unify {de,}mangle_poll(), get rid of kernel-side POLL...
[cris-mirror.git] / include / linux / pid.h
blob7633d55d9a24730c0dacdc43ec50bb72b1bbbbe0
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PID_H
3 #define _LINUX_PID_H
5 #include <linux/rculist.h>
7 enum pid_type
9 PIDTYPE_PID,
10 PIDTYPE_PGID,
11 PIDTYPE_SID,
12 PIDTYPE_MAX,
13 /* only valid to __task_pid_nr_ns() */
14 __PIDTYPE_TGID
18 * What is struct pid?
20 * A struct pid is the kernel's internal notion of a process identifier.
21 * It refers to individual tasks, process groups, and sessions. While
22 * there are processes attached to it the struct pid lives in a hash
23 * table, so it and then the processes that it refers to can be found
24 * quickly from the numeric pid value. The attached processes may be
25 * quickly accessed by following pointers from struct pid.
27 * Storing pid_t values in the kernel and referring to them later has a
28 * problem. The process originally with that pid may have exited and the
29 * pid allocator wrapped, and another process could have come along
30 * and been assigned that pid.
32 * Referring to user space processes by holding a reference to struct
33 * task_struct has a problem. When the user space process exits
34 * the now useless task_struct is still kept. A task_struct plus a
35 * stack consumes around 10K of low kernel memory. More precisely
36 * this is THREAD_SIZE + sizeof(struct task_struct). By comparison
37 * a struct pid is about 64 bytes.
39 * Holding a reference to struct pid solves both of these problems.
40 * It is small so holding a reference does not consume a lot of
41 * resources, and since a new struct pid is allocated when the numeric pid
42 * value is reused (when pids wrap around) we don't mistakenly refer to new
43 * processes.
48 * struct upid is used to get the id of the struct pid, as it is
49 * seen in particular namespace. Later the struct pid is found with
50 * find_pid_ns() using the int nr and struct pid_namespace *ns.
53 struct upid {
54 int nr;
55 struct pid_namespace *ns;
58 struct pid
60 atomic_t count;
61 unsigned int level;
62 /* lists of tasks that use this pid */
63 struct hlist_head tasks[PIDTYPE_MAX];
64 struct rcu_head rcu;
65 struct upid numbers[1];
68 extern struct pid init_struct_pid;
70 struct pid_link
72 struct hlist_node node;
73 struct pid *pid;
76 static inline struct pid *get_pid(struct pid *pid)
78 if (pid)
79 atomic_inc(&pid->count);
80 return pid;
83 extern void put_pid(struct pid *pid);
84 extern struct task_struct *pid_task(struct pid *pid, enum pid_type);
85 extern struct task_struct *get_pid_task(struct pid *pid, enum pid_type);
87 extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type);
90 * these helpers must be called with the tasklist_lock write-held.
92 extern void attach_pid(struct task_struct *task, enum pid_type);
93 extern void detach_pid(struct task_struct *task, enum pid_type);
94 extern void change_pid(struct task_struct *task, enum pid_type,
95 struct pid *pid);
96 extern void transfer_pid(struct task_struct *old, struct task_struct *new,
97 enum pid_type);
99 struct pid_namespace;
100 extern struct pid_namespace init_pid_ns;
103 * look up a PID in the hash table. Must be called with the tasklist_lock
104 * or rcu_read_lock() held.
106 * find_pid_ns() finds the pid in the namespace specified
107 * find_vpid() finds the pid by its virtual id, i.e. in the current namespace
109 * see also find_task_by_vpid() set in include/linux/sched.h
111 extern struct pid *find_pid_ns(int nr, struct pid_namespace *ns);
112 extern struct pid *find_vpid(int nr);
115 * Lookup a PID in the hash table, and return with it's count elevated.
117 extern struct pid *find_get_pid(int nr);
118 extern struct pid *find_ge_pid(int nr, struct pid_namespace *);
119 int next_pidmap(struct pid_namespace *pid_ns, unsigned int last);
121 extern struct pid *alloc_pid(struct pid_namespace *ns);
122 extern void free_pid(struct pid *pid);
123 extern void disable_pid_allocation(struct pid_namespace *ns);
126 * ns_of_pid() returns the pid namespace in which the specified pid was
127 * allocated.
129 * NOTE:
130 * ns_of_pid() is expected to be called for a process (task) that has
131 * an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid
132 * is expected to be non-NULL. If @pid is NULL, caller should handle
133 * the resulting NULL pid-ns.
135 static inline struct pid_namespace *ns_of_pid(struct pid *pid)
137 struct pid_namespace *ns = NULL;
138 if (pid)
139 ns = pid->numbers[pid->level].ns;
140 return ns;
144 * is_child_reaper returns true if the pid is the init process
145 * of the current namespace. As this one could be checked before
146 * pid_ns->child_reaper is assigned in copy_process, we check
147 * with the pid number.
149 static inline bool is_child_reaper(struct pid *pid)
151 return pid->numbers[pid->level].nr == 1;
155 * the helpers to get the pid's id seen from different namespaces
157 * pid_nr() : global id, i.e. the id seen from the init namespace;
158 * pid_vnr() : virtual id, i.e. the id seen from the pid namespace of
159 * current.
160 * pid_nr_ns() : id seen from the ns specified.
162 * see also task_xid_nr() etc in include/linux/sched.h
165 static inline pid_t pid_nr(struct pid *pid)
167 pid_t nr = 0;
168 if (pid)
169 nr = pid->numbers[0].nr;
170 return nr;
173 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns);
174 pid_t pid_vnr(struct pid *pid);
176 #define do_each_pid_task(pid, type, task) \
177 do { \
178 if ((pid) != NULL) \
179 hlist_for_each_entry_rcu((task), \
180 &(pid)->tasks[type], pids[type].node) {
183 * Both old and new leaders may be attached to
184 * the same pid in the middle of de_thread().
186 #define while_each_pid_task(pid, type, task) \
187 if (type == PIDTYPE_PID) \
188 break; \
190 } while (0)
192 #define do_each_pid_thread(pid, type, task) \
193 do_each_pid_task(pid, type, task) { \
194 struct task_struct *tg___ = task; \
195 for_each_thread(tg___, task) {
197 #define while_each_pid_thread(pid, type, task) \
199 task = tg___; \
200 } while_each_pid_task(pid, type, task)
201 #endif /* _LINUX_PID_H */