1 /* linux/arch/arm/mach-exynos4/mct.c
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
6 * EXYNOS4 MCT(Multi-Core Timer) support
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/err.h>
17 #include <linux/clk.h>
18 #include <linux/clockchips.h>
19 #include <linux/platform_device.h>
20 #include <linux/delay.h>
21 #include <linux/percpu.h>
24 #include <asm/arch_timer.h>
25 #include <asm/hardware/gic.h>
26 #include <asm/localtimer.h>
31 #include <mach/irqs.h>
32 #include <mach/regs-mct.h>
33 #include <asm/mach/time.h>
35 #define TICK_BASE_CNT 1
42 static unsigned long clk_rate
;
43 static unsigned int mct_int_type
;
45 struct mct_clock_event_device
{
46 struct clock_event_device
*evt
;
51 static void exynos4_mct_write(unsigned int value
, void *addr
)
53 void __iomem
*stat_addr
;
57 __raw_writel(value
, addr
);
59 if (likely(addr
>= EXYNOS4_MCT_L_BASE(0))) {
60 u32 base
= (u32
) addr
& EXYNOS4_MCT_L_MASK
;
61 switch ((u32
) addr
& ~EXYNOS4_MCT_L_MASK
) {
62 case (u32
) MCT_L_TCON_OFFSET
:
63 stat_addr
= (void __iomem
*) base
+ MCT_L_WSTAT_OFFSET
;
64 mask
= 1 << 3; /* L_TCON write status */
66 case (u32
) MCT_L_ICNTB_OFFSET
:
67 stat_addr
= (void __iomem
*) base
+ MCT_L_WSTAT_OFFSET
;
68 mask
= 1 << 1; /* L_ICNTB write status */
70 case (u32
) MCT_L_TCNTB_OFFSET
:
71 stat_addr
= (void __iomem
*) base
+ MCT_L_WSTAT_OFFSET
;
72 mask
= 1 << 0; /* L_TCNTB write status */
79 case (u32
) EXYNOS4_MCT_G_TCON
:
80 stat_addr
= EXYNOS4_MCT_G_WSTAT
;
81 mask
= 1 << 16; /* G_TCON write status */
83 case (u32
) EXYNOS4_MCT_G_COMP0_L
:
84 stat_addr
= EXYNOS4_MCT_G_WSTAT
;
85 mask
= 1 << 0; /* G_COMP0_L write status */
87 case (u32
) EXYNOS4_MCT_G_COMP0_U
:
88 stat_addr
= EXYNOS4_MCT_G_WSTAT
;
89 mask
= 1 << 1; /* G_COMP0_U write status */
91 case (u32
) EXYNOS4_MCT_G_COMP0_ADD_INCR
:
92 stat_addr
= EXYNOS4_MCT_G_WSTAT
;
93 mask
= 1 << 2; /* G_COMP0_ADD_INCR w status */
95 case (u32
) EXYNOS4_MCT_G_CNT_L
:
96 stat_addr
= EXYNOS4_MCT_G_CNT_WSTAT
;
97 mask
= 1 << 0; /* G_CNT_L write status */
99 case (u32
) EXYNOS4_MCT_G_CNT_U
:
100 stat_addr
= EXYNOS4_MCT_G_CNT_WSTAT
;
101 mask
= 1 << 1; /* G_CNT_U write status */
108 /* Wait maximum 1 ms until written values are applied */
109 for (i
= 0; i
< loops_per_jiffy
/ 1000 * HZ
; i
++)
110 if (__raw_readl(stat_addr
) & mask
) {
111 __raw_writel(mask
, stat_addr
);
115 panic("MCT hangs after writing %d (addr:0x%08x)\n", value
, (u32
)addr
);
118 /* Clocksource handling */
119 static void exynos4_mct_frc_start(u32 hi
, u32 lo
)
123 exynos4_mct_write(lo
, EXYNOS4_MCT_G_CNT_L
);
124 exynos4_mct_write(hi
, EXYNOS4_MCT_G_CNT_U
);
126 reg
= __raw_readl(EXYNOS4_MCT_G_TCON
);
127 reg
|= MCT_G_TCON_START
;
128 exynos4_mct_write(reg
, EXYNOS4_MCT_G_TCON
);
131 static cycle_t
exynos4_frc_read(struct clocksource
*cs
)
134 u32 hi2
= __raw_readl(EXYNOS4_MCT_G_CNT_U
);
138 lo
= __raw_readl(EXYNOS4_MCT_G_CNT_L
);
139 hi2
= __raw_readl(EXYNOS4_MCT_G_CNT_U
);
142 return ((cycle_t
)hi
<< 32) | lo
;
145 static void exynos4_frc_resume(struct clocksource
*cs
)
147 exynos4_mct_frc_start(0, 0);
150 struct clocksource mct_frc
= {
153 .read
= exynos4_frc_read
,
154 .mask
= CLOCKSOURCE_MASK(64),
155 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
156 .resume
= exynos4_frc_resume
,
159 static void __init
exynos4_clocksource_init(void)
161 exynos4_mct_frc_start(0, 0);
163 if (clocksource_register_hz(&mct_frc
, clk_rate
))
164 panic("%s: can't register clocksource\n", mct_frc
.name
);
167 static void exynos4_mct_comp0_stop(void)
171 tcon
= __raw_readl(EXYNOS4_MCT_G_TCON
);
172 tcon
&= ~(MCT_G_TCON_COMP0_ENABLE
| MCT_G_TCON_COMP0_AUTO_INC
);
174 exynos4_mct_write(tcon
, EXYNOS4_MCT_G_TCON
);
175 exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB
);
178 static void exynos4_mct_comp0_start(enum clock_event_mode mode
,
179 unsigned long cycles
)
184 tcon
= __raw_readl(EXYNOS4_MCT_G_TCON
);
186 if (mode
== CLOCK_EVT_MODE_PERIODIC
) {
187 tcon
|= MCT_G_TCON_COMP0_AUTO_INC
;
188 exynos4_mct_write(cycles
, EXYNOS4_MCT_G_COMP0_ADD_INCR
);
191 comp_cycle
= exynos4_frc_read(&mct_frc
) + cycles
;
192 exynos4_mct_write((u32
)comp_cycle
, EXYNOS4_MCT_G_COMP0_L
);
193 exynos4_mct_write((u32
)(comp_cycle
>> 32), EXYNOS4_MCT_G_COMP0_U
);
195 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB
);
197 tcon
|= MCT_G_TCON_COMP0_ENABLE
;
198 exynos4_mct_write(tcon
, EXYNOS4_MCT_G_TCON
);
201 static int exynos4_comp_set_next_event(unsigned long cycles
,
202 struct clock_event_device
*evt
)
204 exynos4_mct_comp0_start(evt
->mode
, cycles
);
209 static void exynos4_comp_set_mode(enum clock_event_mode mode
,
210 struct clock_event_device
*evt
)
212 unsigned long cycles_per_jiffy
;
213 exynos4_mct_comp0_stop();
216 case CLOCK_EVT_MODE_PERIODIC
:
218 (((unsigned long long) NSEC_PER_SEC
/ HZ
* evt
->mult
) >> evt
->shift
);
219 exynos4_mct_comp0_start(mode
, cycles_per_jiffy
);
222 case CLOCK_EVT_MODE_ONESHOT
:
223 case CLOCK_EVT_MODE_UNUSED
:
224 case CLOCK_EVT_MODE_SHUTDOWN
:
225 case CLOCK_EVT_MODE_RESUME
:
230 static struct clock_event_device mct_comp_device
= {
232 .features
= CLOCK_EVT_FEAT_PERIODIC
| CLOCK_EVT_FEAT_ONESHOT
,
234 .set_next_event
= exynos4_comp_set_next_event
,
235 .set_mode
= exynos4_comp_set_mode
,
238 static irqreturn_t
exynos4_mct_comp_isr(int irq
, void *dev_id
)
240 struct clock_event_device
*evt
= dev_id
;
242 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT
);
244 evt
->event_handler(evt
);
249 static struct irqaction mct_comp_event_irq
= {
250 .name
= "mct_comp_irq",
251 .flags
= IRQF_TIMER
| IRQF_IRQPOLL
,
252 .handler
= exynos4_mct_comp_isr
,
253 .dev_id
= &mct_comp_device
,
256 static void exynos4_clockevent_init(void)
258 clockevents_calc_mult_shift(&mct_comp_device
, clk_rate
, 5);
259 mct_comp_device
.max_delta_ns
=
260 clockevent_delta2ns(0xffffffff, &mct_comp_device
);
261 mct_comp_device
.min_delta_ns
=
262 clockevent_delta2ns(0xf, &mct_comp_device
);
263 mct_comp_device
.cpumask
= cpumask_of(0);
264 clockevents_register_device(&mct_comp_device
);
266 if (soc_is_exynos5250())
267 setup_irq(EXYNOS5_IRQ_MCT_G0
, &mct_comp_event_irq
);
269 setup_irq(EXYNOS4_IRQ_MCT_G0
, &mct_comp_event_irq
);
272 #ifdef CONFIG_LOCAL_TIMERS
274 static DEFINE_PER_CPU(struct mct_clock_event_device
, percpu_mct_tick
);
276 /* Clock event handling */
277 static void exynos4_mct_tick_stop(struct mct_clock_event_device
*mevt
)
280 unsigned long mask
= MCT_L_TCON_INT_START
| MCT_L_TCON_TIMER_START
;
281 void __iomem
*addr
= mevt
->base
+ MCT_L_TCON_OFFSET
;
283 tmp
= __raw_readl(addr
);
286 exynos4_mct_write(tmp
, addr
);
290 static void exynos4_mct_tick_start(unsigned long cycles
,
291 struct mct_clock_event_device
*mevt
)
295 exynos4_mct_tick_stop(mevt
);
297 tmp
= (1 << 31) | cycles
; /* MCT_L_UPDATE_ICNTB */
299 /* update interrupt count buffer */
300 exynos4_mct_write(tmp
, mevt
->base
+ MCT_L_ICNTB_OFFSET
);
302 /* enable MCT tick interrupt */
303 exynos4_mct_write(0x1, mevt
->base
+ MCT_L_INT_ENB_OFFSET
);
305 tmp
= __raw_readl(mevt
->base
+ MCT_L_TCON_OFFSET
);
306 tmp
|= MCT_L_TCON_INT_START
| MCT_L_TCON_TIMER_START
|
307 MCT_L_TCON_INTERVAL_MODE
;
308 exynos4_mct_write(tmp
, mevt
->base
+ MCT_L_TCON_OFFSET
);
311 static int exynos4_tick_set_next_event(unsigned long cycles
,
312 struct clock_event_device
*evt
)
314 struct mct_clock_event_device
*mevt
= this_cpu_ptr(&percpu_mct_tick
);
316 exynos4_mct_tick_start(cycles
, mevt
);
321 static inline void exynos4_tick_set_mode(enum clock_event_mode mode
,
322 struct clock_event_device
*evt
)
324 struct mct_clock_event_device
*mevt
= this_cpu_ptr(&percpu_mct_tick
);
325 unsigned long cycles_per_jiffy
;
327 exynos4_mct_tick_stop(mevt
);
330 case CLOCK_EVT_MODE_PERIODIC
:
332 (((unsigned long long) NSEC_PER_SEC
/ HZ
* evt
->mult
) >> evt
->shift
);
333 exynos4_mct_tick_start(cycles_per_jiffy
, mevt
);
336 case CLOCK_EVT_MODE_ONESHOT
:
337 case CLOCK_EVT_MODE_UNUSED
:
338 case CLOCK_EVT_MODE_SHUTDOWN
:
339 case CLOCK_EVT_MODE_RESUME
:
344 static int exynos4_mct_tick_clear(struct mct_clock_event_device
*mevt
)
346 struct clock_event_device
*evt
= mevt
->evt
;
349 * This is for supporting oneshot mode.
350 * Mct would generate interrupt periodically
351 * without explicit stopping.
353 if (evt
->mode
!= CLOCK_EVT_MODE_PERIODIC
)
354 exynos4_mct_tick_stop(mevt
);
356 /* Clear the MCT tick interrupt */
357 if (__raw_readl(mevt
->base
+ MCT_L_INT_CSTAT_OFFSET
) & 1) {
358 exynos4_mct_write(0x1, mevt
->base
+ MCT_L_INT_CSTAT_OFFSET
);
365 static irqreturn_t
exynos4_mct_tick_isr(int irq
, void *dev_id
)
367 struct mct_clock_event_device
*mevt
= dev_id
;
368 struct clock_event_device
*evt
= mevt
->evt
;
370 exynos4_mct_tick_clear(mevt
);
372 evt
->event_handler(evt
);
377 static struct irqaction mct_tick0_event_irq
= {
378 .name
= "mct_tick0_irq",
379 .flags
= IRQF_TIMER
| IRQF_NOBALANCING
,
380 .handler
= exynos4_mct_tick_isr
,
383 static struct irqaction mct_tick1_event_irq
= {
384 .name
= "mct_tick1_irq",
385 .flags
= IRQF_TIMER
| IRQF_NOBALANCING
,
386 .handler
= exynos4_mct_tick_isr
,
389 static int __cpuinit
exynos4_local_timer_setup(struct clock_event_device
*evt
)
391 struct mct_clock_event_device
*mevt
;
392 unsigned int cpu
= smp_processor_id();
395 mevt
= this_cpu_ptr(&percpu_mct_tick
);
398 mevt
->base
= EXYNOS4_MCT_L_BASE(cpu
);
399 sprintf(mevt
->name
, "mct_tick%d", cpu
);
401 evt
->name
= mevt
->name
;
402 evt
->cpumask
= cpumask_of(cpu
);
403 evt
->set_next_event
= exynos4_tick_set_next_event
;
404 evt
->set_mode
= exynos4_tick_set_mode
;
405 evt
->features
= CLOCK_EVT_FEAT_PERIODIC
| CLOCK_EVT_FEAT_ONESHOT
;
408 clockevents_calc_mult_shift(evt
, clk_rate
/ (TICK_BASE_CNT
+ 1), 5);
410 clockevent_delta2ns(0x7fffffff, evt
);
412 clockevent_delta2ns(0xf, evt
);
414 clockevents_register_device(evt
);
416 exynos4_mct_write(TICK_BASE_CNT
, mevt
->base
+ MCT_L_TCNTB_OFFSET
);
418 if (mct_int_type
== MCT_INT_SPI
) {
420 mct_lx_irq
= soc_is_exynos4210() ? EXYNOS4_IRQ_MCT_L0
:
422 mct_tick0_event_irq
.dev_id
= mevt
;
423 evt
->irq
= mct_lx_irq
;
424 setup_irq(mct_lx_irq
, &mct_tick0_event_irq
);
426 mct_lx_irq
= soc_is_exynos4210() ? EXYNOS4_IRQ_MCT_L1
:
428 mct_tick1_event_irq
.dev_id
= mevt
;
429 evt
->irq
= mct_lx_irq
;
430 setup_irq(mct_lx_irq
, &mct_tick1_event_irq
);
431 irq_set_affinity(mct_lx_irq
, cpumask_of(1));
434 enable_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER
, 0);
440 static void exynos4_local_timer_stop(struct clock_event_device
*evt
)
442 unsigned int cpu
= smp_processor_id();
443 evt
->set_mode(CLOCK_EVT_MODE_UNUSED
, evt
);
444 if (mct_int_type
== MCT_INT_SPI
)
446 remove_irq(evt
->irq
, &mct_tick0_event_irq
);
448 remove_irq(evt
->irq
, &mct_tick1_event_irq
);
450 disable_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER
);
453 static struct local_timer_ops exynos4_mct_tick_ops __cpuinitdata
= {
454 .setup
= exynos4_local_timer_setup
,
455 .stop
= exynos4_local_timer_stop
,
457 #endif /* CONFIG_LOCAL_TIMERS */
459 static void __init
exynos4_timer_resources(void)
462 mct_clk
= clk_get(NULL
, "xtal");
464 clk_rate
= clk_get_rate(mct_clk
);
466 #ifdef CONFIG_LOCAL_TIMERS
467 if (mct_int_type
== MCT_INT_PPI
) {
470 err
= request_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER
,
471 exynos4_mct_tick_isr
, "MCT",
473 WARN(err
, "MCT: can't request IRQ %d (%d)\n",
474 EXYNOS_IRQ_MCT_LOCALTIMER
, err
);
477 local_timer_register(&exynos4_mct_tick_ops
);
478 #endif /* CONFIG_LOCAL_TIMERS */
481 static void __init
exynos_timer_init(void)
483 if (soc_is_exynos5440()) {
484 arch_timer_of_register();
488 if ((soc_is_exynos4210()) || (soc_is_exynos5250()))
489 mct_int_type
= MCT_INT_SPI
;
491 mct_int_type
= MCT_INT_PPI
;
493 exynos4_timer_resources();
494 exynos4_clocksource_init();
495 exynos4_clockevent_init();
498 struct sys_timer exynos4_timer
= {
499 .init
= exynos_timer_init
,