Linux 3.8-rc7
[cris-mirror.git] / arch / ia64 / kernel / perfmon.c
blobea39eba61ef5abcdf087b027879196b49d75bb03
1 /*
2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/proc_fs.h>
27 #include <linux/seq_file.h>
28 #include <linux/init.h>
29 #include <linux/vmalloc.h>
30 #include <linux/mm.h>
31 #include <linux/sysctl.h>
32 #include <linux/list.h>
33 #include <linux/file.h>
34 #include <linux/poll.h>
35 #include <linux/vfs.h>
36 #include <linux/smp.h>
37 #include <linux/pagemap.h>
38 #include <linux/mount.h>
39 #include <linux/bitops.h>
40 #include <linux/capability.h>
41 #include <linux/rcupdate.h>
42 #include <linux/completion.h>
43 #include <linux/tracehook.h>
44 #include <linux/slab.h>
46 #include <asm/errno.h>
47 #include <asm/intrinsics.h>
48 #include <asm/page.h>
49 #include <asm/perfmon.h>
50 #include <asm/processor.h>
51 #include <asm/signal.h>
52 #include <asm/uaccess.h>
53 #include <asm/delay.h>
55 #ifdef CONFIG_PERFMON
57 * perfmon context state
59 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
60 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
61 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
62 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
64 #define PFM_INVALID_ACTIVATION (~0UL)
66 #define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
67 #define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
70 * depth of message queue
72 #define PFM_MAX_MSGS 32
73 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
76 * type of a PMU register (bitmask).
77 * bitmask structure:
78 * bit0 : register implemented
79 * bit1 : end marker
80 * bit2-3 : reserved
81 * bit4 : pmc has pmc.pm
82 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
83 * bit6-7 : register type
84 * bit8-31: reserved
86 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
87 #define PFM_REG_IMPL 0x1 /* register implemented */
88 #define PFM_REG_END 0x2 /* end marker */
89 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
90 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
91 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
92 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
93 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
95 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
96 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
98 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
100 /* i assumed unsigned */
101 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
102 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
104 /* XXX: these assume that register i is implemented */
105 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
106 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
108 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
110 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
111 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
112 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
113 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
115 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
116 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
118 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
119 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
120 #define PFM_CTX_TASK(h) (h)->ctx_task
122 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
124 /* XXX: does not support more than 64 PMDs */
125 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
126 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
128 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
130 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
131 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
132 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
133 #define PFM_CODE_RR 0 /* requesting code range restriction */
134 #define PFM_DATA_RR 1 /* requestion data range restriction */
136 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
137 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
138 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
140 #define RDEP(x) (1UL<<(x))
143 * context protection macros
144 * in SMP:
145 * - we need to protect against CPU concurrency (spin_lock)
146 * - we need to protect against PMU overflow interrupts (local_irq_disable)
147 * in UP:
148 * - we need to protect against PMU overflow interrupts (local_irq_disable)
150 * spin_lock_irqsave()/spin_unlock_irqrestore():
151 * in SMP: local_irq_disable + spin_lock
152 * in UP : local_irq_disable
154 * spin_lock()/spin_lock():
155 * in UP : removed automatically
156 * in SMP: protect against context accesses from other CPU. interrupts
157 * are not masked. This is useful for the PMU interrupt handler
158 * because we know we will not get PMU concurrency in that code.
160 #define PROTECT_CTX(c, f) \
161 do { \
162 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
163 spin_lock_irqsave(&(c)->ctx_lock, f); \
164 DPRINT(("spinlocked ctx %p by [%d]\n", c, task_pid_nr(current))); \
165 } while(0)
167 #define UNPROTECT_CTX(c, f) \
168 do { \
169 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
170 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
171 } while(0)
173 #define PROTECT_CTX_NOPRINT(c, f) \
174 do { \
175 spin_lock_irqsave(&(c)->ctx_lock, f); \
176 } while(0)
179 #define UNPROTECT_CTX_NOPRINT(c, f) \
180 do { \
181 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
182 } while(0)
185 #define PROTECT_CTX_NOIRQ(c) \
186 do { \
187 spin_lock(&(c)->ctx_lock); \
188 } while(0)
190 #define UNPROTECT_CTX_NOIRQ(c) \
191 do { \
192 spin_unlock(&(c)->ctx_lock); \
193 } while(0)
196 #ifdef CONFIG_SMP
198 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
199 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
200 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
202 #else /* !CONFIG_SMP */
203 #define SET_ACTIVATION(t) do {} while(0)
204 #define GET_ACTIVATION(t) do {} while(0)
205 #define INC_ACTIVATION(t) do {} while(0)
206 #endif /* CONFIG_SMP */
208 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
209 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
210 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
212 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
213 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
215 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
218 * cmp0 must be the value of pmc0
220 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
222 #define PFMFS_MAGIC 0xa0b4d889
225 * debugging
227 #define PFM_DEBUGGING 1
228 #ifdef PFM_DEBUGGING
229 #define DPRINT(a) \
230 do { \
231 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
232 } while (0)
234 #define DPRINT_ovfl(a) \
235 do { \
236 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
237 } while (0)
238 #endif
241 * 64-bit software counter structure
243 * the next_reset_type is applied to the next call to pfm_reset_regs()
245 typedef struct {
246 unsigned long val; /* virtual 64bit counter value */
247 unsigned long lval; /* last reset value */
248 unsigned long long_reset; /* reset value on sampling overflow */
249 unsigned long short_reset; /* reset value on overflow */
250 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
251 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
252 unsigned long seed; /* seed for random-number generator */
253 unsigned long mask; /* mask for random-number generator */
254 unsigned int flags; /* notify/do not notify */
255 unsigned long eventid; /* overflow event identifier */
256 } pfm_counter_t;
259 * context flags
261 typedef struct {
262 unsigned int block:1; /* when 1, task will blocked on user notifications */
263 unsigned int system:1; /* do system wide monitoring */
264 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
265 unsigned int is_sampling:1; /* true if using a custom format */
266 unsigned int excl_idle:1; /* exclude idle task in system wide session */
267 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
268 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
269 unsigned int no_msg:1; /* no message sent on overflow */
270 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
271 unsigned int reserved:22;
272 } pfm_context_flags_t;
274 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
275 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
276 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
280 * perfmon context: encapsulates all the state of a monitoring session
283 typedef struct pfm_context {
284 spinlock_t ctx_lock; /* context protection */
286 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
287 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
289 struct task_struct *ctx_task; /* task to which context is attached */
291 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
293 struct completion ctx_restart_done; /* use for blocking notification mode */
295 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
296 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
297 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
299 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
300 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
301 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
303 unsigned long ctx_pmcs[PFM_NUM_PMC_REGS]; /* saved copies of PMC values */
305 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
306 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
307 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
308 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
310 pfm_counter_t ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
312 unsigned long th_pmcs[PFM_NUM_PMC_REGS]; /* PMC thread save state */
313 unsigned long th_pmds[PFM_NUM_PMD_REGS]; /* PMD thread save state */
315 unsigned long ctx_saved_psr_up; /* only contains psr.up value */
317 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
318 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
319 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
321 int ctx_fd; /* file descriptor used my this context */
322 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
324 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
325 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
326 unsigned long ctx_smpl_size; /* size of sampling buffer */
327 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
329 wait_queue_head_t ctx_msgq_wait;
330 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
331 int ctx_msgq_head;
332 int ctx_msgq_tail;
333 struct fasync_struct *ctx_async_queue;
335 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
336 } pfm_context_t;
339 * magic number used to verify that structure is really
340 * a perfmon context
342 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
344 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
346 #ifdef CONFIG_SMP
347 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
348 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
349 #else
350 #define SET_LAST_CPU(ctx, v) do {} while(0)
351 #define GET_LAST_CPU(ctx) do {} while(0)
352 #endif
355 #define ctx_fl_block ctx_flags.block
356 #define ctx_fl_system ctx_flags.system
357 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
358 #define ctx_fl_is_sampling ctx_flags.is_sampling
359 #define ctx_fl_excl_idle ctx_flags.excl_idle
360 #define ctx_fl_going_zombie ctx_flags.going_zombie
361 #define ctx_fl_trap_reason ctx_flags.trap_reason
362 #define ctx_fl_no_msg ctx_flags.no_msg
363 #define ctx_fl_can_restart ctx_flags.can_restart
365 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
366 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
369 * global information about all sessions
370 * mostly used to synchronize between system wide and per-process
372 typedef struct {
373 spinlock_t pfs_lock; /* lock the structure */
375 unsigned int pfs_task_sessions; /* number of per task sessions */
376 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
377 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
378 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
379 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
380 } pfm_session_t;
383 * information about a PMC or PMD.
384 * dep_pmd[]: a bitmask of dependent PMD registers
385 * dep_pmc[]: a bitmask of dependent PMC registers
387 typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
388 typedef struct {
389 unsigned int type;
390 int pm_pos;
391 unsigned long default_value; /* power-on default value */
392 unsigned long reserved_mask; /* bitmask of reserved bits */
393 pfm_reg_check_t read_check;
394 pfm_reg_check_t write_check;
395 unsigned long dep_pmd[4];
396 unsigned long dep_pmc[4];
397 } pfm_reg_desc_t;
399 /* assume cnum is a valid monitor */
400 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
403 * This structure is initialized at boot time and contains
404 * a description of the PMU main characteristics.
406 * If the probe function is defined, detection is based
407 * on its return value:
408 * - 0 means recognized PMU
409 * - anything else means not supported
410 * When the probe function is not defined, then the pmu_family field
411 * is used and it must match the host CPU family such that:
412 * - cpu->family & config->pmu_family != 0
414 typedef struct {
415 unsigned long ovfl_val; /* overflow value for counters */
417 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
418 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
420 unsigned int num_pmcs; /* number of PMCS: computed at init time */
421 unsigned int num_pmds; /* number of PMDS: computed at init time */
422 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
423 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
425 char *pmu_name; /* PMU family name */
426 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
427 unsigned int flags; /* pmu specific flags */
428 unsigned int num_ibrs; /* number of IBRS: computed at init time */
429 unsigned int num_dbrs; /* number of DBRS: computed at init time */
430 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
431 int (*probe)(void); /* customized probe routine */
432 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
433 } pmu_config_t;
435 * PMU specific flags
437 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
440 * debug register related type definitions
442 typedef struct {
443 unsigned long ibr_mask:56;
444 unsigned long ibr_plm:4;
445 unsigned long ibr_ig:3;
446 unsigned long ibr_x:1;
447 } ibr_mask_reg_t;
449 typedef struct {
450 unsigned long dbr_mask:56;
451 unsigned long dbr_plm:4;
452 unsigned long dbr_ig:2;
453 unsigned long dbr_w:1;
454 unsigned long dbr_r:1;
455 } dbr_mask_reg_t;
457 typedef union {
458 unsigned long val;
459 ibr_mask_reg_t ibr;
460 dbr_mask_reg_t dbr;
461 } dbreg_t;
465 * perfmon command descriptions
467 typedef struct {
468 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
469 char *cmd_name;
470 int cmd_flags;
471 unsigned int cmd_narg;
472 size_t cmd_argsize;
473 int (*cmd_getsize)(void *arg, size_t *sz);
474 } pfm_cmd_desc_t;
476 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
477 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
478 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
479 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
482 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
483 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
484 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
485 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
486 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
488 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
490 typedef struct {
491 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
492 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
493 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
494 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
495 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
496 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
497 unsigned long pfm_smpl_handler_calls;
498 unsigned long pfm_smpl_handler_cycles;
499 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
500 } pfm_stats_t;
503 * perfmon internal variables
505 static pfm_stats_t pfm_stats[NR_CPUS];
506 static pfm_session_t pfm_sessions; /* global sessions information */
508 static DEFINE_SPINLOCK(pfm_alt_install_check);
509 static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
511 static struct proc_dir_entry *perfmon_dir;
512 static pfm_uuid_t pfm_null_uuid = {0,};
514 static spinlock_t pfm_buffer_fmt_lock;
515 static LIST_HEAD(pfm_buffer_fmt_list);
517 static pmu_config_t *pmu_conf;
519 /* sysctl() controls */
520 pfm_sysctl_t pfm_sysctl;
521 EXPORT_SYMBOL(pfm_sysctl);
523 static ctl_table pfm_ctl_table[]={
525 .procname = "debug",
526 .data = &pfm_sysctl.debug,
527 .maxlen = sizeof(int),
528 .mode = 0666,
529 .proc_handler = proc_dointvec,
532 .procname = "debug_ovfl",
533 .data = &pfm_sysctl.debug_ovfl,
534 .maxlen = sizeof(int),
535 .mode = 0666,
536 .proc_handler = proc_dointvec,
539 .procname = "fastctxsw",
540 .data = &pfm_sysctl.fastctxsw,
541 .maxlen = sizeof(int),
542 .mode = 0600,
543 .proc_handler = proc_dointvec,
546 .procname = "expert_mode",
547 .data = &pfm_sysctl.expert_mode,
548 .maxlen = sizeof(int),
549 .mode = 0600,
550 .proc_handler = proc_dointvec,
554 static ctl_table pfm_sysctl_dir[] = {
556 .procname = "perfmon",
557 .mode = 0555,
558 .child = pfm_ctl_table,
562 static ctl_table pfm_sysctl_root[] = {
564 .procname = "kernel",
565 .mode = 0555,
566 .child = pfm_sysctl_dir,
570 static struct ctl_table_header *pfm_sysctl_header;
572 static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
574 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
575 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
577 static inline void
578 pfm_put_task(struct task_struct *task)
580 if (task != current) put_task_struct(task);
583 static inline void
584 pfm_reserve_page(unsigned long a)
586 SetPageReserved(vmalloc_to_page((void *)a));
588 static inline void
589 pfm_unreserve_page(unsigned long a)
591 ClearPageReserved(vmalloc_to_page((void*)a));
594 static inline unsigned long
595 pfm_protect_ctx_ctxsw(pfm_context_t *x)
597 spin_lock(&(x)->ctx_lock);
598 return 0UL;
601 static inline void
602 pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
604 spin_unlock(&(x)->ctx_lock);
607 /* forward declaration */
608 static const struct dentry_operations pfmfs_dentry_operations;
610 static struct dentry *
611 pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
613 return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
614 PFMFS_MAGIC);
617 static struct file_system_type pfm_fs_type = {
618 .name = "pfmfs",
619 .mount = pfmfs_mount,
620 .kill_sb = kill_anon_super,
623 DEFINE_PER_CPU(unsigned long, pfm_syst_info);
624 DEFINE_PER_CPU(struct task_struct *, pmu_owner);
625 DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
626 DEFINE_PER_CPU(unsigned long, pmu_activation_number);
627 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
630 /* forward declaration */
631 static const struct file_operations pfm_file_ops;
634 * forward declarations
636 #ifndef CONFIG_SMP
637 static void pfm_lazy_save_regs (struct task_struct *ta);
638 #endif
640 void dump_pmu_state(const char *);
641 static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
643 #include "perfmon_itanium.h"
644 #include "perfmon_mckinley.h"
645 #include "perfmon_montecito.h"
646 #include "perfmon_generic.h"
648 static pmu_config_t *pmu_confs[]={
649 &pmu_conf_mont,
650 &pmu_conf_mck,
651 &pmu_conf_ita,
652 &pmu_conf_gen, /* must be last */
653 NULL
657 static int pfm_end_notify_user(pfm_context_t *ctx);
659 static inline void
660 pfm_clear_psr_pp(void)
662 ia64_rsm(IA64_PSR_PP);
663 ia64_srlz_i();
666 static inline void
667 pfm_set_psr_pp(void)
669 ia64_ssm(IA64_PSR_PP);
670 ia64_srlz_i();
673 static inline void
674 pfm_clear_psr_up(void)
676 ia64_rsm(IA64_PSR_UP);
677 ia64_srlz_i();
680 static inline void
681 pfm_set_psr_up(void)
683 ia64_ssm(IA64_PSR_UP);
684 ia64_srlz_i();
687 static inline unsigned long
688 pfm_get_psr(void)
690 unsigned long tmp;
691 tmp = ia64_getreg(_IA64_REG_PSR);
692 ia64_srlz_i();
693 return tmp;
696 static inline void
697 pfm_set_psr_l(unsigned long val)
699 ia64_setreg(_IA64_REG_PSR_L, val);
700 ia64_srlz_i();
703 static inline void
704 pfm_freeze_pmu(void)
706 ia64_set_pmc(0,1UL);
707 ia64_srlz_d();
710 static inline void
711 pfm_unfreeze_pmu(void)
713 ia64_set_pmc(0,0UL);
714 ia64_srlz_d();
717 static inline void
718 pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
720 int i;
722 for (i=0; i < nibrs; i++) {
723 ia64_set_ibr(i, ibrs[i]);
724 ia64_dv_serialize_instruction();
726 ia64_srlz_i();
729 static inline void
730 pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
732 int i;
734 for (i=0; i < ndbrs; i++) {
735 ia64_set_dbr(i, dbrs[i]);
736 ia64_dv_serialize_data();
738 ia64_srlz_d();
742 * PMD[i] must be a counter. no check is made
744 static inline unsigned long
745 pfm_read_soft_counter(pfm_context_t *ctx, int i)
747 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
751 * PMD[i] must be a counter. no check is made
753 static inline void
754 pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
756 unsigned long ovfl_val = pmu_conf->ovfl_val;
758 ctx->ctx_pmds[i].val = val & ~ovfl_val;
760 * writing to unimplemented part is ignore, so we do not need to
761 * mask off top part
763 ia64_set_pmd(i, val & ovfl_val);
766 static pfm_msg_t *
767 pfm_get_new_msg(pfm_context_t *ctx)
769 int idx, next;
771 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
773 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
774 if (next == ctx->ctx_msgq_head) return NULL;
776 idx = ctx->ctx_msgq_tail;
777 ctx->ctx_msgq_tail = next;
779 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
781 return ctx->ctx_msgq+idx;
784 static pfm_msg_t *
785 pfm_get_next_msg(pfm_context_t *ctx)
787 pfm_msg_t *msg;
789 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
791 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
794 * get oldest message
796 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
799 * and move forward
801 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
803 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
805 return msg;
808 static void
809 pfm_reset_msgq(pfm_context_t *ctx)
811 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
812 DPRINT(("ctx=%p msgq reset\n", ctx));
815 static void *
816 pfm_rvmalloc(unsigned long size)
818 void *mem;
819 unsigned long addr;
821 size = PAGE_ALIGN(size);
822 mem = vzalloc(size);
823 if (mem) {
824 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
825 addr = (unsigned long)mem;
826 while (size > 0) {
827 pfm_reserve_page(addr);
828 addr+=PAGE_SIZE;
829 size-=PAGE_SIZE;
832 return mem;
835 static void
836 pfm_rvfree(void *mem, unsigned long size)
838 unsigned long addr;
840 if (mem) {
841 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
842 addr = (unsigned long) mem;
843 while ((long) size > 0) {
844 pfm_unreserve_page(addr);
845 addr+=PAGE_SIZE;
846 size-=PAGE_SIZE;
848 vfree(mem);
850 return;
853 static pfm_context_t *
854 pfm_context_alloc(int ctx_flags)
856 pfm_context_t *ctx;
859 * allocate context descriptor
860 * must be able to free with interrupts disabled
862 ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
863 if (ctx) {
864 DPRINT(("alloc ctx @%p\n", ctx));
867 * init context protection lock
869 spin_lock_init(&ctx->ctx_lock);
872 * context is unloaded
874 ctx->ctx_state = PFM_CTX_UNLOADED;
877 * initialization of context's flags
879 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
880 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
881 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
883 * will move to set properties
884 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
888 * init restart semaphore to locked
890 init_completion(&ctx->ctx_restart_done);
893 * activation is used in SMP only
895 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
896 SET_LAST_CPU(ctx, -1);
899 * initialize notification message queue
901 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
902 init_waitqueue_head(&ctx->ctx_msgq_wait);
903 init_waitqueue_head(&ctx->ctx_zombieq);
906 return ctx;
909 static void
910 pfm_context_free(pfm_context_t *ctx)
912 if (ctx) {
913 DPRINT(("free ctx @%p\n", ctx));
914 kfree(ctx);
918 static void
919 pfm_mask_monitoring(struct task_struct *task)
921 pfm_context_t *ctx = PFM_GET_CTX(task);
922 unsigned long mask, val, ovfl_mask;
923 int i;
925 DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
927 ovfl_mask = pmu_conf->ovfl_val;
929 * monitoring can only be masked as a result of a valid
930 * counter overflow. In UP, it means that the PMU still
931 * has an owner. Note that the owner can be different
932 * from the current task. However the PMU state belongs
933 * to the owner.
934 * In SMP, a valid overflow only happens when task is
935 * current. Therefore if we come here, we know that
936 * the PMU state belongs to the current task, therefore
937 * we can access the live registers.
939 * So in both cases, the live register contains the owner's
940 * state. We can ONLY touch the PMU registers and NOT the PSR.
942 * As a consequence to this call, the ctx->th_pmds[] array
943 * contains stale information which must be ignored
944 * when context is reloaded AND monitoring is active (see
945 * pfm_restart).
947 mask = ctx->ctx_used_pmds[0];
948 for (i = 0; mask; i++, mask>>=1) {
949 /* skip non used pmds */
950 if ((mask & 0x1) == 0) continue;
951 val = ia64_get_pmd(i);
953 if (PMD_IS_COUNTING(i)) {
955 * we rebuild the full 64 bit value of the counter
957 ctx->ctx_pmds[i].val += (val & ovfl_mask);
958 } else {
959 ctx->ctx_pmds[i].val = val;
961 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
963 ctx->ctx_pmds[i].val,
964 val & ovfl_mask));
967 * mask monitoring by setting the privilege level to 0
968 * we cannot use psr.pp/psr.up for this, it is controlled by
969 * the user
971 * if task is current, modify actual registers, otherwise modify
972 * thread save state, i.e., what will be restored in pfm_load_regs()
974 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
975 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
976 if ((mask & 0x1) == 0UL) continue;
977 ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
978 ctx->th_pmcs[i] &= ~0xfUL;
979 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
982 * make all of this visible
984 ia64_srlz_d();
988 * must always be done with task == current
990 * context must be in MASKED state when calling
992 static void
993 pfm_restore_monitoring(struct task_struct *task)
995 pfm_context_t *ctx = PFM_GET_CTX(task);
996 unsigned long mask, ovfl_mask;
997 unsigned long psr, val;
998 int i, is_system;
1000 is_system = ctx->ctx_fl_system;
1001 ovfl_mask = pmu_conf->ovfl_val;
1003 if (task != current) {
1004 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1005 return;
1007 if (ctx->ctx_state != PFM_CTX_MASKED) {
1008 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1009 task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1010 return;
1012 psr = pfm_get_psr();
1014 * monitoring is masked via the PMC.
1015 * As we restore their value, we do not want each counter to
1016 * restart right away. We stop monitoring using the PSR,
1017 * restore the PMC (and PMD) and then re-establish the psr
1018 * as it was. Note that there can be no pending overflow at
1019 * this point, because monitoring was MASKED.
1021 * system-wide session are pinned and self-monitoring
1023 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1024 /* disable dcr pp */
1025 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1026 pfm_clear_psr_pp();
1027 } else {
1028 pfm_clear_psr_up();
1031 * first, we restore the PMD
1033 mask = ctx->ctx_used_pmds[0];
1034 for (i = 0; mask; i++, mask>>=1) {
1035 /* skip non used pmds */
1036 if ((mask & 0x1) == 0) continue;
1038 if (PMD_IS_COUNTING(i)) {
1040 * we split the 64bit value according to
1041 * counter width
1043 val = ctx->ctx_pmds[i].val & ovfl_mask;
1044 ctx->ctx_pmds[i].val &= ~ovfl_mask;
1045 } else {
1046 val = ctx->ctx_pmds[i].val;
1048 ia64_set_pmd(i, val);
1050 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1052 ctx->ctx_pmds[i].val,
1053 val));
1056 * restore the PMCs
1058 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1059 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1060 if ((mask & 0x1) == 0UL) continue;
1061 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1062 ia64_set_pmc(i, ctx->th_pmcs[i]);
1063 DPRINT(("[%d] pmc[%d]=0x%lx\n",
1064 task_pid_nr(task), i, ctx->th_pmcs[i]));
1066 ia64_srlz_d();
1069 * must restore DBR/IBR because could be modified while masked
1070 * XXX: need to optimize
1072 if (ctx->ctx_fl_using_dbreg) {
1073 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1074 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1078 * now restore PSR
1080 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1081 /* enable dcr pp */
1082 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1083 ia64_srlz_i();
1085 pfm_set_psr_l(psr);
1088 static inline void
1089 pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1091 int i;
1093 ia64_srlz_d();
1095 for (i=0; mask; i++, mask>>=1) {
1096 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1101 * reload from thread state (used for ctxw only)
1103 static inline void
1104 pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1106 int i;
1107 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1109 for (i=0; mask; i++, mask>>=1) {
1110 if ((mask & 0x1) == 0) continue;
1111 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1112 ia64_set_pmd(i, val);
1114 ia64_srlz_d();
1118 * propagate PMD from context to thread-state
1120 static inline void
1121 pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1123 unsigned long ovfl_val = pmu_conf->ovfl_val;
1124 unsigned long mask = ctx->ctx_all_pmds[0];
1125 unsigned long val;
1126 int i;
1128 DPRINT(("mask=0x%lx\n", mask));
1130 for (i=0; mask; i++, mask>>=1) {
1132 val = ctx->ctx_pmds[i].val;
1135 * We break up the 64 bit value into 2 pieces
1136 * the lower bits go to the machine state in the
1137 * thread (will be reloaded on ctxsw in).
1138 * The upper part stays in the soft-counter.
1140 if (PMD_IS_COUNTING(i)) {
1141 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1142 val &= ovfl_val;
1144 ctx->th_pmds[i] = val;
1146 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1148 ctx->th_pmds[i],
1149 ctx->ctx_pmds[i].val));
1154 * propagate PMC from context to thread-state
1156 static inline void
1157 pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1159 unsigned long mask = ctx->ctx_all_pmcs[0];
1160 int i;
1162 DPRINT(("mask=0x%lx\n", mask));
1164 for (i=0; mask; i++, mask>>=1) {
1165 /* masking 0 with ovfl_val yields 0 */
1166 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1167 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1173 static inline void
1174 pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1176 int i;
1178 for (i=0; mask; i++, mask>>=1) {
1179 if ((mask & 0x1) == 0) continue;
1180 ia64_set_pmc(i, pmcs[i]);
1182 ia64_srlz_d();
1185 static inline int
1186 pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1188 return memcmp(a, b, sizeof(pfm_uuid_t));
1191 static inline int
1192 pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1194 int ret = 0;
1195 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1196 return ret;
1199 static inline int
1200 pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1202 int ret = 0;
1203 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1204 return ret;
1208 static inline int
1209 pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1210 int cpu, void *arg)
1212 int ret = 0;
1213 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1214 return ret;
1217 static inline int
1218 pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1219 int cpu, void *arg)
1221 int ret = 0;
1222 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1223 return ret;
1226 static inline int
1227 pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1229 int ret = 0;
1230 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1231 return ret;
1234 static inline int
1235 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1237 int ret = 0;
1238 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1239 return ret;
1242 static pfm_buffer_fmt_t *
1243 __pfm_find_buffer_fmt(pfm_uuid_t uuid)
1245 struct list_head * pos;
1246 pfm_buffer_fmt_t * entry;
1248 list_for_each(pos, &pfm_buffer_fmt_list) {
1249 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1250 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1251 return entry;
1253 return NULL;
1257 * find a buffer format based on its uuid
1259 static pfm_buffer_fmt_t *
1260 pfm_find_buffer_fmt(pfm_uuid_t uuid)
1262 pfm_buffer_fmt_t * fmt;
1263 spin_lock(&pfm_buffer_fmt_lock);
1264 fmt = __pfm_find_buffer_fmt(uuid);
1265 spin_unlock(&pfm_buffer_fmt_lock);
1266 return fmt;
1270 pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1272 int ret = 0;
1274 /* some sanity checks */
1275 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1277 /* we need at least a handler */
1278 if (fmt->fmt_handler == NULL) return -EINVAL;
1281 * XXX: need check validity of fmt_arg_size
1284 spin_lock(&pfm_buffer_fmt_lock);
1286 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1287 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1288 ret = -EBUSY;
1289 goto out;
1291 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1292 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1294 out:
1295 spin_unlock(&pfm_buffer_fmt_lock);
1296 return ret;
1298 EXPORT_SYMBOL(pfm_register_buffer_fmt);
1301 pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1303 pfm_buffer_fmt_t *fmt;
1304 int ret = 0;
1306 spin_lock(&pfm_buffer_fmt_lock);
1308 fmt = __pfm_find_buffer_fmt(uuid);
1309 if (!fmt) {
1310 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1311 ret = -EINVAL;
1312 goto out;
1314 list_del_init(&fmt->fmt_list);
1315 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1317 out:
1318 spin_unlock(&pfm_buffer_fmt_lock);
1319 return ret;
1322 EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1324 extern void update_pal_halt_status(int);
1326 static int
1327 pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1329 unsigned long flags;
1331 * validity checks on cpu_mask have been done upstream
1333 LOCK_PFS(flags);
1335 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1336 pfm_sessions.pfs_sys_sessions,
1337 pfm_sessions.pfs_task_sessions,
1338 pfm_sessions.pfs_sys_use_dbregs,
1339 is_syswide,
1340 cpu));
1342 if (is_syswide) {
1344 * cannot mix system wide and per-task sessions
1346 if (pfm_sessions.pfs_task_sessions > 0UL) {
1347 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1348 pfm_sessions.pfs_task_sessions));
1349 goto abort;
1352 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1354 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1356 pfm_sessions.pfs_sys_session[cpu] = task;
1358 pfm_sessions.pfs_sys_sessions++ ;
1360 } else {
1361 if (pfm_sessions.pfs_sys_sessions) goto abort;
1362 pfm_sessions.pfs_task_sessions++;
1365 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1366 pfm_sessions.pfs_sys_sessions,
1367 pfm_sessions.pfs_task_sessions,
1368 pfm_sessions.pfs_sys_use_dbregs,
1369 is_syswide,
1370 cpu));
1373 * disable default_idle() to go to PAL_HALT
1375 update_pal_halt_status(0);
1377 UNLOCK_PFS(flags);
1379 return 0;
1381 error_conflict:
1382 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1383 task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1384 cpu));
1385 abort:
1386 UNLOCK_PFS(flags);
1388 return -EBUSY;
1392 static int
1393 pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1395 unsigned long flags;
1397 * validity checks on cpu_mask have been done upstream
1399 LOCK_PFS(flags);
1401 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1402 pfm_sessions.pfs_sys_sessions,
1403 pfm_sessions.pfs_task_sessions,
1404 pfm_sessions.pfs_sys_use_dbregs,
1405 is_syswide,
1406 cpu));
1409 if (is_syswide) {
1410 pfm_sessions.pfs_sys_session[cpu] = NULL;
1412 * would not work with perfmon+more than one bit in cpu_mask
1414 if (ctx && ctx->ctx_fl_using_dbreg) {
1415 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1416 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1417 } else {
1418 pfm_sessions.pfs_sys_use_dbregs--;
1421 pfm_sessions.pfs_sys_sessions--;
1422 } else {
1423 pfm_sessions.pfs_task_sessions--;
1425 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1426 pfm_sessions.pfs_sys_sessions,
1427 pfm_sessions.pfs_task_sessions,
1428 pfm_sessions.pfs_sys_use_dbregs,
1429 is_syswide,
1430 cpu));
1433 * if possible, enable default_idle() to go into PAL_HALT
1435 if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1436 update_pal_halt_status(1);
1438 UNLOCK_PFS(flags);
1440 return 0;
1444 * removes virtual mapping of the sampling buffer.
1445 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1446 * a PROTECT_CTX() section.
1448 static int
1449 pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
1451 struct task_struct *task = current;
1452 int r;
1454 /* sanity checks */
1455 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1456 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1457 return -EINVAL;
1460 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1463 * does the actual unmapping
1465 r = vm_munmap((unsigned long)vaddr, size);
1467 if (r !=0) {
1468 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1471 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1473 return 0;
1477 * free actual physical storage used by sampling buffer
1479 #if 0
1480 static int
1481 pfm_free_smpl_buffer(pfm_context_t *ctx)
1483 pfm_buffer_fmt_t *fmt;
1485 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1488 * we won't use the buffer format anymore
1490 fmt = ctx->ctx_buf_fmt;
1492 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1493 ctx->ctx_smpl_hdr,
1494 ctx->ctx_smpl_size,
1495 ctx->ctx_smpl_vaddr));
1497 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1500 * free the buffer
1502 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1504 ctx->ctx_smpl_hdr = NULL;
1505 ctx->ctx_smpl_size = 0UL;
1507 return 0;
1509 invalid_free:
1510 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1511 return -EINVAL;
1513 #endif
1515 static inline void
1516 pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1518 if (fmt == NULL) return;
1520 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1525 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1526 * no real gain from having the whole whorehouse mounted. So we don't need
1527 * any operations on the root directory. However, we need a non-trivial
1528 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1530 static struct vfsmount *pfmfs_mnt __read_mostly;
1532 static int __init
1533 init_pfm_fs(void)
1535 int err = register_filesystem(&pfm_fs_type);
1536 if (!err) {
1537 pfmfs_mnt = kern_mount(&pfm_fs_type);
1538 err = PTR_ERR(pfmfs_mnt);
1539 if (IS_ERR(pfmfs_mnt))
1540 unregister_filesystem(&pfm_fs_type);
1541 else
1542 err = 0;
1544 return err;
1547 static ssize_t
1548 pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1550 pfm_context_t *ctx;
1551 pfm_msg_t *msg;
1552 ssize_t ret;
1553 unsigned long flags;
1554 DECLARE_WAITQUEUE(wait, current);
1555 if (PFM_IS_FILE(filp) == 0) {
1556 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1557 return -EINVAL;
1560 ctx = filp->private_data;
1561 if (ctx == NULL) {
1562 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1563 return -EINVAL;
1567 * check even when there is no message
1569 if (size < sizeof(pfm_msg_t)) {
1570 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1571 return -EINVAL;
1574 PROTECT_CTX(ctx, flags);
1577 * put ourselves on the wait queue
1579 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1582 for(;;) {
1584 * check wait queue
1587 set_current_state(TASK_INTERRUPTIBLE);
1589 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1591 ret = 0;
1592 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1594 UNPROTECT_CTX(ctx, flags);
1597 * check non-blocking read
1599 ret = -EAGAIN;
1600 if(filp->f_flags & O_NONBLOCK) break;
1603 * check pending signals
1605 if(signal_pending(current)) {
1606 ret = -EINTR;
1607 break;
1610 * no message, so wait
1612 schedule();
1614 PROTECT_CTX(ctx, flags);
1616 DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1617 set_current_state(TASK_RUNNING);
1618 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1620 if (ret < 0) goto abort;
1622 ret = -EINVAL;
1623 msg = pfm_get_next_msg(ctx);
1624 if (msg == NULL) {
1625 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1626 goto abort_locked;
1629 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1631 ret = -EFAULT;
1632 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1634 abort_locked:
1635 UNPROTECT_CTX(ctx, flags);
1636 abort:
1637 return ret;
1640 static ssize_t
1641 pfm_write(struct file *file, const char __user *ubuf,
1642 size_t size, loff_t *ppos)
1644 DPRINT(("pfm_write called\n"));
1645 return -EINVAL;
1648 static unsigned int
1649 pfm_poll(struct file *filp, poll_table * wait)
1651 pfm_context_t *ctx;
1652 unsigned long flags;
1653 unsigned int mask = 0;
1655 if (PFM_IS_FILE(filp) == 0) {
1656 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1657 return 0;
1660 ctx = filp->private_data;
1661 if (ctx == NULL) {
1662 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1663 return 0;
1667 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1669 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1671 PROTECT_CTX(ctx, flags);
1673 if (PFM_CTXQ_EMPTY(ctx) == 0)
1674 mask = POLLIN | POLLRDNORM;
1676 UNPROTECT_CTX(ctx, flags);
1678 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1680 return mask;
1683 static long
1684 pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1686 DPRINT(("pfm_ioctl called\n"));
1687 return -EINVAL;
1691 * interrupt cannot be masked when coming here
1693 static inline int
1694 pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1696 int ret;
1698 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1700 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1701 task_pid_nr(current),
1704 ctx->ctx_async_queue, ret));
1706 return ret;
1709 static int
1710 pfm_fasync(int fd, struct file *filp, int on)
1712 pfm_context_t *ctx;
1713 int ret;
1715 if (PFM_IS_FILE(filp) == 0) {
1716 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1717 return -EBADF;
1720 ctx = filp->private_data;
1721 if (ctx == NULL) {
1722 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1723 return -EBADF;
1726 * we cannot mask interrupts during this call because this may
1727 * may go to sleep if memory is not readily avalaible.
1729 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1730 * done in caller. Serialization of this function is ensured by caller.
1732 ret = pfm_do_fasync(fd, filp, ctx, on);
1735 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1738 ctx->ctx_async_queue, ret));
1740 return ret;
1743 #ifdef CONFIG_SMP
1745 * this function is exclusively called from pfm_close().
1746 * The context is not protected at that time, nor are interrupts
1747 * on the remote CPU. That's necessary to avoid deadlocks.
1749 static void
1750 pfm_syswide_force_stop(void *info)
1752 pfm_context_t *ctx = (pfm_context_t *)info;
1753 struct pt_regs *regs = task_pt_regs(current);
1754 struct task_struct *owner;
1755 unsigned long flags;
1756 int ret;
1758 if (ctx->ctx_cpu != smp_processor_id()) {
1759 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1760 ctx->ctx_cpu,
1761 smp_processor_id());
1762 return;
1764 owner = GET_PMU_OWNER();
1765 if (owner != ctx->ctx_task) {
1766 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1767 smp_processor_id(),
1768 task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1769 return;
1771 if (GET_PMU_CTX() != ctx) {
1772 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1773 smp_processor_id(),
1774 GET_PMU_CTX(), ctx);
1775 return;
1778 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1780 * the context is already protected in pfm_close(), we simply
1781 * need to mask interrupts to avoid a PMU interrupt race on
1782 * this CPU
1784 local_irq_save(flags);
1786 ret = pfm_context_unload(ctx, NULL, 0, regs);
1787 if (ret) {
1788 DPRINT(("context_unload returned %d\n", ret));
1792 * unmask interrupts, PMU interrupts are now spurious here
1794 local_irq_restore(flags);
1797 static void
1798 pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1800 int ret;
1802 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1803 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1804 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1806 #endif /* CONFIG_SMP */
1809 * called for each close(). Partially free resources.
1810 * When caller is self-monitoring, the context is unloaded.
1812 static int
1813 pfm_flush(struct file *filp, fl_owner_t id)
1815 pfm_context_t *ctx;
1816 struct task_struct *task;
1817 struct pt_regs *regs;
1818 unsigned long flags;
1819 unsigned long smpl_buf_size = 0UL;
1820 void *smpl_buf_vaddr = NULL;
1821 int state, is_system;
1823 if (PFM_IS_FILE(filp) == 0) {
1824 DPRINT(("bad magic for\n"));
1825 return -EBADF;
1828 ctx = filp->private_data;
1829 if (ctx == NULL) {
1830 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1831 return -EBADF;
1835 * remove our file from the async queue, if we use this mode.
1836 * This can be done without the context being protected. We come
1837 * here when the context has become unreachable by other tasks.
1839 * We may still have active monitoring at this point and we may
1840 * end up in pfm_overflow_handler(). However, fasync_helper()
1841 * operates with interrupts disabled and it cleans up the
1842 * queue. If the PMU handler is called prior to entering
1843 * fasync_helper() then it will send a signal. If it is
1844 * invoked after, it will find an empty queue and no
1845 * signal will be sent. In both case, we are safe
1847 PROTECT_CTX(ctx, flags);
1849 state = ctx->ctx_state;
1850 is_system = ctx->ctx_fl_system;
1852 task = PFM_CTX_TASK(ctx);
1853 regs = task_pt_regs(task);
1855 DPRINT(("ctx_state=%d is_current=%d\n",
1856 state,
1857 task == current ? 1 : 0));
1860 * if state == UNLOADED, then task is NULL
1864 * we must stop and unload because we are losing access to the context.
1866 if (task == current) {
1867 #ifdef CONFIG_SMP
1869 * the task IS the owner but it migrated to another CPU: that's bad
1870 * but we must handle this cleanly. Unfortunately, the kernel does
1871 * not provide a mechanism to block migration (while the context is loaded).
1873 * We need to release the resource on the ORIGINAL cpu.
1875 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1877 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1879 * keep context protected but unmask interrupt for IPI
1881 local_irq_restore(flags);
1883 pfm_syswide_cleanup_other_cpu(ctx);
1886 * restore interrupt masking
1888 local_irq_save(flags);
1891 * context is unloaded at this point
1893 } else
1894 #endif /* CONFIG_SMP */
1897 DPRINT(("forcing unload\n"));
1899 * stop and unload, returning with state UNLOADED
1900 * and session unreserved.
1902 pfm_context_unload(ctx, NULL, 0, regs);
1904 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1909 * remove virtual mapping, if any, for the calling task.
1910 * cannot reset ctx field until last user is calling close().
1912 * ctx_smpl_vaddr must never be cleared because it is needed
1913 * by every task with access to the context
1915 * When called from do_exit(), the mm context is gone already, therefore
1916 * mm is NULL, i.e., the VMA is already gone and we do not have to
1917 * do anything here
1919 if (ctx->ctx_smpl_vaddr && current->mm) {
1920 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1921 smpl_buf_size = ctx->ctx_smpl_size;
1924 UNPROTECT_CTX(ctx, flags);
1927 * if there was a mapping, then we systematically remove it
1928 * at this point. Cannot be done inside critical section
1929 * because some VM function reenables interrupts.
1932 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
1934 return 0;
1937 * called either on explicit close() or from exit_files().
1938 * Only the LAST user of the file gets to this point, i.e., it is
1939 * called only ONCE.
1941 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1942 * (fput()),i.e, last task to access the file. Nobody else can access the
1943 * file at this point.
1945 * When called from exit_files(), the VMA has been freed because exit_mm()
1946 * is executed before exit_files().
1948 * When called from exit_files(), the current task is not yet ZOMBIE but we
1949 * flush the PMU state to the context.
1951 static int
1952 pfm_close(struct inode *inode, struct file *filp)
1954 pfm_context_t *ctx;
1955 struct task_struct *task;
1956 struct pt_regs *regs;
1957 DECLARE_WAITQUEUE(wait, current);
1958 unsigned long flags;
1959 unsigned long smpl_buf_size = 0UL;
1960 void *smpl_buf_addr = NULL;
1961 int free_possible = 1;
1962 int state, is_system;
1964 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1966 if (PFM_IS_FILE(filp) == 0) {
1967 DPRINT(("bad magic\n"));
1968 return -EBADF;
1971 ctx = filp->private_data;
1972 if (ctx == NULL) {
1973 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1974 return -EBADF;
1977 PROTECT_CTX(ctx, flags);
1979 state = ctx->ctx_state;
1980 is_system = ctx->ctx_fl_system;
1982 task = PFM_CTX_TASK(ctx);
1983 regs = task_pt_regs(task);
1985 DPRINT(("ctx_state=%d is_current=%d\n",
1986 state,
1987 task == current ? 1 : 0));
1990 * if task == current, then pfm_flush() unloaded the context
1992 if (state == PFM_CTX_UNLOADED) goto doit;
1995 * context is loaded/masked and task != current, we need to
1996 * either force an unload or go zombie
2000 * The task is currently blocked or will block after an overflow.
2001 * we must force it to wakeup to get out of the
2002 * MASKED state and transition to the unloaded state by itself.
2004 * This situation is only possible for per-task mode
2006 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2009 * set a "partial" zombie state to be checked
2010 * upon return from down() in pfm_handle_work().
2012 * We cannot use the ZOMBIE state, because it is checked
2013 * by pfm_load_regs() which is called upon wakeup from down().
2014 * In such case, it would free the context and then we would
2015 * return to pfm_handle_work() which would access the
2016 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2017 * but visible to pfm_handle_work().
2019 * For some window of time, we have a zombie context with
2020 * ctx_state = MASKED and not ZOMBIE
2022 ctx->ctx_fl_going_zombie = 1;
2025 * force task to wake up from MASKED state
2027 complete(&ctx->ctx_restart_done);
2029 DPRINT(("waking up ctx_state=%d\n", state));
2032 * put ourself to sleep waiting for the other
2033 * task to report completion
2035 * the context is protected by mutex, therefore there
2036 * is no risk of being notified of completion before
2037 * begin actually on the waitq.
2039 set_current_state(TASK_INTERRUPTIBLE);
2040 add_wait_queue(&ctx->ctx_zombieq, &wait);
2042 UNPROTECT_CTX(ctx, flags);
2045 * XXX: check for signals :
2046 * - ok for explicit close
2047 * - not ok when coming from exit_files()
2049 schedule();
2052 PROTECT_CTX(ctx, flags);
2055 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2056 set_current_state(TASK_RUNNING);
2059 * context is unloaded at this point
2061 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2063 else if (task != current) {
2064 #ifdef CONFIG_SMP
2066 * switch context to zombie state
2068 ctx->ctx_state = PFM_CTX_ZOMBIE;
2070 DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2072 * cannot free the context on the spot. deferred until
2073 * the task notices the ZOMBIE state
2075 free_possible = 0;
2076 #else
2077 pfm_context_unload(ctx, NULL, 0, regs);
2078 #endif
2081 doit:
2082 /* reload state, may have changed during opening of critical section */
2083 state = ctx->ctx_state;
2086 * the context is still attached to a task (possibly current)
2087 * we cannot destroy it right now
2091 * we must free the sampling buffer right here because
2092 * we cannot rely on it being cleaned up later by the
2093 * monitored task. It is not possible to free vmalloc'ed
2094 * memory in pfm_load_regs(). Instead, we remove the buffer
2095 * now. should there be subsequent PMU overflow originally
2096 * meant for sampling, the will be converted to spurious
2097 * and that's fine because the monitoring tools is gone anyway.
2099 if (ctx->ctx_smpl_hdr) {
2100 smpl_buf_addr = ctx->ctx_smpl_hdr;
2101 smpl_buf_size = ctx->ctx_smpl_size;
2102 /* no more sampling */
2103 ctx->ctx_smpl_hdr = NULL;
2104 ctx->ctx_fl_is_sampling = 0;
2107 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2108 state,
2109 free_possible,
2110 smpl_buf_addr,
2111 smpl_buf_size));
2113 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2116 * UNLOADED that the session has already been unreserved.
2118 if (state == PFM_CTX_ZOMBIE) {
2119 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2123 * disconnect file descriptor from context must be done
2124 * before we unlock.
2126 filp->private_data = NULL;
2129 * if we free on the spot, the context is now completely unreachable
2130 * from the callers side. The monitored task side is also cut, so we
2131 * can freely cut.
2133 * If we have a deferred free, only the caller side is disconnected.
2135 UNPROTECT_CTX(ctx, flags);
2138 * All memory free operations (especially for vmalloc'ed memory)
2139 * MUST be done with interrupts ENABLED.
2141 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2144 * return the memory used by the context
2146 if (free_possible) pfm_context_free(ctx);
2148 return 0;
2151 static int
2152 pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2154 DPRINT(("pfm_no_open called\n"));
2155 return -ENXIO;
2160 static const struct file_operations pfm_file_ops = {
2161 .llseek = no_llseek,
2162 .read = pfm_read,
2163 .write = pfm_write,
2164 .poll = pfm_poll,
2165 .unlocked_ioctl = pfm_ioctl,
2166 .open = pfm_no_open, /* special open code to disallow open via /proc */
2167 .fasync = pfm_fasync,
2168 .release = pfm_close,
2169 .flush = pfm_flush
2172 static int
2173 pfmfs_delete_dentry(const struct dentry *dentry)
2175 return 1;
2178 static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2180 return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2181 dentry->d_inode->i_ino);
2184 static const struct dentry_operations pfmfs_dentry_operations = {
2185 .d_delete = pfmfs_delete_dentry,
2186 .d_dname = pfmfs_dname,
2190 static struct file *
2191 pfm_alloc_file(pfm_context_t *ctx)
2193 struct file *file;
2194 struct inode *inode;
2195 struct path path;
2196 struct qstr this = { .name = "" };
2199 * allocate a new inode
2201 inode = new_inode(pfmfs_mnt->mnt_sb);
2202 if (!inode)
2203 return ERR_PTR(-ENOMEM);
2205 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2207 inode->i_mode = S_IFCHR|S_IRUGO;
2208 inode->i_uid = current_fsuid();
2209 inode->i_gid = current_fsgid();
2212 * allocate a new dcache entry
2214 path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
2215 if (!path.dentry) {
2216 iput(inode);
2217 return ERR_PTR(-ENOMEM);
2219 path.mnt = mntget(pfmfs_mnt);
2221 d_add(path.dentry, inode);
2223 file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2224 if (!file) {
2225 path_put(&path);
2226 return ERR_PTR(-ENFILE);
2229 file->f_flags = O_RDONLY;
2230 file->private_data = ctx;
2232 return file;
2235 static int
2236 pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2238 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2240 while (size > 0) {
2241 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2244 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2245 return -ENOMEM;
2247 addr += PAGE_SIZE;
2248 buf += PAGE_SIZE;
2249 size -= PAGE_SIZE;
2251 return 0;
2255 * allocate a sampling buffer and remaps it into the user address space of the task
2257 static int
2258 pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2260 struct mm_struct *mm = task->mm;
2261 struct vm_area_struct *vma = NULL;
2262 unsigned long size;
2263 void *smpl_buf;
2267 * the fixed header + requested size and align to page boundary
2269 size = PAGE_ALIGN(rsize);
2271 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2274 * check requested size to avoid Denial-of-service attacks
2275 * XXX: may have to refine this test
2276 * Check against address space limit.
2278 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2279 * return -ENOMEM;
2281 if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2282 return -ENOMEM;
2285 * We do the easy to undo allocations first.
2287 * pfm_rvmalloc(), clears the buffer, so there is no leak
2289 smpl_buf = pfm_rvmalloc(size);
2290 if (smpl_buf == NULL) {
2291 DPRINT(("Can't allocate sampling buffer\n"));
2292 return -ENOMEM;
2295 DPRINT(("smpl_buf @%p\n", smpl_buf));
2297 /* allocate vma */
2298 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2299 if (!vma) {
2300 DPRINT(("Cannot allocate vma\n"));
2301 goto error_kmem;
2303 INIT_LIST_HEAD(&vma->anon_vma_chain);
2306 * partially initialize the vma for the sampling buffer
2308 vma->vm_mm = mm;
2309 vma->vm_file = get_file(filp);
2310 vma->vm_flags = VM_READ|VM_MAYREAD|VM_DONTEXPAND|VM_DONTDUMP;
2311 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2314 * Now we have everything we need and we can initialize
2315 * and connect all the data structures
2318 ctx->ctx_smpl_hdr = smpl_buf;
2319 ctx->ctx_smpl_size = size; /* aligned size */
2322 * Let's do the difficult operations next.
2324 * now we atomically find some area in the address space and
2325 * remap the buffer in it.
2327 down_write(&task->mm->mmap_sem);
2329 /* find some free area in address space, must have mmap sem held */
2330 vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS);
2331 if (IS_ERR_VALUE(vma->vm_start)) {
2332 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2333 up_write(&task->mm->mmap_sem);
2334 goto error;
2336 vma->vm_end = vma->vm_start + size;
2337 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2339 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2341 /* can only be applied to current task, need to have the mm semaphore held when called */
2342 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2343 DPRINT(("Can't remap buffer\n"));
2344 up_write(&task->mm->mmap_sem);
2345 goto error;
2349 * now insert the vma in the vm list for the process, must be
2350 * done with mmap lock held
2352 insert_vm_struct(mm, vma);
2354 vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2355 vma_pages(vma));
2356 up_write(&task->mm->mmap_sem);
2359 * keep track of user level virtual address
2361 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2362 *(unsigned long *)user_vaddr = vma->vm_start;
2364 return 0;
2366 error:
2367 kmem_cache_free(vm_area_cachep, vma);
2368 error_kmem:
2369 pfm_rvfree(smpl_buf, size);
2371 return -ENOMEM;
2375 * XXX: do something better here
2377 static int
2378 pfm_bad_permissions(struct task_struct *task)
2380 const struct cred *tcred;
2381 kuid_t uid = current_uid();
2382 kgid_t gid = current_gid();
2383 int ret;
2385 rcu_read_lock();
2386 tcred = __task_cred(task);
2388 /* inspired by ptrace_attach() */
2389 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2390 from_kuid(&init_user_ns, uid),
2391 from_kgid(&init_user_ns, gid),
2392 from_kuid(&init_user_ns, tcred->euid),
2393 from_kuid(&init_user_ns, tcred->suid),
2394 from_kuid(&init_user_ns, tcred->uid),
2395 from_kgid(&init_user_ns, tcred->egid),
2396 from_kgid(&init_user_ns, tcred->sgid)));
2398 ret = ((!uid_eq(uid, tcred->euid))
2399 || (!uid_eq(uid, tcred->suid))
2400 || (!uid_eq(uid, tcred->uid))
2401 || (!gid_eq(gid, tcred->egid))
2402 || (!gid_eq(gid, tcred->sgid))
2403 || (!gid_eq(gid, tcred->gid))) && !capable(CAP_SYS_PTRACE);
2405 rcu_read_unlock();
2406 return ret;
2409 static int
2410 pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2412 int ctx_flags;
2414 /* valid signal */
2416 ctx_flags = pfx->ctx_flags;
2418 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2421 * cannot block in this mode
2423 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2424 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2425 return -EINVAL;
2427 } else {
2429 /* probably more to add here */
2431 return 0;
2434 static int
2435 pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2436 unsigned int cpu, pfarg_context_t *arg)
2438 pfm_buffer_fmt_t *fmt = NULL;
2439 unsigned long size = 0UL;
2440 void *uaddr = NULL;
2441 void *fmt_arg = NULL;
2442 int ret = 0;
2443 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2445 /* invoke and lock buffer format, if found */
2446 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2447 if (fmt == NULL) {
2448 DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2449 return -EINVAL;
2453 * buffer argument MUST be contiguous to pfarg_context_t
2455 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2457 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2459 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2461 if (ret) goto error;
2463 /* link buffer format and context */
2464 ctx->ctx_buf_fmt = fmt;
2465 ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2468 * check if buffer format wants to use perfmon buffer allocation/mapping service
2470 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2471 if (ret) goto error;
2473 if (size) {
2475 * buffer is always remapped into the caller's address space
2477 ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2478 if (ret) goto error;
2480 /* keep track of user address of buffer */
2481 arg->ctx_smpl_vaddr = uaddr;
2483 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2485 error:
2486 return ret;
2489 static void
2490 pfm_reset_pmu_state(pfm_context_t *ctx)
2492 int i;
2495 * install reset values for PMC.
2497 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2498 if (PMC_IS_IMPL(i) == 0) continue;
2499 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2500 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2503 * PMD registers are set to 0UL when the context in memset()
2507 * On context switched restore, we must restore ALL pmc and ALL pmd even
2508 * when they are not actively used by the task. In UP, the incoming process
2509 * may otherwise pick up left over PMC, PMD state from the previous process.
2510 * As opposed to PMD, stale PMC can cause harm to the incoming
2511 * process because they may change what is being measured.
2512 * Therefore, we must systematically reinstall the entire
2513 * PMC state. In SMP, the same thing is possible on the
2514 * same CPU but also on between 2 CPUs.
2516 * The problem with PMD is information leaking especially
2517 * to user level when psr.sp=0
2519 * There is unfortunately no easy way to avoid this problem
2520 * on either UP or SMP. This definitively slows down the
2521 * pfm_load_regs() function.
2525 * bitmask of all PMCs accessible to this context
2527 * PMC0 is treated differently.
2529 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2532 * bitmask of all PMDs that are accessible to this context
2534 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2536 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2539 * useful in case of re-enable after disable
2541 ctx->ctx_used_ibrs[0] = 0UL;
2542 ctx->ctx_used_dbrs[0] = 0UL;
2545 static int
2546 pfm_ctx_getsize(void *arg, size_t *sz)
2548 pfarg_context_t *req = (pfarg_context_t *)arg;
2549 pfm_buffer_fmt_t *fmt;
2551 *sz = 0;
2553 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2555 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2556 if (fmt == NULL) {
2557 DPRINT(("cannot find buffer format\n"));
2558 return -EINVAL;
2560 /* get just enough to copy in user parameters */
2561 *sz = fmt->fmt_arg_size;
2562 DPRINT(("arg_size=%lu\n", *sz));
2564 return 0;
2570 * cannot attach if :
2571 * - kernel task
2572 * - task not owned by caller
2573 * - task incompatible with context mode
2575 static int
2576 pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2579 * no kernel task or task not owner by caller
2581 if (task->mm == NULL) {
2582 DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2583 return -EPERM;
2585 if (pfm_bad_permissions(task)) {
2586 DPRINT(("no permission to attach to [%d]\n", task_pid_nr(task)));
2587 return -EPERM;
2590 * cannot block in self-monitoring mode
2592 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2593 DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2594 return -EINVAL;
2597 if (task->exit_state == EXIT_ZOMBIE) {
2598 DPRINT(("cannot attach to zombie task [%d]\n", task_pid_nr(task)));
2599 return -EBUSY;
2603 * always ok for self
2605 if (task == current) return 0;
2607 if (!task_is_stopped_or_traced(task)) {
2608 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2609 return -EBUSY;
2612 * make sure the task is off any CPU
2614 wait_task_inactive(task, 0);
2616 /* more to come... */
2618 return 0;
2621 static int
2622 pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2624 struct task_struct *p = current;
2625 int ret;
2627 /* XXX: need to add more checks here */
2628 if (pid < 2) return -EPERM;
2630 if (pid != task_pid_vnr(current)) {
2632 read_lock(&tasklist_lock);
2634 p = find_task_by_vpid(pid);
2636 /* make sure task cannot go away while we operate on it */
2637 if (p) get_task_struct(p);
2639 read_unlock(&tasklist_lock);
2641 if (p == NULL) return -ESRCH;
2644 ret = pfm_task_incompatible(ctx, p);
2645 if (ret == 0) {
2646 *task = p;
2647 } else if (p != current) {
2648 pfm_put_task(p);
2650 return ret;
2655 static int
2656 pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2658 pfarg_context_t *req = (pfarg_context_t *)arg;
2659 struct file *filp;
2660 struct path path;
2661 int ctx_flags;
2662 int fd;
2663 int ret;
2665 /* let's check the arguments first */
2666 ret = pfarg_is_sane(current, req);
2667 if (ret < 0)
2668 return ret;
2670 ctx_flags = req->ctx_flags;
2672 ret = -ENOMEM;
2674 fd = get_unused_fd();
2675 if (fd < 0)
2676 return fd;
2678 ctx = pfm_context_alloc(ctx_flags);
2679 if (!ctx)
2680 goto error;
2682 filp = pfm_alloc_file(ctx);
2683 if (IS_ERR(filp)) {
2684 ret = PTR_ERR(filp);
2685 goto error_file;
2688 req->ctx_fd = ctx->ctx_fd = fd;
2691 * does the user want to sample?
2693 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2694 ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2695 if (ret)
2696 goto buffer_error;
2699 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2700 ctx,
2701 ctx_flags,
2702 ctx->ctx_fl_system,
2703 ctx->ctx_fl_block,
2704 ctx->ctx_fl_excl_idle,
2705 ctx->ctx_fl_no_msg,
2706 ctx->ctx_fd));
2709 * initialize soft PMU state
2711 pfm_reset_pmu_state(ctx);
2713 fd_install(fd, filp);
2715 return 0;
2717 buffer_error:
2718 path = filp->f_path;
2719 put_filp(filp);
2720 path_put(&path);
2722 if (ctx->ctx_buf_fmt) {
2723 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2725 error_file:
2726 pfm_context_free(ctx);
2728 error:
2729 put_unused_fd(fd);
2730 return ret;
2733 static inline unsigned long
2734 pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2736 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2737 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2738 extern unsigned long carta_random32 (unsigned long seed);
2740 if (reg->flags & PFM_REGFL_RANDOM) {
2741 new_seed = carta_random32(old_seed);
2742 val -= (old_seed & mask); /* counter values are negative numbers! */
2743 if ((mask >> 32) != 0)
2744 /* construct a full 64-bit random value: */
2745 new_seed |= carta_random32(old_seed >> 32) << 32;
2746 reg->seed = new_seed;
2748 reg->lval = val;
2749 return val;
2752 static void
2753 pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2755 unsigned long mask = ovfl_regs[0];
2756 unsigned long reset_others = 0UL;
2757 unsigned long val;
2758 int i;
2761 * now restore reset value on sampling overflowed counters
2763 mask >>= PMU_FIRST_COUNTER;
2764 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2766 if ((mask & 0x1UL) == 0UL) continue;
2768 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2769 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2771 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2775 * Now take care of resetting the other registers
2777 for(i = 0; reset_others; i++, reset_others >>= 1) {
2779 if ((reset_others & 0x1) == 0) continue;
2781 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2783 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2784 is_long_reset ? "long" : "short", i, val));
2788 static void
2789 pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2791 unsigned long mask = ovfl_regs[0];
2792 unsigned long reset_others = 0UL;
2793 unsigned long val;
2794 int i;
2796 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2798 if (ctx->ctx_state == PFM_CTX_MASKED) {
2799 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2800 return;
2804 * now restore reset value on sampling overflowed counters
2806 mask >>= PMU_FIRST_COUNTER;
2807 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2809 if ((mask & 0x1UL) == 0UL) continue;
2811 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2812 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2814 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2816 pfm_write_soft_counter(ctx, i, val);
2820 * Now take care of resetting the other registers
2822 for(i = 0; reset_others; i++, reset_others >>= 1) {
2824 if ((reset_others & 0x1) == 0) continue;
2826 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2828 if (PMD_IS_COUNTING(i)) {
2829 pfm_write_soft_counter(ctx, i, val);
2830 } else {
2831 ia64_set_pmd(i, val);
2833 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2834 is_long_reset ? "long" : "short", i, val));
2836 ia64_srlz_d();
2839 static int
2840 pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2842 struct task_struct *task;
2843 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2844 unsigned long value, pmc_pm;
2845 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2846 unsigned int cnum, reg_flags, flags, pmc_type;
2847 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2848 int is_monitor, is_counting, state;
2849 int ret = -EINVAL;
2850 pfm_reg_check_t wr_func;
2851 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2853 state = ctx->ctx_state;
2854 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2855 is_system = ctx->ctx_fl_system;
2856 task = ctx->ctx_task;
2857 impl_pmds = pmu_conf->impl_pmds[0];
2859 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2861 if (is_loaded) {
2863 * In system wide and when the context is loaded, access can only happen
2864 * when the caller is running on the CPU being monitored by the session.
2865 * It does not have to be the owner (ctx_task) of the context per se.
2867 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2868 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2869 return -EBUSY;
2871 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2873 expert_mode = pfm_sysctl.expert_mode;
2875 for (i = 0; i < count; i++, req++) {
2877 cnum = req->reg_num;
2878 reg_flags = req->reg_flags;
2879 value = req->reg_value;
2880 smpl_pmds = req->reg_smpl_pmds[0];
2881 reset_pmds = req->reg_reset_pmds[0];
2882 flags = 0;
2885 if (cnum >= PMU_MAX_PMCS) {
2886 DPRINT(("pmc%u is invalid\n", cnum));
2887 goto error;
2890 pmc_type = pmu_conf->pmc_desc[cnum].type;
2891 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2892 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2893 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2896 * we reject all non implemented PMC as well
2897 * as attempts to modify PMC[0-3] which are used
2898 * as status registers by the PMU
2900 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2901 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2902 goto error;
2904 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2906 * If the PMC is a monitor, then if the value is not the default:
2907 * - system-wide session: PMCx.pm=1 (privileged monitor)
2908 * - per-task : PMCx.pm=0 (user monitor)
2910 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2911 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2912 cnum,
2913 pmc_pm,
2914 is_system));
2915 goto error;
2918 if (is_counting) {
2920 * enforce generation of overflow interrupt. Necessary on all
2921 * CPUs.
2923 value |= 1 << PMU_PMC_OI;
2925 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2926 flags |= PFM_REGFL_OVFL_NOTIFY;
2929 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2931 /* verify validity of smpl_pmds */
2932 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2933 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2934 goto error;
2937 /* verify validity of reset_pmds */
2938 if ((reset_pmds & impl_pmds) != reset_pmds) {
2939 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2940 goto error;
2942 } else {
2943 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2944 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2945 goto error;
2947 /* eventid on non-counting monitors are ignored */
2951 * execute write checker, if any
2953 if (likely(expert_mode == 0 && wr_func)) {
2954 ret = (*wr_func)(task, ctx, cnum, &value, regs);
2955 if (ret) goto error;
2956 ret = -EINVAL;
2960 * no error on this register
2962 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2965 * Now we commit the changes to the software state
2969 * update overflow information
2971 if (is_counting) {
2973 * full flag update each time a register is programmed
2975 ctx->ctx_pmds[cnum].flags = flags;
2977 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2978 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
2979 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
2982 * Mark all PMDS to be accessed as used.
2984 * We do not keep track of PMC because we have to
2985 * systematically restore ALL of them.
2987 * We do not update the used_monitors mask, because
2988 * if we have not programmed them, then will be in
2989 * a quiescent state, therefore we will not need to
2990 * mask/restore then when context is MASKED.
2992 CTX_USED_PMD(ctx, reset_pmds);
2993 CTX_USED_PMD(ctx, smpl_pmds);
2995 * make sure we do not try to reset on
2996 * restart because we have established new values
2998 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3001 * Needed in case the user does not initialize the equivalent
3002 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3003 * possible leak here.
3005 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3008 * keep track of the monitor PMC that we are using.
3009 * we save the value of the pmc in ctx_pmcs[] and if
3010 * the monitoring is not stopped for the context we also
3011 * place it in the saved state area so that it will be
3012 * picked up later by the context switch code.
3014 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3016 * The value in th_pmcs[] may be modified on overflow, i.e., when
3017 * monitoring needs to be stopped.
3019 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3022 * update context state
3024 ctx->ctx_pmcs[cnum] = value;
3026 if (is_loaded) {
3028 * write thread state
3030 if (is_system == 0) ctx->th_pmcs[cnum] = value;
3033 * write hardware register if we can
3035 if (can_access_pmu) {
3036 ia64_set_pmc(cnum, value);
3038 #ifdef CONFIG_SMP
3039 else {
3041 * per-task SMP only here
3043 * we are guaranteed that the task is not running on the other CPU,
3044 * we indicate that this PMD will need to be reloaded if the task
3045 * is rescheduled on the CPU it ran last on.
3047 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3049 #endif
3052 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3053 cnum,
3054 value,
3055 is_loaded,
3056 can_access_pmu,
3057 flags,
3058 ctx->ctx_all_pmcs[0],
3059 ctx->ctx_used_pmds[0],
3060 ctx->ctx_pmds[cnum].eventid,
3061 smpl_pmds,
3062 reset_pmds,
3063 ctx->ctx_reload_pmcs[0],
3064 ctx->ctx_used_monitors[0],
3065 ctx->ctx_ovfl_regs[0]));
3069 * make sure the changes are visible
3071 if (can_access_pmu) ia64_srlz_d();
3073 return 0;
3074 error:
3075 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3076 return ret;
3079 static int
3080 pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3082 struct task_struct *task;
3083 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3084 unsigned long value, hw_value, ovfl_mask;
3085 unsigned int cnum;
3086 int i, can_access_pmu = 0, state;
3087 int is_counting, is_loaded, is_system, expert_mode;
3088 int ret = -EINVAL;
3089 pfm_reg_check_t wr_func;
3092 state = ctx->ctx_state;
3093 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3094 is_system = ctx->ctx_fl_system;
3095 ovfl_mask = pmu_conf->ovfl_val;
3096 task = ctx->ctx_task;
3098 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3101 * on both UP and SMP, we can only write to the PMC when the task is
3102 * the owner of the local PMU.
3104 if (likely(is_loaded)) {
3106 * In system wide and when the context is loaded, access can only happen
3107 * when the caller is running on the CPU being monitored by the session.
3108 * It does not have to be the owner (ctx_task) of the context per se.
3110 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3111 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3112 return -EBUSY;
3114 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3116 expert_mode = pfm_sysctl.expert_mode;
3118 for (i = 0; i < count; i++, req++) {
3120 cnum = req->reg_num;
3121 value = req->reg_value;
3123 if (!PMD_IS_IMPL(cnum)) {
3124 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3125 goto abort_mission;
3127 is_counting = PMD_IS_COUNTING(cnum);
3128 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3131 * execute write checker, if any
3133 if (unlikely(expert_mode == 0 && wr_func)) {
3134 unsigned long v = value;
3136 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3137 if (ret) goto abort_mission;
3139 value = v;
3140 ret = -EINVAL;
3144 * no error on this register
3146 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3149 * now commit changes to software state
3151 hw_value = value;
3154 * update virtualized (64bits) counter
3156 if (is_counting) {
3158 * write context state
3160 ctx->ctx_pmds[cnum].lval = value;
3163 * when context is load we use the split value
3165 if (is_loaded) {
3166 hw_value = value & ovfl_mask;
3167 value = value & ~ovfl_mask;
3171 * update reset values (not just for counters)
3173 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3174 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3177 * update randomization parameters (not just for counters)
3179 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3180 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3183 * update context value
3185 ctx->ctx_pmds[cnum].val = value;
3188 * Keep track of what we use
3190 * We do not keep track of PMC because we have to
3191 * systematically restore ALL of them.
3193 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3196 * mark this PMD register used as well
3198 CTX_USED_PMD(ctx, RDEP(cnum));
3201 * make sure we do not try to reset on
3202 * restart because we have established new values
3204 if (is_counting && state == PFM_CTX_MASKED) {
3205 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3208 if (is_loaded) {
3210 * write thread state
3212 if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3215 * write hardware register if we can
3217 if (can_access_pmu) {
3218 ia64_set_pmd(cnum, hw_value);
3219 } else {
3220 #ifdef CONFIG_SMP
3222 * we are guaranteed that the task is not running on the other CPU,
3223 * we indicate that this PMD will need to be reloaded if the task
3224 * is rescheduled on the CPU it ran last on.
3226 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3227 #endif
3231 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3232 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3233 cnum,
3234 value,
3235 is_loaded,
3236 can_access_pmu,
3237 hw_value,
3238 ctx->ctx_pmds[cnum].val,
3239 ctx->ctx_pmds[cnum].short_reset,
3240 ctx->ctx_pmds[cnum].long_reset,
3241 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3242 ctx->ctx_pmds[cnum].seed,
3243 ctx->ctx_pmds[cnum].mask,
3244 ctx->ctx_used_pmds[0],
3245 ctx->ctx_pmds[cnum].reset_pmds[0],
3246 ctx->ctx_reload_pmds[0],
3247 ctx->ctx_all_pmds[0],
3248 ctx->ctx_ovfl_regs[0]));
3252 * make changes visible
3254 if (can_access_pmu) ia64_srlz_d();
3256 return 0;
3258 abort_mission:
3260 * for now, we have only one possibility for error
3262 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3263 return ret;
3267 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3268 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3269 * interrupt is delivered during the call, it will be kept pending until we leave, making
3270 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3271 * guaranteed to return consistent data to the user, it may simply be old. It is not
3272 * trivial to treat the overflow while inside the call because you may end up in
3273 * some module sampling buffer code causing deadlocks.
3275 static int
3276 pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3278 struct task_struct *task;
3279 unsigned long val = 0UL, lval, ovfl_mask, sval;
3280 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3281 unsigned int cnum, reg_flags = 0;
3282 int i, can_access_pmu = 0, state;
3283 int is_loaded, is_system, is_counting, expert_mode;
3284 int ret = -EINVAL;
3285 pfm_reg_check_t rd_func;
3288 * access is possible when loaded only for
3289 * self-monitoring tasks or in UP mode
3292 state = ctx->ctx_state;
3293 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3294 is_system = ctx->ctx_fl_system;
3295 ovfl_mask = pmu_conf->ovfl_val;
3296 task = ctx->ctx_task;
3298 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3300 if (likely(is_loaded)) {
3302 * In system wide and when the context is loaded, access can only happen
3303 * when the caller is running on the CPU being monitored by the session.
3304 * It does not have to be the owner (ctx_task) of the context per se.
3306 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3307 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3308 return -EBUSY;
3311 * this can be true when not self-monitoring only in UP
3313 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3315 if (can_access_pmu) ia64_srlz_d();
3317 expert_mode = pfm_sysctl.expert_mode;
3319 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3320 is_loaded,
3321 can_access_pmu,
3322 state));
3325 * on both UP and SMP, we can only read the PMD from the hardware register when
3326 * the task is the owner of the local PMU.
3329 for (i = 0; i < count; i++, req++) {
3331 cnum = req->reg_num;
3332 reg_flags = req->reg_flags;
3334 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3336 * we can only read the register that we use. That includes
3337 * the one we explicitly initialize AND the one we want included
3338 * in the sampling buffer (smpl_regs).
3340 * Having this restriction allows optimization in the ctxsw routine
3341 * without compromising security (leaks)
3343 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3345 sval = ctx->ctx_pmds[cnum].val;
3346 lval = ctx->ctx_pmds[cnum].lval;
3347 is_counting = PMD_IS_COUNTING(cnum);
3350 * If the task is not the current one, then we check if the
3351 * PMU state is still in the local live register due to lazy ctxsw.
3352 * If true, then we read directly from the registers.
3354 if (can_access_pmu){
3355 val = ia64_get_pmd(cnum);
3356 } else {
3358 * context has been saved
3359 * if context is zombie, then task does not exist anymore.
3360 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3362 val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3364 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3366 if (is_counting) {
3368 * XXX: need to check for overflow when loaded
3370 val &= ovfl_mask;
3371 val += sval;
3375 * execute read checker, if any
3377 if (unlikely(expert_mode == 0 && rd_func)) {
3378 unsigned long v = val;
3379 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3380 if (ret) goto error;
3381 val = v;
3382 ret = -EINVAL;
3385 PFM_REG_RETFLAG_SET(reg_flags, 0);
3387 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3390 * update register return value, abort all if problem during copy.
3391 * we only modify the reg_flags field. no check mode is fine because
3392 * access has been verified upfront in sys_perfmonctl().
3394 req->reg_value = val;
3395 req->reg_flags = reg_flags;
3396 req->reg_last_reset_val = lval;
3399 return 0;
3401 error:
3402 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3403 return ret;
3407 pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3409 pfm_context_t *ctx;
3411 if (req == NULL) return -EINVAL;
3413 ctx = GET_PMU_CTX();
3415 if (ctx == NULL) return -EINVAL;
3418 * for now limit to current task, which is enough when calling
3419 * from overflow handler
3421 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3423 return pfm_write_pmcs(ctx, req, nreq, regs);
3425 EXPORT_SYMBOL(pfm_mod_write_pmcs);
3428 pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3430 pfm_context_t *ctx;
3432 if (req == NULL) return -EINVAL;
3434 ctx = GET_PMU_CTX();
3436 if (ctx == NULL) return -EINVAL;
3439 * for now limit to current task, which is enough when calling
3440 * from overflow handler
3442 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3444 return pfm_read_pmds(ctx, req, nreq, regs);
3446 EXPORT_SYMBOL(pfm_mod_read_pmds);
3449 * Only call this function when a process it trying to
3450 * write the debug registers (reading is always allowed)
3453 pfm_use_debug_registers(struct task_struct *task)
3455 pfm_context_t *ctx = task->thread.pfm_context;
3456 unsigned long flags;
3457 int ret = 0;
3459 if (pmu_conf->use_rr_dbregs == 0) return 0;
3461 DPRINT(("called for [%d]\n", task_pid_nr(task)));
3464 * do it only once
3466 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3469 * Even on SMP, we do not need to use an atomic here because
3470 * the only way in is via ptrace() and this is possible only when the
3471 * process is stopped. Even in the case where the ctxsw out is not totally
3472 * completed by the time we come here, there is no way the 'stopped' process
3473 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3474 * So this is always safe.
3476 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3478 LOCK_PFS(flags);
3481 * We cannot allow setting breakpoints when system wide monitoring
3482 * sessions are using the debug registers.
3484 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3485 ret = -1;
3486 else
3487 pfm_sessions.pfs_ptrace_use_dbregs++;
3489 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3490 pfm_sessions.pfs_ptrace_use_dbregs,
3491 pfm_sessions.pfs_sys_use_dbregs,
3492 task_pid_nr(task), ret));
3494 UNLOCK_PFS(flags);
3496 return ret;
3500 * This function is called for every task that exits with the
3501 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3502 * able to use the debug registers for debugging purposes via
3503 * ptrace(). Therefore we know it was not using them for
3504 * performance monitoring, so we only decrement the number
3505 * of "ptraced" debug register users to keep the count up to date
3508 pfm_release_debug_registers(struct task_struct *task)
3510 unsigned long flags;
3511 int ret;
3513 if (pmu_conf->use_rr_dbregs == 0) return 0;
3515 LOCK_PFS(flags);
3516 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3517 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3518 ret = -1;
3519 } else {
3520 pfm_sessions.pfs_ptrace_use_dbregs--;
3521 ret = 0;
3523 UNLOCK_PFS(flags);
3525 return ret;
3528 static int
3529 pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3531 struct task_struct *task;
3532 pfm_buffer_fmt_t *fmt;
3533 pfm_ovfl_ctrl_t rst_ctrl;
3534 int state, is_system;
3535 int ret = 0;
3537 state = ctx->ctx_state;
3538 fmt = ctx->ctx_buf_fmt;
3539 is_system = ctx->ctx_fl_system;
3540 task = PFM_CTX_TASK(ctx);
3542 switch(state) {
3543 case PFM_CTX_MASKED:
3544 break;
3545 case PFM_CTX_LOADED:
3546 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3547 /* fall through */
3548 case PFM_CTX_UNLOADED:
3549 case PFM_CTX_ZOMBIE:
3550 DPRINT(("invalid state=%d\n", state));
3551 return -EBUSY;
3552 default:
3553 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3554 return -EINVAL;
3558 * In system wide and when the context is loaded, access can only happen
3559 * when the caller is running on the CPU being monitored by the session.
3560 * It does not have to be the owner (ctx_task) of the context per se.
3562 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3563 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3564 return -EBUSY;
3567 /* sanity check */
3568 if (unlikely(task == NULL)) {
3569 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3570 return -EINVAL;
3573 if (task == current || is_system) {
3575 fmt = ctx->ctx_buf_fmt;
3577 DPRINT(("restarting self %d ovfl=0x%lx\n",
3578 task_pid_nr(task),
3579 ctx->ctx_ovfl_regs[0]));
3581 if (CTX_HAS_SMPL(ctx)) {
3583 prefetch(ctx->ctx_smpl_hdr);
3585 rst_ctrl.bits.mask_monitoring = 0;
3586 rst_ctrl.bits.reset_ovfl_pmds = 0;
3588 if (state == PFM_CTX_LOADED)
3589 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3590 else
3591 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3592 } else {
3593 rst_ctrl.bits.mask_monitoring = 0;
3594 rst_ctrl.bits.reset_ovfl_pmds = 1;
3597 if (ret == 0) {
3598 if (rst_ctrl.bits.reset_ovfl_pmds)
3599 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3601 if (rst_ctrl.bits.mask_monitoring == 0) {
3602 DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3604 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3605 } else {
3606 DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3608 // cannot use pfm_stop_monitoring(task, regs);
3612 * clear overflowed PMD mask to remove any stale information
3614 ctx->ctx_ovfl_regs[0] = 0UL;
3617 * back to LOADED state
3619 ctx->ctx_state = PFM_CTX_LOADED;
3622 * XXX: not really useful for self monitoring
3624 ctx->ctx_fl_can_restart = 0;
3626 return 0;
3630 * restart another task
3634 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3635 * one is seen by the task.
3637 if (state == PFM_CTX_MASKED) {
3638 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3640 * will prevent subsequent restart before this one is
3641 * seen by other task
3643 ctx->ctx_fl_can_restart = 0;
3647 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3648 * the task is blocked or on its way to block. That's the normal
3649 * restart path. If the monitoring is not masked, then the task
3650 * can be actively monitoring and we cannot directly intervene.
3651 * Therefore we use the trap mechanism to catch the task and
3652 * force it to reset the buffer/reset PMDs.
3654 * if non-blocking, then we ensure that the task will go into
3655 * pfm_handle_work() before returning to user mode.
3657 * We cannot explicitly reset another task, it MUST always
3658 * be done by the task itself. This works for system wide because
3659 * the tool that is controlling the session is logically doing
3660 * "self-monitoring".
3662 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3663 DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3664 complete(&ctx->ctx_restart_done);
3665 } else {
3666 DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3668 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3670 PFM_SET_WORK_PENDING(task, 1);
3672 set_notify_resume(task);
3675 * XXX: send reschedule if task runs on another CPU
3678 return 0;
3681 static int
3682 pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3684 unsigned int m = *(unsigned int *)arg;
3686 pfm_sysctl.debug = m == 0 ? 0 : 1;
3688 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3690 if (m == 0) {
3691 memset(pfm_stats, 0, sizeof(pfm_stats));
3692 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3694 return 0;
3698 * arg can be NULL and count can be zero for this function
3700 static int
3701 pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3703 struct thread_struct *thread = NULL;
3704 struct task_struct *task;
3705 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3706 unsigned long flags;
3707 dbreg_t dbreg;
3708 unsigned int rnum;
3709 int first_time;
3710 int ret = 0, state;
3711 int i, can_access_pmu = 0;
3712 int is_system, is_loaded;
3714 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3716 state = ctx->ctx_state;
3717 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3718 is_system = ctx->ctx_fl_system;
3719 task = ctx->ctx_task;
3721 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3724 * on both UP and SMP, we can only write to the PMC when the task is
3725 * the owner of the local PMU.
3727 if (is_loaded) {
3728 thread = &task->thread;
3730 * In system wide and when the context is loaded, access can only happen
3731 * when the caller is running on the CPU being monitored by the session.
3732 * It does not have to be the owner (ctx_task) of the context per se.
3734 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3735 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3736 return -EBUSY;
3738 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3742 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3743 * ensuring that no real breakpoint can be installed via this call.
3745 * IMPORTANT: regs can be NULL in this function
3748 first_time = ctx->ctx_fl_using_dbreg == 0;
3751 * don't bother if we are loaded and task is being debugged
3753 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3754 DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3755 return -EBUSY;
3759 * check for debug registers in system wide mode
3761 * If though a check is done in pfm_context_load(),
3762 * we must repeat it here, in case the registers are
3763 * written after the context is loaded
3765 if (is_loaded) {
3766 LOCK_PFS(flags);
3768 if (first_time && is_system) {
3769 if (pfm_sessions.pfs_ptrace_use_dbregs)
3770 ret = -EBUSY;
3771 else
3772 pfm_sessions.pfs_sys_use_dbregs++;
3774 UNLOCK_PFS(flags);
3777 if (ret != 0) return ret;
3780 * mark ourself as user of the debug registers for
3781 * perfmon purposes.
3783 ctx->ctx_fl_using_dbreg = 1;
3786 * clear hardware registers to make sure we don't
3787 * pick up stale state.
3789 * for a system wide session, we do not use
3790 * thread.dbr, thread.ibr because this process
3791 * never leaves the current CPU and the state
3792 * is shared by all processes running on it
3794 if (first_time && can_access_pmu) {
3795 DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3796 for (i=0; i < pmu_conf->num_ibrs; i++) {
3797 ia64_set_ibr(i, 0UL);
3798 ia64_dv_serialize_instruction();
3800 ia64_srlz_i();
3801 for (i=0; i < pmu_conf->num_dbrs; i++) {
3802 ia64_set_dbr(i, 0UL);
3803 ia64_dv_serialize_data();
3805 ia64_srlz_d();
3809 * Now install the values into the registers
3811 for (i = 0; i < count; i++, req++) {
3813 rnum = req->dbreg_num;
3814 dbreg.val = req->dbreg_value;
3816 ret = -EINVAL;
3818 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3819 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3820 rnum, dbreg.val, mode, i, count));
3822 goto abort_mission;
3826 * make sure we do not install enabled breakpoint
3828 if (rnum & 0x1) {
3829 if (mode == PFM_CODE_RR)
3830 dbreg.ibr.ibr_x = 0;
3831 else
3832 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3835 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3838 * Debug registers, just like PMC, can only be modified
3839 * by a kernel call. Moreover, perfmon() access to those
3840 * registers are centralized in this routine. The hardware
3841 * does not modify the value of these registers, therefore,
3842 * if we save them as they are written, we can avoid having
3843 * to save them on context switch out. This is made possible
3844 * by the fact that when perfmon uses debug registers, ptrace()
3845 * won't be able to modify them concurrently.
3847 if (mode == PFM_CODE_RR) {
3848 CTX_USED_IBR(ctx, rnum);
3850 if (can_access_pmu) {
3851 ia64_set_ibr(rnum, dbreg.val);
3852 ia64_dv_serialize_instruction();
3855 ctx->ctx_ibrs[rnum] = dbreg.val;
3857 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3858 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3859 } else {
3860 CTX_USED_DBR(ctx, rnum);
3862 if (can_access_pmu) {
3863 ia64_set_dbr(rnum, dbreg.val);
3864 ia64_dv_serialize_data();
3866 ctx->ctx_dbrs[rnum] = dbreg.val;
3868 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3869 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3873 return 0;
3875 abort_mission:
3877 * in case it was our first attempt, we undo the global modifications
3879 if (first_time) {
3880 LOCK_PFS(flags);
3881 if (ctx->ctx_fl_system) {
3882 pfm_sessions.pfs_sys_use_dbregs--;
3884 UNLOCK_PFS(flags);
3885 ctx->ctx_fl_using_dbreg = 0;
3888 * install error return flag
3890 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3892 return ret;
3895 static int
3896 pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3898 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3901 static int
3902 pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3904 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3908 pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3910 pfm_context_t *ctx;
3912 if (req == NULL) return -EINVAL;
3914 ctx = GET_PMU_CTX();
3916 if (ctx == NULL) return -EINVAL;
3919 * for now limit to current task, which is enough when calling
3920 * from overflow handler
3922 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3924 return pfm_write_ibrs(ctx, req, nreq, regs);
3926 EXPORT_SYMBOL(pfm_mod_write_ibrs);
3929 pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3931 pfm_context_t *ctx;
3933 if (req == NULL) return -EINVAL;
3935 ctx = GET_PMU_CTX();
3937 if (ctx == NULL) return -EINVAL;
3940 * for now limit to current task, which is enough when calling
3941 * from overflow handler
3943 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3945 return pfm_write_dbrs(ctx, req, nreq, regs);
3947 EXPORT_SYMBOL(pfm_mod_write_dbrs);
3950 static int
3951 pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3953 pfarg_features_t *req = (pfarg_features_t *)arg;
3955 req->ft_version = PFM_VERSION;
3956 return 0;
3959 static int
3960 pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3962 struct pt_regs *tregs;
3963 struct task_struct *task = PFM_CTX_TASK(ctx);
3964 int state, is_system;
3966 state = ctx->ctx_state;
3967 is_system = ctx->ctx_fl_system;
3970 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3972 if (state == PFM_CTX_UNLOADED) return -EINVAL;
3975 * In system wide and when the context is loaded, access can only happen
3976 * when the caller is running on the CPU being monitored by the session.
3977 * It does not have to be the owner (ctx_task) of the context per se.
3979 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3980 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3981 return -EBUSY;
3983 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3984 task_pid_nr(PFM_CTX_TASK(ctx)),
3985 state,
3986 is_system));
3988 * in system mode, we need to update the PMU directly
3989 * and the user level state of the caller, which may not
3990 * necessarily be the creator of the context.
3992 if (is_system) {
3994 * Update local PMU first
3996 * disable dcr pp
3998 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
3999 ia64_srlz_i();
4002 * update local cpuinfo
4004 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4007 * stop monitoring, does srlz.i
4009 pfm_clear_psr_pp();
4012 * stop monitoring in the caller
4014 ia64_psr(regs)->pp = 0;
4016 return 0;
4019 * per-task mode
4022 if (task == current) {
4023 /* stop monitoring at kernel level */
4024 pfm_clear_psr_up();
4027 * stop monitoring at the user level
4029 ia64_psr(regs)->up = 0;
4030 } else {
4031 tregs = task_pt_regs(task);
4034 * stop monitoring at the user level
4036 ia64_psr(tregs)->up = 0;
4039 * monitoring disabled in kernel at next reschedule
4041 ctx->ctx_saved_psr_up = 0;
4042 DPRINT(("task=[%d]\n", task_pid_nr(task)));
4044 return 0;
4048 static int
4049 pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4051 struct pt_regs *tregs;
4052 int state, is_system;
4054 state = ctx->ctx_state;
4055 is_system = ctx->ctx_fl_system;
4057 if (state != PFM_CTX_LOADED) return -EINVAL;
4060 * In system wide and when the context is loaded, access can only happen
4061 * when the caller is running on the CPU being monitored by the session.
4062 * It does not have to be the owner (ctx_task) of the context per se.
4064 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4065 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4066 return -EBUSY;
4070 * in system mode, we need to update the PMU directly
4071 * and the user level state of the caller, which may not
4072 * necessarily be the creator of the context.
4074 if (is_system) {
4077 * set user level psr.pp for the caller
4079 ia64_psr(regs)->pp = 1;
4082 * now update the local PMU and cpuinfo
4084 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4087 * start monitoring at kernel level
4089 pfm_set_psr_pp();
4091 /* enable dcr pp */
4092 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4093 ia64_srlz_i();
4095 return 0;
4099 * per-process mode
4102 if (ctx->ctx_task == current) {
4104 /* start monitoring at kernel level */
4105 pfm_set_psr_up();
4108 * activate monitoring at user level
4110 ia64_psr(regs)->up = 1;
4112 } else {
4113 tregs = task_pt_regs(ctx->ctx_task);
4116 * start monitoring at the kernel level the next
4117 * time the task is scheduled
4119 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4122 * activate monitoring at user level
4124 ia64_psr(tregs)->up = 1;
4126 return 0;
4129 static int
4130 pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4132 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4133 unsigned int cnum;
4134 int i;
4135 int ret = -EINVAL;
4137 for (i = 0; i < count; i++, req++) {
4139 cnum = req->reg_num;
4141 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4143 req->reg_value = PMC_DFL_VAL(cnum);
4145 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4147 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4149 return 0;
4151 abort_mission:
4152 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4153 return ret;
4156 static int
4157 pfm_check_task_exist(pfm_context_t *ctx)
4159 struct task_struct *g, *t;
4160 int ret = -ESRCH;
4162 read_lock(&tasklist_lock);
4164 do_each_thread (g, t) {
4165 if (t->thread.pfm_context == ctx) {
4166 ret = 0;
4167 goto out;
4169 } while_each_thread (g, t);
4170 out:
4171 read_unlock(&tasklist_lock);
4173 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4175 return ret;
4178 static int
4179 pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4181 struct task_struct *task;
4182 struct thread_struct *thread;
4183 struct pfm_context_t *old;
4184 unsigned long flags;
4185 #ifndef CONFIG_SMP
4186 struct task_struct *owner_task = NULL;
4187 #endif
4188 pfarg_load_t *req = (pfarg_load_t *)arg;
4189 unsigned long *pmcs_source, *pmds_source;
4190 int the_cpu;
4191 int ret = 0;
4192 int state, is_system, set_dbregs = 0;
4194 state = ctx->ctx_state;
4195 is_system = ctx->ctx_fl_system;
4197 * can only load from unloaded or terminated state
4199 if (state != PFM_CTX_UNLOADED) {
4200 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4201 req->load_pid,
4202 ctx->ctx_state));
4203 return -EBUSY;
4206 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4208 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4209 DPRINT(("cannot use blocking mode on self\n"));
4210 return -EINVAL;
4213 ret = pfm_get_task(ctx, req->load_pid, &task);
4214 if (ret) {
4215 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4216 return ret;
4219 ret = -EINVAL;
4222 * system wide is self monitoring only
4224 if (is_system && task != current) {
4225 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4226 req->load_pid));
4227 goto error;
4230 thread = &task->thread;
4232 ret = 0;
4234 * cannot load a context which is using range restrictions,
4235 * into a task that is being debugged.
4237 if (ctx->ctx_fl_using_dbreg) {
4238 if (thread->flags & IA64_THREAD_DBG_VALID) {
4239 ret = -EBUSY;
4240 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4241 goto error;
4243 LOCK_PFS(flags);
4245 if (is_system) {
4246 if (pfm_sessions.pfs_ptrace_use_dbregs) {
4247 DPRINT(("cannot load [%d] dbregs in use\n",
4248 task_pid_nr(task)));
4249 ret = -EBUSY;
4250 } else {
4251 pfm_sessions.pfs_sys_use_dbregs++;
4252 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4253 set_dbregs = 1;
4257 UNLOCK_PFS(flags);
4259 if (ret) goto error;
4263 * SMP system-wide monitoring implies self-monitoring.
4265 * The programming model expects the task to
4266 * be pinned on a CPU throughout the session.
4267 * Here we take note of the current CPU at the
4268 * time the context is loaded. No call from
4269 * another CPU will be allowed.
4271 * The pinning via shed_setaffinity()
4272 * must be done by the calling task prior
4273 * to this call.
4275 * systemwide: keep track of CPU this session is supposed to run on
4277 the_cpu = ctx->ctx_cpu = smp_processor_id();
4279 ret = -EBUSY;
4281 * now reserve the session
4283 ret = pfm_reserve_session(current, is_system, the_cpu);
4284 if (ret) goto error;
4287 * task is necessarily stopped at this point.
4289 * If the previous context was zombie, then it got removed in
4290 * pfm_save_regs(). Therefore we should not see it here.
4291 * If we see a context, then this is an active context
4293 * XXX: needs to be atomic
4295 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4296 thread->pfm_context, ctx));
4298 ret = -EBUSY;
4299 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4300 if (old != NULL) {
4301 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4302 goto error_unres;
4305 pfm_reset_msgq(ctx);
4307 ctx->ctx_state = PFM_CTX_LOADED;
4310 * link context to task
4312 ctx->ctx_task = task;
4314 if (is_system) {
4316 * we load as stopped
4318 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4319 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4321 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4322 } else {
4323 thread->flags |= IA64_THREAD_PM_VALID;
4327 * propagate into thread-state
4329 pfm_copy_pmds(task, ctx);
4330 pfm_copy_pmcs(task, ctx);
4332 pmcs_source = ctx->th_pmcs;
4333 pmds_source = ctx->th_pmds;
4336 * always the case for system-wide
4338 if (task == current) {
4340 if (is_system == 0) {
4342 /* allow user level control */
4343 ia64_psr(regs)->sp = 0;
4344 DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4346 SET_LAST_CPU(ctx, smp_processor_id());
4347 INC_ACTIVATION();
4348 SET_ACTIVATION(ctx);
4349 #ifndef CONFIG_SMP
4351 * push the other task out, if any
4353 owner_task = GET_PMU_OWNER();
4354 if (owner_task) pfm_lazy_save_regs(owner_task);
4355 #endif
4358 * load all PMD from ctx to PMU (as opposed to thread state)
4359 * restore all PMC from ctx to PMU
4361 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4362 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4364 ctx->ctx_reload_pmcs[0] = 0UL;
4365 ctx->ctx_reload_pmds[0] = 0UL;
4368 * guaranteed safe by earlier check against DBG_VALID
4370 if (ctx->ctx_fl_using_dbreg) {
4371 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4372 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4375 * set new ownership
4377 SET_PMU_OWNER(task, ctx);
4379 DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4380 } else {
4382 * when not current, task MUST be stopped, so this is safe
4384 regs = task_pt_regs(task);
4386 /* force a full reload */
4387 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4388 SET_LAST_CPU(ctx, -1);
4390 /* initial saved psr (stopped) */
4391 ctx->ctx_saved_psr_up = 0UL;
4392 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4395 ret = 0;
4397 error_unres:
4398 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4399 error:
4401 * we must undo the dbregs setting (for system-wide)
4403 if (ret && set_dbregs) {
4404 LOCK_PFS(flags);
4405 pfm_sessions.pfs_sys_use_dbregs--;
4406 UNLOCK_PFS(flags);
4409 * release task, there is now a link with the context
4411 if (is_system == 0 && task != current) {
4412 pfm_put_task(task);
4414 if (ret == 0) {
4415 ret = pfm_check_task_exist(ctx);
4416 if (ret) {
4417 ctx->ctx_state = PFM_CTX_UNLOADED;
4418 ctx->ctx_task = NULL;
4422 return ret;
4426 * in this function, we do not need to increase the use count
4427 * for the task via get_task_struct(), because we hold the
4428 * context lock. If the task were to disappear while having
4429 * a context attached, it would go through pfm_exit_thread()
4430 * which also grabs the context lock and would therefore be blocked
4431 * until we are here.
4433 static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4435 static int
4436 pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4438 struct task_struct *task = PFM_CTX_TASK(ctx);
4439 struct pt_regs *tregs;
4440 int prev_state, is_system;
4441 int ret;
4443 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4445 prev_state = ctx->ctx_state;
4446 is_system = ctx->ctx_fl_system;
4449 * unload only when necessary
4451 if (prev_state == PFM_CTX_UNLOADED) {
4452 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4453 return 0;
4457 * clear psr and dcr bits
4459 ret = pfm_stop(ctx, NULL, 0, regs);
4460 if (ret) return ret;
4462 ctx->ctx_state = PFM_CTX_UNLOADED;
4465 * in system mode, we need to update the PMU directly
4466 * and the user level state of the caller, which may not
4467 * necessarily be the creator of the context.
4469 if (is_system) {
4472 * Update cpuinfo
4474 * local PMU is taken care of in pfm_stop()
4476 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4477 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4480 * save PMDs in context
4481 * release ownership
4483 pfm_flush_pmds(current, ctx);
4486 * at this point we are done with the PMU
4487 * so we can unreserve the resource.
4489 if (prev_state != PFM_CTX_ZOMBIE)
4490 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4493 * disconnect context from task
4495 task->thread.pfm_context = NULL;
4497 * disconnect task from context
4499 ctx->ctx_task = NULL;
4502 * There is nothing more to cleanup here.
4504 return 0;
4508 * per-task mode
4510 tregs = task == current ? regs : task_pt_regs(task);
4512 if (task == current) {
4514 * cancel user level control
4516 ia64_psr(regs)->sp = 1;
4518 DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4521 * save PMDs to context
4522 * release ownership
4524 pfm_flush_pmds(task, ctx);
4527 * at this point we are done with the PMU
4528 * so we can unreserve the resource.
4530 * when state was ZOMBIE, we have already unreserved.
4532 if (prev_state != PFM_CTX_ZOMBIE)
4533 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4536 * reset activation counter and psr
4538 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4539 SET_LAST_CPU(ctx, -1);
4542 * PMU state will not be restored
4544 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4547 * break links between context and task
4549 task->thread.pfm_context = NULL;
4550 ctx->ctx_task = NULL;
4552 PFM_SET_WORK_PENDING(task, 0);
4554 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4555 ctx->ctx_fl_can_restart = 0;
4556 ctx->ctx_fl_going_zombie = 0;
4558 DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4560 return 0;
4565 * called only from exit_thread(): task == current
4566 * we come here only if current has a context attached (loaded or masked)
4568 void
4569 pfm_exit_thread(struct task_struct *task)
4571 pfm_context_t *ctx;
4572 unsigned long flags;
4573 struct pt_regs *regs = task_pt_regs(task);
4574 int ret, state;
4575 int free_ok = 0;
4577 ctx = PFM_GET_CTX(task);
4579 PROTECT_CTX(ctx, flags);
4581 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4583 state = ctx->ctx_state;
4584 switch(state) {
4585 case PFM_CTX_UNLOADED:
4587 * only comes to this function if pfm_context is not NULL, i.e., cannot
4588 * be in unloaded state
4590 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4591 break;
4592 case PFM_CTX_LOADED:
4593 case PFM_CTX_MASKED:
4594 ret = pfm_context_unload(ctx, NULL, 0, regs);
4595 if (ret) {
4596 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4598 DPRINT(("ctx unloaded for current state was %d\n", state));
4600 pfm_end_notify_user(ctx);
4601 break;
4602 case PFM_CTX_ZOMBIE:
4603 ret = pfm_context_unload(ctx, NULL, 0, regs);
4604 if (ret) {
4605 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4607 free_ok = 1;
4608 break;
4609 default:
4610 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4611 break;
4613 UNPROTECT_CTX(ctx, flags);
4615 { u64 psr = pfm_get_psr();
4616 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4617 BUG_ON(GET_PMU_OWNER());
4618 BUG_ON(ia64_psr(regs)->up);
4619 BUG_ON(ia64_psr(regs)->pp);
4623 * All memory free operations (especially for vmalloc'ed memory)
4624 * MUST be done with interrupts ENABLED.
4626 if (free_ok) pfm_context_free(ctx);
4630 * functions MUST be listed in the increasing order of their index (see permfon.h)
4632 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4633 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4634 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4635 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4636 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4638 static pfm_cmd_desc_t pfm_cmd_tab[]={
4639 /* 0 */PFM_CMD_NONE,
4640 /* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4641 /* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4642 /* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4643 /* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4644 /* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4645 /* 6 */PFM_CMD_NONE,
4646 /* 7 */PFM_CMD_NONE,
4647 /* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4648 /* 9 */PFM_CMD_NONE,
4649 /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4650 /* 11 */PFM_CMD_NONE,
4651 /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4652 /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4653 /* 14 */PFM_CMD_NONE,
4654 /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4655 /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4656 /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4657 /* 18 */PFM_CMD_NONE,
4658 /* 19 */PFM_CMD_NONE,
4659 /* 20 */PFM_CMD_NONE,
4660 /* 21 */PFM_CMD_NONE,
4661 /* 22 */PFM_CMD_NONE,
4662 /* 23 */PFM_CMD_NONE,
4663 /* 24 */PFM_CMD_NONE,
4664 /* 25 */PFM_CMD_NONE,
4665 /* 26 */PFM_CMD_NONE,
4666 /* 27 */PFM_CMD_NONE,
4667 /* 28 */PFM_CMD_NONE,
4668 /* 29 */PFM_CMD_NONE,
4669 /* 30 */PFM_CMD_NONE,
4670 /* 31 */PFM_CMD_NONE,
4671 /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4672 /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4674 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4676 static int
4677 pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4679 struct task_struct *task;
4680 int state, old_state;
4682 recheck:
4683 state = ctx->ctx_state;
4684 task = ctx->ctx_task;
4686 if (task == NULL) {
4687 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4688 return 0;
4691 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4692 ctx->ctx_fd,
4693 state,
4694 task_pid_nr(task),
4695 task->state, PFM_CMD_STOPPED(cmd)));
4698 * self-monitoring always ok.
4700 * for system-wide the caller can either be the creator of the
4701 * context (to one to which the context is attached to) OR
4702 * a task running on the same CPU as the session.
4704 if (task == current || ctx->ctx_fl_system) return 0;
4707 * we are monitoring another thread
4709 switch(state) {
4710 case PFM_CTX_UNLOADED:
4712 * if context is UNLOADED we are safe to go
4714 return 0;
4715 case PFM_CTX_ZOMBIE:
4717 * no command can operate on a zombie context
4719 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4720 return -EINVAL;
4721 case PFM_CTX_MASKED:
4723 * PMU state has been saved to software even though
4724 * the thread may still be running.
4726 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4730 * context is LOADED or MASKED. Some commands may need to have
4731 * the task stopped.
4733 * We could lift this restriction for UP but it would mean that
4734 * the user has no guarantee the task would not run between
4735 * two successive calls to perfmonctl(). That's probably OK.
4736 * If this user wants to ensure the task does not run, then
4737 * the task must be stopped.
4739 if (PFM_CMD_STOPPED(cmd)) {
4740 if (!task_is_stopped_or_traced(task)) {
4741 DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4742 return -EBUSY;
4745 * task is now stopped, wait for ctxsw out
4747 * This is an interesting point in the code.
4748 * We need to unprotect the context because
4749 * the pfm_save_regs() routines needs to grab
4750 * the same lock. There are danger in doing
4751 * this because it leaves a window open for
4752 * another task to get access to the context
4753 * and possibly change its state. The one thing
4754 * that is not possible is for the context to disappear
4755 * because we are protected by the VFS layer, i.e.,
4756 * get_fd()/put_fd().
4758 old_state = state;
4760 UNPROTECT_CTX(ctx, flags);
4762 wait_task_inactive(task, 0);
4764 PROTECT_CTX(ctx, flags);
4767 * we must recheck to verify if state has changed
4769 if (ctx->ctx_state != old_state) {
4770 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4771 goto recheck;
4774 return 0;
4778 * system-call entry point (must return long)
4780 asmlinkage long
4781 sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4783 struct fd f = {NULL, 0};
4784 pfm_context_t *ctx = NULL;
4785 unsigned long flags = 0UL;
4786 void *args_k = NULL;
4787 long ret; /* will expand int return types */
4788 size_t base_sz, sz, xtra_sz = 0;
4789 int narg, completed_args = 0, call_made = 0, cmd_flags;
4790 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4791 int (*getsize)(void *arg, size_t *sz);
4792 #define PFM_MAX_ARGSIZE 4096
4795 * reject any call if perfmon was disabled at initialization
4797 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4799 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4800 DPRINT(("invalid cmd=%d\n", cmd));
4801 return -EINVAL;
4804 func = pfm_cmd_tab[cmd].cmd_func;
4805 narg = pfm_cmd_tab[cmd].cmd_narg;
4806 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4807 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4808 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4810 if (unlikely(func == NULL)) {
4811 DPRINT(("invalid cmd=%d\n", cmd));
4812 return -EINVAL;
4815 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4816 PFM_CMD_NAME(cmd),
4817 cmd,
4818 narg,
4819 base_sz,
4820 count));
4823 * check if number of arguments matches what the command expects
4825 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4826 return -EINVAL;
4828 restart_args:
4829 sz = xtra_sz + base_sz*count;
4831 * limit abuse to min page size
4833 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4834 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4835 return -E2BIG;
4839 * allocate default-sized argument buffer
4841 if (likely(count && args_k == NULL)) {
4842 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4843 if (args_k == NULL) return -ENOMEM;
4846 ret = -EFAULT;
4849 * copy arguments
4851 * assume sz = 0 for command without parameters
4853 if (sz && copy_from_user(args_k, arg, sz)) {
4854 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4855 goto error_args;
4859 * check if command supports extra parameters
4861 if (completed_args == 0 && getsize) {
4863 * get extra parameters size (based on main argument)
4865 ret = (*getsize)(args_k, &xtra_sz);
4866 if (ret) goto error_args;
4868 completed_args = 1;
4870 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4872 /* retry if necessary */
4873 if (likely(xtra_sz)) goto restart_args;
4876 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4878 ret = -EBADF;
4880 f = fdget(fd);
4881 if (unlikely(f.file == NULL)) {
4882 DPRINT(("invalid fd %d\n", fd));
4883 goto error_args;
4885 if (unlikely(PFM_IS_FILE(f.file) == 0)) {
4886 DPRINT(("fd %d not related to perfmon\n", fd));
4887 goto error_args;
4890 ctx = f.file->private_data;
4891 if (unlikely(ctx == NULL)) {
4892 DPRINT(("no context for fd %d\n", fd));
4893 goto error_args;
4895 prefetch(&ctx->ctx_state);
4897 PROTECT_CTX(ctx, flags);
4900 * check task is stopped
4902 ret = pfm_check_task_state(ctx, cmd, flags);
4903 if (unlikely(ret)) goto abort_locked;
4905 skip_fd:
4906 ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4908 call_made = 1;
4910 abort_locked:
4911 if (likely(ctx)) {
4912 DPRINT(("context unlocked\n"));
4913 UNPROTECT_CTX(ctx, flags);
4916 /* copy argument back to user, if needed */
4917 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4919 error_args:
4920 if (f.file)
4921 fdput(f);
4923 kfree(args_k);
4925 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4927 return ret;
4930 static void
4931 pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4933 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4934 pfm_ovfl_ctrl_t rst_ctrl;
4935 int state;
4936 int ret = 0;
4938 state = ctx->ctx_state;
4940 * Unlock sampling buffer and reset index atomically
4941 * XXX: not really needed when blocking
4943 if (CTX_HAS_SMPL(ctx)) {
4945 rst_ctrl.bits.mask_monitoring = 0;
4946 rst_ctrl.bits.reset_ovfl_pmds = 0;
4948 if (state == PFM_CTX_LOADED)
4949 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4950 else
4951 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4952 } else {
4953 rst_ctrl.bits.mask_monitoring = 0;
4954 rst_ctrl.bits.reset_ovfl_pmds = 1;
4957 if (ret == 0) {
4958 if (rst_ctrl.bits.reset_ovfl_pmds) {
4959 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4961 if (rst_ctrl.bits.mask_monitoring == 0) {
4962 DPRINT(("resuming monitoring\n"));
4963 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4964 } else {
4965 DPRINT(("stopping monitoring\n"));
4966 //pfm_stop_monitoring(current, regs);
4968 ctx->ctx_state = PFM_CTX_LOADED;
4973 * context MUST BE LOCKED when calling
4974 * can only be called for current
4976 static void
4977 pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4979 int ret;
4981 DPRINT(("entering for [%d]\n", task_pid_nr(current)));
4983 ret = pfm_context_unload(ctx, NULL, 0, regs);
4984 if (ret) {
4985 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
4989 * and wakeup controlling task, indicating we are now disconnected
4991 wake_up_interruptible(&ctx->ctx_zombieq);
4994 * given that context is still locked, the controlling
4995 * task will only get access when we return from
4996 * pfm_handle_work().
5000 static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
5003 * pfm_handle_work() can be called with interrupts enabled
5004 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5005 * call may sleep, therefore we must re-enable interrupts
5006 * to avoid deadlocks. It is safe to do so because this function
5007 * is called ONLY when returning to user level (pUStk=1), in which case
5008 * there is no risk of kernel stack overflow due to deep
5009 * interrupt nesting.
5011 void
5012 pfm_handle_work(void)
5014 pfm_context_t *ctx;
5015 struct pt_regs *regs;
5016 unsigned long flags, dummy_flags;
5017 unsigned long ovfl_regs;
5018 unsigned int reason;
5019 int ret;
5021 ctx = PFM_GET_CTX(current);
5022 if (ctx == NULL) {
5023 printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5024 task_pid_nr(current));
5025 return;
5028 PROTECT_CTX(ctx, flags);
5030 PFM_SET_WORK_PENDING(current, 0);
5032 regs = task_pt_regs(current);
5035 * extract reason for being here and clear
5037 reason = ctx->ctx_fl_trap_reason;
5038 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5039 ovfl_regs = ctx->ctx_ovfl_regs[0];
5041 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5044 * must be done before we check for simple-reset mode
5046 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5047 goto do_zombie;
5049 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5050 if (reason == PFM_TRAP_REASON_RESET)
5051 goto skip_blocking;
5054 * restore interrupt mask to what it was on entry.
5055 * Could be enabled/diasbled.
5057 UNPROTECT_CTX(ctx, flags);
5060 * force interrupt enable because of down_interruptible()
5062 local_irq_enable();
5064 DPRINT(("before block sleeping\n"));
5067 * may go through without blocking on SMP systems
5068 * if restart has been received already by the time we call down()
5070 ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5072 DPRINT(("after block sleeping ret=%d\n", ret));
5075 * lock context and mask interrupts again
5076 * We save flags into a dummy because we may have
5077 * altered interrupts mask compared to entry in this
5078 * function.
5080 PROTECT_CTX(ctx, dummy_flags);
5083 * we need to read the ovfl_regs only after wake-up
5084 * because we may have had pfm_write_pmds() in between
5085 * and that can changed PMD values and therefore
5086 * ovfl_regs is reset for these new PMD values.
5088 ovfl_regs = ctx->ctx_ovfl_regs[0];
5090 if (ctx->ctx_fl_going_zombie) {
5091 do_zombie:
5092 DPRINT(("context is zombie, bailing out\n"));
5093 pfm_context_force_terminate(ctx, regs);
5094 goto nothing_to_do;
5097 * in case of interruption of down() we don't restart anything
5099 if (ret < 0)
5100 goto nothing_to_do;
5102 skip_blocking:
5103 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5104 ctx->ctx_ovfl_regs[0] = 0UL;
5106 nothing_to_do:
5108 * restore flags as they were upon entry
5110 UNPROTECT_CTX(ctx, flags);
5113 static int
5114 pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5116 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5117 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5118 return 0;
5121 DPRINT(("waking up somebody\n"));
5123 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5126 * safe, we are not in intr handler, nor in ctxsw when
5127 * we come here
5129 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5131 return 0;
5134 static int
5135 pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5137 pfm_msg_t *msg = NULL;
5139 if (ctx->ctx_fl_no_msg == 0) {
5140 msg = pfm_get_new_msg(ctx);
5141 if (msg == NULL) {
5142 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5143 return -1;
5146 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5147 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5148 msg->pfm_ovfl_msg.msg_active_set = 0;
5149 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5150 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5151 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5152 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5153 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5156 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5157 msg,
5158 ctx->ctx_fl_no_msg,
5159 ctx->ctx_fd,
5160 ovfl_pmds));
5162 return pfm_notify_user(ctx, msg);
5165 static int
5166 pfm_end_notify_user(pfm_context_t *ctx)
5168 pfm_msg_t *msg;
5170 msg = pfm_get_new_msg(ctx);
5171 if (msg == NULL) {
5172 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5173 return -1;
5175 /* no leak */
5176 memset(msg, 0, sizeof(*msg));
5178 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5179 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5180 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5182 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5183 msg,
5184 ctx->ctx_fl_no_msg,
5185 ctx->ctx_fd));
5187 return pfm_notify_user(ctx, msg);
5191 * main overflow processing routine.
5192 * it can be called from the interrupt path or explicitly during the context switch code
5194 static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5195 unsigned long pmc0, struct pt_regs *regs)
5197 pfm_ovfl_arg_t *ovfl_arg;
5198 unsigned long mask;
5199 unsigned long old_val, ovfl_val, new_val;
5200 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5201 unsigned long tstamp;
5202 pfm_ovfl_ctrl_t ovfl_ctrl;
5203 unsigned int i, has_smpl;
5204 int must_notify = 0;
5206 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5209 * sanity test. Should never happen
5211 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5213 tstamp = ia64_get_itc();
5214 mask = pmc0 >> PMU_FIRST_COUNTER;
5215 ovfl_val = pmu_conf->ovfl_val;
5216 has_smpl = CTX_HAS_SMPL(ctx);
5218 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5219 "used_pmds=0x%lx\n",
5220 pmc0,
5221 task ? task_pid_nr(task): -1,
5222 (regs ? regs->cr_iip : 0),
5223 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5224 ctx->ctx_used_pmds[0]));
5228 * first we update the virtual counters
5229 * assume there was a prior ia64_srlz_d() issued
5231 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5233 /* skip pmd which did not overflow */
5234 if ((mask & 0x1) == 0) continue;
5237 * Note that the pmd is not necessarily 0 at this point as qualified events
5238 * may have happened before the PMU was frozen. The residual count is not
5239 * taken into consideration here but will be with any read of the pmd via
5240 * pfm_read_pmds().
5242 old_val = new_val = ctx->ctx_pmds[i].val;
5243 new_val += 1 + ovfl_val;
5244 ctx->ctx_pmds[i].val = new_val;
5247 * check for overflow condition
5249 if (likely(old_val > new_val)) {
5250 ovfl_pmds |= 1UL << i;
5251 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5254 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5256 new_val,
5257 old_val,
5258 ia64_get_pmd(i) & ovfl_val,
5259 ovfl_pmds,
5260 ovfl_notify));
5264 * there was no 64-bit overflow, nothing else to do
5266 if (ovfl_pmds == 0UL) return;
5269 * reset all control bits
5271 ovfl_ctrl.val = 0;
5272 reset_pmds = 0UL;
5275 * if a sampling format module exists, then we "cache" the overflow by
5276 * calling the module's handler() routine.
5278 if (has_smpl) {
5279 unsigned long start_cycles, end_cycles;
5280 unsigned long pmd_mask;
5281 int j, k, ret = 0;
5282 int this_cpu = smp_processor_id();
5284 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5285 ovfl_arg = &ctx->ctx_ovfl_arg;
5287 prefetch(ctx->ctx_smpl_hdr);
5289 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5291 mask = 1UL << i;
5293 if ((pmd_mask & 0x1) == 0) continue;
5295 ovfl_arg->ovfl_pmd = (unsigned char )i;
5296 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5297 ovfl_arg->active_set = 0;
5298 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5299 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5301 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5302 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5303 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5306 * copy values of pmds of interest. Sampling format may copy them
5307 * into sampling buffer.
5309 if (smpl_pmds) {
5310 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5311 if ((smpl_pmds & 0x1) == 0) continue;
5312 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5313 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5317 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5319 start_cycles = ia64_get_itc();
5322 * call custom buffer format record (handler) routine
5324 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5326 end_cycles = ia64_get_itc();
5329 * For those controls, we take the union because they have
5330 * an all or nothing behavior.
5332 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5333 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5334 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5336 * build the bitmask of pmds to reset now
5338 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5340 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5343 * when the module cannot handle the rest of the overflows, we abort right here
5345 if (ret && pmd_mask) {
5346 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5347 pmd_mask<<PMU_FIRST_COUNTER));
5350 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5352 ovfl_pmds &= ~reset_pmds;
5353 } else {
5355 * when no sampling module is used, then the default
5356 * is to notify on overflow if requested by user
5358 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5359 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5360 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5361 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5363 * if needed, we reset all overflowed pmds
5365 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5368 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5371 * reset the requested PMD registers using the short reset values
5373 if (reset_pmds) {
5374 unsigned long bm = reset_pmds;
5375 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5378 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5380 * keep track of what to reset when unblocking
5382 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5385 * check for blocking context
5387 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5389 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5392 * set the perfmon specific checking pending work for the task
5394 PFM_SET_WORK_PENDING(task, 1);
5397 * when coming from ctxsw, current still points to the
5398 * previous task, therefore we must work with task and not current.
5400 set_notify_resume(task);
5403 * defer until state is changed (shorten spin window). the context is locked
5404 * anyway, so the signal receiver would come spin for nothing.
5406 must_notify = 1;
5409 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5410 GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5411 PFM_GET_WORK_PENDING(task),
5412 ctx->ctx_fl_trap_reason,
5413 ovfl_pmds,
5414 ovfl_notify,
5415 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5417 * in case monitoring must be stopped, we toggle the psr bits
5419 if (ovfl_ctrl.bits.mask_monitoring) {
5420 pfm_mask_monitoring(task);
5421 ctx->ctx_state = PFM_CTX_MASKED;
5422 ctx->ctx_fl_can_restart = 1;
5426 * send notification now
5428 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5430 return;
5432 sanity_check:
5433 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5434 smp_processor_id(),
5435 task ? task_pid_nr(task) : -1,
5436 pmc0);
5437 return;
5439 stop_monitoring:
5441 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5442 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5443 * come here as zombie only if the task is the current task. In which case, we
5444 * can access the PMU hardware directly.
5446 * Note that zombies do have PM_VALID set. So here we do the minimal.
5448 * In case the context was zombified it could not be reclaimed at the time
5449 * the monitoring program exited. At this point, the PMU reservation has been
5450 * returned, the sampiing buffer has been freed. We must convert this call
5451 * into a spurious interrupt. However, we must also avoid infinite overflows
5452 * by stopping monitoring for this task. We can only come here for a per-task
5453 * context. All we need to do is to stop monitoring using the psr bits which
5454 * are always task private. By re-enabling secure montioring, we ensure that
5455 * the monitored task will not be able to re-activate monitoring.
5456 * The task will eventually be context switched out, at which point the context
5457 * will be reclaimed (that includes releasing ownership of the PMU).
5459 * So there might be a window of time where the number of per-task session is zero
5460 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5461 * context. This is safe because if a per-task session comes in, it will push this one
5462 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5463 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5464 * also push our zombie context out.
5466 * Overall pretty hairy stuff....
5468 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5469 pfm_clear_psr_up();
5470 ia64_psr(regs)->up = 0;
5471 ia64_psr(regs)->sp = 1;
5472 return;
5475 static int
5476 pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5478 struct task_struct *task;
5479 pfm_context_t *ctx;
5480 unsigned long flags;
5481 u64 pmc0;
5482 int this_cpu = smp_processor_id();
5483 int retval = 0;
5485 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5488 * srlz.d done before arriving here
5490 pmc0 = ia64_get_pmc(0);
5492 task = GET_PMU_OWNER();
5493 ctx = GET_PMU_CTX();
5496 * if we have some pending bits set
5497 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5499 if (PMC0_HAS_OVFL(pmc0) && task) {
5501 * we assume that pmc0.fr is always set here
5504 /* sanity check */
5505 if (!ctx) goto report_spurious1;
5507 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5508 goto report_spurious2;
5510 PROTECT_CTX_NOPRINT(ctx, flags);
5512 pfm_overflow_handler(task, ctx, pmc0, regs);
5514 UNPROTECT_CTX_NOPRINT(ctx, flags);
5516 } else {
5517 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5518 retval = -1;
5521 * keep it unfrozen at all times
5523 pfm_unfreeze_pmu();
5525 return retval;
5527 report_spurious1:
5528 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5529 this_cpu, task_pid_nr(task));
5530 pfm_unfreeze_pmu();
5531 return -1;
5532 report_spurious2:
5533 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5534 this_cpu,
5535 task_pid_nr(task));
5536 pfm_unfreeze_pmu();
5537 return -1;
5540 static irqreturn_t
5541 pfm_interrupt_handler(int irq, void *arg)
5543 unsigned long start_cycles, total_cycles;
5544 unsigned long min, max;
5545 int this_cpu;
5546 int ret;
5547 struct pt_regs *regs = get_irq_regs();
5549 this_cpu = get_cpu();
5550 if (likely(!pfm_alt_intr_handler)) {
5551 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5552 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5554 start_cycles = ia64_get_itc();
5556 ret = pfm_do_interrupt_handler(arg, regs);
5558 total_cycles = ia64_get_itc();
5561 * don't measure spurious interrupts
5563 if (likely(ret == 0)) {
5564 total_cycles -= start_cycles;
5566 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5567 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5569 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5572 else {
5573 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5576 put_cpu();
5577 return IRQ_HANDLED;
5581 * /proc/perfmon interface, for debug only
5584 #define PFM_PROC_SHOW_HEADER ((void *)(long)nr_cpu_ids+1)
5586 static void *
5587 pfm_proc_start(struct seq_file *m, loff_t *pos)
5589 if (*pos == 0) {
5590 return PFM_PROC_SHOW_HEADER;
5593 while (*pos <= nr_cpu_ids) {
5594 if (cpu_online(*pos - 1)) {
5595 return (void *)*pos;
5597 ++*pos;
5599 return NULL;
5602 static void *
5603 pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5605 ++*pos;
5606 return pfm_proc_start(m, pos);
5609 static void
5610 pfm_proc_stop(struct seq_file *m, void *v)
5614 static void
5615 pfm_proc_show_header(struct seq_file *m)
5617 struct list_head * pos;
5618 pfm_buffer_fmt_t * entry;
5619 unsigned long flags;
5621 seq_printf(m,
5622 "perfmon version : %u.%u\n"
5623 "model : %s\n"
5624 "fastctxsw : %s\n"
5625 "expert mode : %s\n"
5626 "ovfl_mask : 0x%lx\n"
5627 "PMU flags : 0x%x\n",
5628 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5629 pmu_conf->pmu_name,
5630 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5631 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5632 pmu_conf->ovfl_val,
5633 pmu_conf->flags);
5635 LOCK_PFS(flags);
5637 seq_printf(m,
5638 "proc_sessions : %u\n"
5639 "sys_sessions : %u\n"
5640 "sys_use_dbregs : %u\n"
5641 "ptrace_use_dbregs : %u\n",
5642 pfm_sessions.pfs_task_sessions,
5643 pfm_sessions.pfs_sys_sessions,
5644 pfm_sessions.pfs_sys_use_dbregs,
5645 pfm_sessions.pfs_ptrace_use_dbregs);
5647 UNLOCK_PFS(flags);
5649 spin_lock(&pfm_buffer_fmt_lock);
5651 list_for_each(pos, &pfm_buffer_fmt_list) {
5652 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5653 seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5654 entry->fmt_uuid[0],
5655 entry->fmt_uuid[1],
5656 entry->fmt_uuid[2],
5657 entry->fmt_uuid[3],
5658 entry->fmt_uuid[4],
5659 entry->fmt_uuid[5],
5660 entry->fmt_uuid[6],
5661 entry->fmt_uuid[7],
5662 entry->fmt_uuid[8],
5663 entry->fmt_uuid[9],
5664 entry->fmt_uuid[10],
5665 entry->fmt_uuid[11],
5666 entry->fmt_uuid[12],
5667 entry->fmt_uuid[13],
5668 entry->fmt_uuid[14],
5669 entry->fmt_uuid[15],
5670 entry->fmt_name);
5672 spin_unlock(&pfm_buffer_fmt_lock);
5676 static int
5677 pfm_proc_show(struct seq_file *m, void *v)
5679 unsigned long psr;
5680 unsigned int i;
5681 int cpu;
5683 if (v == PFM_PROC_SHOW_HEADER) {
5684 pfm_proc_show_header(m);
5685 return 0;
5688 /* show info for CPU (v - 1) */
5690 cpu = (long)v - 1;
5691 seq_printf(m,
5692 "CPU%-2d overflow intrs : %lu\n"
5693 "CPU%-2d overflow cycles : %lu\n"
5694 "CPU%-2d overflow min : %lu\n"
5695 "CPU%-2d overflow max : %lu\n"
5696 "CPU%-2d smpl handler calls : %lu\n"
5697 "CPU%-2d smpl handler cycles : %lu\n"
5698 "CPU%-2d spurious intrs : %lu\n"
5699 "CPU%-2d replay intrs : %lu\n"
5700 "CPU%-2d syst_wide : %d\n"
5701 "CPU%-2d dcr_pp : %d\n"
5702 "CPU%-2d exclude idle : %d\n"
5703 "CPU%-2d owner : %d\n"
5704 "CPU%-2d context : %p\n"
5705 "CPU%-2d activations : %lu\n",
5706 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5707 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5708 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5709 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5710 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5711 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5712 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5713 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5714 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5715 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5716 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5717 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5718 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5719 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5721 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5723 psr = pfm_get_psr();
5725 ia64_srlz_d();
5727 seq_printf(m,
5728 "CPU%-2d psr : 0x%lx\n"
5729 "CPU%-2d pmc0 : 0x%lx\n",
5730 cpu, psr,
5731 cpu, ia64_get_pmc(0));
5733 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5734 if (PMC_IS_COUNTING(i) == 0) continue;
5735 seq_printf(m,
5736 "CPU%-2d pmc%u : 0x%lx\n"
5737 "CPU%-2d pmd%u : 0x%lx\n",
5738 cpu, i, ia64_get_pmc(i),
5739 cpu, i, ia64_get_pmd(i));
5742 return 0;
5745 const struct seq_operations pfm_seq_ops = {
5746 .start = pfm_proc_start,
5747 .next = pfm_proc_next,
5748 .stop = pfm_proc_stop,
5749 .show = pfm_proc_show
5752 static int
5753 pfm_proc_open(struct inode *inode, struct file *file)
5755 return seq_open(file, &pfm_seq_ops);
5760 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5761 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5762 * is active or inactive based on mode. We must rely on the value in
5763 * local_cpu_data->pfm_syst_info
5765 void
5766 pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5768 struct pt_regs *regs;
5769 unsigned long dcr;
5770 unsigned long dcr_pp;
5772 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5775 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5776 * on every CPU, so we can rely on the pid to identify the idle task.
5778 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5779 regs = task_pt_regs(task);
5780 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5781 return;
5784 * if monitoring has started
5786 if (dcr_pp) {
5787 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5789 * context switching in?
5791 if (is_ctxswin) {
5792 /* mask monitoring for the idle task */
5793 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5794 pfm_clear_psr_pp();
5795 ia64_srlz_i();
5796 return;
5799 * context switching out
5800 * restore monitoring for next task
5802 * Due to inlining this odd if-then-else construction generates
5803 * better code.
5805 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5806 pfm_set_psr_pp();
5807 ia64_srlz_i();
5811 #ifdef CONFIG_SMP
5813 static void
5814 pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5816 struct task_struct *task = ctx->ctx_task;
5818 ia64_psr(regs)->up = 0;
5819 ia64_psr(regs)->sp = 1;
5821 if (GET_PMU_OWNER() == task) {
5822 DPRINT(("cleared ownership for [%d]\n",
5823 task_pid_nr(ctx->ctx_task)));
5824 SET_PMU_OWNER(NULL, NULL);
5828 * disconnect the task from the context and vice-versa
5830 PFM_SET_WORK_PENDING(task, 0);
5832 task->thread.pfm_context = NULL;
5833 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5835 DPRINT(("force cleanup for [%d]\n", task_pid_nr(task)));
5840 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5842 void
5843 pfm_save_regs(struct task_struct *task)
5845 pfm_context_t *ctx;
5846 unsigned long flags;
5847 u64 psr;
5850 ctx = PFM_GET_CTX(task);
5851 if (ctx == NULL) return;
5854 * we always come here with interrupts ALREADY disabled by
5855 * the scheduler. So we simply need to protect against concurrent
5856 * access, not CPU concurrency.
5858 flags = pfm_protect_ctx_ctxsw(ctx);
5860 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5861 struct pt_regs *regs = task_pt_regs(task);
5863 pfm_clear_psr_up();
5865 pfm_force_cleanup(ctx, regs);
5867 BUG_ON(ctx->ctx_smpl_hdr);
5869 pfm_unprotect_ctx_ctxsw(ctx, flags);
5871 pfm_context_free(ctx);
5872 return;
5876 * save current PSR: needed because we modify it
5878 ia64_srlz_d();
5879 psr = pfm_get_psr();
5881 BUG_ON(psr & (IA64_PSR_I));
5884 * stop monitoring:
5885 * This is the last instruction which may generate an overflow
5887 * We do not need to set psr.sp because, it is irrelevant in kernel.
5888 * It will be restored from ipsr when going back to user level
5890 pfm_clear_psr_up();
5893 * keep a copy of psr.up (for reload)
5895 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5898 * release ownership of this PMU.
5899 * PM interrupts are masked, so nothing
5900 * can happen.
5902 SET_PMU_OWNER(NULL, NULL);
5905 * we systematically save the PMD as we have no
5906 * guarantee we will be schedule at that same
5907 * CPU again.
5909 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5912 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5913 * we will need it on the restore path to check
5914 * for pending overflow.
5916 ctx->th_pmcs[0] = ia64_get_pmc(0);
5919 * unfreeze PMU if had pending overflows
5921 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5924 * finally, allow context access.
5925 * interrupts will still be masked after this call.
5927 pfm_unprotect_ctx_ctxsw(ctx, flags);
5930 #else /* !CONFIG_SMP */
5931 void
5932 pfm_save_regs(struct task_struct *task)
5934 pfm_context_t *ctx;
5935 u64 psr;
5937 ctx = PFM_GET_CTX(task);
5938 if (ctx == NULL) return;
5941 * save current PSR: needed because we modify it
5943 psr = pfm_get_psr();
5945 BUG_ON(psr & (IA64_PSR_I));
5948 * stop monitoring:
5949 * This is the last instruction which may generate an overflow
5951 * We do not need to set psr.sp because, it is irrelevant in kernel.
5952 * It will be restored from ipsr when going back to user level
5954 pfm_clear_psr_up();
5957 * keep a copy of psr.up (for reload)
5959 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5962 static void
5963 pfm_lazy_save_regs (struct task_struct *task)
5965 pfm_context_t *ctx;
5966 unsigned long flags;
5968 { u64 psr = pfm_get_psr();
5969 BUG_ON(psr & IA64_PSR_UP);
5972 ctx = PFM_GET_CTX(task);
5975 * we need to mask PMU overflow here to
5976 * make sure that we maintain pmc0 until
5977 * we save it. overflow interrupts are
5978 * treated as spurious if there is no
5979 * owner.
5981 * XXX: I don't think this is necessary
5983 PROTECT_CTX(ctx,flags);
5986 * release ownership of this PMU.
5987 * must be done before we save the registers.
5989 * after this call any PMU interrupt is treated
5990 * as spurious.
5992 SET_PMU_OWNER(NULL, NULL);
5995 * save all the pmds we use
5997 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
6000 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6001 * it is needed to check for pended overflow
6002 * on the restore path
6004 ctx->th_pmcs[0] = ia64_get_pmc(0);
6007 * unfreeze PMU if had pending overflows
6009 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
6012 * now get can unmask PMU interrupts, they will
6013 * be treated as purely spurious and we will not
6014 * lose any information
6016 UNPROTECT_CTX(ctx,flags);
6018 #endif /* CONFIG_SMP */
6020 #ifdef CONFIG_SMP
6022 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6024 void
6025 pfm_load_regs (struct task_struct *task)
6027 pfm_context_t *ctx;
6028 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6029 unsigned long flags;
6030 u64 psr, psr_up;
6031 int need_irq_resend;
6033 ctx = PFM_GET_CTX(task);
6034 if (unlikely(ctx == NULL)) return;
6036 BUG_ON(GET_PMU_OWNER());
6039 * possible on unload
6041 if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6044 * we always come here with interrupts ALREADY disabled by
6045 * the scheduler. So we simply need to protect against concurrent
6046 * access, not CPU concurrency.
6048 flags = pfm_protect_ctx_ctxsw(ctx);
6049 psr = pfm_get_psr();
6051 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6053 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6054 BUG_ON(psr & IA64_PSR_I);
6056 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6057 struct pt_regs *regs = task_pt_regs(task);
6059 BUG_ON(ctx->ctx_smpl_hdr);
6061 pfm_force_cleanup(ctx, regs);
6063 pfm_unprotect_ctx_ctxsw(ctx, flags);
6066 * this one (kmalloc'ed) is fine with interrupts disabled
6068 pfm_context_free(ctx);
6070 return;
6074 * we restore ALL the debug registers to avoid picking up
6075 * stale state.
6077 if (ctx->ctx_fl_using_dbreg) {
6078 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6079 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6082 * retrieve saved psr.up
6084 psr_up = ctx->ctx_saved_psr_up;
6087 * if we were the last user of the PMU on that CPU,
6088 * then nothing to do except restore psr
6090 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6093 * retrieve partial reload masks (due to user modifications)
6095 pmc_mask = ctx->ctx_reload_pmcs[0];
6096 pmd_mask = ctx->ctx_reload_pmds[0];
6098 } else {
6100 * To avoid leaking information to the user level when psr.sp=0,
6101 * we must reload ALL implemented pmds (even the ones we don't use).
6102 * In the kernel we only allow PFM_READ_PMDS on registers which
6103 * we initialized or requested (sampling) so there is no risk there.
6105 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6108 * ALL accessible PMCs are systematically reloaded, unused registers
6109 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6110 * up stale configuration.
6112 * PMC0 is never in the mask. It is always restored separately.
6114 pmc_mask = ctx->ctx_all_pmcs[0];
6117 * when context is MASKED, we will restore PMC with plm=0
6118 * and PMD with stale information, but that's ok, nothing
6119 * will be captured.
6121 * XXX: optimize here
6123 if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6124 if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6127 * check for pending overflow at the time the state
6128 * was saved.
6130 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6132 * reload pmc0 with the overflow information
6133 * On McKinley PMU, this will trigger a PMU interrupt
6135 ia64_set_pmc(0, ctx->th_pmcs[0]);
6136 ia64_srlz_d();
6137 ctx->th_pmcs[0] = 0UL;
6140 * will replay the PMU interrupt
6142 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6144 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6148 * we just did a reload, so we reset the partial reload fields
6150 ctx->ctx_reload_pmcs[0] = 0UL;
6151 ctx->ctx_reload_pmds[0] = 0UL;
6153 SET_LAST_CPU(ctx, smp_processor_id());
6156 * dump activation value for this PMU
6158 INC_ACTIVATION();
6160 * record current activation for this context
6162 SET_ACTIVATION(ctx);
6165 * establish new ownership.
6167 SET_PMU_OWNER(task, ctx);
6170 * restore the psr.up bit. measurement
6171 * is active again.
6172 * no PMU interrupt can happen at this point
6173 * because we still have interrupts disabled.
6175 if (likely(psr_up)) pfm_set_psr_up();
6178 * allow concurrent access to context
6180 pfm_unprotect_ctx_ctxsw(ctx, flags);
6182 #else /* !CONFIG_SMP */
6184 * reload PMU state for UP kernels
6185 * in 2.5 we come here with interrupts disabled
6187 void
6188 pfm_load_regs (struct task_struct *task)
6190 pfm_context_t *ctx;
6191 struct task_struct *owner;
6192 unsigned long pmd_mask, pmc_mask;
6193 u64 psr, psr_up;
6194 int need_irq_resend;
6196 owner = GET_PMU_OWNER();
6197 ctx = PFM_GET_CTX(task);
6198 psr = pfm_get_psr();
6200 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6201 BUG_ON(psr & IA64_PSR_I);
6204 * we restore ALL the debug registers to avoid picking up
6205 * stale state.
6207 * This must be done even when the task is still the owner
6208 * as the registers may have been modified via ptrace()
6209 * (not perfmon) by the previous task.
6211 if (ctx->ctx_fl_using_dbreg) {
6212 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6213 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6217 * retrieved saved psr.up
6219 psr_up = ctx->ctx_saved_psr_up;
6220 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6223 * short path, our state is still there, just
6224 * need to restore psr and we go
6226 * we do not touch either PMC nor PMD. the psr is not touched
6227 * by the overflow_handler. So we are safe w.r.t. to interrupt
6228 * concurrency even without interrupt masking.
6230 if (likely(owner == task)) {
6231 if (likely(psr_up)) pfm_set_psr_up();
6232 return;
6236 * someone else is still using the PMU, first push it out and
6237 * then we'll be able to install our stuff !
6239 * Upon return, there will be no owner for the current PMU
6241 if (owner) pfm_lazy_save_regs(owner);
6244 * To avoid leaking information to the user level when psr.sp=0,
6245 * we must reload ALL implemented pmds (even the ones we don't use).
6246 * In the kernel we only allow PFM_READ_PMDS on registers which
6247 * we initialized or requested (sampling) so there is no risk there.
6249 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6252 * ALL accessible PMCs are systematically reloaded, unused registers
6253 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6254 * up stale configuration.
6256 * PMC0 is never in the mask. It is always restored separately
6258 pmc_mask = ctx->ctx_all_pmcs[0];
6260 pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6261 pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6264 * check for pending overflow at the time the state
6265 * was saved.
6267 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6269 * reload pmc0 with the overflow information
6270 * On McKinley PMU, this will trigger a PMU interrupt
6272 ia64_set_pmc(0, ctx->th_pmcs[0]);
6273 ia64_srlz_d();
6275 ctx->th_pmcs[0] = 0UL;
6278 * will replay the PMU interrupt
6280 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6282 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6286 * establish new ownership.
6288 SET_PMU_OWNER(task, ctx);
6291 * restore the psr.up bit. measurement
6292 * is active again.
6293 * no PMU interrupt can happen at this point
6294 * because we still have interrupts disabled.
6296 if (likely(psr_up)) pfm_set_psr_up();
6298 #endif /* CONFIG_SMP */
6301 * this function assumes monitoring is stopped
6303 static void
6304 pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6306 u64 pmc0;
6307 unsigned long mask2, val, pmd_val, ovfl_val;
6308 int i, can_access_pmu = 0;
6309 int is_self;
6312 * is the caller the task being monitored (or which initiated the
6313 * session for system wide measurements)
6315 is_self = ctx->ctx_task == task ? 1 : 0;
6318 * can access PMU is task is the owner of the PMU state on the current CPU
6319 * or if we are running on the CPU bound to the context in system-wide mode
6320 * (that is not necessarily the task the context is attached to in this mode).
6321 * In system-wide we always have can_access_pmu true because a task running on an
6322 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6324 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6325 if (can_access_pmu) {
6327 * Mark the PMU as not owned
6328 * This will cause the interrupt handler to do nothing in case an overflow
6329 * interrupt was in-flight
6330 * This also guarantees that pmc0 will contain the final state
6331 * It virtually gives us full control on overflow processing from that point
6332 * on.
6334 SET_PMU_OWNER(NULL, NULL);
6335 DPRINT(("releasing ownership\n"));
6338 * read current overflow status:
6340 * we are guaranteed to read the final stable state
6342 ia64_srlz_d();
6343 pmc0 = ia64_get_pmc(0); /* slow */
6346 * reset freeze bit, overflow status information destroyed
6348 pfm_unfreeze_pmu();
6349 } else {
6350 pmc0 = ctx->th_pmcs[0];
6352 * clear whatever overflow status bits there were
6354 ctx->th_pmcs[0] = 0;
6356 ovfl_val = pmu_conf->ovfl_val;
6358 * we save all the used pmds
6359 * we take care of overflows for counting PMDs
6361 * XXX: sampling situation is not taken into account here
6363 mask2 = ctx->ctx_used_pmds[0];
6365 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6367 for (i = 0; mask2; i++, mask2>>=1) {
6369 /* skip non used pmds */
6370 if ((mask2 & 0x1) == 0) continue;
6373 * can access PMU always true in system wide mode
6375 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6377 if (PMD_IS_COUNTING(i)) {
6378 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6379 task_pid_nr(task),
6381 ctx->ctx_pmds[i].val,
6382 val & ovfl_val));
6385 * we rebuild the full 64 bit value of the counter
6387 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6390 * now everything is in ctx_pmds[] and we need
6391 * to clear the saved context from save_regs() such that
6392 * pfm_read_pmds() gets the correct value
6394 pmd_val = 0UL;
6397 * take care of overflow inline
6399 if (pmc0 & (1UL << i)) {
6400 val += 1 + ovfl_val;
6401 DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6405 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6407 if (is_self) ctx->th_pmds[i] = pmd_val;
6409 ctx->ctx_pmds[i].val = val;
6413 static struct irqaction perfmon_irqaction = {
6414 .handler = pfm_interrupt_handler,
6415 .flags = IRQF_DISABLED,
6416 .name = "perfmon"
6419 static void
6420 pfm_alt_save_pmu_state(void *data)
6422 struct pt_regs *regs;
6424 regs = task_pt_regs(current);
6426 DPRINT(("called\n"));
6429 * should not be necessary but
6430 * let's take not risk
6432 pfm_clear_psr_up();
6433 pfm_clear_psr_pp();
6434 ia64_psr(regs)->pp = 0;
6437 * This call is required
6438 * May cause a spurious interrupt on some processors
6440 pfm_freeze_pmu();
6442 ia64_srlz_d();
6445 void
6446 pfm_alt_restore_pmu_state(void *data)
6448 struct pt_regs *regs;
6450 regs = task_pt_regs(current);
6452 DPRINT(("called\n"));
6455 * put PMU back in state expected
6456 * by perfmon
6458 pfm_clear_psr_up();
6459 pfm_clear_psr_pp();
6460 ia64_psr(regs)->pp = 0;
6463 * perfmon runs with PMU unfrozen at all times
6465 pfm_unfreeze_pmu();
6467 ia64_srlz_d();
6471 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6473 int ret, i;
6474 int reserve_cpu;
6476 /* some sanity checks */
6477 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6479 /* do the easy test first */
6480 if (pfm_alt_intr_handler) return -EBUSY;
6482 /* one at a time in the install or remove, just fail the others */
6483 if (!spin_trylock(&pfm_alt_install_check)) {
6484 return -EBUSY;
6487 /* reserve our session */
6488 for_each_online_cpu(reserve_cpu) {
6489 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6490 if (ret) goto cleanup_reserve;
6493 /* save the current system wide pmu states */
6494 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6495 if (ret) {
6496 DPRINT(("on_each_cpu() failed: %d\n", ret));
6497 goto cleanup_reserve;
6500 /* officially change to the alternate interrupt handler */
6501 pfm_alt_intr_handler = hdl;
6503 spin_unlock(&pfm_alt_install_check);
6505 return 0;
6507 cleanup_reserve:
6508 for_each_online_cpu(i) {
6509 /* don't unreserve more than we reserved */
6510 if (i >= reserve_cpu) break;
6512 pfm_unreserve_session(NULL, 1, i);
6515 spin_unlock(&pfm_alt_install_check);
6517 return ret;
6519 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6522 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6524 int i;
6525 int ret;
6527 if (hdl == NULL) return -EINVAL;
6529 /* cannot remove someone else's handler! */
6530 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6532 /* one at a time in the install or remove, just fail the others */
6533 if (!spin_trylock(&pfm_alt_install_check)) {
6534 return -EBUSY;
6537 pfm_alt_intr_handler = NULL;
6539 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6540 if (ret) {
6541 DPRINT(("on_each_cpu() failed: %d\n", ret));
6544 for_each_online_cpu(i) {
6545 pfm_unreserve_session(NULL, 1, i);
6548 spin_unlock(&pfm_alt_install_check);
6550 return 0;
6552 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6555 * perfmon initialization routine, called from the initcall() table
6557 static int init_pfm_fs(void);
6559 static int __init
6560 pfm_probe_pmu(void)
6562 pmu_config_t **p;
6563 int family;
6565 family = local_cpu_data->family;
6566 p = pmu_confs;
6568 while(*p) {
6569 if ((*p)->probe) {
6570 if ((*p)->probe() == 0) goto found;
6571 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6572 goto found;
6574 p++;
6576 return -1;
6577 found:
6578 pmu_conf = *p;
6579 return 0;
6582 static const struct file_operations pfm_proc_fops = {
6583 .open = pfm_proc_open,
6584 .read = seq_read,
6585 .llseek = seq_lseek,
6586 .release = seq_release,
6589 int __init
6590 pfm_init(void)
6592 unsigned int n, n_counters, i;
6594 printk("perfmon: version %u.%u IRQ %u\n",
6595 PFM_VERSION_MAJ,
6596 PFM_VERSION_MIN,
6597 IA64_PERFMON_VECTOR);
6599 if (pfm_probe_pmu()) {
6600 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6601 local_cpu_data->family);
6602 return -ENODEV;
6606 * compute the number of implemented PMD/PMC from the
6607 * description tables
6609 n = 0;
6610 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6611 if (PMC_IS_IMPL(i) == 0) continue;
6612 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6613 n++;
6615 pmu_conf->num_pmcs = n;
6617 n = 0; n_counters = 0;
6618 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6619 if (PMD_IS_IMPL(i) == 0) continue;
6620 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6621 n++;
6622 if (PMD_IS_COUNTING(i)) n_counters++;
6624 pmu_conf->num_pmds = n;
6625 pmu_conf->num_counters = n_counters;
6628 * sanity checks on the number of debug registers
6630 if (pmu_conf->use_rr_dbregs) {
6631 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6632 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6633 pmu_conf = NULL;
6634 return -1;
6636 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6637 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6638 pmu_conf = NULL;
6639 return -1;
6643 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6644 pmu_conf->pmu_name,
6645 pmu_conf->num_pmcs,
6646 pmu_conf->num_pmds,
6647 pmu_conf->num_counters,
6648 ffz(pmu_conf->ovfl_val));
6650 /* sanity check */
6651 if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6652 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6653 pmu_conf = NULL;
6654 return -1;
6658 * create /proc/perfmon (mostly for debugging purposes)
6660 perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6661 if (perfmon_dir == NULL) {
6662 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6663 pmu_conf = NULL;
6664 return -1;
6668 * create /proc/sys/kernel/perfmon (for debugging purposes)
6670 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6673 * initialize all our spinlocks
6675 spin_lock_init(&pfm_sessions.pfs_lock);
6676 spin_lock_init(&pfm_buffer_fmt_lock);
6678 init_pfm_fs();
6680 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6682 return 0;
6685 __initcall(pfm_init);
6688 * this function is called before pfm_init()
6690 void
6691 pfm_init_percpu (void)
6693 static int first_time=1;
6695 * make sure no measurement is active
6696 * (may inherit programmed PMCs from EFI).
6698 pfm_clear_psr_pp();
6699 pfm_clear_psr_up();
6702 * we run with the PMU not frozen at all times
6704 pfm_unfreeze_pmu();
6706 if (first_time) {
6707 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6708 first_time=0;
6711 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6712 ia64_srlz_d();
6716 * used for debug purposes only
6718 void
6719 dump_pmu_state(const char *from)
6721 struct task_struct *task;
6722 struct pt_regs *regs;
6723 pfm_context_t *ctx;
6724 unsigned long psr, dcr, info, flags;
6725 int i, this_cpu;
6727 local_irq_save(flags);
6729 this_cpu = smp_processor_id();
6730 regs = task_pt_regs(current);
6731 info = PFM_CPUINFO_GET();
6732 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6734 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6735 local_irq_restore(flags);
6736 return;
6739 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6740 this_cpu,
6741 from,
6742 task_pid_nr(current),
6743 regs->cr_iip,
6744 current->comm);
6746 task = GET_PMU_OWNER();
6747 ctx = GET_PMU_CTX();
6749 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6751 psr = pfm_get_psr();
6753 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6754 this_cpu,
6755 ia64_get_pmc(0),
6756 psr & IA64_PSR_PP ? 1 : 0,
6757 psr & IA64_PSR_UP ? 1 : 0,
6758 dcr & IA64_DCR_PP ? 1 : 0,
6759 info,
6760 ia64_psr(regs)->up,
6761 ia64_psr(regs)->pp);
6763 ia64_psr(regs)->up = 0;
6764 ia64_psr(regs)->pp = 0;
6766 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6767 if (PMC_IS_IMPL(i) == 0) continue;
6768 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6771 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6772 if (PMD_IS_IMPL(i) == 0) continue;
6773 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6776 if (ctx) {
6777 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6778 this_cpu,
6779 ctx->ctx_state,
6780 ctx->ctx_smpl_vaddr,
6781 ctx->ctx_smpl_hdr,
6782 ctx->ctx_msgq_head,
6783 ctx->ctx_msgq_tail,
6784 ctx->ctx_saved_psr_up);
6786 local_irq_restore(flags);
6790 * called from process.c:copy_thread(). task is new child.
6792 void
6793 pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6795 struct thread_struct *thread;
6797 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6799 thread = &task->thread;
6802 * cut links inherited from parent (current)
6804 thread->pfm_context = NULL;
6806 PFM_SET_WORK_PENDING(task, 0);
6809 * the psr bits are already set properly in copy_threads()
6812 #else /* !CONFIG_PERFMON */
6813 asmlinkage long
6814 sys_perfmonctl (int fd, int cmd, void *arg, int count)
6816 return -ENOSYS;
6818 #endif /* CONFIG_PERFMON */