2 * Linux Socket Filter - Kernel level socket filtering
4 * Based on the design of the Berkeley Packet Filter. The new
5 * internal format has been designed by PLUMgrid:
7 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
11 * Jay Schulist <jschlst@samba.org>
12 * Alexei Starovoitov <ast@plumgrid.com>
13 * Daniel Borkmann <dborkman@redhat.com>
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
20 * Andi Kleen - Fix a few bad bugs and races.
21 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
24 #include <linux/filter.h>
25 #include <linux/skbuff.h>
26 #include <linux/vmalloc.h>
27 #include <linux/random.h>
28 #include <linux/moduleloader.h>
29 #include <linux/bpf.h>
30 #include <linux/frame.h>
31 #include <linux/rbtree_latch.h>
32 #include <linux/kallsyms.h>
33 #include <linux/rcupdate.h>
35 #include <asm/unaligned.h>
38 #define BPF_R0 regs[BPF_REG_0]
39 #define BPF_R1 regs[BPF_REG_1]
40 #define BPF_R2 regs[BPF_REG_2]
41 #define BPF_R3 regs[BPF_REG_3]
42 #define BPF_R4 regs[BPF_REG_4]
43 #define BPF_R5 regs[BPF_REG_5]
44 #define BPF_R6 regs[BPF_REG_6]
45 #define BPF_R7 regs[BPF_REG_7]
46 #define BPF_R8 regs[BPF_REG_8]
47 #define BPF_R9 regs[BPF_REG_9]
48 #define BPF_R10 regs[BPF_REG_10]
51 #define DST regs[insn->dst_reg]
52 #define SRC regs[insn->src_reg]
53 #define FP regs[BPF_REG_FP]
54 #define ARG1 regs[BPF_REG_ARG1]
55 #define CTX regs[BPF_REG_CTX]
58 /* No hurry in this branch
60 * Exported for the bpf jit load helper.
62 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff
*skb
, int k
, unsigned int size
)
67 ptr
= skb_network_header(skb
) + k
- SKF_NET_OFF
;
68 else if (k
>= SKF_LL_OFF
)
69 ptr
= skb_mac_header(skb
) + k
- SKF_LL_OFF
;
71 if (ptr
>= skb
->head
&& ptr
+ size
<= skb_tail_pointer(skb
))
77 struct bpf_prog
*bpf_prog_alloc(unsigned int size
, gfp_t gfp_extra_flags
)
79 gfp_t gfp_flags
= GFP_KERNEL
| __GFP_ZERO
| gfp_extra_flags
;
80 struct bpf_prog_aux
*aux
;
83 size
= round_up(size
, PAGE_SIZE
);
84 fp
= __vmalloc(size
, gfp_flags
, PAGE_KERNEL
);
88 kmemcheck_annotate_bitfield(fp
, meta
);
90 aux
= kzalloc(sizeof(*aux
), GFP_KERNEL
| gfp_extra_flags
);
96 fp
->pages
= size
/ PAGE_SIZE
;
100 INIT_LIST_HEAD_RCU(&fp
->aux
->ksym_lnode
);
104 EXPORT_SYMBOL_GPL(bpf_prog_alloc
);
106 struct bpf_prog
*bpf_prog_realloc(struct bpf_prog
*fp_old
, unsigned int size
,
107 gfp_t gfp_extra_flags
)
109 gfp_t gfp_flags
= GFP_KERNEL
| __GFP_ZERO
| gfp_extra_flags
;
114 BUG_ON(fp_old
== NULL
);
116 size
= round_up(size
, PAGE_SIZE
);
117 pages
= size
/ PAGE_SIZE
;
118 if (pages
<= fp_old
->pages
)
121 delta
= pages
- fp_old
->pages
;
122 ret
= __bpf_prog_charge(fp_old
->aux
->user
, delta
);
126 fp
= __vmalloc(size
, gfp_flags
, PAGE_KERNEL
);
128 __bpf_prog_uncharge(fp_old
->aux
->user
, delta
);
130 kmemcheck_annotate_bitfield(fp
, meta
);
132 memcpy(fp
, fp_old
, fp_old
->pages
* PAGE_SIZE
);
136 /* We keep fp->aux from fp_old around in the new
137 * reallocated structure.
140 __bpf_prog_free(fp_old
);
146 void __bpf_prog_free(struct bpf_prog
*fp
)
152 int bpf_prog_calc_tag(struct bpf_prog
*fp
)
154 const u32 bits_offset
= SHA_MESSAGE_BYTES
- sizeof(__be64
);
155 u32 raw_size
= bpf_prog_tag_scratch_size(fp
);
156 u32 digest
[SHA_DIGEST_WORDS
];
157 u32 ws
[SHA_WORKSPACE_WORDS
];
158 u32 i
, bsize
, psize
, blocks
;
159 struct bpf_insn
*dst
;
165 raw
= vmalloc(raw_size
);
170 memset(ws
, 0, sizeof(ws
));
172 /* We need to take out the map fd for the digest calculation
173 * since they are unstable from user space side.
176 for (i
= 0, was_ld_map
= false; i
< fp
->len
; i
++) {
177 dst
[i
] = fp
->insnsi
[i
];
179 dst
[i
].code
== (BPF_LD
| BPF_IMM
| BPF_DW
) &&
180 dst
[i
].src_reg
== BPF_PSEUDO_MAP_FD
) {
183 } else if (was_ld_map
&&
185 dst
[i
].dst_reg
== 0 &&
186 dst
[i
].src_reg
== 0 &&
195 psize
= bpf_prog_insn_size(fp
);
196 memset(&raw
[psize
], 0, raw_size
- psize
);
199 bsize
= round_up(psize
, SHA_MESSAGE_BYTES
);
200 blocks
= bsize
/ SHA_MESSAGE_BYTES
;
202 if (bsize
- psize
>= sizeof(__be64
)) {
203 bits
= (__be64
*)(todo
+ bsize
- sizeof(__be64
));
205 bits
= (__be64
*)(todo
+ bsize
+ bits_offset
);
208 *bits
= cpu_to_be64((psize
- 1) << 3);
211 sha_transform(digest
, todo
, ws
);
212 todo
+= SHA_MESSAGE_BYTES
;
215 result
= (__force __be32
*)digest
;
216 for (i
= 0; i
< SHA_DIGEST_WORDS
; i
++)
217 result
[i
] = cpu_to_be32(digest
[i
]);
218 memcpy(fp
->tag
, result
, sizeof(fp
->tag
));
224 static bool bpf_is_jmp_and_has_target(const struct bpf_insn
*insn
)
226 return BPF_CLASS(insn
->code
) == BPF_JMP
&&
227 /* Call and Exit are both special jumps with no
228 * target inside the BPF instruction image.
230 BPF_OP(insn
->code
) != BPF_CALL
&&
231 BPF_OP(insn
->code
) != BPF_EXIT
;
234 static void bpf_adj_branches(struct bpf_prog
*prog
, u32 pos
, u32 delta
)
236 struct bpf_insn
*insn
= prog
->insnsi
;
237 u32 i
, insn_cnt
= prog
->len
;
239 for (i
= 0; i
< insn_cnt
; i
++, insn
++) {
240 if (!bpf_is_jmp_and_has_target(insn
))
243 /* Adjust offset of jmps if we cross boundaries. */
244 if (i
< pos
&& i
+ insn
->off
+ 1 > pos
)
246 else if (i
> pos
+ delta
&& i
+ insn
->off
+ 1 <= pos
+ delta
)
251 struct bpf_prog
*bpf_patch_insn_single(struct bpf_prog
*prog
, u32 off
,
252 const struct bpf_insn
*patch
, u32 len
)
254 u32 insn_adj_cnt
, insn_rest
, insn_delta
= len
- 1;
255 struct bpf_prog
*prog_adj
;
257 /* Since our patchlet doesn't expand the image, we're done. */
258 if (insn_delta
== 0) {
259 memcpy(prog
->insnsi
+ off
, patch
, sizeof(*patch
));
263 insn_adj_cnt
= prog
->len
+ insn_delta
;
265 /* Several new instructions need to be inserted. Make room
266 * for them. Likely, there's no need for a new allocation as
267 * last page could have large enough tailroom.
269 prog_adj
= bpf_prog_realloc(prog
, bpf_prog_size(insn_adj_cnt
),
274 prog_adj
->len
= insn_adj_cnt
;
276 /* Patching happens in 3 steps:
278 * 1) Move over tail of insnsi from next instruction onwards,
279 * so we can patch the single target insn with one or more
280 * new ones (patching is always from 1 to n insns, n > 0).
281 * 2) Inject new instructions at the target location.
282 * 3) Adjust branch offsets if necessary.
284 insn_rest
= insn_adj_cnt
- off
- len
;
286 memmove(prog_adj
->insnsi
+ off
+ len
, prog_adj
->insnsi
+ off
+ 1,
287 sizeof(*patch
) * insn_rest
);
288 memcpy(prog_adj
->insnsi
+ off
, patch
, sizeof(*patch
) * len
);
290 bpf_adj_branches(prog_adj
, off
, insn_delta
);
295 #ifdef CONFIG_BPF_JIT
296 static __always_inline
void
297 bpf_get_prog_addr_region(const struct bpf_prog
*prog
,
298 unsigned long *symbol_start
,
299 unsigned long *symbol_end
)
301 const struct bpf_binary_header
*hdr
= bpf_jit_binary_hdr(prog
);
302 unsigned long addr
= (unsigned long)hdr
;
304 WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog
));
306 *symbol_start
= addr
;
307 *symbol_end
= addr
+ hdr
->pages
* PAGE_SIZE
;
310 static void bpf_get_prog_name(const struct bpf_prog
*prog
, char *sym
)
312 const char *end
= sym
+ KSYM_NAME_LEN
;
314 BUILD_BUG_ON(sizeof("bpf_prog_") +
315 sizeof(prog
->tag
) * 2 +
316 /* name has been null terminated.
317 * We should need +1 for the '_' preceding
318 * the name. However, the null character
319 * is double counted between the name and the
320 * sizeof("bpf_prog_") above, so we omit
323 sizeof(prog
->aux
->name
) > KSYM_NAME_LEN
);
325 sym
+= snprintf(sym
, KSYM_NAME_LEN
, "bpf_prog_");
326 sym
= bin2hex(sym
, prog
->tag
, sizeof(prog
->tag
));
327 if (prog
->aux
->name
[0])
328 snprintf(sym
, (size_t)(end
- sym
), "_%s", prog
->aux
->name
);
333 static __always_inline
unsigned long
334 bpf_get_prog_addr_start(struct latch_tree_node
*n
)
336 unsigned long symbol_start
, symbol_end
;
337 const struct bpf_prog_aux
*aux
;
339 aux
= container_of(n
, struct bpf_prog_aux
, ksym_tnode
);
340 bpf_get_prog_addr_region(aux
->prog
, &symbol_start
, &symbol_end
);
345 static __always_inline
bool bpf_tree_less(struct latch_tree_node
*a
,
346 struct latch_tree_node
*b
)
348 return bpf_get_prog_addr_start(a
) < bpf_get_prog_addr_start(b
);
351 static __always_inline
int bpf_tree_comp(void *key
, struct latch_tree_node
*n
)
353 unsigned long val
= (unsigned long)key
;
354 unsigned long symbol_start
, symbol_end
;
355 const struct bpf_prog_aux
*aux
;
357 aux
= container_of(n
, struct bpf_prog_aux
, ksym_tnode
);
358 bpf_get_prog_addr_region(aux
->prog
, &symbol_start
, &symbol_end
);
360 if (val
< symbol_start
)
362 if (val
>= symbol_end
)
368 static const struct latch_tree_ops bpf_tree_ops
= {
369 .less
= bpf_tree_less
,
370 .comp
= bpf_tree_comp
,
373 static DEFINE_SPINLOCK(bpf_lock
);
374 static LIST_HEAD(bpf_kallsyms
);
375 static struct latch_tree_root bpf_tree __cacheline_aligned
;
377 int bpf_jit_kallsyms __read_mostly
;
379 static void bpf_prog_ksym_node_add(struct bpf_prog_aux
*aux
)
381 WARN_ON_ONCE(!list_empty(&aux
->ksym_lnode
));
382 list_add_tail_rcu(&aux
->ksym_lnode
, &bpf_kallsyms
);
383 latch_tree_insert(&aux
->ksym_tnode
, &bpf_tree
, &bpf_tree_ops
);
386 static void bpf_prog_ksym_node_del(struct bpf_prog_aux
*aux
)
388 if (list_empty(&aux
->ksym_lnode
))
391 latch_tree_erase(&aux
->ksym_tnode
, &bpf_tree
, &bpf_tree_ops
);
392 list_del_rcu(&aux
->ksym_lnode
);
395 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog
*fp
)
397 return fp
->jited
&& !bpf_prog_was_classic(fp
);
400 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog
*fp
)
402 return list_empty(&fp
->aux
->ksym_lnode
) ||
403 fp
->aux
->ksym_lnode
.prev
== LIST_POISON2
;
406 void bpf_prog_kallsyms_add(struct bpf_prog
*fp
)
408 if (!bpf_prog_kallsyms_candidate(fp
) ||
409 !capable(CAP_SYS_ADMIN
))
412 spin_lock_bh(&bpf_lock
);
413 bpf_prog_ksym_node_add(fp
->aux
);
414 spin_unlock_bh(&bpf_lock
);
417 void bpf_prog_kallsyms_del(struct bpf_prog
*fp
)
419 if (!bpf_prog_kallsyms_candidate(fp
))
422 spin_lock_bh(&bpf_lock
);
423 bpf_prog_ksym_node_del(fp
->aux
);
424 spin_unlock_bh(&bpf_lock
);
427 static struct bpf_prog
*bpf_prog_kallsyms_find(unsigned long addr
)
429 struct latch_tree_node
*n
;
431 if (!bpf_jit_kallsyms_enabled())
434 n
= latch_tree_find((void *)addr
, &bpf_tree
, &bpf_tree_ops
);
436 container_of(n
, struct bpf_prog_aux
, ksym_tnode
)->prog
:
440 const char *__bpf_address_lookup(unsigned long addr
, unsigned long *size
,
441 unsigned long *off
, char *sym
)
443 unsigned long symbol_start
, symbol_end
;
444 struct bpf_prog
*prog
;
448 prog
= bpf_prog_kallsyms_find(addr
);
450 bpf_get_prog_addr_region(prog
, &symbol_start
, &symbol_end
);
451 bpf_get_prog_name(prog
, sym
);
455 *size
= symbol_end
- symbol_start
;
457 *off
= addr
- symbol_start
;
464 bool is_bpf_text_address(unsigned long addr
)
469 ret
= bpf_prog_kallsyms_find(addr
) != NULL
;
475 int bpf_get_kallsym(unsigned int symnum
, unsigned long *value
, char *type
,
478 unsigned long symbol_start
, symbol_end
;
479 struct bpf_prog_aux
*aux
;
483 if (!bpf_jit_kallsyms_enabled())
487 list_for_each_entry_rcu(aux
, &bpf_kallsyms
, ksym_lnode
) {
491 bpf_get_prog_addr_region(aux
->prog
, &symbol_start
, &symbol_end
);
492 bpf_get_prog_name(aux
->prog
, sym
);
494 *value
= symbol_start
;
495 *type
= BPF_SYM_ELF_TYPE
;
505 struct bpf_binary_header
*
506 bpf_jit_binary_alloc(unsigned int proglen
, u8
**image_ptr
,
507 unsigned int alignment
,
508 bpf_jit_fill_hole_t bpf_fill_ill_insns
)
510 struct bpf_binary_header
*hdr
;
511 unsigned int size
, hole
, start
;
513 /* Most of BPF filters are really small, but if some of them
514 * fill a page, allow at least 128 extra bytes to insert a
515 * random section of illegal instructions.
517 size
= round_up(proglen
+ sizeof(*hdr
) + 128, PAGE_SIZE
);
518 hdr
= module_alloc(size
);
522 /* Fill space with illegal/arch-dep instructions. */
523 bpf_fill_ill_insns(hdr
, size
);
525 hdr
->pages
= size
/ PAGE_SIZE
;
526 hole
= min_t(unsigned int, size
- (proglen
+ sizeof(*hdr
)),
527 PAGE_SIZE
- sizeof(*hdr
));
528 start
= (get_random_int() % hole
) & ~(alignment
- 1);
530 /* Leave a random number of instructions before BPF code. */
531 *image_ptr
= &hdr
->image
[start
];
536 void bpf_jit_binary_free(struct bpf_binary_header
*hdr
)
541 /* This symbol is only overridden by archs that have different
542 * requirements than the usual eBPF JITs, f.e. when they only
543 * implement cBPF JIT, do not set images read-only, etc.
545 void __weak
bpf_jit_free(struct bpf_prog
*fp
)
548 struct bpf_binary_header
*hdr
= bpf_jit_binary_hdr(fp
);
550 bpf_jit_binary_unlock_ro(hdr
);
551 bpf_jit_binary_free(hdr
);
553 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp
));
556 bpf_prog_unlock_free(fp
);
559 int bpf_jit_harden __read_mostly
;
561 static int bpf_jit_blind_insn(const struct bpf_insn
*from
,
562 const struct bpf_insn
*aux
,
563 struct bpf_insn
*to_buff
)
565 struct bpf_insn
*to
= to_buff
;
566 u32 imm_rnd
= get_random_int();
569 BUILD_BUG_ON(BPF_REG_AX
+ 1 != MAX_BPF_JIT_REG
);
570 BUILD_BUG_ON(MAX_BPF_REG
+ 1 != MAX_BPF_JIT_REG
);
572 if (from
->imm
== 0 &&
573 (from
->code
== (BPF_ALU
| BPF_MOV
| BPF_K
) ||
574 from
->code
== (BPF_ALU64
| BPF_MOV
| BPF_K
))) {
575 *to
++ = BPF_ALU64_REG(BPF_XOR
, from
->dst_reg
, from
->dst_reg
);
579 switch (from
->code
) {
580 case BPF_ALU
| BPF_ADD
| BPF_K
:
581 case BPF_ALU
| BPF_SUB
| BPF_K
:
582 case BPF_ALU
| BPF_AND
| BPF_K
:
583 case BPF_ALU
| BPF_OR
| BPF_K
:
584 case BPF_ALU
| BPF_XOR
| BPF_K
:
585 case BPF_ALU
| BPF_MUL
| BPF_K
:
586 case BPF_ALU
| BPF_MOV
| BPF_K
:
587 case BPF_ALU
| BPF_DIV
| BPF_K
:
588 case BPF_ALU
| BPF_MOD
| BPF_K
:
589 *to
++ = BPF_ALU32_IMM(BPF_MOV
, BPF_REG_AX
, imm_rnd
^ from
->imm
);
590 *to
++ = BPF_ALU32_IMM(BPF_XOR
, BPF_REG_AX
, imm_rnd
);
591 *to
++ = BPF_ALU32_REG(from
->code
, from
->dst_reg
, BPF_REG_AX
);
594 case BPF_ALU64
| BPF_ADD
| BPF_K
:
595 case BPF_ALU64
| BPF_SUB
| BPF_K
:
596 case BPF_ALU64
| BPF_AND
| BPF_K
:
597 case BPF_ALU64
| BPF_OR
| BPF_K
:
598 case BPF_ALU64
| BPF_XOR
| BPF_K
:
599 case BPF_ALU64
| BPF_MUL
| BPF_K
:
600 case BPF_ALU64
| BPF_MOV
| BPF_K
:
601 case BPF_ALU64
| BPF_DIV
| BPF_K
:
602 case BPF_ALU64
| BPF_MOD
| BPF_K
:
603 *to
++ = BPF_ALU64_IMM(BPF_MOV
, BPF_REG_AX
, imm_rnd
^ from
->imm
);
604 *to
++ = BPF_ALU64_IMM(BPF_XOR
, BPF_REG_AX
, imm_rnd
);
605 *to
++ = BPF_ALU64_REG(from
->code
, from
->dst_reg
, BPF_REG_AX
);
608 case BPF_JMP
| BPF_JEQ
| BPF_K
:
609 case BPF_JMP
| BPF_JNE
| BPF_K
:
610 case BPF_JMP
| BPF_JGT
| BPF_K
:
611 case BPF_JMP
| BPF_JLT
| BPF_K
:
612 case BPF_JMP
| BPF_JGE
| BPF_K
:
613 case BPF_JMP
| BPF_JLE
| BPF_K
:
614 case BPF_JMP
| BPF_JSGT
| BPF_K
:
615 case BPF_JMP
| BPF_JSLT
| BPF_K
:
616 case BPF_JMP
| BPF_JSGE
| BPF_K
:
617 case BPF_JMP
| BPF_JSLE
| BPF_K
:
618 case BPF_JMP
| BPF_JSET
| BPF_K
:
619 /* Accommodate for extra offset in case of a backjump. */
623 *to
++ = BPF_ALU64_IMM(BPF_MOV
, BPF_REG_AX
, imm_rnd
^ from
->imm
);
624 *to
++ = BPF_ALU64_IMM(BPF_XOR
, BPF_REG_AX
, imm_rnd
);
625 *to
++ = BPF_JMP_REG(from
->code
, from
->dst_reg
, BPF_REG_AX
, off
);
628 case BPF_LD
| BPF_ABS
| BPF_W
:
629 case BPF_LD
| BPF_ABS
| BPF_H
:
630 case BPF_LD
| BPF_ABS
| BPF_B
:
631 *to
++ = BPF_ALU64_IMM(BPF_MOV
, BPF_REG_AX
, imm_rnd
^ from
->imm
);
632 *to
++ = BPF_ALU64_IMM(BPF_XOR
, BPF_REG_AX
, imm_rnd
);
633 *to
++ = BPF_LD_IND(from
->code
, BPF_REG_AX
, 0);
636 case BPF_LD
| BPF_IND
| BPF_W
:
637 case BPF_LD
| BPF_IND
| BPF_H
:
638 case BPF_LD
| BPF_IND
| BPF_B
:
639 *to
++ = BPF_ALU64_IMM(BPF_MOV
, BPF_REG_AX
, imm_rnd
^ from
->imm
);
640 *to
++ = BPF_ALU64_IMM(BPF_XOR
, BPF_REG_AX
, imm_rnd
);
641 *to
++ = BPF_ALU32_REG(BPF_ADD
, BPF_REG_AX
, from
->src_reg
);
642 *to
++ = BPF_LD_IND(from
->code
, BPF_REG_AX
, 0);
645 case BPF_LD
| BPF_IMM
| BPF_DW
:
646 *to
++ = BPF_ALU64_IMM(BPF_MOV
, BPF_REG_AX
, imm_rnd
^ aux
[1].imm
);
647 *to
++ = BPF_ALU64_IMM(BPF_XOR
, BPF_REG_AX
, imm_rnd
);
648 *to
++ = BPF_ALU64_IMM(BPF_LSH
, BPF_REG_AX
, 32);
649 *to
++ = BPF_ALU64_REG(BPF_MOV
, aux
[0].dst_reg
, BPF_REG_AX
);
651 case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
652 *to
++ = BPF_ALU32_IMM(BPF_MOV
, BPF_REG_AX
, imm_rnd
^ aux
[0].imm
);
653 *to
++ = BPF_ALU32_IMM(BPF_XOR
, BPF_REG_AX
, imm_rnd
);
654 *to
++ = BPF_ALU64_REG(BPF_OR
, aux
[0].dst_reg
, BPF_REG_AX
);
657 case BPF_ST
| BPF_MEM
| BPF_DW
:
658 case BPF_ST
| BPF_MEM
| BPF_W
:
659 case BPF_ST
| BPF_MEM
| BPF_H
:
660 case BPF_ST
| BPF_MEM
| BPF_B
:
661 *to
++ = BPF_ALU64_IMM(BPF_MOV
, BPF_REG_AX
, imm_rnd
^ from
->imm
);
662 *to
++ = BPF_ALU64_IMM(BPF_XOR
, BPF_REG_AX
, imm_rnd
);
663 *to
++ = BPF_STX_MEM(from
->code
, from
->dst_reg
, BPF_REG_AX
, from
->off
);
670 static struct bpf_prog
*bpf_prog_clone_create(struct bpf_prog
*fp_other
,
671 gfp_t gfp_extra_flags
)
673 gfp_t gfp_flags
= GFP_KERNEL
| __GFP_ZERO
| gfp_extra_flags
;
676 fp
= __vmalloc(fp_other
->pages
* PAGE_SIZE
, gfp_flags
, PAGE_KERNEL
);
678 kmemcheck_annotate_bitfield(fp
, meta
);
680 /* aux->prog still points to the fp_other one, so
681 * when promoting the clone to the real program,
682 * this still needs to be adapted.
684 memcpy(fp
, fp_other
, fp_other
->pages
* PAGE_SIZE
);
690 static void bpf_prog_clone_free(struct bpf_prog
*fp
)
692 /* aux was stolen by the other clone, so we cannot free
693 * it from this path! It will be freed eventually by the
694 * other program on release.
696 * At this point, we don't need a deferred release since
697 * clone is guaranteed to not be locked.
703 void bpf_jit_prog_release_other(struct bpf_prog
*fp
, struct bpf_prog
*fp_other
)
705 /* We have to repoint aux->prog to self, as we don't
706 * know whether fp here is the clone or the original.
709 bpf_prog_clone_free(fp_other
);
712 struct bpf_prog
*bpf_jit_blind_constants(struct bpf_prog
*prog
)
714 struct bpf_insn insn_buff
[16], aux
[2];
715 struct bpf_prog
*clone
, *tmp
;
716 int insn_delta
, insn_cnt
;
717 struct bpf_insn
*insn
;
720 if (!bpf_jit_blinding_enabled())
723 clone
= bpf_prog_clone_create(prog
, GFP_USER
);
725 return ERR_PTR(-ENOMEM
);
727 insn_cnt
= clone
->len
;
728 insn
= clone
->insnsi
;
730 for (i
= 0; i
< insn_cnt
; i
++, insn
++) {
731 /* We temporarily need to hold the original ld64 insn
732 * so that we can still access the first part in the
733 * second blinding run.
735 if (insn
[0].code
== (BPF_LD
| BPF_IMM
| BPF_DW
) &&
737 memcpy(aux
, insn
, sizeof(aux
));
739 rewritten
= bpf_jit_blind_insn(insn
, aux
, insn_buff
);
743 tmp
= bpf_patch_insn_single(clone
, i
, insn_buff
, rewritten
);
745 /* Patching may have repointed aux->prog during
746 * realloc from the original one, so we need to
747 * fix it up here on error.
749 bpf_jit_prog_release_other(prog
, clone
);
750 return ERR_PTR(-ENOMEM
);
754 insn_delta
= rewritten
- 1;
756 /* Walk new program and skip insns we just inserted. */
757 insn
= clone
->insnsi
+ i
+ insn_delta
;
758 insn_cnt
+= insn_delta
;
764 #endif /* CONFIG_BPF_JIT */
766 /* Base function for offset calculation. Needs to go into .text section,
767 * therefore keeping it non-static as well; will also be used by JITs
768 * anyway later on, so do not let the compiler omit it.
770 noinline u64
__bpf_call_base(u64 r1
, u64 r2
, u64 r3
, u64 r4
, u64 r5
)
774 EXPORT_SYMBOL_GPL(__bpf_call_base
);
777 * __bpf_prog_run - run eBPF program on a given context
778 * @ctx: is the data we are operating on
779 * @insn: is the array of eBPF instructions
781 * Decode and execute eBPF instructions.
783 static unsigned int ___bpf_prog_run(u64
*regs
, const struct bpf_insn
*insn
,
787 static const void *jumptable
[256] = {
788 [0 ... 255] = &&default_label
,
789 /* Now overwrite non-defaults ... */
790 /* 32 bit ALU operations */
791 [BPF_ALU
| BPF_ADD
| BPF_X
] = &&ALU_ADD_X
,
792 [BPF_ALU
| BPF_ADD
| BPF_K
] = &&ALU_ADD_K
,
793 [BPF_ALU
| BPF_SUB
| BPF_X
] = &&ALU_SUB_X
,
794 [BPF_ALU
| BPF_SUB
| BPF_K
] = &&ALU_SUB_K
,
795 [BPF_ALU
| BPF_AND
| BPF_X
] = &&ALU_AND_X
,
796 [BPF_ALU
| BPF_AND
| BPF_K
] = &&ALU_AND_K
,
797 [BPF_ALU
| BPF_OR
| BPF_X
] = &&ALU_OR_X
,
798 [BPF_ALU
| BPF_OR
| BPF_K
] = &&ALU_OR_K
,
799 [BPF_ALU
| BPF_LSH
| BPF_X
] = &&ALU_LSH_X
,
800 [BPF_ALU
| BPF_LSH
| BPF_K
] = &&ALU_LSH_K
,
801 [BPF_ALU
| BPF_RSH
| BPF_X
] = &&ALU_RSH_X
,
802 [BPF_ALU
| BPF_RSH
| BPF_K
] = &&ALU_RSH_K
,
803 [BPF_ALU
| BPF_XOR
| BPF_X
] = &&ALU_XOR_X
,
804 [BPF_ALU
| BPF_XOR
| BPF_K
] = &&ALU_XOR_K
,
805 [BPF_ALU
| BPF_MUL
| BPF_X
] = &&ALU_MUL_X
,
806 [BPF_ALU
| BPF_MUL
| BPF_K
] = &&ALU_MUL_K
,
807 [BPF_ALU
| BPF_MOV
| BPF_X
] = &&ALU_MOV_X
,
808 [BPF_ALU
| BPF_MOV
| BPF_K
] = &&ALU_MOV_K
,
809 [BPF_ALU
| BPF_DIV
| BPF_X
] = &&ALU_DIV_X
,
810 [BPF_ALU
| BPF_DIV
| BPF_K
] = &&ALU_DIV_K
,
811 [BPF_ALU
| BPF_MOD
| BPF_X
] = &&ALU_MOD_X
,
812 [BPF_ALU
| BPF_MOD
| BPF_K
] = &&ALU_MOD_K
,
813 [BPF_ALU
| BPF_NEG
] = &&ALU_NEG
,
814 [BPF_ALU
| BPF_END
| BPF_TO_BE
] = &&ALU_END_TO_BE
,
815 [BPF_ALU
| BPF_END
| BPF_TO_LE
] = &&ALU_END_TO_LE
,
816 /* 64 bit ALU operations */
817 [BPF_ALU64
| BPF_ADD
| BPF_X
] = &&ALU64_ADD_X
,
818 [BPF_ALU64
| BPF_ADD
| BPF_K
] = &&ALU64_ADD_K
,
819 [BPF_ALU64
| BPF_SUB
| BPF_X
] = &&ALU64_SUB_X
,
820 [BPF_ALU64
| BPF_SUB
| BPF_K
] = &&ALU64_SUB_K
,
821 [BPF_ALU64
| BPF_AND
| BPF_X
] = &&ALU64_AND_X
,
822 [BPF_ALU64
| BPF_AND
| BPF_K
] = &&ALU64_AND_K
,
823 [BPF_ALU64
| BPF_OR
| BPF_X
] = &&ALU64_OR_X
,
824 [BPF_ALU64
| BPF_OR
| BPF_K
] = &&ALU64_OR_K
,
825 [BPF_ALU64
| BPF_LSH
| BPF_X
] = &&ALU64_LSH_X
,
826 [BPF_ALU64
| BPF_LSH
| BPF_K
] = &&ALU64_LSH_K
,
827 [BPF_ALU64
| BPF_RSH
| BPF_X
] = &&ALU64_RSH_X
,
828 [BPF_ALU64
| BPF_RSH
| BPF_K
] = &&ALU64_RSH_K
,
829 [BPF_ALU64
| BPF_XOR
| BPF_X
] = &&ALU64_XOR_X
,
830 [BPF_ALU64
| BPF_XOR
| BPF_K
] = &&ALU64_XOR_K
,
831 [BPF_ALU64
| BPF_MUL
| BPF_X
] = &&ALU64_MUL_X
,
832 [BPF_ALU64
| BPF_MUL
| BPF_K
] = &&ALU64_MUL_K
,
833 [BPF_ALU64
| BPF_MOV
| BPF_X
] = &&ALU64_MOV_X
,
834 [BPF_ALU64
| BPF_MOV
| BPF_K
] = &&ALU64_MOV_K
,
835 [BPF_ALU64
| BPF_ARSH
| BPF_X
] = &&ALU64_ARSH_X
,
836 [BPF_ALU64
| BPF_ARSH
| BPF_K
] = &&ALU64_ARSH_K
,
837 [BPF_ALU64
| BPF_DIV
| BPF_X
] = &&ALU64_DIV_X
,
838 [BPF_ALU64
| BPF_DIV
| BPF_K
] = &&ALU64_DIV_K
,
839 [BPF_ALU64
| BPF_MOD
| BPF_X
] = &&ALU64_MOD_X
,
840 [BPF_ALU64
| BPF_MOD
| BPF_K
] = &&ALU64_MOD_K
,
841 [BPF_ALU64
| BPF_NEG
] = &&ALU64_NEG
,
842 /* Call instruction */
843 [BPF_JMP
| BPF_CALL
] = &&JMP_CALL
,
844 [BPF_JMP
| BPF_TAIL_CALL
] = &&JMP_TAIL_CALL
,
846 [BPF_JMP
| BPF_JA
] = &&JMP_JA
,
847 [BPF_JMP
| BPF_JEQ
| BPF_X
] = &&JMP_JEQ_X
,
848 [BPF_JMP
| BPF_JEQ
| BPF_K
] = &&JMP_JEQ_K
,
849 [BPF_JMP
| BPF_JNE
| BPF_X
] = &&JMP_JNE_X
,
850 [BPF_JMP
| BPF_JNE
| BPF_K
] = &&JMP_JNE_K
,
851 [BPF_JMP
| BPF_JGT
| BPF_X
] = &&JMP_JGT_X
,
852 [BPF_JMP
| BPF_JGT
| BPF_K
] = &&JMP_JGT_K
,
853 [BPF_JMP
| BPF_JLT
| BPF_X
] = &&JMP_JLT_X
,
854 [BPF_JMP
| BPF_JLT
| BPF_K
] = &&JMP_JLT_K
,
855 [BPF_JMP
| BPF_JGE
| BPF_X
] = &&JMP_JGE_X
,
856 [BPF_JMP
| BPF_JGE
| BPF_K
] = &&JMP_JGE_K
,
857 [BPF_JMP
| BPF_JLE
| BPF_X
] = &&JMP_JLE_X
,
858 [BPF_JMP
| BPF_JLE
| BPF_K
] = &&JMP_JLE_K
,
859 [BPF_JMP
| BPF_JSGT
| BPF_X
] = &&JMP_JSGT_X
,
860 [BPF_JMP
| BPF_JSGT
| BPF_K
] = &&JMP_JSGT_K
,
861 [BPF_JMP
| BPF_JSLT
| BPF_X
] = &&JMP_JSLT_X
,
862 [BPF_JMP
| BPF_JSLT
| BPF_K
] = &&JMP_JSLT_K
,
863 [BPF_JMP
| BPF_JSGE
| BPF_X
] = &&JMP_JSGE_X
,
864 [BPF_JMP
| BPF_JSGE
| BPF_K
] = &&JMP_JSGE_K
,
865 [BPF_JMP
| BPF_JSLE
| BPF_X
] = &&JMP_JSLE_X
,
866 [BPF_JMP
| BPF_JSLE
| BPF_K
] = &&JMP_JSLE_K
,
867 [BPF_JMP
| BPF_JSET
| BPF_X
] = &&JMP_JSET_X
,
868 [BPF_JMP
| BPF_JSET
| BPF_K
] = &&JMP_JSET_K
,
870 [BPF_JMP
| BPF_EXIT
] = &&JMP_EXIT
,
871 /* Store instructions */
872 [BPF_STX
| BPF_MEM
| BPF_B
] = &&STX_MEM_B
,
873 [BPF_STX
| BPF_MEM
| BPF_H
] = &&STX_MEM_H
,
874 [BPF_STX
| BPF_MEM
| BPF_W
] = &&STX_MEM_W
,
875 [BPF_STX
| BPF_MEM
| BPF_DW
] = &&STX_MEM_DW
,
876 [BPF_STX
| BPF_XADD
| BPF_W
] = &&STX_XADD_W
,
877 [BPF_STX
| BPF_XADD
| BPF_DW
] = &&STX_XADD_DW
,
878 [BPF_ST
| BPF_MEM
| BPF_B
] = &&ST_MEM_B
,
879 [BPF_ST
| BPF_MEM
| BPF_H
] = &&ST_MEM_H
,
880 [BPF_ST
| BPF_MEM
| BPF_W
] = &&ST_MEM_W
,
881 [BPF_ST
| BPF_MEM
| BPF_DW
] = &&ST_MEM_DW
,
882 /* Load instructions */
883 [BPF_LDX
| BPF_MEM
| BPF_B
] = &&LDX_MEM_B
,
884 [BPF_LDX
| BPF_MEM
| BPF_H
] = &&LDX_MEM_H
,
885 [BPF_LDX
| BPF_MEM
| BPF_W
] = &&LDX_MEM_W
,
886 [BPF_LDX
| BPF_MEM
| BPF_DW
] = &&LDX_MEM_DW
,
887 [BPF_LD
| BPF_ABS
| BPF_W
] = &&LD_ABS_W
,
888 [BPF_LD
| BPF_ABS
| BPF_H
] = &&LD_ABS_H
,
889 [BPF_LD
| BPF_ABS
| BPF_B
] = &&LD_ABS_B
,
890 [BPF_LD
| BPF_IND
| BPF_W
] = &&LD_IND_W
,
891 [BPF_LD
| BPF_IND
| BPF_H
] = &&LD_IND_H
,
892 [BPF_LD
| BPF_IND
| BPF_B
] = &&LD_IND_B
,
893 [BPF_LD
| BPF_IMM
| BPF_DW
] = &&LD_IMM_DW
,
895 u32 tail_call_cnt
= 0;
899 #define CONT ({ insn++; goto select_insn; })
900 #define CONT_JMP ({ insn++; goto select_insn; })
903 goto *jumptable
[insn
->code
];
906 #define ALU(OPCODE, OP) \
907 ALU64_##OPCODE##_X: \
911 DST = (u32) DST OP (u32) SRC; \
913 ALU64_##OPCODE##_K: \
917 DST = (u32) DST OP (u32) IMM; \
948 DST
= (u64
) (u32
) insn
[0].imm
| ((u64
) (u32
) insn
[1].imm
) << 32;
952 (*(s64
*) &DST
) >>= SRC
;
955 (*(s64
*) &DST
) >>= IMM
;
958 if (unlikely(SRC
== 0))
960 div64_u64_rem(DST
, SRC
, &tmp
);
964 if (unlikely(SRC
== 0))
967 DST
= do_div(tmp
, (u32
) SRC
);
970 div64_u64_rem(DST
, IMM
, &tmp
);
975 DST
= do_div(tmp
, (u32
) IMM
);
978 if (unlikely(SRC
== 0))
980 DST
= div64_u64(DST
, SRC
);
983 if (unlikely(SRC
== 0))
986 do_div(tmp
, (u32
) SRC
);
990 DST
= div64_u64(DST
, IMM
);
994 do_div(tmp
, (u32
) IMM
);
1000 DST
= (__force u16
) cpu_to_be16(DST
);
1003 DST
= (__force u32
) cpu_to_be32(DST
);
1006 DST
= (__force u64
) cpu_to_be64(DST
);
1013 DST
= (__force u16
) cpu_to_le16(DST
);
1016 DST
= (__force u32
) cpu_to_le32(DST
);
1019 DST
= (__force u64
) cpu_to_le64(DST
);
1026 /* Function call scratches BPF_R1-BPF_R5 registers,
1027 * preserves BPF_R6-BPF_R9, and stores return value
1030 BPF_R0
= (__bpf_call_base
+ insn
->imm
)(BPF_R1
, BPF_R2
, BPF_R3
,
1035 struct bpf_map
*map
= (struct bpf_map
*) (unsigned long) BPF_R2
;
1036 struct bpf_array
*array
= container_of(map
, struct bpf_array
, map
);
1037 struct bpf_prog
*prog
;
1040 if (unlikely(index
>= array
->map
.max_entries
))
1042 if (unlikely(tail_call_cnt
> MAX_TAIL_CALL_CNT
))
1047 prog
= READ_ONCE(array
->ptrs
[index
]);
1051 /* ARG1 at this point is guaranteed to point to CTX from
1052 * the verifier side due to the fact that the tail call is
1053 * handeled like a helper, that is, bpf_tail_call_proto,
1054 * where arg1_type is ARG_PTR_TO_CTX.
1056 insn
= prog
->insnsi
;
1138 if (((s64
) DST
) > ((s64
) SRC
)) {
1144 if (((s64
) DST
) > ((s64
) IMM
)) {
1150 if (((s64
) DST
) < ((s64
) SRC
)) {
1156 if (((s64
) DST
) < ((s64
) IMM
)) {
1162 if (((s64
) DST
) >= ((s64
) SRC
)) {
1168 if (((s64
) DST
) >= ((s64
) IMM
)) {
1174 if (((s64
) DST
) <= ((s64
) SRC
)) {
1180 if (((s64
) DST
) <= ((s64
) IMM
)) {
1200 /* STX and ST and LDX*/
1201 #define LDST(SIZEOP, SIZE) \
1203 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
1206 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
1209 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
1217 STX_XADD_W
: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1218 atomic_add((u32
) SRC
, (atomic_t
*)(unsigned long)
1221 STX_XADD_DW
: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1222 atomic64_add((u64
) SRC
, (atomic64_t
*)(unsigned long)
1225 LD_ABS_W
: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
1228 /* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are only
1229 * appearing in the programs where ctx == skb
1230 * (see may_access_skb() in the verifier). All programs
1231 * keep 'ctx' in regs[BPF_REG_CTX] == BPF_R6,
1232 * bpf_convert_filter() saves it in BPF_R6, internal BPF
1233 * verifier will check that BPF_R6 == ctx.
1235 * BPF_ABS and BPF_IND are wrappers of function calls,
1236 * so they scratch BPF_R1-BPF_R5 registers, preserve
1237 * BPF_R6-BPF_R9, and store return value into BPF_R0.
1240 * ctx == skb == BPF_R6 == CTX
1243 * SRC == any register
1244 * IMM == 32-bit immediate
1247 * BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
1250 ptr
= bpf_load_pointer((struct sk_buff
*) (unsigned long) CTX
, off
, 4, &tmp
);
1251 if (likely(ptr
!= NULL
)) {
1252 BPF_R0
= get_unaligned_be32(ptr
);
1257 LD_ABS_H
: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
1260 ptr
= bpf_load_pointer((struct sk_buff
*) (unsigned long) CTX
, off
, 2, &tmp
);
1261 if (likely(ptr
!= NULL
)) {
1262 BPF_R0
= get_unaligned_be16(ptr
);
1267 LD_ABS_B
: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
1270 ptr
= bpf_load_pointer((struct sk_buff
*) (unsigned long) CTX
, off
, 1, &tmp
);
1271 if (likely(ptr
!= NULL
)) {
1272 BPF_R0
= *(u8
*)ptr
;
1277 LD_IND_W
: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
1280 LD_IND_H
: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
1283 LD_IND_B
: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
1288 /* If we ever reach this, we have a bug somewhere. */
1289 WARN_RATELIMIT(1, "unknown opcode %02x\n", insn
->code
);
1292 STACK_FRAME_NON_STANDARD(___bpf_prog_run
); /* jump table */
1294 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1295 #define DEFINE_BPF_PROG_RUN(stack_size) \
1296 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1298 u64 stack[stack_size / sizeof(u64)]; \
1299 u64 regs[MAX_BPF_REG]; \
1301 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1302 ARG1 = (u64) (unsigned long) ctx; \
1303 return ___bpf_prog_run(regs, insn, stack); \
1306 #define EVAL1(FN, X) FN(X)
1307 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1308 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1309 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1310 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1311 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1313 EVAL6(DEFINE_BPF_PROG_RUN
, 32, 64, 96, 128, 160, 192);
1314 EVAL6(DEFINE_BPF_PROG_RUN
, 224, 256, 288, 320, 352, 384);
1315 EVAL4(DEFINE_BPF_PROG_RUN
, 416, 448, 480, 512);
1317 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1319 static unsigned int (*interpreters
[])(const void *ctx
,
1320 const struct bpf_insn
*insn
) = {
1321 EVAL6(PROG_NAME_LIST
, 32, 64, 96, 128, 160, 192)
1322 EVAL6(PROG_NAME_LIST
, 224, 256, 288, 320, 352, 384)
1323 EVAL4(PROG_NAME_LIST
, 416, 448, 480, 512)
1326 bool bpf_prog_array_compatible(struct bpf_array
*array
,
1327 const struct bpf_prog
*fp
)
1329 if (!array
->owner_prog_type
) {
1330 /* There's no owner yet where we could check for
1333 array
->owner_prog_type
= fp
->type
;
1334 array
->owner_jited
= fp
->jited
;
1339 return array
->owner_prog_type
== fp
->type
&&
1340 array
->owner_jited
== fp
->jited
;
1343 static int bpf_check_tail_call(const struct bpf_prog
*fp
)
1345 struct bpf_prog_aux
*aux
= fp
->aux
;
1348 for (i
= 0; i
< aux
->used_map_cnt
; i
++) {
1349 struct bpf_map
*map
= aux
->used_maps
[i
];
1350 struct bpf_array
*array
;
1352 if (map
->map_type
!= BPF_MAP_TYPE_PROG_ARRAY
)
1355 array
= container_of(map
, struct bpf_array
, map
);
1356 if (!bpf_prog_array_compatible(array
, fp
))
1364 * bpf_prog_select_runtime - select exec runtime for BPF program
1365 * @fp: bpf_prog populated with internal BPF program
1366 * @err: pointer to error variable
1368 * Try to JIT eBPF program, if JIT is not available, use interpreter.
1369 * The BPF program will be executed via BPF_PROG_RUN() macro.
1371 struct bpf_prog
*bpf_prog_select_runtime(struct bpf_prog
*fp
, int *err
)
1373 u32 stack_depth
= max_t(u32
, fp
->aux
->stack_depth
, 1);
1375 fp
->bpf_func
= interpreters
[(round_up(stack_depth
, 32) / 32) - 1];
1377 /* eBPF JITs can rewrite the program in case constant
1378 * blinding is active. However, in case of error during
1379 * blinding, bpf_int_jit_compile() must always return a
1380 * valid program, which in this case would simply not
1381 * be JITed, but falls back to the interpreter.
1383 if (!bpf_prog_is_dev_bound(fp
->aux
)) {
1384 fp
= bpf_int_jit_compile(fp
);
1386 *err
= bpf_prog_offload_compile(fp
);
1390 bpf_prog_lock_ro(fp
);
1392 /* The tail call compatibility check can only be done at
1393 * this late stage as we need to determine, if we deal
1394 * with JITed or non JITed program concatenations and not
1395 * all eBPF JITs might immediately support all features.
1397 *err
= bpf_check_tail_call(fp
);
1401 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime
);
1403 static unsigned int __bpf_prog_ret1(const void *ctx
,
1404 const struct bpf_insn
*insn
)
1409 static struct bpf_prog_dummy
{
1410 struct bpf_prog prog
;
1411 } dummy_bpf_prog
= {
1413 .bpf_func
= __bpf_prog_ret1
,
1417 /* to avoid allocating empty bpf_prog_array for cgroups that
1418 * don't have bpf program attached use one global 'empty_prog_array'
1419 * It will not be modified the caller of bpf_prog_array_alloc()
1420 * (since caller requested prog_cnt == 0)
1421 * that pointer should be 'freed' by bpf_prog_array_free()
1424 struct bpf_prog_array hdr
;
1425 struct bpf_prog
*null_prog
;
1426 } empty_prog_array
= {
1430 struct bpf_prog_array __rcu
*bpf_prog_array_alloc(u32 prog_cnt
, gfp_t flags
)
1433 return kzalloc(sizeof(struct bpf_prog_array
) +
1434 sizeof(struct bpf_prog
*) * (prog_cnt
+ 1),
1437 return &empty_prog_array
.hdr
;
1440 void bpf_prog_array_free(struct bpf_prog_array __rcu
*progs
)
1443 progs
== (struct bpf_prog_array __rcu
*)&empty_prog_array
.hdr
)
1445 kfree_rcu(progs
, rcu
);
1448 int bpf_prog_array_length(struct bpf_prog_array __rcu
*progs
)
1450 struct bpf_prog
**prog
;
1454 prog
= rcu_dereference(progs
)->progs
;
1455 for (; *prog
; prog
++)
1461 int bpf_prog_array_copy_to_user(struct bpf_prog_array __rcu
*progs
,
1462 __u32 __user
*prog_ids
, u32 cnt
)
1464 struct bpf_prog
**prog
;
1468 prog
= rcu_dereference(progs
)->progs
;
1469 for (; *prog
; prog
++) {
1470 id
= (*prog
)->aux
->id
;
1471 if (copy_to_user(prog_ids
+ i
, &id
, sizeof(id
))) {
1486 void bpf_prog_array_delete_safe(struct bpf_prog_array __rcu
*progs
,
1487 struct bpf_prog
*old_prog
)
1489 struct bpf_prog
**prog
= progs
->progs
;
1491 for (; *prog
; prog
++)
1492 if (*prog
== old_prog
) {
1493 WRITE_ONCE(*prog
, &dummy_bpf_prog
.prog
);
1498 int bpf_prog_array_copy(struct bpf_prog_array __rcu
*old_array
,
1499 struct bpf_prog
*exclude_prog
,
1500 struct bpf_prog
*include_prog
,
1501 struct bpf_prog_array
**new_array
)
1503 int new_prog_cnt
, carry_prog_cnt
= 0;
1504 struct bpf_prog
**existing_prog
;
1505 struct bpf_prog_array
*array
;
1506 int new_prog_idx
= 0;
1508 /* Figure out how many existing progs we need to carry over to
1512 existing_prog
= old_array
->progs
;
1513 for (; *existing_prog
; existing_prog
++) {
1514 if (*existing_prog
!= exclude_prog
&&
1515 *existing_prog
!= &dummy_bpf_prog
.prog
)
1517 if (*existing_prog
== include_prog
)
1522 /* How many progs (not NULL) will be in the new array? */
1523 new_prog_cnt
= carry_prog_cnt
;
1527 /* Do we have any prog (not NULL) in the new array? */
1528 if (!new_prog_cnt
) {
1533 /* +1 as the end of prog_array is marked with NULL */
1534 array
= bpf_prog_array_alloc(new_prog_cnt
+ 1, GFP_KERNEL
);
1538 /* Fill in the new prog array */
1539 if (carry_prog_cnt
) {
1540 existing_prog
= old_array
->progs
;
1541 for (; *existing_prog
; existing_prog
++)
1542 if (*existing_prog
!= exclude_prog
&&
1543 *existing_prog
!= &dummy_bpf_prog
.prog
)
1544 array
->progs
[new_prog_idx
++] = *existing_prog
;
1547 array
->progs
[new_prog_idx
++] = include_prog
;
1548 array
->progs
[new_prog_idx
] = NULL
;
1553 static void bpf_prog_free_deferred(struct work_struct
*work
)
1555 struct bpf_prog_aux
*aux
;
1557 aux
= container_of(work
, struct bpf_prog_aux
, work
);
1558 if (bpf_prog_is_dev_bound(aux
))
1559 bpf_prog_offload_destroy(aux
->prog
);
1560 bpf_jit_free(aux
->prog
);
1563 /* Free internal BPF program */
1564 void bpf_prog_free(struct bpf_prog
*fp
)
1566 struct bpf_prog_aux
*aux
= fp
->aux
;
1568 INIT_WORK(&aux
->work
, bpf_prog_free_deferred
);
1569 schedule_work(&aux
->work
);
1571 EXPORT_SYMBOL_GPL(bpf_prog_free
);
1573 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
1574 static DEFINE_PER_CPU(struct rnd_state
, bpf_user_rnd_state
);
1576 void bpf_user_rnd_init_once(void)
1578 prandom_init_once(&bpf_user_rnd_state
);
1581 BPF_CALL_0(bpf_user_rnd_u32
)
1583 /* Should someone ever have the rather unwise idea to use some
1584 * of the registers passed into this function, then note that
1585 * this function is called from native eBPF and classic-to-eBPF
1586 * transformations. Register assignments from both sides are
1587 * different, f.e. classic always sets fn(ctx, A, X) here.
1589 struct rnd_state
*state
;
1592 state
= &get_cpu_var(bpf_user_rnd_state
);
1593 res
= prandom_u32_state(state
);
1594 put_cpu_var(bpf_user_rnd_state
);
1599 /* Weak definitions of helper functions in case we don't have bpf syscall. */
1600 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak
;
1601 const struct bpf_func_proto bpf_map_update_elem_proto __weak
;
1602 const struct bpf_func_proto bpf_map_delete_elem_proto __weak
;
1604 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak
;
1605 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak
;
1606 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak
;
1607 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak
;
1609 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak
;
1610 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak
;
1611 const struct bpf_func_proto bpf_get_current_comm_proto __weak
;
1612 const struct bpf_func_proto bpf_sock_map_update_proto __weak
;
1614 const struct bpf_func_proto
* __weak
bpf_get_trace_printk_proto(void)
1620 bpf_event_output(struct bpf_map
*map
, u64 flags
, void *meta
, u64 meta_size
,
1621 void *ctx
, u64 ctx_size
, bpf_ctx_copy_t ctx_copy
)
1626 /* Always built-in helper functions. */
1627 const struct bpf_func_proto bpf_tail_call_proto
= {
1630 .ret_type
= RET_VOID
,
1631 .arg1_type
= ARG_PTR_TO_CTX
,
1632 .arg2_type
= ARG_CONST_MAP_PTR
,
1633 .arg3_type
= ARG_ANYTHING
,
1636 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
1637 * It is encouraged to implement bpf_int_jit_compile() instead, so that
1638 * eBPF and implicitly also cBPF can get JITed!
1640 struct bpf_prog
* __weak
bpf_int_jit_compile(struct bpf_prog
*prog
)
1645 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
1646 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
1648 void __weak
bpf_jit_compile(struct bpf_prog
*prog
)
1652 bool __weak
bpf_helper_changes_pkt_data(void *func
)
1657 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
1658 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
1660 int __weak
skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
,
1666 /* All definitions of tracepoints related to BPF. */
1667 #define CREATE_TRACE_POINTS
1668 #include <linux/bpf_trace.h>
1670 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception
);
1672 /* These are only used within the BPF_SYSCALL code */
1673 #ifdef CONFIG_BPF_SYSCALL
1674 EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_get_type
);
1675 EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_put_rcu
);