2 * Performance events x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
30 #include <asm/stacktrace.h>
33 #include <asm/alternative.h>
34 #include <asm/timer.h>
38 #include "perf_event.h"
40 struct x86_pmu x86_pmu __read_mostly
;
42 DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
) = {
46 u64 __read_mostly hw_cache_event_ids
47 [PERF_COUNT_HW_CACHE_MAX
]
48 [PERF_COUNT_HW_CACHE_OP_MAX
]
49 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
50 u64 __read_mostly hw_cache_extra_regs
51 [PERF_COUNT_HW_CACHE_MAX
]
52 [PERF_COUNT_HW_CACHE_OP_MAX
]
53 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
56 * Propagate event elapsed time into the generic event.
57 * Can only be executed on the CPU where the event is active.
58 * Returns the delta events processed.
60 u64
x86_perf_event_update(struct perf_event
*event
)
62 struct hw_perf_event
*hwc
= &event
->hw
;
63 int shift
= 64 - x86_pmu
.cntval_bits
;
64 u64 prev_raw_count
, new_raw_count
;
68 if (idx
== INTEL_PMC_IDX_FIXED_BTS
)
72 * Careful: an NMI might modify the previous event value.
74 * Our tactic to handle this is to first atomically read and
75 * exchange a new raw count - then add that new-prev delta
76 * count to the generic event atomically:
79 prev_raw_count
= local64_read(&hwc
->prev_count
);
80 rdpmcl(hwc
->event_base_rdpmc
, new_raw_count
);
82 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
83 new_raw_count
) != prev_raw_count
)
87 * Now we have the new raw value and have updated the prev
88 * timestamp already. We can now calculate the elapsed delta
89 * (event-)time and add that to the generic event.
91 * Careful, not all hw sign-extends above the physical width
94 delta
= (new_raw_count
<< shift
) - (prev_raw_count
<< shift
);
97 local64_add(delta
, &event
->count
);
98 local64_sub(delta
, &hwc
->period_left
);
100 return new_raw_count
;
104 * Find and validate any extra registers to set up.
106 static int x86_pmu_extra_regs(u64 config
, struct perf_event
*event
)
108 struct hw_perf_event_extra
*reg
;
109 struct extra_reg
*er
;
111 reg
= &event
->hw
.extra_reg
;
113 if (!x86_pmu
.extra_regs
)
116 for (er
= x86_pmu
.extra_regs
; er
->msr
; er
++) {
117 if (er
->event
!= (config
& er
->config_mask
))
119 if (event
->attr
.config1
& ~er
->valid_mask
)
123 reg
->config
= event
->attr
.config1
;
130 static atomic_t active_events
;
131 static DEFINE_MUTEX(pmc_reserve_mutex
);
133 #ifdef CONFIG_X86_LOCAL_APIC
135 static bool reserve_pmc_hardware(void)
139 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
140 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i
)))
144 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
145 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i
)))
152 for (i
--; i
>= 0; i
--)
153 release_evntsel_nmi(x86_pmu_config_addr(i
));
155 i
= x86_pmu
.num_counters
;
158 for (i
--; i
>= 0; i
--)
159 release_perfctr_nmi(x86_pmu_event_addr(i
));
164 static void release_pmc_hardware(void)
168 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
169 release_perfctr_nmi(x86_pmu_event_addr(i
));
170 release_evntsel_nmi(x86_pmu_config_addr(i
));
176 static bool reserve_pmc_hardware(void) { return true; }
177 static void release_pmc_hardware(void) {}
181 static bool check_hw_exists(void)
183 u64 val
, val_new
= ~0;
187 * Check to see if the BIOS enabled any of the counters, if so
190 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
191 reg
= x86_pmu_config_addr(i
);
192 ret
= rdmsrl_safe(reg
, &val
);
195 if (val
& ARCH_PERFMON_EVENTSEL_ENABLE
)
199 if (x86_pmu
.num_counters_fixed
) {
200 reg
= MSR_ARCH_PERFMON_FIXED_CTR_CTRL
;
201 ret
= rdmsrl_safe(reg
, &val
);
204 for (i
= 0; i
< x86_pmu
.num_counters_fixed
; i
++) {
205 if (val
& (0x03 << i
*4))
211 * Read the current value, change it and read it back to see if it
212 * matches, this is needed to detect certain hardware emulators
213 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
215 reg
= x86_pmu_event_addr(0);
216 if (rdmsrl_safe(reg
, &val
))
219 ret
= wrmsrl_safe(reg
, val
);
220 ret
|= rdmsrl_safe(reg
, &val_new
);
221 if (ret
|| val
!= val_new
)
228 * We still allow the PMU driver to operate:
230 printk(KERN_CONT
"Broken BIOS detected, complain to your hardware vendor.\n");
231 printk(KERN_ERR FW_BUG
"the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg
, val
);
236 printk(KERN_CONT
"Broken PMU hardware detected, using software events only.\n");
237 printk(KERN_ERR
"Failed to access perfctr msr (MSR %x is %Lx)\n", reg
, val_new
);
242 static void hw_perf_event_destroy(struct perf_event
*event
)
244 if (atomic_dec_and_mutex_lock(&active_events
, &pmc_reserve_mutex
)) {
245 release_pmc_hardware();
246 release_ds_buffers();
247 mutex_unlock(&pmc_reserve_mutex
);
251 static inline int x86_pmu_initialized(void)
253 return x86_pmu
.handle_irq
!= NULL
;
257 set_ext_hw_attr(struct hw_perf_event
*hwc
, struct perf_event
*event
)
259 struct perf_event_attr
*attr
= &event
->attr
;
260 unsigned int cache_type
, cache_op
, cache_result
;
263 config
= attr
->config
;
265 cache_type
= (config
>> 0) & 0xff;
266 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
269 cache_op
= (config
>> 8) & 0xff;
270 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
273 cache_result
= (config
>> 16) & 0xff;
274 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
277 val
= hw_cache_event_ids
[cache_type
][cache_op
][cache_result
];
286 attr
->config1
= hw_cache_extra_regs
[cache_type
][cache_op
][cache_result
];
287 return x86_pmu_extra_regs(val
, event
);
290 int x86_setup_perfctr(struct perf_event
*event
)
292 struct perf_event_attr
*attr
= &event
->attr
;
293 struct hw_perf_event
*hwc
= &event
->hw
;
296 if (!is_sampling_event(event
)) {
297 hwc
->sample_period
= x86_pmu
.max_period
;
298 hwc
->last_period
= hwc
->sample_period
;
299 local64_set(&hwc
->period_left
, hwc
->sample_period
);
302 * If we have a PMU initialized but no APIC
303 * interrupts, we cannot sample hardware
304 * events (user-space has to fall back and
305 * sample via a hrtimer based software event):
311 if (attr
->type
== PERF_TYPE_RAW
)
312 return x86_pmu_extra_regs(event
->attr
.config
, event
);
314 if (attr
->type
== PERF_TYPE_HW_CACHE
)
315 return set_ext_hw_attr(hwc
, event
);
317 if (attr
->config
>= x86_pmu
.max_events
)
323 config
= x86_pmu
.event_map(attr
->config
);
334 if (attr
->config
== PERF_COUNT_HW_BRANCH_INSTRUCTIONS
&&
335 !attr
->freq
&& hwc
->sample_period
== 1) {
336 /* BTS is not supported by this architecture. */
337 if (!x86_pmu
.bts_active
)
340 /* BTS is currently only allowed for user-mode. */
341 if (!attr
->exclude_kernel
)
345 hwc
->config
|= config
;
351 * check that branch_sample_type is compatible with
352 * settings needed for precise_ip > 1 which implies
353 * using the LBR to capture ALL taken branches at the
354 * priv levels of the measurement
356 static inline int precise_br_compat(struct perf_event
*event
)
358 u64 m
= event
->attr
.branch_sample_type
;
361 /* must capture all branches */
362 if (!(m
& PERF_SAMPLE_BRANCH_ANY
))
365 m
&= PERF_SAMPLE_BRANCH_KERNEL
| PERF_SAMPLE_BRANCH_USER
;
367 if (!event
->attr
.exclude_user
)
368 b
|= PERF_SAMPLE_BRANCH_USER
;
370 if (!event
->attr
.exclude_kernel
)
371 b
|= PERF_SAMPLE_BRANCH_KERNEL
;
374 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
380 int x86_pmu_hw_config(struct perf_event
*event
)
382 if (event
->attr
.precise_ip
) {
385 /* Support for constant skid */
386 if (x86_pmu
.pebs_active
&& !x86_pmu
.pebs_broken
) {
389 /* Support for IP fixup */
394 if (event
->attr
.precise_ip
> precise
)
397 * check that PEBS LBR correction does not conflict with
398 * whatever the user is asking with attr->branch_sample_type
400 if (event
->attr
.precise_ip
> 1) {
401 u64
*br_type
= &event
->attr
.branch_sample_type
;
403 if (has_branch_stack(event
)) {
404 if (!precise_br_compat(event
))
407 /* branch_sample_type is compatible */
411 * user did not specify branch_sample_type
413 * For PEBS fixups, we capture all
414 * the branches at the priv level of the
417 *br_type
= PERF_SAMPLE_BRANCH_ANY
;
419 if (!event
->attr
.exclude_user
)
420 *br_type
|= PERF_SAMPLE_BRANCH_USER
;
422 if (!event
->attr
.exclude_kernel
)
423 *br_type
|= PERF_SAMPLE_BRANCH_KERNEL
;
430 * (keep 'enabled' bit clear for now)
432 event
->hw
.config
= ARCH_PERFMON_EVENTSEL_INT
;
435 * Count user and OS events unless requested not to
437 if (!event
->attr
.exclude_user
)
438 event
->hw
.config
|= ARCH_PERFMON_EVENTSEL_USR
;
439 if (!event
->attr
.exclude_kernel
)
440 event
->hw
.config
|= ARCH_PERFMON_EVENTSEL_OS
;
442 if (event
->attr
.type
== PERF_TYPE_RAW
)
443 event
->hw
.config
|= event
->attr
.config
& X86_RAW_EVENT_MASK
;
445 return x86_setup_perfctr(event
);
449 * Setup the hardware configuration for a given attr_type
451 static int __x86_pmu_event_init(struct perf_event
*event
)
455 if (!x86_pmu_initialized())
459 if (!atomic_inc_not_zero(&active_events
)) {
460 mutex_lock(&pmc_reserve_mutex
);
461 if (atomic_read(&active_events
) == 0) {
462 if (!reserve_pmc_hardware())
465 reserve_ds_buffers();
468 atomic_inc(&active_events
);
469 mutex_unlock(&pmc_reserve_mutex
);
474 event
->destroy
= hw_perf_event_destroy
;
477 event
->hw
.last_cpu
= -1;
478 event
->hw
.last_tag
= ~0ULL;
481 event
->hw
.extra_reg
.idx
= EXTRA_REG_NONE
;
482 event
->hw
.branch_reg
.idx
= EXTRA_REG_NONE
;
484 return x86_pmu
.hw_config(event
);
487 void x86_pmu_disable_all(void)
489 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
492 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
495 if (!test_bit(idx
, cpuc
->active_mask
))
497 rdmsrl(x86_pmu_config_addr(idx
), val
);
498 if (!(val
& ARCH_PERFMON_EVENTSEL_ENABLE
))
500 val
&= ~ARCH_PERFMON_EVENTSEL_ENABLE
;
501 wrmsrl(x86_pmu_config_addr(idx
), val
);
505 static void x86_pmu_disable(struct pmu
*pmu
)
507 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
509 if (!x86_pmu_initialized())
519 x86_pmu
.disable_all();
522 void x86_pmu_enable_all(int added
)
524 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
527 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
528 struct hw_perf_event
*hwc
= &cpuc
->events
[idx
]->hw
;
530 if (!test_bit(idx
, cpuc
->active_mask
))
533 __x86_pmu_enable_event(hwc
, ARCH_PERFMON_EVENTSEL_ENABLE
);
537 static struct pmu pmu
;
539 static inline int is_x86_event(struct perf_event
*event
)
541 return event
->pmu
== &pmu
;
545 * Event scheduler state:
547 * Assign events iterating over all events and counters, beginning
548 * with events with least weights first. Keep the current iterator
549 * state in struct sched_state.
553 int event
; /* event index */
554 int counter
; /* counter index */
555 int unassigned
; /* number of events to be assigned left */
556 unsigned long used
[BITS_TO_LONGS(X86_PMC_IDX_MAX
)];
559 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
560 #define SCHED_STATES_MAX 2
565 struct event_constraint
**constraints
;
566 struct sched_state state
;
568 struct sched_state saved
[SCHED_STATES_MAX
];
572 * Initialize interator that runs through all events and counters.
574 static void perf_sched_init(struct perf_sched
*sched
, struct event_constraint
**c
,
575 int num
, int wmin
, int wmax
)
579 memset(sched
, 0, sizeof(*sched
));
580 sched
->max_events
= num
;
581 sched
->max_weight
= wmax
;
582 sched
->constraints
= c
;
584 for (idx
= 0; idx
< num
; idx
++) {
585 if (c
[idx
]->weight
== wmin
)
589 sched
->state
.event
= idx
; /* start with min weight */
590 sched
->state
.weight
= wmin
;
591 sched
->state
.unassigned
= num
;
594 static void perf_sched_save_state(struct perf_sched
*sched
)
596 if (WARN_ON_ONCE(sched
->saved_states
>= SCHED_STATES_MAX
))
599 sched
->saved
[sched
->saved_states
] = sched
->state
;
600 sched
->saved_states
++;
603 static bool perf_sched_restore_state(struct perf_sched
*sched
)
605 if (!sched
->saved_states
)
608 sched
->saved_states
--;
609 sched
->state
= sched
->saved
[sched
->saved_states
];
611 /* continue with next counter: */
612 clear_bit(sched
->state
.counter
++, sched
->state
.used
);
618 * Select a counter for the current event to schedule. Return true on
621 static bool __perf_sched_find_counter(struct perf_sched
*sched
)
623 struct event_constraint
*c
;
626 if (!sched
->state
.unassigned
)
629 if (sched
->state
.event
>= sched
->max_events
)
632 c
= sched
->constraints
[sched
->state
.event
];
634 /* Prefer fixed purpose counters */
635 if (c
->idxmsk64
& (~0ULL << INTEL_PMC_IDX_FIXED
)) {
636 idx
= INTEL_PMC_IDX_FIXED
;
637 for_each_set_bit_from(idx
, c
->idxmsk
, X86_PMC_IDX_MAX
) {
638 if (!__test_and_set_bit(idx
, sched
->state
.used
))
642 /* Grab the first unused counter starting with idx */
643 idx
= sched
->state
.counter
;
644 for_each_set_bit_from(idx
, c
->idxmsk
, INTEL_PMC_IDX_FIXED
) {
645 if (!__test_and_set_bit(idx
, sched
->state
.used
))
652 sched
->state
.counter
= idx
;
655 perf_sched_save_state(sched
);
660 static bool perf_sched_find_counter(struct perf_sched
*sched
)
662 while (!__perf_sched_find_counter(sched
)) {
663 if (!perf_sched_restore_state(sched
))
671 * Go through all unassigned events and find the next one to schedule.
672 * Take events with the least weight first. Return true on success.
674 static bool perf_sched_next_event(struct perf_sched
*sched
)
676 struct event_constraint
*c
;
678 if (!sched
->state
.unassigned
|| !--sched
->state
.unassigned
)
683 sched
->state
.event
++;
684 if (sched
->state
.event
>= sched
->max_events
) {
686 sched
->state
.event
= 0;
687 sched
->state
.weight
++;
688 if (sched
->state
.weight
> sched
->max_weight
)
691 c
= sched
->constraints
[sched
->state
.event
];
692 } while (c
->weight
!= sched
->state
.weight
);
694 sched
->state
.counter
= 0; /* start with first counter */
700 * Assign a counter for each event.
702 int perf_assign_events(struct event_constraint
**constraints
, int n
,
703 int wmin
, int wmax
, int *assign
)
705 struct perf_sched sched
;
707 perf_sched_init(&sched
, constraints
, n
, wmin
, wmax
);
710 if (!perf_sched_find_counter(&sched
))
713 assign
[sched
.state
.event
] = sched
.state
.counter
;
714 } while (perf_sched_next_event(&sched
));
716 return sched
.state
.unassigned
;
719 int x86_schedule_events(struct cpu_hw_events
*cpuc
, int n
, int *assign
)
721 struct event_constraint
*c
, *constraints
[X86_PMC_IDX_MAX
];
722 unsigned long used_mask
[BITS_TO_LONGS(X86_PMC_IDX_MAX
)];
723 int i
, wmin
, wmax
, num
= 0;
724 struct hw_perf_event
*hwc
;
726 bitmap_zero(used_mask
, X86_PMC_IDX_MAX
);
728 for (i
= 0, wmin
= X86_PMC_IDX_MAX
, wmax
= 0; i
< n
; i
++) {
729 c
= x86_pmu
.get_event_constraints(cpuc
, cpuc
->event_list
[i
]);
731 wmin
= min(wmin
, c
->weight
);
732 wmax
= max(wmax
, c
->weight
);
736 * fastpath, try to reuse previous register
738 for (i
= 0; i
< n
; i
++) {
739 hwc
= &cpuc
->event_list
[i
]->hw
;
746 /* constraint still honored */
747 if (!test_bit(hwc
->idx
, c
->idxmsk
))
750 /* not already used */
751 if (test_bit(hwc
->idx
, used_mask
))
754 __set_bit(hwc
->idx
, used_mask
);
756 assign
[i
] = hwc
->idx
;
761 num
= perf_assign_events(constraints
, n
, wmin
, wmax
, assign
);
764 * scheduling failed or is just a simulation,
765 * free resources if necessary
767 if (!assign
|| num
) {
768 for (i
= 0; i
< n
; i
++) {
769 if (x86_pmu
.put_event_constraints
)
770 x86_pmu
.put_event_constraints(cpuc
, cpuc
->event_list
[i
]);
773 return num
? -EINVAL
: 0;
777 * dogrp: true if must collect siblings events (group)
778 * returns total number of events and error code
780 static int collect_events(struct cpu_hw_events
*cpuc
, struct perf_event
*leader
, bool dogrp
)
782 struct perf_event
*event
;
785 max_count
= x86_pmu
.num_counters
+ x86_pmu
.num_counters_fixed
;
787 /* current number of events already accepted */
790 if (is_x86_event(leader
)) {
793 cpuc
->event_list
[n
] = leader
;
799 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
) {
800 if (!is_x86_event(event
) ||
801 event
->state
<= PERF_EVENT_STATE_OFF
)
807 cpuc
->event_list
[n
] = event
;
813 static inline void x86_assign_hw_event(struct perf_event
*event
,
814 struct cpu_hw_events
*cpuc
, int i
)
816 struct hw_perf_event
*hwc
= &event
->hw
;
818 hwc
->idx
= cpuc
->assign
[i
];
819 hwc
->last_cpu
= smp_processor_id();
820 hwc
->last_tag
= ++cpuc
->tags
[i
];
822 if (hwc
->idx
== INTEL_PMC_IDX_FIXED_BTS
) {
823 hwc
->config_base
= 0;
825 } else if (hwc
->idx
>= INTEL_PMC_IDX_FIXED
) {
826 hwc
->config_base
= MSR_ARCH_PERFMON_FIXED_CTR_CTRL
;
827 hwc
->event_base
= MSR_ARCH_PERFMON_FIXED_CTR0
+ (hwc
->idx
- INTEL_PMC_IDX_FIXED
);
828 hwc
->event_base_rdpmc
= (hwc
->idx
- INTEL_PMC_IDX_FIXED
) | 1<<30;
830 hwc
->config_base
= x86_pmu_config_addr(hwc
->idx
);
831 hwc
->event_base
= x86_pmu_event_addr(hwc
->idx
);
832 hwc
->event_base_rdpmc
= hwc
->idx
;
836 static inline int match_prev_assignment(struct hw_perf_event
*hwc
,
837 struct cpu_hw_events
*cpuc
,
840 return hwc
->idx
== cpuc
->assign
[i
] &&
841 hwc
->last_cpu
== smp_processor_id() &&
842 hwc
->last_tag
== cpuc
->tags
[i
];
845 static void x86_pmu_start(struct perf_event
*event
, int flags
);
847 static void x86_pmu_enable(struct pmu
*pmu
)
849 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
850 struct perf_event
*event
;
851 struct hw_perf_event
*hwc
;
852 int i
, added
= cpuc
->n_added
;
854 if (!x86_pmu_initialized())
861 int n_running
= cpuc
->n_events
- cpuc
->n_added
;
863 * apply assignment obtained either from
864 * hw_perf_group_sched_in() or x86_pmu_enable()
866 * step1: save events moving to new counters
867 * step2: reprogram moved events into new counters
869 for (i
= 0; i
< n_running
; i
++) {
870 event
= cpuc
->event_list
[i
];
874 * we can avoid reprogramming counter if:
875 * - assigned same counter as last time
876 * - running on same CPU as last time
877 * - no other event has used the counter since
879 if (hwc
->idx
== -1 ||
880 match_prev_assignment(hwc
, cpuc
, i
))
884 * Ensure we don't accidentally enable a stopped
885 * counter simply because we rescheduled.
887 if (hwc
->state
& PERF_HES_STOPPED
)
888 hwc
->state
|= PERF_HES_ARCH
;
890 x86_pmu_stop(event
, PERF_EF_UPDATE
);
893 for (i
= 0; i
< cpuc
->n_events
; i
++) {
894 event
= cpuc
->event_list
[i
];
897 if (!match_prev_assignment(hwc
, cpuc
, i
))
898 x86_assign_hw_event(event
, cpuc
, i
);
899 else if (i
< n_running
)
902 if (hwc
->state
& PERF_HES_ARCH
)
905 x86_pmu_start(event
, PERF_EF_RELOAD
);
908 perf_events_lapic_init();
914 x86_pmu
.enable_all(added
);
917 static DEFINE_PER_CPU(u64
[X86_PMC_IDX_MAX
], pmc_prev_left
);
920 * Set the next IRQ period, based on the hwc->period_left value.
921 * To be called with the event disabled in hw:
923 int x86_perf_event_set_period(struct perf_event
*event
)
925 struct hw_perf_event
*hwc
= &event
->hw
;
926 s64 left
= local64_read(&hwc
->period_left
);
927 s64 period
= hwc
->sample_period
;
928 int ret
= 0, idx
= hwc
->idx
;
930 if (idx
== INTEL_PMC_IDX_FIXED_BTS
)
934 * If we are way outside a reasonable range then just skip forward:
936 if (unlikely(left
<= -period
)) {
938 local64_set(&hwc
->period_left
, left
);
939 hwc
->last_period
= period
;
943 if (unlikely(left
<= 0)) {
945 local64_set(&hwc
->period_left
, left
);
946 hwc
->last_period
= period
;
950 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
952 if (unlikely(left
< 2))
955 if (left
> x86_pmu
.max_period
)
956 left
= x86_pmu
.max_period
;
958 per_cpu(pmc_prev_left
[idx
], smp_processor_id()) = left
;
961 * The hw event starts counting from this event offset,
962 * mark it to be able to extra future deltas:
964 local64_set(&hwc
->prev_count
, (u64
)-left
);
966 wrmsrl(hwc
->event_base
, (u64
)(-left
) & x86_pmu
.cntval_mask
);
969 * Due to erratum on certan cpu we need
970 * a second write to be sure the register
971 * is updated properly
973 if (x86_pmu
.perfctr_second_write
) {
974 wrmsrl(hwc
->event_base
,
975 (u64
)(-left
) & x86_pmu
.cntval_mask
);
978 perf_event_update_userpage(event
);
983 void x86_pmu_enable_event(struct perf_event
*event
)
985 if (__this_cpu_read(cpu_hw_events
.enabled
))
986 __x86_pmu_enable_event(&event
->hw
,
987 ARCH_PERFMON_EVENTSEL_ENABLE
);
991 * Add a single event to the PMU.
993 * The event is added to the group of enabled events
994 * but only if it can be scehduled with existing events.
996 static int x86_pmu_add(struct perf_event
*event
, int flags
)
998 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
999 struct hw_perf_event
*hwc
;
1000 int assign
[X86_PMC_IDX_MAX
];
1005 perf_pmu_disable(event
->pmu
);
1006 n0
= cpuc
->n_events
;
1007 ret
= n
= collect_events(cpuc
, event
, false);
1011 hwc
->state
= PERF_HES_UPTODATE
| PERF_HES_STOPPED
;
1012 if (!(flags
& PERF_EF_START
))
1013 hwc
->state
|= PERF_HES_ARCH
;
1016 * If group events scheduling transaction was started,
1017 * skip the schedulability test here, it will be performed
1018 * at commit time (->commit_txn) as a whole
1020 if (cpuc
->group_flag
& PERF_EVENT_TXN
)
1023 ret
= x86_pmu
.schedule_events(cpuc
, n
, assign
);
1027 * copy new assignment, now we know it is possible
1028 * will be used by hw_perf_enable()
1030 memcpy(cpuc
->assign
, assign
, n
*sizeof(int));
1034 cpuc
->n_added
+= n
- n0
;
1035 cpuc
->n_txn
+= n
- n0
;
1039 perf_pmu_enable(event
->pmu
);
1043 static void x86_pmu_start(struct perf_event
*event
, int flags
)
1045 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1046 int idx
= event
->hw
.idx
;
1048 if (WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_STOPPED
)))
1051 if (WARN_ON_ONCE(idx
== -1))
1054 if (flags
& PERF_EF_RELOAD
) {
1055 WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_UPTODATE
));
1056 x86_perf_event_set_period(event
);
1059 event
->hw
.state
= 0;
1061 cpuc
->events
[idx
] = event
;
1062 __set_bit(idx
, cpuc
->active_mask
);
1063 __set_bit(idx
, cpuc
->running
);
1064 x86_pmu
.enable(event
);
1065 perf_event_update_userpage(event
);
1068 void perf_event_print_debug(void)
1070 u64 ctrl
, status
, overflow
, pmc_ctrl
, pmc_count
, prev_left
, fixed
;
1072 struct cpu_hw_events
*cpuc
;
1073 unsigned long flags
;
1076 if (!x86_pmu
.num_counters
)
1079 local_irq_save(flags
);
1081 cpu
= smp_processor_id();
1082 cpuc
= &per_cpu(cpu_hw_events
, cpu
);
1084 if (x86_pmu
.version
>= 2) {
1085 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, ctrl
);
1086 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS
, status
);
1087 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL
, overflow
);
1088 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL
, fixed
);
1089 rdmsrl(MSR_IA32_PEBS_ENABLE
, pebs
);
1092 pr_info("CPU#%d: ctrl: %016llx\n", cpu
, ctrl
);
1093 pr_info("CPU#%d: status: %016llx\n", cpu
, status
);
1094 pr_info("CPU#%d: overflow: %016llx\n", cpu
, overflow
);
1095 pr_info("CPU#%d: fixed: %016llx\n", cpu
, fixed
);
1096 pr_info("CPU#%d: pebs: %016llx\n", cpu
, pebs
);
1098 pr_info("CPU#%d: active: %016llx\n", cpu
, *(u64
*)cpuc
->active_mask
);
1100 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
1101 rdmsrl(x86_pmu_config_addr(idx
), pmc_ctrl
);
1102 rdmsrl(x86_pmu_event_addr(idx
), pmc_count
);
1104 prev_left
= per_cpu(pmc_prev_left
[idx
], cpu
);
1106 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1107 cpu
, idx
, pmc_ctrl
);
1108 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1109 cpu
, idx
, pmc_count
);
1110 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1111 cpu
, idx
, prev_left
);
1113 for (idx
= 0; idx
< x86_pmu
.num_counters_fixed
; idx
++) {
1114 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0
+ idx
, pmc_count
);
1116 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1117 cpu
, idx
, pmc_count
);
1119 local_irq_restore(flags
);
1122 void x86_pmu_stop(struct perf_event
*event
, int flags
)
1124 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1125 struct hw_perf_event
*hwc
= &event
->hw
;
1127 if (__test_and_clear_bit(hwc
->idx
, cpuc
->active_mask
)) {
1128 x86_pmu
.disable(event
);
1129 cpuc
->events
[hwc
->idx
] = NULL
;
1130 WARN_ON_ONCE(hwc
->state
& PERF_HES_STOPPED
);
1131 hwc
->state
|= PERF_HES_STOPPED
;
1134 if ((flags
& PERF_EF_UPDATE
) && !(hwc
->state
& PERF_HES_UPTODATE
)) {
1136 * Drain the remaining delta count out of a event
1137 * that we are disabling:
1139 x86_perf_event_update(event
);
1140 hwc
->state
|= PERF_HES_UPTODATE
;
1144 static void x86_pmu_del(struct perf_event
*event
, int flags
)
1146 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1150 * If we're called during a txn, we don't need to do anything.
1151 * The events never got scheduled and ->cancel_txn will truncate
1154 if (cpuc
->group_flag
& PERF_EVENT_TXN
)
1157 x86_pmu_stop(event
, PERF_EF_UPDATE
);
1159 for (i
= 0; i
< cpuc
->n_events
; i
++) {
1160 if (event
== cpuc
->event_list
[i
]) {
1162 if (x86_pmu
.put_event_constraints
)
1163 x86_pmu
.put_event_constraints(cpuc
, event
);
1165 while (++i
< cpuc
->n_events
)
1166 cpuc
->event_list
[i
-1] = cpuc
->event_list
[i
];
1172 perf_event_update_userpage(event
);
1175 int x86_pmu_handle_irq(struct pt_regs
*regs
)
1177 struct perf_sample_data data
;
1178 struct cpu_hw_events
*cpuc
;
1179 struct perf_event
*event
;
1180 int idx
, handled
= 0;
1183 cpuc
= &__get_cpu_var(cpu_hw_events
);
1186 * Some chipsets need to unmask the LVTPC in a particular spot
1187 * inside the nmi handler. As a result, the unmasking was pushed
1188 * into all the nmi handlers.
1190 * This generic handler doesn't seem to have any issues where the
1191 * unmasking occurs so it was left at the top.
1193 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
1195 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
1196 if (!test_bit(idx
, cpuc
->active_mask
)) {
1198 * Though we deactivated the counter some cpus
1199 * might still deliver spurious interrupts still
1200 * in flight. Catch them:
1202 if (__test_and_clear_bit(idx
, cpuc
->running
))
1207 event
= cpuc
->events
[idx
];
1209 val
= x86_perf_event_update(event
);
1210 if (val
& (1ULL << (x86_pmu
.cntval_bits
- 1)))
1217 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
1219 if (!x86_perf_event_set_period(event
))
1222 if (perf_event_overflow(event
, &data
, regs
))
1223 x86_pmu_stop(event
, 0);
1227 inc_irq_stat(apic_perf_irqs
);
1232 void perf_events_lapic_init(void)
1234 if (!x86_pmu
.apic
|| !x86_pmu_initialized())
1238 * Always use NMI for PMU
1240 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
1243 static int __kprobes
1244 perf_event_nmi_handler(unsigned int cmd
, struct pt_regs
*regs
)
1246 if (!atomic_read(&active_events
))
1249 return x86_pmu
.handle_irq(regs
);
1252 struct event_constraint emptyconstraint
;
1253 struct event_constraint unconstrained
;
1255 static int __cpuinit
1256 x86_pmu_notifier(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
1258 unsigned int cpu
= (long)hcpu
;
1259 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
1260 int ret
= NOTIFY_OK
;
1262 switch (action
& ~CPU_TASKS_FROZEN
) {
1263 case CPU_UP_PREPARE
:
1264 cpuc
->kfree_on_online
= NULL
;
1265 if (x86_pmu
.cpu_prepare
)
1266 ret
= x86_pmu
.cpu_prepare(cpu
);
1270 if (x86_pmu
.attr_rdpmc
)
1271 set_in_cr4(X86_CR4_PCE
);
1272 if (x86_pmu
.cpu_starting
)
1273 x86_pmu
.cpu_starting(cpu
);
1277 kfree(cpuc
->kfree_on_online
);
1281 if (x86_pmu
.cpu_dying
)
1282 x86_pmu
.cpu_dying(cpu
);
1285 case CPU_UP_CANCELED
:
1287 if (x86_pmu
.cpu_dead
)
1288 x86_pmu
.cpu_dead(cpu
);
1298 static void __init
pmu_check_apic(void)
1304 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1305 pr_info("no hardware sampling interrupt available.\n");
1308 static struct attribute_group x86_pmu_format_group
= {
1313 struct perf_pmu_events_attr
{
1314 struct device_attribute attr
;
1319 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1320 * out of events_attr attributes.
1322 static void __init
filter_events(struct attribute
**attrs
)
1326 for (i
= 0; attrs
[i
]; i
++) {
1327 if (x86_pmu
.event_map(i
))
1330 for (j
= i
; attrs
[j
]; j
++)
1331 attrs
[j
] = attrs
[j
+ 1];
1333 /* Check the shifted attr. */
1338 static ssize_t
events_sysfs_show(struct device
*dev
, struct device_attribute
*attr
,
1341 struct perf_pmu_events_attr
*pmu_attr
= \
1342 container_of(attr
, struct perf_pmu_events_attr
, attr
);
1344 u64 config
= x86_pmu
.event_map(pmu_attr
->id
);
1345 return x86_pmu
.events_sysfs_show(page
, config
);
1348 #define EVENT_VAR(_id) event_attr_##_id
1349 #define EVENT_PTR(_id) &event_attr_##_id.attr.attr
1351 #define EVENT_ATTR(_name, _id) \
1352 static struct perf_pmu_events_attr EVENT_VAR(_id) = { \
1353 .attr = __ATTR(_name, 0444, events_sysfs_show, NULL), \
1354 .id = PERF_COUNT_HW_##_id, \
1357 EVENT_ATTR(cpu
-cycles
, CPU_CYCLES
);
1358 EVENT_ATTR(instructions
, INSTRUCTIONS
);
1359 EVENT_ATTR(cache
-references
, CACHE_REFERENCES
);
1360 EVENT_ATTR(cache
-misses
, CACHE_MISSES
);
1361 EVENT_ATTR(branch
-instructions
, BRANCH_INSTRUCTIONS
);
1362 EVENT_ATTR(branch
-misses
, BRANCH_MISSES
);
1363 EVENT_ATTR(bus
-cycles
, BUS_CYCLES
);
1364 EVENT_ATTR(stalled
-cycles
-frontend
, STALLED_CYCLES_FRONTEND
);
1365 EVENT_ATTR(stalled
-cycles
-backend
, STALLED_CYCLES_BACKEND
);
1366 EVENT_ATTR(ref
-cycles
, REF_CPU_CYCLES
);
1368 static struct attribute
*empty_attrs
;
1370 static struct attribute
*events_attr
[] = {
1371 EVENT_PTR(CPU_CYCLES
),
1372 EVENT_PTR(INSTRUCTIONS
),
1373 EVENT_PTR(CACHE_REFERENCES
),
1374 EVENT_PTR(CACHE_MISSES
),
1375 EVENT_PTR(BRANCH_INSTRUCTIONS
),
1376 EVENT_PTR(BRANCH_MISSES
),
1377 EVENT_PTR(BUS_CYCLES
),
1378 EVENT_PTR(STALLED_CYCLES_FRONTEND
),
1379 EVENT_PTR(STALLED_CYCLES_BACKEND
),
1380 EVENT_PTR(REF_CPU_CYCLES
),
1384 static struct attribute_group x86_pmu_events_group
= {
1386 .attrs
= events_attr
,
1389 ssize_t
x86_event_sysfs_show(char *page
, u64 config
, u64 event
)
1391 u64 umask
= (config
& ARCH_PERFMON_EVENTSEL_UMASK
) >> 8;
1392 u64 cmask
= (config
& ARCH_PERFMON_EVENTSEL_CMASK
) >> 24;
1393 bool edge
= (config
& ARCH_PERFMON_EVENTSEL_EDGE
);
1394 bool pc
= (config
& ARCH_PERFMON_EVENTSEL_PIN_CONTROL
);
1395 bool any
= (config
& ARCH_PERFMON_EVENTSEL_ANY
);
1396 bool inv
= (config
& ARCH_PERFMON_EVENTSEL_INV
);
1400 * We have whole page size to spend and just little data
1401 * to write, so we can safely use sprintf.
1403 ret
= sprintf(page
, "event=0x%02llx", event
);
1406 ret
+= sprintf(page
+ ret
, ",umask=0x%02llx", umask
);
1409 ret
+= sprintf(page
+ ret
, ",edge");
1412 ret
+= sprintf(page
+ ret
, ",pc");
1415 ret
+= sprintf(page
+ ret
, ",any");
1418 ret
+= sprintf(page
+ ret
, ",inv");
1421 ret
+= sprintf(page
+ ret
, ",cmask=0x%02llx", cmask
);
1423 ret
+= sprintf(page
+ ret
, "\n");
1428 static int __init
init_hw_perf_events(void)
1430 struct x86_pmu_quirk
*quirk
;
1433 pr_info("Performance Events: ");
1435 switch (boot_cpu_data
.x86_vendor
) {
1436 case X86_VENDOR_INTEL
:
1437 err
= intel_pmu_init();
1439 case X86_VENDOR_AMD
:
1440 err
= amd_pmu_init();
1446 pr_cont("no PMU driver, software events only.\n");
1452 /* sanity check that the hardware exists or is emulated */
1453 if (!check_hw_exists())
1456 pr_cont("%s PMU driver.\n", x86_pmu
.name
);
1458 for (quirk
= x86_pmu
.quirks
; quirk
; quirk
= quirk
->next
)
1461 if (!x86_pmu
.intel_ctrl
)
1462 x86_pmu
.intel_ctrl
= (1 << x86_pmu
.num_counters
) - 1;
1464 perf_events_lapic_init();
1465 register_nmi_handler(NMI_LOCAL
, perf_event_nmi_handler
, 0, "PMI");
1467 unconstrained
= (struct event_constraint
)
1468 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu
.num_counters
) - 1,
1469 0, x86_pmu
.num_counters
, 0);
1471 x86_pmu
.attr_rdpmc
= 1; /* enable userspace RDPMC usage by default */
1472 x86_pmu_format_group
.attrs
= x86_pmu
.format_attrs
;
1474 if (!x86_pmu
.events_sysfs_show
)
1475 x86_pmu_events_group
.attrs
= &empty_attrs
;
1477 filter_events(x86_pmu_events_group
.attrs
);
1479 pr_info("... version: %d\n", x86_pmu
.version
);
1480 pr_info("... bit width: %d\n", x86_pmu
.cntval_bits
);
1481 pr_info("... generic registers: %d\n", x86_pmu
.num_counters
);
1482 pr_info("... value mask: %016Lx\n", x86_pmu
.cntval_mask
);
1483 pr_info("... max period: %016Lx\n", x86_pmu
.max_period
);
1484 pr_info("... fixed-purpose events: %d\n", x86_pmu
.num_counters_fixed
);
1485 pr_info("... event mask: %016Lx\n", x86_pmu
.intel_ctrl
);
1487 perf_pmu_register(&pmu
, "cpu", PERF_TYPE_RAW
);
1488 perf_cpu_notifier(x86_pmu_notifier
);
1492 early_initcall(init_hw_perf_events
);
1494 static inline void x86_pmu_read(struct perf_event
*event
)
1496 x86_perf_event_update(event
);
1500 * Start group events scheduling transaction
1501 * Set the flag to make pmu::enable() not perform the
1502 * schedulability test, it will be performed at commit time
1504 static void x86_pmu_start_txn(struct pmu
*pmu
)
1506 perf_pmu_disable(pmu
);
1507 __this_cpu_or(cpu_hw_events
.group_flag
, PERF_EVENT_TXN
);
1508 __this_cpu_write(cpu_hw_events
.n_txn
, 0);
1512 * Stop group events scheduling transaction
1513 * Clear the flag and pmu::enable() will perform the
1514 * schedulability test.
1516 static void x86_pmu_cancel_txn(struct pmu
*pmu
)
1518 __this_cpu_and(cpu_hw_events
.group_flag
, ~PERF_EVENT_TXN
);
1520 * Truncate the collected events.
1522 __this_cpu_sub(cpu_hw_events
.n_added
, __this_cpu_read(cpu_hw_events
.n_txn
));
1523 __this_cpu_sub(cpu_hw_events
.n_events
, __this_cpu_read(cpu_hw_events
.n_txn
));
1524 perf_pmu_enable(pmu
);
1528 * Commit group events scheduling transaction
1529 * Perform the group schedulability test as a whole
1530 * Return 0 if success
1532 static int x86_pmu_commit_txn(struct pmu
*pmu
)
1534 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1535 int assign
[X86_PMC_IDX_MAX
];
1540 if (!x86_pmu_initialized())
1543 ret
= x86_pmu
.schedule_events(cpuc
, n
, assign
);
1548 * copy new assignment, now we know it is possible
1549 * will be used by hw_perf_enable()
1551 memcpy(cpuc
->assign
, assign
, n
*sizeof(int));
1553 cpuc
->group_flag
&= ~PERF_EVENT_TXN
;
1554 perf_pmu_enable(pmu
);
1558 * a fake_cpuc is used to validate event groups. Due to
1559 * the extra reg logic, we need to also allocate a fake
1560 * per_core and per_cpu structure. Otherwise, group events
1561 * using extra reg may conflict without the kernel being
1562 * able to catch this when the last event gets added to
1565 static void free_fake_cpuc(struct cpu_hw_events
*cpuc
)
1567 kfree(cpuc
->shared_regs
);
1571 static struct cpu_hw_events
*allocate_fake_cpuc(void)
1573 struct cpu_hw_events
*cpuc
;
1574 int cpu
= raw_smp_processor_id();
1576 cpuc
= kzalloc(sizeof(*cpuc
), GFP_KERNEL
);
1578 return ERR_PTR(-ENOMEM
);
1580 /* only needed, if we have extra_regs */
1581 if (x86_pmu
.extra_regs
) {
1582 cpuc
->shared_regs
= allocate_shared_regs(cpu
);
1583 if (!cpuc
->shared_regs
)
1589 free_fake_cpuc(cpuc
);
1590 return ERR_PTR(-ENOMEM
);
1594 * validate that we can schedule this event
1596 static int validate_event(struct perf_event
*event
)
1598 struct cpu_hw_events
*fake_cpuc
;
1599 struct event_constraint
*c
;
1602 fake_cpuc
= allocate_fake_cpuc();
1603 if (IS_ERR(fake_cpuc
))
1604 return PTR_ERR(fake_cpuc
);
1606 c
= x86_pmu
.get_event_constraints(fake_cpuc
, event
);
1608 if (!c
|| !c
->weight
)
1611 if (x86_pmu
.put_event_constraints
)
1612 x86_pmu
.put_event_constraints(fake_cpuc
, event
);
1614 free_fake_cpuc(fake_cpuc
);
1620 * validate a single event group
1622 * validation include:
1623 * - check events are compatible which each other
1624 * - events do not compete for the same counter
1625 * - number of events <= number of counters
1627 * validation ensures the group can be loaded onto the
1628 * PMU if it was the only group available.
1630 static int validate_group(struct perf_event
*event
)
1632 struct perf_event
*leader
= event
->group_leader
;
1633 struct cpu_hw_events
*fake_cpuc
;
1634 int ret
= -EINVAL
, n
;
1636 fake_cpuc
= allocate_fake_cpuc();
1637 if (IS_ERR(fake_cpuc
))
1638 return PTR_ERR(fake_cpuc
);
1640 * the event is not yet connected with its
1641 * siblings therefore we must first collect
1642 * existing siblings, then add the new event
1643 * before we can simulate the scheduling
1645 n
= collect_events(fake_cpuc
, leader
, true);
1649 fake_cpuc
->n_events
= n
;
1650 n
= collect_events(fake_cpuc
, event
, false);
1654 fake_cpuc
->n_events
= n
;
1656 ret
= x86_pmu
.schedule_events(fake_cpuc
, n
, NULL
);
1659 free_fake_cpuc(fake_cpuc
);
1663 static int x86_pmu_event_init(struct perf_event
*event
)
1668 switch (event
->attr
.type
) {
1670 case PERF_TYPE_HARDWARE
:
1671 case PERF_TYPE_HW_CACHE
:
1678 err
= __x86_pmu_event_init(event
);
1681 * we temporarily connect event to its pmu
1682 * such that validate_group() can classify
1683 * it as an x86 event using is_x86_event()
1688 if (event
->group_leader
!= event
)
1689 err
= validate_group(event
);
1691 err
= validate_event(event
);
1697 event
->destroy(event
);
1703 static int x86_pmu_event_idx(struct perf_event
*event
)
1705 int idx
= event
->hw
.idx
;
1707 if (!x86_pmu
.attr_rdpmc
)
1710 if (x86_pmu
.num_counters_fixed
&& idx
>= INTEL_PMC_IDX_FIXED
) {
1711 idx
-= INTEL_PMC_IDX_FIXED
;
1718 static ssize_t
get_attr_rdpmc(struct device
*cdev
,
1719 struct device_attribute
*attr
,
1722 return snprintf(buf
, 40, "%d\n", x86_pmu
.attr_rdpmc
);
1725 static void change_rdpmc(void *info
)
1727 bool enable
= !!(unsigned long)info
;
1730 set_in_cr4(X86_CR4_PCE
);
1732 clear_in_cr4(X86_CR4_PCE
);
1735 static ssize_t
set_attr_rdpmc(struct device
*cdev
,
1736 struct device_attribute
*attr
,
1737 const char *buf
, size_t count
)
1742 ret
= kstrtoul(buf
, 0, &val
);
1746 if (!!val
!= !!x86_pmu
.attr_rdpmc
) {
1747 x86_pmu
.attr_rdpmc
= !!val
;
1748 smp_call_function(change_rdpmc
, (void *)val
, 1);
1754 static DEVICE_ATTR(rdpmc
, S_IRUSR
| S_IWUSR
, get_attr_rdpmc
, set_attr_rdpmc
);
1756 static struct attribute
*x86_pmu_attrs
[] = {
1757 &dev_attr_rdpmc
.attr
,
1761 static struct attribute_group x86_pmu_attr_group
= {
1762 .attrs
= x86_pmu_attrs
,
1765 static const struct attribute_group
*x86_pmu_attr_groups
[] = {
1766 &x86_pmu_attr_group
,
1767 &x86_pmu_format_group
,
1768 &x86_pmu_events_group
,
1772 static void x86_pmu_flush_branch_stack(void)
1774 if (x86_pmu
.flush_branch_stack
)
1775 x86_pmu
.flush_branch_stack();
1778 void perf_check_microcode(void)
1780 if (x86_pmu
.check_microcode
)
1781 x86_pmu
.check_microcode();
1783 EXPORT_SYMBOL_GPL(perf_check_microcode
);
1785 static struct pmu pmu
= {
1786 .pmu_enable
= x86_pmu_enable
,
1787 .pmu_disable
= x86_pmu_disable
,
1789 .attr_groups
= x86_pmu_attr_groups
,
1791 .event_init
= x86_pmu_event_init
,
1795 .start
= x86_pmu_start
,
1796 .stop
= x86_pmu_stop
,
1797 .read
= x86_pmu_read
,
1799 .start_txn
= x86_pmu_start_txn
,
1800 .cancel_txn
= x86_pmu_cancel_txn
,
1801 .commit_txn
= x86_pmu_commit_txn
,
1803 .event_idx
= x86_pmu_event_idx
,
1804 .flush_branch_stack
= x86_pmu_flush_branch_stack
,
1807 void arch_perf_update_userpage(struct perf_event_mmap_page
*userpg
, u64 now
)
1809 userpg
->cap_usr_time
= 0;
1810 userpg
->cap_usr_rdpmc
= x86_pmu
.attr_rdpmc
;
1811 userpg
->pmc_width
= x86_pmu
.cntval_bits
;
1813 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
1816 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC
))
1819 userpg
->cap_usr_time
= 1;
1820 userpg
->time_mult
= this_cpu_read(cyc2ns
);
1821 userpg
->time_shift
= CYC2NS_SCALE_FACTOR
;
1822 userpg
->time_offset
= this_cpu_read(cyc2ns_offset
) - now
;
1829 static int backtrace_stack(void *data
, char *name
)
1834 static void backtrace_address(void *data
, unsigned long addr
, int reliable
)
1836 struct perf_callchain_entry
*entry
= data
;
1838 perf_callchain_store(entry
, addr
);
1841 static const struct stacktrace_ops backtrace_ops
= {
1842 .stack
= backtrace_stack
,
1843 .address
= backtrace_address
,
1844 .walk_stack
= print_context_stack_bp
,
1848 perf_callchain_kernel(struct perf_callchain_entry
*entry
, struct pt_regs
*regs
)
1850 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
1851 /* TODO: We don't support guest os callchain now */
1855 perf_callchain_store(entry
, regs
->ip
);
1857 dump_trace(NULL
, regs
, NULL
, 0, &backtrace_ops
, entry
);
1861 valid_user_frame(const void __user
*fp
, unsigned long size
)
1863 return (__range_not_ok(fp
, size
, TASK_SIZE
) == 0);
1866 static unsigned long get_segment_base(unsigned int segment
)
1868 struct desc_struct
*desc
;
1869 int idx
= segment
>> 3;
1871 if ((segment
& SEGMENT_TI_MASK
) == SEGMENT_LDT
) {
1872 if (idx
> LDT_ENTRIES
)
1875 if (idx
> current
->active_mm
->context
.size
)
1878 desc
= current
->active_mm
->context
.ldt
;
1880 if (idx
> GDT_ENTRIES
)
1883 desc
= __this_cpu_ptr(&gdt_page
.gdt
[0]);
1886 return get_desc_base(desc
+ idx
);
1889 #ifdef CONFIG_COMPAT
1891 #include <asm/compat.h>
1894 perf_callchain_user32(struct pt_regs
*regs
, struct perf_callchain_entry
*entry
)
1896 /* 32-bit process in 64-bit kernel. */
1897 unsigned long ss_base
, cs_base
;
1898 struct stack_frame_ia32 frame
;
1899 const void __user
*fp
;
1901 if (!test_thread_flag(TIF_IA32
))
1904 cs_base
= get_segment_base(regs
->cs
);
1905 ss_base
= get_segment_base(regs
->ss
);
1907 fp
= compat_ptr(ss_base
+ regs
->bp
);
1908 while (entry
->nr
< PERF_MAX_STACK_DEPTH
) {
1909 unsigned long bytes
;
1910 frame
.next_frame
= 0;
1911 frame
.return_address
= 0;
1913 bytes
= copy_from_user_nmi(&frame
, fp
, sizeof(frame
));
1914 if (bytes
!= sizeof(frame
))
1917 if (!valid_user_frame(fp
, sizeof(frame
)))
1920 perf_callchain_store(entry
, cs_base
+ frame
.return_address
);
1921 fp
= compat_ptr(ss_base
+ frame
.next_frame
);
1927 perf_callchain_user32(struct pt_regs
*regs
, struct perf_callchain_entry
*entry
)
1934 perf_callchain_user(struct perf_callchain_entry
*entry
, struct pt_regs
*regs
)
1936 struct stack_frame frame
;
1937 const void __user
*fp
;
1939 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
1940 /* TODO: We don't support guest os callchain now */
1945 * We don't know what to do with VM86 stacks.. ignore them for now.
1947 if (regs
->flags
& (X86_VM_MASK
| PERF_EFLAGS_VM
))
1950 fp
= (void __user
*)regs
->bp
;
1952 perf_callchain_store(entry
, regs
->ip
);
1957 if (perf_callchain_user32(regs
, entry
))
1960 while (entry
->nr
< PERF_MAX_STACK_DEPTH
) {
1961 unsigned long bytes
;
1962 frame
.next_frame
= NULL
;
1963 frame
.return_address
= 0;
1965 bytes
= copy_from_user_nmi(&frame
, fp
, sizeof(frame
));
1966 if (bytes
!= sizeof(frame
))
1969 if (!valid_user_frame(fp
, sizeof(frame
)))
1972 perf_callchain_store(entry
, frame
.return_address
);
1973 fp
= frame
.next_frame
;
1978 * Deal with code segment offsets for the various execution modes:
1980 * VM86 - the good olde 16 bit days, where the linear address is
1981 * 20 bits and we use regs->ip + 0x10 * regs->cs.
1983 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
1984 * to figure out what the 32bit base address is.
1986 * X32 - has TIF_X32 set, but is running in x86_64
1988 * X86_64 - CS,DS,SS,ES are all zero based.
1990 static unsigned long code_segment_base(struct pt_regs
*regs
)
1993 * If we are in VM86 mode, add the segment offset to convert to a
1996 if (regs
->flags
& X86_VM_MASK
)
1997 return 0x10 * regs
->cs
;
2000 * For IA32 we look at the GDT/LDT segment base to convert the
2001 * effective IP to a linear address.
2003 #ifdef CONFIG_X86_32
2004 if (user_mode(regs
) && regs
->cs
!= __USER_CS
)
2005 return get_segment_base(regs
->cs
);
2007 if (test_thread_flag(TIF_IA32
)) {
2008 if (user_mode(regs
) && regs
->cs
!= __USER32_CS
)
2009 return get_segment_base(regs
->cs
);
2015 unsigned long perf_instruction_pointer(struct pt_regs
*regs
)
2017 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest())
2018 return perf_guest_cbs
->get_guest_ip();
2020 return regs
->ip
+ code_segment_base(regs
);
2023 unsigned long perf_misc_flags(struct pt_regs
*regs
)
2027 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
2028 if (perf_guest_cbs
->is_user_mode())
2029 misc
|= PERF_RECORD_MISC_GUEST_USER
;
2031 misc
|= PERF_RECORD_MISC_GUEST_KERNEL
;
2033 if (user_mode(regs
))
2034 misc
|= PERF_RECORD_MISC_USER
;
2036 misc
|= PERF_RECORD_MISC_KERNEL
;
2039 if (regs
->flags
& PERF_EFLAGS_EXACT
)
2040 misc
|= PERF_RECORD_MISC_EXACT_IP
;
2045 void perf_get_x86_pmu_capability(struct x86_pmu_capability
*cap
)
2047 cap
->version
= x86_pmu
.version
;
2048 cap
->num_counters_gp
= x86_pmu
.num_counters
;
2049 cap
->num_counters_fixed
= x86_pmu
.num_counters_fixed
;
2050 cap
->bit_width_gp
= x86_pmu
.cntval_bits
;
2051 cap
->bit_width_fixed
= x86_pmu
.cntval_bits
;
2052 cap
->events_mask
= (unsigned int)x86_pmu
.events_maskl
;
2053 cap
->events_mask_len
= x86_pmu
.events_mask_len
;
2055 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability
);