1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kgdb.h>
12 #include <linux/smp.h>
15 #include <asm/stackprotector.h>
16 #include <asm/perf_event.h>
17 #include <asm/mmu_context.h>
18 #include <asm/archrandom.h>
19 #include <asm/hypervisor.h>
20 #include <asm/processor.h>
21 #include <asm/debugreg.h>
22 #include <asm/sections.h>
23 #include <linux/topology.h>
24 #include <linux/cpumask.h>
25 #include <asm/pgtable.h>
26 #include <linux/atomic.h>
27 #include <asm/proto.h>
28 #include <asm/setup.h>
32 #include <asm/fpu-internal.h>
34 #include <linux/numa.h>
41 #ifdef CONFIG_X86_LOCAL_APIC
42 #include <asm/uv/uv.h>
47 /* all of these masks are initialized in setup_cpu_local_masks() */
48 cpumask_var_t cpu_initialized_mask
;
49 cpumask_var_t cpu_callout_mask
;
50 cpumask_var_t cpu_callin_mask
;
52 /* representing cpus for which sibling maps can be computed */
53 cpumask_var_t cpu_sibling_setup_mask
;
55 /* correctly size the local cpu masks */
56 void __init
setup_cpu_local_masks(void)
58 alloc_bootmem_cpumask_var(&cpu_initialized_mask
);
59 alloc_bootmem_cpumask_var(&cpu_callin_mask
);
60 alloc_bootmem_cpumask_var(&cpu_callout_mask
);
61 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask
);
64 static void __cpuinit
default_init(struct cpuinfo_x86
*c
)
67 cpu_detect_cache_sizes(c
);
69 /* Not much we can do here... */
70 /* Check if at least it has cpuid */
71 if (c
->cpuid_level
== -1) {
72 /* No cpuid. It must be an ancient CPU */
74 strcpy(c
->x86_model_id
, "486");
76 strcpy(c
->x86_model_id
, "386");
81 static const struct cpu_dev __cpuinitconst default_cpu
= {
82 .c_init
= default_init
,
83 .c_vendor
= "Unknown",
84 .c_x86_vendor
= X86_VENDOR_UNKNOWN
,
87 static const struct cpu_dev
*this_cpu __cpuinitdata
= &default_cpu
;
89 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page
, gdt_page
) = { .gdt
= {
92 * We need valid kernel segments for data and code in long mode too
93 * IRET will check the segment types kkeil 2000/10/28
94 * Also sysret mandates a special GDT layout
96 * TLS descriptors are currently at a different place compared to i386.
97 * Hopefully nobody expects them at a fixed place (Wine?)
99 [GDT_ENTRY_KERNEL32_CS
] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
100 [GDT_ENTRY_KERNEL_CS
] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
101 [GDT_ENTRY_KERNEL_DS
] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
102 [GDT_ENTRY_DEFAULT_USER32_CS
] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
103 [GDT_ENTRY_DEFAULT_USER_DS
] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
104 [GDT_ENTRY_DEFAULT_USER_CS
] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
106 [GDT_ENTRY_KERNEL_CS
] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
107 [GDT_ENTRY_KERNEL_DS
] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
108 [GDT_ENTRY_DEFAULT_USER_CS
] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
109 [GDT_ENTRY_DEFAULT_USER_DS
] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
111 * Segments used for calling PnP BIOS have byte granularity.
112 * They code segments and data segments have fixed 64k limits,
113 * the transfer segment sizes are set at run time.
116 [GDT_ENTRY_PNPBIOS_CS32
] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
118 [GDT_ENTRY_PNPBIOS_CS16
] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
120 [GDT_ENTRY_PNPBIOS_DS
] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
122 [GDT_ENTRY_PNPBIOS_TS1
] = GDT_ENTRY_INIT(0x0092, 0, 0),
124 [GDT_ENTRY_PNPBIOS_TS2
] = GDT_ENTRY_INIT(0x0092, 0, 0),
126 * The APM segments have byte granularity and their bases
127 * are set at run time. All have 64k limits.
130 [GDT_ENTRY_APMBIOS_BASE
] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
132 [GDT_ENTRY_APMBIOS_BASE
+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
134 [GDT_ENTRY_APMBIOS_BASE
+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
136 [GDT_ENTRY_ESPFIX_SS
] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
137 [GDT_ENTRY_PERCPU
] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
138 GDT_STACK_CANARY_INIT
141 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page
);
143 static int __init
x86_xsave_setup(char *s
)
145 setup_clear_cpu_cap(X86_FEATURE_XSAVE
);
146 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT
);
147 setup_clear_cpu_cap(X86_FEATURE_AVX
);
148 setup_clear_cpu_cap(X86_FEATURE_AVX2
);
151 __setup("noxsave", x86_xsave_setup
);
153 static int __init
x86_xsaveopt_setup(char *s
)
155 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT
);
158 __setup("noxsaveopt", x86_xsaveopt_setup
);
161 static int cachesize_override __cpuinitdata
= -1;
162 static int disable_x86_serial_nr __cpuinitdata
= 1;
164 static int __init
cachesize_setup(char *str
)
166 get_option(&str
, &cachesize_override
);
169 __setup("cachesize=", cachesize_setup
);
171 static int __init
x86_fxsr_setup(char *s
)
173 setup_clear_cpu_cap(X86_FEATURE_FXSR
);
174 setup_clear_cpu_cap(X86_FEATURE_XMM
);
177 __setup("nofxsr", x86_fxsr_setup
);
179 static int __init
x86_sep_setup(char *s
)
181 setup_clear_cpu_cap(X86_FEATURE_SEP
);
184 __setup("nosep", x86_sep_setup
);
186 /* Standard macro to see if a specific flag is changeable */
187 static inline int flag_is_changeable_p(u32 flag
)
192 * Cyrix and IDT cpus allow disabling of CPUID
193 * so the code below may return different results
194 * when it is executed before and after enabling
195 * the CPUID. Add "volatile" to not allow gcc to
196 * optimize the subsequent calls to this function.
198 asm volatile ("pushfl \n\t"
209 : "=&r" (f1
), "=&r" (f2
)
212 return ((f1
^f2
) & flag
) != 0;
215 /* Probe for the CPUID instruction */
216 static int __cpuinit
have_cpuid_p(void)
218 return flag_is_changeable_p(X86_EFLAGS_ID
);
221 static void __cpuinit
squash_the_stupid_serial_number(struct cpuinfo_x86
*c
)
223 unsigned long lo
, hi
;
225 if (!cpu_has(c
, X86_FEATURE_PN
) || !disable_x86_serial_nr
)
228 /* Disable processor serial number: */
230 rdmsr(MSR_IA32_BBL_CR_CTL
, lo
, hi
);
232 wrmsr(MSR_IA32_BBL_CR_CTL
, lo
, hi
);
234 printk(KERN_NOTICE
"CPU serial number disabled.\n");
235 clear_cpu_cap(c
, X86_FEATURE_PN
);
237 /* Disabling the serial number may affect the cpuid level */
238 c
->cpuid_level
= cpuid_eax(0);
241 static int __init
x86_serial_nr_setup(char *s
)
243 disable_x86_serial_nr
= 0;
246 __setup("serialnumber", x86_serial_nr_setup
);
248 static inline int flag_is_changeable_p(u32 flag
)
252 /* Probe for the CPUID instruction */
253 static inline int have_cpuid_p(void)
257 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86
*c
)
262 static __init
int setup_disable_smep(char *arg
)
264 setup_clear_cpu_cap(X86_FEATURE_SMEP
);
267 __setup("nosmep", setup_disable_smep
);
269 static __always_inline
void setup_smep(struct cpuinfo_x86
*c
)
271 if (cpu_has(c
, X86_FEATURE_SMEP
))
272 set_in_cr4(X86_CR4_SMEP
);
275 static __init
int setup_disable_smap(char *arg
)
277 setup_clear_cpu_cap(X86_FEATURE_SMAP
);
280 __setup("nosmap", setup_disable_smap
);
282 static __always_inline
void setup_smap(struct cpuinfo_x86
*c
)
284 unsigned long eflags
;
286 /* This should have been cleared long ago */
287 raw_local_save_flags(eflags
);
288 BUG_ON(eflags
& X86_EFLAGS_AC
);
290 if (cpu_has(c
, X86_FEATURE_SMAP
))
291 set_in_cr4(X86_CR4_SMAP
);
295 * Some CPU features depend on higher CPUID levels, which may not always
296 * be available due to CPUID level capping or broken virtualization
297 * software. Add those features to this table to auto-disable them.
299 struct cpuid_dependent_feature
{
304 static const struct cpuid_dependent_feature __cpuinitconst
305 cpuid_dependent_features
[] = {
306 { X86_FEATURE_MWAIT
, 0x00000005 },
307 { X86_FEATURE_DCA
, 0x00000009 },
308 { X86_FEATURE_XSAVE
, 0x0000000d },
312 static void __cpuinit
filter_cpuid_features(struct cpuinfo_x86
*c
, bool warn
)
314 const struct cpuid_dependent_feature
*df
;
316 for (df
= cpuid_dependent_features
; df
->feature
; df
++) {
318 if (!cpu_has(c
, df
->feature
))
321 * Note: cpuid_level is set to -1 if unavailable, but
322 * extended_extended_level is set to 0 if unavailable
323 * and the legitimate extended levels are all negative
324 * when signed; hence the weird messing around with
327 if (!((s32
)df
->level
< 0 ?
328 (u32
)df
->level
> (u32
)c
->extended_cpuid_level
:
329 (s32
)df
->level
> (s32
)c
->cpuid_level
))
332 clear_cpu_cap(c
, df
->feature
);
337 "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
338 x86_cap_flags
[df
->feature
], df
->level
);
343 * Naming convention should be: <Name> [(<Codename>)]
344 * This table only is used unless init_<vendor>() below doesn't set it;
345 * in particular, if CPUID levels 0x80000002..4 are supported, this
349 /* Look up CPU names by table lookup. */
350 static const char *__cpuinit
table_lookup_model(struct cpuinfo_x86
*c
)
352 const struct cpu_model_info
*info
;
354 if (c
->x86_model
>= 16)
355 return NULL
; /* Range check */
360 info
= this_cpu
->c_models
;
362 while (info
&& info
->family
) {
363 if (info
->family
== c
->x86
)
364 return info
->model_names
[c
->x86_model
];
367 return NULL
; /* Not found */
370 __u32 cpu_caps_cleared
[NCAPINTS
] __cpuinitdata
;
371 __u32 cpu_caps_set
[NCAPINTS
] __cpuinitdata
;
373 void load_percpu_segment(int cpu
)
376 loadsegment(fs
, __KERNEL_PERCPU
);
379 wrmsrl(MSR_GS_BASE
, (unsigned long)per_cpu(irq_stack_union
.gs_base
, cpu
));
381 load_stack_canary_segment();
385 * Current gdt points %fs at the "master" per-cpu area: after this,
386 * it's on the real one.
388 void switch_to_new_gdt(int cpu
)
390 struct desc_ptr gdt_descr
;
392 gdt_descr
.address
= (long)get_cpu_gdt_table(cpu
);
393 gdt_descr
.size
= GDT_SIZE
- 1;
394 load_gdt(&gdt_descr
);
395 /* Reload the per-cpu base */
397 load_percpu_segment(cpu
);
400 static const struct cpu_dev
*__cpuinitdata cpu_devs
[X86_VENDOR_NUM
] = {};
402 static void __cpuinit
get_model_name(struct cpuinfo_x86
*c
)
407 if (c
->extended_cpuid_level
< 0x80000004)
410 v
= (unsigned int *)c
->x86_model_id
;
411 cpuid(0x80000002, &v
[0], &v
[1], &v
[2], &v
[3]);
412 cpuid(0x80000003, &v
[4], &v
[5], &v
[6], &v
[7]);
413 cpuid(0x80000004, &v
[8], &v
[9], &v
[10], &v
[11]);
414 c
->x86_model_id
[48] = 0;
417 * Intel chips right-justify this string for some dumb reason;
418 * undo that brain damage:
420 p
= q
= &c
->x86_model_id
[0];
426 while (q
<= &c
->x86_model_id
[48])
427 *q
++ = '\0'; /* Zero-pad the rest */
431 void __cpuinit
cpu_detect_cache_sizes(struct cpuinfo_x86
*c
)
433 unsigned int n
, dummy
, ebx
, ecx
, edx
, l2size
;
435 n
= c
->extended_cpuid_level
;
437 if (n
>= 0x80000005) {
438 cpuid(0x80000005, &dummy
, &ebx
, &ecx
, &edx
);
439 c
->x86_cache_size
= (ecx
>>24) + (edx
>>24);
441 /* On K8 L1 TLB is inclusive, so don't count it */
446 if (n
< 0x80000006) /* Some chips just has a large L1. */
449 cpuid(0x80000006, &dummy
, &ebx
, &ecx
, &edx
);
453 c
->x86_tlbsize
+= ((ebx
>> 16) & 0xfff) + (ebx
& 0xfff);
455 /* do processor-specific cache resizing */
456 if (this_cpu
->c_size_cache
)
457 l2size
= this_cpu
->c_size_cache(c
, l2size
);
459 /* Allow user to override all this if necessary. */
460 if (cachesize_override
!= -1)
461 l2size
= cachesize_override
;
464 return; /* Again, no L2 cache is possible */
467 c
->x86_cache_size
= l2size
;
470 u16 __read_mostly tlb_lli_4k
[NR_INFO
];
471 u16 __read_mostly tlb_lli_2m
[NR_INFO
];
472 u16 __read_mostly tlb_lli_4m
[NR_INFO
];
473 u16 __read_mostly tlb_lld_4k
[NR_INFO
];
474 u16 __read_mostly tlb_lld_2m
[NR_INFO
];
475 u16 __read_mostly tlb_lld_4m
[NR_INFO
];
478 * tlb_flushall_shift shows the balance point in replacing cr3 write
479 * with multiple 'invlpg'. It will do this replacement when
480 * flush_tlb_lines <= active_lines/2^tlb_flushall_shift.
481 * If tlb_flushall_shift is -1, means the replacement will be disabled.
483 s8 __read_mostly tlb_flushall_shift
= -1;
485 void __cpuinit
cpu_detect_tlb(struct cpuinfo_x86
*c
)
487 if (this_cpu
->c_detect_tlb
)
488 this_cpu
->c_detect_tlb(c
);
490 printk(KERN_INFO
"Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n" \
491 "Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d\n" \
492 "tlb_flushall_shift: %d\n",
493 tlb_lli_4k
[ENTRIES
], tlb_lli_2m
[ENTRIES
],
494 tlb_lli_4m
[ENTRIES
], tlb_lld_4k
[ENTRIES
],
495 tlb_lld_2m
[ENTRIES
], tlb_lld_4m
[ENTRIES
],
499 void __cpuinit
detect_ht(struct cpuinfo_x86
*c
)
502 u32 eax
, ebx
, ecx
, edx
;
503 int index_msb
, core_bits
;
506 if (!cpu_has(c
, X86_FEATURE_HT
))
509 if (cpu_has(c
, X86_FEATURE_CMP_LEGACY
))
512 if (cpu_has(c
, X86_FEATURE_XTOPOLOGY
))
515 cpuid(1, &eax
, &ebx
, &ecx
, &edx
);
517 smp_num_siblings
= (ebx
& 0xff0000) >> 16;
519 if (smp_num_siblings
== 1) {
520 printk_once(KERN_INFO
"CPU0: Hyper-Threading is disabled\n");
524 if (smp_num_siblings
<= 1)
527 index_msb
= get_count_order(smp_num_siblings
);
528 c
->phys_proc_id
= apic
->phys_pkg_id(c
->initial_apicid
, index_msb
);
530 smp_num_siblings
= smp_num_siblings
/ c
->x86_max_cores
;
532 index_msb
= get_count_order(smp_num_siblings
);
534 core_bits
= get_count_order(c
->x86_max_cores
);
536 c
->cpu_core_id
= apic
->phys_pkg_id(c
->initial_apicid
, index_msb
) &
537 ((1 << core_bits
) - 1);
540 if (!printed
&& (c
->x86_max_cores
* smp_num_siblings
) > 1) {
541 printk(KERN_INFO
"CPU: Physical Processor ID: %d\n",
543 printk(KERN_INFO
"CPU: Processor Core ID: %d\n",
550 static void __cpuinit
get_cpu_vendor(struct cpuinfo_x86
*c
)
552 char *v
= c
->x86_vendor_id
;
555 for (i
= 0; i
< X86_VENDOR_NUM
; i
++) {
559 if (!strcmp(v
, cpu_devs
[i
]->c_ident
[0]) ||
560 (cpu_devs
[i
]->c_ident
[1] &&
561 !strcmp(v
, cpu_devs
[i
]->c_ident
[1]))) {
563 this_cpu
= cpu_devs
[i
];
564 c
->x86_vendor
= this_cpu
->c_x86_vendor
;
570 "CPU: vendor_id '%s' unknown, using generic init.\n" \
571 "CPU: Your system may be unstable.\n", v
);
573 c
->x86_vendor
= X86_VENDOR_UNKNOWN
;
574 this_cpu
= &default_cpu
;
577 void __cpuinit
cpu_detect(struct cpuinfo_x86
*c
)
579 /* Get vendor name */
580 cpuid(0x00000000, (unsigned int *)&c
->cpuid_level
,
581 (unsigned int *)&c
->x86_vendor_id
[0],
582 (unsigned int *)&c
->x86_vendor_id
[8],
583 (unsigned int *)&c
->x86_vendor_id
[4]);
586 /* Intel-defined flags: level 0x00000001 */
587 if (c
->cpuid_level
>= 0x00000001) {
588 u32 junk
, tfms
, cap0
, misc
;
590 cpuid(0x00000001, &tfms
, &misc
, &junk
, &cap0
);
591 c
->x86
= (tfms
>> 8) & 0xf;
592 c
->x86_model
= (tfms
>> 4) & 0xf;
593 c
->x86_mask
= tfms
& 0xf;
596 c
->x86
+= (tfms
>> 20) & 0xff;
598 c
->x86_model
+= ((tfms
>> 16) & 0xf) << 4;
600 if (cap0
& (1<<19)) {
601 c
->x86_clflush_size
= ((misc
>> 8) & 0xff) * 8;
602 c
->x86_cache_alignment
= c
->x86_clflush_size
;
607 void __cpuinit
get_cpu_cap(struct cpuinfo_x86
*c
)
612 /* Intel-defined flags: level 0x00000001 */
613 if (c
->cpuid_level
>= 0x00000001) {
614 u32 capability
, excap
;
616 cpuid(0x00000001, &tfms
, &ebx
, &excap
, &capability
);
617 c
->x86_capability
[0] = capability
;
618 c
->x86_capability
[4] = excap
;
621 /* Additional Intel-defined flags: level 0x00000007 */
622 if (c
->cpuid_level
>= 0x00000007) {
623 u32 eax
, ebx
, ecx
, edx
;
625 cpuid_count(0x00000007, 0, &eax
, &ebx
, &ecx
, &edx
);
627 c
->x86_capability
[9] = ebx
;
630 /* AMD-defined flags: level 0x80000001 */
631 xlvl
= cpuid_eax(0x80000000);
632 c
->extended_cpuid_level
= xlvl
;
634 if ((xlvl
& 0xffff0000) == 0x80000000) {
635 if (xlvl
>= 0x80000001) {
636 c
->x86_capability
[1] = cpuid_edx(0x80000001);
637 c
->x86_capability
[6] = cpuid_ecx(0x80000001);
641 if (c
->extended_cpuid_level
>= 0x80000008) {
642 u32 eax
= cpuid_eax(0x80000008);
644 c
->x86_virt_bits
= (eax
>> 8) & 0xff;
645 c
->x86_phys_bits
= eax
& 0xff;
648 else if (cpu_has(c
, X86_FEATURE_PAE
) || cpu_has(c
, X86_FEATURE_PSE36
))
649 c
->x86_phys_bits
= 36;
652 if (c
->extended_cpuid_level
>= 0x80000007)
653 c
->x86_power
= cpuid_edx(0x80000007);
655 init_scattered_cpuid_features(c
);
658 static void __cpuinit
identify_cpu_without_cpuid(struct cpuinfo_x86
*c
)
664 * First of all, decide if this is a 486 or higher
665 * It's a 486 if we can modify the AC flag
667 if (flag_is_changeable_p(X86_EFLAGS_AC
))
672 for (i
= 0; i
< X86_VENDOR_NUM
; i
++)
673 if (cpu_devs
[i
] && cpu_devs
[i
]->c_identify
) {
674 c
->x86_vendor_id
[0] = 0;
675 cpu_devs
[i
]->c_identify(c
);
676 if (c
->x86_vendor_id
[0]) {
685 * Do minimum CPU detection early.
686 * Fields really needed: vendor, cpuid_level, family, model, mask,
688 * The others are not touched to avoid unwanted side effects.
690 * WARNING: this function is only called on the BP. Don't add code here
691 * that is supposed to run on all CPUs.
693 static void __init
early_identify_cpu(struct cpuinfo_x86
*c
)
696 c
->x86_clflush_size
= 64;
697 c
->x86_phys_bits
= 36;
698 c
->x86_virt_bits
= 48;
700 c
->x86_clflush_size
= 32;
701 c
->x86_phys_bits
= 32;
702 c
->x86_virt_bits
= 32;
704 c
->x86_cache_alignment
= c
->x86_clflush_size
;
706 memset(&c
->x86_capability
, 0, sizeof c
->x86_capability
);
707 c
->extended_cpuid_level
= 0;
710 identify_cpu_without_cpuid(c
);
712 /* cyrix could have cpuid enabled via c_identify()*/
722 if (this_cpu
->c_early_init
)
723 this_cpu
->c_early_init(c
);
726 filter_cpuid_features(c
, false);
728 if (this_cpu
->c_bsp_init
)
729 this_cpu
->c_bsp_init(c
);
732 void __init
early_cpu_init(void)
734 const struct cpu_dev
*const *cdev
;
737 #ifdef CONFIG_PROCESSOR_SELECT
738 printk(KERN_INFO
"KERNEL supported cpus:\n");
741 for (cdev
= __x86_cpu_dev_start
; cdev
< __x86_cpu_dev_end
; cdev
++) {
742 const struct cpu_dev
*cpudev
= *cdev
;
744 if (count
>= X86_VENDOR_NUM
)
746 cpu_devs
[count
] = cpudev
;
749 #ifdef CONFIG_PROCESSOR_SELECT
753 for (j
= 0; j
< 2; j
++) {
754 if (!cpudev
->c_ident
[j
])
756 printk(KERN_INFO
" %s %s\n", cpudev
->c_vendor
,
762 early_identify_cpu(&boot_cpu_data
);
766 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
767 * unfortunately, that's not true in practice because of early VIA
768 * chips and (more importantly) broken virtualizers that are not easy
769 * to detect. In the latter case it doesn't even *fail* reliably, so
770 * probing for it doesn't even work. Disable it completely on 32-bit
771 * unless we can find a reliable way to detect all the broken cases.
772 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
774 static void __cpuinit
detect_nopl(struct cpuinfo_x86
*c
)
777 clear_cpu_cap(c
, X86_FEATURE_NOPL
);
779 set_cpu_cap(c
, X86_FEATURE_NOPL
);
783 static void __cpuinit
generic_identify(struct cpuinfo_x86
*c
)
785 c
->extended_cpuid_level
= 0;
788 identify_cpu_without_cpuid(c
);
790 /* cyrix could have cpuid enabled via c_identify()*/
800 if (c
->cpuid_level
>= 0x00000001) {
801 c
->initial_apicid
= (cpuid_ebx(1) >> 24) & 0xFF;
803 # ifdef CONFIG_X86_HT
804 c
->apicid
= apic
->phys_pkg_id(c
->initial_apicid
, 0);
806 c
->apicid
= c
->initial_apicid
;
809 c
->phys_proc_id
= c
->initial_apicid
;
812 get_model_name(c
); /* Default name */
818 * This does the hard work of actually picking apart the CPU stuff...
820 static void __cpuinit
identify_cpu(struct cpuinfo_x86
*c
)
824 c
->loops_per_jiffy
= loops_per_jiffy
;
825 c
->x86_cache_size
= -1;
826 c
->x86_vendor
= X86_VENDOR_UNKNOWN
;
827 c
->x86_model
= c
->x86_mask
= 0; /* So far unknown... */
828 c
->x86_vendor_id
[0] = '\0'; /* Unset */
829 c
->x86_model_id
[0] = '\0'; /* Unset */
830 c
->x86_max_cores
= 1;
831 c
->x86_coreid_bits
= 0;
833 c
->x86_clflush_size
= 64;
834 c
->x86_phys_bits
= 36;
835 c
->x86_virt_bits
= 48;
837 c
->cpuid_level
= -1; /* CPUID not detected */
838 c
->x86_clflush_size
= 32;
839 c
->x86_phys_bits
= 32;
840 c
->x86_virt_bits
= 32;
842 c
->x86_cache_alignment
= c
->x86_clflush_size
;
843 memset(&c
->x86_capability
, 0, sizeof c
->x86_capability
);
847 if (this_cpu
->c_identify
)
848 this_cpu
->c_identify(c
);
850 /* Clear/Set all flags overriden by options, after probe */
851 for (i
= 0; i
< NCAPINTS
; i
++) {
852 c
->x86_capability
[i
] &= ~cpu_caps_cleared
[i
];
853 c
->x86_capability
[i
] |= cpu_caps_set
[i
];
857 c
->apicid
= apic
->phys_pkg_id(c
->initial_apicid
, 0);
861 * Vendor-specific initialization. In this section we
862 * canonicalize the feature flags, meaning if there are
863 * features a certain CPU supports which CPUID doesn't
864 * tell us, CPUID claiming incorrect flags, or other bugs,
865 * we handle them here.
867 * At the end of this section, c->x86_capability better
868 * indicate the features this CPU genuinely supports!
870 if (this_cpu
->c_init
)
873 /* Disable the PN if appropriate */
874 squash_the_stupid_serial_number(c
);
876 /* Set up SMEP/SMAP */
881 * The vendor-specific functions might have changed features.
882 * Now we do "generic changes."
885 /* Filter out anything that depends on CPUID levels we don't have */
886 filter_cpuid_features(c
, true);
888 /* If the model name is still unset, do table lookup. */
889 if (!c
->x86_model_id
[0]) {
891 p
= table_lookup_model(c
);
893 strcpy(c
->x86_model_id
, p
);
896 sprintf(c
->x86_model_id
, "%02x/%02x",
897 c
->x86
, c
->x86_model
);
908 * Clear/Set all flags overriden by options, need do it
909 * before following smp all cpus cap AND.
911 for (i
= 0; i
< NCAPINTS
; i
++) {
912 c
->x86_capability
[i
] &= ~cpu_caps_cleared
[i
];
913 c
->x86_capability
[i
] |= cpu_caps_set
[i
];
917 * On SMP, boot_cpu_data holds the common feature set between
918 * all CPUs; so make sure that we indicate which features are
919 * common between the CPUs. The first time this routine gets
920 * executed, c == &boot_cpu_data.
922 if (c
!= &boot_cpu_data
) {
923 /* AND the already accumulated flags with these */
924 for (i
= 0; i
< NCAPINTS
; i
++)
925 boot_cpu_data
.x86_capability
[i
] &= c
->x86_capability
[i
];
928 /* Init Machine Check Exception if available. */
931 select_idle_routine(c
);
934 numa_add_cpu(smp_processor_id());
939 static void vgetcpu_set_mode(void)
941 if (cpu_has(&boot_cpu_data
, X86_FEATURE_RDTSCP
))
942 vgetcpu_mode
= VGETCPU_RDTSCP
;
944 vgetcpu_mode
= VGETCPU_LSL
;
948 void __init
identify_boot_cpu(void)
950 identify_cpu(&boot_cpu_data
);
951 init_amd_e400_c1e_mask();
958 cpu_detect_tlb(&boot_cpu_data
);
961 void __cpuinit
identify_secondary_cpu(struct cpuinfo_x86
*c
)
963 BUG_ON(c
== &boot_cpu_data
);
976 static const struct msr_range msr_range_array
[] __cpuinitconst
= {
977 { 0x00000000, 0x00000418},
978 { 0xc0000000, 0xc000040b},
979 { 0xc0010000, 0xc0010142},
980 { 0xc0011000, 0xc001103b},
983 static void __cpuinit
__print_cpu_msr(void)
985 unsigned index_min
, index_max
;
990 for (i
= 0; i
< ARRAY_SIZE(msr_range_array
); i
++) {
991 index_min
= msr_range_array
[i
].min
;
992 index_max
= msr_range_array
[i
].max
;
994 for (index
= index_min
; index
< index_max
; index
++) {
995 if (rdmsrl_safe(index
, &val
))
997 printk(KERN_INFO
" MSR%08x: %016llx\n", index
, val
);
1002 static int show_msr __cpuinitdata
;
1004 static __init
int setup_show_msr(char *arg
)
1008 get_option(&arg
, &num
);
1014 __setup("show_msr=", setup_show_msr
);
1016 static __init
int setup_noclflush(char *arg
)
1018 setup_clear_cpu_cap(X86_FEATURE_CLFLSH
);
1021 __setup("noclflush", setup_noclflush
);
1023 void __cpuinit
print_cpu_info(struct cpuinfo_x86
*c
)
1025 const char *vendor
= NULL
;
1027 if (c
->x86_vendor
< X86_VENDOR_NUM
) {
1028 vendor
= this_cpu
->c_vendor
;
1030 if (c
->cpuid_level
>= 0)
1031 vendor
= c
->x86_vendor_id
;
1034 if (vendor
&& !strstr(c
->x86_model_id
, vendor
))
1035 printk(KERN_CONT
"%s ", vendor
);
1037 if (c
->x86_model_id
[0])
1038 printk(KERN_CONT
"%s", strim(c
->x86_model_id
));
1040 printk(KERN_CONT
"%d86", c
->x86
);
1042 printk(KERN_CONT
" (fam: %02x, model: %02x", c
->x86
, c
->x86_model
);
1044 if (c
->x86_mask
|| c
->cpuid_level
>= 0)
1045 printk(KERN_CONT
", stepping: %02x)\n", c
->x86_mask
);
1047 printk(KERN_CONT
")\n");
1052 void __cpuinit
print_cpu_msr(struct cpuinfo_x86
*c
)
1054 if (c
->cpu_index
< show_msr
)
1058 static __init
int setup_disablecpuid(char *arg
)
1062 if (get_option(&arg
, &bit
) && bit
< NCAPINTS
*32)
1063 setup_clear_cpu_cap(bit
);
1069 __setup("clearcpuid=", setup_disablecpuid
);
1071 #ifdef CONFIG_X86_64
1072 struct desc_ptr idt_descr
= { NR_VECTORS
* 16 - 1, (unsigned long) idt_table
};
1073 struct desc_ptr nmi_idt_descr
= { NR_VECTORS
* 16 - 1,
1074 (unsigned long) nmi_idt_table
};
1076 DEFINE_PER_CPU_FIRST(union irq_stack_union
,
1077 irq_stack_union
) __aligned(PAGE_SIZE
);
1080 * The following four percpu variables are hot. Align current_task to
1081 * cacheline size such that all four fall in the same cacheline.
1083 DEFINE_PER_CPU(struct task_struct
*, current_task
) ____cacheline_aligned
=
1085 EXPORT_PER_CPU_SYMBOL(current_task
);
1087 DEFINE_PER_CPU(unsigned long, kernel_stack
) =
1088 (unsigned long)&init_thread_union
- KERNEL_STACK_OFFSET
+ THREAD_SIZE
;
1089 EXPORT_PER_CPU_SYMBOL(kernel_stack
);
1091 DEFINE_PER_CPU(char *, irq_stack_ptr
) =
1092 init_per_cpu_var(irq_stack_union
.irq_stack
) + IRQ_STACK_SIZE
- 64;
1094 DEFINE_PER_CPU(unsigned int, irq_count
) = -1;
1096 DEFINE_PER_CPU(struct task_struct
*, fpu_owner_task
);
1099 * Special IST stacks which the CPU switches to when it calls
1100 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1101 * limit), all of them are 4K, except the debug stack which
1104 static const unsigned int exception_stack_sizes
[N_EXCEPTION_STACKS
] = {
1105 [0 ... N_EXCEPTION_STACKS
- 1] = EXCEPTION_STKSZ
,
1106 [DEBUG_STACK
- 1] = DEBUG_STKSZ
1109 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1110 [(N_EXCEPTION_STACKS
- 1) * EXCEPTION_STKSZ
+ DEBUG_STKSZ
]);
1112 /* May not be marked __init: used by software suspend */
1113 void syscall_init(void)
1116 * LSTAR and STAR live in a bit strange symbiosis.
1117 * They both write to the same internal register. STAR allows to
1118 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1120 wrmsrl(MSR_STAR
, ((u64
)__USER32_CS
)<<48 | ((u64
)__KERNEL_CS
)<<32);
1121 wrmsrl(MSR_LSTAR
, system_call
);
1122 wrmsrl(MSR_CSTAR
, ignore_sysret
);
1124 #ifdef CONFIG_IA32_EMULATION
1125 syscall32_cpu_init();
1128 /* Flags to clear on syscall */
1129 wrmsrl(MSR_SYSCALL_MASK
,
1130 X86_EFLAGS_TF
|X86_EFLAGS_DF
|X86_EFLAGS_IF
|
1131 X86_EFLAGS_IOPL
|X86_EFLAGS_AC
);
1135 * Copies of the original ist values from the tss are only accessed during
1136 * debugging, no special alignment required.
1138 DEFINE_PER_CPU(struct orig_ist
, orig_ist
);
1140 static DEFINE_PER_CPU(unsigned long, debug_stack_addr
);
1141 DEFINE_PER_CPU(int, debug_stack_usage
);
1143 int is_debug_stack(unsigned long addr
)
1145 return __get_cpu_var(debug_stack_usage
) ||
1146 (addr
<= __get_cpu_var(debug_stack_addr
) &&
1147 addr
> (__get_cpu_var(debug_stack_addr
) - DEBUG_STKSZ
));
1150 static DEFINE_PER_CPU(u32
, debug_stack_use_ctr
);
1152 void debug_stack_set_zero(void)
1154 this_cpu_inc(debug_stack_use_ctr
);
1155 load_idt((const struct desc_ptr
*)&nmi_idt_descr
);
1158 void debug_stack_reset(void)
1160 if (WARN_ON(!this_cpu_read(debug_stack_use_ctr
)))
1162 if (this_cpu_dec_return(debug_stack_use_ctr
) == 0)
1163 load_idt((const struct desc_ptr
*)&idt_descr
);
1166 #else /* CONFIG_X86_64 */
1168 DEFINE_PER_CPU(struct task_struct
*, current_task
) = &init_task
;
1169 EXPORT_PER_CPU_SYMBOL(current_task
);
1170 DEFINE_PER_CPU(struct task_struct
*, fpu_owner_task
);
1172 #ifdef CONFIG_CC_STACKPROTECTOR
1173 DEFINE_PER_CPU_ALIGNED(struct stack_canary
, stack_canary
);
1176 #endif /* CONFIG_X86_64 */
1179 * Clear all 6 debug registers:
1181 static void clear_all_debug_regs(void)
1185 for (i
= 0; i
< 8; i
++) {
1186 /* Ignore db4, db5 */
1187 if ((i
== 4) || (i
== 5))
1196 * Restore debug regs if using kgdbwait and you have a kernel debugger
1197 * connection established.
1199 static void dbg_restore_debug_regs(void)
1201 if (unlikely(kgdb_connected
&& arch_kgdb_ops
.correct_hw_break
))
1202 arch_kgdb_ops
.correct_hw_break();
1204 #else /* ! CONFIG_KGDB */
1205 #define dbg_restore_debug_regs()
1206 #endif /* ! CONFIG_KGDB */
1209 * cpu_init() initializes state that is per-CPU. Some data is already
1210 * initialized (naturally) in the bootstrap process, such as the GDT
1211 * and IDT. We reload them nevertheless, this function acts as a
1212 * 'CPU state barrier', nothing should get across.
1213 * A lot of state is already set up in PDA init for 64 bit
1215 #ifdef CONFIG_X86_64
1217 void __cpuinit
cpu_init(void)
1219 struct orig_ist
*oist
;
1220 struct task_struct
*me
;
1221 struct tss_struct
*t
;
1226 cpu
= stack_smp_processor_id();
1227 t
= &per_cpu(init_tss
, cpu
);
1228 oist
= &per_cpu(orig_ist
, cpu
);
1231 if (this_cpu_read(numa_node
) == 0 &&
1232 early_cpu_to_node(cpu
) != NUMA_NO_NODE
)
1233 set_numa_node(early_cpu_to_node(cpu
));
1238 if (cpumask_test_and_set_cpu(cpu
, cpu_initialized_mask
))
1239 panic("CPU#%d already initialized!\n", cpu
);
1241 pr_debug("Initializing CPU#%d\n", cpu
);
1243 clear_in_cr4(X86_CR4_VME
|X86_CR4_PVI
|X86_CR4_TSD
|X86_CR4_DE
);
1246 * Initialize the per-CPU GDT with the boot GDT,
1247 * and set up the GDT descriptor:
1250 switch_to_new_gdt(cpu
);
1253 load_idt((const struct desc_ptr
*)&idt_descr
);
1255 memset(me
->thread
.tls_array
, 0, GDT_ENTRY_TLS_ENTRIES
* 8);
1258 wrmsrl(MSR_FS_BASE
, 0);
1259 wrmsrl(MSR_KERNEL_GS_BASE
, 0);
1266 * set up and load the per-CPU TSS
1268 if (!oist
->ist
[0]) {
1269 char *estacks
= per_cpu(exception_stacks
, cpu
);
1271 for (v
= 0; v
< N_EXCEPTION_STACKS
; v
++) {
1272 estacks
+= exception_stack_sizes
[v
];
1273 oist
->ist
[v
] = t
->x86_tss
.ist
[v
] =
1274 (unsigned long)estacks
;
1275 if (v
== DEBUG_STACK
-1)
1276 per_cpu(debug_stack_addr
, cpu
) = (unsigned long)estacks
;
1280 t
->x86_tss
.io_bitmap_base
= offsetof(struct tss_struct
, io_bitmap
);
1283 * <= is required because the CPU will access up to
1284 * 8 bits beyond the end of the IO permission bitmap.
1286 for (i
= 0; i
<= IO_BITMAP_LONGS
; i
++)
1287 t
->io_bitmap
[i
] = ~0UL;
1289 atomic_inc(&init_mm
.mm_count
);
1290 me
->active_mm
= &init_mm
;
1292 enter_lazy_tlb(&init_mm
, me
);
1294 load_sp0(t
, ¤t
->thread
);
1295 set_tss_desc(cpu
, t
);
1297 load_LDT(&init_mm
.context
);
1299 clear_all_debug_regs();
1300 dbg_restore_debug_regs();
1310 void __cpuinit
cpu_init(void)
1312 int cpu
= smp_processor_id();
1313 struct task_struct
*curr
= current
;
1314 struct tss_struct
*t
= &per_cpu(init_tss
, cpu
);
1315 struct thread_struct
*thread
= &curr
->thread
;
1317 if (cpumask_test_and_set_cpu(cpu
, cpu_initialized_mask
)) {
1318 printk(KERN_WARNING
"CPU#%d already initialized!\n", cpu
);
1323 printk(KERN_INFO
"Initializing CPU#%d\n", cpu
);
1325 if (cpu_has_vme
|| cpu_has_tsc
|| cpu_has_de
)
1326 clear_in_cr4(X86_CR4_VME
|X86_CR4_PVI
|X86_CR4_TSD
|X86_CR4_DE
);
1328 load_idt(&idt_descr
);
1329 switch_to_new_gdt(cpu
);
1332 * Set up and load the per-CPU TSS and LDT
1334 atomic_inc(&init_mm
.mm_count
);
1335 curr
->active_mm
= &init_mm
;
1337 enter_lazy_tlb(&init_mm
, curr
);
1339 load_sp0(t
, thread
);
1340 set_tss_desc(cpu
, t
);
1342 load_LDT(&init_mm
.context
);
1344 t
->x86_tss
.io_bitmap_base
= offsetof(struct tss_struct
, io_bitmap
);
1346 #ifdef CONFIG_DOUBLEFAULT
1347 /* Set up doublefault TSS pointer in the GDT */
1348 __set_tss_desc(cpu
, GDT_ENTRY_DOUBLEFAULT_TSS
, &doublefault_tss
);
1351 clear_all_debug_regs();
1352 dbg_restore_debug_regs();