2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2006 Nick Piggin
5 * Copyright (C) 2012 Konstantin Khlebnikov
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2, or (at
10 * your option) any later version.
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #ifndef _LINUX_RADIX_TREE_H
22 #define _LINUX_RADIX_TREE_H
24 #include <linux/bitops.h>
25 #include <linux/kernel.h>
26 #include <linux/list.h>
27 #include <linux/preempt.h>
28 #include <linux/rcupdate.h>
29 #include <linux/spinlock.h>
30 #include <linux/types.h>
33 * The bottom two bits of the slot determine how the remaining bits in the
34 * slot are interpreted:
38 * 10 - exceptional entry
39 * 11 - this bit combination is currently unused/reserved
41 * The internal entry may be a pointer to the next level in the tree, a
42 * sibling entry, or an indicator that the entry in this slot has been moved
43 * to another location in the tree and the lookup should be restarted. While
44 * NULL fits the 'data pointer' pattern, it means that there is no entry in
45 * the tree for this index (no matter what level of the tree it is found at).
46 * This means that you cannot store NULL in the tree as a value for the index.
48 #define RADIX_TREE_ENTRY_MASK 3UL
49 #define RADIX_TREE_INTERNAL_NODE 1UL
52 * Most users of the radix tree store pointers but shmem/tmpfs stores swap
53 * entries in the same tree. They are marked as exceptional entries to
54 * distinguish them from pointers to struct page.
55 * EXCEPTIONAL_ENTRY tests the bit, EXCEPTIONAL_SHIFT shifts content past it.
57 #define RADIX_TREE_EXCEPTIONAL_ENTRY 2
58 #define RADIX_TREE_EXCEPTIONAL_SHIFT 2
60 static inline bool radix_tree_is_internal_node(void *ptr
)
62 return ((unsigned long)ptr
& RADIX_TREE_ENTRY_MASK
) ==
63 RADIX_TREE_INTERNAL_NODE
;
66 /*** radix-tree API starts here ***/
68 #define RADIX_TREE_MAX_TAGS 3
70 #ifndef RADIX_TREE_MAP_SHIFT
71 #define RADIX_TREE_MAP_SHIFT (CONFIG_BASE_SMALL ? 4 : 6)
74 #define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT)
75 #define RADIX_TREE_MAP_MASK (RADIX_TREE_MAP_SIZE-1)
77 #define RADIX_TREE_TAG_LONGS \
78 ((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
80 #define RADIX_TREE_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(unsigned long))
81 #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
82 RADIX_TREE_MAP_SHIFT))
85 * @count is the count of every non-NULL element in the ->slots array
86 * whether that is an exceptional entry, a retry entry, a user pointer,
87 * a sibling entry or a pointer to the next level of the tree.
88 * @exceptional is the count of every element in ->slots which is
89 * either radix_tree_exceptional_entry() or is a sibling entry for an
92 struct radix_tree_node
{
93 unsigned char shift
; /* Bits remaining in each slot */
94 unsigned char offset
; /* Slot offset in parent */
95 unsigned char count
; /* Total entry count */
96 unsigned char exceptional
; /* Exceptional entry count */
97 struct radix_tree_node
*parent
; /* Used when ascending tree */
98 struct radix_tree_root
*root
; /* The tree we belong to */
100 struct list_head private_list
; /* For tree user */
101 struct rcu_head rcu_head
; /* Used when freeing node */
103 void __rcu
*slots
[RADIX_TREE_MAP_SIZE
];
104 unsigned long tags
[RADIX_TREE_MAX_TAGS
][RADIX_TREE_TAG_LONGS
];
107 /* The top bits of gfp_mask are used to store the root tags and the IDR flag */
108 #define ROOT_IS_IDR ((__force gfp_t)(1 << __GFP_BITS_SHIFT))
109 #define ROOT_TAG_SHIFT (__GFP_BITS_SHIFT + 1)
111 struct radix_tree_root
{
113 struct radix_tree_node __rcu
*rnode
;
116 #define RADIX_TREE_INIT(mask) { \
117 .gfp_mask = (mask), \
121 #define RADIX_TREE(name, mask) \
122 struct radix_tree_root name = RADIX_TREE_INIT(mask)
124 #define INIT_RADIX_TREE(root, mask) \
126 (root)->gfp_mask = (mask); \
127 (root)->rnode = NULL; \
130 static inline bool radix_tree_empty(const struct radix_tree_root
*root
)
132 return root
->rnode
== NULL
;
136 * struct radix_tree_iter - radix tree iterator state
138 * @index: index of current slot
139 * @next_index: one beyond the last index for this chunk
140 * @tags: bit-mask for tag-iterating
141 * @node: node that contains current slot
142 * @shift: shift for the node that holds our slots
144 * This radix tree iterator works in terms of "chunks" of slots. A chunk is a
145 * subinterval of slots contained within one radix tree leaf node. It is
146 * described by a pointer to its first slot and a struct radix_tree_iter
147 * which holds the chunk's position in the tree and its size. For tagged
148 * iteration radix_tree_iter also holds the slots' bit-mask for one chosen
151 struct radix_tree_iter
{
153 unsigned long next_index
;
155 struct radix_tree_node
*node
;
156 #ifdef CONFIG_RADIX_TREE_MULTIORDER
161 static inline unsigned int iter_shift(const struct radix_tree_iter
*iter
)
163 #ifdef CONFIG_RADIX_TREE_MULTIORDER
171 * Radix-tree synchronization
173 * The radix-tree API requires that users provide all synchronisation (with
174 * specific exceptions, noted below).
176 * Synchronization of access to the data items being stored in the tree, and
177 * management of their lifetimes must be completely managed by API users.
179 * For API usage, in general,
180 * - any function _modifying_ the tree or tags (inserting or deleting
181 * items, setting or clearing tags) must exclude other modifications, and
182 * exclude any functions reading the tree.
183 * - any function _reading_ the tree or tags (looking up items or tags,
184 * gang lookups) must exclude modifications to the tree, but may occur
185 * concurrently with other readers.
187 * The notable exceptions to this rule are the following functions:
188 * __radix_tree_lookup
190 * radix_tree_lookup_slot
192 * radix_tree_gang_lookup
193 * radix_tree_gang_lookup_slot
194 * radix_tree_gang_lookup_tag
195 * radix_tree_gang_lookup_tag_slot
198 * The first 8 functions are able to be called locklessly, using RCU. The
199 * caller must ensure calls to these functions are made within rcu_read_lock()
200 * regions. Other readers (lock-free or otherwise) and modifications may be
201 * running concurrently.
203 * It is still required that the caller manage the synchronization and lifetimes
204 * of the items. So if RCU lock-free lookups are used, typically this would mean
205 * that the items have their own locks, or are amenable to lock-free access; and
206 * that the items are freed by RCU (or only freed after having been deleted from
207 * the radix tree *and* a synchronize_rcu() grace period).
209 * (Note, rcu_assign_pointer and rcu_dereference are not needed to control
210 * access to data items when inserting into or looking up from the radix tree)
212 * Note that the value returned by radix_tree_tag_get() may not be relied upon
213 * if only the RCU read lock is held. Functions to set/clear tags and to
214 * delete nodes running concurrently with it may affect its result such that
215 * two consecutive reads in the same locked section may return different
216 * values. If reliability is required, modification functions must also be
217 * excluded from concurrency.
219 * radix_tree_tagged is able to be called without locking or RCU.
223 * radix_tree_deref_slot - dereference a slot
224 * @slot: slot pointer, returned by radix_tree_lookup_slot
226 * For use with radix_tree_lookup_slot(). Caller must hold tree at least read
227 * locked across slot lookup and dereference. Not required if write lock is
228 * held (ie. items cannot be concurrently inserted).
230 * radix_tree_deref_retry must be used to confirm validity of the pointer if
231 * only the read lock is held.
233 * Return: entry stored in that slot.
235 static inline void *radix_tree_deref_slot(void __rcu
**slot
)
237 return rcu_dereference(*slot
);
241 * radix_tree_deref_slot_protected - dereference a slot with tree lock held
242 * @slot: slot pointer, returned by radix_tree_lookup_slot
244 * Similar to radix_tree_deref_slot. The caller does not hold the RCU read
245 * lock but it must hold the tree lock to prevent parallel updates.
247 * Return: entry stored in that slot.
249 static inline void *radix_tree_deref_slot_protected(void __rcu
**slot
,
250 spinlock_t
*treelock
)
252 return rcu_dereference_protected(*slot
, lockdep_is_held(treelock
));
256 * radix_tree_deref_retry - check radix_tree_deref_slot
257 * @arg: pointer returned by radix_tree_deref_slot
258 * Returns: 0 if retry is not required, otherwise retry is required
260 * radix_tree_deref_retry must be used with radix_tree_deref_slot.
262 static inline int radix_tree_deref_retry(void *arg
)
264 return unlikely(radix_tree_is_internal_node(arg
));
268 * radix_tree_exceptional_entry - radix_tree_deref_slot gave exceptional entry?
269 * @arg: value returned by radix_tree_deref_slot
270 * Returns: 0 if well-aligned pointer, non-0 if exceptional entry.
272 static inline int radix_tree_exceptional_entry(void *arg
)
274 /* Not unlikely because radix_tree_exception often tested first */
275 return (unsigned long)arg
& RADIX_TREE_EXCEPTIONAL_ENTRY
;
279 * radix_tree_exception - radix_tree_deref_slot returned either exception?
280 * @arg: value returned by radix_tree_deref_slot
281 * Returns: 0 if well-aligned pointer, non-0 if either kind of exception.
283 static inline int radix_tree_exception(void *arg
)
285 return unlikely((unsigned long)arg
& RADIX_TREE_ENTRY_MASK
);
288 int __radix_tree_create(struct radix_tree_root
*, unsigned long index
,
289 unsigned order
, struct radix_tree_node
**nodep
,
290 void __rcu
***slotp
);
291 int __radix_tree_insert(struct radix_tree_root
*, unsigned long index
,
292 unsigned order
, void *);
293 static inline int radix_tree_insert(struct radix_tree_root
*root
,
294 unsigned long index
, void *entry
)
296 return __radix_tree_insert(root
, index
, 0, entry
);
298 void *__radix_tree_lookup(const struct radix_tree_root
*, unsigned long index
,
299 struct radix_tree_node
**nodep
, void __rcu
***slotp
);
300 void *radix_tree_lookup(const struct radix_tree_root
*, unsigned long);
301 void __rcu
**radix_tree_lookup_slot(const struct radix_tree_root
*,
302 unsigned long index
);
303 typedef void (*radix_tree_update_node_t
)(struct radix_tree_node
*);
304 void __radix_tree_replace(struct radix_tree_root
*, struct radix_tree_node
*,
305 void __rcu
**slot
, void *entry
,
306 radix_tree_update_node_t update_node
);
307 void radix_tree_iter_replace(struct radix_tree_root
*,
308 const struct radix_tree_iter
*, void __rcu
**slot
, void *entry
);
309 void radix_tree_replace_slot(struct radix_tree_root
*,
310 void __rcu
**slot
, void *entry
);
311 void __radix_tree_delete_node(struct radix_tree_root
*,
312 struct radix_tree_node
*,
313 radix_tree_update_node_t update_node
);
314 void radix_tree_iter_delete(struct radix_tree_root
*,
315 struct radix_tree_iter
*iter
, void __rcu
**slot
);
316 void *radix_tree_delete_item(struct radix_tree_root
*, unsigned long, void *);
317 void *radix_tree_delete(struct radix_tree_root
*, unsigned long);
318 void radix_tree_clear_tags(struct radix_tree_root
*, struct radix_tree_node
*,
320 unsigned int radix_tree_gang_lookup(const struct radix_tree_root
*,
321 void **results
, unsigned long first_index
,
322 unsigned int max_items
);
323 unsigned int radix_tree_gang_lookup_slot(const struct radix_tree_root
*,
324 void __rcu
***results
, unsigned long *indices
,
325 unsigned long first_index
, unsigned int max_items
);
326 int radix_tree_preload(gfp_t gfp_mask
);
327 int radix_tree_maybe_preload(gfp_t gfp_mask
);
328 int radix_tree_maybe_preload_order(gfp_t gfp_mask
, int order
);
329 void radix_tree_init(void);
330 void *radix_tree_tag_set(struct radix_tree_root
*,
331 unsigned long index
, unsigned int tag
);
332 void *radix_tree_tag_clear(struct radix_tree_root
*,
333 unsigned long index
, unsigned int tag
);
334 int radix_tree_tag_get(const struct radix_tree_root
*,
335 unsigned long index
, unsigned int tag
);
336 void radix_tree_iter_tag_set(struct radix_tree_root
*,
337 const struct radix_tree_iter
*iter
, unsigned int tag
);
338 void radix_tree_iter_tag_clear(struct radix_tree_root
*,
339 const struct radix_tree_iter
*iter
, unsigned int tag
);
340 unsigned int radix_tree_gang_lookup_tag(const struct radix_tree_root
*,
341 void **results
, unsigned long first_index
,
342 unsigned int max_items
, unsigned int tag
);
343 unsigned int radix_tree_gang_lookup_tag_slot(const struct radix_tree_root
*,
344 void __rcu
***results
, unsigned long first_index
,
345 unsigned int max_items
, unsigned int tag
);
346 int radix_tree_tagged(const struct radix_tree_root
*, unsigned int tag
);
348 static inline void radix_tree_preload_end(void)
353 int radix_tree_split_preload(unsigned old_order
, unsigned new_order
, gfp_t
);
354 int radix_tree_split(struct radix_tree_root
*, unsigned long index
,
356 int radix_tree_join(struct radix_tree_root
*, unsigned long index
,
357 unsigned new_order
, void *);
359 void __rcu
**idr_get_free(struct radix_tree_root
*root
,
360 struct radix_tree_iter
*iter
, gfp_t gfp
,
364 RADIX_TREE_ITER_TAG_MASK
= 0x0f, /* tag index in lower nybble */
365 RADIX_TREE_ITER_TAGGED
= 0x10, /* lookup tagged slots */
366 RADIX_TREE_ITER_CONTIG
= 0x20, /* stop at first hole */
370 * radix_tree_iter_init - initialize radix tree iterator
372 * @iter: pointer to iterator state
373 * @start: iteration starting index
376 static __always_inline
void __rcu
**
377 radix_tree_iter_init(struct radix_tree_iter
*iter
, unsigned long start
)
380 * Leave iter->tags uninitialized. radix_tree_next_chunk() will fill it
381 * in the case of a successful tagged chunk lookup. If the lookup was
382 * unsuccessful or non-tagged then nobody cares about ->tags.
384 * Set index to zero to bypass next_index overflow protection.
385 * See the comment in radix_tree_next_chunk() for details.
388 iter
->next_index
= start
;
393 * radix_tree_next_chunk - find next chunk of slots for iteration
395 * @root: radix tree root
396 * @iter: iterator state
397 * @flags: RADIX_TREE_ITER_* flags and tag index
398 * Returns: pointer to chunk first slot, or NULL if there no more left
400 * This function looks up the next chunk in the radix tree starting from
401 * @iter->next_index. It returns a pointer to the chunk's first slot.
402 * Also it fills @iter with data about chunk: position in the tree (index),
403 * its end (next_index), and constructs a bit mask for tagged iterating (tags).
405 void __rcu
**radix_tree_next_chunk(const struct radix_tree_root
*,
406 struct radix_tree_iter
*iter
, unsigned flags
);
409 * radix_tree_iter_lookup - look up an index in the radix tree
410 * @root: radix tree root
411 * @iter: iterator state
412 * @index: key to look up
414 * If @index is present in the radix tree, this function returns the slot
415 * containing it and updates @iter to describe the entry. If @index is not
416 * present, it returns NULL.
418 static inline void __rcu
**
419 radix_tree_iter_lookup(const struct radix_tree_root
*root
,
420 struct radix_tree_iter
*iter
, unsigned long index
)
422 radix_tree_iter_init(iter
, index
);
423 return radix_tree_next_chunk(root
, iter
, RADIX_TREE_ITER_CONTIG
);
427 * radix_tree_iter_find - find a present entry
428 * @root: radix tree root
429 * @iter: iterator state
430 * @index: start location
432 * This function returns the slot containing the entry with the lowest index
433 * which is at least @index. If @index is larger than any present entry, this
434 * function returns NULL. The @iter is updated to describe the entry found.
436 static inline void __rcu
**
437 radix_tree_iter_find(const struct radix_tree_root
*root
,
438 struct radix_tree_iter
*iter
, unsigned long index
)
440 radix_tree_iter_init(iter
, index
);
441 return radix_tree_next_chunk(root
, iter
, 0);
445 * radix_tree_iter_retry - retry this chunk of the iteration
446 * @iter: iterator state
448 * If we iterate over a tree protected only by the RCU lock, a race
449 * against deletion or creation may result in seeing a slot for which
450 * radix_tree_deref_retry() returns true. If so, call this function
451 * and continue the iteration.
453 static inline __must_check
454 void __rcu
**radix_tree_iter_retry(struct radix_tree_iter
*iter
)
456 iter
->next_index
= iter
->index
;
461 static inline unsigned long
462 __radix_tree_iter_add(struct radix_tree_iter
*iter
, unsigned long slots
)
464 return iter
->index
+ (slots
<< iter_shift(iter
));
468 * radix_tree_iter_resume - resume iterating when the chunk may be invalid
469 * @slot: pointer to current slot
470 * @iter: iterator state
471 * Returns: New slot pointer
473 * If the iterator needs to release then reacquire a lock, the chunk may
474 * have been invalidated by an insertion or deletion. Call this function
475 * before releasing the lock to continue the iteration from the next index.
477 void __rcu
**__must_check
radix_tree_iter_resume(void __rcu
**slot
,
478 struct radix_tree_iter
*iter
);
481 * radix_tree_chunk_size - get current chunk size
483 * @iter: pointer to radix tree iterator
484 * Returns: current chunk size
486 static __always_inline
long
487 radix_tree_chunk_size(struct radix_tree_iter
*iter
)
489 return (iter
->next_index
- iter
->index
) >> iter_shift(iter
);
492 #ifdef CONFIG_RADIX_TREE_MULTIORDER
493 void __rcu
**__radix_tree_next_slot(void __rcu
**slot
,
494 struct radix_tree_iter
*iter
, unsigned flags
);
496 /* Can't happen without sibling entries, but the compiler can't tell that */
497 static inline void __rcu
**__radix_tree_next_slot(void __rcu
**slot
,
498 struct radix_tree_iter
*iter
, unsigned flags
)
505 * radix_tree_next_slot - find next slot in chunk
507 * @slot: pointer to current slot
508 * @iter: pointer to interator state
509 * @flags: RADIX_TREE_ITER_*, should be constant
510 * Returns: pointer to next slot, or NULL if there no more left
512 * This function updates @iter->index in the case of a successful lookup.
513 * For tagged lookup it also eats @iter->tags.
515 * There are several cases where 'slot' can be passed in as NULL to this
516 * function. These cases result from the use of radix_tree_iter_resume() or
517 * radix_tree_iter_retry(). In these cases we don't end up dereferencing
518 * 'slot' because either:
519 * a) we are doing tagged iteration and iter->tags has been set to 0, or
520 * b) we are doing non-tagged iteration, and iter->index and iter->next_index
521 * have been set up so that radix_tree_chunk_size() returns 1 or 0.
523 static __always_inline
void __rcu
**radix_tree_next_slot(void __rcu
**slot
,
524 struct radix_tree_iter
*iter
, unsigned flags
)
526 if (flags
& RADIX_TREE_ITER_TAGGED
) {
528 if (unlikely(!iter
->tags
))
530 if (likely(iter
->tags
& 1ul)) {
531 iter
->index
= __radix_tree_iter_add(iter
, 1);
535 if (!(flags
& RADIX_TREE_ITER_CONTIG
)) {
536 unsigned offset
= __ffs(iter
->tags
);
538 iter
->tags
>>= offset
++;
539 iter
->index
= __radix_tree_iter_add(iter
, offset
);
544 long count
= radix_tree_chunk_size(iter
);
546 while (--count
> 0) {
548 iter
->index
= __radix_tree_iter_add(iter
, 1);
552 if (flags
& RADIX_TREE_ITER_CONTIG
) {
553 /* forbid switching to the next chunk */
554 iter
->next_index
= 0;
562 if (unlikely(radix_tree_is_internal_node(rcu_dereference_raw(*slot
))))
563 return __radix_tree_next_slot(slot
, iter
, flags
);
568 * radix_tree_for_each_slot - iterate over non-empty slots
570 * @slot: the void** variable for pointer to slot
571 * @root: the struct radix_tree_root pointer
572 * @iter: the struct radix_tree_iter pointer
573 * @start: iteration starting index
575 * @slot points to radix tree slot, @iter->index contains its index.
577 #define radix_tree_for_each_slot(slot, root, iter, start) \
578 for (slot = radix_tree_iter_init(iter, start) ; \
579 slot || (slot = radix_tree_next_chunk(root, iter, 0)) ; \
580 slot = radix_tree_next_slot(slot, iter, 0))
583 * radix_tree_for_each_contig - iterate over contiguous slots
585 * @slot: the void** variable for pointer to slot
586 * @root: the struct radix_tree_root pointer
587 * @iter: the struct radix_tree_iter pointer
588 * @start: iteration starting index
590 * @slot points to radix tree slot, @iter->index contains its index.
592 #define radix_tree_for_each_contig(slot, root, iter, start) \
593 for (slot = radix_tree_iter_init(iter, start) ; \
594 slot || (slot = radix_tree_next_chunk(root, iter, \
595 RADIX_TREE_ITER_CONTIG)) ; \
596 slot = radix_tree_next_slot(slot, iter, \
597 RADIX_TREE_ITER_CONTIG))
600 * radix_tree_for_each_tagged - iterate over tagged slots
602 * @slot: the void** variable for pointer to slot
603 * @root: the struct radix_tree_root pointer
604 * @iter: the struct radix_tree_iter pointer
605 * @start: iteration starting index
608 * @slot points to radix tree slot, @iter->index contains its index.
610 #define radix_tree_for_each_tagged(slot, root, iter, start, tag) \
611 for (slot = radix_tree_iter_init(iter, start) ; \
612 slot || (slot = radix_tree_next_chunk(root, iter, \
613 RADIX_TREE_ITER_TAGGED | tag)) ; \
614 slot = radix_tree_next_slot(slot, iter, \
615 RADIX_TREE_ITER_TAGGED | tag))
617 #endif /* _LINUX_RADIX_TREE_H */