on f1, only its parent dir. After a crash the rm -rf must
81 * be replayed. This must be able to recurse down the entire
82 * directory tree. The inode link count fixup code takes care of the
83 * ugly details.
87 * stages for the tree walking. The first
88 * stage (0) is to only pin down the blocks we find
89 * the second stage (1) is to make sure that all the inodes
90 * we find in the log are created in the subvolume.
92 * The last stage is to deal with directories and links and extents
93 * and all the other fun semantics
95 #define LOG_WALK_PIN_ONLY 0
96 #define LOG_WALK_REPLAY_INODES 1
97 #define LOG_WALK_REPLAY_DIR_INDEX 2
98 #define LOG_WALK_REPLAY_ALL 3
100 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root, struct btrfs_inode *inode,
102 int inode_only,
103 const loff_t start,
104 const loff_t end,
105 struct btrfs_log_ctx *ctx);
106 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
107 struct btrfs_root *root,
108 struct btrfs_path *path, u64 objectid);
109 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
110 struct btrfs_root *root,
111 struct btrfs_root *log,
112 struct btrfs_path *path,
113 u64 dirid, int del_all);
116 * tree logging is a special write ahead log used to make sure that
117 * fsyncs and O_SYNCs can happen without doing full tree commits.
119 * Full tree commits are expensive because they require commonly
120 * modified blocks to be recowed, creating many dirty pages in the
121 * extent tree an 4x-6x higher write load than ext3.
123 * Instead of doing a tree commit on every fsync, we use the
124 * key ranges and transaction ids to find items for a given file or directory
125 * that have changed in this transaction. Those items are copied into
126 * a special tree (one per subvolume root), that tree is written to disk
127 * and then the fsync is considered complete.
129 * After a crash, items are copied out of the log-tree back into the
130 * subvolume tree. Any file data extents found are recorded in the extent
131 * allocation tree, and the log-tree freed.
133 * The log tree is read three times, once to pin down all the extents it is
134 * using in ram and once, once to create all the inodes logged in the tree
135 * and once to do all the other items.
139 * start a sub transaction and setup the log tree
140 * this increments the log tree writer count to make the people
141 * syncing the tree wait for us to finish
143 static int start_log_trans(struct btrfs_trans_handle *trans,
144 struct btrfs_root *root,
145 struct btrfs_log_ctx *ctx)
147 struct btrfs_fs_info *fs_info = root->fs_info;
148 int ret = 0;
150 mutex_lock(&root->log_mutex);
152 if (root->log_root) {
153 if (btrfs_need_log_full_commit(fs_info, trans)) {
154 ret = -EAGAIN;
155 goto out;
158 if (!root->log_start_pid) {
159 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
160 root->log_start_pid = current->pid;
161 } else if (root->log_start_pid != current->pid) {
162 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
164 } else {
165 mutex_lock(&fs_info->tree_log_mutex);
166 if (!fs_info->log_root_tree)
167 ret = btrfs_init_log_root_tree(trans, fs_info);
168 mutex_unlock(&fs_info->tree_log_mutex);
169 if (ret)
170 goto out;
172 ret = btrfs_add_log_tree(trans, root);
173 if (ret)
174 goto out;
176 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
177 root->log_start_pid = current->pid;
180 atomic_inc(&root->log_batch);
181 atomic_inc(&root->log_writers);
182 if (ctx) {
183 int index = root->log_transid % 2;
184 list_add_tail(&ctx->list, &root->log_ctxs[index]);
185 ctx->log_transid = root->log_transid;
188 out:
189 mutex_unlock(&root->log_mutex);
190 return ret;
194 * returns 0 if there was a log transaction running and we were able
195 * to join, or returns -ENOENT if there were not transactions
196 * in progress
198 static int join_running_log_trans(struct btrfs_root *root)
200 int ret = -ENOENT;
202 smp_mb();
203 if (!root->log_root)
204 return -ENOENT;
206 mutex_lock(&root->log_mutex);
207 if (root->log_root) {
208 ret = 0;
209 atomic_inc(&root->log_writers);
211 mutex_unlock(&root->log_mutex);
212 return ret;
216 * This either makes the current running log transaction wait
217 * until you call btrfs_end_log_trans() or it makes any future
218 * log transactions wait until you call btrfs_end_log_trans()
220 int btrfs_pin_log_trans(struct btrfs_root *root)
222 int ret = -ENOENT;
224 mutex_lock(&root->log_mutex);
225 atomic_inc(&root->log_writers);
226 mutex_unlock(&root->log_mutex);
227 return ret;
231 * indicate we're done making changes to the log tree
232 * and wake up anyone waiting to do a sync
234 void btrfs_end_log_trans(struct btrfs_root *root)
236 if (atomic_dec_and_test(&root->log_writers)) {
238 * Implicit memory barrier after atomic_dec_and_test
240 if (waitqueue_active(&root->log_writer_wait))
241 wake_up(&root->log_writer_wait);
247 * the walk control struct is used to pass state down the chain when
248 * processing the log tree. The stage field tells us which part
249 * of the log tree processing we are currently doing. The others
250 * are state fields used for that specific part
252 struct walk_control {
253 /* should we free the extent on disk when done? This is used
254 * at transaction commit time while freeing a log tree
256 int free;
258 /* should we write out the extent buffer? This is used
259 * while flushing the log tree to disk during a sync
261 int write;
263 /* should we wait for the extent buffer io to finish? Also used
264 * while flushing the log tree to disk for a sync
266 int wait;
268 /* pin only walk, we record which extents on disk belong to the
269 * log trees
271 int pin;
273 /* what stage of the replay code we're currently in */
274 int stage;
276 /* the root we are currently replaying */
277 struct btrfs_root *replay_dest;
279 /* the trans handle for the current replay */
280 struct btrfs_trans_handle *trans;
282 /* the function that gets used to process blocks we find in the
283 * tree. Note the extent_buffer might not be up to date when it is
284 * passed in, and it must be checked or read if you need the data
285 * inside it
287 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
288 struct walk_control *wc, u64 gen);
292 * process_func used to pin down extents, write them or wait on them
294 static int process_one_buffer(struct btrfs_root *log,
295 struct extent_buffer *eb,
296 struct walk_control *wc, u64 gen)
298 struct btrfs_fs_info *fs_info = log->fs_info;
299 int ret = 0;
302 * If this fs is mixed then we need to be able to process the leaves to
303 * pin down any logged extents, so we have to read the block.
305 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
306 ret = btrfs_read_buffer(eb, gen);
307 if (ret)
308 return ret;
311 if (wc->pin)
312 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
313 eb->len);
315 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
316 if (wc->pin && btrfs_header_level(eb) == 0)
317 ret = btrfs_exclude_logged_extents(fs_info, eb);
318 if (wc->write)
319 btrfs_write_tree_block(eb);
320 if (wc->wait)
321 btrfs_wait_tree_block_writeback(eb);
323 return ret;
327 * Item overwrite used by replay and tree logging. eb, slot and key all refer
328 * to the src data we are copying out.
330 * root is the tree we are copying into, and path is a scratch
331 * path for use in this function (it should be released on entry and
332 * will be released on exit).
334 * If the key is already in the destination tree the existing item is
335 * overwritten. If the existing item isn't big enough, it is extended.
336 * If it is too large, it is truncated.
338 * If the key isn't in the destination yet, a new item is inserted.
340 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
341 struct btrfs_root *root,
342 struct btrfs_path *path,
343 struct extent_buffer *eb, int slot,
344 struct btrfs_key *key)
346 struct btrfs_fs_info *fs_info = root->fs_info;
347 int ret;
348 u32 item_size;
349 u64 saved_i_size = 0;
350 int save_old_i_size = 0;
351 unsigned long src_ptr;
352 unsigned long dst_ptr;
353 int overwrite_root = 0;
354 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
356 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
357 overwrite_root = 1;
359 item_size = btrfs_item_size_nr(eb, slot);
360 src_ptr = btrfs_item_ptr_offset(eb, slot);
362 /* look for the key in the destination tree */
363 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
364 if (ret < 0)
365 return ret;
367 if (ret == 0) {
368 char *src_copy;
369 char *dst_copy;
370 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
371 path->slots[0]);
372 if (dst_size != item_size)
373 goto insert;
375 if (item_size == 0) {
376 btrfs_release_path(path);
377 return 0;
379 dst_copy = kmalloc(item_size, GFP_NOFS);
380 src_copy = kmalloc(item_size, GFP_NOFS);
381 if (!dst_copy || !src_copy) {
382 btrfs_release_path(path);
383 kfree(dst_copy);
384 kfree(src_copy);
385 return -ENOMEM;
388 read_extent_buffer(eb, src_copy, src_ptr, item_size);
390 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
391 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
392 item_size);
393 ret = memcmp(dst_copy, src_copy, item_size);
395 kfree(dst_copy);
396 kfree(src_copy);
398 * they have the same contents, just return, this saves
399 * us from cowing blocks in the destination tree and doing
400 * extra writes that may not have been done by a previous
401 * sync
403 if (ret == 0) {
404 btrfs_release_path(path);
405 return 0;
409 * We need to load the old nbytes into the inode so when we
410 * replay the extents we've logged we get the right nbytes.
412 if (inode_item) {
413 struct btrfs_inode_item *item;
414 u64 nbytes;
415 u32 mode;
417 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
418 struct btrfs_inode_item);
419 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
420 item = btrfs_item_ptr(eb, slot,
421 struct btrfs_inode_item);
422 btrfs_set_inode_nbytes(eb, item, nbytes);
425 * If this is a directory we need to reset the i_size to
426 * 0 so that we can set it up properly when replaying
427 * the rest of the items in this log.
429 mode = btrfs_inode_mode(eb, item);
430 if (S_ISDIR(mode))
431 btrfs_set_inode_size(eb, item, 0);
433 } else if (inode_item) {
434 struct btrfs_inode_item *item;
435 u32 mode;
438 * New inode, set nbytes to 0 so that the nbytes comes out
439 * properly when we replay the extents.
441 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
442 btrfs_set_inode_nbytes(eb, item, 0);
445 * If this is a directory we need to reset the i_size to 0 so
446 * that we can set it up properly when replaying the rest of
447 * the items in this log.
449 mode = btrfs_inode_mode(eb, item);
450 if (S_ISDIR(mode))
451 btrfs_set_inode_size(eb, item, 0);
453 insert:
454 btrfs_release_path(path);
455 /* try to insert the key into the destination tree */
456 path->skip_release_on_error = 1;
457 ret = btrfs_insert_empty_item(trans, root, path,
458 key, item_size);
459 path->skip_release_on_error = 0;
461 /* make sure any existing item is the correct size */
462 if (ret == -EEXIST || ret == -EOVERFLOW) {
463 u32 found_size;
464 found_size = btrfs_item_size_nr(path->nodes[0],
465 path->slots[0]);
466 if (found_size > item_size)
467 btrfs_truncate_item(fs_info, path, item_size, 1);
468 else if (found_size < item_size)
469 btrfs_extend_item(fs_info, path,
470 item_size - found_size);
471 } else if (ret) {
472 return ret;
474 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
475 path->slots[0]);
477 /* don't overwrite an existing inode if the generation number
478 * was logged as zero. This is done when the tree logging code
479 * is just logging an inode to make sure it exists after recovery.
481 * Also, don't overwrite i_size on directories during replay.
482 * log replay inserts and removes directory items based on the
483 * state of the tree found in the subvolume, and i_size is modified
484 * as it goes
486 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
487 struct btrfs_inode_item *src_item;
488 struct btrfs_inode_item *dst_item;
490 src_item = (struct btrfs_inode_item *)src_ptr;
491 dst_item = (struct btrfs_inode_item *)dst_ptr;
493 if (btrfs_inode_generation(eb, src_item) == 0) {
494 struct extent_buffer *dst_eb = path->nodes[0];
495 const u64 ino_size = btrfs_inode_size(eb, src_item);
498 * For regular files an ino_size == 0 is used only when
499 * logging that an inode exists, as part of a directory
500 * fsync, and the inode wasn't fsynced before. In this
501 * case don't set the size of the inode in the fs/subvol
502 * tree, otherwise we would be throwing valid data away.
504 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
505 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
506 ino_size != 0) {
507 struct btrfs_map_token token;
509 btrfs_init_map_token(&token);
510 btrfs_set_token_inode_size(dst_eb, dst_item,
511 ino_size, &token);
513 goto no_copy;
516 if (overwrite_root &&
517 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
518 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
519 save_old_i_size = 1;
520 saved_i_size = btrfs_inode_size(path->nodes[0],
521 dst_item);
525 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
526 src_ptr, item_size);
528 if (save_old_i_size) {
529 struct btrfs_inode_item *dst_item;
530 dst_item = (struct btrfs_inode_item *)dst_ptr;
531 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
534 /* make sure the generation is filled in */
535 if (key->type == BTRFS_INODE_ITEM_KEY) {
536 struct btrfs_inode_item *dst_item;
537 dst_item = (struct btrfs_inode_item *)dst_ptr;
538 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
539 btrfs_set_inode_generation(path->nodes[0], dst_item,
540 trans->transid);
543 no_copy:
544 btrfs_mark_buffer_dirty(path->nodes[0]);
545 btrfs_release_path(path);
546 return 0;
550 * simple helper to read an inode off the disk from a given root
551 * This can only be called for subvolume roots and not for the log
553 static noinline struct inode *read_one_inode(struct btrfs_root *root,
554 u64 objectid)
556 struct btrfs_key key;
557 struct inode *inode;
559 key.objectid = objectid;
560 key.type = BTRFS_INODE_ITEM_KEY;
561 key.offset = 0;
562 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
563 if (IS_ERR(inode)) {
564 inode = NULL;
565 } else if (is_bad_inode(inode)) {
566 iput(inode);
567 inode = NULL;
569 return inode;
572 /* replays a single extent in 'eb' at 'slot' with 'key' into the
573 * subvolume 'root'. path is released on entry and should be released
574 * on exit.
576 * extents in the log tree have not been allocated out of the extent
577 * tree yet. So, this completes the allocation, taking a reference
578 * as required if the extent already exists or creating a new extent
579 * if it isn't in the extent allocation tree yet.
581 * The extent is inserted into the file, dropping any existing extents
582 * from the file that overlap the new one.
584 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
585 struct btrfs_root *root,
586 struct btrfs_path *path,
587 struct extent_buffer *eb, int slot,
588 struct btrfs_key *key)
590 struct btrfs_fs_info *fs_info = root->fs_info;
591 int found_type;
592 u64 extent_end;
593 u64 start = key->offset;
594 u64 nbytes = 0;
595 struct btrfs_file_extent_item *item;
596 struct inode *inode = NULL;
597 unsigned long size;
598 int ret = 0;
600 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
601 found_type = btrfs_file_extent_type(eb, item);
603 if (found_type == BTRFS_FILE_EXTENT_REG ||
604 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
605 nbytes = btrfs_file_extent_num_bytes(eb, item);
606 extent_end = start + nbytes;
609 * We don't add to the inodes nbytes if we are prealloc or a
610 * hole.
612 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
613 nbytes = 0;
614 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
615 size = btrfs_file_extent_inline_len(eb, slot, item);
616 nbytes = btrfs_file_extent_ram_bytes(eb, item);
617 extent_end = ALIGN(start + size,
618 fs_info->sectorsize);
619 } else {
620 ret = 0;
621 goto out;
624 inode = read_one_inode(root, key->objectid);
625 if (!inode) {
626 ret = -EIO;
627 goto out;
631 * first check to see if we already have this extent in the
632 * file. This must be done before the btrfs_drop_extents run
633 * so we don't try to drop this extent.
635 ret = btrfs_lookup_file_extent(trans, root, path,
636 btrfs_ino(BTRFS_I(inode)), start, 0);
638 if (ret == 0 &&
639 (found_type == BTRFS_FILE_EXTENT_REG ||
640 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
641 struct btrfs_file_extent_item cmp1;
642 struct btrfs_file_extent_item cmp2;
643 struct btrfs_file_extent_item *existing;
644 struct extent_buffer *leaf;
646 leaf = path->nodes[0];
647 existing = btrfs_item_ptr(leaf, path->slots[0],
648 struct btrfs_file_extent_item);
650 read_extent_buffer(eb, &cmp1, (unsigned long)item,
651 sizeof(cmp1));
652 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
653 sizeof(cmp2));
656 * we already have a pointer to this exact extent,
657 * we don't have to do anything
659 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
660 btrfs_release_path(path);
661 goto out;
664 btrfs_release_path(path);
666 /* drop any overlapping extents */
667 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
668 if (ret)
669 goto out;
671 if (found_type == BTRFS_FILE_EXTENT_REG ||
672 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
673 u64 offset;
674 unsigned long dest_offset;
675 struct btrfs_key ins;
677 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
678 btrfs_fs_incompat(fs_info, NO_HOLES))
679 goto update_inode;
681 ret = btrfs_insert_empty_item(trans, root, path, key,
682 sizeof(*item));
683 if (ret)
684 goto out;
685 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
686 path->slots[0]);
687 copy_extent_buffer(path->nodes[0], eb, dest_offset,
688 (unsigned long)item, sizeof(*item));
690 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
691 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
692 ins.type = BTRFS_EXTENT_ITEM_KEY;
693 offset = key->offset - btrfs_file_extent_offset(eb, item);
696 * Manually record dirty extent, as here we did a shallow
697 * file extent item copy and skip normal backref update,
698 * but modifying extent tree all by ourselves.
699 * So need to manually record dirty extent for qgroup,
700 * as the owner of the file extent changed from log tree
701 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
703 ret = btrfs_qgroup_trace_extent(trans, fs_info,
704 btrfs_file_extent_disk_bytenr(eb, item),
705 btrfs_file_extent_disk_num_bytes(eb, item),
706 GFP_NOFS);
707 if (ret < 0)
708 goto out;
710 if (ins.objectid > 0) {
711 u64 csum_start;
712 u64 csum_end;
713 LIST_HEAD(ordered_sums);
715 * is this extent already allocated in the extent
716 * allocation tree? If so, just add a reference
718 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
719 ins.offset);
720 if (ret == 0) {
721 ret = btrfs_inc_extent_ref(trans, root,
722 ins.objectid, ins.offset,
723 0, root->root_key.objectid,
724 key->objectid, offset);
725 if (ret)
726 goto out;
727 } else {
729 * insert the extent pointer in the extent
730 * allocation tree
732 ret = btrfs_alloc_logged_file_extent(trans,
733 fs_info,
734 root->root_key.objectid,
735 key->objectid, offset, &ins);
736 if (ret)
737 goto out;
739 btrfs_release_path(path);
741 if (btrfs_file_extent_compression(eb, item)) {
742 csum_start = ins.objectid;
743 csum_end = csum_start + ins.offset;
744 } else {
745 csum_start = ins.objectid +
746 btrfs_file_extent_offset(eb, item);
747 csum_end = csum_start +
748 btrfs_file_extent_num_bytes(eb, item);
751 ret = btrfs_lookup_csums_range(root->log_root,
752 csum_start, csum_end - 1,
753 &ordered_sums, 0);
754 if (ret)
755 goto out;
757 * Now delete all existing cums in the csum root that
758 * cover our range. We do this because we can have an
759 * extent that is completely referenced by one file
760 * extent item and partially referenced by another
761 * file extent item (like after using the clone or
762 * extent_same ioctls). In this case if we end up doing
763 * the replay of the one that partially references the
764 * extent first, and we do not do the csum deletion
765 * below, we can get 2 csum items in the csum tree that
766 * overlap each other. For example, imagine our log has
767 * the two following file extent items:
769 * key (257 EXTENT_DATA 409600)
770 * extent data disk byte 12845056 nr 102400
771 * extent data offset 20480 nr 20480 ram 102400
773 * key (257 EXTENT_DATA 819200)
774 * extent data disk byte 12845056 nr 102400
775 * extent data offset 0 nr 102400 ram 102400
777 * Where the second one fully references the 100K extent
778 * that starts at disk byte 12845056, and the log tree
779 * has a single csum item that covers the entire range
780 * of the extent:
782 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
784 * After the first file extent item is replayed, the
785 * csum tree gets the following csum item:
787 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
789 * Which covers the 20K sub-range starting at offset 20K
790 * of our extent. Now when we replay the second file
791 * extent item, if we do not delete existing csum items
792 * that cover any of its blocks, we end up getting two
793 * csum items in our csum tree that overlap each other:
795 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
796 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
798 * Which is a problem, because after this anyone trying
799 * to lookup up for the checksum of any block of our
800 * extent starting at an offset of 40K or higher, will
801 * end up looking at the second csum item only, which
802 * does not contain the checksum for any block starting
803 * at offset 40K or higher of our extent.
805 while (!list_empty(&ordered_sums)) {
806 struct btrfs_ordered_sum *sums;
807 sums = list_entry(ordered_sums.next,
808 struct btrfs_ordered_sum,
809 list);
810 if (!ret)
811 ret = btrfs_del_csums(trans, fs_info,
812 sums->bytenr,
813 sums->len);
814 if (!ret)
815 ret = btrfs_csum_file_blocks(trans,
816 fs_info->csum_root, sums);
817 list_del(&sums->list);
818 kfree(sums);
820 if (ret)
821 goto out;
822 } else {
823 btrfs_release_path(path);
825 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
826 /* inline extents are easy, we just overwrite them */
827 ret = overwrite_item(trans, root, path, eb, slot, key);
828 if (ret)
829 goto out;
832 inode_add_bytes(inode, nbytes);
833 update_inode:
834 ret = btrfs_update_inode(trans, root, inode);
835 out:
836 if (inode)
837 iput(inode);
838 return ret;
842 * when cleaning up conflicts between the directory names in the
843 * subvolume, directory names in the log and directory names in the
844 * inode back references, we may have to unlink inodes from directories.
846 * This is a helper function to do the unlink of a specific directory
847 * item
849 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
850 struct btrfs_root *root,
851 struct btrfs_path *path,
852 struct btrfs_inode *dir,
853 struct btrfs_dir_item *di)
855 struct btrfs_fs_info *fs_info = root->fs_info;
856 struct inode *inode;
857 char *name;
858 int name_len;
859 struct extent_buffer *leaf;
860 struct btrfs_key location;
861 int ret;
863 leaf = path->nodes[0];
865 btrfs_dir_item_key_to_cpu(leaf, di, &location);
866 name_len = btrfs_dir_name_len(leaf, di);
867 name = kmalloc(name_len, GFP_NOFS);
868 if (!name)
869 return -ENOMEM;
871 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
872 btrfs_release_path(path);
874 inode = read_one_inode(root, location.objectid);
875 if (!inode) {
876 ret = -EIO;
877 goto out;
880 ret = link_to_fixup_dir(trans, root, path, location.objectid);
881 if (ret)
882 goto out;
884 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
885 name_len);
886 if (ret)
887 goto out;
888 else
889 ret = btrfs_run_delayed_items(trans, fs_info);
890 out:
891 kfree(name);
892 iput(inode);
893 return ret;
897 * helper function to see if a given name and sequence number found
898 * in an inode back reference are already in a directory and correctly
899 * point to this inode
901 static noinline int inode_in_dir(struct btrfs_root *root,
902 struct btrfs_path *path,
903 u64 dirid, u64 objectid, u64 index,
904 const char *name, int name_len)
906 struct btrfs_dir_item *di;
907 struct btrfs_key location;
908 int match = 0;
910 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
911 index, name, name_len, 0);
912 if (di && !IS_ERR(di)) {
913 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
914 if (location.objectid != objectid)
915 goto out;
916 } else
917 goto out;
918 btrfs_release_path(path);
920 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
921 if (di && !IS_ERR(di)) {
922 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
923 if (location.objectid != objectid)
924 goto out;
925 } else
926 goto out;
927 match = 1;
928 out:
929 btrfs_release_path(path);
930 return match;
934 * helper function to check a log tree for a named back reference in
935 * an inode. This is used to decide if a back reference that is
936 * found in the subvolume conflicts with what we find in the log.
938 * inode backreferences may have multiple refs in a single item,
939 * during replay we process one reference at a time, and we don't
940 * want to delete valid links to a file from the subvolume if that
941 * link is also in the log.
943 static noinline int backref_in_log(struct btrfs_root *log,
944 struct btrfs_key *key,
945 u64 ref_objectid,
946 const char *name, int namelen)
948 struct btrfs_path *path;
949 struct btrfs_inode_ref *ref;
950 unsigned long ptr;
951 unsigned long ptr_end;
952 unsigned long name_ptr;
953 int found_name_len;
954 int item_size;
955 int ret;
956 int match = 0;
958 path = btrfs_alloc_path();
959 if (!path)
960 return -ENOMEM;
962 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
963 if (ret != 0)
964 goto out;
966 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
968 if (key->type == BTRFS_INODE_EXTREF_KEY) {
969 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
970 name, namelen, NULL))
971 match = 1;
973 goto out;
976 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
977 ptr_end = ptr + item_size;
978 while (ptr < ptr_end) {
979 ref = (struct btrfs_inode_ref *)ptr;
980 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
981 if (found_name_len == namelen) {
982 name_ptr = (unsigned long)(ref + 1);
983 ret = memcmp_extent_buffer(path->nodes[0], name,
984 name_ptr, namelen);
985 if (ret == 0) {
986 match = 1;
987 goto out;
990 ptr = (unsigned long)(ref + 1) + found_name_len;
992 out:
993 btrfs_free_path(path);
994 return match;
997 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
998 struct btrfs_root *root,
999 struct btrfs_path *path,
1000 struct btrfs_root *log_root,
1001 struct btrfs_inode *dir,
1002 struct btrfs_inode *inode,
1003 u64 inode_objectid, u64 parent_objectid,
1004 u64 ref_index, char *name, int namelen,
1005 int *search_done)
1007 struct btrfs_fs_info *fs_info = root->fs_info;
1008 int ret;
1009 char *victim_name;
1010 int victim_name_len;
1011 struct extent_buffer *leaf;
1012 struct btrfs_dir_item *di;
1013 struct btrfs_key search_key;
1014 struct btrfs_inode_extref *extref;
1016 again:
1017 /* Search old style refs */
1018 search_key.objectid = inode_objectid;
1019 search_key.type = BTRFS_INODE_REF_KEY;
1020 search_key.offset = parent_objectid;
1021 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1022 if (ret == 0) {
1023 struct btrfs_inode_ref *victim_ref;
1024 unsigned long ptr;
1025 unsigned long ptr_end;
1027 leaf = path->nodes[0];
1029 /* are we trying to overwrite a back ref for the root directory
1030 * if so, just jump out, we're done
1032 if (search_key.objectid == search_key.offset)
1033 return 1;
1035 /* check all the names in this back reference to see
1036 * if they are in the log. if so, we allow them to stay
1037 * otherwise they must be unlinked as a conflict
1039 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1040 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1041 while (ptr < ptr_end) {
1042 victim_ref = (struct btrfs_inode_ref *)ptr;
1043 victim_name_len = btrfs_inode_ref_name_len(leaf,
1044 victim_ref);
1045 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1046 if (!victim_name)
1047 return -ENOMEM;
1049 read_extent_buffer(leaf, victim_name,
1050 (unsigned long)(victim_ref + 1),
1051 victim_name_len);
1053 if (!backref_in_log(log_root, &search_key,
1054 parent_objectid,
1055 victim_name,
1056 victim_name_len)) {
1057 inc_nlink(&inode->vfs_inode);
1058 btrfs_release_path(path);
1060 ret = btrfs_unlink_inode(trans, root, dir, inode,
1061 victim_name, victim_name_len);
1062 kfree(victim_name);
1063 if (ret)
1064 return ret;
1065 ret = btrfs_run_delayed_items(trans, fs_info);
1066 if (ret)
1067 return ret;
1068 *search_done = 1;
1069 goto again;
1071 kfree(victim_name);
1073 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1077 * NOTE: we have searched root tree and checked the
1078 * corresponding ref, it does not need to check again.
1080 *search_done = 1;
1082 btrfs_release_path(path);
1084 /* Same search but for extended refs */
1085 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1086 inode_objectid, parent_objectid, 0,
1088 if (!IS_ERR_OR_NULL(extref)) {
1089 u32 item_size;
1090 u32 cur_offset = 0;
1091 unsigned long base;
1092 struct inode *victim_parent;
1094 leaf = path->nodes[0];
1096 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1097 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1099 while (cur_offset < item_size) {
1100 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1102 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1104 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1105 goto next;
1107 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1108 if (!victim_name)
1109 return -ENOMEM;
1110 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1111 victim_name_len);
1113 search_key.objectid = inode_objectid;
1114 search_key.type = BTRFS_INODE_EXTREF_KEY;
1115 search_key.offset = btrfs_extref_hash(parent_objectid,
1116 victim_name,
1117 victim_name_len);
1118 ret = 0;
1119 if (!backref_in_log(log_root, &search_key,
1120 parent_objectid, victim_name,
1121 victim_name_len)) {
1122 ret = -ENOENT;
1123 victim_parent = read_one_inode(root,
1124 parent_objectid);
1125 if (victim_parent) {
1126 inc_nlink(&inode->vfs_inode);
1127 btrfs_release_path(path);
1129 ret = btrfs_unlink_inode(trans, root,
1130 BTRFS_I(victim_parent),
1131 inode,
1132 victim_name,
1133 victim_name_len);
1134 if (!ret)
1135 ret = btrfs_run_delayed_items(
1136 trans,
1137 fs_info);
1139 iput(victim_parent);
1140 kfree(victim_name);
1141 if (ret)
1142 return ret;
1143 *search_done = 1;
1144 goto again;
1146 kfree(victim_name);
1147 next:
1148 cur_offset += victim_name_len + sizeof(*extref);
1150 *search_done = 1;
1152 btrfs_release_path(path);
1154 /* look for a conflicting sequence number */
1155 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1156 ref_index, name, namelen, 0);
1157 if (di && !IS_ERR(di)) {
1158 ret = drop_one_dir_item(trans, root, path, dir, di);
1159 if (ret)
1160 return ret;
1162 btrfs_release_path(path);
1164 /* look for a conflicing name */
1165 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1166 name, namelen, 0);
1167 if (di && !IS_ERR(di)) {
1168 ret = drop_one_dir_item(trans, root, path, dir, di);
1169 if (ret)
1170 return ret;
1172 btrfs_release_path(path);
1174 return 0;
1177 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1178 u32 *namelen, char **name, u64 *index,
1179 u64 *parent_objectid)
1181 struct btrfs_inode_extref *extref;
1183 extref = (struct btrfs_inode_extref *)ref_ptr;
1185 *namelen = btrfs_inode_extref_name_len(eb, extref);
1186 *name = kmalloc(*namelen, GFP_NOFS);
1187 if (*name == NULL)
1188 return -ENOMEM;
1190 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1191 *namelen);
1193 *index = btrfs_inode_extref_index(eb, extref);
1194 if (parent_objectid)
1195 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1197 return 0;
1200 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1201 u32 *namelen, char **name, u64 *index)
1203 struct btrfs_inode_ref *ref;
1205 ref = (struct btrfs_inode_ref *)ref_ptr;
1207 *namelen = btrfs_inode_ref_name_len(eb, ref);
1208 *name = kmalloc(*namelen, GFP_NOFS);
1209 if (*name == NULL)
1210 return -ENOMEM;
1212 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1214 *index = btrfs_inode_ref_index(eb, ref);
1216 return 0;
1220 * replay one inode back reference item found in the log tree.
1221 * eb, slot and key refer to the buffer and key found in the log tree.
1222 * root is the destination we are replaying into, and path is for temp
1223 * use by this function. (it should be released on return).
1225 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1226 struct btrfs_root *root,
1227 struct btrfs_root *log,
1228 struct btrfs_path *path,
1229 struct extent_buffer *eb, int slot,
1230 struct btrfs_key *key)
1232 struct inode *dir = NULL;
1233 struct inode *inode = NULL;
1234 unsigned long ref_ptr;
1235 unsigned long ref_end;
1236 char *name = NULL;
1237 int namelen;
1238 int ret;
1239 int search_done = 0;
1240 int log_ref_ver = 0;
1241 u64 parent_objectid;
1242 u64 inode_objectid;
1243 u64 ref_index = 0;
1244 int ref_struct_size;
1246 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1247 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1249 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1250 struct btrfs_inode_extref *r;
1252 ref_struct_size = sizeof(struct btrfs_inode_extref);
1253 log_ref_ver = 1;
1254 r = (struct btrfs_inode_extref *)ref_ptr;
1255 parent_objectid = btrfs_inode_extref_parent(eb, r);
1256 } else {
1257 ref_struct_size = sizeof(struct btrfs_inode_ref);
1258 parent_objectid = key->offset;
1260 inode_objectid = key->objectid;
1263 * it is possible that we didn't log all the parent directories
1264 * for a given inode. If we don't find the dir, just don't
1265 * copy the back ref in. The link count fixup code will take
1266 * care of the rest
1268 dir = read_one_inode(root, parent_objectid);
1269 if (!dir) {
1270 ret = -ENOENT;
1271 goto out;
1274 inode = read_one_inode(root, inode_objectid);
1275 if (!inode) {
1276 ret = -EIO;
1277 goto out;
1280 while (ref_ptr < ref_end) {
1281 if (log_ref_ver) {
1282 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1283 &ref_index, &parent_objectid);
1285 * parent object can change from one array
1286 * item to another.
1288 if (!dir)
1289 dir = read_one_inode(root, parent_objectid);
1290 if (!dir) {
1291 ret = -ENOENT;
1292 goto out;
1294 } else {
1295 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1296 &ref_index);
1298 if (ret)
1299 goto out;
1301 /* if we already have a perfect match, we're done */
1302 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1303 btrfs_ino(BTRFS_I(inode)), ref_index,
1304 name, namelen)) {
1306 * look for a conflicting back reference in the
1307 * metadata. if we find one we have to unlink that name
1308 * of the file before we add our new link. Later on, we
1309 * overwrite any existing back reference, and we don't
1310 * want to create dangling pointers in the directory.
1313 if (!search_done) {
1314 ret = __add_inode_ref(trans, root, path, log,
1315 BTRFS_I(dir),
1316 BTRFS_I(inode),
1317 inode_objectid,
1318 parent_objectid,
1319 ref_index, name, namelen,
1320 &search_done);
1321 if (ret) {
1322 if (ret == 1)
1323 ret = 0;
1324 goto out;
1328 /* insert our name */
1329 ret = btrfs_add_link(trans, BTRFS_I(dir),
1330 BTRFS_I(inode),
1331 name, namelen, 0, ref_index);
1332 if (ret)
1333 goto out;
1335 btrfs_update_inode(trans, root, inode);
1338 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1339 kfree(name);
1340 name = NULL;
1341 if (log_ref_ver) {
1342 iput(dir);
1343 dir = NULL;
1347 /* finally write the back reference in the inode */
1348 ret = overwrite_item(trans, root, path, eb, slot, key);
1349 out:
1350 btrfs_release_path(path);
1351 kfree(name);
1352 iput(dir);
1353 iput(inode);
1354 return ret;
1357 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1358 struct btrfs_root *root, u64 ino)
1360 int ret;
1362 ret = btrfs_insert_orphan_item(trans, root, ino);
1363 if (ret == -EEXIST)
1364 ret = 0;
1366 return ret;
1369 static int count_inode_extrefs(struct btrfs_root *root,
1370 struct btrfs_inode *inode, struct btrfs_path *path)
1372 int ret = 0;
1373 int name_len;
1374 unsigned int nlink = 0;
1375 u32 item_size;
1376 u32 cur_offset = 0;
1377 u64 inode_objectid = btrfs_ino(inode);
1378 u64 offset = 0;
1379 unsigned long ptr;
1380 struct btrfs_inode_extref *extref;
1381 struct extent_buffer *leaf;
1383 while (1) {
1384 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1385 &extref, &offset);
1386 if (ret)
1387 break;
1389 leaf = path->nodes[0];
1390 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1391 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1392 cur_offset = 0;
1394 while (cur_offset < item_size) {
1395 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1396 name_len = btrfs_inode_extref_name_len(leaf, extref);
1398 nlink++;
1400 cur_offset += name_len + sizeof(*extref);
1403 offset++;
1404 btrfs_release_path(path);
1406 btrfs_release_path(path);
1408 if (ret < 0 && ret != -ENOENT)
1409 return ret;
1410 return nlink;
1413 static int count_inode_refs(struct btrfs_root *root,
1414 struct btrfs_inode *inode, struct btrfs_path *path)
1416 int ret;
1417 struct btrfs_key key;
1418 unsigned int nlink = 0;
1419 unsigned long ptr;
1420 unsigned long ptr_end;
1421 int name_len;
1422 u64 ino = btrfs_ino(inode);
1424 key.objectid = ino;
1425 key.type = BTRFS_INODE_REF_KEY;
1426 key.offset = (u64)-1;
1428 while (1) {
1429 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1430 if (ret < 0)
1431 break;
1432 if (ret > 0) {
1433 if (path->slots[0] == 0)
1434 break;
1435 path->slots[0]--;
1437 process_slot:
1438 btrfs_item_key_to_cpu(path->nodes[0], &key,
1439 path->slots[0]);
1440 if (key.objectid != ino ||
1441 key.type != BTRFS_INODE_REF_KEY)
1442 break;
1443 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1444 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1445 path->slots[0]);
1446 while (ptr < ptr_end) {
1447 struct btrfs_inode_ref *ref;
1449 ref = (struct btrfs_inode_ref *)ptr;
1450 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1451 ref);
1452 ptr = (unsigned long)(ref + 1) + name_len;
1453 nlink++;
1456 if (key.offset == 0)
1457 break;
1458 if (path->slots[0] > 0) {
1459 path->slots[0]--;
1460 goto process_slot;
1462 key.offset--;
1463 btrfs_release_path(path);
1465 btrfs_release_path(path);
1467 return nlink;
1471 * There are a few corners where the link count of the file can't
1472 * be properly maintained during replay. So, instead of adding
1473 * lots of complexity to the log code, we just scan the backrefs
1474 * for any file that has been through replay.
1476 * The scan will update the link count on the inode to reflect the
1477 * number of back refs found. If it goes down to zero, the iput
1478 * will free the inode.
1480 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1481 struct btrfs_root *root,
1482 struct inode *inode)
1484 struct btrfs_path *path;
1485 int ret;
1486 u64 nlink = 0;
1487 u64 ino = btrfs_ino(BTRFS_I(inode));
1489 path = btrfs_alloc_path();
1490 if (!path)
1491 return -ENOMEM;
1493 ret = count_inode_refs(root, BTRFS_I(inode), path);
1494 if (ret < 0)
1495 goto out;
1497 nlink = ret;
1499 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1500 if (ret < 0)
1501 goto out;
1503 nlink += ret;
1505 ret = 0;
1507 if (nlink != inode->i_nlink) {
1508 set_nlink(inode, nlink);
1509 btrfs_update_inode(trans, root, inode);
1511 BTRFS_I(inode)->index_cnt = (u64)-1;
1513 if (inode->i_nlink == 0) {
1514 if (S_ISDIR(inode->i_mode)) {
1515 ret = replay_dir_deletes(trans, root, NULL, path,
1516 ino, 1);
1517 if (ret)
1518 goto out;
1520 ret = insert_orphan_item(trans, root, ino);
1523 out:
1524 btrfs_free_path(path);
1525 return ret;
1528 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1529 struct btrfs_root *root,
1530 struct btrfs_path *path)
1532 int ret;
1533 struct btrfs_key key;
1534 struct inode *inode;
1536 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1537 key.type = BTRFS_ORPHAN_ITEM_KEY;
1538 key.offset = (u64)-1;
1539 while (1) {
1540 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1541 if (ret < 0)
1542 break;
1544 if (ret == 1) {
1545 if (path->slots[0] == 0)
1546 break;
1547 path->slots[0]--;
1550 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1551 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1552 key.type != BTRFS_ORPHAN_ITEM_KEY)
1553 break;
1555 ret = btrfs_del_item(trans, root, path);
1556 if (ret)
1557 goto out;
1559 btrfs_release_path(path);
1560 inode = read_one_inode(root, key.offset);
1561 if (!inode)
1562 return -EIO;
1564 ret = fixup_inode_link_count(trans, root, inode);
1565 iput(inode);
1566 if (ret)
1567 goto out;
1570 * fixup on a directory may create new entries,
1571 * make sure we always look for the highset possible
1572 * offset
1574 key.offset = (u64)-1;
1576 ret = 0;
1577 out:
1578 btrfs_release_path(path);
1579 return ret;
1584 * record a given inode in the fixup dir so we can check its link
1585 * count when replay is done. The link count is incremented here
1586 * so the inode won't go away until we check it
1588 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1589 struct btrfs_root *root,
1590 struct btrfs_path *path,
1591 u64 objectid)
1593 struct btrfs_key key;
1594 int ret = 0;
1595 struct inode *inode;
1597 inode = read_one_inode(root, objectid);
1598 if (!inode)
1599 return -EIO;
1601 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1602 key.type = BTRFS_ORPHAN_ITEM_KEY;
1603 key.offset = objectid;
1605 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1607 btrfs_release_path(path);
1608 if (ret == 0) {
1609 if (!inode->i_nlink)
1610 set_nlink(inode, 1);
1611 else
1612 inc_nlink(inode);
1613 ret = btrfs_update_inode(trans, root, inode);
1614 } else if (ret == -EEXIST) {
1615 ret = 0;
1616 } else {
1617 BUG(); /* Logic Error */
1619 iput(inode);
1621 return ret;
1625 * when replaying the log for a directory, we only insert names
1626 * for inodes that actually exist. This means an fsync on a directory
1627 * does not implicitly fsync all the new files in it
1629 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1630 struct btrfs_root *root,
1631 u64 dirid, u64 index,
1632 char *name, int name_len,
1633 struct btrfs_key *location)
1635 struct inode *inode;
1636 struct inode *dir;
1637 int ret;
1639 inode = read_one_inode(root, location->objectid);
1640 if (!inode)
1641 return -ENOENT;
1643 dir = read_one_inode(root, dirid);
1644 if (!dir) {
1645 iput(inode);
1646 return -EIO;
1649 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1650 name_len, 1, index);
1652 /* FIXME, put inode into FIXUP list */
1654 iput(inode);
1655 iput(dir);
1656 return ret;
1660 * Return true if an inode reference exists in the log for the given name,
1661 * inode and parent inode.
1663 static bool name_in_log_ref(struct btrfs_root *log_root,
1664 const char *name, const int name_len,
1665 const u64 dirid, const u64 ino)
1667 struct btrfs_key search_key;
1669 search_key.objectid = ino;
1670 search_key.type = BTRFS_INODE_REF_KEY;
1671 search_key.offset = dirid;
1672 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1673 return true;
1675 search_key.type = BTRFS_INODE_EXTREF_KEY;
1676 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1677 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1678 return true;
1680 return false;
1684 * take a single entry in a log directory item and replay it into
1685 * the subvolume.
1687 * if a conflicting item exists in the subdirectory already,
1688 * the inode it points to is unlinked and put into the link count
1689 * fix up tree.
1691 * If a name from the log points to a file or directory that does
1692 * not exist in the FS, it is skipped. fsyncs on directories
1693 * do not force down inodes inside that directory, just changes to the
1694 * names or unlinks in a directory.
1696 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1697 * non-existing inode) and 1 if the name was replayed.
1699 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1700 struct btrfs_root *root,
1701 struct btrfs_path *path,
1702 struct extent_buffer *eb,
1703 struct btrfs_dir_item *di,
1704 struct btrfs_key *key)
1706 char *name;
1707 int name_len;
1708 struct btrfs_dir_item *dst_di;
1709 struct btrfs_key found_key;
1710 struct btrfs_key log_key;
1711 struct inode *dir;
1712 u8 log_type;
1713 int exists;
1714 int ret = 0;
1715 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1716 bool name_added = false;
1718 dir = read_one_inode(root, key->objectid);
1719 if (!dir)
1720 return -EIO;
1722 name_len = btrfs_dir_name_len(eb, di);
1723 name = kmalloc(name_len, GFP_NOFS);
1724 if (!name) {
1725 ret = -ENOMEM;
1726 goto out;
1729 log_type = btrfs_dir_type(eb, di);
1730 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1731 name_len);
1733 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1734 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1735 if (exists == 0)
1736 exists = 1;
1737 else
1738 exists = 0;
1739 btrfs_release_path(path);
1741 if (key->type == BTRFS_DIR_ITEM_KEY) {
1742 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1743 name, name_len, 1);
1744 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1745 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1746 key->objectid,
1747 key->offset, name,
1748 name_len, 1);
1749 } else {
1750 /* Corruption */
1751 ret = -EINVAL;
1752 goto out;
1754 if (IS_ERR_OR_NULL(dst_di)) {
1755 /* we need a sequence number to insert, so we only
1756 * do inserts for the BTRFS_DIR_INDEX_KEY types
1758 if (key->type != BTRFS_DIR_INDEX_KEY)
1759 goto out;
1760 goto insert;
1763 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1764 /* the existing item matches the logged item */
1765 if (found_key.objectid == log_key.objectid &&
1766 found_key.type == log_key.type &&
1767 found_key.offset == log_key.offset &&
1768 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1769 update_size = false;
1770 goto out;
1774 * don't drop the conflicting directory entry if the inode
1775 * for the new entry doesn't exist
1777 if (!exists)
1778 goto out;
1780 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1781 if (ret)
1782 goto out;
1784 if (key->type == BTRFS_DIR_INDEX_KEY)
1785 goto insert;
1786 out:
1787 btrfs_release_path(path);
1788 if (!ret && update_size) {
1789 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1790 ret = btrfs_update_inode(trans, root, dir);
1792 kfree(name);
1793 iput(dir);
1794 if (!ret && name_added)
1795 ret = 1;
1796 return ret;
1798 insert:
1799 if (name_in_log_ref(root->log_root, name, name_len,
1800 key->objectid, log_key.objectid)) {
1801 /* The dentry will be added later. */
1802 ret = 0;
1803 update_size = false;
1804 goto out;
1806 btrfs_release_path(path);
1807 ret = insert_one_name(trans, root, key->objectid, key->offset,
1808 name, name_len, &log_key);
1809 if (ret && ret != -ENOENT && ret != -EEXIST)
1810 goto out;
1811 if (!ret)
1812 name_added = true;
1813 update_size = false;
1814 ret = 0;
1815 goto out;
1819 * find all the names in a directory item and reconcile them into
1820 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1821 * one name in a directory item, but the same code gets used for
1822 * both directory index types
1824 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1825 struct btrfs_root *root,
1826 struct btrfs_path *path,
1827 struct extent_buffer *eb, int slot,
1828 struct btrfs_key *key)
1830 int ret = 0;
1831 u32 item_size = btrfs_item_size_nr(eb, slot);
1832 struct btrfs_dir_item *di;
1833 int name_len;
1834 unsigned long ptr;
1835 unsigned long ptr_end;
1836 struct btrfs_path *fixup_path = NULL;
1838 ptr = btrfs_item_ptr_offset(eb, slot);
1839 ptr_end = ptr + item_size;
1840 while (ptr < ptr_end) {
1841 di = (struct btrfs_dir_item *)ptr;
1842 name_len = btrfs_dir_name_len(eb, di);
1843 ret = replay_one_name(trans, root, path, eb, di, key);
1844 if (ret < 0)
1845 break;
1846 ptr = (unsigned long)(di + 1);
1847 ptr += name_len;
1850 * If this entry refers to a non-directory (directories can not
1851 * have a link count > 1) and it was added in the transaction
1852 * that was not committed, make sure we fixup the link count of
1853 * the inode it the entry points to. Otherwise something like
1854 * the following would result in a directory pointing to an
1855 * inode with a wrong link that does not account for this dir
1856 * entry:
1858 * mkdir testdir
1859 * touch testdir/foo
1860 * touch testdir/bar
1861 * sync
1863 * ln testdir/bar testdir/bar_link
1864 * ln testdir/foo testdir/foo_link
1865 * xfs_io -c "fsync" testdir/bar
1867 * <power failure>
1869 * mount fs, log replay happens
1871 * File foo would remain with a link count of 1 when it has two
1872 * entries pointing to it in the directory testdir. This would
1873 * make it impossible to ever delete the parent directory has
1874 * it would result in stale dentries that can never be deleted.
1876 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1877 struct btrfs_key di_key;
1879 if (!fixup_path) {
1880 fixup_path = btrfs_alloc_path();
1881 if (!fixup_path) {
1882 ret = -ENOMEM;
1883 break;
1887 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1888 ret = link_to_fixup_dir(trans, root, fixup_path,
1889 di_key.objectid);
1890 if (ret)
1891 break;
1893 ret = 0;
1895 btrfs_free_path(fixup_path);
1896 return ret;
1900 * directory replay has two parts. There are the standard directory
1901 * items in the log copied from the subvolume, and range items
1902 * created in the log while the subvolume was logged.
1904 * The range items tell us which parts of the key space the log
1905 * is authoritative for. During replay, if a key in the subvolume
1906 * directory is in a logged range item, but not actually in the log
1907 * that means it was deleted from the directory before the fsync
1908 * and should be removed.
1910 static noinline int find_dir_range(struct btrfs_root *root,
1911 struct btrfs_path *path,
1912 u64 dirid, int key_type,
1913 u64 *start_ret, u64 *end_ret)
1915 struct btrfs_key key;
1916 u64 found_end;
1917 struct btrfs_dir_log_item *item;
1918 int ret;
1919 int nritems;
1921 if (*start_ret == (u64)-1)
1922 return 1;
1924 key.objectid = dirid;
1925 key.type = key_type;
1926 key.offset = *start_ret;
1928 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1929 if (ret < 0)
1930 goto out;
1931 if (ret > 0) {
1932 if (path->slots[0] == 0)
1933 goto out;
1934 path->slots[0]--;
1936 if (ret != 0)
1937 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1939 if (key.type != key_type || key.objectid != dirid) {
1940 ret = 1;
1941 goto next;
1943 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1944 struct btrfs_dir_log_item);
1945 found_end = btrfs_dir_log_end(path->nodes[0], item);
1947 if (*start_ret >= key.offset && *start_ret <= found_end) {
1948 ret = 0;
1949 *start_ret = key.offset;
1950 *end_ret = found_end;
1951 goto out;
1953 ret = 1;
1954 next:
1955 /* check the next slot in the tree to see if it is a valid item */
1956 nritems = btrfs_header_nritems(path->nodes[0]);
1957 path->slots[0]++;
1958 if (path->slots[0] >= nritems) {
1959 ret = btrfs_next_leaf(root, path);
1960 if (ret)
1961 goto out;
1964 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1966 if (key.type != key_type || key.objectid != dirid) {
1967 ret = 1;
1968 goto out;
1970 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1971 struct btrfs_dir_log_item);
1972 found_end = btrfs_dir_log_end(path->nodes[0], item);
1973 *start_ret = key.offset;
1974 *end_ret = found_end;
1975 ret = 0;
1976 out:
1977 btrfs_release_path(path);
1978 return ret;
1982 * this looks for a given directory item in the log. If the directory
1983 * item is not in the log, the item is removed and the inode it points
1984 * to is unlinked
1986 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1987 struct btrfs_root *root,
1988 struct btrfs_root *log,
1989 struct btrfs_path *path,
1990 struct btrfs_path *log_path,
1991 struct inode *dir,
1992 struct btrfs_key *dir_key)
1994 struct btrfs_fs_info *fs_info = root->fs_info;
1995 int ret;
1996 struct extent_buffer *eb;
1997 int slot;
1998 u32 item_size;
1999 struct btrfs_dir_item *di;
2000 struct btrfs_dir_item *log_di;
2001 int name_len;
2002 unsigned long ptr;
2003 unsigned long ptr_end;
2004 char *name;
2005 struct inode *inode;
2006 struct btrfs_key location;
2008 again:
2009 eb = path->nodes[0];
2010 slot = path->slots[0];
2011 item_size = btrfs_item_size_nr(eb, slot);
2012 ptr = btrfs_item_ptr_offset(eb, slot);
2013 ptr_end = ptr + item_size;
2014 while (ptr < ptr_end) {
2015 di = (struct btrfs_dir_item *)ptr;
2016 name_len = btrfs_dir_name_len(eb, di);
2017 name = kmalloc(name_len, GFP_NOFS);
2018 if (!name) {
2019 ret = -ENOMEM;
2020 goto out;
2022 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2023 name_len);
2024 log_di = NULL;
2025 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2026 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2027 dir_key->objectid,
2028 name, name_len, 0);
2029 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2030 log_di = btrfs_lookup_dir_index_item(trans, log,
2031 log_path,
2032 dir_key->objectid,
2033 dir_key->offset,
2034 name, name_len, 0);
2036 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2037 btrfs_dir_item_key_to_cpu(eb, di, &location);
2038 btrfs_release_path(path);
2039 btrfs_release_path(log_path);
2040 inode = read_one_inode(root, location.objectid);
2041 if (!inode) {
2042 kfree(name);
2043 return -EIO;
2046 ret = link_to_fixup_dir(trans, root,
2047 path, location.objectid);
2048 if (ret) {
2049 kfree(name);
2050 iput(inode);
2051 goto out;
2054 inc_nlink(inode);
2055 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2056 BTRFS_I(inode), name, name_len);
2057 if (!ret)
2058 ret = btrfs_run_delayed_items(trans, fs_info);
2059 kfree(name);
2060 iput(inode);
2061 if (ret)
2062 goto out;
2064 /* there might still be more names under this key
2065 * check and repeat if required
2067 ret = btrfs_search_slot(NULL, root, dir_key, path,
2068 0, 0);
2069 if (ret == 0)
2070 goto again;
2071 ret = 0;
2072 goto out;
2073 } else if (IS_ERR(log_di)) {
2074 kfree(name);
2075 return PTR_ERR(log_di);
2077 btrfs_release_path(log_path);
2078 kfree(name);
2080 ptr = (unsigned long)(di + 1);
2081 ptr += name_len;
2083 ret = 0;
2084 out:
2085 btrfs_release_path(path);
2086 btrfs_release_path(log_path);
2087 return ret;
2090 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2091 struct btrfs_root *root,
2092 struct btrfs_root *log,
2093 struct btrfs_path *path,
2094 const u64 ino)
2096 struct btrfs_key search_key;
2097 struct btrfs_path *log_path;
2098 int i;
2099 int nritems;
2100 int ret;
2102 log_path = btrfs_alloc_path();
2103 if (!log_path)
2104 return -ENOMEM;
2106 search_key.objectid = ino;
2107 search_key.type = BTRFS_XATTR_ITEM_KEY;
2108 search_key.offset = 0;
2109 again:
2110 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2111 if (ret < 0)
2112 goto out;
2113 process_leaf:
2114 nritems = btrfs_header_nritems(path->nodes[0]);
2115 for (i = path->slots[0]; i < nritems; i++) {
2116 struct btrfs_key key;
2117 struct btrfs_dir_item *di;
2118 struct btrfs_dir_item *log_di;
2119 u32 total_size;
2120 u32 cur;
2122 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2123 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2124 ret = 0;
2125 goto out;
2128 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2129 total_size = btrfs_item_size_nr(path->nodes[0], i);
2130 cur = 0;
2131 while (cur < total_size) {
2132 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2133 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2134 u32 this_len = sizeof(*di) + name_len + data_len;
2135 char *name;
2137 name = kmalloc(name_len, GFP_NOFS);
2138 if (!name) {
2139 ret = -ENOMEM;
2140 goto out;
2142 read_extent_buffer(path->nodes[0], name,
2143 (unsigned long)(di + 1), name_len);
2145 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2146 name, name_len, 0);
2147 btrfs_release_path(log_path);
2148 if (!log_di) {
2149 /* Doesn't exist in log tree, so delete it. */
2150 btrfs_release_path(path);
2151 di = btrfs_lookup_xattr(trans, root, path, ino,
2152 name, name_len, -1);
2153 kfree(name);
2154 if (IS_ERR(di)) {
2155 ret = PTR_ERR(di);
2156 goto out;
2158 ASSERT(di);
2159 ret = btrfs_delete_one_dir_name(trans, root,
2160 path, di);
2161 if (ret)
2162 goto out;
2163 btrfs_release_path(path);
2164 search_key = key;
2165 goto again;
2167 kfree(name);
2168 if (IS_ERR(log_di)) {
2169 ret = PTR_ERR(log_di);
2170 goto out;
2172 cur += this_len;
2173 di = (struct btrfs_dir_item *)((char *)di + this_len);
2176 ret = btrfs_next_leaf(root, path);
2177 if (ret > 0)
2178 ret = 0;
2179 else if (ret == 0)
2180 goto process_leaf;
2181 out:
2182 btrfs_free_path(log_path);
2183 btrfs_release_path(path);
2184 return ret;
2189 * deletion replay happens before we copy any new directory items
2190 * out of the log or out of backreferences from inodes. It
2191 * scans the log to find ranges of keys that log is authoritative for,
2192 * and then scans the directory to find items in those ranges that are
2193 * not present in the log.
2195 * Anything we don't find in the log is unlinked and removed from the
2196 * directory.
2198 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2199 struct btrfs_root *root,
2200 struct btrfs_root *log,
2201 struct btrfs_path *path,
2202 u64 dirid, int del_all)
2204 u64 range_start;
2205 u64 range_end;
2206 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2207 int ret = 0;
2208 struct btrfs_key dir_key;
2209 struct btrfs_key found_key;
2210 struct btrfs_path *log_path;
2211 struct inode *dir;
2213 dir_key.objectid = dirid;
2214 dir_key.type = BTRFS_DIR_ITEM_KEY;
2215 log_path = btrfs_alloc_path();
2216 if (!log_path)
2217 return -ENOMEM;
2219 dir = read_one_inode(root, dirid);
2220 /* it isn't an error if the inode isn't there, that can happen
2221 * because we replay the deletes before we copy in the inode item
2222 * from the log
2224 if (!dir) {
2225 btrfs_free_path(log_path);
2226 return 0;
2228 again:
2229 range_start = 0;
2230 range_end = 0;
2231 while (1) {
2232 if (del_all)
2233 range_end = (u64)-1;
2234 else {
2235 ret = find_dir_range(log, path, dirid, key_type,
2236 &range_start, &range_end);
2237 if (ret != 0)
2238 break;
2241 dir_key.offset = range_start;
2242 while (1) {
2243 int nritems;
2244 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2245 0, 0);
2246 if (ret < 0)
2247 goto out;
2249 nritems = btrfs_header_nritems(path->nodes[0]);
2250 if (path->slots[0] >= nritems) {
2251 ret = btrfs_next_leaf(root, path);
2252 if (ret)
2253 break;
2255 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2256 path->slots[0]);
2257 if (found_key.objectid != dirid ||
2258 found_key.type != dir_key.type)
2259 goto next_type;
2261 if (found_key.offset > range_end)
2262 break;
2264 ret = check_item_in_log(trans, root, log, path,
2265 log_path, dir,
2266 &found_key);
2267 if (ret)
2268 goto out;
2269 if (found_key.offset == (u64)-1)
2270 break;
2271 dir_key.offset = found_key.offset + 1;
2273 btrfs_release_path(path);
2274 if (range_end == (u64)-1)
2275 break;
2276 range_start = range_end + 1;
2279 next_type:
2280 ret = 0;
2281 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2282 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2283 dir_key.type = BTRFS_DIR_INDEX_KEY;
2284 btrfs_release_path(path);
2285 goto again;
2287 out:
2288 btrfs_release_path(path);
2289 btrfs_free_path(log_path);
2290 iput(dir);
2291 return ret;
2295 * the process_func used to replay items from the log tree. This
2296 * gets called in two different stages. The first stage just looks
2297 * for inodes and makes sure they are all copied into the subvolume.
2299 * The second stage copies all the other item types from the log into
2300 * the subvolume. The two stage approach is slower, but gets rid of
2301 * lots of complexity around inodes referencing other inodes that exist
2302 * only in the log (references come from either directory items or inode
2303 * back refs).
2305 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2306 struct walk_control *wc, u64 gen)
2308 int nritems;
2309 struct btrfs_path *path;
2310 struct btrfs_root *root = wc->replay_dest;
2311 struct btrfs_key key;
2312 int level;
2313 int i;
2314 int ret;
2316 ret = btrfs_read_buffer(eb, gen);
2317 if (ret)
2318 return ret;
2320 level = btrfs_header_level(eb);
2322 if (level != 0)
2323 return 0;
2325 path = btrfs_alloc_path();
2326 if (!path)
2327 return -ENOMEM;
2329 nritems = btrfs_header_nritems(eb);
2330 for (i = 0; i < nritems; i++) {
2331 btrfs_item_key_to_cpu(eb, &key, i);
2333 /* inode keys are done during the first stage */
2334 if (key.type == BTRFS_INODE_ITEM_KEY &&
2335 wc->stage == LOG_WALK_REPLAY_INODES) {
2336 struct btrfs_inode_item *inode_item;
2337 u32 mode;
2339 inode_item = btrfs_item_ptr(eb, i,
2340 struct btrfs_inode_item);
2341 ret = replay_xattr_deletes(wc->trans, root, log,
2342 path, key.objectid);
2343 if (ret)
2344 break;
2345 mode = btrfs_inode_mode(eb, inode_item);
2346 if (S_ISDIR(mode)) {
2347 ret = replay_dir_deletes(wc->trans,
2348 root, log, path, key.objectid, 0);
2349 if (ret)
2350 break;
2352 ret = overwrite_item(wc->trans, root, path,
2353 eb, i, &key);
2354 if (ret)
2355 break;
2357 /* for regular files, make sure corresponding
2358 * orphan item exist. extents past the new EOF
2359 * will be truncated later by orphan cleanup.
2361 if (S_ISREG(mode)) {
2362 ret = insert_orphan_item(wc->trans, root,
2363 key.objectid);
2364 if (ret)
2365 break;
2368 ret = link_to_fixup_dir(wc->trans, root,
2369 path, key.objectid);
2370 if (ret)
2371 break;
2374 if (key.type == BTRFS_DIR_INDEX_KEY &&
2375 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2376 ret = replay_one_dir_item(wc->trans, root, path,
2377 eb, i, &key);
2378 if (ret)
2379 break;
2382 if (wc->stage < LOG_WALK_REPLAY_ALL)
2383 continue;
2385 /* these keys are simply copied */
2386 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2387 ret = overwrite_item(wc->trans, root, path,
2388 eb, i, &key);
2389 if (ret)
2390 break;
2391 } else if (key.type == BTRFS_INODE_REF_KEY ||
2392 key.type == BTRFS_INODE_EXTREF_KEY) {
2393 ret = add_inode_ref(wc->trans, root, log, path,
2394 eb, i, &key);
2395 if (ret && ret != -ENOENT)
2396 break;
2397 ret = 0;
2398 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2399 ret = replay_one_extent(wc->trans, root, path,
2400 eb, i, &key);
2401 if (ret)
2402 break;
2403 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2404 ret = replay_one_dir_item(wc->trans, root, path,
2405 eb, i, &key);
2406 if (ret)
2407 break;
2410 btrfs_free_path(path);
2411 return ret;
2414 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2415 struct btrfs_root *root,
2416 struct btrfs_path *path, int *level,
2417 struct walk_control *wc)
2419 struct btrfs_fs_info *fs_info = root->fs_info;
2420 u64 root_owner;
2421 u64 bytenr;
2422 u64 ptr_gen;
2423 struct extent_buffer *next;
2424 struct extent_buffer *cur;
2425 struct extent_buffer *parent;
2426 u32 blocksize;
2427 int ret = 0;
2429 WARN_ON(*level < 0);
2430 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2432 while (*level > 0) {
2433 WARN_ON(*level < 0);
2434 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2435 cur = path->nodes[*level];
2437 WARN_ON(btrfs_header_level(cur) != *level);
2439 if (path->slots[*level] >=
2440 btrfs_header_nritems(cur))
2441 break;
2443 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2444 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2445 blocksize = fs_info->nodesize;
2447 parent = path->nodes[*level];
2448 root_owner = btrfs_header_owner(parent);
2450 next = btrfs_find_create_tree_block(fs_info, bytenr);
2451 if (IS_ERR(next))
2452 return PTR_ERR(next);
2454 if (*level == 1) {
2455 ret = wc->process_func(root, next, wc, ptr_gen);
2456 if (ret) {
2457 free_extent_buffer(next);
2458 return ret;
2461 path->slots[*level]++;
2462 if (wc->free) {
2463 ret = btrfs_read_buffer(next, ptr_gen);
2464 if (ret) {
2465 free_extent_buffer(next);
2466 return ret;
2469 if (trans) {
2470 btrfs_tree_lock(next);
2471 btrfs_set_lock_blocking(next);
2472 clean_tree_block(fs_info, next);
2473 btrfs_wait_tree_block_writeback(next);
2474 btrfs_tree_unlock(next);
2477 WARN_ON(root_owner !=
2478 BTRFS_TREE_LOG_OBJECTID);
2479 ret = btrfs_free_and_pin_reserved_extent(
2480 fs_info, bytenr,
2481 blocksize);
2482 if (ret) {
2483 free_extent_buffer(next);
2484 return ret;
2487 free_extent_buffer(next);
2488 continue;
2490 ret = btrfs_read_buffer(next, ptr_gen);
2491 if (ret) {
2492 free_extent_buffer(next);
2493 return ret;
2496 WARN_ON(*level <= 0);
2497 if (path->nodes[*level-1])
2498 free_extent_buffer(path->nodes[*level-1]);
2499 path->nodes[*level-1] = next;
2500 *level = btrfs_header_level(next);
2501 path->slots[*level] = 0;
2502 cond_resched();
2504 WARN_ON(*level < 0);
2505 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2507 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2509 cond_resched();
2510 return 0;
2513 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2514 struct btrfs_root *root,
2515 struct btrfs_path *path, int *level,
2516 struct walk_control *wc)
2518 struct btrfs_fs_info *fs_info = root->fs_info;
2519 u64 root_owner;
2520 int i;
2521 int slot;
2522 int ret;
2524 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2525 slot = path->slots[i];
2526 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2527 path->slots[i]++;
2528 *level = i;
2529 WARN_ON(*level == 0);
2530 return 0;
2531 } else {
2532 struct extent_buffer *parent;
2533 if (path->nodes[*level] == root->node)
2534 parent = path->nodes[*level];
2535 else
2536 parent = path->nodes[*level + 1];
2538 root_owner = btrfs_header_owner(parent);
2539 ret = wc->process_func(root, path->nodes[*level], wc,
2540 btrfs_header_generation(path->nodes[*level]));
2541 if (ret)
2542 return ret;
2544 if (wc->free) {
2545 struct extent_buffer *next;
2547 next = path->nodes[*level];
2549 if (trans) {
2550 btrfs_tree_lock(next);
2551 btrfs_set_lock_blocking(next);
2552 clean_tree_block(fs_info, next);
2553 btrfs_wait_tree_block_writeback(next);
2554 btrfs_tree_unlock(next);
2557 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2558 ret = btrfs_free_and_pin_reserved_extent(
2559 fs_info,
2560 path->nodes[*level]->start,
2561 path->nodes[*level]->len);
2562 if (ret)
2563 return ret;
2565 free_extent_buffer(path->nodes[*level]);
2566 path->nodes[*level] = NULL;
2567 *level = i + 1;
2570 return 1;
2574 * drop the reference count on the tree rooted at 'snap'. This traverses
2575 * the tree freeing any blocks that have a ref count of zero after being
2576 * decremented.
2578 static int walk_log_tree(struct btrfs_trans_handle *trans,
2579 struct btrfs_root *log, struct walk_control *wc)
2581 struct btrfs_fs_info *fs_info = log->fs_info;
2582 int ret = 0;
2583 int wret;
2584 int level;
2585 struct btrfs_path *path;
2586 int orig_level;
2588 path = btrfs_alloc_path();
2589 if (!path)
2590 return -ENOMEM;
2592 level = btrfs_header_level(log->node);
2593 orig_level = level;
2594 path->nodes[level] = log->node;
2595 extent_buffer_get(log->node);
2596 path->slots[level] = 0;
2598 while (1) {
2599 wret = walk_down_log_tree(trans, log, path, &level, wc);
2600 if (wret > 0)
2601 break;
2602 if (wret < 0) {
2603 ret = wret;
2604 goto out;
2607 wret = walk_up_log_tree(trans, log, path, &level, wc);
2608 if (wret > 0)
2609 break;
2610 if (wret < 0) {
2611 ret = wret;
2612 goto out;
2616 /* was the root node processed? if not, catch it here */
2617 if (path->nodes[orig_level]) {
2618 ret = wc->process_func(log, path->nodes[orig_level], wc,
2619 btrfs_header_generation(path->nodes[orig_level]));
2620 if (ret)
2621 goto out;
2622 if (wc->free) {
2623 struct extent_buffer *next;
2625 next = path->nodes[orig_level];
2627 if (trans) {
2628 btrfs_tree_lock(next);
2629 btrfs_set_lock_blocking(next);
2630 clean_tree_block(fs_info, next);
2631 btrfs_wait_tree_block_writeback(next);
2632 btrfs_tree_unlock(next);
2635 WARN_ON(log->root_key.objectid !=
2636 BTRFS_TREE_LOG_OBJECTID);
2637 ret = btrfs_free_and_pin_reserved_extent(fs_info,
2638 next->start, next->len);
2639 if (ret)
2640 goto out;
2644 out:
2645 btrfs_free_path(path);
2646 return ret;
2650 * helper function to update the item for a given subvolumes log root
2651 * in the tree of log roots
2653 static int update_log_root(struct btrfs_trans_handle *trans,
2654 struct btrfs_root *log)
2656 struct btrfs_fs_info *fs_info = log->fs_info;
2657 int ret;
2659 if (log->log_transid == 1) {
2660 /* insert root item on the first sync */
2661 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2662 &log->root_key, &log->root_item);
2663 } else {
2664 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2665 &log->root_key, &log->root_item);
2667 return ret;
2670 static void wait_log_commit(struct btrfs_root *root, int transid)
2672 DEFINE_WAIT(wait);
2673 int index = transid % 2;
2676 * we only allow two pending log transactions at a time,
2677 * so we know that if ours is more than 2 older than the
2678 * current transaction, we're done
2680 for (;;) {
2681 prepare_to_wait(&root->log_commit_wait[index],
2682 &wait, TASK_UNINTERRUPTIBLE);
2684 if (!(root->log_transid_committed < transid &&
2685 atomic_read(&root->log_commit[index])))
2686 break;
2688 mutex_unlock(&root->log_mutex);
2689 schedule();
2690 mutex_lock(&root->log_mutex);
2692 finish_wait(&root->log_commit_wait[index], &wait);
2695 static void wait_for_writer(struct btrfs_root *root)
2697 DEFINE_WAIT(wait);
2699 for (;;) {
2700 prepare_to_wait(&root->log_writer_wait, &wait,
2701 TASK_UNINTERRUPTIBLE);
2702 if (!atomic_read(&root->log_writers))
2703 break;
2705 mutex_unlock(&root->log_mutex);
2706 schedule();
2707 mutex_lock(&root->log_mutex);
2709 finish_wait(&root->log_writer_wait, &wait);
2712 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2713 struct btrfs_log_ctx *ctx)
2715 if (!ctx)
2716 return;
2718 mutex_lock(&root->log_mutex);
2719 list_del_init(&ctx->list);
2720 mutex_unlock(&root->log_mutex);
2724 * Invoked in log mutex context, or be sure there is no other task which
2725 * can access the list.
2727 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2728 int index, int error)
2730 struct btrfs_log_ctx *ctx;
2731 struct btrfs_log_ctx *safe;
2733 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2734 list_del_init(&ctx->list);
2735 ctx->log_ret = error;
2738 INIT_LIST_HEAD(&root->log_ctxs[index]);
2742 * btrfs_sync_log does sends a given tree log down to the disk and
2743 * updates the super blocks to record it. When this call is done,
2744 * you know that any inodes previously logged are safely on disk only
2745 * if it returns 0.
2747 * Any other return value means you need to call btrfs_commit_transaction.
2748 * Some of the edge cases for fsyncing directories that have had unlinks
2749 * or renames done in the past mean that sometimes the only safe
2750 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2751 * that has happened.
2753 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2754 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2756 int index1;
2757 int index2;
2758 int mark;
2759 int ret;
2760 struct btrfs_fs_info *fs_info = root->fs_info;
2761 struct btrfs_root *log = root->log_root;
2762 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2763 int log_transid = 0;
2764 struct btrfs_log_ctx root_log_ctx;
2765 struct blk_plug plug;
2767 mutex_lock(&root->log_mutex);
2768 log_transid = ctx->log_transid;
2769 if (root->log_transid_committed >= log_transid) {
2770 mutex_unlock(&root->log_mutex);
2771 return ctx->log_ret;
2774 index1 = log_transid % 2;
2775 if (atomic_read(&root->log_commit[index1])) {
2776 wait_log_commit(root, log_transid);
2777 mutex_unlock(&root->log_mutex);
2778 return ctx->log_ret;
2780 ASSERT(log_transid == root->log_transid);
2781 atomic_set(&root->log_commit[index1], 1);
2783 /* wait for previous tree log sync to complete */
2784 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2785 wait_log_commit(root, log_transid - 1);
2787 while (1) {
2788 int batch = atomic_read(&root->log_batch);
2789 /* when we're on an ssd, just kick the log commit out */
2790 if (!btrfs_test_opt(fs_info, SSD) &&
2791 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2792 mutex_unlock(&root->log_mutex);
2793 schedule_timeout_uninterruptible(1);
2794 mutex_lock(&root->log_mutex);
2796 wait_for_writer(root);
2797 if (batch == atomic_read(&root->log_batch))
2798 break;
2801 /* bail out if we need to do a full commit */
2802 if (btrfs_need_log_full_commit(fs_info, trans)) {
2803 ret = -EAGAIN;
2804 btrfs_free_logged_extents(log, log_transid);
2805 mutex_unlock(&root->log_mutex);
2806 goto out;
2809 if (log_transid % 2 == 0)
2810 mark = EXTENT_DIRTY;
2811 else
2812 mark = EXTENT_NEW;
2814 /* we start IO on all the marked extents here, but we don't actually
2815 * wait for them until later.
2817 blk_start_plug(&plug);
2818 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2819 if (ret) {
2820 blk_finish_plug(&plug);
2821 btrfs_abort_transaction(trans, ret);
2822 btrfs_free_logged_extents(log, log_transid);
2823 btrfs_set_log_full_commit(fs_info, trans);
2824 mutex_unlock(&root->log_mutex);
2825 goto out;
2828 btrfs_set_root_node(&log->root_item, log->node);
2830 root->log_transid++;
2831 log->log_transid = root->log_transid;
2832 root->log_start_pid = 0;
2834 * IO has been started, blocks of the log tree have WRITTEN flag set
2835 * in their headers. new modifications of the log will be written to
2836 * new positions. so it's safe to allow log writers to go in.
2838 mutex_unlock(&root->log_mutex);
2840 btrfs_init_log_ctx(&root_log_ctx, NULL);
2842 mutex_lock(&log_root_tree->log_mutex);
2843 atomic_inc(&log_root_tree->log_batch);
2844 atomic_inc(&log_root_tree->log_writers);
2846 index2 = log_root_tree->log_transid % 2;
2847 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2848 root_log_ctx.log_transid = log_root_tree->log_transid;
2850 mutex_unlock(&log_root_tree->log_mutex);
2852 ret = update_log_root(trans, log);
2854 mutex_lock(&log_root_tree->log_mutex);
2855 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2857 * Implicit memory barrier after atomic_dec_and_test
2859 if (waitqueue_active(&log_root_tree->log_writer_wait))
2860 wake_up(&log_root_tree->log_writer_wait);
2863 if (ret) {
2864 if (!list_empty(&root_log_ctx.list))
2865 list_del_init(&root_log_ctx.list);
2867 blk_finish_plug(&plug);
2868 btrfs_set_log_full_commit(fs_info, trans);
2870 if (ret != -ENOSPC) {
2871 btrfs_abort_transaction(trans, ret);
2872 mutex_unlock(&log_root_tree->log_mutex);
2873 goto out;
2875 btrfs_wait_tree_log_extents(log, mark);
2876 btrfs_free_logged_extents(log, log_transid);
2877 mutex_unlock(&log_root_tree->log_mutex);
2878 ret = -EAGAIN;
2879 goto out;
2882 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2883 blk_finish_plug(&plug);
2884 list_del_init(&root_log_ctx.list);
2885 mutex_unlock(&log_root_tree->log_mutex);
2886 ret = root_log_ctx.log_ret;
2887 goto out;
2890 index2 = root_log_ctx.log_transid % 2;
2891 if (atomic_read(&log_root_tree->log_commit[index2])) {
2892 blk_finish_plug(&plug);
2893 ret = btrfs_wait_tree_log_extents(log, mark);
2894 btrfs_wait_logged_extents(trans, log, log_transid);
2895 wait_log_commit(log_root_tree,
2896 root_log_ctx.log_transid);
2897 mutex_unlock(&log_root_tree->log_mutex);
2898 if (!ret)
2899 ret = root_log_ctx.log_ret;
2900 goto out;
2902 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2903 atomic_set(&log_root_tree->log_commit[index2], 1);
2905 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2906 wait_log_commit(log_root_tree,
2907 root_log_ctx.log_transid - 1);
2910 wait_for_writer(log_root_tree);
2913 * now that we've moved on to the tree of log tree roots,
2914 * check the full commit flag again
2916 if (btrfs_need_log_full_commit(fs_info, trans)) {
2917 blk_finish_plug(&plug);
2918 btrfs_wait_tree_log_extents(log, mark);
2919 btrfs_free_logged_extents(log, log_transid);
2920 mutex_unlock(&log_root_tree->log_mutex);
2921 ret = -EAGAIN;
2922 goto out_wake_log_root;
2925 ret = btrfs_write_marked_extents(fs_info,
2926 &log_root_tree->dirty_log_pages,
2927 EXTENT_DIRTY | EXTENT_NEW);
2928 blk_finish_plug(&plug);
2929 if (ret) {
2930 btrfs_set_log_full_commit(fs_info, trans);
2931 btrfs_abort_transaction(trans, ret);
2932 btrfs_free_logged_extents(log, log_transid);
2933 mutex_unlock(&log_root_tree->log_mutex);
2934 goto out_wake_log_root;
2936 ret = btrfs_wait_tree_log_extents(log, mark);
2937 if (!ret)
2938 ret = btrfs_wait_tree_log_extents(log_root_tree,
2939 EXTENT_NEW | EXTENT_DIRTY);
2940 if (ret) {
2941 btrfs_set_log_full_commit(fs_info, trans);
2942 btrfs_free_logged_extents(log, log_transid);
2943 mutex_unlock(&log_root_tree->log_mutex);
2944 goto out_wake_log_root;
2946 btrfs_wait_logged_extents(trans, log, log_transid);
2948 btrfs_set_super_log_root(fs_info->super_for_commit,
2949 log_root_tree->node->start);
2950 btrfs_set_super_log_root_level(fs_info->super_for_commit,
2951 btrfs_header_level(log_root_tree->node));
2953 log_root_tree->log_transid++;
2954 mutex_unlock(&log_root_tree->log_mutex);
2957 * nobody else is going to jump in and write the the ctree
2958 * super here because the log_commit atomic below is protecting
2959 * us. We must be called with a transaction handle pinning
2960 * the running transaction open, so a full commit can't hop
2961 * in and cause problems either.
2963 ret = write_all_supers(fs_info, 1);
2964 if (ret) {
2965 btrfs_set_log_full_commit(fs_info, trans);
2966 btrfs_abort_transaction(trans, ret);
2967 goto out_wake_log_root;
2970 mutex_lock(&root->log_mutex);
2971 if (root->last_log_commit < log_transid)
2972 root->last_log_commit = log_transid;
2973 mutex_unlock(&root->log_mutex);
2975 out_wake_log_root:
2976 mutex_lock(&log_root_tree->log_mutex);
2977 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2979 log_root_tree->log_transid_committed++;
2980 atomic_set(&log_root_tree->log_commit[index2], 0);
2981 mutex_unlock(&log_root_tree->log_mutex);
2984 * The barrier before waitqueue_active is implied by mutex_unlock
2986 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2987 wake_up(&log_root_tree->log_commit_wait[index2]);
2988 out:
2989 mutex_lock(&root->log_mutex);
2990 btrfs_remove_all_log_ctxs(root, index1, ret);
2991 root->log_transid_committed++;
2992 atomic_set(&root->log_commit[index1], 0);
2993 mutex_unlock(&root->log_mutex);
2996 * The barrier before waitqueue_active is implied by mutex_unlock
2998 if (waitqueue_active(&root->log_commit_wait[index1]))
2999 wake_up(&root->log_commit_wait[index1]);
3000 return ret;
3003 static void free_log_tree(struct btrfs_trans_handle *trans,
3004 struct btrfs_root *log)
3006 int ret;
3007 u64 start;
3008 u64 end;
3009 struct walk_control wc = {
3010 .free = 1,
3011 .process_func = process_one_buffer
3014 ret = walk_log_tree(trans, log, &wc);
3015 /* I don't think this can happen but just in case */
3016 if (ret)
3017 btrfs_abort_transaction(trans, ret);
3019 while (1) {
3020 ret = find_first_extent_bit(&log->dirty_log_pages,
3021 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
3022 NULL);
3023 if (ret)
3024 break;
3026 clear_extent_bits(&log->dirty_log_pages, start, end,
3027 EXTENT_DIRTY | EXTENT_NEW);
3031 * We may have short-circuited the log tree with the full commit logic
3032 * and left ordered extents on our list, so clear these out to keep us
3033 * from leaking inodes and memory.
3035 btrfs_free_logged_extents(log, 0);
3036 btrfs_free_logged_extents(log, 1);
3038 free_extent_buffer(log->node);
3039 kfree(log);
3043 * free all the extents used by the tree log. This should be called
3044 * at commit time of the full transaction
3046 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3048 if (root->log_root) {
3049 free_log_tree(trans, root->log_root);
3050 root->log_root = NULL;
3052 return 0;
3055 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3056 struct btrfs_fs_info *fs_info)
3058 if (fs_info->log_root_tree) {
3059 free_log_tree(trans, fs_info->log_root_tree);
3060 fs_info->log_root_tree = NULL;
3062 return 0;
3066 * If both a file and directory are logged, and unlinks or renames are
3067 * mixed in, we have a few interesting corners:
3069 * create file X in dir Y
3070 * link file X to X.link in dir Y
3071 * fsync file X
3072 * unlink file X but leave X.link
3073 * fsync dir Y
3075 * After a crash we would expect only X.link to exist. But file X
3076 * didn't get fsync'd again so the log has back refs for X and X.link.
3078 * We solve this by removing directory entries and inode backrefs from the
3079 * log when a file that was logged in the current transaction is
3080 * unlinked. Any later fsync will include the updated log entries, and
3081 * we'll be able to reconstruct the proper directory items from backrefs.
3083 * This optimizations allows us to avoid relogging the entire inode
3084 * or the entire directory.
3086 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3087 struct btrfs_root *root,
3088 const char *name, int name_len,
3089 struct btrfs_inode *dir, u64 index)
3091 struct btrfs_root *log;
3092 struct btrfs_dir_item *di;
3093 struct btrfs_path *path;
3094 int ret;
3095 int err = 0;
3096 int bytes_del = 0;
3097 u64 dir_ino = btrfs_ino(dir);
3099 if (dir->logged_trans < trans->transid)
3100 return 0;
3102 ret = join_running_log_trans(root);
3103 if (ret)
3104 return 0;
3106 mutex_lock(&dir->log_mutex);
3108 log = root->log_root;
3109 path = btrfs_alloc_path();
3110 if (!path) {
3111 err = -ENOMEM;
3112 goto out_unlock;
3115 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3116 name, name_len, -1);
3117 if (IS_ERR(di)) {
3118 err = PTR_ERR(di);
3119 goto fail;
3121 if (di) {
3122 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3123 bytes_del += name_len;
3124 if (ret) {
3125 err = ret;
3126 goto fail;
3129 btrfs_release_path(path);
3130 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3131 index, name, name_len, -1);
3132 if (IS_ERR(di)) {
3133 err = PTR_ERR(di);
3134 goto fail;
3136 if (di) {
3137 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3138 bytes_del += name_len;
3139 if (ret) {
3140 err = ret;
3141 goto fail;
3145 /* update the directory size in the log to reflect the names
3146 * we have removed
3148 if (bytes_del) {
3149 struct btrfs_key key;
3151 key.objectid = dir_ino;
3152 key.offset = 0;
3153 key.type = BTRFS_INODE_ITEM_KEY;
3154 btrfs_release_path(path);
3156 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3157 if (ret < 0) {
3158 err = ret;
3159 goto fail;
3161 if (ret == 0) {
3162 struct btrfs_inode_item *item;
3163 u64 i_size;
3165 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3166 struct btrfs_inode_item);
3167 i_size = btrfs_inode_size(path->nodes[0], item);
3168 if (i_size > bytes_del)
3169 i_size -= bytes_del;
3170 else
3171 i_size = 0;
3172 btrfs_set_inode_size(path->nodes[0], item, i_size);
3173 btrfs_mark_buffer_dirty(path->nodes[0]);
3174 } else
3175 ret = 0;
3176 btrfs_release_path(path);
3178 fail:
3179 btrfs_free_path(path);
3180 out_unlock:
3181 mutex_unlock(&dir->log_mutex);
3182 if (ret == -ENOSPC) {
3183 btrfs_set_log_full_commit(root->fs_info, trans);
3184 ret = 0;
3185 } else if (ret < 0)
3186 btrfs_abort_transaction(trans, ret);
3188 btrfs_end_log_trans(root);
3190 return err;
3193 /* see comments for btrfs_del_dir_entries_in_log */
3194 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3195 struct btrfs_root *root,
3196 const char *name, int name_len,
3197 struct btrfs_inode *inode, u64 dirid)
3199 struct btrfs_fs_info *fs_info = root->fs_info;
3200 struct btrfs_root *log;
3201 u64 index;
3202 int ret;
3204 if (inode->logged_trans < trans->transid)
3205 return 0;
3207 ret = join_running_log_trans(root);
3208 if (ret)
3209 return 0;
3210 log = root->log_root;
3211 mutex_lock(&inode->log_mutex);
3213 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3214 dirid, &index);
3215 mutex_unlock(&inode->log_mutex);
3216 if (ret == -ENOSPC) {
3217 btrfs_set_log_full_commit(fs_info, trans);
3218 ret = 0;
3219 } else if (ret < 0 && ret != -ENOENT)
3220 btrfs_abort_transaction(trans, ret);
3221 btrfs_end_log_trans(root);
3223 return ret;
3227 * creates a range item in the log for 'dirid'. first_offset and
3228 * last_offset tell us which parts of the key space the log should
3229 * be considered authoritative for.
3231 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3232 struct btrfs_root *log,
3233 struct btrfs_path *path,
3234 int key_type, u64 dirid,
3235 u64 first_offset, u64 last_offset)
3237 int ret;
3238 struct btrfs_key key;
3239 struct btrfs_dir_log_item *item;
3241 key.objectid = dirid;
3242 key.offset = first_offset;
3243 if (key_type == BTRFS_DIR_ITEM_KEY)
3244 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3245 else
3246 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3247 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3248 if (ret)
3249 return ret;
3251 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3252 struct btrfs_dir_log_item);
3253 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3254 btrfs_mark_buffer_dirty(path->nodes[0]);
3255 btrfs_release_path(path);
3256 return 0;
3260 * log all the items included in the current transaction for a given
3261 * directory. This also creates the range items in the log tree required
3262 * to replay anything deleted before the fsync
3264 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3265 struct btrfs_root *root, struct btrfs_inode *inode,
3266 struct btrfs_path *path,
3267 struct btrfs_path *dst_path, int key_type,
3268 struct btrfs_log_ctx *ctx,
3269 u64 min_offset, u64 *last_offset_ret)
3271 struct btrfs_key min_key;
3272 struct btrfs_root *log = root->log_root;
3273 struct extent_buffer *src;
3274 int err = 0;
3275 int ret;
3276 int i;
3277 int nritems;
3278 u64 first_offset = min_offset;
3279 u64 last_offset = (u64)-1;
3280 u64 ino = btrfs_ino(inode);
3282 log = root->log_root;
3284 min_key.objectid = ino;
3285 min_key.type = key_type;
3286 min_key.offset = min_offset;
3288 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3291 * we didn't find anything from this transaction, see if there
3292 * is anything at all
3294 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3295 min_key.objectid = ino;
3296 min_key.type = key_type;
3297 min_key.offset = (u64)-1;
3298 btrfs_release_path(path);
3299 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3300 if (ret < 0) {
3301 btrfs_release_path(path);
3302 return ret;
3304 ret = btrfs_previous_item(root, path, ino, key_type);
3306 /* if ret == 0 there are items for this type,
3307 * create a range to tell us the last key of this type.
3308 * otherwise, there are no items in this directory after
3309 * *min_offset, and we create a range to indicate that.
3311 if (ret == 0) {
3312 struct btrfs_key tmp;
3313 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3314 path->slots[0]);
3315 if (key_type == tmp.type)
3316 first_offset = max(min_offset, tmp.offset) + 1;
3318 goto done;
3321 /* go backward to find any previous key */
3322 ret = btrfs_previous_item(root, path, ino, key_type);
3323 if (ret == 0) {
3324 struct btrfs_key tmp;
3325 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3326 if (key_type == tmp.type) {
3327 first_offset = tmp.offset;
3328 ret = overwrite_item(trans, log, dst_path,
3329 path->nodes[0], path->slots[0],
3330 &tmp);
3331 if (ret) {
3332 err = ret;
3333 goto done;
3337 btrfs_release_path(path);
3339 /* find the first key from this transaction again */
3340 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3341 if (WARN_ON(ret != 0))
3342 goto done;
3345 * we have a block from this transaction, log every item in it
3346 * from our directory
3348 while (1) {
3349 struct btrfs_key tmp;
3350 src = path->nodes[0];
3351 nritems = btrfs_header_nritems(src);
3352 for (i = path->slots[0]; i < nritems; i++) {
3353 struct btrfs_dir_item *di;
3355 btrfs_item_key_to_cpu(src, &min_key, i);
3357 if (min_key.objectid != ino || min_key.type != key_type)
3358 goto done;
3359 ret = overwrite_item(trans, log, dst_path, src, i,
3360 &min_key);
3361 if (ret) {
3362 err = ret;
3363 goto done;
3367 * We must make sure that when we log a directory entry,
3368 * the corresponding inode, after log replay, has a
3369 * matching link count. For example:
3371 * touch foo
3372 * mkdir mydir
3373 * sync
3374 * ln foo mydir/bar
3375 * xfs_io -c "fsync" mydir
3376 * <crash>
3377 * <mount fs and log replay>
3379 * Would result in a fsync log that when replayed, our
3380 * file inode would have a link count of 1, but we get
3381 * two directory entries pointing to the same inode.
3382 * After removing one of the names, it would not be
3383 * possible to remove the other name, which resulted
3384 * always in stale file handle errors, and would not
3385 * be possible to rmdir the parent directory, since
3386 * its i_size could never decrement to the value
3387 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3389 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3390 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3391 if (ctx &&
3392 (btrfs_dir_transid(src, di) == trans->transid ||
3393 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3394 tmp.type != BTRFS_ROOT_ITEM_KEY)
3395 ctx->log_new_dentries = true;
3397 path->slots[0] = nritems;
3400 * look ahead to the next item and see if it is also
3401 * from this directory and from this transaction
3403 ret = btrfs_next_leaf(root, path);
3404 if (ret == 1) {
3405 last_offset = (u64)-1;
3406 goto done;
3408 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3409 if (tmp.objectid != ino || tmp.type != key_type) {
3410 last_offset = (u64)-1;
3411 goto done;
3413 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3414 ret = overwrite_item(trans, log, dst_path,
3415 path->nodes[0], path->slots[0],
3416 &tmp);
3417 if (ret)
3418 err = ret;
3419 else
3420 last_offset = tmp.offset;
3421 goto done;
3424 done:
3425 btrfs_release_path(path);
3426 btrfs_release_path(dst_path);
3428 if (err == 0) {
3429 *last_offset_ret = last_offset;
3431 * insert the log range keys to indicate where the log
3432 * is valid
3434 ret = insert_dir_log_key(trans, log, path, key_type,
3435 ino, first_offset, last_offset);
3436 if (ret)
3437 err = ret;
3439 return err;
3443 * logging directories is very similar to logging inodes, We find all the items
3444 * from the current transaction and write them to the log.
3446 * The recovery code scans the directory in the subvolume, and if it finds a
3447 * key in the range logged that is not present in the log tree, then it means
3448 * that dir entry was unlinked during the transaction.
3450 * In order for that scan to work, we must include one key smaller than
3451 * the smallest logged by this transaction and one key larger than the largest
3452 * key logged by this transaction.
3454 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3455 struct btrfs_root *root, struct btrfs_inode *inode,
3456 struct btrfs_path *path,
3457 struct btrfs_path *dst_path,
3458 struct btrfs_log_ctx *ctx)
3460 u64 min_key;
3461 u64 max_key;
3462 int ret;
3463 int key_type = BTRFS_DIR_ITEM_KEY;
3465 again:
3466 min_key = 0;
3467 max_key = 0;
3468 while (1) {
3469 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3470 ctx, min_key, &max_key);
3471 if (ret)
3472 return ret;
3473 if (max_key == (u64)-1)
3474 break;
3475 min_key = max_key + 1;
3478 if (key_type == BTRFS_DIR_ITEM_KEY) {
3479 key_type = BTRFS_DIR_INDEX_KEY;
3480 goto again;
3482 return 0;
3486 * a helper function to drop items from the log before we relog an
3487 * inode. max_key_type indicates the highest item type to remove.
3488 * This cannot be run for file data extents because it does not
3489 * free the extents they point to.
3491 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3492 struct btrfs_root *log,
3493 struct btrfs_path *path,
3494 u64 objectid, int max_key_type)
3496 int ret;
3497 struct btrfs_key key;
3498 struct btrfs_key found_key;
3499 int start_slot;
3501 key.objectid = objectid;
3502 key.type = max_key_type;
3503 key.offset = (u64)-1;
3505 while (1) {
3506 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3507 BUG_ON(ret == 0); /* Logic error */
3508 if (ret < 0)
3509 break;
3511 if (path->slots[0] == 0)
3512 break;
3514 path->slots[0]--;
3515 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3516 path->slots[0]);
3518 if (found_key.objectid != objectid)
3519 break;
3521 found_key.offset = 0;
3522 found_key.type = 0;
3523 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3524 &start_slot);
3526 ret = btrfs_del_items(trans, log, path, start_slot,
3527 path->slots[0] - start_slot + 1);
3529 * If start slot isn't 0 then we don't need to re-search, we've
3530 * found the last guy with the objectid in this tree.
3532 if (ret || start_slot != 0)
3533 break;
3534 btrfs_release_path(path);
3536 btrfs_release_path(path);
3537 if (ret > 0)
3538 ret = 0;
3539 return ret;
3542 static void fill_inode_item(struct btrfs_trans_handle *trans,
3543 struct extent_buffer *leaf,
3544 struct btrfs_inode_item *item,
3545 struct inode *inode, int log_inode_only,
3546 u64 logged_isize)
3548 struct btrfs_map_token token;
3550 btrfs_init_map_token(&token);
3552 if (log_inode_only) {
3553 /* set the generation to zero so the recover code
3554 * can tell the difference between an logging
3555 * just to say 'this inode exists' and a logging
3556 * to say 'update this inode with these values'
3558 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3559 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3560 } else {
3561 btrfs_set_token_inode_generation(leaf, item,
3562 BTRFS_I(inode)->generation,
3563 &token);
3564 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3567 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3568 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3569 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3570 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3572 btrfs_set_token_timespec_sec(leaf, &item->atime,
3573 inode->i_atime.tv_sec, &token);
3574 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3575 inode->i_atime.tv_nsec, &token);
3577 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3578 inode->i_mtime.tv_sec, &token);
3579 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3580 inode->i_mtime.tv_nsec, &token);
3582 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3583 inode->i_ctime.tv_sec, &token);
3584 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3585 inode->i_ctime.tv_nsec, &token);
3587 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3588 &token);
3590 btrfs_set_token_inode_sequence(leaf, item,
3591 inode_peek_iversion(inode), &token);
3592 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3593 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3594 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3595 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3598 static int log_inode_item(struct btrfs_trans_handle *trans,
3599 struct btrfs_root *log, struct btrfs_path *path,
3600 struct btrfs_inode *inode)
3602 struct btrfs_inode_item *inode_item;
3603 int ret;
3605 ret = btrfs_insert_empty_item(trans, log, path,
3606 &inode->location, sizeof(*inode_item));
3607 if (ret && ret != -EEXIST)
3608 return ret;
3609 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3610 struct btrfs_inode_item);
3611 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3612 0, 0);
3613 btrfs_release_path(path);
3614 return 0;
3617 static noinline int copy_items(struct btrfs_trans_handle *trans,
3618 struct btrfs_inode *inode,
3619 struct btrfs_path *dst_path,
3620 struct btrfs_path *src_path, u64 *last_extent,
3621 int start_slot, int nr, int inode_only,
3622 u64 logged_isize)
3624 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3625 unsigned long src_offset;
3626 unsigned long dst_offset;
3627 struct btrfs_root *log = inode->root->log_root;
3628 struct btrfs_file_extent_item *extent;
3629 struct btrfs_inode_item *inode_item;
3630 struct extent_buffer *src = src_path->nodes[0];
3631 struct btrfs_key first_key, last_key, key;
3632 int ret;
3633 struct btrfs_key *ins_keys;
3634 u32 *ins_sizes;
3635 char *ins_data;
3636 int i;
3637 struct list_head ordered_sums;
3638 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3639 bool has_extents = false;
3640 bool need_find_last_extent = true;
3641 bool done = false;
3643 INIT_LIST_HEAD(&ordered_sums);
3645 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3646 nr * sizeof(u32), GFP_NOFS);
3647 if (!ins_data)
3648 return -ENOMEM;
3650 first_key.objectid = (u64)-1;
3652 ins_sizes = (u32 *)ins_data;
3653 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3655 for (i = 0; i < nr; i++) {
3656 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3657 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3659 ret = btrfs_insert_empty_items(trans, log, dst_path,
3660 ins_keys, ins_sizes, nr);
3661 if (ret) {
3662 kfree(ins_data);
3663 return ret;
3666 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3667 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3668 dst_path->slots[0]);
3670 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3672 if (i == nr - 1)
3673 last_key = ins_keys[i];
3675 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3676 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3677 dst_path->slots[0],
3678 struct btrfs_inode_item);
3679 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3680 &inode->vfs_inode,
3681 inode_only == LOG_INODE_EXISTS,
3682 logged_isize);
3683 } else {
3684 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3685 src_offset, ins_sizes[i]);
3689 * We set need_find_last_extent here in case we know we were
3690 * processing other items and then walk into the first extent in
3691 * the inode. If we don't hit an extent then nothing changes,
3692 * we'll do the last search the next time around.
3694 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3695 has_extents = true;
3696 if (first_key.objectid == (u64)-1)
3697 first_key = ins_keys[i];
3698 } else {
3699 need_find_last_extent = false;
3702 /* take a reference on file data extents so that truncates
3703 * or deletes of this inode don't have to relog the inode
3704 * again
3706 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3707 !skip_csum) {
3708 int found_type;
3709 extent = btrfs_item_ptr(src, start_slot + i,
3710 struct btrfs_file_extent_item);
3712 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3713 continue;
3715 found_type = btrfs_file_extent_type(src, extent);
3716 if (found_type == BTRFS_FILE_EXTENT_REG) {
3717 u64 ds, dl, cs, cl;
3718 ds = btrfs_file_extent_disk_bytenr(src,
3719 extent);
3720 /* ds == 0 is a hole */
3721 if (ds == 0)
3722 continue;
3724 dl = btrfs_file_extent_disk_num_bytes(src,
3725 extent);
3726 cs = btrfs_file_extent_offset(src, extent);
3727 cl = btrfs_file_extent_num_bytes(src,
3728 extent);
3729 if (btrfs_file_extent_compression(src,
3730 extent)) {
3731 cs = 0;
3732 cl = dl;
3735 ret = btrfs_lookup_csums_range(
3736 fs_info->csum_root,
3737 ds + cs, ds + cs + cl - 1,
3738 &ordered_sums, 0);
3739 if (ret) {
3740 btrfs_release_path(dst_path);
3741 kfree(ins_data);
3742 return ret;
3748 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3749 btrfs_release_path(dst_path);
3750 kfree(ins_data);
3753 * we have to do this after the loop above to avoid changing the
3754 * log tree while trying to change the log tree.
3756 ret = 0;
3757 while (!list_empty(&ordered_sums)) {
3758 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3759 struct btrfs_ordered_sum,
3760 list);
3761 if (!ret)
3762 ret = btrfs_csum_file_blocks(trans, log, sums);
3763 list_del(&sums->list);
3764 kfree(sums);
3767 if (!has_extents)
3768 return ret;
3770 if (need_find_last_extent && *last_extent == first_key.offset) {
3772 * We don't have any leafs between our current one and the one
3773 * we processed before that can have file extent items for our
3774 * inode (and have a generation number smaller than our current
3775 * transaction id).
3777 need_find_last_extent = false;
3781 * Because we use btrfs_search_forward we could skip leaves that were
3782 * not modified and then assume *last_extent is valid when it really
3783 * isn't. So back up to the previous leaf and read the end of the last
3784 * extent before we go and fill in holes.
3786 if (need_find_last_extent) {
3787 u64 len;
3789 ret = btrfs_prev_leaf(inode->root, src_path);
3790 if (ret < 0)
3791 return ret;
3792 if (ret)
3793 goto fill_holes;
3794 if (src_path->slots[0])
3795 src_path->slots[0]--;
3796 src = src_path->nodes[0];
3797 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3798 if (key.objectid != btrfs_ino(inode) ||
3799 key.type != BTRFS_EXTENT_DATA_KEY)
3800 goto fill_holes;
3801 extent = btrfs_item_ptr(src, src_path->slots[0],
3802 struct btrfs_file_extent_item);
3803 if (btrfs_file_extent_type(src, extent) ==
3804 BTRFS_FILE_EXTENT_INLINE) {
3805 len = btrfs_file_extent_inline_len(src,
3806 src_path->slots[0],
3807 extent);
3808 *last_extent = ALIGN(key.offset + len,
3809 fs_info->sectorsize);
3810 } else {
3811 len = btrfs_file_extent_num_bytes(src, extent);
3812 *last_extent = key.offset + len;
3815 fill_holes:
3816 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3817 * things could have happened
3819 * 1) A merge could have happened, so we could currently be on a leaf
3820 * that holds what we were copying in the first place.
3821 * 2) A split could have happened, and now not all of the items we want
3822 * are on the same leaf.
3824 * So we need to adjust how we search for holes, we need to drop the
3825 * path and re-search for the first extent key we found, and then walk
3826 * forward until we hit the last one we copied.
3828 if (need_find_last_extent) {
3829 /* btrfs_prev_leaf could return 1 without releasing the path */
3830 btrfs_release_path(src_path);
3831 ret = btrfs_search_slot(NULL, inode->root, &first_key,
3832 src_path, 0, 0);
3833 if (ret < 0)
3834 return ret;
3835 ASSERT(ret == 0);
3836 src = src_path->nodes[0];
3837 i = src_path->slots[0];
3838 } else {
3839 i = start_slot;
3843 * Ok so here we need to go through and fill in any holes we may have
3844 * to make sure that holes are punched for those areas in case they had
3845 * extents previously.
3847 while (!done) {
3848 u64 offset, len;
3849 u64 extent_end;
3851 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3852 ret = btrfs_next_leaf(inode->root, src_path);
3853 if (ret < 0)
3854 return ret;
3855 ASSERT(ret == 0);
3856 src = src_path->nodes[0];
3857 i = 0;
3860 btrfs_item_key_to_cpu(src, &key, i);
3861 if (!btrfs_comp_cpu_keys(&key, &last_key))
3862 done = true;
3863 if (key.objectid != btrfs_ino(inode) ||
3864 key.type != BTRFS_EXTENT_DATA_KEY) {
3865 i++;
3866 continue;
3868 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3869 if (btrfs_file_extent_type(src, extent) ==
3870 BTRFS_FILE_EXTENT_INLINE) {
3871 len = btrfs_file_extent_inline_len(src, i, extent);
3872 extent_end = ALIGN(key.offset + len,
3873 fs_info->sectorsize);
3874 } else {
3875 len = btrfs_file_extent_num_bytes(src, extent);
3876 extent_end = key.offset + len;
3878 i++;
3880 if (*last_extent == key.offset) {
3881 *last_extent = extent_end;
3882 continue;
3884 offset = *last_extent;
3885 len = key.offset - *last_extent;
3886 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3887 offset, 0, 0, len, 0, len, 0, 0, 0);
3888 if (ret)
3889 break;
3890 *last_extent = extent_end;
3893 * Need to let the callers know we dropped the path so they should
3894 * re-search.
3896 if (!ret && need_find_last_extent)
3897 ret = 1;
3898 return ret;
3901 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3903 struct extent_map *em1, *em2;
3905 em1 = list_entry(a, struct extent_map, list);
3906 em2 = list_entry(b, struct extent_map, list);
3908 if (em1->start < em2->start)
3909 return -1;
3910 else if (em1->start > em2->start)
3911 return 1;
3912 return 0;
3915 static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3916 struct inode *inode,
3917 struct btrfs_root *root,
3918 const struct extent_map *em,
3919 const struct list_head *logged_list,
3920 bool *ordered_io_error)
3922 struct btrfs_fs_info *fs_info = root->fs_info;
3923 struct btrfs_ordered_extent *ordered;
3924 struct btrfs_root *log = root->log_root;
3925 u64 mod_start = em->mod_start;
3926 u64 mod_len = em->mod_len;
3927 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3928 u64 csum_offset;
3929 u64 csum_len;
3930 LIST_HEAD(ordered_sums);
3931 int ret = 0;
3933 *ordered_io_error = false;
3935 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3936 em->block_start == EXTENT_MAP_HOLE)
3937 return 0;
3940 * Wait far any ordered extent that covers our extent map. If it
3941 * finishes without an error, first check and see if our csums are on
3942 * our outstanding ordered extents.
3944 list_for_each_entry(ordered, logged_list, log_list) {
3945 struct btrfs_ordered_sum *sum;
3947 if (!mod_len)
3948 break;
3950 if (ordered->file_offset + ordered->len <= mod_start ||
3951 mod_start + mod_len <= ordered->file_offset)
3952 continue;
3954 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3955 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3956 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3957 const u64 start = ordered->file_offset;
3958 const u64 end = ordered->file_offset + ordered->len - 1;
3960 WARN_ON(ordered->inode != inode);
3961 filemap_fdatawrite_range(inode->i_mapping, start, end);
3964 wait_event(ordered->wait,
3965 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3966 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3968 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3970 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3971 * i_mapping flags, so that the next fsync won't get
3972 * an outdated io error too.
3974 filemap_check_errors(inode->i_mapping);
3975 *ordered_io_error = true;
3976 break;
3979 * We are going to copy all the csums on this ordered extent, so
3980 * go ahead and adjust mod_start and mod_len in case this
3981 * ordered extent has already been logged.
3983 if (ordered->file_offset > mod_start) {
3984 if (ordered->file_offset + ordered->len >=
3985 mod_start + mod_len)
3986 mod_len = ordered->file_offset - mod_start;
3988 * If we have this case
3990 * |--------- logged extent ---------|
3991 * |----- ordered extent ----|
3993 * Just don't mess with mod_start and mod_len, we'll
3994 * just end up logging more csums than we need and it
3995 * will be ok.
3997 } else {
3998 if (ordered->file_offset + ordered->len <
3999 mod_start + mod_len) {
4000 mod_len = (mod_start + mod_len) -
4001 (ordered->file_offset + ordered->len);
4002 mod_start = ordered->file_offset +
4003 ordered->len;
4004 } else {
4005 mod_len = 0;
4009 if (skip_csum)
4010 continue;
4013 * To keep us from looping for the above case of an ordered
4014 * extent that falls inside of the logged extent.
4016 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4017 &ordered->flags))
4018 continue;
4020 list_for_each_entry(sum, &ordered->list, list) {
4021 ret = btrfs_csum_file_blocks(trans, log, sum);
4022 if (ret)
4023 break;
4027 if (*ordered_io_error || !mod_len || ret || skip_csum)
4028 return ret;
4030 if (em->compress_type) {
4031 csum_offset = 0;
4032 csum_len = max(em->block_len, em->orig_block_len);
4033 } else {
4034 csum_offset = mod_start - em->start;
4035 csum_len = mod_len;
4038 /* block start is already adjusted for the file extent offset. */
4039 ret = btrfs_lookup_csums_range(fs_info->csum_root,
4040 em->block_start + csum_offset,
4041 em->block_start + csum_offset +
4042 csum_len - 1, &ordered_sums, 0);
4043 if (ret)
4044 return ret;
4046 while (!list_empty(&ordered_sums)) {
4047 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4048 struct btrfs_ordered_sum,
4049 list);
4050 if (!ret)
4051 ret = btrfs_csum_file_blocks(trans, log, sums);
4052 list_del(&sums->list);
4053 kfree(sums);
4056 return ret;
4059 static int log_one_extent(struct btrfs_trans_handle *trans,
4060 struct btrfs_inode *inode, struct btrfs_root *root,
4061 const struct extent_map *em,
4062 struct btrfs_path *path,
4063 const struct list_head *logged_list,
4064 struct btrfs_log_ctx *ctx)
4066 struct btrfs_root *log = root->log_root;
4067 struct btrfs_file_extent_item *fi;
4068 struct extent_buffer *leaf;
4069 struct btrfs_map_token token;
4070 struct btrfs_key key;
4071 u64 extent_offset = em->start - em->orig_start;
4072 u64 block_len;
4073 int ret;
4074 int extent_inserted = 0;
4075 bool ordered_io_err = false;
4077 ret = wait_ordered_extents(trans, &inode->vfs_inode, root, em,
4078 logged_list, &ordered_io_err);
4079 if (ret)
4080 return ret;
4082 if (ordered_io_err) {
4083 ctx->io_err = -EIO;
4084 return ctx->io_err;
4087 btrfs_init_map_token(&token);
4089 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4090 em->start + em->len, NULL, 0, 1,
4091 sizeof(*fi), &extent_inserted);
4092 if (ret)
4093 return ret;
4095 if (!extent_inserted) {
4096 key.objectid = btrfs_ino(inode);
4097 key.type = BTRFS_EXTENT_DATA_KEY;
4098 key.offset = em->start;
4100 ret = btrfs_insert_empty_item(trans, log, path, &key,
4101 sizeof(*fi));
4102 if (ret)
4103 return ret;
4105 leaf = path->nodes[0];
4106 fi = btrfs_item_ptr(leaf, path->slots[0],
4107 struct btrfs_file_extent_item);
4109 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4110 &token);
4111 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4112 btrfs_set_token_file_extent_type(leaf, fi,
4113 BTRFS_FILE_EXTENT_PREALLOC,
4114 &token);
4115 else
4116 btrfs_set_token_file_extent_type(leaf, fi,
4117 BTRFS_FILE_EXTENT_REG,
4118 &token);
4120 block_len = max(em->block_len, em->orig_block_len);
4121 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4122 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4123 em->block_start,
4124 &token);
4125 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4126 &token);
4127 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4128 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4129 em->block_start -
4130 extent_offset, &token);
4131 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4132 &token);
4133 } else {
4134 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4135 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4136 &token);
4139 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4140 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4141 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4142 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4143 &token);
4144 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4145 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4146 btrfs_mark_buffer_dirty(leaf);
4148 btrfs_release_path(path);
4150 return ret;
4153 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4154 struct btrfs_root *root,
4155 struct btrfs_inode *inode,
4156 struct btrfs_path *path,
4157 struct list_head *logged_list,
4158 struct btrfs_log_ctx *ctx,
4159 const u64 start,
4160 const u64 end)
4162 struct extent_map *em, *n;
4163 struct list_head extents;
4164 struct extent_map_tree *tree = &inode->extent_tree;
4165 u64 logged_start, logged_end;
4166 u64 test_gen;
4167 int ret = 0;
4168 int num = 0;
4170 INIT_LIST_HEAD(&extents);
4172 down_write(&inode->dio_sem);
4173 write_lock(&tree->lock);
4174 test_gen = root->fs_info->last_trans_committed;
4175 logged_start = start;
4176 logged_end = end;
4178 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4179 list_del_init(&em->list);
4181 * Just an arbitrary number, this can be really CPU intensive
4182 * once we start getting a lot of extents, and really once we
4183 * have a bunch of extents we just want to commit since it will
4184 * be faster.
4186 if (++num > 32768) {
4187 list_del_init(&tree->modified_extents);
4188 ret = -EFBIG;
4189 goto process;
4192 if (em->generation <= test_gen)
4193 continue;
4195 if (em->start < logged_start)
4196 logged_start = em->start;
4197 if ((em->start + em->len - 1) > logged_end)
4198 logged_end = em->start + em->len - 1;
4200 /* Need a ref to keep it from getting evicted from cache */
4201 refcount_inc(&em->refs);
4202 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4203 list_add_tail(&em->list, &extents);
4204 num++;
4207 list_sort(NULL, &extents, extent_cmp);
4208 btrfs_get_logged_extents(inode, logged_list, logged_start, logged_end);
4210 * Some ordered extents started by fsync might have completed
4211 * before we could collect them into the list logged_list, which
4212 * means they're gone, not in our logged_list nor in the inode's
4213 * ordered tree. We want the application/user space to know an
4214 * error happened while attempting to persist file data so that
4215 * it can take proper action. If such error happened, we leave
4216 * without writing to the log tree and the fsync must report the
4217 * file data write error and not commit the current transaction.
4219 ret = filemap_check_errors(inode->vfs_inode.i_mapping);
4220 if (ret)
4221 ctx->io_err = ret;
4222 process:
4223 while (!list_empty(&extents)) {
4224 em = list_entry(extents.next, struct extent_map, list);
4226 list_del_init(&em->list);
4229 * If we had an error we just need to delete everybody from our
4230 * private list.
4232 if (ret) {
4233 clear_em_logging(tree, em);
4234 free_extent_map(em);
4235 continue;
4238 write_unlock(&tree->lock);
4240 ret = log_one_extent(trans, inode, root, em, path, logged_list,
4241 ctx);
4242 write_lock(&tree->lock);
4243 clear_em_logging(tree, em);
4244 free_extent_map(em);
4246 WARN_ON(!list_empty(&extents));
4247 write_unlock(&tree->lock);
4248 up_write(&inode->dio_sem);
4250 btrfs_release_path(path);
4251 return ret;
4254 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4255 struct btrfs_path *path, u64 *size_ret)
4257 struct btrfs_key key;
4258 int ret;
4260 key.objectid = btrfs_ino(inode);
4261 key.type = BTRFS_INODE_ITEM_KEY;
4262 key.offset = 0;
4264 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4265 if (ret < 0) {
4266 return ret;
4267 } else if (ret > 0) {
4268 *size_ret = 0;
4269 } else {
4270 struct btrfs_inode_item *item;
4272 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4273 struct btrfs_inode_item);
4274 *size_ret = btrfs_inode_size(path->nodes[0], item);
4277 btrfs_release_path(path);
4278 return 0;
4282 * At the moment we always log all xattrs. This is to figure out at log replay
4283 * time which xattrs must have their deletion replayed. If a xattr is missing
4284 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4285 * because if a xattr is deleted, the inode is fsynced and a power failure
4286 * happens, causing the log to be replayed the next time the fs is mounted,
4287 * we want the xattr to not exist anymore (same behaviour as other filesystems
4288 * with a journal, ext3/4, xfs, f2fs, etc).
4290 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4291 struct btrfs_root *root,
4292 struct btrfs_inode *inode,
4293 struct btrfs_path *path,
4294 struct btrfs_path *dst_path)
4296 int ret;
4297 struct btrfs_key key;
4298 const u64 ino = btrfs_ino(inode);
4299 int ins_nr = 0;
4300 int start_slot = 0;
4302 key.objectid = ino;
4303 key.type = BTRFS_XATTR_ITEM_KEY;
4304 key.offset = 0;
4306 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4307 if (ret < 0)
4308 return ret;
4310 while (true) {
4311 int slot = path->slots[0];
4312 struct extent_buffer *leaf = path->nodes[0];
4313 int nritems = btrfs_header_nritems(leaf);
4315 if (slot >= nritems) {
4316 if (ins_nr > 0) {
4317 u64 last_extent = 0;
4319 ret = copy_items(trans, inode, dst_path, path,
4320 &last_extent, start_slot,
4321 ins_nr, 1, 0);
4322 /* can't be 1, extent items aren't processed */
4323 ASSERT(ret <= 0);
4324 if (ret < 0)
4325 return ret;
4326 ins_nr = 0;
4328 ret = btrfs_next_leaf(root, path);
4329 if (ret < 0)
4330 return ret;
4331 else if (ret > 0)
4332 break;
4333 continue;
4336 btrfs_item_key_to_cpu(leaf, &key, slot);
4337 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4338 break;
4340 if (ins_nr == 0)
4341 start_slot = slot;
4342 ins_nr++;
4343 path->slots[0]++;
4344 cond_resched();
4346 if (ins_nr > 0) {
4347 u64 last_extent = 0;
4349 ret = copy_items(trans, inode, dst_path, path,
4350 &last_extent, start_slot,
4351 ins_nr, 1, 0);
4352 /* can't be 1, extent items aren't processed */
4353 ASSERT(ret <= 0);
4354 if (ret < 0)
4355 return ret;
4358 return 0;
4362 * If the no holes feature is enabled we need to make sure any hole between the
4363 * last extent and the i_size of our inode is explicitly marked in the log. This
4364 * is to make sure that doing something like:
4366 * 1) create file with 128Kb of data
4367 * 2) truncate file to 64Kb
4368 * 3) truncate file to 256Kb
4369 * 4) fsync file
4370 * 5) <crash/power failure>
4371 * 6) mount fs and trigger log replay
4373 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4374 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4375 * file correspond to a hole. The presence of explicit holes in a log tree is
4376 * what guarantees that log replay will remove/adjust file extent items in the
4377 * fs/subvol tree.
4379 * Here we do not need to care about holes between extents, that is already done
4380 * by copy_items(). We also only need to do this in the full sync path, where we
4381 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4382 * lookup the list of modified extent maps and if any represents a hole, we
4383 * insert a corresponding extent representing a hole in the log tree.
4385 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4386 struct btrfs_root *root,
4387 struct btrfs_inode *inode,
4388 struct btrfs_path *path)
4390 struct btrfs_fs_info *fs_info = root->fs_info;
4391 int ret;
4392 struct btrfs_key key;
4393 u64 hole_start;
4394 u64 hole_size;
4395 struct extent_buffer *leaf;
4396 struct btrfs_root *log = root->log_root;
4397 const u64 ino = btrfs_ino(inode);
4398 const u64 i_size = i_size_read(&inode->vfs_inode);
4400 if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4401 return 0;
4403 key.objectid = ino;
4404 key.type = BTRFS_EXTENT_DATA_KEY;
4405 key.offset = (u64)-1;
4407 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4408 ASSERT(ret != 0);
4409 if (ret < 0)
4410 return ret;
4412 ASSERT(path->slots[0] > 0);
4413 path->slots[0]--;
4414 leaf = path->nodes[0];
4415 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4417 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4418 /* inode does not have any extents */
4419 hole_start = 0;
4420 hole_size = i_size;
4421 } else {
4422 struct btrfs_file_extent_item *extent;
4423 u64 len;
4426 * If there's an extent beyond i_size, an explicit hole was
4427 * already inserted by copy_items().
4429 if (key.offset >= i_size)
4430 return 0;
4432 extent = btrfs_item_ptr(leaf, path->slots[0],
4433 struct btrfs_file_extent_item);
4435 if (btrfs_file_extent_type(leaf, extent) ==
4436 BTRFS_FILE_EXTENT_INLINE) {
4437 len = btrfs_file_extent_inline_len(leaf,
4438 path->slots[0],
4439 extent);
4440 ASSERT(len == i_size ||
4441 (len == fs_info->sectorsize &&
4442 btrfs_file_extent_compression(leaf, extent) !=
4443 BTRFS_COMPRESS_NONE));
4444 return 0;
4447 len = btrfs_file_extent_num_bytes(leaf, extent);
4448 /* Last extent goes beyond i_size, no need to log a hole. */
4449 if (key.offset + len > i_size)
4450 return 0;
4451 hole_start = key.offset + len;
4452 hole_size = i_size - hole_start;
4454 btrfs_release_path(path);
4456 /* Last extent ends at i_size. */
4457 if (hole_size == 0)
4458 return 0;
4460 hole_size = ALIGN(hole_size, fs_info->sectorsize);
4461 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4462 hole_size, 0, hole_size, 0, 0, 0);
4463 return ret;
4467 * When we are logging a new inode X, check if it doesn't have a reference that
4468 * matches the reference from some other inode Y created in a past transaction
4469 * and that was renamed in the current transaction. If we don't do this, then at
4470 * log replay time we can lose inode Y (and all its files if it's a directory):
4472 * mkdir /mnt/x
4473 * echo "hello world" > /mnt/x/foobar
4474 * sync
4475 * mv /mnt/x /mnt/y
4476 * mkdir /mnt/x # or touch /mnt/x
4477 * xfs_io -c fsync /mnt/x
4478 * <power fail>
4479 * mount fs, trigger log replay
4481 * After the log replay procedure, we would lose the first directory and all its
4482 * files (file foobar).
4483 * For the case where inode Y is not a directory we simply end up losing it:
4485 * echo "123" > /mnt/foo
4486 * sync
4487 * mv /mnt/foo /mnt/bar
4488 * echo "abc" > /mnt/foo
4489 * xfs_io -c fsync /mnt/foo
4490 * <power fail>
4492 * We also need this for cases where a snapshot entry is replaced by some other
4493 * entry (file or directory) otherwise we end up with an unreplayable log due to
4494 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4495 * if it were a regular entry:
4497 * mkdir /mnt/x
4498 * btrfs subvolume snapshot /mnt /mnt/x/snap
4499 * btrfs subvolume delete /mnt/x/snap
4500 * rmdir /mnt/x
4501 * mkdir /mnt/x
4502 * fsync /mnt/x or fsync some new file inside it
4503 * <power fail>
4505 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4506 * the same transaction.
4508 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4509 const int slot,
4510 const struct btrfs_key *key,
4511 struct btrfs_inode *inode,
4512 u64 *other_ino)
4514 int ret;
4515 struct btrfs_path *search_path;
4516 char *name = NULL;
4517 u32 name_len = 0;
4518 u32 item_size = btrfs_item_size_nr(eb, slot);
4519 u32 cur_offset = 0;
4520 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4522 search_path = btrfs_alloc_path();
4523 if (!search_path)
4524 return -ENOMEM;
4525 search_path->search_commit_root = 1;
4526 search_path->skip_locking = 1;
4528 while (cur_offset < item_size) {
4529 u64 parent;
4530 u32 this_name_len;
4531 u32 this_len;
4532 unsigned long name_ptr;
4533 struct btrfs_dir_item *di;
4535 if (key->type == BTRFS_INODE_REF_KEY) {
4536 struct btrfs_inode_ref *iref;
4538 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4539 parent = key->offset;
4540 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4541 name_ptr = (unsigned long)(iref + 1);
4542 this_len = sizeof(*iref) + this_name_len;
4543 } else {
4544 struct btrfs_inode_extref *extref;
4546 extref = (struct btrfs_inode_extref *)(ptr +
4547 cur_offset);
4548 parent = btrfs_inode_extref_parent(eb, extref);
4549 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4550 name_ptr = (unsigned long)&extref->name;
4551 this_len = sizeof(*extref) + this_name_len;
4554 if (this_name_len > name_len) {
4555 char *new_name;
4557 new_name = krealloc(name, this_name_len, GFP_NOFS);
4558 if (!new_name) {
4559 ret = -ENOMEM;
4560 goto out;
4562 name_len = this_name_len;
4563 name = new_name;
4566 read_extent_buffer(eb, name, name_ptr, this_name_len);
4567 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4568 parent, name, this_name_len, 0);
4569 if (di && !IS_ERR(di)) {
4570 struct btrfs_key di_key;
4572 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4573 di, &di_key);
4574 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4575 ret = 1;
4576 *other_ino = di_key.objectid;
4577 } else {
4578 ret = -EAGAIN;
4580 goto out;
4581 } else if (IS_ERR(di)) {
4582 ret = PTR_ERR(di);
4583 goto out;
4585 btrfs_release_path(search_path);
4587 cur_offset += this_len;
4589 ret = 0;
4590 out:
4591 btrfs_free_path(search_path);
4592 kfree(name);
4593 return ret;
4596 /* log a single inode in the tree log.
4597 * At least one parent directory for this inode must exist in the tree
4598 * or be logged already.
4600 * Any items from this inode changed by the current transaction are copied
4601 * to the log tree. An extra reference is taken on any extents in this
4602 * file, allowing us to avoid a whole pile of corner cases around logging
4603 * blocks that have been removed from the tree.
4605 * See LOG_INODE_ALL and related defines for a description of what inode_only
4606 * does.
4608 * This handles both files and directories.
4610 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4611 struct btrfs_root *root, struct btrfs_inode *inode,
4612 int inode_only,
4613 const loff_t start,
4614 const loff_t end,
4615 struct btrfs_log_ctx *ctx)
4617 struct btrfs_fs_info *fs_info = root->fs_info;
4618 struct btrfs_path *path;
4619 struct btrfs_path *dst_path;
4620 struct btrfs_key min_key;
4621 struct btrfs_key max_key;
4622 struct btrfs_root *log = root->log_root;
4623 LIST_HEAD(logged_list);
4624 u64 last_extent = 0;
4625 int err = 0;
4626 int ret;
4627 int nritems;
4628 int ins_start_slot = 0;
4629 int ins_nr;
4630 bool fast_search = false;
4631 u64 ino = btrfs_ino(inode);
4632 struct extent_map_tree *em_tree = &inode->extent_tree;
4633 u64 logged_isize = 0;
4634 bool need_log_inode_item = true;
4636 path = btrfs_alloc_path();
4637 if (!path)
4638 return -ENOMEM;
4639 dst_path = btrfs_alloc_path();
4640 if (!dst_path) {
4641 btrfs_free_path(path);
4642 return -ENOMEM;
4645 min_key.objectid = ino;
4646 min_key.type = BTRFS_INODE_ITEM_KEY;
4647 min_key.offset = 0;
4649 max_key.objectid = ino;
4652 /* today the code can only do partial logging of directories */
4653 if (S_ISDIR(inode->vfs_inode.i_mode) ||
4654 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4655 &inode->runtime_flags) &&
4656 inode_only >= LOG_INODE_EXISTS))
4657 max_key.type = BTRFS_XATTR_ITEM_KEY;
4658 else
4659 max_key.type = (u8)-1;
4660 max_key.offset = (u64)-1;
4663 * Only run delayed items if we are a dir or a new file.
4664 * Otherwise commit the delayed inode only, which is needed in
4665 * order for the log replay code to mark inodes for link count
4666 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4668 if (S_ISDIR(inode->vfs_inode.i_mode) ||
4669 inode->generation > fs_info->last_trans_committed)
4670 ret = btrfs_commit_inode_delayed_items(trans, inode);
4671 else
4672 ret = btrfs_commit_inode_delayed_inode(inode);
4674 if (ret) {
4675 btrfs_free_path(path);
4676 btrfs_free_path(dst_path);
4677 return ret;
4680 if (inode_only == LOG_OTHER_INODE) {
4681 inode_only = LOG_INODE_EXISTS;
4682 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
4683 } else {
4684 mutex_lock(&inode->log_mutex);
4688 * a brute force approach to making sure we get the most uptodate
4689 * copies of everything.
4691 if (S_ISDIR(inode->vfs_inode.i_mode)) {
4692 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4694 if (inode_only == LOG_INODE_EXISTS)
4695 max_key_type = BTRFS_XATTR_ITEM_KEY;
4696 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4697 } else {
4698 if (inode_only == LOG_INODE_EXISTS) {
4700 * Make sure the new inode item we write to the log has
4701 * the same isize as the current one (if it exists).
4702 * This is necessary to prevent data loss after log
4703 * replay, and also to prevent doing a wrong expanding
4704 * truncate - for e.g. create file, write 4K into offset
4705 * 0, fsync, write 4K into offset 4096, add hard link,
4706 * fsync some other file (to sync log), power fail - if
4707 * we use the inode's current i_size, after log replay
4708 * we get a 8Kb file, with the last 4Kb extent as a hole
4709 * (zeroes), as if an expanding truncate happened,
4710 * instead of getting a file of 4Kb only.
4712 err = logged_inode_size(log, inode, path, &logged_isize);
4713 if (err)
4714 goto out_unlock;
4716 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4717 &inode->runtime_flags)) {
4718 if (inode_only == LOG_INODE_EXISTS) {
4719 max_key.type = BTRFS_XATTR_ITEM_KEY;
4720 ret = drop_objectid_items(trans, log, path, ino,
4721 max_key.type);
4722 } else {
4723 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4724 &inode->runtime_flags);
4725 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4726 &inode->runtime_flags);
4727 while(1) {
4728 ret = btrfs_truncate_inode_items(trans,
4729 log, &inode->vfs_inode, 0, 0);
4730 if (ret != -EAGAIN)
4731 break;
4734 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4735 &inode->runtime_flags) ||
4736 inode_only == LOG_INODE_EXISTS) {
4737 if (inode_only == LOG_INODE_ALL)
4738 fast_search = true;
4739 max_key.type = BTRFS_XATTR_ITEM_KEY;
4740 ret = drop_objectid_items(trans, log, path, ino,
4741 max_key.type);
4742 } else {
4743 if (inode_only == LOG_INODE_ALL)
4744 fast_search = true;
4745 goto log_extents;
4749 if (ret) {
4750 err = ret;
4751 goto out_unlock;
4754 while (1) {
4755 ins_nr = 0;
4756 ret = btrfs_search_forward(root, &min_key,
4757 path, trans->transid);
4758 if (ret < 0) {
4759 err = ret;
4760 goto out_unlock;
4762 if (ret != 0)
4763 break;
4764 again:
4765 /* note, ins_nr might be > 0 here, cleanup outside the loop */
4766 if (min_key.objectid != ino)
4767 break;
4768 if (min_key.type > max_key.type)
4769 break;
4771 if (min_key.type == BTRFS_INODE_ITEM_KEY)
4772 need_log_inode_item = false;
4774 if ((min_key.type == BTRFS_INODE_REF_KEY ||
4775 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4776 inode->generation == trans->transid) {
4777 u64 other_ino = 0;
4779 ret = btrfs_check_ref_name_override(path->nodes[0],
4780 path->slots[0], &min_key, inode,
4781 &other_ino);
4782 if (ret < 0) {
4783 err = ret;
4784 goto out_unlock;
4785 } else if (ret > 0 && ctx &&
4786 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
4787 struct btrfs_key inode_key;
4788 struct inode *other_inode;
4790 if (ins_nr > 0) {
4791 ins_nr++;
4792 } else {
4793 ins_nr = 1;
4794 ins_start_slot = path->slots[0];
4796 ret = copy_items(trans, inode, dst_path, path,
4797 &last_extent, ins_start_slot,
4798 ins_nr, inode_only,
4799 logged_isize);
4800 if (ret < 0) {
4801 err = ret;
4802 goto out_unlock;
4804 ins_nr = 0;
4805 btrfs_release_path(path);
4806 inode_key.objectid = other_ino;
4807 inode_key.type = BTRFS_INODE_ITEM_KEY;
4808 inode_key.offset = 0;
4809 other_inode = btrfs_iget(fs_info->sb,
4810 &inode_key, root,
4811 NULL);
4813 * If the other inode that had a conflicting dir
4814 * entry was deleted in the current transaction,
4815 * we don't need to do more work nor fallback to
4816 * a transaction commit.
4818 if (IS_ERR(other_inode) &&
4819 PTR_ERR(other_inode) == -ENOENT) {
4820 goto next_key;
4821 } else if (IS_ERR(other_inode)) {
4822 err = PTR_ERR(other_inode);
4823 goto out_unlock;
4826 * We are safe logging the other inode without
4827 * acquiring its i_mutex as long as we log with
4828 * the LOG_INODE_EXISTS mode. We're safe against
4829 * concurrent renames of the other inode as well
4830 * because during a rename we pin the log and
4831 * update the log with the new name before we
4832 * unpin it.
4834 err = btrfs_log_inode(trans, root,
4835 BTRFS_I(other_inode),
4836 LOG_OTHER_INODE, 0, LLONG_MAX,
4837 ctx);
4838 iput(other_inode);
4839 if (err)
4840 goto out_unlock;
4841 else
4842 goto next_key;
4846 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4847 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4848 if (ins_nr == 0)
4849 goto next_slot;
4850 ret = copy_items(trans, inode, dst_path, path,
4851 &last_extent, ins_start_slot,
4852 ins_nr, inode_only, logged_isize);
4853 if (ret < 0) {
4854 err = ret;
4855 goto out_unlock;
4857 ins_nr = 0;
4858 if (ret) {
4859 btrfs_release_path(path);
4860 continue;
4862 goto next_slot;
4865 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4866 ins_nr++;
4867 goto next_slot;
4868 } else if (!ins_nr) {
4869 ins_start_slot = path->slots[0];
4870 ins_nr = 1;
4871 goto next_slot;
4874 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4875 ins_start_slot, ins_nr, inode_only,
4876 logged_isize);
4877 if (ret < 0) {
4878 err = ret;
4879 goto out_unlock;
4881 if (ret) {
4882 ins_nr = 0;
4883 btrfs_release_path(path);
4884 continue;
4886 ins_nr = 1;
4887 ins_start_slot = path->slots[0];
4888 next_slot:
4890 nritems = btrfs_header_nritems(path->nodes[0]);
4891 path->slots[0]++;
4892 if (path->slots[0] < nritems) {
4893 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4894 path->slots[0]);
4895 goto again;
4897 if (ins_nr) {
4898 ret = copy_items(trans, inode, dst_path, path,
4899 &last_extent, ins_start_slot,
4900 ins_nr, inode_only, logged_isize);
4901 if (ret < 0) {
4902 err = ret;
4903 goto out_unlock;
4905 ret = 0;
4906 ins_nr = 0;
4908 btrfs_release_path(path);
4909 next_key:
4910 if (min_key.offset < (u64)-1) {
4911 min_key.offset++;
4912 } else if (min_key.type < max_key.type) {
4913 min_key.type++;
4914 min_key.offset = 0;
4915 } else {
4916 break;
4919 if (ins_nr) {
4920 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4921 ins_start_slot, ins_nr, inode_only,
4922 logged_isize);
4923 if (ret < 0) {
4924 err = ret;
4925 goto out_unlock;
4927 ret = 0;
4928 ins_nr = 0;
4931 btrfs_release_path(path);
4932 btrfs_release_path(dst_path);
4933 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
4934 if (err)
4935 goto out_unlock;
4936 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4937 btrfs_release_path(path);
4938 btrfs_release_path(dst_path);
4939 err = btrfs_log_trailing_hole(trans, root, inode, path);
4940 if (err)
4941 goto out_unlock;
4943 log_extents:
4944 btrfs_release_path(path);
4945 btrfs_release_path(dst_path);
4946 if (need_log_inode_item) {
4947 err = log_inode_item(trans, log, dst_path, inode);
4948 if (err)
4949 goto out_unlock;
4951 if (fast_search) {
4952 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4953 &logged_list, ctx, start, end);
4954 if (ret) {
4955 err = ret;
4956 goto out_unlock;
4958 } else if (inode_only == LOG_INODE_ALL) {
4959 struct extent_map *em, *n;
4961 write_lock(&em_tree->lock);
4963 * We can't just remove every em if we're called for a ranged
4964 * fsync - that is, one that doesn't cover the whole possible
4965 * file range (0 to LLONG_MAX). This is because we can have
4966 * em's that fall outside the range we're logging and therefore
4967 * their ordered operations haven't completed yet
4968 * (btrfs_finish_ordered_io() not invoked yet). This means we
4969 * didn't get their respective file extent item in the fs/subvol
4970 * tree yet, and need to let the next fast fsync (one which
4971 * consults the list of modified extent maps) find the em so
4972 * that it logs a matching file extent item and waits for the
4973 * respective ordered operation to complete (if it's still
4974 * running).
4976 * Removing every em outside the range we're logging would make
4977 * the next fast fsync not log their matching file extent items,
4978 * therefore making us lose data after a log replay.
4980 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4981 list) {
4982 const u64 mod_end = em->mod_start + em->mod_len - 1;
4984 if (em->mod_start >= start && mod_end <= end)
4985 list_del_init(&em->list);
4987 write_unlock(&em_tree->lock);
4990 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
4991 ret = log_directory_changes(trans, root, inode, path, dst_path,
4992 ctx);
4993 if (ret) {
4994 err = ret;
4995 goto out_unlock;
4999 spin_lock(&inode->lock);
5000 inode->logged_trans = trans->transid;
5001 inode->last_log_commit = inode->last_sub_trans;
5002 spin_unlock(&inode->lock);
5003 out_unlock:
5004 if (unlikely(err))
5005 btrfs_put_logged_extents(&logged_list);
5006 else
5007 btrfs_submit_logged_extents(&logged_list, log);
5008 mutex_unlock(&inode->log_mutex);
5010 btrfs_free_path(path);
5011 btrfs_free_path(dst_path);
5012 return err;
5016 * Check if we must fallback to a transaction commit when logging an inode.
5017 * This must be called after logging the inode and is used only in the context
5018 * when fsyncing an inode requires the need to log some other inode - in which
5019 * case we can't lock the i_mutex of each other inode we need to log as that
5020 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5021 * log inodes up or down in the hierarchy) or rename operations for example. So
5022 * we take the log_mutex of the inode after we have logged it and then check for
5023 * its last_unlink_trans value - this is safe because any task setting
5024 * last_unlink_trans must take the log_mutex and it must do this before it does
5025 * the actual unlink operation, so if we do this check before a concurrent task
5026 * sets last_unlink_trans it means we've logged a consistent version/state of
5027 * all the inode items, otherwise we are not sure and must do a transaction
5028 * commit (the concurrent task might have only updated last_unlink_trans before
5029 * we logged the inode or it might have also done the unlink).
5031 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5032 struct btrfs_inode *inode)
5034 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5035 bool ret = false;
5037 mutex_lock(&inode->log_mutex);
5038 if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5040 * Make sure any commits to the log are forced to be full
5041 * commits.
5043 btrfs_set_log_full_commit(fs_info, trans);
5044 ret = true;
5046 mutex_unlock(&inode->log_mutex);
5048 return ret;
5052 * follow the dentry parent pointers up the chain and see if any
5053 * of the directories in it require a full commit before they can
5054 * be logged. Returns zero if nothing special needs to be done or 1 if
5055 * a full commit is required.
5057 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5058 struct btrfs_inode *inode,
5059 struct dentry *parent,
5060 struct super_block *sb,
5061 u64 last_committed)
5063 int ret = 0;
5064 struct dentry *old_parent = NULL;
5065 struct btrfs_inode *orig_inode = inode;
5068 * for regular files, if its inode is already on disk, we don't
5069 * have to worry about the parents at all. This is because
5070 * we can use the last_unlink_trans field to record renames
5071 * and other fun in this file.
5073 if (S_ISREG(inode->vfs_inode.i_mode) &&
5074 inode->generation <= last_committed &&
5075 inode->last_unlink_trans <= last_committed)
5076 goto out;
5078 if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5079 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5080 goto out;
5081 inode = BTRFS_I(d_inode(parent));
5084 while (1) {
5086 * If we are logging a directory then we start with our inode,
5087 * not our parent's inode, so we need to skip setting the
5088 * logged_trans so that further down in the log code we don't
5089 * think this inode has already been logged.
5091 if (inode != orig_inode)
5092 inode->logged_trans = trans->transid;
5093 smp_mb();
5095 if (btrfs_must_commit_transaction(trans, inode)) {
5096 ret = 1;
5097 break;
5100 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5101 break;
5103 if (IS_ROOT(parent)) {
5104 inode = BTRFS_I(d_inode(parent));
5105 if (btrfs_must_commit_transaction(trans, inode))
5106 ret = 1;
5107 break;
5110 parent = dget_parent(parent);
5111 dput(old_parent);
5112 old_parent = parent;
5113 inode = BTRFS_I(d_inode(parent));
5116 dput(old_parent);
5117 out:
5118 return ret;
5121 struct btrfs_dir_list {
5122 u64 ino;
5123 struct list_head list;
5127 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5128 * details about the why it is needed.
5129 * This is a recursive operation - if an existing dentry corresponds to a
5130 * directory, that directory's new entries are logged too (same behaviour as
5131 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5132 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5133 * complains about the following circular lock dependency / possible deadlock:
5135 * CPU0 CPU1
5136 * ---- ----
5137 * lock(&type->i_mutex_dir_key#3/2);
5138 * lock(sb_internal#2);
5139 * lock(&type->i_mutex_dir_key#3/2);
5140 * lock(&sb->s_type->i_mutex_key#14);
5142 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5143 * sb_start_intwrite() in btrfs_start_transaction().
5144 * Not locking i_mutex of the inodes is still safe because:
5146 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5147 * that while logging the inode new references (names) are added or removed
5148 * from the inode, leaving the logged inode item with a link count that does
5149 * not match the number of logged inode reference items. This is fine because
5150 * at log replay time we compute the real number of links and correct the
5151 * link count in the inode item (see replay_one_buffer() and
5152 * link_to_fixup_dir());
5154 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5155 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5156 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5157 * has a size that doesn't match the sum of the lengths of all the logged
5158 * names. This does not result in a problem because if a dir_item key is
5159 * logged but its matching dir_index key is not logged, at log replay time we
5160 * don't use it to replay the respective name (see replay_one_name()). On the
5161 * other hand if only the dir_index key ends up being logged, the respective
5162 * name is added to the fs/subvol tree with both the dir_item and dir_index
5163 * keys created (see replay_one_name()).
5164 * The directory's inode item with a wrong i_size is not a problem as well,
5165 * since we don't use it at log replay time to set the i_size in the inode
5166 * item of the fs/subvol tree (see overwrite_item()).
5168 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5169 struct btrfs_root *root,
5170 struct btrfs_inode *start_inode,
5171 struct btrfs_log_ctx *ctx)
5173 struct btrfs_fs_info *fs_info = root->fs_info;
5174 struct btrfs_root *log = root->log_root;
5175 struct btrfs_path *path;
5176 LIST_HEAD(dir_list);
5177 struct btrfs_dir_list *dir_elem;
5178 int ret = 0;
5180 path = btrfs_alloc_path();
5181 if (!path)
5182 return -ENOMEM;
5184 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5185 if (!dir_elem) {
5186 btrfs_free_path(path);
5187 return -ENOMEM;
5189 dir_elem->ino = btrfs_ino(start_inode);
5190 list_add_tail(&dir_elem->list, &dir_list);
5192 while (!list_empty(&dir_list)) {
5193 struct extent_buffer *leaf;
5194 struct btrfs_key min_key;
5195 int nritems;
5196 int i;
5198 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5199 list);
5200 if (ret)
5201 goto next_dir_inode;
5203 min_key.objectid = dir_elem->ino;
5204 min_key.type = BTRFS_DIR_ITEM_KEY;
5205 min_key.offset = 0;
5206 again:
5207 btrfs_release_path(path);
5208 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5209 if (ret < 0) {
5210 goto next_dir_inode;
5211 } else if (ret > 0) {
5212 ret = 0;
5213 goto next_dir_inode;
5216 process_leaf:
5217 leaf = path->nodes[0];
5218 nritems = btrfs_header_nritems(leaf);
5219 for (i = path->slots[0]; i < nritems; i++) {
5220 struct btrfs_dir_item *di;
5221 struct btrfs_key di_key;
5222 struct inode *di_inode;
5223 struct btrfs_dir_list *new_dir_elem;
5224 int log_mode = LOG_INODE_EXISTS;
5225 int type;
5227 btrfs_item_key_to_cpu(leaf, &min_key, i);
5228 if (min_key.objectid != dir_elem->ino ||
5229 min_key.type != BTRFS_DIR_ITEM_KEY)
5230 goto next_dir_inode;
5232 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5233 type = btrfs_dir_type(leaf, di);
5234 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5235 type != BTRFS_FT_DIR)
5236 continue;
5237 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5238 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5239 continue;
5241 btrfs_release_path(path);
5242 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5243 if (IS_ERR(di_inode)) {
5244 ret = PTR_ERR(di_inode);
5245 goto next_dir_inode;
5248 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5249 iput(di_inode);
5250 break;
5253 ctx->log_new_dentries = false;
5254 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5255 log_mode = LOG_INODE_ALL;
5256 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5257 log_mode, 0, LLONG_MAX, ctx);
5258 if (!ret &&
5259 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5260 ret = 1;
5261 iput(di_inode);
5262 if (ret)
5263 goto next_dir_inode;
5264 if (ctx->log_new_dentries) {
5265 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5266 GFP_NOFS);
5267 if (!new_dir_elem) {
5268 ret = -ENOMEM;
5269 goto next_dir_inode;
5271 new_dir_elem->ino = di_key.objectid;
5272 list_add_tail(&new_dir_elem->list, &dir_list);
5274 break;
5276 if (i == nritems) {
5277 ret = btrfs_next_leaf(log, path);
5278 if (ret < 0) {
5279 goto next_dir_inode;
5280 } else if (ret > 0) {
5281 ret = 0;
5282 goto next_dir_inode;
5284 goto process_leaf;
5286 if (min_key.offset < (u64)-1) {
5287 min_key.offset++;
5288 goto again;
5290 next_dir_inode:
5291 list_del(&dir_elem->list);
5292 kfree(dir_elem);
5295 btrfs_free_path(path);
5296 return ret;
5299 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5300 struct btrfs_inode *inode,
5301 struct btrfs_log_ctx *ctx)
5303 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5304 int ret;
5305 struct btrfs_path *path;
5306 struct btrfs_key key;
5307 struct btrfs_root *root = inode->root;
5308 const u64 ino = btrfs_ino(inode);
5310 path = btrfs_alloc_path();
5311 if (!path)
5312 return -ENOMEM;
5313 path->skip_locking = 1;
5314 path->search_commit_root = 1;
5316 key.objectid = ino;
5317 key.type = BTRFS_INODE_REF_KEY;
5318 key.offset = 0;
5319 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5320 if (ret < 0)
5321 goto out;
5323 while (true) {
5324 struct extent_buffer *leaf = path->nodes[0];
5325 int slot = path->slots[0];
5326 u32 cur_offset = 0;
5327 u32 item_size;
5328 unsigned long ptr;
5330 if (slot >= btrfs_header_nritems(leaf)) {
5331 ret = btrfs_next_leaf(root, path);
5332 if (ret < 0)
5333 goto out;
5334 else if (ret > 0)
5335 break;
5336 continue;
5339 btrfs_item_key_to_cpu(leaf, &key, slot);
5340 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5341 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5342 break;
5344 item_size = btrfs_item_size_nr(leaf, slot);
5345 ptr = btrfs_item_ptr_offset(leaf, slot);
5346 while (cur_offset < item_size) {
5347 struct btrfs_key inode_key;
5348 struct inode *dir_inode;
5350 inode_key.type = BTRFS_INODE_ITEM_KEY;
5351 inode_key.offset = 0;
5353 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5354 struct btrfs_inode_extref *extref;
5356 extref = (struct btrfs_inode_extref *)
5357 (ptr + cur_offset);
5358 inode_key.objectid = btrfs_inode_extref_parent(
5359 leaf, extref);
5360 cur_offset += sizeof(*extref);
5361 cur_offset += btrfs_inode_extref_name_len(leaf,
5362 extref);
5363 } else {
5364 inode_key.objectid = key.offset;
5365 cur_offset = item_size;
5368 dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5369 root, NULL);
5370 /* If parent inode was deleted, skip it. */
5371 if (IS_ERR(dir_inode))
5372 continue;
5374 if (ctx)
5375 ctx->log_new_dentries = false;
5376 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5377 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5378 if (!ret &&
5379 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5380 ret = 1;
5381 if (!ret && ctx && ctx->log_new_dentries)
5382 ret = log_new_dir_dentries(trans, root,
5383 BTRFS_I(dir_inode), ctx);
5384 iput(dir_inode);
5385 if (ret)
5386 goto out;
5388 path->slots[0]++;
5390 ret = 0;
5391 out:
5392 btrfs_free_path(path);
5393 return ret;
5397 * helper function around btrfs_log_inode to make sure newly created
5398 * parent directories also end up in the log. A minimal inode and backref
5399 * only logging is done of any parent directories that are older than
5400 * the last committed transaction
5402 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5403 struct btrfs_root *root,
5404 struct btrfs_inode *inode,
5405 struct dentry *parent,
5406 const loff_t start,
5407 const loff_t end,
5408 int inode_only,
5409 struct btrfs_log_ctx *ctx)
5411 struct btrfs_fs_info *fs_info = root->fs_info;
5412 struct super_block *sb;
5413 struct dentry *old_parent = NULL;
5414 int ret = 0;
5415 u64 last_committed = fs_info->last_trans_committed;
5416 bool log_dentries = false;
5417 struct btrfs_inode *orig_inode = inode;
5419 sb = inode->vfs_inode.i_sb;
5421 if (btrfs_test_opt(fs_info, NOTREELOG)) {
5422 ret = 1;
5423 goto end_no_trans;
5427 * The prev transaction commit doesn't complete, we need do
5428 * full commit by ourselves.
5430 if (fs_info->last_trans_log_full_commit >
5431 fs_info->last_trans_committed) {
5432 ret = 1;
5433 goto end_no_trans;
5436 if (root != inode->root || btrfs_root_refs(&root->root_item) == 0) {
5437 ret = 1;
5438 goto end_no_trans;
5441 ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5442 last_committed);
5443 if (ret)
5444 goto end_no_trans;
5446 if (btrfs_inode_in_log(inode, trans->transid)) {
5447 ret = BTRFS_NO_LOG_SYNC;
5448 goto end_no_trans;
5451 ret = start_log_trans(trans, root, ctx);
5452 if (ret)
5453 goto end_no_trans;
5455 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5456 if (ret)
5457 goto end_trans;
5460 * for regular files, if its inode is already on disk, we don't
5461 * have to worry about the parents at all. This is because
5462 * we can use the last_unlink_trans field to record renames
5463 * and other fun in this file.
5465 if (S_ISREG(inode->vfs_inode.i_mode) &&
5466 inode->generation <= last_committed &&
5467 inode->last_unlink_trans <= last_committed) {
5468 ret = 0;
5469 goto end_trans;
5472 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
5473 log_dentries = true;
5476 * On unlink we must make sure all our current and old parent directory
5477 * inodes are fully logged. This is to prevent leaving dangling
5478 * directory index entries in directories that were our parents but are
5479 * not anymore. Not doing this results in old parent directory being
5480 * impossible to delete after log replay (rmdir will always fail with
5481 * error -ENOTEMPTY).
5483 * Example 1:
5485 * mkdir testdir
5486 * touch testdir/foo
5487 * ln testdir/foo testdir/bar
5488 * sync
5489 * unlink testdir/bar
5490 * xfs_io -c fsync testdir/foo
5491 * <power failure>
5492 * mount fs, triggers log replay
5494 * If we don't log the parent directory (testdir), after log replay the
5495 * directory still has an entry pointing to the file inode using the bar
5496 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5497 * the file inode has a link count of 1.
5499 * Example 2:
5501 * mkdir testdir
5502 * touch foo
5503 * ln foo testdir/foo2
5504 * ln foo testdir/foo3
5505 * sync
5506 * unlink testdir/foo3
5507 * xfs_io -c fsync foo
5508 * <power failure>
5509 * mount fs, triggers log replay
5511 * Similar as the first example, after log replay the parent directory
5512 * testdir still has an entry pointing to the inode file with name foo3
5513 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5514 * and has a link count of 2.
5516 if (inode->last_unlink_trans > last_committed) {
5517 ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5518 if (ret)
5519 goto end_trans;
5522 while (1) {
5523 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5524 break;
5526 inode = BTRFS_I(d_inode(parent));
5527 if (root != inode->root)
5528 break;
5530 if (inode->generation > last_committed) {
5531 ret = btrfs_log_inode(trans, root, inode,
5532 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5533 if (ret)
5534 goto end_trans;
5536 if (IS_ROOT(parent))
5537 break;
5539 parent = dget_parent(parent);
5540 dput(old_parent);
5541 old_parent = parent;
5543 if (log_dentries)
5544 ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5545 else
5546 ret = 0;
5547 end_trans:
5548 dput(old_parent);
5549 if (ret < 0) {
5550 btrfs_set_log_full_commit(fs_info, trans);
5551 ret = 1;
5554 if (ret)
5555 btrfs_remove_log_ctx(root, ctx);
5556 btrfs_end_log_trans(root);
5557 end_no_trans:
5558 return ret;
5562 * it is not safe to log dentry if the chunk root has added new
5563 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5564 * If this returns 1, you must commit the transaction to safely get your
5565 * data on disk.
5567 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5568 struct btrfs_root *root, struct dentry *dentry,
5569 const loff_t start,
5570 const loff_t end,
5571 struct btrfs_log_ctx *ctx)
5573 struct dentry *parent = dget_parent(dentry);
5574 int ret;
5576 ret = btrfs_log_inode_parent(trans, root, BTRFS_I(d_inode(dentry)),
5577 parent, start, end, LOG_INODE_ALL, ctx);
5578 dput(parent);
5580 return ret;
5584 * should be called during mount to recover any replay any log trees
5585 * from the FS
5587 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5589 int ret;
5590 struct btrfs_path *path;
5591 struct btrfs_trans_handle *trans;
5592 struct btrfs_key key;
5593 struct btrfs_key found_key;
5594 struct btrfs_key tmp_key;
5595 struct btrfs_root *log;
5596 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5597 struct walk_control wc = {
5598 .process_func = process_one_buffer,
5599 .stage = 0,
5602 path = btrfs_alloc_path();
5603 if (!path)
5604 return -ENOMEM;
5606 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5608 trans = btrfs_start_transaction(fs_info->tree_root, 0);
5609 if (IS_ERR(trans)) {
5610 ret = PTR_ERR(trans);
5611 goto error;
5614 wc.trans = trans;
5615 wc.pin = 1;
5617 ret = walk_log_tree(trans, log_root_tree, &wc);
5618 if (ret) {
5619 btrfs_handle_fs_error(fs_info, ret,
5620 "Failed to pin buffers while recovering log root tree.");
5621 goto error;
5624 again:
5625 key.objectid = BTRFS_TREE_LOG_OBJECTID;
5626 key.offset = (u64)-1;
5627 key.type = BTRFS_ROOT_ITEM_KEY;
5629 while (1) {
5630 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5632 if (ret < 0) {
5633 btrfs_handle_fs_error(fs_info, ret,
5634 "Couldn't find tree log root.");
5635 goto error;
5637 if (ret > 0) {
5638 if (path->slots[0] == 0)
5639 break;
5640 path->slots[0]--;
5642 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5643 path->slots[0]);
5644 btrfs_release_path(path);
5645 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5646 break;
5648 log = btrfs_read_fs_root(log_root_tree, &found_key);
5649 if (IS_ERR(log)) {
5650 ret = PTR_ERR(log);
5651 btrfs_handle_fs_error(fs_info, ret,
5652 "Couldn't read tree log root.");
5653 goto error;
5656 tmp_key.objectid = found_key.offset;
5657 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5658 tmp_key.offset = (u64)-1;
5660 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5661 if (IS_ERR(wc.replay_dest)) {
5662 ret = PTR_ERR(wc.replay_dest);
5663 free_extent_buffer(log->node);
5664 free_extent_buffer(log->commit_root);
5665 kfree(log);
5666 btrfs_handle_fs_error(fs_info, ret,
5667 "Couldn't read target root for tree log recovery.");
5668 goto error;
5671 wc.replay_dest->log_root = log;
5672 btrfs_record_root_in_trans(trans, wc.replay_dest);
5673 ret = walk_log_tree(trans, log, &wc);
5675 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5676 ret = fixup_inode_link_counts(trans, wc.replay_dest,
5677 path);
5680 key.offset = found_key.offset - 1;
5681 wc.replay_dest->log_root = NULL;
5682 free_extent_buffer(log->node);
5683 free_extent_buffer(log->commit_root);
5684 kfree(log);
5686 if (ret)
5687 goto error;
5689 if (found_key.offset == 0)
5690 break;
5692 btrfs_release_path(path);
5694 /* step one is to pin it all, step two is to replay just inodes */
5695 if (wc.pin) {
5696 wc.pin = 0;
5697 wc.process_func = replay_one_buffer;
5698 wc.stage = LOG_WALK_REPLAY_INODES;
5699 goto again;
5701 /* step three is to replay everything */
5702 if (wc.stage < LOG_WALK_REPLAY_ALL) {
5703 wc.stage++;
5704 goto again;
5707 btrfs_free_path(path);
5709 /* step 4: commit the transaction, which also unpins the blocks */
5710 ret = btrfs_commit_transaction(trans);
5711 if (ret)
5712 return ret;
5714 free_extent_buffer(log_root_tree->node);
5715 log_root_tree->log_root = NULL;
5716 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5717 kfree(log_root_tree);
5719 return 0;
5720 error:
5721 if (wc.trans)
5722 btrfs_end_transaction(wc.trans);
5723 btrfs_free_path(path);
5724 return ret;
5728 * there are some corner cases where we want to force a full
5729 * commit instead of allowing a directory to be logged.
5731 * They revolve around files there were unlinked from the directory, and
5732 * this function updates the parent directory so that a full commit is
5733 * properly done if it is fsync'd later after the unlinks are done.
5735 * Must be called before the unlink operations (updates to the subvolume tree,
5736 * inodes, etc) are done.
5738 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5739 struct btrfs_inode *dir, struct btrfs_inode *inode,
5740 int for_rename)
5743 * when we're logging a file, if it hasn't been renamed
5744 * or unlinked, and its inode is fully committed on disk,
5745 * we don't have to worry about walking up the directory chain
5746 * to log its parents.
5748 * So, we use the last_unlink_trans field to put this transid
5749 * into the file. When the file is logged we check it and
5750 * don't log the parents if the file is fully on disk.
5752 mutex_lock(&inode->log_mutex);
5753 inode->last_unlink_trans = trans->transid;
5754 mutex_unlock(&inode->log_mutex);
5757 * if this directory was already logged any new
5758 * names for this file/dir will get recorded
5760 smp_mb();
5761 if (dir->logged_trans == trans->transid)
5762 return;
5765 * if the inode we're about to unlink was logged,
5766 * the log will be properly updated for any new names
5768 if (inode->logged_trans == trans->transid)
5769 return;
5772 * when renaming files across directories, if the directory
5773 * there we're unlinking from gets fsync'd later on, there's
5774 * no way to find the destination directory later and fsync it
5775 * properly. So, we have to be conservative and force commits
5776 * so the new name gets discovered.
5778 if (for_rename)
5779 goto record;
5781 /* we can safely do the unlink without any special recording */
5782 return;
5784 record:
5785 mutex_lock(&dir->log_mutex);
5786 dir->last_unlink_trans = trans->transid;
5787 mutex_unlock(&dir->log_mutex);
5791 * Make sure that if someone attempts to fsync the parent directory of a deleted
5792 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5793 * that after replaying the log tree of the parent directory's root we will not
5794 * see the snapshot anymore and at log replay time we will not see any log tree
5795 * corresponding to the deleted snapshot's root, which could lead to replaying
5796 * it after replaying the log tree of the parent directory (which would replay
5797 * the snapshot delete operation).
5799 * Must be called before the actual snapshot destroy operation (updates to the
5800 * parent root and tree of tree roots trees, etc) are done.
5802 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
5803 struct btrfs_inode *dir)
5805 mutex_lock(&dir->log_mutex);
5806 dir->last_unlink_trans = trans->transid;
5807 mutex_unlock(&dir->log_mutex);
5811 * Call this after adding a new name for a file and it will properly
5812 * update the log to reflect the new name.
5814 * It will return zero if all goes well, and it will return 1 if a
5815 * full transaction commit is required.
5817 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5818 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
5819 struct dentry *parent)
5821 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5822 struct btrfs_root *root = inode->root;
5825 * this will force the logging code to walk the dentry chain
5826 * up for the file
5828 if (S_ISREG(inode->vfs_inode.i_mode))
5829 inode->last_unlink_trans = trans->transid;
5832 * if this inode hasn't been logged and directory we're renaming it
5833 * from hasn't been logged, we don't need to log it
5835 if (inode->logged_trans <= fs_info->last_trans_committed &&
5836 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
5837 return 0;
5839 return btrfs_log_inode_parent(trans, root, inode, parent, 0,
5840 LLONG_MAX, LOG_INODE_EXISTS, NULL);