1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_COMPILER_H
3 #define __LINUX_COMPILER_H
5 #include <linux/compiler_types.h>
12 * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code
13 * to disable branch tracing on a per file basis.
15 #if defined(CONFIG_TRACE_BRANCH_PROFILING) \
16 && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__)
17 void ftrace_likely_update(struct ftrace_likely_data
*f
, int val
,
18 int expect
, int is_constant
);
20 #define likely_notrace(x) __builtin_expect(!!(x), 1)
21 #define unlikely_notrace(x) __builtin_expect(!!(x), 0)
23 #define __branch_check__(x, expect, is_constant) ({ \
25 static struct ftrace_likely_data \
26 __attribute__((__aligned__(4))) \
27 __attribute__((section("_ftrace_annotated_branch"))) \
29 .data.func = __func__, \
30 .data.file = __FILE__, \
31 .data.line = __LINE__, \
33 ______r = __builtin_expect(!!(x), expect); \
34 ftrace_likely_update(&______f, ______r, \
35 expect, is_constant); \
40 * Using __builtin_constant_p(x) to ignore cases where the return
41 * value is always the same. This idea is taken from a similar patch
42 * written by Daniel Walker.
45 # define likely(x) (__branch_check__(x, 1, __builtin_constant_p(x)))
48 # define unlikely(x) (__branch_check__(x, 0, __builtin_constant_p(x)))
51 #ifdef CONFIG_PROFILE_ALL_BRANCHES
53 * "Define 'is'", Bill Clinton
54 * "Define 'if'", Steven Rostedt
56 #define if(cond, ...) __trace_if( (cond , ## __VA_ARGS__) )
57 #define __trace_if(cond) \
58 if (__builtin_constant_p(!!(cond)) ? !!(cond) : \
61 static struct ftrace_branch_data \
62 __attribute__((__aligned__(4))) \
63 __attribute__((section("_ftrace_branch"))) \
70 ______f.miss_hit[______r]++; \
73 #endif /* CONFIG_PROFILE_ALL_BRANCHES */
76 # define likely(x) __builtin_expect(!!(x), 1)
77 # define unlikely(x) __builtin_expect(!!(x), 0)
80 /* Optimization barrier */
82 # define barrier() __memory_barrier()
86 # define barrier_data(ptr) barrier()
89 /* Unreachable code */
90 #ifdef CONFIG_STACK_VALIDATION
92 * These macros help objtool understand GCC code flow for unreachable code.
93 * The __COUNTER__ based labels are a hack to make each instance of the macros
94 * unique, to convince GCC not to merge duplicate inline asm statements.
96 #define annotate_reachable() ({ \
97 asm volatile("%c0:\n\t" \
98 ".pushsection .discard.reachable\n\t" \
99 ".long %c0b - .\n\t" \
100 ".popsection\n\t" : : "i" (__COUNTER__)); \
102 #define annotate_unreachable() ({ \
103 asm volatile("%c0:\n\t" \
104 ".pushsection .discard.unreachable\n\t" \
105 ".long %c0b - .\n\t" \
106 ".popsection\n\t" : : "i" (__COUNTER__)); \
108 #define ASM_UNREACHABLE \
110 ".pushsection .discard.unreachable\n\t" \
111 ".long 999b - .\n\t" \
114 #define annotate_reachable()
115 #define annotate_unreachable()
118 #ifndef ASM_UNREACHABLE
119 # define ASM_UNREACHABLE
122 # define unreachable() do { annotate_reachable(); do { } while (1); } while (0)
126 * KENTRY - kernel entry point
127 * This can be used to annotate symbols (functions or data) that are used
128 * without their linker symbol being referenced explicitly. For example,
129 * interrupt vector handlers, or functions in the kernel image that are found
132 * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those
133 * are handled in their own way (with KEEP() in linker scripts).
135 * KENTRY can be avoided if the symbols in question are marked as KEEP() in the
136 * linker script. For example an architecture could KEEP() its entire
137 * boot/exception vector code rather than annotate each function and data.
140 # define KENTRY(sym) \
141 extern typeof(sym) sym; \
142 static const unsigned long __kentry_##sym \
144 __attribute__((section("___kentry" "+" #sym ), used)) \
145 = (unsigned long)&sym;
149 # define RELOC_HIDE(ptr, off) \
150 ({ unsigned long __ptr; \
151 __ptr = (unsigned long) (ptr); \
152 (typeof(ptr)) (__ptr + (off)); })
155 #ifndef OPTIMIZER_HIDE_VAR
156 #define OPTIMIZER_HIDE_VAR(var) barrier()
159 /* Not-quite-unique ID. */
161 # define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__)
164 #include <uapi/linux/types.h>
166 #define __READ_ONCE_SIZE \
169 case 1: *(__u8 *)res = *(volatile __u8 *)p; break; \
170 case 2: *(__u16 *)res = *(volatile __u16 *)p; break; \
171 case 4: *(__u32 *)res = *(volatile __u32 *)p; break; \
172 case 8: *(__u64 *)res = *(volatile __u64 *)p; break; \
175 __builtin_memcpy((void *)res, (const void *)p, size); \
180 static __always_inline
181 void __read_once_size(const volatile void *p
, void *res
, int size
)
188 * We can't declare function 'inline' because __no_sanitize_address confilcts
189 * with inlining. Attempt to inline it may cause a build failure.
190 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368
191 * '__maybe_unused' allows us to avoid defined-but-not-used warnings.
193 # define __no_kasan_or_inline __no_sanitize_address __maybe_unused
195 # define __no_kasan_or_inline __always_inline
198 static __no_kasan_or_inline
199 void __read_once_size_nocheck(const volatile void *p
, void *res
, int size
)
204 static __always_inline
void __write_once_size(volatile void *p
, void *res
, int size
)
207 case 1: *(volatile __u8
*)p
= *(__u8
*)res
; break;
208 case 2: *(volatile __u16
*)p
= *(__u16
*)res
; break;
209 case 4: *(volatile __u32
*)p
= *(__u32
*)res
; break;
210 case 8: *(volatile __u64
*)p
= *(__u64
*)res
; break;
213 __builtin_memcpy((void *)p
, (const void *)res
, size
);
219 * Prevent the compiler from merging or refetching reads or writes. The
220 * compiler is also forbidden from reordering successive instances of
221 * READ_ONCE and WRITE_ONCE, but only when the compiler is aware of some
222 * particular ordering. One way to make the compiler aware of ordering is to
223 * put the two invocations of READ_ONCE or WRITE_ONCE in different C
226 * These two macros will also work on aggregate data types like structs or
227 * unions. If the size of the accessed data type exceeds the word size of
228 * the machine (e.g., 32 bits or 64 bits) READ_ONCE() and WRITE_ONCE() will
229 * fall back to memcpy(). There's at least two memcpy()s: one for the
230 * __builtin_memcpy() and then one for the macro doing the copy of variable
231 * - '__u' allocated on the stack.
233 * Their two major use cases are: (1) Mediating communication between
234 * process-level code and irq/NMI handlers, all running on the same CPU,
235 * and (2) Ensuring that the compiler does not fold, spindle, or otherwise
236 * mutilate accesses that either do not require ordering or that interact
237 * with an explicit memory barrier or atomic instruction that provides the
240 #include <asm/barrier.h>
241 #include <linux/kasan-checks.h>
243 #define __READ_ONCE(x, check) \
245 union { typeof(x) __val; char __c[1]; } __u; \
247 __read_once_size(&(x), __u.__c, sizeof(x)); \
249 __read_once_size_nocheck(&(x), __u.__c, sizeof(x)); \
250 smp_read_barrier_depends(); /* Enforce dependency ordering from x */ \
253 #define READ_ONCE(x) __READ_ONCE(x, 1)
256 * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need
257 * to hide memory access from KASAN.
259 #define READ_ONCE_NOCHECK(x) __READ_ONCE(x, 0)
261 static __no_kasan_or_inline
262 unsigned long read_word_at_a_time(const void *addr
)
264 kasan_check_read(addr
, 1);
265 return *(unsigned long *)addr
;
268 #define WRITE_ONCE(x, val) \
270 union { typeof(x) __val; char __c[1]; } __u = \
271 { .__val = (__force typeof(x)) (val) }; \
272 __write_once_size(&(x), __u.__c, sizeof(x)); \
276 #endif /* __KERNEL__ */
278 #endif /* __ASSEMBLY__ */
280 /* Compile time object size, -1 for unknown */
281 #ifndef __compiletime_object_size
282 # define __compiletime_object_size(obj) -1
284 #ifndef __compiletime_warning
285 # define __compiletime_warning(message)
287 #ifndef __compiletime_error
288 # define __compiletime_error(message)
290 * Sparse complains of variable sized arrays due to the temporary variable in
291 * __compiletime_assert. Unfortunately we can't just expand it out to make
292 * sparse see a constant array size without breaking compiletime_assert on old
293 * versions of GCC (e.g. 4.2.4), so hide the array from sparse altogether.
296 # define __compiletime_error_fallback(condition) \
297 do { ((void)sizeof(char[1 - 2 * condition])); } while (0)
300 #ifndef __compiletime_error_fallback
301 # define __compiletime_error_fallback(condition) do { } while (0)
305 # define __compiletime_assert(condition, msg, prefix, suffix) \
307 bool __cond = !(condition); \
308 extern void prefix ## suffix(void) __compiletime_error(msg); \
310 prefix ## suffix(); \
311 __compiletime_error_fallback(__cond); \
314 # define __compiletime_assert(condition, msg, prefix, suffix) do { } while (0)
317 #define _compiletime_assert(condition, msg, prefix, suffix) \
318 __compiletime_assert(condition, msg, prefix, suffix)
321 * compiletime_assert - break build and emit msg if condition is false
322 * @condition: a compile-time constant condition to check
323 * @msg: a message to emit if condition is false
325 * In tradition of POSIX assert, this macro will break the build if the
326 * supplied condition is *false*, emitting the supplied error message if the
327 * compiler has support to do so.
329 #define compiletime_assert(condition, msg) \
330 _compiletime_assert(condition, msg, __compiletime_assert_, __LINE__)
332 #define compiletime_assert_atomic_type(t) \
333 compiletime_assert(__native_word(t), \
334 "Need native word sized stores/loads for atomicity.")
336 #endif /* __LINUX_COMPILER_H */