Linux 3.8-rc7
[cris-mirror.git] / arch / arm / kernel / arch_timer.c
blobc8ef20747ee75a5b0426c8338b2bfb068e2d376e
1 /*
2 * linux/arch/arm/kernel/arch_timer.c
4 * Copyright (C) 2011 ARM Ltd.
5 * All Rights Reserved
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/device.h>
15 #include <linux/smp.h>
16 #include <linux/cpu.h>
17 #include <linux/jiffies.h>
18 #include <linux/clockchips.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/io.h>
23 #include <asm/cputype.h>
24 #include <asm/delay.h>
25 #include <asm/localtimer.h>
26 #include <asm/arch_timer.h>
27 #include <asm/system_info.h>
28 #include <asm/sched_clock.h>
30 static unsigned long arch_timer_rate;
32 enum ppi_nr {
33 PHYS_SECURE_PPI,
34 PHYS_NONSECURE_PPI,
35 VIRT_PPI,
36 HYP_PPI,
37 MAX_TIMER_PPI
40 static int arch_timer_ppi[MAX_TIMER_PPI];
42 static struct clock_event_device __percpu **arch_timer_evt;
43 static struct delay_timer arch_delay_timer;
45 static bool arch_timer_use_virtual = true;
48 * Architected system timer support.
51 #define ARCH_TIMER_CTRL_ENABLE (1 << 0)
52 #define ARCH_TIMER_CTRL_IT_MASK (1 << 1)
53 #define ARCH_TIMER_CTRL_IT_STAT (1 << 2)
55 #define ARCH_TIMER_REG_CTRL 0
56 #define ARCH_TIMER_REG_FREQ 1
57 #define ARCH_TIMER_REG_TVAL 2
59 #define ARCH_TIMER_PHYS_ACCESS 0
60 #define ARCH_TIMER_VIRT_ACCESS 1
63 * These register accessors are marked inline so the compiler can
64 * nicely work out which register we want, and chuck away the rest of
65 * the code. At least it does so with a recent GCC (4.6.3).
67 static inline void arch_timer_reg_write(const int access, const int reg, u32 val)
69 if (access == ARCH_TIMER_PHYS_ACCESS) {
70 switch (reg) {
71 case ARCH_TIMER_REG_CTRL:
72 asm volatile("mcr p15, 0, %0, c14, c2, 1" : : "r" (val));
73 break;
74 case ARCH_TIMER_REG_TVAL:
75 asm volatile("mcr p15, 0, %0, c14, c2, 0" : : "r" (val));
76 break;
80 if (access == ARCH_TIMER_VIRT_ACCESS) {
81 switch (reg) {
82 case ARCH_TIMER_REG_CTRL:
83 asm volatile("mcr p15, 0, %0, c14, c3, 1" : : "r" (val));
84 break;
85 case ARCH_TIMER_REG_TVAL:
86 asm volatile("mcr p15, 0, %0, c14, c3, 0" : : "r" (val));
87 break;
91 isb();
94 static inline u32 arch_timer_reg_read(const int access, const int reg)
96 u32 val = 0;
98 if (access == ARCH_TIMER_PHYS_ACCESS) {
99 switch (reg) {
100 case ARCH_TIMER_REG_CTRL:
101 asm volatile("mrc p15, 0, %0, c14, c2, 1" : "=r" (val));
102 break;
103 case ARCH_TIMER_REG_TVAL:
104 asm volatile("mrc p15, 0, %0, c14, c2, 0" : "=r" (val));
105 break;
106 case ARCH_TIMER_REG_FREQ:
107 asm volatile("mrc p15, 0, %0, c14, c0, 0" : "=r" (val));
108 break;
112 if (access == ARCH_TIMER_VIRT_ACCESS) {
113 switch (reg) {
114 case ARCH_TIMER_REG_CTRL:
115 asm volatile("mrc p15, 0, %0, c14, c3, 1" : "=r" (val));
116 break;
117 case ARCH_TIMER_REG_TVAL:
118 asm volatile("mrc p15, 0, %0, c14, c3, 0" : "=r" (val));
119 break;
123 return val;
126 static inline cycle_t arch_timer_counter_read(const int access)
128 cycle_t cval = 0;
130 if (access == ARCH_TIMER_PHYS_ACCESS)
131 asm volatile("mrrc p15, 0, %Q0, %R0, c14" : "=r" (cval));
133 if (access == ARCH_TIMER_VIRT_ACCESS)
134 asm volatile("mrrc p15, 1, %Q0, %R0, c14" : "=r" (cval));
136 return cval;
139 static inline cycle_t arch_counter_get_cntpct(void)
141 return arch_timer_counter_read(ARCH_TIMER_PHYS_ACCESS);
144 static inline cycle_t arch_counter_get_cntvct(void)
146 return arch_timer_counter_read(ARCH_TIMER_VIRT_ACCESS);
149 static irqreturn_t inline timer_handler(const int access,
150 struct clock_event_device *evt)
152 unsigned long ctrl;
153 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
154 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
155 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
156 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
157 evt->event_handler(evt);
158 return IRQ_HANDLED;
161 return IRQ_NONE;
164 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
166 struct clock_event_device *evt = *(struct clock_event_device **)dev_id;
168 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
171 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
173 struct clock_event_device *evt = *(struct clock_event_device **)dev_id;
175 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
178 static inline void timer_set_mode(const int access, int mode)
180 unsigned long ctrl;
181 switch (mode) {
182 case CLOCK_EVT_MODE_UNUSED:
183 case CLOCK_EVT_MODE_SHUTDOWN:
184 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
185 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
186 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
187 break;
188 default:
189 break;
193 static void arch_timer_set_mode_virt(enum clock_event_mode mode,
194 struct clock_event_device *clk)
196 timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode);
199 static void arch_timer_set_mode_phys(enum clock_event_mode mode,
200 struct clock_event_device *clk)
202 timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode);
205 static inline void set_next_event(const int access, unsigned long evt)
207 unsigned long ctrl;
208 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
209 ctrl |= ARCH_TIMER_CTRL_ENABLE;
210 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
211 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt);
212 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
215 static int arch_timer_set_next_event_virt(unsigned long evt,
216 struct clock_event_device *unused)
218 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt);
219 return 0;
222 static int arch_timer_set_next_event_phys(unsigned long evt,
223 struct clock_event_device *unused)
225 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt);
226 return 0;
229 static int __cpuinit arch_timer_setup(struct clock_event_device *clk)
231 clk->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP;
232 clk->name = "arch_sys_timer";
233 clk->rating = 450;
234 if (arch_timer_use_virtual) {
235 clk->irq = arch_timer_ppi[VIRT_PPI];
236 clk->set_mode = arch_timer_set_mode_virt;
237 clk->set_next_event = arch_timer_set_next_event_virt;
238 } else {
239 clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
240 clk->set_mode = arch_timer_set_mode_phys;
241 clk->set_next_event = arch_timer_set_next_event_phys;
244 clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, NULL);
246 clockevents_config_and_register(clk, arch_timer_rate,
247 0xf, 0x7fffffff);
249 *__this_cpu_ptr(arch_timer_evt) = clk;
251 if (arch_timer_use_virtual)
252 enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
253 else {
254 enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
255 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
256 enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
259 return 0;
262 /* Is the optional system timer available? */
263 static int local_timer_is_architected(void)
265 return (cpu_architecture() >= CPU_ARCH_ARMv7) &&
266 ((read_cpuid_ext(CPUID_EXT_PFR1) >> 16) & 0xf) == 1;
269 static int arch_timer_available(void)
271 unsigned long freq;
273 if (!local_timer_is_architected())
274 return -ENXIO;
276 if (arch_timer_rate == 0) {
277 freq = arch_timer_reg_read(ARCH_TIMER_PHYS_ACCESS,
278 ARCH_TIMER_REG_FREQ);
280 /* Check the timer frequency. */
281 if (freq == 0) {
282 pr_warn("Architected timer frequency not available\n");
283 return -EINVAL;
286 arch_timer_rate = freq;
289 pr_info_once("Architected local timer running at %lu.%02luMHz (%s).\n",
290 arch_timer_rate / 1000000, (arch_timer_rate / 10000) % 100,
291 arch_timer_use_virtual ? "virt" : "phys");
292 return 0;
295 static u32 notrace arch_counter_get_cntpct32(void)
297 cycle_t cnt = arch_counter_get_cntpct();
300 * The sched_clock infrastructure only knows about counters
301 * with at most 32bits. Forget about the upper 24 bits for the
302 * time being...
304 return (u32)cnt;
307 static u32 notrace arch_counter_get_cntvct32(void)
309 cycle_t cnt = arch_counter_get_cntvct();
312 * The sched_clock infrastructure only knows about counters
313 * with at most 32bits. Forget about the upper 24 bits for the
314 * time being...
316 return (u32)cnt;
319 static cycle_t arch_counter_read(struct clocksource *cs)
322 * Always use the physical counter for the clocksource.
323 * CNTHCTL.PL1PCTEN must be set to 1.
325 return arch_counter_get_cntpct();
328 static unsigned long arch_timer_read_current_timer(void)
330 return arch_counter_get_cntpct();
333 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
336 * Always use the physical counter for the clocksource.
337 * CNTHCTL.PL1PCTEN must be set to 1.
339 return arch_counter_get_cntpct();
342 static struct clocksource clocksource_counter = {
343 .name = "arch_sys_counter",
344 .rating = 400,
345 .read = arch_counter_read,
346 .mask = CLOCKSOURCE_MASK(56),
347 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
350 static struct cyclecounter cyclecounter = {
351 .read = arch_counter_read_cc,
352 .mask = CLOCKSOURCE_MASK(56),
355 static struct timecounter timecounter;
357 struct timecounter *arch_timer_get_timecounter(void)
359 return &timecounter;
362 static void __cpuinit arch_timer_stop(struct clock_event_device *clk)
364 pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
365 clk->irq, smp_processor_id());
367 if (arch_timer_use_virtual)
368 disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
369 else {
370 disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
371 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
372 disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
375 clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
378 static struct local_timer_ops arch_timer_ops __cpuinitdata = {
379 .setup = arch_timer_setup,
380 .stop = arch_timer_stop,
383 static struct clock_event_device arch_timer_global_evt;
385 static int __init arch_timer_register(void)
387 int err;
388 int ppi;
390 err = arch_timer_available();
391 if (err)
392 goto out;
394 arch_timer_evt = alloc_percpu(struct clock_event_device *);
395 if (!arch_timer_evt) {
396 err = -ENOMEM;
397 goto out;
400 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
401 cyclecounter.mult = clocksource_counter.mult;
402 cyclecounter.shift = clocksource_counter.shift;
403 timecounter_init(&timecounter, &cyclecounter,
404 arch_counter_get_cntpct());
406 if (arch_timer_use_virtual) {
407 ppi = arch_timer_ppi[VIRT_PPI];
408 err = request_percpu_irq(ppi, arch_timer_handler_virt,
409 "arch_timer", arch_timer_evt);
410 } else {
411 ppi = arch_timer_ppi[PHYS_SECURE_PPI];
412 err = request_percpu_irq(ppi, arch_timer_handler_phys,
413 "arch_timer", arch_timer_evt);
414 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
415 ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
416 err = request_percpu_irq(ppi, arch_timer_handler_phys,
417 "arch_timer", arch_timer_evt);
418 if (err)
419 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
420 arch_timer_evt);
424 if (err) {
425 pr_err("arch_timer: can't register interrupt %d (%d)\n",
426 ppi, err);
427 goto out_free;
430 err = local_timer_register(&arch_timer_ops);
431 if (err) {
433 * We couldn't register as a local timer (could be
434 * because we're on a UP platform, or because some
435 * other local timer is already present...). Try as a
436 * global timer instead.
438 arch_timer_global_evt.cpumask = cpumask_of(0);
439 err = arch_timer_setup(&arch_timer_global_evt);
441 if (err)
442 goto out_free_irq;
444 /* Use the architected timer for the delay loop. */
445 arch_delay_timer.read_current_timer = &arch_timer_read_current_timer;
446 arch_delay_timer.freq = arch_timer_rate;
447 register_current_timer_delay(&arch_delay_timer);
448 return 0;
450 out_free_irq:
451 if (arch_timer_use_virtual)
452 free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
453 else {
454 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
455 arch_timer_evt);
456 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
457 free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
458 arch_timer_evt);
461 out_free:
462 free_percpu(arch_timer_evt);
463 out:
464 return err;
467 static const struct of_device_id arch_timer_of_match[] __initconst = {
468 { .compatible = "arm,armv7-timer", },
472 int __init arch_timer_of_register(void)
474 struct device_node *np;
475 u32 freq;
476 int i;
478 np = of_find_matching_node(NULL, arch_timer_of_match);
479 if (!np) {
480 pr_err("arch_timer: can't find DT node\n");
481 return -ENODEV;
484 /* Try to determine the frequency from the device tree or CNTFRQ */
485 if (!of_property_read_u32(np, "clock-frequency", &freq))
486 arch_timer_rate = freq;
488 for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
489 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
492 * If no interrupt provided for virtual timer, we'll have to
493 * stick to the physical timer. It'd better be accessible...
495 if (!arch_timer_ppi[VIRT_PPI]) {
496 arch_timer_use_virtual = false;
498 if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
499 !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
500 pr_warn("arch_timer: No interrupt available, giving up\n");
501 return -EINVAL;
505 return arch_timer_register();
508 int __init arch_timer_sched_clock_init(void)
510 u32 (*cnt32)(void);
511 int err;
513 err = arch_timer_available();
514 if (err)
515 return err;
517 if (arch_timer_use_virtual)
518 cnt32 = arch_counter_get_cntvct32;
519 else
520 cnt32 = arch_counter_get_cntpct32;
522 setup_sched_clock(cnt32, 32, arch_timer_rate);
523 return 0;