Linux 3.8-rc7
[cris-mirror.git] / Documentation / RCU / checklist.txt
blob31ef8fe07f828026ad31f29e63bdd95143bf3e2a
1 Review Checklist for RCU Patches
4 This document contains a checklist for producing and reviewing patches
5 that make use of RCU.  Violating any of the rules listed below will
6 result in the same sorts of problems that leaving out a locking primitive
7 would cause.  This list is based on experiences reviewing such patches
8 over a rather long period of time, but improvements are always welcome!
10 0.      Is RCU being applied to a read-mostly situation?  If the data
11         structure is updated more than about 10% of the time, then you
12         should strongly consider some other approach, unless detailed
13         performance measurements show that RCU is nonetheless the right
14         tool for the job.  Yes, RCU does reduce read-side overhead by
15         increasing write-side overhead, which is exactly why normal uses
16         of RCU will do much more reading than updating.
18         Another exception is where performance is not an issue, and RCU
19         provides a simpler implementation.  An example of this situation
20         is the dynamic NMI code in the Linux 2.6 kernel, at least on
21         architectures where NMIs are rare.
23         Yet another exception is where the low real-time latency of RCU's
24         read-side primitives is critically important.
26 1.      Does the update code have proper mutual exclusion?
28         RCU does allow -readers- to run (almost) naked, but -writers- must
29         still use some sort of mutual exclusion, such as:
31         a.      locking,
32         b.      atomic operations, or
33         c.      restricting updates to a single task.
35         If you choose #b, be prepared to describe how you have handled
36         memory barriers on weakly ordered machines (pretty much all of
37         them -- even x86 allows later loads to be reordered to precede
38         earlier stores), and be prepared to explain why this added
39         complexity is worthwhile.  If you choose #c, be prepared to
40         explain how this single task does not become a major bottleneck on
41         big multiprocessor machines (for example, if the task is updating
42         information relating to itself that other tasks can read, there
43         by definition can be no bottleneck).
45 2.      Do the RCU read-side critical sections make proper use of
46         rcu_read_lock() and friends?  These primitives are needed
47         to prevent grace periods from ending prematurely, which
48         could result in data being unceremoniously freed out from
49         under your read-side code, which can greatly increase the
50         actuarial risk of your kernel.
52         As a rough rule of thumb, any dereference of an RCU-protected
53         pointer must be covered by rcu_read_lock(), rcu_read_lock_bh(),
54         rcu_read_lock_sched(), or by the appropriate update-side lock.
55         Disabling of preemption can serve as rcu_read_lock_sched(), but
56         is less readable.
58 3.      Does the update code tolerate concurrent accesses?
60         The whole point of RCU is to permit readers to run without
61         any locks or atomic operations.  This means that readers will
62         be running while updates are in progress.  There are a number
63         of ways to handle this concurrency, depending on the situation:
65         a.      Use the RCU variants of the list and hlist update
66                 primitives to add, remove, and replace elements on
67                 an RCU-protected list.  Alternatively, use the other
68                 RCU-protected data structures that have been added to
69                 the Linux kernel.
71                 This is almost always the best approach.
73         b.      Proceed as in (a) above, but also maintain per-element
74                 locks (that are acquired by both readers and writers)
75                 that guard per-element state.  Of course, fields that
76                 the readers refrain from accessing can be guarded by
77                 some other lock acquired only by updaters, if desired.
79                 This works quite well, also.
81         c.      Make updates appear atomic to readers.  For example,
82                 pointer updates to properly aligned fields will
83                 appear atomic, as will individual atomic primitives.
84                 Sequences of perations performed under a lock will -not-
85                 appear to be atomic to RCU readers, nor will sequences
86                 of multiple atomic primitives.
88                 This can work, but is starting to get a bit tricky.
90         d.      Carefully order the updates and the reads so that
91                 readers see valid data at all phases of the update.
92                 This is often more difficult than it sounds, especially
93                 given modern CPUs' tendency to reorder memory references.
94                 One must usually liberally sprinkle memory barriers
95                 (smp_wmb(), smp_rmb(), smp_mb()) through the code,
96                 making it difficult to understand and to test.
98                 It is usually better to group the changing data into
99                 a separate structure, so that the change may be made
100                 to appear atomic by updating a pointer to reference
101                 a new structure containing updated values.
103 4.      Weakly ordered CPUs pose special challenges.  Almost all CPUs
104         are weakly ordered -- even x86 CPUs allow later loads to be
105         reordered to precede earlier stores.  RCU code must take all of
106         the following measures to prevent memory-corruption problems:
108         a.      Readers must maintain proper ordering of their memory
109                 accesses.  The rcu_dereference() primitive ensures that
110                 the CPU picks up the pointer before it picks up the data
111                 that the pointer points to.  This really is necessary
112                 on Alpha CPUs.  If you don't believe me, see:
114                         http://www.openvms.compaq.com/wizard/wiz_2637.html
116                 The rcu_dereference() primitive is also an excellent
117                 documentation aid, letting the person reading the code
118                 know exactly which pointers are protected by RCU.
119                 Please note that compilers can also reorder code, and
120                 they are becoming increasingly aggressive about doing
121                 just that.  The rcu_dereference() primitive therefore
122                 also prevents destructive compiler optimizations.
124                 The rcu_dereference() primitive is used by the
125                 various "_rcu()" list-traversal primitives, such
126                 as the list_for_each_entry_rcu().  Note that it is
127                 perfectly legal (if redundant) for update-side code to
128                 use rcu_dereference() and the "_rcu()" list-traversal
129                 primitives.  This is particularly useful in code that
130                 is common to readers and updaters.  However, lockdep
131                 will complain if you access rcu_dereference() outside
132                 of an RCU read-side critical section.  See lockdep.txt
133                 to learn what to do about this.
135                 Of course, neither rcu_dereference() nor the "_rcu()"
136                 list-traversal primitives can substitute for a good
137                 concurrency design coordinating among multiple updaters.
139         b.      If the list macros are being used, the list_add_tail_rcu()
140                 and list_add_rcu() primitives must be used in order
141                 to prevent weakly ordered machines from misordering
142                 structure initialization and pointer planting.
143                 Similarly, if the hlist macros are being used, the
144                 hlist_add_head_rcu() primitive is required.
146         c.      If the list macros are being used, the list_del_rcu()
147                 primitive must be used to keep list_del()'s pointer
148                 poisoning from inflicting toxic effects on concurrent
149                 readers.  Similarly, if the hlist macros are being used,
150                 the hlist_del_rcu() primitive is required.
152                 The list_replace_rcu() and hlist_replace_rcu() primitives
153                 may be used to replace an old structure with a new one
154                 in their respective types of RCU-protected lists.
156         d.      Rules similar to (4b) and (4c) apply to the "hlist_nulls"
157                 type of RCU-protected linked lists.
159         e.      Updates must ensure that initialization of a given
160                 structure happens before pointers to that structure are
161                 publicized.  Use the rcu_assign_pointer() primitive
162                 when publicizing a pointer to a structure that can
163                 be traversed by an RCU read-side critical section.
165 5.      If call_rcu(), or a related primitive such as call_rcu_bh(),
166         call_rcu_sched(), or call_srcu() is used, the callback function
167         must be written to be called from softirq context.  In particular,
168         it cannot block.
170 6.      Since synchronize_rcu() can block, it cannot be called from
171         any sort of irq context.  The same rule applies for
172         synchronize_rcu_bh(), synchronize_sched(), synchronize_srcu(),
173         synchronize_rcu_expedited(), synchronize_rcu_bh_expedited(),
174         synchronize_sched_expedite(), and synchronize_srcu_expedited().
176         The expedited forms of these primitives have the same semantics
177         as the non-expedited forms, but expediting is both expensive
178         and unfriendly to real-time workloads.  Use of the expedited
179         primitives should be restricted to rare configuration-change
180         operations that would not normally be undertaken while a real-time
181         workload is running.
183         In particular, if you find yourself invoking one of the expedited
184         primitives repeatedly in a loop, please do everyone a favor:
185         Restructure your code so that it batches the updates, allowing
186         a single non-expedited primitive to cover the entire batch.
187         This will very likely be faster than the loop containing the
188         expedited primitive, and will be much much easier on the rest
189         of the system, especially to real-time workloads running on
190         the rest of the system.
192         In addition, it is illegal to call the expedited forms from
193         a CPU-hotplug notifier, or while holding a lock that is acquired
194         by a CPU-hotplug notifier.  Failing to observe this restriction
195         will result in deadlock.
197 7.      If the updater uses call_rcu() or synchronize_rcu(), then the
198         corresponding readers must use rcu_read_lock() and
199         rcu_read_unlock().  If the updater uses call_rcu_bh() or
200         synchronize_rcu_bh(), then the corresponding readers must
201         use rcu_read_lock_bh() and rcu_read_unlock_bh().  If the
202         updater uses call_rcu_sched() or synchronize_sched(), then
203         the corresponding readers must disable preemption, possibly
204         by calling rcu_read_lock_sched() and rcu_read_unlock_sched().
205         If the updater uses synchronize_srcu() or call_srcu(),
206         the the corresponding readers must use srcu_read_lock() and
207         srcu_read_unlock(), and with the same srcu_struct.  The rules for
208         the expedited primitives are the same as for their non-expedited
209         counterparts.  Mixing things up will result in confusion and
210         broken kernels.
212         One exception to this rule: rcu_read_lock() and rcu_read_unlock()
213         may be substituted for rcu_read_lock_bh() and rcu_read_unlock_bh()
214         in cases where local bottom halves are already known to be
215         disabled, for example, in irq or softirq context.  Commenting
216         such cases is a must, of course!  And the jury is still out on
217         whether the increased speed is worth it.
219 8.      Although synchronize_rcu() is slower than is call_rcu(), it
220         usually results in simpler code.  So, unless update performance
221         is critically important or the updaters cannot block,
222         synchronize_rcu() should be used in preference to call_rcu().
224         An especially important property of the synchronize_rcu()
225         primitive is that it automatically self-limits: if grace periods
226         are delayed for whatever reason, then the synchronize_rcu()
227         primitive will correspondingly delay updates.  In contrast,
228         code using call_rcu() should explicitly limit update rate in
229         cases where grace periods are delayed, as failing to do so can
230         result in excessive realtime latencies or even OOM conditions.
232         Ways of gaining this self-limiting property when using call_rcu()
233         include:
235         a.      Keeping a count of the number of data-structure elements
236                 used by the RCU-protected data structure, including
237                 those waiting for a grace period to elapse.  Enforce a
238                 limit on this number, stalling updates as needed to allow
239                 previously deferred frees to complete.  Alternatively,
240                 limit only the number awaiting deferred free rather than
241                 the total number of elements.
243                 One way to stall the updates is to acquire the update-side
244                 mutex.  (Don't try this with a spinlock -- other CPUs
245                 spinning on the lock could prevent the grace period
246                 from ever ending.)  Another way to stall the updates
247                 is for the updates to use a wrapper function around
248                 the memory allocator, so that this wrapper function
249                 simulates OOM when there is too much memory awaiting an
250                 RCU grace period.  There are of course many other
251                 variations on this theme.
253         b.      Limiting update rate.  For example, if updates occur only
254                 once per hour, then no explicit rate limiting is required,
255                 unless your system is already badly broken.  The dcache
256                 subsystem takes this approach -- updates are guarded
257                 by a global lock, limiting their rate.
259         c.      Trusted update -- if updates can only be done manually by
260                 superuser or some other trusted user, then it might not
261                 be necessary to automatically limit them.  The theory
262                 here is that superuser already has lots of ways to crash
263                 the machine.
265         d.      Use call_rcu_bh() rather than call_rcu(), in order to take
266                 advantage of call_rcu_bh()'s faster grace periods.
268         e.      Periodically invoke synchronize_rcu(), permitting a limited
269                 number of updates per grace period.
271         The same cautions apply to call_rcu_bh() and call_rcu_sched().
273 9.      All RCU list-traversal primitives, which include
274         rcu_dereference(), list_for_each_entry_rcu(), and
275         list_for_each_safe_rcu(), must be either within an RCU read-side
276         critical section or must be protected by appropriate update-side
277         locks.  RCU read-side critical sections are delimited by
278         rcu_read_lock() and rcu_read_unlock(), or by similar primitives
279         such as rcu_read_lock_bh() and rcu_read_unlock_bh(), in which
280         case the matching rcu_dereference() primitive must be used in
281         order to keep lockdep happy, in this case, rcu_dereference_bh().
283         The reason that it is permissible to use RCU list-traversal
284         primitives when the update-side lock is held is that doing so
285         can be quite helpful in reducing code bloat when common code is
286         shared between readers and updaters.  Additional primitives
287         are provided for this case, as discussed in lockdep.txt.
289 10.     Conversely, if you are in an RCU read-side critical section,
290         and you don't hold the appropriate update-side lock, you -must-
291         use the "_rcu()" variants of the list macros.  Failing to do so
292         will break Alpha, cause aggressive compilers to generate bad code,
293         and confuse people trying to read your code.
295 11.     Note that synchronize_rcu() -only- guarantees to wait until
296         all currently executing rcu_read_lock()-protected RCU read-side
297         critical sections complete.  It does -not- necessarily guarantee
298         that all currently running interrupts, NMIs, preempt_disable()
299         code, or idle loops will complete.  Therefore, if you do not have
300         rcu_read_lock()-protected read-side critical sections, do -not-
301         use synchronize_rcu().
303         Similarly, disabling preemption is not an acceptable substitute
304         for rcu_read_lock().  Code that attempts to use preemption
305         disabling where it should be using rcu_read_lock() will break
306         in real-time kernel builds.
308         If you want to wait for interrupt handlers, NMI handlers, and
309         code under the influence of preempt_disable(), you instead
310         need to use synchronize_irq() or synchronize_sched().
312         This same limitation also applies to synchronize_rcu_bh()
313         and synchronize_srcu(), as well as to the asynchronous and
314         expedited forms of the three primitives, namely call_rcu(),
315         call_rcu_bh(), call_srcu(), synchronize_rcu_expedited(),
316         synchronize_rcu_bh_expedited(), and synchronize_srcu_expedited().
318 12.     Any lock acquired by an RCU callback must be acquired elsewhere
319         with softirq disabled, e.g., via spin_lock_irqsave(),
320         spin_lock_bh(), etc.  Failing to disable irq on a given
321         acquisition of that lock will result in deadlock as soon as
322         the RCU softirq handler happens to run your RCU callback while
323         interrupting that acquisition's critical section.
325 13.     RCU callbacks can be and are executed in parallel.  In many cases,
326         the callback code simply wrappers around kfree(), so that this
327         is not an issue (or, more accurately, to the extent that it is
328         an issue, the memory-allocator locking handles it).  However,
329         if the callbacks do manipulate a shared data structure, they
330         must use whatever locking or other synchronization is required
331         to safely access and/or modify that data structure.
333         RCU callbacks are -usually- executed on the same CPU that executed
334         the corresponding call_rcu(), call_rcu_bh(), or call_rcu_sched(),
335         but are by -no- means guaranteed to be.  For example, if a given
336         CPU goes offline while having an RCU callback pending, then that
337         RCU callback will execute on some surviving CPU.  (If this was
338         not the case, a self-spawning RCU callback would prevent the
339         victim CPU from ever going offline.)
341 14.     SRCU (srcu_read_lock(), srcu_read_unlock(), srcu_dereference(),
342         synchronize_srcu(), synchronize_srcu_expedited(), and call_srcu())
343         may only be invoked from process context.  Unlike other forms of
344         RCU, it -is- permissible to block in an SRCU read-side critical
345         section (demarked by srcu_read_lock() and srcu_read_unlock()),
346         hence the "SRCU": "sleepable RCU".  Please note that if you
347         don't need to sleep in read-side critical sections, you should be
348         using RCU rather than SRCU, because RCU is almost always faster
349         and easier to use than is SRCU.
351         If you need to enter your read-side critical section in a
352         hardirq or exception handler, and then exit that same read-side
353         critical section in the task that was interrupted, then you need
354         to srcu_read_lock_raw() and srcu_read_unlock_raw(), which avoid
355         the lockdep checking that would otherwise this practice illegal.
357         Also unlike other forms of RCU, explicit initialization
358         and cleanup is required via init_srcu_struct() and
359         cleanup_srcu_struct().  These are passed a "struct srcu_struct"
360         that defines the scope of a given SRCU domain.  Once initialized,
361         the srcu_struct is passed to srcu_read_lock(), srcu_read_unlock()
362         synchronize_srcu(), synchronize_srcu_expedited(), and call_srcu().
363         A given synchronize_srcu() waits only for SRCU read-side critical
364         sections governed by srcu_read_lock() and srcu_read_unlock()
365         calls that have been passed the same srcu_struct.  This property
366         is what makes sleeping read-side critical sections tolerable --
367         a given subsystem delays only its own updates, not those of other
368         subsystems using SRCU.  Therefore, SRCU is less prone to OOM the
369         system than RCU would be if RCU's read-side critical sections
370         were permitted to sleep.
372         The ability to sleep in read-side critical sections does not
373         come for free.  First, corresponding srcu_read_lock() and
374         srcu_read_unlock() calls must be passed the same srcu_struct.
375         Second, grace-period-detection overhead is amortized only
376         over those updates sharing a given srcu_struct, rather than
377         being globally amortized as they are for other forms of RCU.
378         Therefore, SRCU should be used in preference to rw_semaphore
379         only in extremely read-intensive situations, or in situations
380         requiring SRCU's read-side deadlock immunity or low read-side
381         realtime latency.
383         Note that, rcu_assign_pointer() relates to SRCU just as it does
384         to other forms of RCU.
386 15.     The whole point of call_rcu(), synchronize_rcu(), and friends
387         is to wait until all pre-existing readers have finished before
388         carrying out some otherwise-destructive operation.  It is
389         therefore critically important to -first- remove any path
390         that readers can follow that could be affected by the
391         destructive operation, and -only- -then- invoke call_rcu(),
392         synchronize_rcu(), or friends.
394         Because these primitives only wait for pre-existing readers, it
395         is the caller's responsibility to guarantee that any subsequent
396         readers will execute safely.
398 16.     The various RCU read-side primitives do -not- necessarily contain
399         memory barriers.  You should therefore plan for the CPU
400         and the compiler to freely reorder code into and out of RCU
401         read-side critical sections.  It is the responsibility of the
402         RCU update-side primitives to deal with this.
404 17.     Use CONFIG_PROVE_RCU, CONFIG_DEBUG_OBJECTS_RCU_HEAD, and
405         the __rcu sparse checks to validate your RCU code.  These
406         can help find problems as follows:
408         CONFIG_PROVE_RCU: check that accesses to RCU-protected data
409                 structures are carried out under the proper RCU
410                 read-side critical section, while holding the right
411                 combination of locks, or whatever other conditions
412                 are appropriate.
414         CONFIG_DEBUG_OBJECTS_RCU_HEAD: check that you don't pass the
415                 same object to call_rcu() (or friends) before an RCU
416                 grace period has elapsed since the last time that you
417                 passed that same object to call_rcu() (or friends).
419         __rcu sparse checks: tag the pointer to the RCU-protected data
420                 structure with __rcu, and sparse will warn you if you
421                 access that pointer without the services of one of the
422                 variants of rcu_dereference().
424         These debugging aids can help you find problems that are
425         otherwise extremely difficult to spot.