Linux 3.8-rc7
[cris-mirror.git] / arch / x86 / kernel / cpu / perf_event_amd.c
blobc93bc4e813a0c10303984db79cafc1d6ee5a6caf
1 #include <linux/perf_event.h>
2 #include <linux/export.h>
3 #include <linux/types.h>
4 #include <linux/init.h>
5 #include <linux/slab.h>
6 #include <asm/apicdef.h>
8 #include "perf_event.h"
10 static __initconst const u64 amd_hw_cache_event_ids
11 [PERF_COUNT_HW_CACHE_MAX]
12 [PERF_COUNT_HW_CACHE_OP_MAX]
13 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
15 [ C(L1D) ] = {
16 [ C(OP_READ) ] = {
17 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
18 [ C(RESULT_MISS) ] = 0x0141, /* Data Cache Misses */
20 [ C(OP_WRITE) ] = {
21 [ C(RESULT_ACCESS) ] = 0x0142, /* Data Cache Refills :system */
22 [ C(RESULT_MISS) ] = 0,
24 [ C(OP_PREFETCH) ] = {
25 [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */
26 [ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */
29 [ C(L1I ) ] = {
30 [ C(OP_READ) ] = {
31 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */
32 [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */
34 [ C(OP_WRITE) ] = {
35 [ C(RESULT_ACCESS) ] = -1,
36 [ C(RESULT_MISS) ] = -1,
38 [ C(OP_PREFETCH) ] = {
39 [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
40 [ C(RESULT_MISS) ] = 0,
43 [ C(LL ) ] = {
44 [ C(OP_READ) ] = {
45 [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
46 [ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */
48 [ C(OP_WRITE) ] = {
49 [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */
50 [ C(RESULT_MISS) ] = 0,
52 [ C(OP_PREFETCH) ] = {
53 [ C(RESULT_ACCESS) ] = 0,
54 [ C(RESULT_MISS) ] = 0,
57 [ C(DTLB) ] = {
58 [ C(OP_READ) ] = {
59 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
60 [ C(RESULT_MISS) ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
62 [ C(OP_WRITE) ] = {
63 [ C(RESULT_ACCESS) ] = 0,
64 [ C(RESULT_MISS) ] = 0,
66 [ C(OP_PREFETCH) ] = {
67 [ C(RESULT_ACCESS) ] = 0,
68 [ C(RESULT_MISS) ] = 0,
71 [ C(ITLB) ] = {
72 [ C(OP_READ) ] = {
73 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */
74 [ C(RESULT_MISS) ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
76 [ C(OP_WRITE) ] = {
77 [ C(RESULT_ACCESS) ] = -1,
78 [ C(RESULT_MISS) ] = -1,
80 [ C(OP_PREFETCH) ] = {
81 [ C(RESULT_ACCESS) ] = -1,
82 [ C(RESULT_MISS) ] = -1,
85 [ C(BPU ) ] = {
86 [ C(OP_READ) ] = {
87 [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */
88 [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */
90 [ C(OP_WRITE) ] = {
91 [ C(RESULT_ACCESS) ] = -1,
92 [ C(RESULT_MISS) ] = -1,
94 [ C(OP_PREFETCH) ] = {
95 [ C(RESULT_ACCESS) ] = -1,
96 [ C(RESULT_MISS) ] = -1,
99 [ C(NODE) ] = {
100 [ C(OP_READ) ] = {
101 [ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */
102 [ C(RESULT_MISS) ] = 0x98e9, /* CPU Request to Memory, r */
104 [ C(OP_WRITE) ] = {
105 [ C(RESULT_ACCESS) ] = -1,
106 [ C(RESULT_MISS) ] = -1,
108 [ C(OP_PREFETCH) ] = {
109 [ C(RESULT_ACCESS) ] = -1,
110 [ C(RESULT_MISS) ] = -1,
116 * AMD Performance Monitor K7 and later.
118 static const u64 amd_perfmon_event_map[] =
120 [PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
121 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
122 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0080,
123 [PERF_COUNT_HW_CACHE_MISSES] = 0x0081,
124 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2,
125 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3,
126 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x00d0, /* "Decoder empty" event */
127 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x00d1, /* "Dispatch stalls" event */
130 static u64 amd_pmu_event_map(int hw_event)
132 return amd_perfmon_event_map[hw_event];
135 static int amd_pmu_hw_config(struct perf_event *event)
137 int ret;
139 /* pass precise event sampling to ibs: */
140 if (event->attr.precise_ip && get_ibs_caps())
141 return -ENOENT;
143 ret = x86_pmu_hw_config(event);
144 if (ret)
145 return ret;
147 if (has_branch_stack(event))
148 return -EOPNOTSUPP;
150 if (event->attr.exclude_host && event->attr.exclude_guest)
152 * When HO == GO == 1 the hardware treats that as GO == HO == 0
153 * and will count in both modes. We don't want to count in that
154 * case so we emulate no-counting by setting US = OS = 0.
156 event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR |
157 ARCH_PERFMON_EVENTSEL_OS);
158 else if (event->attr.exclude_host)
159 event->hw.config |= AMD_PERFMON_EVENTSEL_GUESTONLY;
160 else if (event->attr.exclude_guest)
161 event->hw.config |= AMD_PERFMON_EVENTSEL_HOSTONLY;
163 if (event->attr.type != PERF_TYPE_RAW)
164 return 0;
166 event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;
168 return 0;
172 * AMD64 events are detected based on their event codes.
174 static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
176 return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
179 static inline int amd_is_nb_event(struct hw_perf_event *hwc)
181 return (hwc->config & 0xe0) == 0xe0;
184 static inline int amd_has_nb(struct cpu_hw_events *cpuc)
186 struct amd_nb *nb = cpuc->amd_nb;
188 return nb && nb->nb_id != -1;
191 static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
192 struct perf_event *event)
194 struct hw_perf_event *hwc = &event->hw;
195 struct amd_nb *nb = cpuc->amd_nb;
196 int i;
199 * only care about NB events
201 if (!(amd_has_nb(cpuc) && amd_is_nb_event(hwc)))
202 return;
205 * need to scan whole list because event may not have
206 * been assigned during scheduling
208 * no race condition possible because event can only
209 * be removed on one CPU at a time AND PMU is disabled
210 * when we come here
212 for (i = 0; i < x86_pmu.num_counters; i++) {
213 if (cmpxchg(nb->owners + i, event, NULL) == event)
214 break;
219 * AMD64 NorthBridge events need special treatment because
220 * counter access needs to be synchronized across all cores
221 * of a package. Refer to BKDG section 3.12
223 * NB events are events measuring L3 cache, Hypertransport
224 * traffic. They are identified by an event code >= 0xe00.
225 * They measure events on the NorthBride which is shared
226 * by all cores on a package. NB events are counted on a
227 * shared set of counters. When a NB event is programmed
228 * in a counter, the data actually comes from a shared
229 * counter. Thus, access to those counters needs to be
230 * synchronized.
232 * We implement the synchronization such that no two cores
233 * can be measuring NB events using the same counters. Thus,
234 * we maintain a per-NB allocation table. The available slot
235 * is propagated using the event_constraint structure.
237 * We provide only one choice for each NB event based on
238 * the fact that only NB events have restrictions. Consequently,
239 * if a counter is available, there is a guarantee the NB event
240 * will be assigned to it. If no slot is available, an empty
241 * constraint is returned and scheduling will eventually fail
242 * for this event.
244 * Note that all cores attached the same NB compete for the same
245 * counters to host NB events, this is why we use atomic ops. Some
246 * multi-chip CPUs may have more than one NB.
248 * Given that resources are allocated (cmpxchg), they must be
249 * eventually freed for others to use. This is accomplished by
250 * calling amd_put_event_constraints().
252 * Non NB events are not impacted by this restriction.
254 static struct event_constraint *
255 amd_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
257 struct hw_perf_event *hwc = &event->hw;
258 struct amd_nb *nb = cpuc->amd_nb;
259 struct perf_event *old = NULL;
260 int max = x86_pmu.num_counters;
261 int i, j, k = -1;
264 * if not NB event or no NB, then no constraints
266 if (!(amd_has_nb(cpuc) && amd_is_nb_event(hwc)))
267 return &unconstrained;
270 * detect if already present, if so reuse
272 * cannot merge with actual allocation
273 * because of possible holes
275 * event can already be present yet not assigned (in hwc->idx)
276 * because of successive calls to x86_schedule_events() from
277 * hw_perf_group_sched_in() without hw_perf_enable()
279 for (i = 0; i < max; i++) {
281 * keep track of first free slot
283 if (k == -1 && !nb->owners[i])
284 k = i;
286 /* already present, reuse */
287 if (nb->owners[i] == event)
288 goto done;
291 * not present, so grab a new slot
292 * starting either at:
294 if (hwc->idx != -1) {
295 /* previous assignment */
296 i = hwc->idx;
297 } else if (k != -1) {
298 /* start from free slot found */
299 i = k;
300 } else {
302 * event not found, no slot found in
303 * first pass, try again from the
304 * beginning
306 i = 0;
308 j = i;
309 do {
310 old = cmpxchg(nb->owners+i, NULL, event);
311 if (!old)
312 break;
313 if (++i == max)
314 i = 0;
315 } while (i != j);
316 done:
317 if (!old)
318 return &nb->event_constraints[i];
320 return &emptyconstraint;
323 static struct amd_nb *amd_alloc_nb(int cpu)
325 struct amd_nb *nb;
326 int i;
328 nb = kmalloc_node(sizeof(struct amd_nb), GFP_KERNEL | __GFP_ZERO,
329 cpu_to_node(cpu));
330 if (!nb)
331 return NULL;
333 nb->nb_id = -1;
336 * initialize all possible NB constraints
338 for (i = 0; i < x86_pmu.num_counters; i++) {
339 __set_bit(i, nb->event_constraints[i].idxmsk);
340 nb->event_constraints[i].weight = 1;
342 return nb;
345 static int amd_pmu_cpu_prepare(int cpu)
347 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
349 WARN_ON_ONCE(cpuc->amd_nb);
351 if (boot_cpu_data.x86_max_cores < 2)
352 return NOTIFY_OK;
354 cpuc->amd_nb = amd_alloc_nb(cpu);
355 if (!cpuc->amd_nb)
356 return NOTIFY_BAD;
358 return NOTIFY_OK;
361 static void amd_pmu_cpu_starting(int cpu)
363 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
364 struct amd_nb *nb;
365 int i, nb_id;
367 cpuc->perf_ctr_virt_mask = AMD_PERFMON_EVENTSEL_HOSTONLY;
369 if (boot_cpu_data.x86_max_cores < 2)
370 return;
372 nb_id = amd_get_nb_id(cpu);
373 WARN_ON_ONCE(nb_id == BAD_APICID);
375 for_each_online_cpu(i) {
376 nb = per_cpu(cpu_hw_events, i).amd_nb;
377 if (WARN_ON_ONCE(!nb))
378 continue;
380 if (nb->nb_id == nb_id) {
381 cpuc->kfree_on_online = cpuc->amd_nb;
382 cpuc->amd_nb = nb;
383 break;
387 cpuc->amd_nb->nb_id = nb_id;
388 cpuc->amd_nb->refcnt++;
391 static void amd_pmu_cpu_dead(int cpu)
393 struct cpu_hw_events *cpuhw;
395 if (boot_cpu_data.x86_max_cores < 2)
396 return;
398 cpuhw = &per_cpu(cpu_hw_events, cpu);
400 if (cpuhw->amd_nb) {
401 struct amd_nb *nb = cpuhw->amd_nb;
403 if (nb->nb_id == -1 || --nb->refcnt == 0)
404 kfree(nb);
406 cpuhw->amd_nb = NULL;
410 PMU_FORMAT_ATTR(event, "config:0-7,32-35");
411 PMU_FORMAT_ATTR(umask, "config:8-15" );
412 PMU_FORMAT_ATTR(edge, "config:18" );
413 PMU_FORMAT_ATTR(inv, "config:23" );
414 PMU_FORMAT_ATTR(cmask, "config:24-31" );
416 static struct attribute *amd_format_attr[] = {
417 &format_attr_event.attr,
418 &format_attr_umask.attr,
419 &format_attr_edge.attr,
420 &format_attr_inv.attr,
421 &format_attr_cmask.attr,
422 NULL,
425 /* AMD Family 15h */
427 #define AMD_EVENT_TYPE_MASK 0x000000F0ULL
429 #define AMD_EVENT_FP 0x00000000ULL ... 0x00000010ULL
430 #define AMD_EVENT_LS 0x00000020ULL ... 0x00000030ULL
431 #define AMD_EVENT_DC 0x00000040ULL ... 0x00000050ULL
432 #define AMD_EVENT_CU 0x00000060ULL ... 0x00000070ULL
433 #define AMD_EVENT_IC_DE 0x00000080ULL ... 0x00000090ULL
434 #define AMD_EVENT_EX_LS 0x000000C0ULL
435 #define AMD_EVENT_DE 0x000000D0ULL
436 #define AMD_EVENT_NB 0x000000E0ULL ... 0x000000F0ULL
439 * AMD family 15h event code/PMC mappings:
441 * type = event_code & 0x0F0:
443 * 0x000 FP PERF_CTL[5:3]
444 * 0x010 FP PERF_CTL[5:3]
445 * 0x020 LS PERF_CTL[5:0]
446 * 0x030 LS PERF_CTL[5:0]
447 * 0x040 DC PERF_CTL[5:0]
448 * 0x050 DC PERF_CTL[5:0]
449 * 0x060 CU PERF_CTL[2:0]
450 * 0x070 CU PERF_CTL[2:0]
451 * 0x080 IC/DE PERF_CTL[2:0]
452 * 0x090 IC/DE PERF_CTL[2:0]
453 * 0x0A0 ---
454 * 0x0B0 ---
455 * 0x0C0 EX/LS PERF_CTL[5:0]
456 * 0x0D0 DE PERF_CTL[2:0]
457 * 0x0E0 NB NB_PERF_CTL[3:0]
458 * 0x0F0 NB NB_PERF_CTL[3:0]
460 * Exceptions:
462 * 0x000 FP PERF_CTL[3], PERF_CTL[5:3] (*)
463 * 0x003 FP PERF_CTL[3]
464 * 0x004 FP PERF_CTL[3], PERF_CTL[5:3] (*)
465 * 0x00B FP PERF_CTL[3]
466 * 0x00D FP PERF_CTL[3]
467 * 0x023 DE PERF_CTL[2:0]
468 * 0x02D LS PERF_CTL[3]
469 * 0x02E LS PERF_CTL[3,0]
470 * 0x031 LS PERF_CTL[2:0] (**)
471 * 0x043 CU PERF_CTL[2:0]
472 * 0x045 CU PERF_CTL[2:0]
473 * 0x046 CU PERF_CTL[2:0]
474 * 0x054 CU PERF_CTL[2:0]
475 * 0x055 CU PERF_CTL[2:0]
476 * 0x08F IC PERF_CTL[0]
477 * 0x187 DE PERF_CTL[0]
478 * 0x188 DE PERF_CTL[0]
479 * 0x0DB EX PERF_CTL[5:0]
480 * 0x0DC LS PERF_CTL[5:0]
481 * 0x0DD LS PERF_CTL[5:0]
482 * 0x0DE LS PERF_CTL[5:0]
483 * 0x0DF LS PERF_CTL[5:0]
484 * 0x1C0 EX PERF_CTL[5:3]
485 * 0x1D6 EX PERF_CTL[5:0]
486 * 0x1D8 EX PERF_CTL[5:0]
488 * (*) depending on the umask all FPU counters may be used
489 * (**) only one unitmask enabled at a time
492 static struct event_constraint amd_f15_PMC0 = EVENT_CONSTRAINT(0, 0x01, 0);
493 static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
494 static struct event_constraint amd_f15_PMC3 = EVENT_CONSTRAINT(0, 0x08, 0);
495 static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
496 static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
497 static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);
499 static struct event_constraint *
500 amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, struct perf_event *event)
502 struct hw_perf_event *hwc = &event->hw;
503 unsigned int event_code = amd_get_event_code(hwc);
505 switch (event_code & AMD_EVENT_TYPE_MASK) {
506 case AMD_EVENT_FP:
507 switch (event_code) {
508 case 0x000:
509 if (!(hwc->config & 0x0000F000ULL))
510 break;
511 if (!(hwc->config & 0x00000F00ULL))
512 break;
513 return &amd_f15_PMC3;
514 case 0x004:
515 if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
516 break;
517 return &amd_f15_PMC3;
518 case 0x003:
519 case 0x00B:
520 case 0x00D:
521 return &amd_f15_PMC3;
523 return &amd_f15_PMC53;
524 case AMD_EVENT_LS:
525 case AMD_EVENT_DC:
526 case AMD_EVENT_EX_LS:
527 switch (event_code) {
528 case 0x023:
529 case 0x043:
530 case 0x045:
531 case 0x046:
532 case 0x054:
533 case 0x055:
534 return &amd_f15_PMC20;
535 case 0x02D:
536 return &amd_f15_PMC3;
537 case 0x02E:
538 return &amd_f15_PMC30;
539 case 0x031:
540 if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
541 return &amd_f15_PMC20;
542 return &emptyconstraint;
543 case 0x1C0:
544 return &amd_f15_PMC53;
545 default:
546 return &amd_f15_PMC50;
548 case AMD_EVENT_CU:
549 case AMD_EVENT_IC_DE:
550 case AMD_EVENT_DE:
551 switch (event_code) {
552 case 0x08F:
553 case 0x187:
554 case 0x188:
555 return &amd_f15_PMC0;
556 case 0x0DB ... 0x0DF:
557 case 0x1D6:
558 case 0x1D8:
559 return &amd_f15_PMC50;
560 default:
561 return &amd_f15_PMC20;
563 case AMD_EVENT_NB:
564 /* not yet implemented */
565 return &emptyconstraint;
566 default:
567 return &emptyconstraint;
571 static ssize_t amd_event_sysfs_show(char *page, u64 config)
573 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT) |
574 (config & AMD64_EVENTSEL_EVENT) >> 24;
576 return x86_event_sysfs_show(page, config, event);
579 static __initconst const struct x86_pmu amd_pmu = {
580 .name = "AMD",
581 .handle_irq = x86_pmu_handle_irq,
582 .disable_all = x86_pmu_disable_all,
583 .enable_all = x86_pmu_enable_all,
584 .enable = x86_pmu_enable_event,
585 .disable = x86_pmu_disable_event,
586 .hw_config = amd_pmu_hw_config,
587 .schedule_events = x86_schedule_events,
588 .eventsel = MSR_K7_EVNTSEL0,
589 .perfctr = MSR_K7_PERFCTR0,
590 .event_map = amd_pmu_event_map,
591 .max_events = ARRAY_SIZE(amd_perfmon_event_map),
592 .num_counters = AMD64_NUM_COUNTERS,
593 .cntval_bits = 48,
594 .cntval_mask = (1ULL << 48) - 1,
595 .apic = 1,
596 /* use highest bit to detect overflow */
597 .max_period = (1ULL << 47) - 1,
598 .get_event_constraints = amd_get_event_constraints,
599 .put_event_constraints = amd_put_event_constraints,
601 .format_attrs = amd_format_attr,
602 .events_sysfs_show = amd_event_sysfs_show,
604 .cpu_prepare = amd_pmu_cpu_prepare,
605 .cpu_starting = amd_pmu_cpu_starting,
606 .cpu_dead = amd_pmu_cpu_dead,
609 static int setup_event_constraints(void)
611 if (boot_cpu_data.x86 >= 0x15)
612 x86_pmu.get_event_constraints = amd_get_event_constraints_f15h;
613 return 0;
616 static int setup_perfctr_core(void)
618 if (!cpu_has_perfctr_core) {
619 WARN(x86_pmu.get_event_constraints == amd_get_event_constraints_f15h,
620 KERN_ERR "Odd, counter constraints enabled but no core perfctrs detected!");
621 return -ENODEV;
624 WARN(x86_pmu.get_event_constraints == amd_get_event_constraints,
625 KERN_ERR "hw perf events core counters need constraints handler!");
628 * If core performance counter extensions exists, we must use
629 * MSR_F15H_PERF_CTL/MSR_F15H_PERF_CTR msrs. See also
630 * x86_pmu_addr_offset().
632 x86_pmu.eventsel = MSR_F15H_PERF_CTL;
633 x86_pmu.perfctr = MSR_F15H_PERF_CTR;
634 x86_pmu.num_counters = AMD64_NUM_COUNTERS_CORE;
636 printk(KERN_INFO "perf: AMD core performance counters detected\n");
638 return 0;
641 __init int amd_pmu_init(void)
643 /* Performance-monitoring supported from K7 and later: */
644 if (boot_cpu_data.x86 < 6)
645 return -ENODEV;
647 x86_pmu = amd_pmu;
649 setup_event_constraints();
650 setup_perfctr_core();
652 /* Events are common for all AMDs */
653 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
654 sizeof(hw_cache_event_ids));
656 return 0;
659 void amd_pmu_enable_virt(void)
661 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
663 cpuc->perf_ctr_virt_mask = 0;
665 /* Reload all events */
666 x86_pmu_disable_all();
667 x86_pmu_enable_all(0);
669 EXPORT_SYMBOL_GPL(amd_pmu_enable_virt);
671 void amd_pmu_disable_virt(void)
673 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
676 * We only mask out the Host-only bit so that host-only counting works
677 * when SVM is disabled. If someone sets up a guest-only counter when
678 * SVM is disabled the Guest-only bits still gets set and the counter
679 * will not count anything.
681 cpuc->perf_ctr_virt_mask = AMD_PERFMON_EVENTSEL_HOSTONLY;
683 /* Reload all events */
684 x86_pmu_disable_all();
685 x86_pmu_enable_all(0);
687 EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);