unify {de,}mangle_poll(), get rid of kernel-side POLL...
[cris-mirror.git] / include / linux / mm_types.h
blobfd1af6b9591d55781f5c06b4d02cf75b4b274ae5
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_TYPES_H
3 #define _LINUX_MM_TYPES_H
5 #include <linux/mm_types_task.h>
7 #include <linux/auxvec.h>
8 #include <linux/list.h>
9 #include <linux/spinlock.h>
10 #include <linux/rbtree.h>
11 #include <linux/rwsem.h>
12 #include <linux/completion.h>
13 #include <linux/cpumask.h>
14 #include <linux/uprobes.h>
15 #include <linux/page-flags-layout.h>
16 #include <linux/workqueue.h>
18 #include <asm/mmu.h>
20 #ifndef AT_VECTOR_SIZE_ARCH
21 #define AT_VECTOR_SIZE_ARCH 0
22 #endif
23 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
25 struct address_space;
26 struct mem_cgroup;
27 struct hmm;
30 * Each physical page in the system has a struct page associated with
31 * it to keep track of whatever it is we are using the page for at the
32 * moment. Note that we have no way to track which tasks are using
33 * a page, though if it is a pagecache page, rmap structures can tell us
34 * who is mapping it. If you allocate the page using alloc_pages(), you
35 * can use some of the space in struct page for your own purposes.
37 * Pages that were once in the page cache may be found under the RCU lock
38 * even after they have been recycled to a different purpose. The page
39 * cache reads and writes some of the fields in struct page to pin the
40 * page before checking that it's still in the page cache. It is vital
41 * that all users of struct page:
42 * 1. Use the first word as PageFlags.
43 * 2. Clear or preserve bit 0 of page->compound_head. It is used as
44 * PageTail for compound pages, and the page cache must not see false
45 * positives. Some users put a pointer here (guaranteed to be at least
46 * 4-byte aligned), other users avoid using the field altogether.
47 * 3. page->_refcount must either not be used, or must be used in such a
48 * way that other CPUs temporarily incrementing and then decrementing the
49 * refcount does not cause problems. On receiving the page from
50 * alloc_pages(), the refcount will be positive.
51 * 4. Either preserve page->_mapcount or restore it to -1 before freeing it.
53 * If you allocate pages of order > 0, you can use the fields in the struct
54 * page associated with each page, but bear in mind that the pages may have
55 * been inserted individually into the page cache, so you must use the above
56 * four fields in a compatible way for each struct page.
58 * SLUB uses cmpxchg_double() to atomically update its freelist and
59 * counters. That requires that freelist & counters be adjacent and
60 * double-word aligned. We align all struct pages to double-word
61 * boundaries, and ensure that 'freelist' is aligned within the
62 * struct.
64 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
65 #define _struct_page_alignment __aligned(2 * sizeof(unsigned long))
66 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE)
67 #define _slub_counter_t unsigned long
68 #else
69 #define _slub_counter_t unsigned int
70 #endif
71 #else /* !CONFIG_HAVE_ALIGNED_STRUCT_PAGE */
72 #define _struct_page_alignment
73 #define _slub_counter_t unsigned int
74 #endif /* !CONFIG_HAVE_ALIGNED_STRUCT_PAGE */
76 struct page {
77 /* First double word block */
78 unsigned long flags; /* Atomic flags, some possibly
79 * updated asynchronously */
80 union {
81 /* See page-flags.h for the definition of PAGE_MAPPING_FLAGS */
82 struct address_space *mapping;
84 void *s_mem; /* slab first object */
85 atomic_t compound_mapcount; /* first tail page */
86 /* page_deferred_list().next -- second tail page */
89 /* Second double word */
90 union {
91 pgoff_t index; /* Our offset within mapping. */
92 void *freelist; /* sl[aou]b first free object */
93 /* page_deferred_list().prev -- second tail page */
96 union {
97 _slub_counter_t counters;
98 unsigned int active; /* SLAB */
99 struct { /* SLUB */
100 unsigned inuse:16;
101 unsigned objects:15;
102 unsigned frozen:1;
104 int units; /* SLOB */
106 struct { /* Page cache */
108 * Count of ptes mapped in mms, to show when
109 * page is mapped & limit reverse map searches.
111 * Extra information about page type may be
112 * stored here for pages that are never mapped,
113 * in which case the value MUST BE <= -2.
114 * See page-flags.h for more details.
116 atomic_t _mapcount;
119 * Usage count, *USE WRAPPER FUNCTION* when manual
120 * accounting. See page_ref.h
122 atomic_t _refcount;
127 * WARNING: bit 0 of the first word encode PageTail(). That means
128 * the rest users of the storage space MUST NOT use the bit to
129 * avoid collision and false-positive PageTail().
131 union {
132 struct list_head lru; /* Pageout list, eg. active_list
133 * protected by zone_lru_lock !
134 * Can be used as a generic list
135 * by the page owner.
137 struct dev_pagemap *pgmap; /* ZONE_DEVICE pages are never on an
138 * lru or handled by a slab
139 * allocator, this points to the
140 * hosting device page map.
142 struct { /* slub per cpu partial pages */
143 struct page *next; /* Next partial slab */
144 #ifdef CONFIG_64BIT
145 int pages; /* Nr of partial slabs left */
146 int pobjects; /* Approximate # of objects */
147 #else
148 short int pages;
149 short int pobjects;
150 #endif
153 struct rcu_head rcu_head; /* Used by SLAB
154 * when destroying via RCU
156 /* Tail pages of compound page */
157 struct {
158 unsigned long compound_head; /* If bit zero is set */
160 /* First tail page only */
161 unsigned char compound_dtor;
162 unsigned char compound_order;
163 /* two/six bytes available here */
166 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS
167 struct {
168 unsigned long __pad; /* do not overlay pmd_huge_pte
169 * with compound_head to avoid
170 * possible bit 0 collision.
172 pgtable_t pmd_huge_pte; /* protected by page->ptl */
174 #endif
177 union {
179 * Mapping-private opaque data:
180 * Usually used for buffer_heads if PagePrivate
181 * Used for swp_entry_t if PageSwapCache
182 * Indicates order in the buddy system if PageBuddy
184 unsigned long private;
185 #if USE_SPLIT_PTE_PTLOCKS
186 #if ALLOC_SPLIT_PTLOCKS
187 spinlock_t *ptl;
188 #else
189 spinlock_t ptl;
190 #endif
191 #endif
192 struct kmem_cache *slab_cache; /* SL[AU]B: Pointer to slab */
195 #ifdef CONFIG_MEMCG
196 struct mem_cgroup *mem_cgroup;
197 #endif
200 * On machines where all RAM is mapped into kernel address space,
201 * we can simply calculate the virtual address. On machines with
202 * highmem some memory is mapped into kernel virtual memory
203 * dynamically, so we need a place to store that address.
204 * Note that this field could be 16 bits on x86 ... ;)
206 * Architectures with slow multiplication can define
207 * WANT_PAGE_VIRTUAL in asm/page.h
209 #if defined(WANT_PAGE_VIRTUAL)
210 void *virtual; /* Kernel virtual address (NULL if
211 not kmapped, ie. highmem) */
212 #endif /* WANT_PAGE_VIRTUAL */
214 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
215 int _last_cpupid;
216 #endif
217 } _struct_page_alignment;
219 #define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK)
220 #define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE)
222 struct page_frag_cache {
223 void * va;
224 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
225 __u16 offset;
226 __u16 size;
227 #else
228 __u32 offset;
229 #endif
230 /* we maintain a pagecount bias, so that we dont dirty cache line
231 * containing page->_refcount every time we allocate a fragment.
233 unsigned int pagecnt_bias;
234 bool pfmemalloc;
237 typedef unsigned long vm_flags_t;
240 * A region containing a mapping of a non-memory backed file under NOMMU
241 * conditions. These are held in a global tree and are pinned by the VMAs that
242 * map parts of them.
244 struct vm_region {
245 struct rb_node vm_rb; /* link in global region tree */
246 vm_flags_t vm_flags; /* VMA vm_flags */
247 unsigned long vm_start; /* start address of region */
248 unsigned long vm_end; /* region initialised to here */
249 unsigned long vm_top; /* region allocated to here */
250 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */
251 struct file *vm_file; /* the backing file or NULL */
253 int vm_usage; /* region usage count (access under nommu_region_sem) */
254 bool vm_icache_flushed : 1; /* true if the icache has been flushed for
255 * this region */
258 #ifdef CONFIG_USERFAULTFD
259 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
260 struct vm_userfaultfd_ctx {
261 struct userfaultfd_ctx *ctx;
263 #else /* CONFIG_USERFAULTFD */
264 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
265 struct vm_userfaultfd_ctx {};
266 #endif /* CONFIG_USERFAULTFD */
269 * This struct defines a memory VMM memory area. There is one of these
270 * per VM-area/task. A VM area is any part of the process virtual memory
271 * space that has a special rule for the page-fault handlers (ie a shared
272 * library, the executable area etc).
274 struct vm_area_struct {
275 /* The first cache line has the info for VMA tree walking. */
277 unsigned long vm_start; /* Our start address within vm_mm. */
278 unsigned long vm_end; /* The first byte after our end address
279 within vm_mm. */
281 /* linked list of VM areas per task, sorted by address */
282 struct vm_area_struct *vm_next, *vm_prev;
284 struct rb_node vm_rb;
287 * Largest free memory gap in bytes to the left of this VMA.
288 * Either between this VMA and vma->vm_prev, or between one of the
289 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
290 * get_unmapped_area find a free area of the right size.
292 unsigned long rb_subtree_gap;
294 /* Second cache line starts here. */
296 struct mm_struct *vm_mm; /* The address space we belong to. */
297 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
298 unsigned long vm_flags; /* Flags, see mm.h. */
301 * For areas with an address space and backing store,
302 * linkage into the address_space->i_mmap interval tree.
304 struct {
305 struct rb_node rb;
306 unsigned long rb_subtree_last;
307 } shared;
310 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
311 * list, after a COW of one of the file pages. A MAP_SHARED vma
312 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
313 * or brk vma (with NULL file) can only be in an anon_vma list.
315 struct list_head anon_vma_chain; /* Serialized by mmap_sem &
316 * page_table_lock */
317 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
319 /* Function pointers to deal with this struct. */
320 const struct vm_operations_struct *vm_ops;
322 /* Information about our backing store: */
323 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
324 units */
325 struct file * vm_file; /* File we map to (can be NULL). */
326 void * vm_private_data; /* was vm_pte (shared mem) */
328 atomic_long_t swap_readahead_info;
329 #ifndef CONFIG_MMU
330 struct vm_region *vm_region; /* NOMMU mapping region */
331 #endif
332 #ifdef CONFIG_NUMA
333 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
334 #endif
335 struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
336 } __randomize_layout;
338 struct core_thread {
339 struct task_struct *task;
340 struct core_thread *next;
343 struct core_state {
344 atomic_t nr_threads;
345 struct core_thread dumper;
346 struct completion startup;
349 struct kioctx_table;
350 struct mm_struct {
351 struct vm_area_struct *mmap; /* list of VMAs */
352 struct rb_root mm_rb;
353 u32 vmacache_seqnum; /* per-thread vmacache */
354 #ifdef CONFIG_MMU
355 unsigned long (*get_unmapped_area) (struct file *filp,
356 unsigned long addr, unsigned long len,
357 unsigned long pgoff, unsigned long flags);
358 #endif
359 unsigned long mmap_base; /* base of mmap area */
360 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */
361 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
362 /* Base adresses for compatible mmap() */
363 unsigned long mmap_compat_base;
364 unsigned long mmap_compat_legacy_base;
365 #endif
366 unsigned long task_size; /* size of task vm space */
367 unsigned long highest_vm_end; /* highest vma end address */
368 pgd_t * pgd;
371 * @mm_users: The number of users including userspace.
373 * Use mmget()/mmget_not_zero()/mmput() to modify. When this drops
374 * to 0 (i.e. when the task exits and there are no other temporary
375 * reference holders), we also release a reference on @mm_count
376 * (which may then free the &struct mm_struct if @mm_count also
377 * drops to 0).
379 atomic_t mm_users;
382 * @mm_count: The number of references to &struct mm_struct
383 * (@mm_users count as 1).
385 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
386 * &struct mm_struct is freed.
388 atomic_t mm_count;
390 #ifdef CONFIG_MMU
391 atomic_long_t pgtables_bytes; /* PTE page table pages */
392 #endif
393 int map_count; /* number of VMAs */
395 spinlock_t page_table_lock; /* Protects page tables and some counters */
396 struct rw_semaphore mmap_sem;
398 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung
399 * together off init_mm.mmlist, and are protected
400 * by mmlist_lock
404 unsigned long hiwater_rss; /* High-watermark of RSS usage */
405 unsigned long hiwater_vm; /* High-water virtual memory usage */
407 unsigned long total_vm; /* Total pages mapped */
408 unsigned long locked_vm; /* Pages that have PG_mlocked set */
409 unsigned long pinned_vm; /* Refcount permanently increased */
410 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
411 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
412 unsigned long stack_vm; /* VM_STACK */
413 unsigned long def_flags;
414 unsigned long start_code, end_code, start_data, end_data;
415 unsigned long start_brk, brk, start_stack;
416 unsigned long arg_start, arg_end, env_start, env_end;
418 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
421 * Special counters, in some configurations protected by the
422 * page_table_lock, in other configurations by being atomic.
424 struct mm_rss_stat rss_stat;
426 struct linux_binfmt *binfmt;
428 cpumask_var_t cpu_vm_mask_var;
430 /* Architecture-specific MM context */
431 mm_context_t context;
433 unsigned long flags; /* Must use atomic bitops to access the bits */
435 struct core_state *core_state; /* coredumping support */
436 #ifdef CONFIG_MEMBARRIER
437 atomic_t membarrier_state;
438 #endif
439 #ifdef CONFIG_AIO
440 spinlock_t ioctx_lock;
441 struct kioctx_table __rcu *ioctx_table;
442 #endif
443 #ifdef CONFIG_MEMCG
445 * "owner" points to a task that is regarded as the canonical
446 * user/owner of this mm. All of the following must be true in
447 * order for it to be changed:
449 * current == mm->owner
450 * current->mm != mm
451 * new_owner->mm == mm
452 * new_owner->alloc_lock is held
454 struct task_struct __rcu *owner;
455 #endif
456 struct user_namespace *user_ns;
458 /* store ref to file /proc/<pid>/exe symlink points to */
459 struct file __rcu *exe_file;
460 #ifdef CONFIG_MMU_NOTIFIER
461 struct mmu_notifier_mm *mmu_notifier_mm;
462 #endif
463 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
464 pgtable_t pmd_huge_pte; /* protected by page_table_lock */
465 #endif
466 #ifdef CONFIG_CPUMASK_OFFSTACK
467 struct cpumask cpumask_allocation;
468 #endif
469 #ifdef CONFIG_NUMA_BALANCING
471 * numa_next_scan is the next time that the PTEs will be marked
472 * pte_numa. NUMA hinting faults will gather statistics and migrate
473 * pages to new nodes if necessary.
475 unsigned long numa_next_scan;
477 /* Restart point for scanning and setting pte_numa */
478 unsigned long numa_scan_offset;
480 /* numa_scan_seq prevents two threads setting pte_numa */
481 int numa_scan_seq;
482 #endif
484 * An operation with batched TLB flushing is going on. Anything that
485 * can move process memory needs to flush the TLB when moving a
486 * PROT_NONE or PROT_NUMA mapped page.
488 atomic_t tlb_flush_pending;
489 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
490 /* See flush_tlb_batched_pending() */
491 bool tlb_flush_batched;
492 #endif
493 struct uprobes_state uprobes_state;
494 #ifdef CONFIG_HUGETLB_PAGE
495 atomic_long_t hugetlb_usage;
496 #endif
497 struct work_struct async_put_work;
499 #if IS_ENABLED(CONFIG_HMM)
500 /* HMM needs to track a few things per mm */
501 struct hmm *hmm;
502 #endif
503 } __randomize_layout;
505 extern struct mm_struct init_mm;
507 static inline void mm_init_cpumask(struct mm_struct *mm)
509 #ifdef CONFIG_CPUMASK_OFFSTACK
510 mm->cpu_vm_mask_var = &mm->cpumask_allocation;
511 #endif
512 cpumask_clear(mm->cpu_vm_mask_var);
515 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
516 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
518 return mm->cpu_vm_mask_var;
521 struct mmu_gather;
522 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
523 unsigned long start, unsigned long end);
524 extern void tlb_finish_mmu(struct mmu_gather *tlb,
525 unsigned long start, unsigned long end);
527 static inline void init_tlb_flush_pending(struct mm_struct *mm)
529 atomic_set(&mm->tlb_flush_pending, 0);
532 static inline void inc_tlb_flush_pending(struct mm_struct *mm)
534 atomic_inc(&mm->tlb_flush_pending);
536 * The only time this value is relevant is when there are indeed pages
537 * to flush. And we'll only flush pages after changing them, which
538 * requires the PTL.
540 * So the ordering here is:
542 * atomic_inc(&mm->tlb_flush_pending);
543 * spin_lock(&ptl);
544 * ...
545 * set_pte_at();
546 * spin_unlock(&ptl);
548 * spin_lock(&ptl)
549 * mm_tlb_flush_pending();
550 * ....
551 * spin_unlock(&ptl);
553 * flush_tlb_range();
554 * atomic_dec(&mm->tlb_flush_pending);
556 * Where the increment if constrained by the PTL unlock, it thus
557 * ensures that the increment is visible if the PTE modification is
558 * visible. After all, if there is no PTE modification, nobody cares
559 * about TLB flushes either.
561 * This very much relies on users (mm_tlb_flush_pending() and
562 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
563 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
564 * locks (PPC) the unlock of one doesn't order against the lock of
565 * another PTL.
567 * The decrement is ordered by the flush_tlb_range(), such that
568 * mm_tlb_flush_pending() will not return false unless all flushes have
569 * completed.
573 static inline void dec_tlb_flush_pending(struct mm_struct *mm)
576 * See inc_tlb_flush_pending().
578 * This cannot be smp_mb__before_atomic() because smp_mb() simply does
579 * not order against TLB invalidate completion, which is what we need.
581 * Therefore we must rely on tlb_flush_*() to guarantee order.
583 atomic_dec(&mm->tlb_flush_pending);
586 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
589 * Must be called after having acquired the PTL; orders against that
590 * PTLs release and therefore ensures that if we observe the modified
591 * PTE we must also observe the increment from inc_tlb_flush_pending().
593 * That is, it only guarantees to return true if there is a flush
594 * pending for _this_ PTL.
596 return atomic_read(&mm->tlb_flush_pending);
599 static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
602 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL
603 * for which there is a TLB flush pending in order to guarantee
604 * we've seen both that PTE modification and the increment.
606 * (no requirement on actually still holding the PTL, that is irrelevant)
608 return atomic_read(&mm->tlb_flush_pending) > 1;
611 struct vm_fault;
613 struct vm_special_mapping {
614 const char *name; /* The name, e.g. "[vdso]". */
617 * If .fault is not provided, this points to a
618 * NULL-terminated array of pages that back the special mapping.
620 * This must not be NULL unless .fault is provided.
622 struct page **pages;
625 * If non-NULL, then this is called to resolve page faults
626 * on the special mapping. If used, .pages is not checked.
628 int (*fault)(const struct vm_special_mapping *sm,
629 struct vm_area_struct *vma,
630 struct vm_fault *vmf);
632 int (*mremap)(const struct vm_special_mapping *sm,
633 struct vm_area_struct *new_vma);
636 enum tlb_flush_reason {
637 TLB_FLUSH_ON_TASK_SWITCH,
638 TLB_REMOTE_SHOOTDOWN,
639 TLB_LOCAL_SHOOTDOWN,
640 TLB_LOCAL_MM_SHOOTDOWN,
641 TLB_REMOTE_SEND_IPI,
642 NR_TLB_FLUSH_REASONS,
646 * A swap entry has to fit into a "unsigned long", as the entry is hidden
647 * in the "index" field of the swapper address space.
649 typedef struct {
650 unsigned long val;
651 } swp_entry_t;
653 #endif /* _LINUX_MM_TYPES_H */